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Abstract

This paper considers nonparametric regression estimation in the context of de-
pendent biased non-negative data using a generalized asymmetric kernel. It may be
applied to a wider variety of practical situations, such as the length and size biased
data. We derive theoretical results using a deep asymptotic analysis of the behavior of
the estimator that provides consistency and asymptotic normality in addition to the
evaluation of the asymptotic bias term. The asymptotic mean squared error is also
derived in order to obtain the optimal value of smoothing parameters required in the
proposed estimator. The results are stated under a stationary ergodic assumption,
without assuming any traditional mixing conditions. A simulation study is carried out
to compare the proposed estimator with the local linear regression estimate.
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1 Introduction

Ordinary kernel regression does not provide admissible values of the regression, or its func-
tionals at the boundaries for restricted support regressions (see, e.g., Chaubey et al. (2010)
for further discussion). In this paper consider the setting of biased data that typically fea-
tures non-negative observations. We extend the methodology given in Chaubey et al. (2010)
to this setup, for constructing a nonparametric regression estimator that allows to deal with
the boundary bias problem. In this setup the density of biased data is given by a target
density weighted by some function of the observations. For example, consider the bivariate
case where (U, V ) is a 2-dimensional random vector with probability density function (pdf)
f(u, v). Suppose that the data are collected from another random vector (X,Y ) with pdf
fw(x, y), which is related to f as follows:

fw(x, y) =
κ(x)w(x, y)f(x, y)

µ
, (1.1)

where µ = E(κ(U)w(U, V )) (which is assumed to be finite), w(·, ·) and κ(·) are nonnegative
functions but κ(·) not necessarily needs to be known. Then fw is known as a weighted
density and the resulting data is known as weighted or biased data.

This covers a wide variety of practical cases, since the weighted data appear in a variety of
situations such as that of missing data, damaged observations, sociological studies, econo-
metrics, survival analysis, biomedicine and physics, among others. As a particular case, it
can be applied to length biased data sampling, which is the most frequently analyzed in the
literature on biased data. In such a case the probability of observing an individual at a given
site is proportional to the individual’s length of stay at that site.

Notice that the length biased data appear particularly in situations related to the renewal
process. Consider, for instance in an univariate context, a natural process to generate a
random variable X with density f(x). To select a random sample of observations from X,
we use a selection procedure which gives the same chance of each observation to be selected
by the original mechanism. In practice it may happen that drawing a direct sample from
X is impossible. In fact, an observation X = x, may be included with relative chance
proportional to its length x. Therefore, the common probability density g of recorded biased
observation, say U1, . . . , Un, is given by g(x) = xf(x)/µ where x > 0 and µ is the expected
mean corresponding to the density f, which is assumed to be finite. It should be noted
that size biasing makes sense only for positive data (see Patil and Rao (1978)), that is our
motivation to consider regression for the weighted data for non-negative random variables.

There are many other practical situations that lead to biased data sets. In an industrial
setting, Cox (1969) studied the problem of sampling fibres and the estimation of fibre length
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distribution. In the area of forestry, the size measure is usually proportional to either length
or area (see Muttlak and McDonald (1990)). In economic context, Olave et al. (1998)
studied the relationship between the time of unemployment of the members of a population
and some covariates, such as age, starting from a sample of unemployed people at a specific
moment in time. For other interesting examples of weighted distributions in practice, one
may refer to Patil and Rao (1978) and Patil et al. (1988).

An example to show the usefulness of the introduction of the function κ in the general
weighting scheme in Eq. (1.1) is given in Sköld (1999). For an overview of the present state
of the art and more practical examples, one may refer to the article by Cristóbal and Alcalà
(2001). Model (1.1) due to its general form may be applied to a wider variety of practical
situations. It is studied by Sköld (1999) who gives the mean square convergence for both
classical kernel estimator and the local linear estimator. Firstly, Ahmad (1995) considered
nonparametric regression for the biased data, however in a special case when κ(u) = 1.
The same problem has also been studied by Cristóbal and Alcalá (2000) when κ(x) = 1
and w(x, y) = y, where the authors proposed several estimators for the regression function
and studied their asymptotic optimal bandwidth and asymptotic mean squared error. Some
other papers, such as Jones (1991), Ojeda al. (2004), Vardi (1982) and Wu and Mao (1996),
may also be of interest to the reader in this connection, though mostly in the independent
identically distributed (iid) setup. However, a great deal of data in econometrics, engineering
and natural sciences, among other areas, occur in the form of time series in which observations
are dependent. Our goal, therefore, is to consider the case of biased data sampled from a
stationary ergodic process to allow generality in the dependence structure. We avoid the
widely used strong mixing condition and its variants as a dependence measure.

Following the idea in Chaubey et al. (2010), we consider a perturbed version of the regression
function estimate that allows to deal with boundary bias problem of at 0. This estimator is
very simple and may be easily generalized to multivariate case. Section 2 outlines the moti-
vation and the form of the new estimator and Section 3 presents the main results concerning
the asymptotic behavior of the estimator, including consistency, asymptotic normality and
evaluation of the bias term. The asymptotic mean squared error is also derived and the op-
timal value of smoothing parameter is discussed, at the interior points of the interval as well
as on the boundaries. Our results may applied for both mixing and non mixing processes.
In this context, the martingale techniques play a vital role that allow us to obtain optimal
results as in the iid setting. Section 4 is devoted to a simulation study comparing the perfor-
mance of the new estimator with that of the local linear estimator and the traditional kernel
estimator in this context. The proofs of the results in Section 3 are relegated to Section 5.

2 Smooth Estimator of the Regression Function

Let Zi = (Xi, Yi)i∈N∗ be a R+ × R+-valued strictly stationary ergodic process defined on a
probability space (Ω,A,P). Let Ew(·) and Varw(·) be the moments when these are calculated
with the density fw(·, ·) given in (1.1) or with its marginal fw(·) defined below. Let f(·) be
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the pdf of U1, . . . , Un and fw(·) that of X1, . . . , Xn, which are assumed to be bounded and
continuous on [0, ∞). Let ϕ(·) be a Boral function of R+ into R and such that E(ϕ(V )) <∞
and let m(u) := E(ϕ(V1)|U1 = u) be the conditional mean function of ϕ(V1) given U1 = u,
which is assumed to be bounded. Denote by fw(·|x) the conditional density of Y given X = x
and f(·|u) the conditional density of V given U = u, when theses quantities exist. In what
follows we suppose supp(f) = supp(fw) ⊂ supp(w).

