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ABSTRACT 

 
Identification of most probable ranges of biodynamic responses of the human body exposed to 

whole-body vibration is essential for developing effective integrated human-machine system 

design tools, improved vibration mitigation devices and frequency-weighting for exposure 

assessment. The international standard, ISO-5982(2001), defines such ranges for very limited 

conditions, namely for body seated without a back support and exposed to vertical vibration. The 

reported data on biodynamic responses of the seated and standing human body exposed to 

whole-body vibration along different directions and the associated experimental conditions are 

systematically reviewed in an attempt to identify datasets that are likely to represent comparable 

and practical postural and exposure conditions. Syntheses of datasets, selected on the basis of a 

set of criterion, are performed to identify the most probable ranges of biodynamic responses of 

the human body to whole-body vibration. These include the driving-point biodynamic responses 

of the body seated with and without a back support while exposed to fore-aft, lateral and vertical 

vibration and those of the standing body to vertical vibration, and seat-to-head vibration 

transmissibility of the seated body. The proposed ranges are expected to serve as reasonable 

target functions in various applications involving coupled human-system dynamics in the design 

process, and potentially for developing better frequency-weightings for exposure assessments. 
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Relevance to the industry: Identification of most probable biodynamic responses of the seated 

and standing human body exposed to whole-body vibration is essential for developing 

anthropodynamic manikins, integrated human-machine system design tools for improved 

vibration mitigation devices and frequency-weighting for exposure assessment. This study 

derives ranges of biodynamic responses of the body seated with and without the back support, 

and those of the standing body. The ranges would serve as the target response functions for: (i) 

designs of anthropodynamic manikins for assessment of vibration isolation effectiveness of 

coupled seat-occupant system; (ii) development of human body models, which are vital for 

quantifying the vibration-induced stresses in different joints and for deriving integrated human-

machine system design tools; and (iii) identification of alternate frequency weightings for 

assessment of vibration exposure. 

1. INTRODUCTION 

Biodynamic responses of human body in different standing and sitting conditions have been 

widely measured under whole body vibration (WBV). The measures are most often expressed in 

terms of force-motion relations at the driving-point, namely, mechanical impedance, apparent 

mass and absorbed power, and flow of vibration through the body, such as seat-to-head and body 

segments vibration transmissibility. The measured biodynamic responses have been used to 

identify mechanical-equivalent properties of the exposed human body and critical frequency 

ranges associated with resonances of different body segments (e.g., Coermann, 1962; Suggs et al, 

1969; Mertens, 1978; Dupuis and Zerlett, 1986; Panjabi et al, 1986; Sandover 1988; Donati and 

Bonthoux, 1983; Kitazaki and Griffin, 1998; El-Khatib et al., 1998) to understand the potential 

injury mechanisms (e.g., Liu et al., 1998; Hinz et al., 2002; Magnusson et al., 1993) and for 

deriving frequency-weightings for exposure assessments (e.g., Meister et al., 1984; Mansfield 

and Griffin, 1998a; Lundström and Holmlund, 1998a, Rakheja et al., 2008), and to help 
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developing and validating continuum and discrete distributed-parameter models (e.g., Von 

Gierke and Coermann, 1963; Suggs et al., 1969; Fairley and Griffin, 1989; Mertens, 1978; Fritz, 

2005; Pankoke et al., 2001). These biodynamic models can be further used to help quantify and 

understand the distributed joint forces, tissue stresses, and strains that may be directly related to 

the vibration-induced injury and disorder mechanisms (e.g., Fritz 2000; 2005; Pankoke et al., 

2001; Hinz et al., 2002), to help design better seats and anti-vibration systems (e.g., Stein and 

Múča, 2003; Paplukopoulos and Natsivas, 2007; Kruczek and Stribrsky, 2004; Rakheja et al., 

2002a; Kerr, 1998; Sachse et al., 2003; Pernica, 1990; Ippili et al., 2008; Siefert et al., 2008); and 

to construct anthropodynamic manikins for assessing vibration isolation performance of 

suspension seats, as an attractive alternative to the use of human subjects in the standardized seat 

assessment method (ISO-7096, 2000; Mozaffarin et al., 2008). 

The effectiveness of biodynamic models and the manikins strongly relies on representative 

biodynamic responses of the body. The need to identify the range of biodynamic response of the 

human body to vibration was identified over 2 decades ago. The ISO-5982 (1981), ISO CD 5982 

(1993) and ISO-7962 (1987) standards have proposed driving-point mechanical impedance 

(DPMI) and seat-to-head transmissibility (STHT) magnitude and phase characteristics of the 

human body based on the averaging of various data sets reported by different investigators. The 

synthesis included datasets generated under vastly different conditions, such as standing and 

sitting postures with feet supported and hanging. These early standards did not differentiate 

between the two postures, which are known to yield considerably different biodynamic responses 

(Paddan and Griffin, 1998). The proposed values were thus found to deviate considerably from 

the datasets reported under conditions considered applicable in many exposure situations, such as 

vehicle driving. Boileau et al. (1998b) performed a synthesis of reported data to define ranges of 
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DPMI and STHT characteristics in the 0.5-20 Hz range under particular conditions applicable to 

vehicle driving. These included: human subjects sitting erect without a back support with feet 

supported and vibrated, and exposed to vertical vibration with magnitude equal to less than 5 

m/s2. The results of the study were subsequently adapted in the ISO-5982 (2001), which has 

served as the basis for developing mechanical-equivalent biodynamic models of the seated body 

and anthropodynamic manikins. The idealized ranges of mechanical impedance magnitude and 

phase, defined in the current standard, were based on 8 and 7 datasets, respectively, reported in 6 

different studies, while the STHT magnitude and phase ranges were defined from 4 and 3 

datasets, respectively.  

The ranges of biodynamic responses in terms of DPMI magnitude and phase have also been 

defined by the German Institute for Standardization, which are considered applicable for both 

standing and sitting human subjects exposed to vertical vibration (DIN 45676, 1992). The 

standard defines the mechanical-impedance values for three body masses (55, 75 and 98 kg), 

where the 75 kg values were taken as the mean values defined in ISO-5982. The biodynamic 

responses of seated subjects of 55 and 98 kg body mass were derived from the measured data 

acquired for 18 and 14 subjects, respectively, exposed to harmonic vertical vibration (rms 

acceleration weighted in accordance with ISO-2631-1 = 1.49 m/s2 or less) dominant in the 1-6 

Hz frequency range. Despite the somewhat comparable ranges of conditions, considerable 

differences between the two standardized values could be observed. A number of recent studies 

have also shown substantial differences between the standardized values and the measured data, 

which are attributed to differences in the experimental conditions considered (Patra et al., 2008; 

Rakheja et al., 2002b; Maeda and Mansfield, 2005). 
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The applicability of biodynamic mechanical-equivalent models and anthropodynamic 

manikins seem to have met limited success thus far. While some of the studies on seats with 

biodynamic models and manikins have shown good agreements with the data acquired from the 

seat-human system under particular conditions and body mass (e.g. Gu, 1999; Mansfield and 

Griffin, 1996; Huston et al., 1998; Toward, 2000; Cullmann and Wölfel, 2001; Lewis, 2005), 

others have identified substantial limitations of the current models and manikin designs. Only 

limited efforts have been made to assess the performance of models and manikins under ranges 

of representative conditions. The suitability of two prototype manikins for assessing vibration 

isolation effectiveness of different suspension seats was evaluated in a recent study by Nelisse et 

al. (2008), which involved subjects and manikins configured to three different body masses (55, 

75 and 98 kg) as per the ISO-7096 guideline. The study concluded that the manikins provided an 

overestimate of isolation effectiveness of seats, when compared to those with human subjects, 

while the SEAT values of the low natural frequency (< 2Hz) seats coupled with manikins were 

comparable with those of the seats loaded with equivalent rigid mass. Considerable differences 

between the results predicted from vertical human-seat models and laboratory-measured data 

have also been shown (Wei and Griffin, 1998; Tchernychouk et al., 2000). These differences in 

part may be attributed to: (i) limited applicability of biodynamic model and thus the manikin in 

the vicinity of the experimental conditions associated with the target response used for 

identifying the model, namely, the body mass, sitting posture, magnitude of vibration; (ii) 

assumption of linear response of the seated body; (iii) lack of consideration of contributions of 

the body coupling with elastic seats, since the measurements have been invariably performed 

with rigid seats, although a recent study has reported the driving-point responses of body seated 

on a soft seat (Hinz et al, 2006a). 
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The quality of both the biodynamic models and the manikins could be considerably enhanced 

by defining more reliable ranges of biodynamic responses of the seated body. The ranges of 

idealized values defined in ISO-5982 (2001) were based on datasets reported prior to 1998, while 

a number of datasets have been reported in the recent years under more representative and 

comparable experimental conditions. A synthesis of the data including the recently reported ones 

can help define more reliable ranges of the biodynamic responses. Furthermore, the initial efforts 

made in defining the idealized ranges need to be enhanced for broadening their applicability for 

standing subjects, different vibration directions, and sitting with back support. Considerable 

exposure to vertical vibration of standing subjects in many situations have been documented, 

such as high speed boat or craft operator, which necessitate the design of vibration attenuating 

floors (Akers, 2004). A large number of work vehicles transmit significant magnitudes of fore-

aft and lateral vibration, which are either comparable or exceed those in the vertical direction 

(Kumar et al., 2001; Bovenzi et al., 2002; Rehn et al., 2005). A few recent studies have explored 

means of controlling horizontal vibration by considering biodynamic models of the body (Stein 

et al., 2008; Fleury and Mistrot, 2006), since exposure to large magnitudes of horizontal 

vibration could cause greater shear forces in the lumbar spine (Fritz, 2005). Moreover, the 

biodynamic responses of the seated body are greatly influenced by the back support condition.  

The vertical biodynamic responses of the body seated against vertical and inclined back supports 

have been reported in a few studies (Fairley and Griffin, 1989; Boileau and Rakheja, 1998a; 

Mansfield and Griffin, 2002; Wang et al., 2004), which could be applied to define the ranges 

under back supported sitting conditions. 

In this study, the ranges of biodynamic responses under different postures and vibration 

directions are defined on the basis of syntheses of available data. In particular, the reported data 



 7

are synthesized to define ranges of (1) apparent mass and seat-to-head vibration transmissibility 

of seated human body exposed to vertical vibration with and without a back support; (2) apparent 

mass characteristics of seated body exposed to fore-aft and lateral vibration; and (3) apparent 

mass characteristics of standing human body exposed to vertical whole-body vibration. The 

experimental conditions associated with the reported data sets are carefully examined and 

selection criteria are defined so as to select datasets considered applicable under conditions 

considered representative of the work situations. 

2. SELECTION OF DATASETS AND CONDITIONS 

The biodynamic responses of the standing and sitting body are strongly influenced by the 

vibration (magnitude and frequency), and anthropometric and posture-related factors. Reported 

studies on biodynamic responses have employed a wide range of experimental conditions, which 

are reviewed so as to select datasets under conditions representative of the workplace. The 

studies reporting biodynamic responses of seated and standing body with different postures and 

exposed to vibration along different translational directions were initially considered. The 

biodynamic responses of the standing body have been generally evaluated under vertical 

vibration, while the responses to horizontal vibration are addressed in a very few studies (e.g. 

Starck et al., 1991). The synthesis of datasets on standing body biodynamics is thus limited to 

vertical vibration alone.  

