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Abstract 

Geometry and Material Nonlinearity Effects on Static and Dynamic 

Performance of MEMS 

 

M. Amin Changizi, Ph.D. 

Concordia University, 2011 

 

Nonlinear behavior of micro-mechanical systems is an interesting and little explored area 

of research. Although, micro-system technologies is new and fast developing area, there 

is little work carried out on modeling and simulation of MEMS devices which concerns 

their non-linear behavior. Nonlinear modeling of MEMS devices is based on observations 

related to the micro-systems performance which is often far away from linearity in 

MEMS devices. 

There are two types of components that are extensively used in MEMS design: micro-

beams (cantilever type) and micro-plates. Manufacturing as well as usage of these 

components are advantageous to MEMS applications. The main applications of such 

structures include micro-sensors and micro-actuators.  

Large deflection of micro-cantilever beams under electrostatic force is studied. Pull in 

voltage as a phenomenon was widely studied in conjunction with MEMS. Large 

deflection of micro-cantilever beams under electrostatic field with the application of a 

voltage very close to pull in voltage is studied in this thesis and it is shown that pull in 

voltage provided by the nonlinear analysis is different from the one yielded by the linear 

analysis and more accurate when compared to the experimental values. 

Large deflection of curved micro-cantilever beams sometimes encountered as AFM 

probes was studied to investigate the variation of sensitivity under large deflection of 
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originally curved micro-cantilever beams. Results show that curved or straight beams 

experience same sensitivity which decreases with the increase of deflection.  

Micro-plate pressure sensors are widely used in industrial applications. Deposition of 

several different layers creates residual stress in those layers. The residual stress is 

measured indirectly by Stoney equation. It is shown that Stoney equation yields under 

normal circumstances up to 40% error in the value of the predicted stress and the 

experimental results do not match any numerical analysis. An extraction method was 

developed to calculate the stress distribution in each layer based on the experimentally 

measured deflection.    

  In summary, the work proves on few general configurations that the non-linear analysis 

of microstructures yields results that are closer to the results of the experimental 

investigations when compared to the ones yielded by the linear analyses.  Analytical 

solutions of the differential equations were sought using Lie symmetry method.     
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Preview of the Thesis 

The work included in the thesis is mostly based on a method of reduction of the order of 

differential equations by one unit. The method is purely mathematical and it has been 

rarely used in engineering. One of the overall objectives of this dissertation is to evaluate 

the capability of Lie group symmetry in solving problems related to microsystems 

technology.  

Microsystems were selected as they offer a large variety of problems involving 

nonlinearities and thus nonlinear differential equations which are usually solved only 

after linearization. Lie symmetry group method was selected as the method although 

cumbersome, it enables to create receipts that once applied, yields a solution. On another 

hand, the method has its own limitations as a solution could be found only if symmetry of 

the group is found. This is the case of the problem solved in the chapter 2 where the 

dynamic characterization of a micro-cantilever beam subjected to an electric filed close to 

the instability is applied. The reduction of the second order stiff ODE was possible to a 

first order ODE. No symmetry was found for the first order DOF. However, the 

appropriate numerical method used to solve the initial equation yield same result as the 

reduced differential equation. The results match the experimental measurements. 

Same Lie symmetry group method was used in chapter 3 to determine the nonlinear 

deflection of a micro-cantilever beam subjected to multiple types of loads. In this case, 

the reduction of the order of the differential equation was possible to expressing the 

solution in close form. 
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For certain problems, Lie symmetry group method is not applicable. However, the 

classical approach was considered to elaborate an optimization algorithm that helps to 

determine the inter-laminar stress in multilayered micro-plates that exhibit large 

deflections under dynamic pressure.  

In the author’s opinion, Lie symmetry group method is a powerful tool in solving 

problems that have been approached by linearization. The microsystems filed is largely 

populated of such type of problems. 
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Chapter 1 

 

 

Nonlinearity Effects on Static and Dynamics 

Performance of MEMS 
 

 

 

 

Rationale  

 

MEMS is a relatively new area in engineering. Experimental and analytical systematic 

research on MEMS started around 1970s as an investigative interest of Si foundry 

engineering to the quite peculiar properties of mono-crystalline Si. MEMS gained 

significant momentum when useful devices became commercially available. The research 

on MEMS gained more significance through the subdivision of interest which has created 

a solid base of knowledge that is spread over modeling, simulation, manufacturing and 

the liaison among design, fabrication and performances. Each research area has brought 

light over either fabrication methods (extension of MEMS from Si to metal or/and 

polymer), modeling principles, mathematical description of multi-physics phenomena, 

test methodology and characterization, etc. The new designs target specific applications 

that originally were strongly bonded to mass production systems. The significant 
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advancement made by the fabrication technologies including the multi-user concept made 

possible to conceive MEMS for lower production applications. The unusual physics of 

microstructures played a major role mainly in the development of new MEMS used for 

detection and sensing. 