To define an estimate for m(·) from the observed data Zi, i = 1, . . . , n, observe first that

fw(x) =
κ(x)γ(x)f(x)

E(κ(X)w(X, Y ))
and fw(y|x) =

w(x, y)f(y|x)∫
w(x, y)f(y|x)dy

, (2.1)

where γ(x) := E(w(X, Y )|X = x) > 0. It immediately follows, for j = 1, 2, that

Ew
(
ϕ(Y )j−1w(X, Y )−1|X = x

)
=

(m(x))j−1

γ(x)
, (2.2)

whenever these quantities exist. And, therefore

m(x) =
Ew (ϕ(Y )w(X, Y )−1|X = x)

Ew (w(X, Y )−1|X = x)
:=

s(x)

t(x)
. (2.3)

Define the following Generalized smooth estimator for m(·) based on the data (Xi, Yi)

mn(x) :=

∑n
i=1 ϕ(Yi)w(Xi, Yi)

−1Qx,vn(Xi)∑n
i=1w(Xi, Yi)−1Qx,vn(Xi)

, (2.4)

when the denominator is not 0. Here vn (0 < vn < 1) is the bandwidth parameter satisfying
vn → 0 and nvn → ∞ as n → ∞, and Qx,vn(·) is a density function with mean x and
variance (xvn)

2. The usual kernel estimator may be obtained is a special case of (2.4) by

taking Qvn(
t
x
) = 1

xvn
K
(
t−x
xvn

)
, where K(·) is a density function with mean zero and variance

1.

Note however that this estimator may note be provide a consistently estimate of m(0)
(Chaubey al., 2010). To alleviate this situation we consider the following perturbed ver-
sion

rn(x) := mn(x+ ϵ) =

∑n
i=1 ϕ(Yi)w(Xi, Yi)

−1∆i(x+ ϵ)∑n
i=1w(Xi, Yi)−1∆i(x+ ϵ)

:=
rn,2(x)

rn,1(x)
, x ≥ 0, (2.5)

where ϵ := ϵn is a positive real number that goes to 0 at an appropriate rate as n→ ∞,

rn,j(x) := n−1

n∑
i=1

ϕ(Yi)
j−1w(Xi, Yi)

−1∆i(x+ ϵ), for j = 1, 2, (2.6)
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and ∆i(x+ ϵn) = Qx+ϵn,vn(Xi) with

Qx+ϵn,vn(t) =
1

βαn
x+ϵn Γ(αn)

tαn−1 e−αnt/(x+ϵn), where αn = 1/v2n, βx+ϵn = v2n(x+ ϵn) (2.7)

is a gamma density with mean x+ ϵ and variance (vn(x+ ϵ))
2. This estimator is nonnegative

and naturally asymmetric to cope with discontinuity at t = 0. The choose of the gamma
density is motivated by the fact that the biased length data are typically nonnegative.

Notice that the choose of the function ϕ = I[0, t], t ∈ R+, where IA stands for the indicator
function of the set A, permits to construct an estimate of the conditional distribution function
F(t|u).

2.1 Notation and assumptions

In order to state our results we introduce the following notations. Let Fi be the σ-field
generated by ((X1, Y1), . . . , (Xi, Yi)) and Gi that generated by ((X1, Y1), . . . , (Xi, Yi), Xi+1).
For i ∈ N, let fw,i(·) := fw(·|Fi−1) be the conditional density of Xi given Fi−1. Let C0(R) be
the space of continuous functions going to zero at infinity and ∥ · ∥ be the sup norm. From

now on, the notation
D→ stands for the convergence in distribution of random variables and

P→ the convergence in probability. Denote by oa.s.(u) a random function l such that l(u)/u
converges to zero almost surely as u → 0. Similarly, define Oa.s.(u) as a random function l
such that l(u)/u is almost surely bounded.

Our results are stated under the following assumptions, which are gathered here for easy
reference:

(A1) vn → 0, ϵ→ 0, nvn → ∞ and nvnϵ→ ∞ as n→ ∞.

(A2) For all i ∈ N, fw(·) ∈ C0(R) and fw,i(·) ∈ C0(R).

(A3) The sequence {n−1
∑n

i=1 fw,i(u)} converges uniformly in u to fw(u) almost surely (a.s.)
as n→ ∞.

(A4) For j = 0, 1

i) Ew
(
| ϕ(Y )j

w(X,Y )
|
)
<∞ and Ew

(
1

w(X,Y )2

)
<∞.

ii) The function s̃(u) = Ew (w(X, Y )−2|X = u) is continuous bounded.

(A5) The conditional mean of the quantities ϕ(Yi), ϕ
j(Yi)w

−1(Xi, Yi) (j = 0, 1) and
(
ϕ(Yi)−m(x)
w(Xi,Yi)

)2
given the sigma-field Gi−1 exists and only depends on Xi, i.e., for any i ≥ 1,

(i) E (ϕ(Yi) | Gi−1) = m(Xi) a.s.
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(ii) Ew (w(Xi, Yi)
−1 | Gi−1) = Ew (w(Xi, Yi)

−1 |Xi) = t(Xi) a.s.

(iii) Ew (ϕ(Yi)w(Xi, Yi)
−1 | Gi−1) = Ew (ϕ(Yi)w(Xi, Yi)

−1 |Xi) = s(Xi) a.s.

(iv)

Ew

[(
ϕ(Yi)−m(x)

w(Xi, Yi)

)2

| Gi−1

]
= Ew

[(
ϕ(Yi)−m(x)

w(Xi, Yi)

)2

| Xi

]
:= g(Xi) a.s.

(A6) There exists some δ > 2 such that Ew
(∣∣∣ϕ(Y )−m(x)

w(X,Y )

∣∣∣2+δ) < ∞ and for any fixed x, the

function g(u) := Ew
(∣∣∣ϕ(Y )−m(x)

w(X,Y )

∣∣∣2+δ |X = u

)
is continuous bounded .

(A7) i) The function fw(·) admits a bounded derivative.

ii) The function m(·) has bounded derivatives up to order two.

Condition (A1) and (A7) are very common in the framework of regression estimation, while
(A1) and (A2) involve the ergodic nature of the data and are related to the application of the
ergodic theorem. (A4) is a weaker condition than those proposed elsewhere in the literature.
Condition (A5) is satisfied, for instance, by letting Yi = Xi+1 with {Xi} being a Markov
process. It is also satisfied when we consider the heteroscedastic regression models

w(Xi, Yi)
−jϕk(Yi) = hk,j(Xi) + ϑ(Xi)ϵi, j = 1, 2, k = 0, 1, (2.8)

where,

ϑ2(x) = Varw

(
ϕ(Y )

w(X, Y )
|X = x

)
a.s, h1,1(x) = s(x),

and

hk,2(x) = Ew
(

ϕ(Y )k

w(X, Y )2
| X = x

)
a.s.

The ϵi’s are martingale difference with respect to the sigma-fieldAi := σ ((ϵ1, X1), . . . , (ϵi, Xi), Xi+1),
such that Ew(ϵ2|Ai−1) = 1 a.s.