For the seated body, the mechanical impedance or apparent mass data reported under fore-aft 

(x), lateral (y) and vertical (z) vibration are considered, while those on seat-to-head vibration 

transmissibility are limited to vertical vibration alone due to only a few datasets reporting the 

transmission of horizontal vibration. A few selected datasets were initially analyzed to determine 

their ‘grand mean’ using two approaches: (i) based on magnitude data alone; and (ii) based on 



 8

the magnitude as well as phase data. The two approaches resulted in quite comparable mean 

responses. The synthesis thus included data sets reporting either magnitude alone or both the 

magnitude and phase.  

Only a few studies have investigated the gender effect on the measured biodynamic 

responses. Some of these have concluded insignificant gender effect on the biodynamic 

responses to vibration (Mertens, 1978; Parsons and Griffin, 1982), while others have suggested 

strong gender effect (Laurent, 1996; Lundström et al., 1998b). Other studies have suggested 

small differences in the biodynamic responses of male and female subjects only at higher 

frequencies (Mansfield et al., 2001; Wang et al., 2004). Griffin et al. (1978) showed that male 

subjects exhibit greater seat-to-head vibration transmission than females in the 1.25-4 Hz range, 

while an opposite trend was observed at higher frequencies. The datasets reporting the 

biodynamic responses of the female subjects are excluded from the synthesis due to their very 

small number. The datasets reporting the mean responses of male and female subjects, however, 

are included. Considering that the gender effect is generally small, well within the expected 

variations among the reported datasets, the resulting synthesis could be considered representative 

of the biodynamic responses of male as well as female subjects within the range of chosen body 

mass range. 

The reported biodynamic response data and the associated experimental conditions were 

thoroughly reviewed in order to select datasets reported under comparable and representative 

conditions. For this purpose, selection criteria comprising the ranges of experimental variables 

and test were formulated. Irrespective of the sitting posture and direction of vibration, the data 

satisfying these conditions were considered for the synthesis, which included: (i) datasets 

reporting either the magnitude or the magnitude and phase of the biodynamic response function; 
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(ii) datasets derived using adult subjects with body mass ranging from approximately 55 to 110 

kg; (iii) datasets reported under either sinusoidal or random vertical vibration within the 0.5 to 20 

Hz frequency range, while those under horizontal vibration were limited up to 10 Hz; (iv) 

datasets acquired under vibration of magnitude below 5 m/s2 (peak as stated in the current 

standard), while those reported in the vicinity of 1 m/s2 rms acceleration were preferred, which is 

considered to be more representative of vehicle vibration and the nonlinear effects of vibration 

magnitude tend to diminish beyond this level (Matsumoto and Griffin, 1998b; Mansfield and 

Griffin, 2000; Wang et al., 2004); (v) datasets acquired with clearly defined subject population, 

while those reporting a single subject data were carefully examined. Few studies have shown 

comparable AM responses to both sinusoidal and random vibration of comparable magnitudes 

(Mansfied and Maeda, 2005b; Boileau and Rakheja, 1998a).  The data reported under both types 

of excitation have thus been considered. The magnitudes of vibration corresponding to each 

selected dataset are expressed in rms acceleration (m/s2), unless stated otherwise. 

Various studies reporting the biodynamic responses of the seated and standing subjects are 

initially identified, which would satisfy the selection criteria completely or in-part. Multiple 

datasets could be obtained from the majority of the studies corresponding to different postures 

and vibration magnitudes. Additional specific criterion is subsequently applied to select datasets 

under comparable and representative conditions for different posture and vibration directions, 

which are described in the following subsections. The studies have reported either mean or 

median values of the responses of the subject populations considered. The median values of the 

selected datasets and body mass are considered close to the mean values, assuming symmetric 

distribution.  The synthesis of selected datasets thus includes both the reported median and mean 

datasets. 



 10

2.1 Studies Reporting Driving-Point Biodynamic Responses of Seated Body under Vertical 
Vibration 

A total of 45 studies reporting the driving-point biodynamic responses of the seated body under 

vertical vibration were initially identified. Table 1 summarizes the selected studies together with 

the associated experimental conditions. Wide variations in the experimental conditions employed 

in different studies are clearly evident, although very similar measurement and analyses methods 

are used. The vast majority of the studies report multiple datasets under different sitting and back 

support conditions. The datasets satisfying the selection criteria are selected from those studies 

corresponding to the concerned sitting posture and vibration magnitude. The earlier studies 

generally reported the driving-point biodynamic responses in terms of mechanical impedance 

(MI) under sinusoidal vibration, while the more recent studies present apparent mass (AM) under 

broad-band random vibration. The reported impedance data were expressed in the form of 

apparent mass using the relation: 

( ) ( )ω
ω

ω jZ
j

jM 1
=          (1) 

Where Z(jω) is the complex mechanical impedance corresponding to frequency ω and M(jω) is 

the complex apparent mass and 1−=j . 

Additional selection criteria are defined by considering the posture and vibration-related 

factors affecting the driving-point responses of the seated body, namely, the back support, the 

feet supports, sitting posture (tense, relaxed or slouched), and magnitude of vibration. The 

datasets reported for seated body with feet hanging are excluded, since the responses with feet-

hanging sitting postures are significantly different from those with feet supported (Nawayseh and 

Griffin, 2004). Moreover, the feet hanging posture is not considered representative of the vehicle 

driving.   
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The vast majority of the studies have reported the responses without a back support, while 

the back support affects the seated driving-point responses considerably (Wang et al., 2004; 

Mansfield and Maeda, 2005a; Boileau and Rakheja, 1998a; Mansfield and Griffin, 2002). The 

datasets reported for none and vertical or inclined back supports are thus synthesized separately. 

The datasets corresponding to upright erect and relaxed postures alone are selected, which are 

most commonly reported and considered representative of vehicle driving. The position of the 

subjects hand may also affect the responses, although the vast majority of the studies consider 

hands in lap or resting on the knees. The hands placed on a steering wheel or a bar may affect the 

responses only with back supported postures (Wang et al., 2004), while the effect is significant 

when an automotive seat geometry is used, which is attributable to low seat height, lower 

vibration magnitude and substantial backrest inclination, in the order of 24° with respect to the 

vertical axis (Rakheja et al., 2002b). The datasets reported for both hands position are thus 

retained for the no back support condition, while those for the back support condition are limited 

to either vertical or slightly inclined backrests (≤12°) with hands in lap. A few earlier studies 

have investigated the biodynamic responses of the seated body under different levels of gravity 

(Vykukal, 1968; Vogt et al., 1968; Mertens, 1978). The data reported under normal gravity are 

retained in these cases. 

In view of the above and the general selection criteria, a large number of datasets are 

excluded from the synthesis. These include: (i) datasets reported for feet unsupported posture or 

not vibrated or not clearly identified (Coerman, 1962; Edwards and Lange, 1964; Vykukal, 1968; 

Vogt et al., 1968; Miwa, 1975; Mertens, 1978; Matsumoto and Griffin, 1998b, 2002b; Kitazaki 

and Griffin, 1998); (ii) datasets involving children (Fairley and Griffin, 1989); (ii) datasets 

reported for automotive postures (Rakheja et al., 2002b; Hinz et al., 2004); (iv) datasets not 
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reporting the total body mass (Fairley and Griffin, 1989); (v) studies involving only one subject 

(Fairley and Griffin, 1983); (vi) studies reporting individual subjects responses (Mansfield, 1994; 

Holmlund, 1999); although exceptions were made in cases where the mean data could be easily 

obtained from the individual data (Fairley and Griffin, 1986; Sandover, 1982); and (vii) studies 

reporting responses at a few discrete frequencies (Meister et al., 1984). Among the remaining 29 

studies some of the datasets reported by same authors under comparable conditions were found 

to be very similar. Only one of these datasets was thus retained in the synthesis. This resulted in 

exclusion of dataset reported by Mansfield and Maeda, (2005a, 2006) for back unsupported and 

supported postures, respectively. 

A total of 33 and 26 datasets in magnitude and phase, respectively, were considered to satisfy 

the selection criteria for the back unsupported condition. For the vertical and inclined back 

support, a total of 15 and 10 datasets in magnitude and phase were identified. These included 

multiple datasets reported by: (i) Donati and Bonthoux (1983), Hinz and Seidel (1987), Boileau 

et al. (1998a) under sinusoidal and random vertical vibration, denoted hereafter as ‘-sine’ and ‘-

random’, respectively; (ii) Seidel (1996) for body mass in 60-70 and 70-80 kg ranges, denoted as 

’60-70’ and ’70-80’, respectively; (iii) Wang et al. (2004) for mean body mass of 70 and 75 kg, 

denoted as ‘70’ and ‘75’; (iv) Patra et al. (2008) for mean body mass of 55, 75 and 98 kg, 

denoted as ‘55’, ‘75’ and ‘98’ respectively; and (v) Holmlund et al. (2000) for erect and relaxed 

sitting posture, denoted as ‘E’ and ‘R’, respectively (Table 2). Although the individual body 

masses were not reported in a few of the selected studies (Mansfield and Griffin, 2002; Maeda 

and Mansfield, 2005; Mansfield and Maeda, 2005b; Huang and Griffin, 2006), these were 

retained since adult subject populations were considered.  Attempts were made to include the 

datasets reported under excitations in the vicinity of 1 m/s2 rms, when available.  
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2.2 Studies Reporting Seat-to-Head Vibration Transmissibility of Seated Body under Vertical 
Vibration 

Compared to the driving-point biodynamic responses, the seat-to-head vibration transmissibility 

data have been reported in a fewer studies. Paddan and Griffin (1998) identified a total of 46 

studies reporting the seat-to-head transmissibility responses of seated body exposed to vertical 

vibration. The study did not consider the phase data and included those attained for body seated 

on soft cushions with harness, while the back support conditions were not defined. It has been 

well-established that the upper body support conditions affect the seat-to-head vibration 

transmissibility most significantly (Wang et al., 2006; Paddan and Griffin, 1988). The 

requirement of feet support was further relaxed, since the contributions are known to be very 

small. The current standard (ISO-5982, 2001) is based upon 4 and 3 datasets in seat-to-head 

transmissibility magnitude and phase responses, respectively, of the body seated without a back 

support. The considered studies were reported prior to 1988. Only a few additional data sets 

could be found in the literature, particularly for the back supported postures, which would satisfy 

the selection criteria. The synthesis of the reported seat-to-head vibration transmissibility data is 

thus limited to upright sitting postures without a back support.  

A total of 12 studies were initially identified, which are summarized in Table 3. Three of 

these had to be excluded from the synthesis, since the studies involved either only one subject or 

did not report the excitation magnitude (Coermann, 1962; Griffin et al., 1978). The selected 

datasets include a total of 125 adult subjects with body mass up to nearly 100 kg, exposed to 

either sinusoidal (up to 4.85 m/s2 rms) or random vertical vibration (up to 3.0 m/s2 rms within 2-

12 Hz range), while sitting with an upright erect or relaxed posture with no back support. 

Although the individual or mean body masses were not reported in a few of the selected studies 

(Mertens, 1978; Hinz et al., 2001), these were retained since the body mass effect on the seat-to-
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head transmissibility is not as pronounced as it is seen in the apparent mass. Attempts were made 

to include the datasets reported under excitations in the vicinity of 1 m/s2 rms, when available.  

