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ABSTRACT

Robust Control Design for Laser Cavity Squeezing in Quantum Optical Systems

Mohammad Salehizadeh

Quantum control theory is a rapidly evolving research field, which has developed over the last

three decades. Quantum optics has practical importance in quantum technology and provides

a promising means of implementing quantum information and computing device. In quantum

control, it is difficult to acquire information about quantum states without destroying them

since microscopic quantum systems have many unique characteristics such as entanglement

and coherence which do not occur in classical mechanical system. Therefore, the Lyapunov-

based control methodology is used to first construct an artificial closed-loop controller and

then an open-loop law is derived by simulation of the artificial closed-loop system.

This work considers the stabilization of laser cavity as the main integral part of quantum

optical systems through squeezing the output beam of the cavity. As a comprehensive exam-

ple of this type of system, quantum optomechanical sensors are investigated. To this end, a

nonlinear model of quantum optomechanical sensors is first extended incorporating various

noises. Then, linear quadratic Gaussian (LQG) control method is used to tackle the problem

of mode-squeezing in optomechanical sensors. Coherent feedback quantum control is syn-

thesized by incorporating both shot noise and back-action noise to attenuate the output noise

well below the shot noise level (Two waves are said to be coherent if they have a constant
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relative phase). In the second phase of this work, due to entanglement of the system with criti-

cal uncertainties and technical limitations such as laser noise and detector imprecision, robust

H∞ method is employed for the robust stabilization and robust performance of the system in

practice. In H∞ methods, a control designer expresses the control problem as a mathematical

optimization problem and then finds the controller that solves this. The effectiveness of the

proposed control strategy in squeezing the cavity output beam is demonstrated by simulation.
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“ The more I learn, the more I learn how little I know. ” –Socrates
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Chapter 1

Introduction

1.1 Motivation and Related Work

Quantum mechanics, also known as quantum physics or quantum theory, provides a mathe-

matical description of the interaction of matter and energy. The theory was developed in 1925

by Werner Heisenberg [1, 2]. It describes the time evolution of physical systems via a math-

ematical structure called the wave function. Quantum mechanics differs significantly from

classical mechanics in its predictions when the scale of observations becomes comparable to

the atomic and sub-atomic scale. However, many macroscopic properties of systems can only

be fully understood and explained with the use of quantum mechanics. Phenomena such as su-

perconductivity, the properties of materials such as semiconductors and nuclear and chemical

reaction mechanisms observed as macroscopic behaviour, cannot be explained using classical
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mechanics [3–6].

In physics, a quantum system is said to be open if it is in interaction with an external

quantum system, such as the environment. An open quantum system can be viewed as a

distinguished part of a larger closed quantum system, the other part being the environment [7,

8].

Many applications involving quantum systems rely on feedback control to enhance

their performance according to some practical requirements such as minimizing the control

time [9, 10], the control energy [11, 12], the error between the final state and target state [13],

or a combination of these. The main focus of this thesis is directed towards feedback con-

trol of a quantum optical system due to its practical importance in implementing quantum

information and manufacturing computing devices [13]. In many relevant experiments, it is

desired to make the laser oscillator a quantum noise-limited device [14, 15]. As a practical

example, it is very important in X-ray imaging and flat-panel detectors to attenuate the quan-

tum noise to some extent in order to improve image visualization [16]. According to the

Heisenberg uncertainty principle for the quadrature components of the light field, the product

of uncertainties in both components of the quadrature is greater than or equal to some quan-

tity (introduced later) scaled by Planck’s constant. Note that the uncertainty product of the

amplitude and phase-noise levels even under extremely high pumping condition is typically

larger than the Heisenberg minimum-uncertainty product due to the presence of nonstationary

phase-diffusion noise. In order to achieve a phase-squeezed state, the pump phase fluctuation

2



needs to be suppressed below the ordinary shot noise level [17].

Recently, there has been increasing interest in the control of optomechanical sensors due

to their wide range of applications in detecting forces, small displacements, gravitational wave

interferometers, and also in quantum information cryptography [18–22]. In optics physics, in

order to amplify a laser beam, a cavity is adjusted along the path of laser as it is shown in

Fig. 1.1(a); this enhances the absorption path length of the beam [23, 24]. Fig. 1.1(b) illus-

trates the concept of laser cavity frequency locking, that is used to desirably make the spectral

bandwidth of the cavity output beam narrower and lock laser frequency ωpump at the reso-

nance frequency of cavity ω0. This generates an intense output cavity beam (note that for

now the effect of mechanical frequency ωm of micro-resonator is ignored for simplification,

and will be discussed in detail in the next chapter). The nonclassical state of light (i.e., those

(a) (b)

Figure 1.1: (a) Schematic of optomechanical cavity, and (b) locking laser frequency at the
resonance frequency of cavity to generate an intense output cavity beam.

states that have nonclassical noise properties called quantum noise, which is described based
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on quantum mechanics) with a noise level below the standard quantum limit in one quadra-

ture component is called the squeezed light. Squeezed light is best described by considering

complex phasors for the representation of its state in one mode of the optical field. Due to

quantum uncertainty shown by an ellipse in Fig. 1.2 (δXa, δYa axes show amplitude and phase

quadrature states, respectively), any measurement of the complex amplitude of the light field

can deliver different values within this uncertainty region. Moreover the product of the uncer-

tainties in both components of the quadrature is greater than or equal to some quantity times

Planck’s constant. The objective of the present work as far as phase squeezing is concerned

is to decrease the phase fluctuations of light beam, δYa, at the expense of increased amplitude

fluctuations, δXa [25–27] (see Fig. 1.2). A variety of noise sources affect this type of sensor,

Figure 1.2: Phase-squeezed state of light, illustrated in phase diagram. The visible ellipse
indicates the uncertainty region.
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including shot noise which is a low-frequency noise with a relatively high amplitude. In ad-

dition to shot noise at the cavity output, quantum radiation pressure fluctuations on a moving

mirror within an optical cavity can introduce excess noise, which is often referred to as the

back-action noise [28]. This limits the ability to detect a classical force on the mirror [29]. To

overcome this standard quantum limit and reduce the effects of various noises, it is required

to squeeze the laser cavity output beam by utilizing destructive interference.

Tsang and Caves [28] proposed a scheme based on coherent feedforward quantum con-

trol by quantum-noise-cancellation (QNC), to tackle the problem of squeezing the laser cavity

output beam. The method uses an ideal model for the system without considering intrinsic me-

chanical and optical losses and fluctuations. Vitali and Tombesi [30] employed a proportional

integral (PI) feedback controller to make ponderomotive squeezing, and analyzed the overall

system operation using Fourier transform. However, they did not take the effect of technical

noise sources such as laser noise and electronic noise into consideration, while this type of

noise is particularly not negligible in the audio band. In the presence of noise, one can take

advantage of the advanced control tools to design a feedback law which minimizes the effect

of noise in the output [31]. For instance, the classical Lyapunov-based control method is a

powerful tool for feedback controller design. In quantum control, the acquisition of feedback

information through measurements usually destroys the state being measured, which makes it

difficult to directly apply the Lyapunov approach to quantum feedback control design [32–34].
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Alternatively, one can first use computer simulation to find a sequence of controls. A "feed-

back design and open-loop control" strategy can then be adopted by applying the resultant

control sequence to the quantum system in an open-loop fashion [31]. In practical applica-

tions, the realization of a quantum measurement on a quantum system is usually accomplished

by entangling the system with an auxiliary probe such as homodyne detector [31].