We will check the condition A(5)-(iv) only. We have Gi ≡ Ai, therefore

Ew

([
ϕ(Yi)−m(x)

w(Xi, Yi)

]2
| Gi−1

)
= E

((
ϕ(Yi)

w(Xi, Yi)

)2

| Gi−1

)

− 2m(x)E
(

ϕ(Yi)

w2(Xi, Yi)
|Gi−1

)
+m2(x)E

(
1

w2(Xi, Yi)
|Gi−1

)
= s2(Xi) + ϑ2(Xi)− 2m(x)h1.2(Xi) +m2(x)h0,2(Xi),

which is a function of Xi.
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3 Main Results

From now on set, for x ∈ R+,

rn,j(x) := n−1

n∑
i=1

Ew
[
ϕ(Yi)

j−1w(Xi, Yi)
−1∆i(x+ ϵ) |Fi−1

]
, for j = 1, 2, (3.1)

where Ew(X | F) is the conditional expectation of X given the sigma-field F . Define the
conditional bias of the regression estimator rn(x) as

Bn(x) := Cn(x)−m(x), where Cn(x) :=
rn,2(x)

rn,1(x)
. (3.2)

3.1 Consistency with rate

The following theorem gives the consistency in probability with rate of the estimate rn(x)
at interior and boundaries of the support.

Theorem 1 . In addition to conditions (A1)-(A6) and (A7), assume that

max(v
5/2
n , ϵ5/4)

vn(x+ ϵ)
√
n log log n

−→ 0,
nmax(v5n, ϵ

5/2)

log log n
−→ 0,

max(vn, ϵ
1/2)

(x+ ϵ)vn log log n
−→ 0 (3.3)

as n→ ∞. Then for,
nmax(vn, ϵ

1/2)

log log n
→ ∞ (3.4)

we have for any x ≥ 0√
nmax(vn, ϵ1/2)

log log n
(rn(x)−m(x))

P−→ 0 as n→ ∞.

3.2 Asymptotic Normality

Before state our result we introduce further notation. Let, for any x ∈ R+, whenever
f(x) > 0

ψ(x) := E

(
(ϕ(Y )−m(x))2

w(X,Y )
| X = x

)
and σ2(x) :=

µψ(x)

2
√
π x κ(x)f(x)

. (3.5)

Theorem below gives the asymptotic normality of the estimator rn(x) at interior and bound-
aries of the support as well as the form of its asymptotic variance in both cases.
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Theorem 2 . Assume that conditions (A1)-(A6) and (A7)(i) hold.

(i) We have, for any fixed x > 0 such that f(x) > 0

√
nvn(rn(x)−m(x)−Bn(x))

D−→ N
(
0, σ2(x)

)
.

(ii) Suppose in addition that the condition (A7)(ii) is satisfied and

√
nvnmax(v2n, ϵ) −→ 0 as n→ ∞. (3.6)

Then, we have
√
nvn(rn(x)−m(x))

D→ N
(
0, σ2(x)

)
.

(iii) Assume, moreover that

√
nvnϵmax(v2n, ϵ) −→ 0 as n −→ ∞. (3.7)

Then we have, whenever f(0) > 0

√
nvnϵn(rn(0)−m(0))

D→ N
(
0, ρ2(0)

)
,

where

ρ2(0) :=
µϕ(0)

2
√
π κ(0)f(0)

. (3.8)

Remark 1. The choose of w(x, y) = ϕ(y) = y correspond to the case of length biased data
frequently studied in literature. In this case, the functions ψ(x), γ(x) and the mean µ being

ψb(x) = m(x)
[
m(x)E(Y −1|X = x)− 1

]
, γb(x) = m(x) and µb = E(Y ), (3.9)

and the estimator defined in (2.4) takes the form

rn,b(x) =

∑n
i=1 ∆i(x+ ϵ)∑n

i=1 Y
−1
i ∆i(x+ ϵ)

, (3.10)

which may be interpreted as a local harmonic mean for estimating the unconditional mean
of length biased data. In this case, the limiting variance functions given in (3.5) and (3.8)
become

σ2
b (x) :=

µbψb(x)

2
√
π x κ(x)f(x)

and ρ2b(0) :=
µbψb(0)

2
√
π κ(0)f(0)

.
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3.3 Asymptotic Bias

The following results give the asymptotic order of the conditional bias Bn(x) and specified
the convergence rate of the errors. Before stat our result, assume the following additional
conditions

(B1) There exist a constant c > 0 such that w(x, y) ≥ c.

(B2) The functions fw, m, s and t admit derivatives up to order 3 and their third derivatives
are bounded.

Proposition 1 Under assumptions (A1), (A2), (A3), (A4)(ii), (A5)(ii), (B1) and (B2)
and the condition

lim
n→∞

(x+ ϵ)nvn
log n

= ∞. (3.11)

We have for any x ≥ 0

Bn(x) = Cn(x)−m(x) = m′(x)ϵ+

(
m′′(x) +m′(x)

[
κ′(x)

κ(x)
+
f ′(x)

f(x)

])
A(v, ϵ) + o (A(v, ϵ))

+ Oa.s.

(√
max(v4n, ϵ

2) log n

n(x+ ϵ)vn

)
+Oa.s.

(
max(v2n, ϵ) log n

n(x+ ϵ)vn

)
,

where

A(v, ϵ) := x2v2n + 2xϵv2n + ϵ2(v2n + 1). (3.12)

Remark. The condition (B1) permits to apply an exponential inequality for bounded
martingale difference random variable to obtain the convergence rate of the errors. It can be
relaxed easily by applying a more general exponential inequality for unbounded martingale
difference random variables given in Läıb and Louani (2010).

3.4 Mean square error (MSE)

The MSE(rn(x)) := Ew(rn(x)− r(x))2, which measure the average of the square of the error,
is a quantity used to quantify the amount by which the estimator rn(x) differs from the
true value m(x) that being estimate. It may used for comparative purposes of two or more
estimators.

The following Proposition gives the MSE of the estimator rn(x) in the interior as well as
in the boundary of the interval, which allows us to determine the optimal (in the sense of
minimizing the quantity (MSE)) rates of convergence of vn → 0 and ϵn → 0.
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Proposition 2 Assume that Conditions (A1)-(A3), (A5)(ii)-(iv) and (B2) are satisfied.
Then we have for any x ≥ 0 whenever fx) > 0 that

MSE(rn(x) ≃ (m′(x)ϵ)2 + ϵA(vn, ϵ)m
′(x)

{
m′′(x) +m′(x)

[
κ′(x)

κ(x)
+
f ′(x)

f(x)

]}
+

1

4
A2(v, ϵ)

{
m′′(x) +m′(x)

[
κ′(x)

κ(x)
+
f ′(x)

f(x)

]}2

+
µψ(x)

2
√
π(x+ ϵ)nvn κ(x)f(x)

+
µ

2
√
π κ(x)f(x)

{
ψ′(x) +

(
1

γ(x)
− 1

)
γ′(x)

γ(x)
ψ(x)+

ψ(x)

[
κ′(x)

κ(x)
+
f ′(x)

f(x)

]}{
1

nv
− x

(x+ ϵ)nv

}
.

The following Corollary gives the form of the MSE for x > 0 as well as for x = 0.