2.3 Studies Reporting Biodynamic Responses of Standing Body under Vertical Vibration 

Table 4 summarizes the studies reporting the biodynamic responses of standing subjects exposed 

to vertical vibration. A review of the experimental conditions employed in these studies clearly 

shows wide variations. A few studies have characterized the biodynamic responses under a wide 

range of postures, such as upright erect or relaxed, bent knees, standing on one leg or on heels or 

on toes (Coermann, 1962; Miwa, 1975; Matsumoto and Griffin, 1998a). All the relevant studies, 

however, have included erect or relaxed upright standing posture, which is considered to be 

representative of the working posture that may be anticipated in WBV environments, such as 

high speed crafts and ships. The majority of the reported studies have characterized mechanical 

impedance or apparent mass or the floor-to-head vibration transmissibility under exposure to 

vertical vibration, either sinusoidal or random. The majority have reported phase and magnitude 

of impedance responses, but only magnitude of the floor-to-head transmissibility with only one 

exception (Paddan and Griffin, 1993). The synthesis of the datasets reported for standing 

subjects was thus limited to apparent mass only.   

A total of six datasets could be identified for the possible synthesis; three of these reporting 

the mechanical impedance under sinusoidal vibration with acceleration amplitude ranging from 

0.1 to 0.5 g peak (Coermann, 1962; Edwards and Lange, 1964; Miwa, 1975) and the remaining 

three describe the apparent mass under random vibration of rms acceleration ranging from 0.125 

to 2 m/s2 (Matsumoto and Griffin, 1998a and 2000; Subashi et al., 2006). The majority of the 

studies have reported the biodynamic responses under vibration from a low frequency of 0.5 or 1 
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Hz up to 20 Hz, with the exception by Miwa (1975), which reports the responses in the 3-100 Hz 

range.  

All of the six datasets are considered to satisfy the selection criteria, although some of the 

experimental conditions were defined only vaguely in some of the studies. Coermann (1962) 

conducted experiments with 8 adult male subjects with body mass in the 70-99.5 kg range (mean 

mass = 86.2 kg) under sinusoidal vibration of peak magnitude in the 0.1 to 0.5 g peak range. The 

impedance magnitude and phase responses of a single subject with body mass of 84 kg, however, 

were reported, while the vibration magnitude is vaguely specified as ‘up to 0.5 g’. Edward and 

Lang (1964) presented the impedance magnitude and phase responses of two individual subjects 

under sinusoidal vibration of acceleration amplitudes of 0.2, 0.35 and 0.5 g peak. The mean of 

the two individual data corresponding to 0.2 g peak are obtained for the synthesis. Miwa (1975) 

reported the mean impedance magnitude and phase responses of 20 adult male subjects under 0.1 

g peak sinusoidal vibration in the 3-100 Hz range, while the body mass is reported for only 5 

subjects (50 to 76 kg; mean=58.8 kg). This mass range is assumed to be representative of the 

entire population. Matsumoto and Griffin (1998a) and Subashi et al. (2006) reported the median 

apparent mass properties of 12 subjects under random vibration.  The median responses and 

body mass are considered to be close to the mean values, assuming symmetric distribution. 

Another study by the same authors (Matsumoto and Griffin, 2000) reports median apparent mass 

of 8 subjects exposed to 1 m/s2 random vibration, while the body mass data is not defined, which 

was estimated from the data presented for individual subjects.  

2.4 Studies Reporting Biodynamic Responses of Seated Body under Horizontal Vibration 

The biodynamic responses of the seated body to horizontal vibration have been reported in 

relatively fewer studies than those under vertical vibration. This is most likely due to relatively 
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higher magnitudes of vertical vibration encountered in vehicles, which cause more detrimental 

effects in view of operators’ health and safety. The relatively low stiffness of tires employed in 

off-road vehicles together with high location of the operator, and presence of localized slopes 

and cross-slopes in the terrains can lead to considerable horizontal vibration at the operator 

location. Many studies have shown that magnitudes of fore-aft (x) and lateral (y) vibration at the 

driver’s seat of off-road tractors, forklift trucks, and port cranes could be either comparable or 

exceed the magnitudes of vertical vibration (Kumar et al., 2001; Marsili et al., 2002; Bovenzi et 

al., 2002).  

Despite the high magnitudes of horizontal vibration, the biodynamic responses of the seated 

body to fore-aft and lateral vibration have been addressed in a few studies. The experimental 

conditions associated with reported studies on driving-point responses to fore-aft and lateral 

vibration are summarized in Tables 5 and 6, respectively.  The studies reporting responses for 

sitting posture with feet supported on either a stationary or vibrating foot support are included in 

the synthesis. 

A total of 12 studies characterizing the driving-point biodynamic responses of seated body to 

fore-aft vibration were initially identified, which are summarized in Table 5. Owing to the strong 

influence of the back support condition on the measured apparent mass, the datasets reported for 

postures involving no back support and a back support were synthesized separately. A total of 11 

and 6 studies could be identified for the no back and back supported postures, respectively, 

which satisfied the selection criteria. Furthermore, the datasets reported for male subjects alone 

were considered due to the limited data available for the female subjects. 

The majority of the studies have reported responses under sinusoidal or random vibration of 

different magnitudes, while the lower and upper limits of the frequency span vary from 0.25 to 2 
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and 10 to 100 Hz, respectively. The data up to only 10 Hz are considered for the synthesis, since 

the magnitudes are generally very small at frequencies above 10 Hz. Attempts were made to 

select data reported under excitation magnitudes equal or closest to 1 m/s2 rms over a frequency 

range up to 20 Hz, which is most commonly used in the reported studies.  Assuming constant 

power spectral density of the acceleration due to excitation, this will translate to an equivalent 

magnitude of 0.71 m/s2 rms over the 10 Hz range. The datasets corresponding to equivalent 

magnitude of 0.71 m/s2 rms or less over the 10 Hz frequency range could be obtained from most 

of the studies, with the exception of one study. Stein et al. (2007) reported the apparent mass 

response of a single subject exposed to 2.03 m/s2 excitation in the 0.3-30 Hz range, which is 

equivalent to nearly 1.17 m/s2, when the 10 Hz frequency range is considered. The two datasets 

corresponding to 0.5 and 1.0 m/s2 excitation over the 0.5-10 Hz range, reported by Mandapuram 

et al. (2005) were considered for the synthesis. The majority of the selected datasets were 

acquired for postures with hands on the knees or arms folded with the exception of one reported 

for hands on a bar (Stein et al., 2007). The data reported by Mansfield and Maeda, (2007) under 

0.4 m/s2 excitation was excluded since this data was included in their other study (Mansfield and 

Maeda, 2006). This resulted in a total of 10 and 6 datasets in magnitude and phase, respectively, 

reporting the fore-aft AM of subjects seated without a back support. The AM magnitude reported 

by Nawayseh and Griffin (2005c) for the vertical back support was significantly lower than those 

in the other studies in the entire frequency range.  This data was thus excluded. The remaining 4 

studies reporting fore-aft AM with back support provided a total of 4 and 3 datasets for vertical 

and inclined backrest, respectively. These included: two datasets reported by Mandapuram et al. 

(2005) for each of the back support (vertical and inclined); Stein et al. (2007) for an inclined 

back support; Mansfield et al. (2006) and Fairley and Griffin (1990) for a vertical back support. 
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The magnitudes of vibration corresponding to the selected datasets are italicized and underscored 

in Table 5.  

For the lateral (y-axis) vibration, a total of 9 studies were initially identified, which are 

summarized in Table 6. Only three datasets could be retained for the synthesis of driving-point 

responses of human subjects seated with back support and exposed to lateral vibration (Fairley 

and Griffin, 1990; Mandapuram et al., 2005; Mansfield and Maeda, 2006). The selected datasets 

were acquired for postures with hands on the knees or arms folded. Furthermore, the datasets 

reported for male subjects alone were considered due the availability of limited data for the 

female subjects. The data synthesis was performed in the frequency range up to 10 Hz due to 

very small magnitude of the apparent mass above 10 Hz, as in the case of x-axis apparent mass, 

while the data reported for magnitudes below or equal to 1 m/s2 excitation were considered. The 

excitation conditions associated with the selected datasets are italicized and underscored in Table 

6. The selected studies provided a total of: 9 and 5 datasets in magnitude and phase, respectively, 

for sitting without a back support; 4 and 3 datasets in magnitude and phase for the vertical back 

support; and 2 datasets in both magnitude and phase for the inclined back support. 

3. SYNTHESIS OF SELECTED DATASETS 

The selected datasets could be synthesized to derive the ranges of most probable biodynamic 

responses that would be considered applicable under the selected ranges of test conditions and 

body masses. The resulting ranges could also serve as the target data range for identification of 

biodynamic models of the body subjected to whole-body vibration. A synthesis of datasets 

acquired in different laboratory under different, although comparable, conditions with varying 

body masses, however, is expected to exhibit considerable variability among the data. This may 

lead to wide ranges of the probable biodynamic response and thereby limit its applicability. The 
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datasets selected for each of the biodynamic response as per the defined set of criterion are thus 

initially compared to examine the extent of variability. 

Figures 1 to 3 illustrate comparisons of selected data sets in apparent mass magnitude and 

phase of the seated body without a back support and exposed to whole-body vibration along the 

x-, y- and z-axes, respectively. The figures show comparisons of 10, 9 and 33 datasets in 

magnitude and 6, 5 and 26 in phase, respectively, which are summarized in Tables 5, 6 and 2. 

The selected 9 datasets describing head vertical vibration transmissibility of the seated body 

exposed to vertical vibration while sitting without a back support are compared in Figure 4. 

Figure 5 illustrates comparisons of 6 datasets describing the apparent mass magnitude and phase 

of the standing human body exposed to vertical vibration. The selected datasets, in most cases, 

generally show comparable trends, particularly with regards to the frequencies corresponding to 

the magnitude peaks. Some isolated datasets, however, present anomalies with respect to the 

trends observed from the majority of the datasets. 

In order to identify the most probable outliers that may be excluded from the synthesis, the 

standard deviations of the means are computed as a function of the vibration frequency for 

different combinations of datasets within each measure. The combination which yields an 

acceptable variation over the entire frequency range is subsequently retained for the synthesis 

and for defining the most probable ranges of idealized values applicable to the seated and 

standing human body under the specified conditions. 

3.1 Fore-aft apparent mass of the seated body without and with a back support 

The majority of the datasets describing the apparent mass response of the seated body exposed to 

fore-aft vibration exhibit a primary peak in the 0.5-1 Hz frequency range and a secondary peak in 

the 2-3 Hz frequency range (Fig. 1). The absolute magnitudes of different datasets, however, 
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differ substantially, although most show comparable trends with magnitudes within close bounds 

with a few exceptions. The dataset reported by Holmlund (1999) on the basis of field 

measurements is considered as a possible outlier, where the magnitude is considerably higher 

than the rest of the datasets in the 2 to 7 Hz frequency range. Other anomalies are evident in the 

datasets by Mansfield and Lundstrom (1999) and Hinz et al. (2006b), where the magnitudes are 

considerably lower up to 2.5 Hz. The datasets in fore-aft apparent mass phase, with the exception 

of one (Holmlund and Lundstrom, 1998) show a comparable trend.  The phase angle is observed 

to be quite small at low frequencies and gradually approaches -100 to -150° with increasing 

frequency. The phase datasets by Holmlund and Lundström (1998) is thus considered as an 

outlier. 