1.2 Thesis Objectives

This work is concerned with the problem of mode-squeezing in optomechanical sensors in

the presence of the dominant sources of noise which are often ignored for simplicity as dis-

cussed earlier. To this end, a linear quadratic Gaussian (LQG) controller with integral action

is designed in the context of coherent feedback quantum control in order to simultaneously

suppress the effects of shot noise and back-action noise while rejecting any constant distur-

bance applied to the system. A Fabry-Perot cavity is considered as the main integral part of

an optomechanical sensor, which includes a moving mirror as a micro-resonator. The optical

model of this mirror is assumed to be perfectly reflecting, and mechanically characterized as

a harmonic oscillator [28]. This oscillator represents a system that, when displaced from its

equilibrium position, experiences a restoring force proportional to the displacement [35]. An

important contribution of this work is that it considers a more realistic setting (in terms of

noise) in the model of the system, and uses an optimal control scheme to minimize the impact

of all sources of noise in the output and uncertainty in the model. Also, by means of an H∞
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controller, the uncertain system is stabilized. The H∞ control design method is based on an

optimization problem which is to be solved mathematically [36]. This work is expected to

pave the way for controlling the frequency of laser cavity system with fluctuations approach-

ing the quantum noise limit, and the results can be used in a variety of applications concerning

high-precision metrology and instrumentation [37].

To summarize the objectives of this project, it is aimed to employ feedback control

algorithms in order to:

• Achieve frequency locking of laser cavity for the case of optomechanical sensors using

optimal servo controller. To this end, an LQG controller with integral action is designed

in the context of coherent feedback quantum control in order to simultaneously suppress

the effects of shot noise and back-action noise, while rejecting constant disturbances.

• Improve stability and increase the measurement efficiency of a quantum optics system

using a robust H∞ controller.

1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2, the basic concepts of quantum mechanics and

the squeezing problem in optomechanical sensors are introduced. The nonlinear model for the

system is described in Chapter 3, and is linearized subsequently. A systematic optimal control

method is proposed in Chapter 4 to handle the squeezing problem in cavity. To guarantee the

7



stability of the system in practice, robustness analysis is carried out in Chapter 5. In each of

these two chapters (4,5), the results are verified by simulations, and finally the contributions

of the paper are summarized in Chapter 6.
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Chapter 2

Background

This chapter provides some background information on the problem under study in this disser-

tation. First, basic concepts of quantum mechanics related to the present work are introduced,

and then the squeezing problem in optomechanical sensors is described.

2.1 Light Propagation in a Cavity

An electromagnetic wave traveling in a medium experiences attenuation due to the fluctuation

of the dipole associated by the light beam [38]. Propagation of the light beam inside a cavity

is an optical parametric process, which is very sensitive to the optical phases of the waves

involved. Efficient conversion usually requires phase matching to be achieved for the wave-

length range of interest. The gain bandwidth is largely determined by the phase-matching

bandwidth [39–41]. To this effect, the only surviving modes will have radii of curvature (R)

9



(a) (b)

Figure 2.1: (a) Wavefronts of a Gaussian light beam; (b) light intensity across beam cross
section and light intensity vs. radial distance r from beam axis (z) [40].

matching that of the mirrors for a stable cavity. The light phase fronts match the mirrors. It

is required to engineer the beam by choosing the mirrors, rather than choosing the mirrors

to match the beam. Depending on the length of the cavity, the plane waves propagating for-

ward and backward inside the cavity can interact constructively, resulting in stable optical

modes (resonance) or destructively giving rise to unstable optical modes, as shown in Fig. 2.2.

The resonance frequency of cavity is inversely related to the controlled length of the cavity

L [42, 43] according to the following equation:

f0 =
c

2L
(q+

1
π
(m+n+1)cos−1

√
(1− L

ρ1
)

√
(1− L

ρ2
)), (2.1)

10



Figure 2.2: Engineering a Gaussian beam in the cavity.

where ρ1 and ρ2 are the radii of the two mirrors, q is the qth longitudinal cavity mode being

excited, c is the speed of light in vacuum, and m,n represent waveguide’s modes.

2.2 Heisenberg’s Uncertainty Principle

Heisenberg’s uncertainty principle given below provides a fundamental limitation in quantum

systems’ measurements.

Theorem 2.1 It is impossible to measure simultaneously two canonically conjugate variables

such as position x and momentum p, with arbitrary precision. Furthermore,

ΔxΔp ≥ h̄
2
, (2.2)

where h̄ is the reduced Plank constant and Δx and Δp are uncertainties of x and p about certain

mean values.

According to Heisenberg’s principle, one cannot simultaneously measure all of the vari-

ables of a system precisely. Furthermore, repeated measurements on the same system will

11



Figure 2.3: Three level atom model of a photodetector.

yield values of x and p which fluctuate about certain mean values with uncertainties Δx,

Δp [44]. Due to this fundamental limit, by reducing quantum noise to zero, the mean pho-

ton number goes to infinity. This introduces a trade off between quantum noise reduction and

required mean photon number, which in turn introduces a limit on the signal-to-noise ratio

improvement for a fixed mean photon number. The unique feature of a squeezed state of light

is that the photon-number noise can be practically reduced to zero without requiring an infi-

nite mean photon number [17]. One of the objectives of the present work is to show that a

laser oscillator can produce a phase-squeezed state, provided the pumped phase fluctuation is

suppressed below the ordinary shot noise level.

2.3 Coherent State |α〉

Two waves are said to be coherent if they have a constant relative phase. The degree of

coherence is measured by the interference visibility. In the coherent state, the normalized

correlation function of two waves is 1, which means the interference fringes of system are

12



maximally visible. Fig. 2.3 represents the three-level atom model of a photodetector. In this

model, the photodetector process is interpreted as the individual absorption of photons with

the subsequent emission of electrons. By the incident of the input mode b to a detector,

electron gains enough energy to jump to the upper level. Then, according to energy continuity

principle, the electron operator d with lower energy level compared to the previous one is

generated as the current and the rest of energy is faded away as the lost mode e [44].

2.4 Squeezing Problem in Optomechanical Sensors

Consider an optomechanical sensor as shown in Fig. 2.4, and let the position operator, mo-

mentum operator and resonance frequency of the mirror be denoted by q(t), p(t) and ωm,

respectively. Let also m be the mass of the mirror (in the range of nanograms) subject to the

force f (t) [28, 30]. Consider an appropriate rotating reference frame, and assume the cav-

ity is pumped with an input beam b(t) with carrier frequency ωpump to which all phases are

referenced. Assume also that the coherent real mean amplitude of the beam, represented by

< b(t) >, is denoted by β . The intracavity destructive optical field a(t) decays due to cou-

pling (through the partially transmitting mirror) to the output beam bout(t). Let the rate of

decay of a(t) be denoted by κ . The parameter b1 is the transmitted mode and bL is the loss

mode. In particular, the above-mentioned operators have the canonical commutation proper-

ties [q(t), p(t)] = ih̄, [a(t),a∗(t)] = 1, and [b(t),b∗(t ′)] = δ (t − t
′
), where the asterisk repre-

sents the complex conjugate of the operator [28]. Using the amplitude and phase quadrature

13



Figure 2.4: Description of operators in the optomechanical cavity.