Corollary 1 i) If x > 0, we have

MSE(rn(x) ≃ σ2(x)

nv
+ (m′(x)ϵ)2 + (x+ 2ϵ)ϵxv2m′(x)

{
m′′(x) +m′(x)

[
κ′(x)

κ(x)
+
f ′(x)

f(x)

]}
+

x3v4

4
(x+ 4ϵ)

{
m′′(x) +m′(x)

[
κ′(x)

κ(x)
+
f ′(x)

f(x)

]}2

.

ii) If x = 0, we have

MSE(rn(0) ≃ ρ2(0)

nvϵ
+ (m′(0)ϵ)2

+
µ

2
√
π nv κ(0)f(0)

[
ψ′(0) + ψ(0)

[(
1

γ(0)
− 1

)
γ′(0)

γ(0)
+
κ′(0)

κ(0)
+
f ′(0)

f(0)

]]
.

Remarks.

1) Corollary 1 shows that, when x > 0, the optimal choice of ϵn is 0 which gives the optimal
choice of vn to be vn = O(n−1/5) and the optimal order of MSE is then O(n−4/5). Note also
that if we take ϵn = O(v2n) we obtain the same optimum. When x = 0, the optimal choice
of ϵn is O((nvn)

−1/), however there is no optimal choice for vn > 0.

2) If we choose κ(x) = w(x, y) = 1, then µ = 1, t(x) = 1 and fw ≡ f , which corresponds to
the non sampled data. In this case, the MSE is the same of that obtained in Chaubey et al.
(2010). If in addition that ϵ = 0, we get the classical MSE for the kernel Gamma regression,
that is

MSE(x) =
σ2(x)

nv
+
x4v4

4

{
m′′(x) +m′(x)

f ′(x)

f(x)

}2

.
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3) If we take k(x) = 1, w(x, y) = ϕ(y) = y, which corresponds to the usual length biased
data, then the functions ψ(x), γ(x) and the mean µ take the forme as in (3.9) and the MSE
being, whenever x > 0,

MSE(rb,n(x)) ≃ σ2
b (x)

nv
+ (m′(x)ϵ)2 + (x+ 2ϵ)ϵxv2m′(x)

{
m′′(x) +m′(x)

f ′(x)

f(x)

}
+

x3v4

4
(x+ 4ϵ)

{
m′′(x) +m′(x)

f ′(x)

f(x)

}2

.

And if x = 0, it being

MSE(rn,b(0)) ≃ σ2
b (0)

nvϵ
+ (m′(0)ϵ)2

+
µb

2
√
π nv f(0)

[
ψ′
b(0) + ψb(0)

[(
1

m(0)
− 1

)
m′(0)

m(0)
+
f ′(0)

f(0)

]]
.

4) Compare our results to that obtained in Sköld (1999), one may observe that the bias
of the classical kernel estimate given in Theorem 1 of Sköld (1999) is affected by the scale
parameter κ(x), which is comparable to our result given Corollary 1. However, the bias for
the local linear given in Theorem 2 in Sköld (1999) is free from κ(x), this is due to the power
of the local linear smoothing, which makes the leading bias term free of the first derivative of
m and f . Note however that, if we choose, for example, the scale parameter κ(x) = c/f(x)
for some positive constant c, then the model (1.1) may be written as

fw(x, y) =
w(x, y)f(y|x)

µ
, where µ = E(f−1(X)w(X, Y )) =

∫
yf(y|x)dxdy. (3.13)

In this case the variance σ2(x) being independent of the marginal density f and the expression
κ′(x)
κ(x)

+ f ′(x)
f(x)

involved in the bias term is 0. In this case the bias square term given in Corollary
1 is comparable to the local linear estimate, which is small than the usual case when, for
example, the function m is close to linear. Note moreover that despite of the nice properties
of the local linear approach, this method uses a fixed symmetric kernel with support compact
with mean 0 and variance 1, thus its support does not matches the support of the regression
curve. It has also a drawback as the variance is unbounded in finite sample as point out by
Seifert and Gasser (1996). While the family of Gamma kernels used here posses the following
properties: (a) It provide an asymmetric density with mean x and variance (xvn)

2. Here the
quantity h = h(x) = xvn may be interpreted as the bandwidth parameter, that depends on
x,), (b) It has varying shapes and varying degree of smoothness. (c) It’s support matches
the support of the regression curve, which leads to increase the effective sample size, and
therefore the finite sample variance of the estimator may be reduced.

The perturbed version of the estimator introduced here appears a very useful new idea to
deal with boundary bias in the case of nonnegative data, which also avoids the complication

11



of some of the rigorous boundary correction methods in the literature. The estimator defined
here may be generalized easily to higher dimension. Note finally that, the numerical study
has carried out recently in Chaubey et al. (2010) showed that our methods is competitive
to the local linear smoothing. We would like to investigate such properties for the length
biased case in this paper.

4 Simulation Studies

4.1 Selection of parameters

The method for selecting parameter we use here is given by Hengartner and Wegkamp (2002).
We randomly select m pairs of samples from the whole data set with size m + l. Then we
use m pairs of samples {Yi, Xi}mi=1 as testing sample and the rest l pairs of samples to build
regression estimator, say ml,h(x) where h represents smoothing parameters and might be a
vector. To find optimal solutions of parameter, we minimize quadratic risk function

Qm(h) =
1

m

m∑
i=1

[Yi −ml,h(Xi)]
2 . (4.1)

To reduce variability caused by random partition of the data, Hengartner and Wegkamp
(2002) suggested dividing the same data set 21 times and using the median of the obtained
21 samples of optimal solution as the final selection of parameter. They also suggested that
m = ⌈nβ⌉ (β = 0.75, 0.8, 0.85, 0.9, 0.95). Their simulation showed that under the choice
β = 0.85 the results are more satisfactory in most cases. For sample size n = 200, we take
m = 90. Under the chosen parameters, we obtain 1000 samples of mi

n(x)(i = 1, . . . , 1000) at
a grid of interval. Based on those samples, we compute average bias

AB(mn(x),m(x)) =
1

1000

1000∑
i=1

[
mi
n(x)−m(x)

]
,

sample variance

SV (mn(x)) =
1

1000

1000∑
i=1

[
mi
n(x)− m̄n(x)

]2
where m̄n(x) =

1
1000

∑1000
i=1 m

i
n(x) and averaged squared error

ASE(mn(x),m(x)) =
1

1000

1000∑
i=1

[
mi
n(x)−m(x)

]2
for numerical comparison.
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4.2 i.i.d case

We generate the length biased data for fw(y/x) given by a Gamma(2, m(x)/2) density and
f(y/x) is given by Γ(3, m(x)/2) density. We consider two examples here for m(x).

• This example is taken from Sköld (1999). Here we consider X to be uniformly dis-
tributed on [0, 1].

m(x) =
cos(3x)

2
+ 3x4 − 2.2x8.

• This example is taken from Cristóbal and Alcalà (2001), where m(x) is given by

m(x) = 15 + 2x+ 50[exp(−(x− 45)2/16)− exp(−(x− 55)2/16)]

and we take X ↪→ U [20, 80].