Considering relatively fewer datasets, the magnitude and phase responses are treated as 

independent from each other. A dataset considered as a possible outlier in magnitude is not 

instinctively assumed to be outlier in phase. Furthermore, the lack of phase data did not imply 

the exclusion of the corresponding magnitude data. The mean and standard deviations of the 

magnitude and phase datasets with sequential exclusions of the observed possible outliers are 

computed and compared in an effort to identify most probable outliers. Figure 6 presents the 

distribution of standard deviations of the mean for different combinations of the datasets. The 

exclusion of the datasets reported by Holmlund (1999), and Mansfield and Lundström (1999) 

yields considerable reduction in the variability of the results. Whereas, the further exclusion of 

the data set reported in Hinz et al. (2006b) does not yield a significant decrease in the variability 

at frequencies above 1 Hz. This dataset was thus retained for the data synthesis. Consequently, a 

total of 8 and 5 datasets in magnitude and phase, respectively, were considered suitable for 
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defining the probable range of the apparent mass magnitude response of the body seated without 

a back support and exposed to fore-aft vibration. 

The selected data sets identified to represent the fore-aft apparent mass responses of seated 

body with back support were initially divided into two back support conditions involving vertical 

and inclined back supports with 4 and 3 datasets, respectively, in magnitude and phase. The 

reported magnitude and phase responses with the two back supports are compared in Figs. 7(a) 

and 7(b), respectively. Most of the datasets exhibit a dominant peak in the 3-5 Hz frequency 

range, irrespective of the backrest angle. The data reported by Mansfield and Maeda. (2006) for a 

vertical backrest and by Stein et al. (2007) for the inclined back support, however, show 

considerably lower magnitude in the entire frequency range. These are thus considered clear 

outliers. The datasets in the phase response show comparable trends, irrespective of the back rest 

angle, with exception of those by Mansfield and Maeda (2006). Consequently, 3 and 2 datasets 

could be retained to characterize the fore-aft apparent mass magnitude and phase responses, for 

the vertical and inclined back support, respectively. 

The results further show comparable trends in magnitude and phase for both the back 

supports. The means and ranges of the selected magnitude and phase datasets for both vertical 

(vb) and inclined (ib) backrests were also observed to be quite comparable in both the peak 

magnitudes and the corresponding frequencies, suggesting relatively small effects of backrest 

angles considered in the studies. Consequently, the selected datasets for the two backrests are 

combined to yield a total of 5 datasets for both magnitude and phase for the synthesis, which 

represent the AM responses of the body seated with a back support with angle ranging from 90° 

to 102° and subject to fore-aft vibration, as illustrated in Fig. 8.  



 22

The datasets selected for the synthesis included a total of 105 and 32 adult male subjects with 

body mass up to nearly 100 kg, exposed to either sinusoidal or random for-aft vibration with 

magnitude in the vicinity of 1 m/s2 over the frequency range of 0.25-20 Hz while sitting with an 

upright erect or relaxed posture with no back support and with back support, respectively. 

3.2 Lateral apparent mass of the seated body without and with a back support  

The datasets describing the apparent mass response of the body seated without a back support 

and exposed to lateral vibration generally exhibit a primary peak in the 1-2 Hz frequency range 

(Fig. 2). The dataset reported by Mansfield and Maeda (2007) reveals relatively higher peak 

magnitude and may thus be an outlier. The datasets reported by Holmlund and Lundström 

(1998), Holmlund (1999), Mansfield and Lundstrom (1999), and Holmlund and Lundstrom 

(2001) also present some anomalies since these generally describe the magnitude response at 

frequencies above the primary resonant frequency. The datasets in AM phase show general 

trends, where the phase approaches -80 to -1400 near 10 Hz. Two of the datasets reported by 

Mandapuram et al. (2005) for 0.5 and 1.0 m/s2 excitations, however, show relatively lower phase 

value at frequencies above 1.5 Hz. The datasets, however, tend to cluster within a band at 

frequencies above 6 Hz. All of the 6 phase datasets were thus retained for the synthesis. The 

mean and standard deviations of the magnitude datasets were subsequently computed by 

excluding the possible outliers in a sequential manner, which are compared in Fig. 9. The results 

suggest that exclusion of the datasets reported in Mansfield and Lundström (1999), Holmlund 

and Lundström (2001), and Mansfield and Maeda (2006) could yield considerable reduction in 

the variability of the results, while the exclusions of the datasets reported by Holmlund and 

Lundström (1998) and Holmlund (1999) do not yield a significant further decrease in the 
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variability. The remaining 6 datasets were retained for the data synthesis for defining ranges of 

lateral apparent mass magnitude response of the body seated without a back support.  

A total of 6 and 5 datasets were obtained for the lateral AM magnitude and phase responses, 

respectively, of the body seated against a vertical or an inclined back support. The responses for 

the two back supports were quite comparable, as it was observed for the fore-aft AM response. 

The reported magnitude and phase datasets are compared in Fig. 10, which include two datasets 

by Mandapuram et al. (2005) corresponding to 0.5 and 1.0 m/s2 excitations for both back 

supports. The magnitude datasets mostly exhibit consistent trends with primary peak occurring in 

the 1-2 Hz range. The phase dataset reported by Mansfield and Maeda (2006) is considerably 

different from the other datasets, and is thus considered an outlier, resulting in a total of 6 and 4 

datasets in magnitude and phase, respectively, for synthesis of lateral AM response of the body 

seated with a back support and exposed to lateral whole-body vibration. 

The datasets selected for the synthesis include a total of 92 and 31 adult subjects with body 

mass up to nearly 100 kg, exposed to either sinusoidal or random lateral vibration with 

magnitude of 1 m/s2 or less over the 0.25-20 Hz range, while sitting with an upright erect or 

relaxed posture with no back and back support, respectively. 

3.3 Vertical apparent mass of the seated Body without and with a backrest  

The datasets describing the AM magnitude and phase responses of the body seated without a 

back support and exposed to vertical vibration generally show common important trends (Fig. 3). 

The majority of the magnitude datasets exhibit a dominant peak in the 4-6 Hz frequency range, 

widely referred to as the primary resonance frequency. The magnitude values observed in 

various studies, however, differ substantially, which are attributable to variations in 

anthropometry of subjects and experimental conditions considered in individual studies. It has 
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been shown that the body mass is the primary factor that strongly influences the AM magnitude, 

particularly at lower frequencies (Patra et al., 2008; Fairley and Griffin, 1989). The dataset 

reported by Suggs et al. (1969) shows considerably lower magnitude than the other datasets at 

frequencies above 6 Hz, and is potentially an outlier. The dataset by Holmlund et al. (2000) 

corresponding to a relaxed sitting posture also shows considerably lower magnitude in the 5-14 

Hz frequency range. The dataset reported by Hinz and Seidel (1987) corresponding to 1.5 m/s2  

sinusoidal excitation exhibits considerable higher resonant peak and relatively higher magnitude 

up to 12 Hz, while the data under 3.0 m/s2 random excitation shows peak at a lower frequency 

near 4 Hz. Furthermore, the datasets reported by Patra et al. (2008) for body masses of 55 kg and 

98 kg form possible outliers, due to their very low and very high magnitudes at frequencies up to 

5 Hz.  This is obviously attributed to extreme differences in the body mass considered in this 

study in relation to the mean masses in other studies. In a similar manner, the dataset by Kim et 

al. (2005) exhibits higher resonant peak, while that by Wang et al. (2004) for mean body mass of 

70 kg exhibits higher magnitudes at higher frequencies.  

The above-stated datasets are thus considered to be possible outliers in the AM magnitude. 

The phase response datasets generally suggest a consistent trend, where the apparent mass phase 

is very small at very low frequencies and asymptotically approaches -900 at higher frequencies. 

While most of the datasets exhibit a generally good agreement in the phase response up to 

approximately 5 Hz, important differences are observed to arise at higher frequencies. Of the 26 

datasets considered, 8 datasets are found to present important differences with respect to the 

majority of the datasets. These include the datasets by: Suggs et al. (1969) indicating 

considerably lower phase above 4 Hz; Donati and Bonthoux (1983) with lower phase above 6 Hz 

corresponding to random vertical excitations; Mansfield and Maeda (2005b), Mansfield and 



 25

Griffin (2002) and Kim et al. (2005) with considerably higher phase in the most of the frequency 

range; and Huang and Griffin (2006) with sharply increasing phase above 14 Hz. 

The mean and standard deviations of the vertical apparent mass magnitude and phase 

datasets, shown in Table 2 for the no back support condition, were subsequently computed by 

excluding the possible outliers, identified above, in a sequential manner, which are compared in 

Fig. 11 (a) and 11(b), respectively.  The results suggest that the exclusions of datasets reported 

by Suggs et al. (1969), Hinz and Seidel (1987)-Sine and -Random, Patra et al. (2008)-55 and -98 

would help reduce the variability in magnitude in most of the frequency range. The exclusions of 

other datasets such as Holmlund et al. (2000)-R, Kim et al. (2005), Wang et al. (2004)-70 did not 

yield further reductions in the standard deviation of the mean.  These datasets were thus retained 

resulting in a total of 28 datasets for synthesis of the vertical AM magnitude data of the body 

seated without a back support. The results presented in Fig. 11(b) suggest that the exclusion of 

the AM phase datasets reported by Suggs et al. (1969), Donati and Bonthoux (1983)-Random, 

Mansfield and Maeda (2005b), Mansfield and Griffin (2002), Kim et al. (2005) and Huang and 

Griffin (2006) could considerably reduce the standard deviation of the mean phase, particularly 

at frequencies above 6 Hz. Consequently, 20 of the 26 datasets were selected to characterize the 

vertical apparent mass phase response of the seated body without a back support. 

The selected data sets identified to represent the vertical apparent mass responses of seated 

body with back support were initially divided into two back support conditions involving vertical 

and inclined back supports with 9 and 6 datasets in magnitude, and 4 and 6 in phase, 

respectively. These include two datasets by Wang et al. (2004) corresponding to mean body 

masses of 70 and 75.1 kg, three datasets by Patra et al. (2008) corresponding to 55, 75 and 98 kg 

body masses. The reported magnitude and phase responses with the two back supports are 
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compared in Figs. 12(a) and 12(b), respectively. Most of the datasets exhibit a dominant peak in 

the 4-6 Hz frequency range, irrespective of the backrest angle. The data reported by Mansfield 

and Maeda (2005a) for a vertical backrest  show considerably lower magnitude up to 6 Hz, 

whereas those reported  by Patra et al. (2008) for the inclined back support, corresponding to 55 

and 98 kg body masses, show considerably lower and higher magnitudes, respectively. These are 

thus considered outliers. The datasets in the phase response show comparable trends, irrespective 

of the back rest angle.  Consequently, 8 and 4 datasets are identified to characterize the vertical 

apparent mass magnitude and phase responses, respectively, for the vertical back support, while 

for the inclined back support 4 and 6 datasets in magnitude and phase are retained.  

The results further show comparable trends in magnitude and phase for both the back 

supports, as observed for the fore-aft and lateral AM responses. Consequently, the selected 

datasets for the two backrests are combined to yield a total of 12 and 10 datasets in magnitude 

and phase, respectively, for the synthesis, which would represent the AM responses of the body 

seated with a back support with angle ranging from 90° to 102° and subject to vertical vibration, 

as illustrated in Fig. 13.  

The selected datasets include a total of 316 adult male subjects with body mass up to nearly 

110 kg, exposed to either sinusoidal (up to 4.85 m/s2) or random vertical vibration (up to 2.0 m/s2 

rms within 0.5-20 Hz range), while sitting with an upright erect or relaxed posture with no back 

support. The datasets involving a back support included a total 121 adult male subjects. 