operators, one can write:

b = β +(Xb0 + iYb0)/
√

2, (2.3a)

bout = β +(η1 + iη2)/
√

2, (2.3b)

a = α +(δXa + iδYa)/
√

2. (2.3c)

The system is linearized about the zero-detuning point. In the linearized model, the

output signals can be represented as the sum of independent contributions from the reference

input signal and noise (from the principle of superposition). As such, Fig. 2.5 depicts the input-

output flow diagram of the cavity. In this figure, G represents the optomechanical coupling

factor [30]. The effect of the input amplitude fluctuation Xb0 on the output phase quadrature

η2 is commonly known as back-action noise which is due to the Kerr-like ponderomotive

coupling of the cavity amplitude quadrature δXa to the phase quadrature δYa [28]. The effect
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Figure 2.5: Input-output flow diagram of cavity in optomechanical sensors.

of the input phase fluctuation Yb0 on the output phase quadrature η2, on the other hand, is

modeled as an undesirable signal called the shot noise. The discrepancy between the laser

frequency and the resonance frequency of the cavity is referred to as the detuning variable and

is denoted by Δ0. In the presence of the radiation pressure interaction of the cavity mode with

a vibrating resonator, the detuning variable is defined as Δ0 = ωpump −ω0, and the effective

detuning variable is given by Δ = Δ0 −|α |2 ∑ j
(G j

0)
2

ω j
. Here ω0 is the resonance frequency of

the cavity when the interaction of laser beam with the micro-resonator is neglected, α denotes

the steady-state average of the intracavity operator a when Δ approaches zero, and ω j is the set

of harmonics that the micro-resonator produces after the incident of photons. Consider now a

one-dimensional case, where the light is sensitive only to mirror surface deformations along

the cavity axis. In this case, ωm represents the resonance frequency of the micro-resonator

instead of a set of harmonic excitations [30]. Depending on the magnitude of the effective

detuning variable, three cases of special interest are as follows [45]:
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i) Δ =+ωm: cooling

ii) Δ = 0: quantum non-demolition (QND)

iii) Δ =−ωm: entanglement

The objective is to make the cavity output beam ponderomotive squeezing. In other

words, it is desired to generate a phase quadrature squeezed light at the cavity output in the

presence of back-action noise and shot noise predominantly, which is detectable from the

phase quadrature measured by the homodyne detector.

In Fig. 2.6, the effective frequency of cavity is modified as ωcavity = ω0 ±ωm due to the

back-action noise, i.e., the static radiation pressure of incident photons on the moving mirror.

In fact, this figure represents the QND case to eliminate the effect of back-action noise by

locking three spectral peaks on the left axis onto one resonance frequency on the right axis.

This in turn drives Δ to zero in the squeezed state by changing the effective length of the

cavity. The micro-resonator (as a part of the cavity) is shifted proportionally to the intracavity

intensity, and therefore provides the capability of highly precise measurements in squeezed

state regime. Moreover, it can be verified that stability in the case of resonance is much

easier to be checked compared to the off-resonance case [30] and for the squeezing detection,

one needs to tune and stabilize the phase of the homodyne detector, which can be realized

systematically by means of a proper feedback controller.

The above-mentioned problem has been investigated in the physics community for a

number of years, and is known to be a difficult problem because of an almost complete loss

16



Figure 2.6: Eliminating the effect of back-action noise by properly shifting three spectral
peaks.

of observability when the system goes out of lock into the nonlinear region [46]. Frequency

locking of the optical cavity has many applications. For instance, recently, Boyson et al.

in [47] considered the application of a discrete-time extended Kalman filter (EKF) to the

problem of estimating the ring-down time constant of a Fabry-Perot optical cavity for the

purpose of cavity ring-down spectroscopy (CRDS). The ring-down time corresponds to the

time it takes for the light inside an optical cavity to decay to 1/e (e−1 = 0.368) times its

initial intensity. The online estimation of the ring-down time (or decay time) for a cavity is a

direct indication of the absorbing species contained in it and can be used to detect improvised

explosive devices and concealed explosives [48].
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Chapter 3

System Model

In this chapter, a comprehensive schematic of optomechanical sensors is presented, then a

basic nonlinear model for the particular case of optomechanical sensors is extended. The

material of the following two chapters are mainly extracted from [49].

3.1 Complete Model

Fig. 3.1 shows the block diagram of the cavity optomechanical system integrated with a ho-

modyne detector. Once the measured phase quadrature signal passes through the controller

loop onto a piezoelectric, the actuator stimulates the destructive effect into the intracavity

light fluctuations by manipulating over the moving mirror. The cavity consists of two mir-

rors: one is relatively massive and the other one is very high-finesse and light weight [50].

It is recommended to choose a high-quality mechanical resonator to suppress thermal noise
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disturbance. Given the laser input beam b, the parameter b1 is the transmitted mode, bL is the

loss mode, and bout is the output mode measured using homodyne detector [46]. Moreover,

φLO is the relative phase shift between the output mode bout and the local oscillator mode [51].

The beamsplitters shown in the figure have a balanced 50/50 reflectivity. The transfer func-

tion H(s) represents the feedback control law which includes an integrator as discussed later.

The figure also shows that in the two-port homodyne detector the intensities from both output

ports of a 50-50 beamsplitter are monitored through the two photodiodes D1 and D2, subtract-

ing the two outputs and retaining only the interference terms. The laser system which is used

in this work is pumped by approximately 30mW of the 1.064μm, single-mode output of a

diode-laser, miniature monolithic Nd:YAG laser used as the input to a linear cavity [13].

Figure 3.1: Schematic view of an optomechanical system with a homodyne-based feedback
control applied to the micro-resonator (moving mirror). Note: PBS and PZT in the figure
stand for polarizing beamsplitters and piezoelectric transducer, respectively.
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3.1.1 Nonlinear quantum Langevin description of the optomechanical

system

The cavity in this type of system can be described by quantum Langevin stochastic differential

equations based on Heisenberg principle in rotational frame at the laser frequency ωpump as

follows [30]:

q̇ j = ω j p j, (3.1a)

ṗ j = −ω jq j − γ j p j +G j
0 a∗a+ ξ̈ , (3.1b)

ȧ = −(κ + iΔ0)a− i∑
j

G j
0 aq j +E +

√
2κ0b0

+
√

2κ1b1 +
√

2κLbL, (3.1c)

bout =
√

2κ0a−b0. (3.1d)

It is important to note that the product Δ0a in (3.1c) introduces nonlinearity in the equation.

Also, κ = κ0+κ1+κL, where κ0,κ1,κL are the decay rates of the corresponding optical fields

b0, b1 and bL [13]. Moreover, ξ̈ is the acceleration enforced by the actuator on the micro-

resonator which will be discussed later in detail. The motion of the micro-resonator can be

described by the vibrational normal modes, each with its own resonance frequency ω j and

damping rate γ j =
ω j
Q0

, where Q0 is the cavity quality factor [30]. The parameter E is related
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to the input power Pin and is expressed as:

E =
√

2Pinκ/h̄ωpump . (3.2)

Note that G j
0 in (3.1b) and (3.1c) represents the optomechanical couplings that is given by:

G j
0 =

ωpumpc
L

√
h̄

m jω j
, (3.3)

where c is the speed of light and L is the length of the cavity. Under the assumption that

the driving laser and cavity are perfectly aligned, light is sensitive only to the mirror surface

deformations along the cavity axis (one degree of freedom). Hence, one can simply consider

ωm as the single resonance frequency of the micro-resonator and get rid of the index j in the

equations, accordingly [30].