Figures 1 and 3 display Average Bias, Sample Variance and Average Squared Error for gener-
alized kernel weighted (GKW) non-parametric estimators with asymmetric and symmetric
kernels along with local linear estimators with asymmetric and symmetric kernels. Figures
2 and 4 present the graph of different estimators for a typical sample. We draw similar
conclusions as in Chaubey et al. (2010) regarding the new estimator for the case of non-
weighted data. Namely, the generalized asymmetric kernel estimator handles the boundary
bias well and presents it self a good competitor to the local linear estimator with respect to
bias and mean squared error.
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Figure 1: 1: GKW estimator with asymmetric kernel; 2: GKW estimator with symmetric
kernel ; 3: LLE with symmetric kernel; 4: LLE with asymmetric kernel.
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Figure 2: 1: True regression function; 2: GKW estimator with asymmetric kernel; 3: GKW
estimator with symmetric kernel ; 4: LLE with symmetric kernel; 5: LLE with asymmetric
kernel.
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Figure 3: 1: GKW estimator with asymmetric kernel; 2: GKW estimator with symmetric
kernel ; 3: LLE with symmetric kernel; 4: LLE with asymmetric kernel.
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Figure 4: 1: True regression function; 2: GKW estimator with asymmetric kernel; 3: GKW
estimator with symmetric kernel ; 4: LLE with symmetric kernel; 5: LLE with asymmetric
kernel.

4.3 dependent data case

In this case we consider the two regressions considered above, however,

• In the first example, Xi are generated by

Xi = 0.5Xi−1 +

(√
0.2 + 0.1X2

i−1

)
ηi

with X0 ∼ [0, 1] and ηi ∼ [1, 1/(2
√
0.3]. Y w

i are generated by

Y w
i = m(Xi)(1 + 0.35ϵi)

where ϵi ∼ [−
√
3,
√
3]

• In the second example, Xi are generated by
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• In the first example, Xi are generated by

Xi = 0.5Xi−1 +

(√
96 + 0.01X2

i−1

)
ηi

with X0 ∼ [20, 80] and ηi ∼ [1,
√
10]. Y w

i are generated by

Y w
i = m(Xi)(1 + 0.35ϵi)

where ϵi ∼ [−
√
3,
√
3]

Figures 5 and 7 display Average Bias, Sample Variance and Average Squared Error for gener-
alized kernel weighted (GKW) non-parametric estimators with asymmetric and symmetric
kernels along with local linear (LL) estimators with asymmetric and symmetric kernels. Fig-
ures 6 and 8 present the graph of different estimators for a typical sample. We draw similar
conclusions here as in the case of i.i.d. data.
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Figure 5: 1: GKW estimator with asymmetric kernel; 2: GKW estimator with symmetric
kernel ; 3: LLE with symmetric kernel; 4: LLE with asymmetric kernel.
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Figure 6: 1: True regression function; 2: GKW estimator with asymmetric kernel; 3: GKW
estimator with symmetric kernel ; 4: LLE with symmetric kernel; 5: LLE with asymmetric
kernel.
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Figure 7: 1: GKW estimator with asymmetric kernel; 2: GKW estimator with symmetric
kernel ; 3: LLE with symmetric kernel; 4: LLE with asymmetric kernel.
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Figure 8: 1: True regression function; 2: GKW estimator with asymmetric kernel; 3: GKW
estimator with symmetric kernel ; 4: LLE with symmetric kernel; 5: LLE with asymmetric
kernel.

5 Proofs

In order to establish our results, introduce some additional notations. Set, for x ∈ R+,

Sn(x) := (rn,2(x)− rn,2(x))−m(x)(rn,1(x)− rn,1(x)) (5.1)

and

Rn(x) := −Bn(x)(rn,1(x)− rn,1(x)). (5.2)

Clearly, we have

rn(x)− Cn(x) =
Sn(x) +Rn(x)

rn,1(x)
. (5.3)

The proof of Theorem 1 is split up into several lemmas establishing respectively the con-
vergence in probability of rn,1(x) to t(x)fw(x), the fact that Rn(x), suitably normalized, is
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actually equal to oP(1) and the asymptotic normality of Sn(x). We start with some technical
lemmas.

The following Lemma plays the same role as the classical Böchner’s Lemma for the kernel
estimate.

Lemma 1 Let φ : R+ → R+ be any bounded continuous function and f be the density
function of X that assumed to be bounded and continuous. Moreover assume that conditions
(A1)-(A2) and (A3) hold true. Then we have, almost surely that

1

n

n∑
i=1

Ew (φ(Xi)∆i(x+ ϵ)|Fi−1) −→ φ(x)f(x) as n→ ∞. (5.4)

The convergence is uniformly in x whenever φ and f are uniform continuous functions.

Proof of Lemma 1. The proof is similar of that of the Proposition 1 in Chaubey et al. (2010).
�

Lemma 2 .

a) We have for any p ≥ 0 and m ≥ 1 that∫ ∞

0

tpQm
x+ϵ,vn(t)dt =

( 1
v2n(x+ϵ)

)m/v
2
n(

m
v2n(x+ϵ)

)((m/v2n)+p+1−m)
.
Γ(m/v2n + p+ 1−m)

Γm(1/v2n)

≈ 1√
m(2π)m−1

1

vm−1
n (x+ ϵ)m−p−1

1√
1− v2n(

m−p−1
m

)
, as (ϵ, vn) → (0, 0). (5.5)

b) For any fixed x and any t ≥ 0, there exists c > 0 such that

Qx+ϵn,vn(t) ≤ c√
2π(x+ ϵn)vn

, whenever vn → 0. (5.6)

Proof of Lemma 2. The proofs uses routine calculations and the Sterling Lemma. �.

The following lemma describes the asymptotic behavior of the term rn,1(x).

Lemma 3 Assume that hypotheses (A1)-(A4), (A5)(ii) are satisfied and the function t(·) is
bounded. . Then we have, for any x ≥ 0, that

rn,1(x)
P−→ t(x)f(x).
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Proof of Lemma 3. Observe that

r̂n,1(x) = R1,n(x) +R2,n(x), (5.7)

where

R1,n(x) : = n−1

n∑
i=1

(
w−1(Xi, Yi)∆i(x)− Ew[w−1(Xi, Yi)∆i(x) |Fi−1]

)
,

R2,n(x) := n−1

n∑
i=1

Ew[w−1(Xi, Yi)∆i(x) |Fi−1]. (5.8)

Combined Lemma 1 with conditions (A4)-(ii) and (A5)-(ii), and using the property of the
conditional expectation, one may see that Rn,2(x) converges almost surely to t(x)f(x) as n
goes to infinity.