3.4 Vertical Apparent Mass of the Standing Body 

The datasets describing the AM magnitude and phase responses of the standing body exposed to 

vertical vibration generally show common important trends (Fig.4). The majority of the datasets 

exhibit a dominant peak around 6 Hz, while extreme scatter is evident in the phase responses. A 
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closer observation of the magnitude curves indicates that 2 of the 6 datasets are possible outlier. 

These include the data by Miwa (1975) and Edwards and Lange (1964), which shows 

considerably higher and lower resonance frequencies, respectively, compared to the other 

datasets. Similarly 2 of the 6 datasets in phase exhibit very different trends (Miwa, 1975; and 

Coerman, 1962). The results presented in Figure 14 suggest that the exclusion of these datasets 

could minimize the variability in the magnitude as well as phase responses over the entire 

frequency range. Consequently, a total of 4 datasets each in magnitude and phase responses are 

identified to characterize the apparent mass response of the standing body exposed to vertical 

whole body vibration. 

The datasets selected for the synthesis include a total of 55 adult male subjects with mean 

body mass up to nearly 100 kg, exposed to either sinusoidal or random vertical vibration with 

magnitude below 0.5 g, while standing assuming an upright erect or relaxed posture. The test 

conditions corresponding to datasets selected for the synthesis are italicized and underscored in 

Table 4, whenever multiple datasets are reported in a single study. 

3.5 Vertical Seat-to-Head Vibration Transmissibility of the Seated Body  

The vast majority of the reported datasets in STHT indicate a dominant peak occurring within 

the 4-6 Hz frequency range (Fig. 5), while considerable scatter in both magnitude and phase data 

are evident. Some of the magnitude datasets also suggest the presence of a secondary peak at 

frequencies above 8 Hz. The variations in the frequency corresponding to the primary peak 

magnitude amongst the datasets, however, are significantly larger than those observed in the 

vertical apparent mass. The two datasets reported by Hinz and Seidel (1987) corresponding to 

1.5 m/s2 sinusoidal and 3.0 m/s2 random excitation show primary peaks occurring at very low 

frequencies near 2.3 and 3.3 Hz. The dataset by Zimmermann and Cook (1997) shows relatively 
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higher magnitude at frequencies above 11 Hz, while that by Hinz et al. (2001) indicates 

relatively lower magnitude in most of the frequency range. The selected phase datasets also show 

considerable variability among them. The two datasets by Hinz and Seidel (1987) consistently 

show leading phase response up to nearly 4 Hz, while that by Wang et al. (2008) show 

considerably lower phase in the entire frequency range. 

The mean and standard deviations of the magnitude and phase datasets were subsequently 

computed by excluding the possible outliers in a sequential manner, which are compared in Fig. 

15. The results suggest that exclusions of the identified datasets by Hinz and Seidel (1987) and 

Hinz et al. (2001) yields lower standard deviation in the magnitude. Further exclusion of the data 

by Kitazaki and Griffin (1997) resulted in reduction in variability only in a narrow frequency 

range around 5 Hz.  This dataset was thus retained for the synthesis resulting in a total of 6 

datasets describing the STHT magnitude responses of the body seated without a back support 

and exposed to vertical vibration. Similarly, the variability in the phase response could be 

considerably reduced by excluding the identified datasets by Hinz and Seidel (1987) and Wang 

et al. (2008), as seen in Fig. 15 (b), which resulted in 4 datasets in STHT phase for further 

synthesis. 

4. PROBABLE RANGES OF BIODYNAMIC RESPONSES 

The mean and the ranges of the selected datasets are computed to identify ranges of idealized or 

most probable values characterizing the biodynamic response of the seated and standing body 

under particular conditions considered. The ranges of biodynamic responses to vertical vibration 

are computed in the 0.5-20 Hz frequency range, while those to fore-aft and lateral vibration are 

identified in the 0.5-10 Hz range. The computed upper and lower bound curves are subsequently 

smoothened using moving average technique. 
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Figures 16 and 17 illustrate the ranges of apparent mass magnitude and phase responses of 

the body seated without and with a back support, respectively, and exposed to vibration along the 

x-, y- and z-axis. The figures show the mean values of the selected datasets together with the 

standard deviations of the means. The ranges are defined by the upper and lower bounds of the 

selected datasets as a function of the vibration frequency. The limits of AM responses, defined in 

Fig. 16(a), are considered applicable under sinusoidal and random fore-aft vibration with 

magnitude ranging from 0.4 to 1.0 m/s2 in the 0.5-10 Hz range for 55 to 103.6 kg body masses, 

while sitting without a back support. The ranges of AM responses of the body seated with a back 

support to fore-aft vibration, shown in Fig. 17(a), are considered applicable for body mass 

varying from 57 to 92 kg, while exposed to random fore-aft vibration of magnitude from 0.4-1.0 

m/s2. The results of the synthesis clearly show wide ranges of fore-aft AM magnitude and phase, 

which are attributable to differences in the body mass and vibration magnitude considered in 

different studies. The peak values of the coefficient of variation (COV) of the magnitude data 

approached nearly 35% at 5 Hz for the unsupported back and 20% at frequencies above 8 Hz for 

the back supported posture. The peak COV values of the magnitude, however, were observed to 

relatively small in the vicinity of the resonance frequencies for both the postures (15% for no 

back and only 5% for the back supported postures).  The peak COV of the phase data approached 

nearly 80% and 23% for without and with back support, respectively. The peak COV in the 

phase data occurred around 2 Hz. 

The ranges of apparent mass responses to lateral vibration, illustrated in Figs. 16(b) and 

17(b), are considered applicable for 0.4-1.0 m/s2 sinusoidal or random vibration with body mass 

varying from 55-103 kg for the back not supported condition, and under 0.4-1.0 m/s2 random 

vibration with 57-92 kg body for the back supported posture, respectively. The ranges show 
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relatively less variations in both magnitude and phase compared to those derived under fore-aft 

vibration. The peak COV in the magnitude data approached 13% and 24%, respectively, for the 

back unsupported and supported postures, in the vicinity of the primary resonance.  The peak 

COV in the phase data approached 39% and 10% for the back unsupported and supported 

postures, respectively, which occurred near the primary resonance frequency. The relatively 

lower values of COV of both the fore-aft and lateral AM data for the back supported posture are 

attributable to limited datasets that were reported by only three laboratories.  

Figures 16(c) and 17(c) show the ranges of AM responses of the body seated without and 

with a back support, respectively, while exposed to vertical vibration in the 0.5-20 Hz frequency 

span. For sitting without a back support, the limits would be applicable for body mass ranging 

from 49-107 kg under exposure to sinusoidal or random vertical vibration of 0.8-2.0 m/s2 

magnitude. The limits are considered valid for 0.625 to 1 m/s2 random vertical vibration and 

body mass in the 62-106 kg range for the back supported posture. The ranges exhibit wide 

variations in both magnitude and phase.  The peak values of COV of the magnitude data 

approached 18% and 15% near the primary resonance for the back unsupported and supported 

postures.  The COV values, however, were above 30% at higher frequencies due to relatively 

small magnitudes. The peak COV of the phase data approached 33% and 60% near the primary 

resonance frequency, respectively, for the two back support conditions. The COV of the vertical 

AM magnitude data are relatively lower compared to those observed under x- and y-axis 

vibration, particularly for the back supported condition. This is most likely attributed to 

relatively smaller range of vertical vibration magnitudes associated with the selected datasets.  

The limits of AM response of the standing body (body mass: 63-102 kg) under exposure to 

sinusoidal or random vertical vibration of magnitude of 0.5-1.0 m/s2 are presented in Fig. 18. The 
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results show considerably wider ranges in magnitude and phase compared to those identified for 

the seated body, which may partly attributed to fewer datasets (n=4) reported by three different 

laboratories. The peak values of COV in the magnitude and phase data approached nearly 20% 

and 90%, respectively, at frequencies below 5 Hz. 

The ranges of STHT magnitude and phase responses of the human body seated without a 

back support and exposed to vertical vibration along the z-axis are defined in a similar manner in 

Fig. 19. These limits in vertical STHT would be considered valid for sitting without a back 

support under exposure to random or sinusoidal vibration of magnitude ranging from 1 to 2.75 

m/s2. The defined limits are derived from selected datasets involving body mass variations in the 

58-99 kg span, although the effect of body mass on the STHT responses has been reported to be 

negligible. Both the magnitude and phase limits are considerably wide, particularly in the 

vicinity of the primary resonance frequency. The peak COV in the magnitude and phase data 

approached nearly 29% and 113% near 7 Hz and 5 Hz, respectively. 

5. DISCUSSIONS 

The international standard, ISO-5982 (2001), defines the idealized ranges of AM and STHT 

magnitude and phase responses of the human body seated without a back support and exposed to 

vertical vibration of magnitude up to 5 m/s2.  The standard does not provide such limits for the 

back supported posture and for responses to fore-aft and lateral vibration. The comparisons of 

the most probable ranges of vertical AM and STHT, identified from the synthesis of selected 

datasets in this study, with the standardized limits (Fig. 20) show considerable differences in the 

primary resonance frequencies observed from both the AM and STHT magnitude data, and in the 

magnitude responses, particularly at frequencies above 9 Hz.  The mean and upper limits of 

vertical AM and STHT responses derived from the synthesis show relatively higher primary 
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resonance frequencies (4.6-4.8 Hz) compared to that observed from the standardized ranges (near 

4 Hz), and relatively higher peak magnitude of the mean curves in both the STHT and the AM 

responses. The considerable lower primary frequency of the standardized ranges is attributable to 

the considerations of datasets obtained under relatively higher magnitudes of vibration (up to 5 

m/s2). The mean and limits of the AM data corresponding to no back support also exhibit some 

differences with respect to the standardized values, although the trends are quite comparable. 

The identified limits in STHT data show relatively larger deviations in both the magnitude and 

phase. This may be attributed to the differences in the datasets considered in the present 

synthesis and the study leading to the standardized ranges, which were based on 8 and 7 datasets 

in AM magnitude and phase, and 4 and 3 datasets in STHT magnitude and phase, respectively 

(Boileau et al, 1998b). The present synthesis is based on selected 28 and 20 datasets in AM 

magnitude and phase, and 6 and 4 in STHT magnitude and phase, respectively. 

Considering that the biodynamic responses of the seated or standing body exposed to whole-

body vibration is dependent on many confounding factors in a highly complex manner, the 

identification of ranges of most probable responses require careful consideration of the major 

influencing factors. The reported datasets showed large variability among them, although the 

data were limited to comparable experimental conditions involving specific sitting posture, feet 

support and ranges of vibration excitation levels. The variability among the selected datasets, 

however, is greatly limited due to controlled conditions. Significantly larger variations could be 

observed when the limits on the experimental conditions are relaxed, as it could be seen from the 

synthesis of vertical STHT data reported by Paddan and Griffin (1998).  