3.1.2 Linearization

In order to design the linear quadratic Gaussian (LQG) controller for the system, the nonlinear

equations pertinent to the optical subsystem need to be linearized first. It is assumed that

the conditional state associated with the underlying quantum system is formulated in such a

way that a linearized model of the system can be derived as a “good" approximation of it in

a sufficiently small region around the operating point. The standard linearization method is

applied by considering small variation of the corresponding variables around their steady-state
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coherent values as:

a = α +δa, (3.4a)

q = qs +δq, (3.4b)

p = ps +δ p. (3.4c)

On the other hand, the cavity destructive operator is related to the amplitude and phase quadra-

tures as follows [13, 52]:

δXa =
δa+δa∗√

2
; δYa =

δa−δa∗

i
√

2
. (3.5)

Similarly, the quadrature of the input and noise fields are given by:

Xb j =
b j +b j

∗
√

2
; Yb j =

b j −b j
∗

i
√

2
; j = 0,1,L. (3.6)

The following expressions provide the equilibrium point around which the nonlinear algebraic

equations are linearized [30]:

α =
E

κ + iΔ
, (3.7a)

qs =
G0|α |2

ωm
, (3.7b)

ps = 0, (3.7c)
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where Δ is the effective detuning introduced earlier. Note that nonlinear terms like δa∗δa and

δaδq [30] have been ignored without loss of generality, and the term of δaq has been enclosed

as effective Δ. Now, to solve this nonlinearity, let α denote the steady-state average of a when

Δ = 0, so that 0 = −κα +
√

2κ0β , and hence α =
√

2κ0
κ β , which is a real number [13]. The

linearized model can then be obtained as:

δ q̇ = ωmδ p, (3.8a)

δ ṗ = −ωmδq− γmδ p+GδXa + ξ̈ , (3.8b)

δ Ẋa = −κδXa +
√

2κ0Xb0 +
√

2κ1Xb1

+
√

2κLXbL , (3.8c)

δẎa = −κδYa +2αΔ+Gδq+
√

2κ0Yb0

+
√

2κ1Yb1 +
√

2κLYbL . (3.8d)

Here G is defined as the effective optomechanical coupling and is equal to G0α
√

2. The output

of the homodyne detector shown in Fig. 3.1 is the so-called rotated-field quadrature operator

given by [44, 53]:

XφLO =
e jφLOa∗+ e− jφLOa√

2
= δXacos(φLO)+δYasin(φLO), (3.9)
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where φLO is the phase of the local oscillator. On the other hand:

y = k2
√

2κ0(δXa cos(φLO)+δYa sin(φLO))− k2Xb0 + ε3w3, (3.10)

where k2 denotes the transimpedance gain of the homodyne detector. The sensor measurement

noise ε3ω3 is assumed to be a white Gaussian noise process with variance ε3
2 [13].

3.1.3 Shot noise model

In essence, shot noise (which is sometimes referred to as laser phase noise) is characterized

by its low-frequency and high amplitude. It can be modeled as a low-pass disturbance whose

Laplace transform has a pole located at ε4 and has a constant gain ks, i.e.:

ξ̇s =−ε4ξs +ws; w2 = ksξs, (3.11)

where ws is white Gaussian noise and w2 is shot noise [54].
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3.1.4 Piezoelectric actuator model

The piezoelectric actuator model that is used here is the same as the one introduced in [54]

expressed as:

ξ̈ + r1ξ̇ + r2ξ = u+w1, (3.12a)

Δ = c1ξ̇ + c2ξ +w2 +Osp. (3.12b)

Mechanical noise w1 in (3.12a) is white Gaussian noise with variance ε1
2, which is treated

as a design parameter. Furthermore, Osp in (3.12b) is, in fact, an offset parameter which is

caused by the static radiation pressure of photons.

3.1.5 State-space representation

In order to design an LQG controller for this system, the combined state-space model of the

actuator, plant and measurement sensor is required, which is expressed as:

ẋ = Ax+Bu+D1w,

y = Cx+D2w. (3.13)
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As for the optomechanical subsystem (which contains the dynamics of both optical and micro-

resonator components), one can write:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ Ẋa

δẎa

δ q̇

δ ṗ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−κ 0 0 0

0 −κ G 0

0 0 0 ωm

G 0 −ωm −γm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δXa

δYa

δq

δ p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

2α

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δ+
√

2κ0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosφLO sinφLO

−sinφLO cosφLO

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣Xb0

Yb0

⎤
⎥⎥⎦

+
√

2κ1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣Xb1

Yb1

⎤
⎥⎥⎦+

√
2κL

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣XbL

YbL

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ̈ .

(3.14)

The homodyne detector output y can then be expressed as:

y = k2
√

2κ0

[
cosφLO sinφLO 0 0

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δXa

δYa

δq

δ p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− k2

[
1 0

]⎡⎢⎢⎣Xb0

Yb0

⎤
⎥⎥⎦+ ε3w3. (3.15)
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The state-space representation of the piezoelectric, on the other hand, is:

⎡
⎢⎢⎣ξ̇1

ξ̇2

⎤
⎥⎥⎦=

⎡
⎢⎢⎣ 0 1

−r2 −r1

⎤
⎥⎥⎦
⎡
⎢⎢⎣ξ1

ξ2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣0 0

1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣w1

w2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣0

1

⎤
⎥⎥⎦u, (3.16)

Δ =

[
c2 c1

]⎡⎢⎢⎣ξ1

ξ2

⎤
⎥⎥⎦+

[
0 1

]⎡⎢⎢⎣w1

w2

⎤
⎥⎥⎦+Osp. (3.17)

As shown in Fig. 3.2, the effective detuning variable Δ is a result of the following three phe-

nomena: cavity mirror movement by PZT, laser phase shot noise, and an offset parameter due

to back-action noise (as discussed earlier), given by Osp =−|α|2 G0
2

ωm
.

Figure 3.2: Block diagram of the closed-loop system with all sources of noise.
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3.2 System Properties

3.2.1 Open-loop poles and zeros

In summary, the augmented system has eight states as follows:

• Four optomechanical states including:

– Two states as the amplitude and phase optical quadratures,

– Two states as the position and momentum of the micro-resonator.

• Two states as the position and momentum of the piezoelectric actuator.

• One state as the shot noise cut-off frequency.

• One state as the integrator.

Given the values of parameters in Table 3.1, one can compute various characteristics of the

system. As it is evident from Table 3.2, since the value of optomechanical coupling G0 is

much smaller than the value of optical coupling κ , a pair of zeros have location very close

to a pair of ploes at s-plane. Also, the existence of a positive zero is leading to the non-

minimum phase behavior of the system. Obviously, two poles are omitted by the same zeros

as it was expecting, since typically φ = π
2 then the quadrature δXa has no effect on the pole-

zero characteristic; Also, shot noise pole arrangement in the state-space realization is kind

of isolated eigenvalue. Apparently, the significant order difference which exists between the
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Table 3.1: Model parameters used in simulations.

Model Parameter Value Unit
κ 1×106 rad/s
κ0 6×105 rad/s
κ1 3×105 rad/s
κL 1×105 rad/s

φLO π/2 rad
k2 1×10−5 V/MHz
m 1×102 ng
L 6 cm
fm 200 − 600 KHz
γ 20 Hz
β 7×107 Hz

Q0 (at T = 4K) 1×104 -
G0 0.1 − 10 -
r1 958.4 -
r2 4.25×108 -
c1 −4.48×103 -
c2 8.86×108 -
ks 1×106 -
ε4 1×10−3 -
R 1×10−5 -

Table 3.2: Location of poles and zeros.