To handle the first term, observe that Rn,1(x) =
∑n

i=1 Lni(x) where {Lni(x)} is a triangular
array of martingale differences with respect to the σ-field Fi−1. Combined Burkholder with
Jensen inequalities we obtain for any λ > 0 that there exists a constant c > 0 such that

P(|Rn,1(x)| > λ) ≤ c
Ew(∆2

i (x)w(Xi, Yi)
−2)

nλ2

= c
Ew (∆2

i (x)s̃(Xi))

nλ2

One may write then in view of the statement (5.5) and the fact that s̃(·) is bounded

Ew
(
∆2

1(x)S̃(Xi)
)
=

∫ ∞

0

Q2
x+ϵ(t)s̃(t)fw(t)dt < sup

t∈R+

(f(t)s̃(t))

∫ ∞

0

Q2
x+ϵ(t)dt = O

(
1

vn(x+ ϵ)

)
.

It follows that |Rn,1(x)| = oP(1) because of condition (A1), nvn → ∞ and nvnϵn → ∞ as
n→ ∞. �

Lemma 4 i) In addition to (A1)-(A4)(i), (A5)(ii)-(iii), assume that the functions s(·) and
t(·) are bounded continuous. Then, one has for any x ≥ 0,

Bn(x) = oa.s.(1)

ii) If moreover condition (A4)(ii) is satisfied, one get for any x ≥ 0

Rn(x) = oP

(
1

nvn(x+ ϵ)

)
. (5.9)

iii) If in addition that the conditions (A7) are satisfied, then we have for any x ≥ 0, that

Bn(x) = OP
(
max(v2n, ϵ)

)
and Rn(x) = OP

(
max(v2n, ϵ)

nvn(x+ ϵ)

)
. (5.10)
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Proof of Lemma 4. Recall that

Bn(x) =
rn,2(x)−m(x)rn,1(x)

rn,1(x)
:=

B̃n(x)

rn,1(x)
.

Making use of condition (A5)(ii) and Lemma 1, we obtain rn,1(x) converges almost surely
to t(x)fw(x). Thus, rn,1(x) = Oa.s(1) since t(x)f(x) is bounded.

To prove the first part of proposition, using conditions (A5)(ii)-(iii) and the fact that s(x) =
m(x)t(x), one can easily see that

B̃n(x) =
1

n

n∑
i=1

Ew[∆i(x+ ϵ)(r(Xi)−m(x))(t(Xi)− t(x)) |Fi−1]

+
t(x)

n

n∑
i=1

Ew[∆i(x+ ϵ)(r(Xi)−m(x))|Fi−1] =: B̃1,n(x) + B̃2,n(x). (5.11)

It follows then by Lemma 1 that B̃j,n(x) = o(1) (j=1,2). This leads to Bn(x) = oa.s.(1).

To prove the second part of Lemma 4, observe

Rn(x) = −Bn(x)R1,n(x),

where R1,n(x) is defined in (5.8). One can then obtained, whenever condition (A5)-(ii) is
satisfied, that Rn(x) = o(1)OP(

1
nvn(x+ϵ)

), which completes the proof of part ii).

To give now an estimate of the rate of B̃2,n(x), observe that Qx+ϵ(u) =
1
x+ϵ

q( u
x+ϵ

) where q(·)
is gamma density with mean 1 and variance vn. Using condition (A3), which permits to
interchange the sum with the integral, we obtain for n large enough that

B̃2,n(x) =
t(x)

n

n∑
i=1

∫ ∞

0

[r((x+ ϵ)s)−m(x)] q(s)fw,i((x+ ϵ)s)ds

= t(x)

∫ ∞

0

[r((x+ ϵ)s)−m(x)] q(s)

[
1

n

n∑
i=1

fw,i((x+ ϵ)s)

]
ds

≃ t(x)

∫ ∞

0

[r((x+ ϵ)s)−m(x)] q(s)fw((x+ ϵ)s)ds. (5.12)

Making use of a Taylor expansion of the functions r(·) and fw,i(·) around x, we obtain by con-
ditions (A7) that B̃2,n(x) = Oa.s. (max(v2n, ϵ)) . Similarly, we have B̃1,n(x) = Oa.s. (max(v2n, ϵ)) .
This completes the proof of part iii) and therefore that of Lemma 4. �

The following Proposition establish the asymptotic normality of Sn(x).
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Proposition 3 Assume conditions (A1)-(A3), (A5)(ii)-(iii)-(iv), (A6) and (A7)(i) are sat-
isfied.

i) We have, for any a given x > 0, that

√
nvnSn(x)

D−→ N
(
0, τ 2(x)

)
, where τ 2(x) =

g(x)fw(x)

2
√
πx

. (5.13)

ii) Moreover we have, whenever nvnϵ→ ∞ as n→ ∞, that

√
nvnϵ Sn(0)

D−→ N
(
0, ϱ2(0)

)
, where ϱ2(0) =

g(0)fw(0)

2
√
π

. (5.14)

Proof of Proposition 3. Part i). Let

ηni =
(vn
n

)1/2
(ϕ(Yi)−m(x))w(Xi, Yi)

−1∆i(x+ ϵ) and ξni = ηni − Ew (ηni|Fi−1) .

Then
√
nvnSn(x) =

n∑
i=1

ξni, where Ew (ξni|Fi−1) = 0 a.s.

Thus, for any fixed x ≥ 0,
√
nvnSn(x) form a triangular array stationary martingale with

respect the sigma field Fi−1. To prove the statement (5.14), it suffices then to show that:

a)
∑n

i=1 Ew [ξ2ni|Fi−1]
P−→ τ 2(x)

b) nE
[
ξ2niI[|ξni|>λ]

]
= o(1) for any λ > 0.

Using conditions (A1), (A2) and (A5)(ii)-(iii), and proceeding as in the proof of Proposition
1 in Chaubey et al. (2010), one can see that the statement a) will be proved if

n∑
i=1

Ew
[
η2ni|Fi−1

] P−→ τ 2(x). (5.15)

Making use of condition (A5)(iv), one may write

n∑
i=1

Ew
[
η2ni|Fi−1

]
=

vn
n

n∑
i=1

Ew
[
(g(Xi)− g(u))∆2

i (x+ ϵ) |Fi−1

]
+
vng(x)

n

n∑
i=1

Ew
[
∆2
i (x+ ϵn) |Fi−1

]
=: J1n(x) + J2n(x).

(5.16)
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It is easily seen that J1n = oa.s.(1) in view of conditions (A3) and the fact that the functions
g(·) and Qx+ϵ(·) are bounded. Moreover, using Lemma 2 twice combined with Cauchez
shwartz inequality, we obtain

J2n(x) ≃ g(x)fw(x)

2
√
π(x+ ϵ)

+ vng(x)

∫ ∞

0

Q2
x+ϵ(u)[fw(u)− fw(x)]du

≃ g(x)fw(x)

2
√
π(x+ ϵ)

+O

(
1

x+ ϵ

)(∫ ∞

0

Qx+ϵ(u)[f(u)− f(x)]2du

)1/2

. (5.17)

It follows then by the mean value theorem combined with condition (A7)-(i) and the fact
that the function q(·) is gamma density with mean 1 and variance v2n∫ ∞

0

Qx+ϵ(u)[f(u)− f(x)]2du ≤ sup
t
(f ′
w(t))

2

∫ ∞

0

q(s)[x(s− 1) + sϵ]2ds

= O
(
max(ϵ2, v4n)

)
. (5.18)

Therefore, we have for any x > 0

n∑
i=1

E
[
η2ni|Fi−1

]
=

g(x)fw(x)

2
√
πx

+O

(
max(ϵ, v2n)

x+ ϵ

)
=

g(x)fw(x)

2
√
πx

+ o(1) := τ 2(x) + o(1) as (ϵ, vn) → (0, 0). (5.19)

Making use of Hölder and Markov inequalities and condition (A6), one may easily see that
the condition b) follows if

nEw|ηni|2+δ = o(1) fro some δ > 0.