Among the factors influencing the AM responses, the body mass is known to be most 

significant one followed by the back support and the excitation magnitude. Only a few studies, 
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however, have reported data for particular body masses limited to vertical vibration alone (Patra 

et al., 2008, Wang et al., 2004), which clearly show the most pronounced effect of the body mass 

on the AM responses, while the effect is small on the STHT responses. The influence of body 

mass on the AM responses of standing subjects exposed to vertical vibration has not yet been 

attempted. Other studies have shown significant effects of the back support on both the AM and 

STHT responses (Fairley and Griffin, 1989; Wang et al., 2004); the effect of back support on 

fore-aft AM was observed to be even more pronounced (Mandapuram et al., 2005; Fairley and 

Griffin, 1990). The effect of vibration magnitude is relatively small compared to those of the 

body mass and the back support, particularly when the excitation magnitudes lie in a narrow 

range.  These suggest that the most probable ranges of the biodynamic responses be defined for 

specific ranges of body masses around the 5th, 50th and 95th percentile population with back 

unsupported and supported sitting postures. The mean and limits of biodynamic responses 

derived from the synthesis of reported mean datasets, irrespective of the direction of excitation, 

represent the grand average and overall variation among the selected datasets, respectively, 

corresponding to the chosen postural and vibration condition. The present study defines the 

ranges corresponding to two different back support conditions, while these cannot be associated 

with specific body mass ranges. Figure 21 illustrates comparisons of the AM magnitude limits 

with the data reported for three mass groups with mean body masses of 55, 75 and 98 kg for both 

back unsupported and supported sitting conditions (Patra et al., 2008). The results clearly show 

strong influence of the body mass suggesting the need for establishing the biodynamic response 

limits for specific ranges of body masses.  

 

6. CONCLUSIONS 
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A synthesis of the selected data was performed and limits encompassing the mean values of the 

selected data were constructed to define the ranges of fore-aft, lateral and vertical apparent mass, 

and vertical seat-to-head transmissibility responses of the body seated with feet supported and 

exposed to vibration excitation levels from 0.5 to 1.0 m/s2 and from 1.0 to 1.75 m/s2, 

respectively. The limits of apparent mass responses of standing body exposed to vertical 

vibration are also proposed on the basis of the synthesis of the available data. The proposed AM 

ranges are considered applicable for body seated with and without a back support, and exposed 

to vibration up to 1 m/s2. Owing to considerable effects of the back support on the biodynamic 

responses, particularly under fore-aft and vertical vibration, different ranges of AM responses are 

defined for both back unsupported and back supported conditions. The identified ranges for the 

vertical AM and STHT responses differ considerably from the standardized ranges in both the 

primary resonance frequency and the magnitudes in most of the frequency range. The 

considerably lower primary frequency of the standardized ranges is most likely caused by 

consideration of data attained under high excitation magnitudes, up to 5 m/s2. The differences 

may also be partly caused by inclusion of greater number of datasets in the present synthesis.  
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1 
 

Table 1: Summary of experimental conditions employed in studies reporting driving-point biodynamic responses of seated human body to vertical 
vibration (Continued) 

Sitting conditions Excitation Author(s) n 
(gender) 

Mass (kg) 
(mean) 

Feet 
condition Posture Back 

support 
Type Frequency 

(Hz) 
Magnitude2 

(m/s2 rms) 

Function Reported 

Coermann (1962) 8 (M1) 70-99.5 
(86.2) 

Not 
supported 

Erect 
relaxed 

None sine 1-20 Up to 0.5 g 
peak 

Median MI3 
magnitude and phase 

Edwards and Lange (1964) 2 (M) 77.7-84 (81) Not 
supported 

Upright None Sine 1-20 0.2, 0.35, 0.5 g 
peak 

MI magnitude and 
phase (individuals) 

Vykukal (1968) 4 (M) 68-83 (75.8) Not 
supported 

NR6 NR sine 2.5-20 0.4g peak (1, 
2.5, 4 g bias)  

MI magnitude and 
phase (n=1) 

Vogt et al. (1968) 10 (M) NR (80) Supported 
Stationary 

Erect NR sine 2-15 0.5g peak (1, 
2, 3 g bias) 

MI magnitude and 
phase 

Suggs et al. (1969) 11 (M) 58-90 (73.6) supported Upright None sine 1.75-10 1.25 mm peak 
displacement 

Mean MI magnitude 
and phase 

Miwa (1975) 20 (M) 
 

50-76 
60.8) 

Not 
supported 

Erect 
Relaxed 

None sine 3-200 0.1 g rms Mean MI magnitude  
and phase  

Mertens (1978) 6(M) 
3(F) 

57-90 
(66.8) 

Not 
supported 

Upright NR sine 2-20 0.4 g rms (1 to 
4 g bias) 

Mean MI magnitude 
and phase 

Sandover (1982) 6 (M) 52.7-87.2 Supported Erect None Random 1-25 1 Individual AM4 
magnitude and phase 

Donati and Bonthoux (1983) 15(M) 49-74 (62.9) Supported Upright  
Hands on SW 

None 
 

Random 
sine 

1-10 1.6  Mean MI magnitude 
and phase 

Fairley and Griffin (1983) 1 (M) 63 Supported Normal  None Random 0.25-20 1.0  AM magnitude & 
phase 

Meister et al. (1984) 6 (M) 63-86 (72) Supported Erect- hands 
on SW 

NR sine 
 

2, 4, 8 and 
16 

Two levels at 
each frequency 

MI magnitude . 

Fairley and Griffin (1986) 8 (M)  
 

57-85 (71.8) Supported 
  

Normal  None 
 

Random 
 

0.25-20 0.25-2.0  
 

Individual AM 
magnitude and phase 

Hinz and Seidel (1987) 4 (M) 56-83 (71.2) Supported 
 

Erect NR5 sine 2-12 1.5 and 3.0  Mean AM magnitude 
and phase  

Fairley and Griffin (1989) 24 (M1) 
24(F1) 
12(C1) 

NR (63.15) 
 

Supported 
Stationary & 
vibrated 

Erect & tense  
 

None  Random 
 

0.25-20 1.0  Mean normalized AM 
magnitude  

Mansfield (1994) 12 (M) 60-85 (68.3) Supported Upright None Random 0.5-20 0.25-2.5  Individual AM 
magnitude 

Holmlund et al. (1995) 30 54-93 (70) Supported Erect & 
Relaxed 

None Sine 2-100 0.5 Mean normalized MI 
magnitude and phase 

Seidel et al. (1996) ; cited in 
Boileau et al. (1998b) 

11(M) 
14(M) 

60-70 
70-80 

Supported Upright None Random 0.5-20 <1.4 Mean MI magnitude 

Matsumoto and Griffin (1998b) 8 (M) 63-83 Not 
supported 

Normal None Random  0.5-20 1.0  Individual AM 
magnitude and phase 
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Table 1: Summary of experimental conditions employed in studies reporting driving-point biodynamic responses of seated human body to vertical 
vibration (Continued) 

Sitting conditions Excitation Author(s) n 
(gender) 

Mass (kg) 
(mean) 

Feet 
condition Posture Back support Type Frequency 

(Hz) 
Magnitude2 

(m/s2 rms) 

Function Reported 

Kitazaki and Griffin (1998) 8 (M) NR (74.6) NR Normal, 
Slouched 

None Random 0.5-30 1.7  Mean normalized 
AM magnitude  

Wu et al. (1998) 6 (M) 58-73 (64.2) Supported Erect None Random 0.5-20 1.0 and 2.0  Mean AM magnitude 
and phase 

Boileau et al. (1998a) 6 (M) 70-81 (75.4) Supported Erect, relaxed, 
slouched 

None 
Vertical  
Inclined-14° 

Sine 
Random 

0.625-10 1, 1.5, 2.0 
weighted 

Mean MI magnitude 
and phase 

Holmlund (1999) 3 (M) 74 (74)  In-vehicle Erect 
Relaxed 

None Field 1-20 NR Individual MI 
magnitude   

Mansfield and Griffin 
(2000) 

12 (M) 60-85 (68.3) Supported Upright None Random 2-20 0.25-2.5  Median normalized 
AM4 magnitude 

Holmlund et al. (2000) 15(M) 
15(F) 

55-92 (74) 
54-93 (66) 

Supported 
 

Erect 
Relaxed 

None sine 2-100 0.5, 0.7, 1.0, 
1.4  

Mean MI magnitude 
and phase 

Nawayseh (2001) 12 (M) 57-106 (74.6) Unsupported 
& Supported 

Upright – 4 
thigh support 

None Random 0.25-25 0.125, 0.25, 
.625, 1.25  

Median AM 
magnitude and phase 

Mansfield et al. (2001) 11(M) 
13(F) 

72-96(81) 
54-79 (67) 

Supported 
stationary 

Upright None Random 
 

2-20 0.5, 1.0, 1..5  Median AM 
magnitude  

Rakheja et al. (2002b) 12(M) 
12(F) 

58-100 (78.5) 
48-111 (64) 

Supported 
 

Relaxed 
 

Automotive 
13° pan, 24° 
backrest 

Random 
 

0.5-40 0.25, 0.5. 1.0  
 

Mean AM magnitude 
and phase  

Matsumoto and Griffin 
(2002a) 

8(M) 64-87 (73) Supported  Upright –Tense 
buttock 

None Random 2-20 0.35-1.4  Median normalized 
AM magnitude and 
phase 

Matsumoto and Griffin 
(2002b)  

8 (M) 63-83 (72) Not 
supported 

Upright 
 

None Random 0.5-20 0.125-2.0  Median normalized 
AM magnitude and 
phase 

Mansfield and Griffin 
(2002) 

12(M) NR (75.4) Supported Upright None 
Vertical 

Random 1-20 0.2, 1.0, 2.0  Normalized AM 
magnitude & 
individual phase 

Hinz et al. (2004) 23 (M) 
22 (F) 

58-106 (NR) 
51.5-84 (NR) 

Supported 
 

Relaxed 
 

Automotive. 16° 
pan, 16° backrest 

Random 
 

1-35 0.3 weighted 
 

Mean normalized 
AM magnitude and 
phase 

Nawayseh and Griffin 
(2004) 

12 (M) 62-106 (77.2) Unsupported 
& supported 

Upright – 4 
thigh supports 

Vertical Random 0.25-20 0.125, 0.25, 
0.625, 1.25  

Median AM 
magnitude 

Wang et al. (2004) 13 (M) 
14 (F) 

47.4-110.5 
(70.8) 

Supported Upright-Hands 
on lap & SW 

None 
Vertical 
Inclined 

Random 0.5-40 0.5, 1.0  Mean AM magnitude 
and phase 
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Table 1: Summary of experimental conditions employed in studies reporting driving-point biodynamic responses of seated human body to vertical 
vibration 
Sitting conditions Excitation Author(s) n 

(gender) 
Mass (kg) 

(mean) 
Feet 

condition Posture Back 
support 

Type Frequency 
(Hz) 

Magnitude2 

(m/s2 rms) 

Function Reported 

Maeda and Mansfield (2005) 12 (M) NR (65.8) Supported NR None  Random 1-20 1.0  Median AM magnitude 
and phase 

Mansfield and Maeda (2005a) 12 (M) NR (63.8) Supported Upright/ 
twisted 

None 
Vertical 

Random 1-20 0.4  Median normalized AM 
magnitude  

Mansfield and Maeda (2005b) 12 (M) NR (65.8) Supported Upright None Random 
sine 

1-40 
 

1.0  
.2-.5 weighted 

Median normalized AM 
magnitude and phase 

Kim et al. (2005) 5 (M) 89.8-98.7 
(80.7) 

Supported Upright None Random 1-50 1.0  Mean AM magnitude and 
phase 

Nawayseh and Griffin (2005a) 12 (M) 65-103 
(76.5) 

Supported Upright – 4 
pan angles  

Vertical Random 0.5-15 0.125, 0.25, 
0.625  

Median AM magnitude 
 

Mansfield and Maeda (2006) 15 (M) NR (64.3) Supported Upright None 
Vertical 

Random 1-20 0.4, 0.8  Median AM magnitude 
(phase for vertical back) 

Huang and Griffin (2006) 14 (M) NR (70.3) Supported Various 
postures 

None Random 0.5-20 0.25, 2 Median normalized AM 
magnitude and phase 

Hinz et al. (2006b) 13 (M) 61.3-103.6 
(79.3) 