Poles ×103 Zeros ×103

−1000 −0.00926+200.01i
−0.479+20.61i −0.00926−200.01i
−0.479−20.61i 197.769
−0.01+200i −0.000001
−0.01−200i −1000

−1000 −
−0.000001 −

0 −
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maximum and the minimum eigenvalue will result in having a high condition number for the

system.

3.2.2 Controllability and stabilizability

The system has a transfer function from control input ũ to output y as follows (see Fig. 3.2):

−752640(s−1.978e005)(s2 +18.53s+4e010)
s(s+1e006)(s2 +958.4s+4.25e008)(s2 +20s+4e010)

, (3.18)

The system is not controllable since it is not full rank (rank equals to 2).

Remark 3.1 (Necessity condition): For a linear-fractional transformation, based on internal

model theorem, an internally stabilizing controller exists if the plant system is stabilizable and

detectable [55, 56].

Stabilizability and detectability of the system were confirmed through computing the

canonical form of the augmented system. Hence, it satisfies the necessity condition needed

for using state feedback controller based on Remark 3.1. Having a variety of time varying

parameters in the systems, the choice of classical controller such as PID does not seem to

be successful in the sense of poor robustness and required bandwidth characteristics. Laser

cavity as a quantum system due to some complexities such as nonlinearity, wide range of

signal variations, slow and fast dynamics (system level), non-minimum phase behavior, and

noise source requires to be controlled in a systematic way which can be quiet well complied

30



using feedback controller. Furthermore, it provides us this opportunities to [13]:

• Globally define the optimal performance of the controlled system when there are multi-

ple design objectives.

• Incorporate the physical constraints of the plant, measurement and controller into the

optimal design.

3.3 Summary

In summary, in this chapter a comprehensive nonlinear model for the case of optomechanical

sensors is extended incorporating various fundamental noises. Moreover, in order to benefit

from linear optimal controller, the nonlinear model is linearized around the equilibrium point.

Afterwards, controllability and stabilizability status of the system are investigated. Although

the system is not controllable, it holds the necessity conditions of stabilizability and detectabil-

ity needed for using state feedback controller. According to the inherent aspect of a quantum

system that states of the system are not directly measurable, an observer with an excellent per-

formance as Kalman filter is necessary to observe the states of the system coupled by linear

quadratic regulator (LQR) as state feedback controller. The series of Kalman filter and LQR

is called LQG controller which will be discussed extensively in the next chapter.
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Chapter 4

Controller design

In the current chapter, linear quadratic Gaussian (LQG) control method is used to tackle the

problem of mode-squeezing in optomechanical sensors. Coherent feedback quantum control

is synthesized by incorporating both shot noise and back-action noise to diminish the output

noise well below the shot noise limit. The effectiveness of the proposed control strategy in

squeezing the cavity output beam is demonstrated by simulation.

4.1 LQG Controller Design with Integral Action

In the design of servo controllers, it is often required to include integral action to offset con-

stant disturbances and track constant references [57]. The optomechanical systems, on the

other hand, are subject to large initial DC offset and slowly varying disturbances in addition to

shot noise and back-action static radiation. Hence, an integrator is required in the forward path
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as part of the servo-compensator. An LQG controller, however, does not include an integral

action. Therefore, an augmented system consisting of the plant and an integrator is consid-

ered first, and the LQG controller is subsequently designed for the augmented system. The

overall controller for the original plant is, in fact, the resultant LQG controller followed by an

integrator. The state-space matrices for the augmented system described above can be derived

from (3.13) as (see Fig. 4.1):

Ã =

⎡
⎢⎢⎣A B

0 0

⎤
⎥⎥⎦ ; B̃ =

[
0 0 0 0 0 0 0 1

]′
;

C̃ =

[
C 0

]
; D̃ =0 (4.1)

with the following augmented state and noise vectors:

Figure 4.1: Augmented system structure including the plant and an integrator.

x̃ =
[

δXa δYa δq δ p ξ1 ξ2 ξs ξin

]
, (4.2)

w =

[
Xb0 Yb0 Xb1 Yb1 XbL YbL w1 w3 ws win

]
(4.3)
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where ξin and win are the integrator state and fictitious input white Gaussian noise, respec-

tively.

The control target is to maximize the phase quadrature squeezing by minimizing the

cavity detuning Δ, which is not available for measurement. The controller is designed in such

a way that not only does it minimize Δ as a linear combination of the state variables, but it

also regulates the output signal as noted in the previous paragraph. The reason is that based

on equation (3.1), in the special case of optomechanical application the effect of back-action

noise is not negligible, and minimizing variations in Δ does not guarantee minimum variations

in y, and vice versa. To this end, the following cost function is considered:

J = lim
T→∞

E
{ 1

T

∫ T

0
[ x̃T Q x̃ + ũT R ũ ] dt

}
(4.4)

where the symmetric weighting matrices Q ≥ 0 and R > 0 are typically chosen in such a way

that the maximum contributions of the two terms in the above integral are balanced.

In order to suppress the effective detuning variable Δ, it is important to take into account

the offset signal resulted from the static radiation pressure of photons incident on the micro-

resonator. A Kalman filter is designed to minimize the effect of all sources of noise in the

output. The structure of this filter is shown in Fig. 4.2, with the inputs ũ, y, Osp and the output

ˆ̃x as the optimal estimated state of the augmented system. It is known that [58]:

ũ = F ˆ̃x, (4.5)
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with F =−R−1B̃T S, where S satisfies the following algebraic Riccati equation:

0 = SÃ+ ÃT S+Q−R−1SB̃T B̃S. (4.6)

Here ˆ̃x is obtained from the following equation:

˙̃̂x = Ã ˆ̃x+ B̃ ũ+L [y−C̃ ˆ̃x ]+Osp. (4.7)

The steady-state Kalman filter is obtained by choosing the gain matrix L as:

L = PC̃TV−1
2 , (4.8)

where P is the solution of the matrix Riccati equation:

0 = ÃP+PÃT +V1 −PC̃TV−1
2 C̃P. (4.9)

The covariances of the uncorrelated process and measurement noise are respectively given by:

V1 = D1 diag[ε2
Qn,ε

2
Qn,ε

2
Qn,ε

2
Qn,ε

2
Qn,ε

2
Qn,ε

2
1 ,ε

2
3 ,ε

2
s ,ε2

in]D
T
1 , (4.10)

and

V2 = ε2
3 (4.11)
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where ε2
3 = E[w3wT

3 ]. In the simulations of the next section, the quantum noise variances were

chosen uniformly as ε2
Qn = ε2

s = 1; the mechanical noise variance ε2
1 = 10−4; the integral ficti-

tious noise variance ε2
in = 10−8, and the measurement noise variance ε2

3 = 25 (These variances

are chosen in accordance to [30], [54]).

Figure 4.2: The closed-loop structure of the system with the Kalman filter.

4.2 Simulations

The simulation parameters used in this section are the same as the ones in [30], [54], and the

noise models are specifically chosen to be compatible with the experimental conditions. These

models are in accordance with the results by Yamamoto et al. [17] that the freely propagating

output of any feedback loop based on a beamsplitter must have a noise power level greater

than the quantum noise limit. In particular, for εQNL = 1 considered here, εMeasurement = ε3 = 5

which is greater than 1.