Combined conditions (A1) and (A6) and Lemma 2 we obtain for any x > 0

nEw(|ηni|2+δ) = O(v.(
v

n
)δ/2)

∫ ∞

0

gδ(u)Qx+ϵ(u)
2+δ(u)fw(u)du

= O

(
1

(nv)δ/2(x+ ϵ)1+δ

)
= o(1). (5.20)

This completes the proof of the first part of Proposition 1. The proof of the second part is
similar by replacing vn by vnϵ and x by 0 in the different steps of the proof of part one. �
Proof of Theorem 1. Part (i). We have from (5.9), whenever x > 0, that

√
nvnRn(x) = oP

(
1√
nv

)
= oP(1).
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It follows then from (5.3), Lemma 3 and the first part of proposition 3 that
√
nvn(rn(x) −

Bn(x)−m(x)) converges in distribution to a centered Gaussian random variable with variance

σ2(x) = τ2(x)
t2(x)f2w(x)

. Therefor, we obtain from (2.1), (2.2) and (2.3), whenever x > 0 and

f(x) > 0, that

σ2(x) =
E(κ(X)w(X, Y ))

2
√
π x κ(x)f(x)

E [w(X,Y ) X = x] = Ew

[(
ϕ(Y )−m(x)

w(X, Y )

)2

|X = x

]

=
E(κ(X)w(X, Y ))

2
√
π x κ(x)f(x)

E

[
(ϕ(Y )−m(x))2

w(X,Y )
|X = x

]
. (5.21)

Part ii). The second part of Theorem follows from the third part of Lemma 3 combined with
the second part of proposition 3 and conditions 3.6.

Part iii). The proof of the third part of Theorem is similar . �

Proof of Theorem 1. Following the decomposition (5.3), Lemma 3 and part iii) of Lemma 4,
we have for any x ≥ 0 that

√
nmax(v, ϵ1/2)

log log n
Rn(x) = OP

(
max(v5/2, ϵ5/4)

vn(x+ ϵ)
√
n log log n

)
= oP(1) (5.22)

in view of the first condition of (3.3) and√
nmax(v, ϵ1/2)

log n
Bn(x) = OP

((
nmax(v5, ϵ5/2)

log log n

)1/2
)

= oP(1) (5.23)

in view of the second condition of (3.3).

To end the proof of theorem we have to give an estimate of the convergence rate of the
quantity Sn(x). Since Sn(x) is a centered martingale with respect Fi−1, one may then use
successively the Burkholder inequality and the Jensen inequality to conclude that

Var(Sn(x)) = O
(
n−1Ew

(
g(Xi)∆

2
i (x+ ϵ)

))
= O

(
1

nvn(x+ ϵ)

)
in view of Lemma 2 and the fact that g(·) is bonded. The result follows then by application
of the Tchebycheff inequality combined with the third condition of (3.3). This completes the
proof. �
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Proof of Proposition 1. As a first step, observe that the conditional bias may be decomposed
as follows

Bn(x)=
rn,2(x)−m(x)rn,1(x)

rn,1(x)
+
(rn,2(x)−m(x)rn,1(x))(rn,1(x)−rn,1(x)) + (rn,1(x)−rn,1(x))2Cn(x)

(rn,1(x))2

:=B∗
n(x) + Un(x)

where B∗
n(x) stands as the main term while Un(x) is the residual one. We have first show

that the numerator rn,1(x) of B∗
n(x) converges almost surely to t(x)fw(x) and also to give

an estimate of the convergence rite of the quantity rn,1(x)− rn,1(x).

Lemma 5 Assuming conditions (B1) and (3.11) are satisfied.

(i) We have

rn,1(x)− rn,1(x) = Oa.s.

(
log n

nvn(x+ ϵ)

)
.

(ii) If in addition that the conditions (A1)-(A4)-(ii) and (A5)-(ii) are satisfying, we gate

rn,1(x) −→ t(x)fw(x) almost surely as n→ ∞.

Proof of Lemma 5. (i) First part: Proceeding as in the proof of Lemma 3, one can see that
rn,1(x)− rn,1(x) = R1,n(x) =

∑n
i=1 Lni(x), where

|Lni(x)| ≤
C

(x+ ϵ)vn
:=Mn

in view of condition (B1) and by application of the second part of Lemma 2. Moreover, we
have by Jensen inequality and condition (B1) combined with the first part of Lemma 2 that

E
(
L2
in(x) | Fi−1

)
≤ CE

(
|∆2

i (x+ ϵ) Fi−1

)
≤ C

(x+ ϵ)vn
= b.

Choosing in Corollary 3.1 of Läıb (1999)

λ = λn = α

√
log n

(x+ ϵ)nvn
→ 0 as n→ ∞,

where α is a large positive constant, it follows that

P (|rn,1(x)− rn,1(x)| ≥ λn) ≤ C1n
−Cα.

The desired result follows then by application of Borell Cantelli Lemma.

Proof of Part (ii). Write rn,1(x) = (rn,1(x)− rn,1(x)) + rn,1(x). The first part of this
decomposition goes to 0 almost surely in view of Lemma 5, whereas the second one is studied
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in Lemma 4, which converges almost surely to t(x)f)w(x) in view of conditions (A4)(ii) and
(A5)(ii).

�

Considering now Nn(x) as the numerator in the form of B∗
n(x), we have by condition (A3),

for n large enough, that almost surely

Nn(x) =
1

n

n∑
i=1

∫ ∞

0

ψ1(u)fi,w(u)Qx+ϵ(u)du

≃
∫ ∞

0

ψ1(u)fw(u)Qx+ϵ(u)du :=

∫ ∞

0

ψ2(s(x+ ϵ))q(s)ds,

where

ψ1(u) := Ew
[
ψ(Y )−m(x)

w(X,Y )
| X = u

]
= s(u)−m(x)t(u) and ψ2(u) = ψ1(u)fw(u)

Since ψ2(x) = 0, using the second part of Lemma 5, the condition (B2) and Taylor series
expansion of the function ψ2 to the order three in the neighborhood of x, we obtain

Nn(x) = ϵψ′
2(x) +

1

2
ψ′′
2(x)[x

2v2n + 2xϵv2n + ϵ2nv
2
n + ϵ2] + o

(
[x2v2n + 2xϵv2n + ϵ2nv

2
n + ϵ2]

)
.