The modeling of MEMS comes with some significant challenges. The unusual influences   

of specific field forces or the significantly relative large defections encountered by the 

mechanical micro-structures make the researchers assume that the macro model 

constituent equations may not always accurately describe some of the phenomena. Most 

of the present works in modeling assume that micro-structures behave as large scaled 

structures of the same type while scaled down. It is apparent from here that using 

nonlinear formulations may enhance the accuracy of the models. The nonlinear 

mechanics is a well-established area in which the contributions are usually brought by 

theoreticians. Practical investigations on MEMS have been so far focused by 

experimentalists. 

The objective of this research is to investigate how nonlinearities affect both static and 

dynamic performance of the micro-structures in comparison with the linearity 

assumptions. The specific objective of the research is to prove that the assumption of 

nonlinearity significantly improves the model accuracy. The results of the nonlinear 

models will be compared with the experimental data and weigh against the linear based 

modeling of a few popular microstructures including cantilever beams, cantilever bridges 

and micro-plates will be evaluated and accurate nonlinear models will be proposed. 
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1.1.  Nonlinearity 

 

First, one has to define the meaning of nonlinearity in mechanics analysis. For a physical 

phenomenon in which a single input variable is targeted and a single output is sought, a 

generic mathematical model can be written. This mathematical model is usually an 

algebraic equation like: 

 

    )(1 kk xfx 
                                                       (1.1) 

 

which is called discrete-time system[4]. For continuous – time systems the mathematical 

model is a differential equation in the form: 

 

        ),( txfx                                                     (1.2) 

 

that is called non-autonomous system[4]. In an autonomous system the differential is of 

the form: 

 

       ),( Mxfx                                                    (1.3) 

 

where in all of above equations, f is a map from manifold M to  manifoldN, nRM   and 

nRN   [4]. If in a continuum mechanics the differential equations describing the 

governing phenomena are linear, the problem will be called linear. Otherwise they are 

called nonlinear. There are two sources of nonlinearity in mechanical engineering 
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modeling. (a) Geometric (b) Material [5]. Geometrical nonlinearity is due to the nonlinear 

stress-strain relation or to large deformation while material nonlinearities are assigned to 

the nonlinear behavior of material properties [5]. 

However, in most cases, simplifying the problem to linear differential equation helps to 

solve the model much easier than nonlinear differential equations and in most cases the 

results are acceptable within certain range. However, there are some cases that 

simplifying of differential equations to linear form creates incorrect answers. These cases 

are difficult to point before the validation against experimental results is performed. 

 

1.2.  Geometric nonlinearities 

 

Geometric nonlinearities [6] are mainly due to the fact that the deformation gradient is 

very large in comparing to the size of the body or otherwise said, the stress and the strain 

do not keep a linear relation like Hook’s law. So it is necessary to define new strain and 

stress relationship. To define the strain in material coordinate, it is necessary first to 

define stretch ratio: 

    0),(),(
0

atXFtX PPa                                                   (1.4) 

where: 

0a  stretch rate 
 

F is the deformation gradient, 

PX is the position vector, 

0a is the unit vector, 
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where F is defined as: 

 

   ][
x

X
F P




                                                             (1.5) 

 

Green deformation tensor (Right Cauchy-Green tensor) is defined as: 

 

      FFC T                                                         (1.6) 

 

And Green-Lagrange strain tensor is defined as: 

 

       )(
2

1
IFFE T                                                     (1.7) 

 

One dimension Green-Lagrange strain is: 

 

                   
2

22

2L

Ll
G


                                                             (1.8) 

 

where L is initial length and l is final length. Strain in spatial coordinate, defined as: 

 

       TFFb                                                           (1.9) 

 

b is left Cauchy-Green tensor. Euler-Almansi strain tensor is defined as: 
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    )(
2

1 1 FFIe T                                           (1.10) 

 

One dimension Euler-Almansi strain is: 

 

          
2

22

2l

Ll
A


                                                    (1.11) 

 

At this point, stress tensor should be defined for nonlinear stress analysis.  

 

 

Figure  1.2.1. Traction vectors acting on a surface element [3] 

 

As it is clear from the above figure, for an element one can write: 

 

   dsTdstdf PC                                                          (1.12) 

    ),,(),,( NXTTnxtt PPCC                                            (1.13) 
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where df  is the applied force on the surface and
  Ct is Cauchy (or true) traction vector 

(force measured per unite surface area defined in the current configuration) exerted on ds  

with normal n . 
PT  is the first Piola-Kirchhoff (or normal) traction vector. There exist 

unique second-order tensor field σ and P so that: 

 

   ntxntxtC ),(),,(                                                   (1.14) 

    NtXPNtxT PP ),(),,(                                                  (1.15) 

 

where σ is called Cauchy stress tensor. These equations show that, if traction vectors 

depend on unit normal then they must be linear in normal. 