Supported Upright –
Hands on bar 

None Random 0.25-30 0.25, 1.0, 2.0  Mean AM magnitude  

Mansfield et al (2006) 12 (M) NR(79.1) Supported Upright None 
vertical 

Random 2-20 1.0 Median AM magnitude  

Mansfield and Maeda (2007) 15 (M) NR(64.3) Supported Upright 
 

None 
vertical 

Random 1-20 0.4, .8 Median AM magnitude 

Patra et al. (2008) 9 (M) 
9 (M) 
9 (M) 

50-60 (55.7) 
70-80 (75.2) 
93-107 (98) 

Supported Upright 
Hands on lap 
& SW7 

None 
Inclined 

Random 0.5-20 0.5,1.0, 2.0 Mean AM magnitude and 
phase for 3 mass groups 

Wang et al. (2008)  12(M) 66.4-99.6 
(77.3) 

Supported Relaxed 
Hands on lap 
&-SW 

None 
Vertical 
Inclined 

random 0.5-15 0.5,1.0, 1.5 Mean AM magnitude and 
phase 

1M – male, F- female, C -children; 2 Magnitude in m/s2 rms unless stated; 3MI – Mechanical impedance; 4AM – Apparent mass; 5Estimated; 6NR-
Not reported; 7SW – Steering wheel 
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Table 2: Selected datasets on driving-point biodynamic responses of seated human body  
to vertical vibration(Back not supported and Back supported) 

Excitation 
Type Frequency (Hz) Magnitude (m/s2 rms) 

Author(s) 

No back support 
Suggs et al. (1969) Sine 1.75-10 1.25 mm peak displacement 
Sandover (1982) Random 1-25 1.0 
Donati and Bonthoux (1983) Random 1-10 1.6  
Fairley and Griffin (1986) Random 0.25-20 1.0 
Hinz and Seidel(1987) Sine 2-12 1.5  
Holmlund et al. (1995) Sine 2-100 0.5 
Seidel et al. (1996) ; cited in Boileau 
et al. (1998b) 

Random 0.5-20 <1.4 

Wu et al. (1998) Random 0.5-20 1.0  
Boileau et al. (1998a) Random 0.625-10 1.0 
Holmlund et al. (2000) Sine 2-100 1.4  
Mansfield and Griffin (2000) Random 2-20 1.0 
Nawayseh (2001) Random 0.25-25 1.25  
Mansfield et al. (2001) Random 2-20 1.0 
Matsumoto and Griffin (2002a) Random 2-20 1.0  
Mansfield and Griffin (2002) Random 1-20 1.0  
Wang et al. (2004) Random 0.5-40 1.0 -Hands in lap 
Maeda and Mansfield(2005) Random 1-20 1.0  
Mansfield and Maeda (2005b) Random  1-40 1.0  
Kim et al. (2005) Random 1-50 1.0  
Hinz et al. (2006b) Random  1.0 
Huang and Griffin (2006) Random 0.5-20 2.0 
Mansfield et al. (2006) Random 2.0-20 1.0 
Mansfield and Maeda(2007) Random 1.0-20 0.8 
Patra et al. (2008) Random 0.5-20 1.0 
Wang et al. (2008)  Random 0.5-15 1.0 - -Hands in lap 
 Back support 
Boileau et al. (1998a) – vb Random 0.625-10 1.0-2.0 
Mansfield and Griffin (2002)- vb Random 1.0-20 1.0 
Nawayseh and Griffin (2004)- vb Random 0.25-20 0.625 
Wang et al. (2004) – ib 12° and vb Random 0.5-40 1.0 –Hands in lap 
Nawayseh and Griffin (2005a)- vb Random 0.25-20 0.625 
Mansfield and Maeda (2005a)- vb Random 1.0-20 0.4 
Mansfield and Maeda (2007)-vb Random 1.0-20 0.8 
Patra et al. (2008) – ib 12°  Random 0.5-20 1.0 
Wang et al. (2008) – vb and ib Random 0.5-15 1.0 - -Hands in lap 

vb – vertical back support; ib –inclined back support 
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Table 3: Summary of experimental conditions employed in studies reporting seat-to-head transmissibility (STHT) 

of seated human body to vertical vibration  
Excitation Author(s) n (gender) Mass -kg 

(mean) Type Frequency 
(Hz) 

Magnitude  
(m/s2) 

Function Reported 

Coermann (1962) 1 (M) 84 sine 1-20 < 0.5 g peak Magnitude 
Mertens (1978) 6 (M) 

3 (F) 
57-90 sine 2-20 4.85 m/s2 rms Mean magnitude and phase 

Griffin et al. (1978) 18(M) 
18(F) 

NR sine 1-100 NR Mean magnitude 

Griffin et al. (1978) 1 (M) 80 sine 1-100 NR Magnitude and phase 
Hinz and Seidel (1987) 4(M) 56-83 (71) sine 2-12 1.5  m/s2 rms Mean magnitude and phase  
Paddan and Griffin (1988) 12(M) 58-81 (70.8) random Up to 25 Hz 1.75 m/s2 rms Individual magnitude; phase 

(n=1; 80 kg) 
Zimmermann and Cook (1997) 30 (M) (77.6) sine 4.5-16 1.0 m/s2 rms Mean magnitude  

Kitazaki and Griffin (1997) 8 (M) (74.6) Random 0.5-35 1.7 m/s2 rms Mean magnitude  

Wu et al. (1998) 6 (M) 58-73 (64.2) Random 0.625-20 1.0 m/s2 rms  
Hinz et al. (2001) 39(M) NR Random; 

(1-4 Hz) 
1-20 0.7, 1.0 and 1.4 m/s2 

rms - weighted 
Mean magnitude and phase 
(Hands on steering wheel) 

Kim et al. (2005) 5 (M) 65.7-98.7 Random 1-50 1.0 m/s2 rms Mean magnitude  
Wang et al. (2008) 12 (M) 66.4-99.6 

(77.3) 
Random 0.5-15 0.25, 0.5, 1.0 m/s2 rms Median AM magnitude  
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Table 4: Summary of experimental conditions employed in studies reporting biodynamic responses of standing human body  
to vertical vibration. 

Excitation Author(s) n  Mass range, kg 
(mean) 

Posture 
Type Frequency 

(Hz) 
Magnitude 

Function Reported 

Coermann (1962) 1 84 Upright- 
Erect 
 

sine 1-20 0.5 g peak MI magnitude and phase 
 

Edwards and Lange (1964) 2 77.7, 84 (81) Upright -
Relaxed 

Sine  1-20 0.2, 0.35,  0.5 g 
peak 

MI magnitude and phase 
(individual) 

Miwa (1975) 20 50-768 (59) Upright -
Erect 
 

sine 3 -200  0.1 g peak MI – Mean magnitude and phase  

Matsumoto and Griffin (1998a) 12 Median 73.5 Normal 
upright, 

Random  0.5-30 0.125, 0.25, 0.5, 
1.0, 2 m/s2 rms 

AM - Median normalized 
magnitude and phase 

Matsumoto and Griffin (2000) 8 63-839 (72) Normal 
standing 

Random 0.5-20 1.0 m/s2 rms AM - Median normalized 
magnitude and phase 

Subashi et al. (2006) 12 65.6-102 (77.5) Normal 
standing 

Random 0.5-20 0.125, 0.25, 0.5 
m/s2 rms 

Median AM magnitude and phase 

8Body mass range of 5 subjects; 9Body mass range estimated from individuals’ data 
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Table 5: Summary of experimental conditions employed in studies reporting biodynamic responses of seated human body to fore-aft vibration. 
Sitting conditions Excitation Author(s) n 

(gender) 
Mass -kg 
(mean) 

Feet 
support Posture Back 

support 
Type Frequency 

(Hz) 
Magnitude  

(m/s2) 

Function Reported 

Fairley and Griffin (1990) 8 (M) 57-85 
(65.7) 

Vibrated Upright None 
Vertical 

Random 0.25-20 0.5, 1.0, 2 rms 
 

Mean AM magnitude and 
individual AM phase 

Holmlund and Lundstrom (1998) 15(M) 
15(F) 

55-93 (75) 
54-76 (63) 

Stationary Upright 
- erect/ relaxed 

None Discrete 
sine 

1.13-80 0.25, 1.0, 1.4 
rms 
 

Mean MI magnitude and 
phase  

Mansfield and Lundstrom (1999) 15(M) 
15(F) 

NR (75.8) 

NR (62.0) 
Stationary Upright  

Arms folded 
None Random 1.5-20 .25, .5, 1.0 rms Median AM normalized 

magnitude  
Holmlund and Lundstrom (2001) 15(M) 

15(F) 
55-93 (75) 
54-76 (63) 

Stationary Upright  
- erect/ relaxed 

None Discrete 
sine 

2-100 0.25, 1.0, 1.4 
rms 
 

Mean MI magnitude and 
phase 

Holmlund (1999) 3 (M) 741  In-vehicle Upright  
- erect/ relaxed 

None In-
vehicle 

- NR Mean MI magnitude only 

Mandapuram et al. (2005) 8 (M) 59-92 
(71.2) 

Vibrated Upright 
-relaxed 

None, 
Vertical 
Inclined 

Random 0.5-10 0.25, 0.5, 1.0 
rms 
 

Mean AM magnitude and 
phase  

Nawayseh and Griffin (2005b) 12 (M) 56-87 
(77.5) 

Vibrated Upright – 
Different thigh 
contact 

None Random 0.25-20 0.125, 0.25, 0.5, 
1.0 1.25 rms  

Median AM magnitude 
and phase 

Nawayseh and Griffin (2005c) 12 (M) 63-103 
(76.1) 

Vibrated Upright – 
Different thigh 
contact 

Vertical; Random 0.25-10 0.125, 0.25, 
0.625, 1.25 rms  

Median AM magnitude 
and phase 

Hinz et al. (2006b) 13 (M) 61.3-103.6 
(79.3) 

Vibrated Upright 
Hands on a bar 

None Random 0.25-30 0.25, 1.0, 2.0 
rms 

Mean AM magnitude  

Mansfield and Maeda (2006) 15 (M) NR (64.3) Vibrated Upright None 
Vertical 

Random 1-20 0.4 rms 
 

Median AM magnitude 
Median AM magnitude & 
phase (back support only) 

Stein et al. (2007b) 1 (M) 77.1 Vibrated Upright 
- relaxed 
Hands on a bar 

Lumbar 
region 
contact 

Random 0.3-30 2.03 rms 
 

AM magnitude and phase 

Mansfield and Maeda (2007) 15 (M) NR (64.3) Vibrated Upright 
-relaxed 

None 
Vertical 

Random 1-20 0.4, 0.8 rms Median AM magnitude  
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Table 6: Summary of experimental conditions employed in studies reporting biodynamic responses of seated human body to lateral vibration. 
Sitting conditions Excitation Author(s) n 

(gender) 
Mass -kg 
(mean) 

Feet 
support Posture Back 

support 
Type Frequency 

(Hz) 
Magnitude Range  

(m/s2) 

Function Reported 

Fairley and Griffin (1990) 8 (M) 57-85 
(65.7) 

Vibrated Upright None 
Vertical 

Random 0.25-20 0.5, 1.0, 2 rms 
 

Mean AM magnitude and 
individual AM phase 

Holmlund and Lundstrom (1998) 15(M) 
15(F) 

55-93 (75) 
54-76 (63) 