To achieve ponderomotive squeezing in the presence of various noises, one requires a

strong radiation pressure interaction. This in turn is achieved when the intracavity field is very
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intense. The laser system is pumped by approximately 30mW input power of single-mode

output from a diode-laser with a central wavelength of 1.064μm.
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Figure 4.3: The effective detuning variable Δ along with its components for fm = 200KHz.

Simulations are performed on MATLAB Simulink environment using the block diagram

of Fig. 3.2 with the model parameters provided in Table 3.1. Different vibrational modes

are considered in the frequency range 200KHz ≤ fm ≤ 600KHz. Fig. 4.3 illustrates the time

history of the effective detuning variable Δ for fm = 200KHz under the proposed controller.

The output of the system is provided with and without controller in Fig. 4.4. One can observe

from Figs. 4.3 and 4.4 that under the proposed controller (consisting of the integrating linear

quadratic regulator (LQR) and the Kalman filter) the effective detuning variable Δ and output

y are both regulated well below the shot noise level. Fig. 4.5 depicts the effective detuning

variable for an open-loop laser system that is unstable, as noted earlier. Obviously, micro-

resonator movement cannot conform with the existing laser noises, and hence the detuning

variable curvature is very close to the shot noise curvature instead of being suppressed around
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zero (which is desirable). Under the proposed LQG controller, the system is robust to the

external disturbances and can reject (to a great extent) the effect of noises. To verify this

by simulation, a constant disturbance of magnitude 10V is imported at the point where zero

reference input signal is placed in Fig. 3.2 (note that the magnitude of disturbance signal needs

to be chosen relatively larger than the quantum noise amplitude which is typically around

0.1V). As demonstrated in Fig. 4.6, the output signal y rapidly settles down to its steady-state

value. From these simulations, it can be concluded that an LQG controller is very effective in

reducing the effect of different sources of noise, and in particular the effect of shot noise and

back-action noise, simultaneously.

It is important to note that thus far the linearized model has been used in the simulations.

This is the same model used to design the controller. For more realistic simulations, however,

one should use the designed controller with the original nonlinear model. Figs. 4.7 and 4.8

present the simulations with the original nonlinear model, analogous to Figs. 4.3 and 4.4. The

results show that the regulation objective is achieved with the nonlinear model as well.

The Bode diagram of the proposed controller is depicted in Fig. 4.9, which shows low

magnitude in low frequencies to suppress the effect of shot noise which (unlike typical noise

characteristics) has high magnitude in low frequencies and almost flat magnitude in higher

frequencies. This is a desirable characteristic of the controller. As it is obvious in Fig. 4.10,

Kalman filter has been able to properly estimate the shot noise state in the nonlinear system

using the proposed controller.

38



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

4

Time (s)

M
ag

ni
tu

de
 (V

)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

M
ag

ni
tu

de
 (V

)

Time (s)

(b)

Figure 4.4: Comparison of the homodyne detector output signal y for fm = 200KHz (a) with-
out controller, and (b) with the proposed LQG controller.
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Figure 4.5: Characteristics of Δ for an open-loop laser system (with no controller).
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Figure 4.6: Step response of the closed-loop laser system to a step disturbance input of mag-
nitude 10V, where the change in the magnitude of the signal occurs at t = 1s.
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obtained by using the nonlinear model.
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Figure 4.8: Homodyne detector output signal y obtained by using the nonlinear model with
the proposed LQG controller.

Figure 4.9: Bode diagram of the designed controller from output y to input ũ.
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Figure 4.10: Comparison of the estimated and exact shot noise states using the proposed linear
controller with the nonlinear system model.

4.3 Key Considerations in Simulations

Remark 4.1 It is important to note that the quantum system is, in fact, a continuous system,

and all sources of noise are also continuous-time signals. However, in the MATLAB/Simulink

environment a noise input is modeled as samples of a randomly changing signal. To convert

such a discrete-time signal to a realistic noise input, it is required to properly scale the signal

by multiplying it by a constant value equal to the second root of the sampling time (see [58]

for a detailed description of this mapping from continuous-time to discrete-time).

It is known that the optimal control law (for a quadratic performance index) for an LTI

system is in the form of state feedback. Since the state variables are often not available directly,

it is required to use an observer to generate a sufficiently accurate estimate of the state vector

first. To this end, one can take advantage of the separation theorem given below for the overall

control design [59].

42



Theorem 4.1 (Separation principle) Let a stable observer and a stable state feedback be de-

signed for an LTI system. Then the closed-loop system obtained by the combined observer

and feedback will be stable. Furthermore, the resultant closed-loop poles consist of the poles

of the observer and the poles of the state feedback.

According to the separation principle described above, the state feedback control design can

be treated as two separate problems of designing the feedback gain and the observer gain. The

concept of this principle is demonstrated in Fig. 4.11.

Figure 4.11: Decomposition of LQG control design to the feedback gain design and observer
design, using the separation principle.

Remark 4.2 Usually the poles of the observer are chosen one decade to the left of the state

feedback poles for a reasonably fast convergence of the state estimates.

4.3.1 State estimates

Convergence of state estimates to the exact states is very important in the design of the un-

derlying controller. Using the system parameters given in Table 3.1 with the performance
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index as Δ, and placing the poles of the observer one decade to the left of the poles of the

state feedback (making the observer dynamics ten times faster than the state feedback), high

convergence rate for the state estimation error was observed. In fact, using the observability

Gramian it was verified that the integrator state is strongly observable whereas the other state

variables (related to the optical amplitude quadrature and shot noise) are less observable.

4.3.2 Numerical error

It was observed by simulation that even with zero initial conditions and in the absence of

different noise sources the system output was subject to significant error. This error was

numerical, and was effectively suppressed by reducing the default error tolerance level on

MATLAB/Simulink to 10−8 (the default value was 10−3). The results obtained by default

error tolerance and the adjusted value are depicted in Figs. 4.12 and 4.13. The figures show

a significant decrease in the error level after reducing the numerical error tolerance using the

system parameters given in Table 3.1. Note that the length of the cavity is actuated via a

tabular piezoelectric transducer (with a stroke of 10μm when a voltage of 500V is applied).

4.4 Summary

Summarize the main conclusions of this chapter, LQG control method is applied as an efficient

approach for a multi-variable system to tackle the problem of mode-squeezing in optomechan-

ical sensors. Coherent feedback quantum control is synthesized by incorporating both shot
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Figure 4.12: Steady-state output with zero initial conditions and in the absence of different
noises, before numerical error correction.
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Figure 4.13: Steady-state output with zero initial conditions and in the absence of different
noises, after numerical error correction.
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Figure 4.14: Transient response of the control input applied to the piezoelectric transducer.

noise and back-action noise to diminish the output noise well below the shot noise limit. The

simulation results show the effectiveness of the proposed control strategy in squeezing the

cavity output beam. In the next chapter, it will be shown how to design a reliable and fault

tolerant laser system through linear feedback to have robust stability and robust performance

features in the sense of real application.
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Chapter 5

Robust Controller Design for

Optomechanical Sensors

The objective of this chapter is to achieve the robust stabilization and robust performance

of the system in practice across critical uncertainties and technical limitations such as laser

noise and detector imprecision. This problem is treated as an optimization problem using a

non-sampling method called robust H∞.