Observe now from (2.3) that s(u) = m(u)t(u), thus ψ′
1(x) = t(x)m′(x). It follows then that

B∗
n(x) =

Nn(x)

t(x)fw(x)
= ϵm′(x) +

1

2

{
m′′(x) +m′(x)

[
t′(x)

t(x)
+
f ′
w(x)

fw(x)

]}
[x2v2n + 2xϵv2n + ϵ2nv

2
n + ϵ2]

+ o
(
[x2v2n + 2xϵv2n + ϵ2nv

2
n + ϵ2]

)
= m′(x)ϵ+

(
m′′(x) +m′(x)

[
κ′(x)

κ(x)
+
f ′(x)

f(x)

])
[x2v2n + 2xϵv2n + ϵ2nv

2
n + ϵ2]

+ o
(
[x2v2n + 2xϵv2n + ϵ2nv

2
n + ϵ2]

)
(5.24)

because t(x) = 1
γ(x)

and f ′w(x)
fw(x)

= κ′(x)
κ(x)

+ γ′(x)
γ(x)

+ f ′(x)
f(x)

.

Considering finally the residual term, it is easily seen that

Un(x) = Nn(x)
r̂n,1(x)−rn,1(x)

r̂2n,1(x)
+

B∗
n(x)

r̂n,1(x)rn,1(x)
(r̂n,1(x)−rn,1(x))2.

Combined Lemma 5 with the statement (5.24), one may see that
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Un(x) =
B∗
n(x)

t(x)fw(x)
Oa.s.

(√
log n

(x+ ϵ)vn

)
+

B∗
n(x)

t2(x)f2
w(x)

Oa.s

(
log n

(x+ ϵ)vn

)

=
µB∗

n(x)

κ(x)f(x)
Oa.s.

(√
log n

(x+ ϵ)vn

)
+

µ2B∗
n(x)

κ2(x)f2(x)
Oa.s.

(
log n

(x+ ϵ)vn

)

= Oa.s.

(√
max(v4n, ϵ

2) log n

(x+ ϵ)vn

)
+Oa.s.

(
max(v2n, ϵ) log n

(x+ ϵ)vn

)
,

which completes the proof of Proposition. �

Proof of Proposition 2. Making use of the decomposition (5.3), it is easily seen that

(rn(x)−m(x))2 =
(rn,1(x)Bn(x))

2 + S2
n(x) + 2Sn(x)Bn(x)rn,1(x)

(rn,1(x))2

=
N2
n(x) + S2

n(x) + 2Sn(x)Nn(x)

(rn,1(x))2

Since rn,1(x) → t(x)fw(x) as n→ ∞, in view of Lemma 1, then we have approximately

Ew(rn(x)−m(x))2 ≃ Ew(N2
n(x)) + Ew(S2

n(x))

(t(x)fw(x))2
(5.25)

ignoring the product term , because by the Cauchy-Schwartz inequality we have

Ew(Sn(x)Nn(x)) ≤
√
Ew(S2

n(x))
√
Ew(N2

n(x)) ≤ max
(
Ew(S2

n(x)), Ew(N2
n(x))

)
.

We have to evaluate each term in (5.25). We begin by the bias term. To do that, let

K(u) := Ew
[
ϕ(Yi)−m(x)

w(X, Y )
|X = u

]
= s(u)−m(x)t(u) and ψ2(u) = K(u)fw(u)

Combined Conditions (A5)(ii)-(iii) and (A3), one may approximateN(x) ≃
∫∞
0
ψ2(u)Qx+ϵ(u)du.

By Taylor’s expansion up to order three of ψ2(·) around x, with higher order terms denoted
by θn(x), we obtain (since ψ2(x) = 0) that

N(x) ≃ ψ′
2(x)

∫ ∞

0

[x(s− 1) + sϵ]q(s)ds+
1

2
ψ′′
2(x)

∫ ∞

0

[x(s− 1) + sϵ]2q(s)ds+ θn(x)

≃ ϵψ′
2(x) +

1

2
ψ′′
2(x)A(v, ϵ). (5.26)
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We have from the statements (2.1), (2.2) and (2.3) that

N2(x)

(t(x)fw(x))2
≃

(ϵψ′
2(x))

2 + ϵA(ϵ, v)ψ′
2(x)ψ

′′
2(x) +

1
4
(ψ′′

2A(v, ϵ))
2

(t(x)fw(x))2

= (m′(x)ϵ)2 + ϵA(v, ϵ)m′(x)

{
m′′(x) +m′(x)

[
κ′(x)

κ(x)
+
f ′(x)

f(x)

]}
+

1

4
A2(v, ϵ)

{
m′′(x) +m′(x)

[
κ′(x)

κ(x)
+
f ′(x)

f(x)

]}
. (5.27)

We have to evaluate now the quantity Ew(S2
n(x)). Recall that

Sn(x) =
1

n

n∑
i=1

[Zn,i(x)− E(Zn,i)], where Zn,i(x) =
ϕ(Yi)−m(x)

w(Xi, Yi)
∆i(x+ ϵ).

Since for any (i, j) ∈ N2, we have Ew[Zn,i(x)Zn,j(x)] = 0, whenever i ̸= j. It follows then
that

Ew(S2
n(x)) =

1

n2

n∑
i=1

[
Ew(Z2

n,i)− Ew
(
(Ew (Zn,i | Fi−1))

2)] ≃ 1

n
Ew(Z2

n,1). (5.28)

Making use of Condition (A5)(iv), one may write

1

n
Ew(Z2

n,1) = n−1

∫ ∞

0

h(u)Q2
x+ϵ(u)du, where h(u) = g(u)fw(u)

≃ n−1h(x)

∫ ∞

0

Q2
x+ϵ(u)du+ n−1h′(x)

∫ ∞

0

(u− x)Q2
x+ϵ(u)du

≃ h(x)

2
√
π (x+ ϵ)nv

+
h′(x)

2
√
π

[
1

nv
− x

(x+ ϵ)nv

]
. (5.29)

Using the relation

g(x) =
ψ(x)

E[w(X, Y )|X = x]
with ψ(x) = Ew

[
(ϕ(Y )−m(x))2

w(X,Y )
|X = x

]
,

we obtain, in view of the statements (2.1), (2.2) and (2.3) that g(x) = ψ(x)
γ(x)

= ψ(x)t(x) and
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therefore

Ew(S2
n(x))

(t(x)fw(x))2
=

g(x)

2
√
π t2(x)fw(x)(x+ ϵ)nv

+
1

2
√
π

[
g′(x)

t2(x)fw(x)
+
g(x)f ′

w(x)

t2(x)f 2
w(x)

] [
1

nv
− x

(x+ ϵ)nv

]
=

µψ(x)

2
√
π(x+ ϵ)κ(x)f(x)nv

+
µ

2
√
π κ(x)f(x)

[
ψ′(x) +

(
1

γ(x)
− 1

)
γ′(x)

γ(x)
ψ(x)

+ψ(x)

{
κ′(x)

κ(x)
+
f ′(x)

f(x)

}][
1

nv
− x

(x+ ϵ)nv

]
.
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