Stationary Upright 
- erect/ relaxed 

None Discrete 
sine 

1.13-80 0.25, 0.5, 1.0, 1.4 rms 
 

Mean MI magnitude and 
phase  

Mansfield and Lundstrom (1999) 15(M) 
15(F) 

NR (75.8) 

NR (62.0) 
Stationary Upright  

Arms folded 
None Random 1.5-20 .25, .5, 1.0 rms Median AM normalized 

magnitude  
Holmlund and Lundstrom (2001) 15(M) 

15(F) 
55-93 (75) 
54-76 (63) 

Stationary Upright  
- erect/ relaxed 

None Discrete 
sine 

2-100 0.25, 0.5, 1.0, 1.4 rms 
 

Mean MI magnitude and 
phase 

Holmlund (1999) 3 (M) 7410  In-vehicle Upright  
- erect/ relaxed 

None In-
vehicle 

- NR Mean MI magnitude only 

Mandapuram et al. (2005) 8 (M) 59-92 
(71.2) 

Vibrated Upright 
-relaxed 

None, 
Vertical 
Inclined 

Random 0.5-10 0.25, 0.5, 1.0 rms 
 

Mean AM magnitude and 
phase  

Hinz et al. (2006b) 13 (M) 61.3-
103.6 
(79.3) 

Vibrated Upright 
Hands on a bar 

None Random 0.25-30 0.25, 1.0, 2.0 rms Mean AM magnitude  

Mansfield and Maeda (2006) 15 (M) NR (64.3) Vibrated Upright None 
Vertical 

Random 1-20 0.4 rms 
 

Median AM magnitude 
Median AM magnitude & 
phase (back support only) 

Mansfield and Maeda (2007) 15 (M) NR (64.3) Vibrated Upright 
-relaxed 

None 
Vertical 

Random 1-20 0.4, 0.8 rms Median AM magnitude  

10Similar mass of the subjects 
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Figure 1: Comparison of the fore-aft apparent mass responses reported for seated body with no backrest. (a) 
Magnitude; (b) Phase (probable outliers indicated by symbols) 
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Figure 2: Comparison of the lateral apparent mass responses reported for seated body with no backrest. (a) 
Magnitude; (b) Phase (probable outliers indicated by symbols) 
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Figure 3: Comparison of the vertical apparent mass responses reported for seated body with no backrest. (a) 
Magnitude; (b) Phase (probable outliers indicated by symbols). 

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

Ap
pa

re
nt

 M
as

s 
(k

g)

Frequency (Hz)
Suggs et al. (1969) Sandover (1982) Donati and Bonthoux (1983)-Sine
Donati and Bonthoux (1983)-Random Fairley and Griffin (1986) Hinz and Seidel (1987)-Sine
Hinz and Seidel (1987)-Random Holmlund et al. (1995) Seidel (1996)-(60-70)
Seidel (1996)-(70-80) Boileau et al. (1998)-Random Boileau et al. (1998)-Sine
Wu et al. (1998) Holmlund et al. (2000-E) Holmlund et al. (2000-R)
Mansfield (2000) Mansfield et al. (2001) Nawayseh (2001)
Matsumoto and Griffin (2002a) Mansfieldand Griffin (2002) Wang et al. (2004)-70
Wang et al. (2004)-75 Maeda and Mansfield (2005) Mansfield and Maeda (2005b)
Kim et al.  (2005) Huang and Griffin (2006) Hinz et al. (2006b)
Mansfield and Maeda (2006) Mansfield and Maeda (2007) Patra et al. (2008)-55
Patra et al. (2008)-75 Patra et al. (2008)-98 Wang et al. (2008)

(a)

-100

-80

-60

-40

-20

0

20

0 2 4 6 8 10 12 14 16 18 20

Ph
as

e 
(d

eg
re

es
)

Frequency (Hz)
Suggs (1969) Sandover (1982) Donati (1983)-Sine Donati (1983)-Random Fairley (1986)

Hinz (1987)-Sine Hinz (1987)-Random Boileau (1998)-Random Boileau (1998)-Sine Holmlund (1997)

Wu (1998) Holmlund (2000-E) Holmlund (2000-R) Nawayseh (2001) Matsumoto (2002)

Mansfield (2002) Wang (2004)-70 Wang (2004)-75 Kim (2005) Maeda (2005)

Mansfield (2005b) Huang (2006) Patra (2008)-55 Patra (2008)-75 Patra (2008)-98

Wang (2008)

(b)



  3

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20

A
p

p
a

re
n

t 
M

a
s

s
 (k

g
)

Frequency (Hz)
Coermann (1962) Edwards and Lange (1964)
Miwa (1975) Matsumoto and Griffin (1998a)
Matsumoto and Griffin (2000) Subashi et al. (2006)

(a)
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

0 2 4 6 8 10 12 14 16 18 20

P
h

a
s

e
 (d

e
g

re
e

s
)

Frequency (Hz)
Coermann 1962 Edwards 1964 Miwa (1975)

Matsumoto (1998) Matsumoto (2000) Subashi (2006)

(b)

 

Figure 4: Comparison of the vertical apparent mass responses reported for standing body (a) Magnitude; (b) 
Phase (probable outliers indicated by symbols). 

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20

S
T

H
T

-M
a

g
n

it
u

d
e

Frequency (Hz)
Mertens (1978) Hinz and Seidel (1987)-1.5
Hinz and Seidel (1987)-3 Kitazaki and Griffin (1997)
Paddan and Griffin (1988) Zimmerman and Cook (1997)
Wu et al. (1998) Hinz et al. (2001)
Kim et al. (2005) Wang et al. (2008)

(a) -160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

0 2 4 6 8 10 12 14 16 18 20

S
T

H
T

-P
h

a
s

e
 (d

e
g

re
e

s
)

Frequency (Hz)

Mertens (1978) Hinz (1987, 1.5) Hinz (1987,3) Paddan 1988

Wu (1998) Hinz 2001 Wang (2008)

(b)

 

Figure 5: Comparison of the vertical seat-to-head transmissibility (STHT) responses reported for seated body 
with no backrest. (a) Magnitude; (b) Phase (probable outliers indicated by symbols). 
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Figure 6: Standard deviation on the mean magnitude and phase angle of the Fore-Aft apparent mass of seated 
body without any back support computed for various combinations of datasets: (a) Magnitude (            All 

datasets;           excluding Holmlund, 1999 and Mansfield and Griffin, 1999;             excluding Holmlund, 1999, 
Mansfield and Griffin, 1999, Hinz et al., 2006b) (b) Phase (            All datasets;              excluding Holmlund 

and Lundstrom 1998) 
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Figure 7: Comparisons of fore-aft apparent mass magnitude and phase responses of the seated body with: (a) 
vertical backrest; and (b) inclined backrest. 
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Figure 8: Comparisons of fore-aft apparent mass responses of the body seated with either a vertical (vb) or an 
inclined (ib) back support: (a) Magnitude; and (b) Phase 
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Figure 9: Standard deviations of mean lateral apparent mass magnitude of the seated body without a back 
support computed for various combinations of datasets (           All datasets;            excluding Mansfield and 

Maeda, 2007, and Mansfield and Lundstorm, 1999;         excluding Mansfield and Maeda, 2007, Mansfield and 
Lundstorm, 1999, and Holmlund and Lundstorm, 1998;            excluding Mansfield and Maeda 2007, Mansfield 

and Lundstrom 1999 and Holmlund 1999;             excluding Mansfield and Maeda 2007, Mansfield and 
Lundstrom 1999, Holmlund 1999, Holmlund and Lundstrom 2001) 
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Figure 10: Comparisons of lateral apparent mass responses of the body seated with either a vertical (vb) or an 
inclined (ib) back support: (a) Magnitude; and (b) Phase 
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Figure 11: Standard deviations of the mean vertical apparent mass response of body seated without a back 
support computed for various combinations of datasets: (a) Magnitude (            All datasets;            excluding 

subset I (Suggs et al., 1969, Hinz and Seidel, 1987-Sine, Hinz and Seidel, 1987-Random, Patra et al., 2008-55, 
Patra et al., 2008-98);             excluding subset I and Holmlund et al., 2000-R;           excluding subset I and 
Mansfield and Griffin, 2002;            excluding subset I and Kim et al., 2005;            excluding subset I and 

Wang et al., 2004-70; (b) Phase (            All datasets;             excluding Suggs et al., 1969, Donati and 
Bonthoux, 1983-Random, Mansfield and Griffin, 2002, Mansfield and Maeda, 2005b, Kim et al., 2005, Huang 

and Griffin, 2006) 
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Figure 12: Comparison of magnitude and phase responses of the vertical apparent mass reported for body seated 
with a: (a) Vertical backrest; and (b) Inclined backrest (probable outliers indicated by symbols).. 
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Figure 13: Vertical apparent mass responses of body seated with either a vertical or inclined back support: (a) 
Magnitude; and (b) Phase. 

 

 

Figure 14: Standard deviations of mean vertical apparent mass of standing body computed for different 
combinations of selcted datasets: (a) Magnitude (           All datasets;            excluding Edwards and Lange, 

1964, Miwa, 1975); (b) Phase (           All datasets;             excluding Coermann, 1962, Miwa, 1975). 
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Figure 15: Standard deviations of mean vertical STHT response of body seated without a back support 
computed for different combinations of selected datasets: (a) Magnitude (        All datasets;          excluding 

Hinz, 1987-1.5 and -3.0, and Zimmerman and Cook, 1997;         excluding Hinz, 1987-1.5 and -3.0, 
Zimmerman and Cook, 1997 and Hinz et al., 2001;         excluding Hinz, 1987-1.5 and -3.0, Zimmerman and 
Cook, 1997, Hinz et al., 2001 and Kitazaki and Griffin, 1997); (b) Phase (           All datasets;          excluding 

Hinz, 1987-1.5 and -3.0, and Wang, 2008). 
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Figure 16: Idealized ranges of apparent mass magnitude and phase responses of body seated without a back 
support under vibration along: (a) Fore-aft direction; (b) Lateral direction; and (c) Vertical direction. 
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Figure 17: Idealized ranges of apparent mass magnitude and phase responses of body seated with a back support 
under vibration along: (a) Fore-aft direction; (b) Lateral direction; and (c) Vertical direction. 
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Figure 18: Idealized ranges of apparent mass magnitude and phase responses of Standing human body exposed 
to sinusoidal or random vertical vibration of magnitude of 0.5-1.0 m/s2 (body mass: 63-102 kg).  

 

 

Figure 19: Idealized ranges of magnitude and phase responses of vertical seat-to-head acceleration 
transmissibility for human body seated without a backrest. 

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20

S
TH

T

Frequency (Hz)

-140

-120

-100

-80

-60

-40

-20

0

20

0 2 4 6 8 10 12 14 16 18 20

P
ha

se
 (d

eg
re

es
)

Frequency (Hz)

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20

A
pp

ar
en

t m
as

s 
(k

g)

Frequency (Hz)

Upper Limit

Mean

Lower Limit

-140

-120

-100

-80

-60

-40

-20

0

0 2 4 6 8 10 12 14 16 18 20

P
ha

se
 (d

eg
re

es
)

Frequency (Hz)



  14

 

 

 

Figure 20: Comparisons of ranges of biodynamic responses with those defined in ISO 5982 (2001): (a) Vertical 
apparent mass magnitude and phase; (b) Vertical STHT magnitude and phase  
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Figure 21: Comparisons of ranges of vertical apparent mass magnitude and phase responses with data reported 
for three different body masses (55, 75 and 98 kg). 
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