5.1 Uncertainty and Robustness

A controller is robust if the closed-loop system response does not violate the desired specifi-

cations under parameter perturbations within a sufficiently close neighborhood of the nominal
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values. The model may contain parameters whose values are not precisely known. Such pa-

rameters vary over a certain range of values (assumed to be known a priori), and are referred to

as uncertain parameters [60,61]. It is very important in a quantum system like laser cavity that

under the designed controller both stability and desired performance are maintained when the

system is entangled with different types of uncertainty. It is aimed to use robust control theory

to deal with uncertainties in the parameters κ0,κ1,κL,κ , and φLO introduced in Chapter 3.

Although usually the emission of laser has a very thin spectral linewidth in the case of

single-mode output, it introduces uncertainty in some parameters of the system model such

as propagation constant κ . On the other hand, decreasing the linewidth by itself generates

quantum noise in the output, which in turn reduces the quality factor Q0 of the system. These

issues need to be taken into account in the design of a robust controller which not only sat-

isfies robustness with respect to parameter uncertainty, but also reduces quantum noise effect

and provides some degree of freedom to choose the input power within a sufficiently large

range [62].

Homodyne detection plays a key role as an experimental tool in various tests such as

position measurement on an atom passing through a standing light wave [63] and the measure-

ments of generalized quasiprobability distributions [64,65]. Homodyne detection schemes are

devised to provide the measurement of a single-mode quadrature XφLO through the mixing of

the cavity output beam signal with a highly excited classical field at the same frequency. This

classical field is referred to as the local oscillator [66]. The schematic diagram of a balanced
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Figure 5.1: Two-port homodyne detector scheme.

homodyne detector is demonstrated in Fig 5.1. The signal mode a interferes with a second

mode b excited in a coherent semiclassical state (e.g., a laser beam) in a balanced (50/50)

beamsplitter. The mode b is the local oscillator mode of the detector operating at the same

frequency as a, and is excited in a coherent state |z〉 with a relatively large amplitude z. The

beamsplitter is tuned to have real coupling, hence no additional phase-shift is imposed on the

reflected and transmitted beams. In this case, the local oscillator phase provides a reference

for the quadrature measurement, i.e., the phase of the local oscillator is the phase difference

between the two modes. After the beamsplitter the two modes are detected by two identical

photodetectors (usually linear photodiodes), and finally the difference between the photocur-

rents at zero frequency is electronically processed and rescaled by 2|z|. Here, c and d are the
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output mode of the beamsplitter. The resulting homodyne photocurrent ID is given by [66]:

ID = XφLO = (C†C−d†d)
2z = (a†b+b†a)

2z

= δXacos(φLO)+δYasin(φLO). (5.1)

Note that in (3.10) and (5.1), one can consider cos(φLO) and sin(φLO) as the uncertain

parameters instead of φLO. Note also that the variation of φLO around π
2 is equal to that of

cos(φLO) around zero with a good approximation. Fig. 5.2 demonstrates the linear deviation

of cos(φLO) around π
2 and no deviation of sin(φLO) in that neighborhood.

Figure 5.2: Variation of cos(φLO) and sin(φLO) around φLO = π
2 .

The effect of the variation of the decay ratio κ on the squeezing of laser heavily depends

on the confinement of laser beam modes inside the cavity (see e.g., [47, 48]). Uncertainty

in part of the optical cavity decay parameters is called disturbance attenuation parameter. In
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this respect, a maximum deviation of 10% is considered for the optical cavity decay parame-

ters [67].

The objective here is to increase the quantum efficiency of the detector in a feedback-

assisted style. The feedback loop is obtained by extracting a fraction of the cavity output

which is then processed in order to drive an appropriate actuator acting on the resonator [30].

Beamsplitter is known as the simplest and most efficient way to extract the feedback loop

mode [30]. It is desired to achieve the best possible squeezing of the output mode. In order

to squeeze the light beam, it is crucial that the noise level does not exceed the shot noise

limit [30]. By changing the local oscillator phase, one can manipulate two output states. As

such, since this application requires squeezed phase quadrature state, one has to fix φLO at π
2

through a schematic called 90-degree optical hybrid [68] as it is shown in Fig. 5.1. Uncertainty

in part of the homodyne detector, namely non-unit quantum efficiency of detectors φLO, is

originated from:

• Impurity of beamsplitter.

• φLO may not be exactly adjusted at the best sensitivity working point all the time, and is

shifted by π
2 after every couple of measurements leading to cumulative diffraction from

π
2 [69].

Since the system here is a feedback mediated process, many desired output properties can be

achieved by proper design. In particular, by an appropriate robust control design approach,

there is no need to use:
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• A phase shifter (phase compensator) in front of the beamsplitter.

• The same laser source for both local oscillator and laser beam [64].

It is to be noted that here a preamplifier is used before the homodyne detector to amplify the

cavity output beam signal but the drawback of this method is that the existing noise will also

be amplified, which is undesirable [64]. One can use H∞ control design technique to address

this drawback to some extent.

Figure 5.3: Multiplicatively perturbed feedback system with Δ pulled off.

Fig. 5.3 shows the linear fractional transformation (LFT) representation of the multi-

plicatively perturbed feedback system with Δ pulled off. A necessary and sufficient condition

is provided in the next theorem (known as the small gain theorem [70]) for the well-posedness

and internal stability of the system under an H∞ controller which is aimed to minimize the

effect of disturbance w in the output.

Definition 5.1 (ℜH∞ space) The real rational subspace of H∞, which consists of all strictly

proper and real rational stable transfer function matrices, is denoted by ℜH∞ [71].
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Figure 5.4: Large-scale view of multiplicatively perturbed feedback system with Δs from their
respective points.
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Theorem 5.1 (Small Gain Theorem) Given P ∈ ℜH∞, the interconnected system of Fig. 5.3 is

well-posed and internally stable for all Δ(s)∈ ℜH∞ with ‖Δ‖∞ ≤ 1
γ if and only if ‖P(s)‖∞ ≤ γ ,

for γ > 0 [70].

This can be described as [71]:

‖Tzw‖∞ � sup
ω

σmax(Tzw( jω))< γ (5.2a)

CL = F�(P,K). (5.2b)

where F�(P,K) represents the lower LFT synthesis of the plant P and the controller K, and

Tzw is the transfer function matrix from the disturbance w to the output z, and ||.||∞ denotes

the infinity norm [70, 72]. Fig. 5.4 shows Large-scale view of the multiplicatively perturbed

feedback plant with Δs from their respective points.

In order to design an H∞ controller, the plant is required to be stabilizable from the

control input ũ and detectable from the measurement output y. One can partition the plant P

given in Fig. 5.3 in the state space as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎥⎥⎥⎥⎥⎥⎦
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Here the input channels B1 and B2 correspond to the disturbance and control input, respec-

tively. Also, the output channels C1 and C2 generate the errors (which are desired to be

maintained small) and the output measurements (provided to the controller), respectively.

D = (D11,D12;D21,D22) is the feedthrough (or feedforward) matrix. The controller K sta-

bilizes the plant P (and has the same number of states as P) if (A,B2) is stabilizable and

(C2,A) is detectable [71].

Remark 5.1 The robust H∞ synthesis in MATLAB uses the Hinfsyn algorithm. This algorithm

works best when the following conditions are satisfied by the plant [73]:

• D12 and D21 are full-rank;

•

⎡
⎢⎢⎣A− jωI B2

C1 D12

⎤
⎥⎥⎦ has full column rank for ω ∈ R, and

•

⎡
⎢⎢⎣A− jωI B1

C2 D21

⎤
⎥⎥⎦ has full column rank for ω ∈ R.

In the current plant D12 is not full-rank due to the nature of the corresponding quantum system.

This can result in an H∞ controller that has a large high-frequency gain.

The value of γ as an output argument in Hinfsyn algorithm is relatively large for the

present system because the optical coupling κ is much larger than the optomechanical cou-

pling G0, which leads to a high condition number for the system matrix.

As mentioned earlier, for the purpose of tracking, an integrator is placed in series with

the plant and the controller is designed for the combined system. However, in the H∞ analysis,
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one may consider 1/(s+ ε) instead of 1/s which is inclusively taken into account in Hinfsyn

algorithm in MATLAB [73] (this is mainly for the stability purpose). It is important to note

that the controller designed by H∞ method does not guarantee the closed-loop stability. It is

shown in the next section that the designed controller stabilizes the closed-loop system in a

sufficiently small neighborhood of the nominal operating point.

5.2 Robust Stabilizability vs. Robust Performance

The uncertainty in the plant can be modeled by a polynomial expression [74]. For the con-

troller design, robust stabilizability has higher priority than robust performance. Using the

information available about the structure of any part of the system, one can come up with the

balance in the trade off between robust stabilizability and robust performance for designing

a cost-effective controller. The two uncertainty terms cos(φLO) and sin(φLO) are correlated

according to the Pythagorean theorem. To simplify the controller design, one can take into

account the range of variation of the uncertain parameters δcos(φLO) and δ sin(φLO). This

point is demonstrated in Fig. 5.5. This leads to a less conservative control scheme. It was

shown in [75] that if the system with polynomial uncertainty is stabilizable at some points

in the given region, then it is also stabilizable at any point in the region, as long as those

points do not lie on a specific algebraic variety. This means that if the nominal model of the

system is stabilizable, so is the system at almost all operating points. The H∞ algorithm was
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Figure 5.5: The region of uncertainty for the parameters sin(φLO) and cos(φLO) around the
nominal point φLO = π

2 .

tested randomly for different deviations of δcos(φLO) and δ sin(φLO) in the corresponding re-

gion (shown in Fig. 5.5). For 1000 randomly selected points in the interval associated with

δcos(φLO)> 0.3 and δ sin(φLO)> 0.05 it was shown by simulation that in less than 1% of the

cases the resultant closed-loop system was unstable as shown in Fig. 5.6. In this figure, an H∞

controller is designed to deal with the uncertain system, where 30% deviation is considered in

φLO corresponding to each single point. Simulation is performed with 1000 randomly selected

points for φLO in the interval between the specified point and the nominal point φLO = π
2 , and

the percentage of unstable closed-loop systems is recorded. Fig. 5.7 shows that the output

Δ has its least H∞ performance error value at φLO = π
2 , as expected. Figures 5.8 and 5.9

illustrate the Δ performance for the linearized and nonlinear models, respectively, while φLO
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Figure 5.6: Percentage of cases where the closed-loop system corresponding to 1000 randomly
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Figure 5.9: The output Δ and its components for the closed-loop system with the original
nonlinear model and 30% deviation in φLO.

is perturbed by 30% from its nominal point π
2 . It is evident that the system is stabilized under

the designed H∞ controller, but the tracking error is not completely regulated to zero in the

nonlinear model, which was expected from the control structure.

5.3 Summary

Summarized in a further report, a complete LFT representation of the system is provided in

the presence of different terms of uncertainty and detector imprecisions. Thereafter, robust

H∞ method is employed to guarantee the robust stabilization and robust performance of the

system in practice. Without loss of generality, having taken advantage of the existent structural

correlation among the parameters, the given design yields to be not conservative and its results

demonstrate a reasonable performance in front of nonlinear model.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Contributions

In this work, a linear quadratic Gaussian (LQG) controller is designed for laser squeezing in

an optomechanical system. A model is developed first in Chapter 3, that takes into account all

sources of noise which are often neglected in existing work to simplify the problem. Since the

model includes nonlinear terms, it is linearized around a suitable operating point in order to be

able to use the LQG control framework. A proper cost function is used in Chapter 4 to reflect

the fluctuation of the amplitude quadrature of the fundamental output field. The performance

of the controller is verified via simulation by applying it to the original nonlinear model. The

results confirm that the squeezing objective is achieved for the realistic noise levels used in

simulations. Furthermore, using the H∞ control design technique in Chapter 5, the quantum
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system is stabilized in the presence of model mismatches and disturbances. To summarize the

contribution of this work:

• A nonlinear model of quantum optomechanical sensors is considered first, with various

sources of noise.

• Control techniques are employed in order to:

– Achieve frequency locking of laser cavity for the case of optomechanical sensors

using an optimal servo controller.

– Improve stability and increase the measurement efficiency of quantum optics sys-

tems using an H∞ controller.

The results of this work can be used to implement controllers with robust performance lasers

with fluctuations approaching the quantum noise limit. The resultant controller can be used in

a wide range of high-precision laser applications.

6.2 Suggestions for Future Work

Quantum control is still in its infancy. The research presented in this thesis provides a founda-

tion for future research in the field of quantum feedback control, where it is desired to design a

reliable and fault tolerant laser system through linear feedback. Some relevant open questions

are: How does a weak measurement [76] affect quantum systems under feedback control? To
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what extent is it possible to control nonlinear dynamics of quantum systems using linear con-

trollers? What approaches are effective for control of quantum systems with non-Markovian

dynamics [77–79]? What are the limitations of feedback control in dealing with uncertainties

in quantum systems? How can one synthesize complex quantum feedback network systems?

These questions (and many more) are some of the problems which can be addressed in the

future.
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Appendix A

Appendix

A.1 MATLAB Codes

The simulations in this thesis are performed using MATLAB version 7.2.0.232(R2006a) Ser-

vice Pack 2 from Mathworks. The main MATLAB codes used in this project are provided in

this appendix.

A.1.1 Controller design

%%% Optical cavity model %%%

%%%% DataBase %%%%

plant=ss(A,B,C,D);

%% Design the regulator by computing the LQR Gain matrix K

[Ke,S,e]=lqr(A, B, Qn, R);
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%% Compute the Kalman filter gains

P1 = ss(A, [B G], C, [D H]);

[Observer, Ko] = kalman(P1, Rw, Rv,[]);

%% Create the regulator and the closed-loop system

lqg_reg = lqgreg(Observer, Ke);

feedin = [1]; % force u

feedout = [1]; % y

Gcl = feedback(plant*lqg_reg, 1, feedin, feedout, +1);

bode(lqg_reg);

A.1.2 Robustness design

%%% Robustness Study %%%

MatM=funval(Alpha,Dcos,Dk,Dsin,Dsqrtk0,Dsqrtk1,DsqrtkL,Gamma,Gm,...

Osp,c1,c2,eps4,k,k0,k1,k2,kL,kf,km,kp,ks,phi,r1,r2,wm);

A=MatM(1:8,1:8);

B=MatM(1:8,9:35);

C=MatM(9:25,1:8);

D=MatM(9:25,9:35);

sys=ss(A,B,C,D);

[KK,CL,GAM,INFO] = hinfsyn(sys,1,1,’DISPLAY’,’on’);
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