 

1.3.  Material nonlinearity 

 

Material nonlinearity is due to nonlinear constitutive behavior of material of the system 

[4]. Among the nonlinearity of materials, hyperelasticity of materials has a import role in  

micro-structures. Many micro-structures can be simulated by hyperelastic behavior of 

materials. These kinds of materials have large elastic strain which is recoverable [7]. It is 

shown that [6] the stress response of hyperelastic material is derived from the given 

strain-energy function W . Numerous forms of strain-energy functions have been 

introduced. For using these forms, we have to define strain potential energy. W  is a scalar 

function of strain or deformation tensors which one can write: 
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ijij

ij
C

W

E

W
S









 2                                                (1.16) 

where: 

 

ijS are components of second Piola-Kirchhoff stress tensor 

W is strain energy function per unit undeformed volume 

ijE are components of the Green-Lagrange strain tensor 

ijC are components of right Cauchy-Green tensor 

Under the assumption that material response is isotropic, it is convenient to express the 

strain energy function in terms of strain invariants: 

 

 ),,(),,(),,( 32121321  WIIWIIIWW                         (1.17) 

 

where: 

 

              2

3

2

2

2

11  I                                                    (1.18) 

 2

1

2

3

2

3

2

2

2

2

2

12  I                                          (1.19) 

     22

3

2

2

2

13 JI                                                       (1.20) 

  

and 1I  , 2I  , 
3I  are invariants of C , also 2

3

2

2

2

1 ,,  are eigen-values of C . By defining the 

volume-preserving part of, F : 
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        FJF 3

1


                                                   (1.21) 

where: 

                                                      )det(FJ                                                   (1.22) 

 

It can be shown that[6]: 

 

    
pp J  3

1


         3,2,1p                                             (1.23) 

              
pp IJI 3

2


                                                      (1.24) 

 

Therefore, the strain potential energy is: 

 

    ),,,(),,( 32121 JWJIIWW                                      (1.25) 

 

Here, we introduce some models that are defined for strain energy potential applications. 

These models proved to be quite appropriate to model strong non-linear strain-stress 

relationships. 

 

A) - Neo-Hookean model: 

  

 

2

1 )1(
1

)3(
2

 J
d

IW


                                  (1.26) 
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where: 

 

μ = initial shear modulus of materials 

d = material incompressibility 

 

B) – Mooney-Rivlin: 

 

23

203

2
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2
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230
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2022111

2

120201110

)1(
1
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





J
d

ICIICIIC

ICICIIC

ICICICW

        (1.27) 

  

where: 

  

 dCCCCCCCCC ,,,,,,,,, 031221300211200110 = material constants   

 

C) – Ogden potential 

  





N

k

k

k

N

i i

i J
d

W iii

1

2

321

1

)1(
1

)3(
 




                               (1.28) 

where: 

  

N, kii d,, = material constant 
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1.4.  Cantilever beams nonlinear  static deflection 

 

Most of mathematical close forms formulations on nonlinear deflections of cantilever 

beams are just for point force on the tip [1, 8-11]. The only different aspect is the 

approach of the formulation of the solving algorithm. For a moment on the beam, it is 

possible to reduce one degree of ODE by Lie symmetry. The result is: 

 

constIEyxM
y

yxyIE




 222

2
)()(

1

)(2
                           (1.29) 

M is moment in each section 

For general type of forces on cantilever, suitable  numerical methods were used [12, 13]. 

 

1.4.1. Micro-cantilever beams 

 

There has been significant research carried out on micro-cantilever beams. Most of these 

studies are on the influence of the electrostatic forces and the adhesion or stiction of 

beams [14-18]. All works in which the models were formulated in nonlinear equations 

were solved by numerical methods and compared with experimental results. Many 

investigations in micro-level modeling are looking at the dynamic properties and 

behavior of micro-cantilevers beams [19-26]. Natural frequency as well as the quality 

factor are used for controlling, for example, voltage [21], and switches [22], in acoustic 

wave resonators [19]. Bimorph micro-cantilevers are more sensitive than anamorphic 

beams. In some works, researches showed that sensitivity increases in bimorph materials 
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significantly [27]. Bimorph micro-cantilever beams are mostly used in thermal sensing 

and for this purpose the tip  deflection of the bimorph cantilever beams [27-33], large 

deflections, stress analysis [34-36] and experimental validations [37, 38] were carried 

out. Bimorph micro-cantilever beams are also used as actuators. The mathematical model 

[39], of the deflection is studied [40]. Thermal actuators are studied widely, theoretically 

[41, 42], experimental[43]   applications [44] and for their dynamic behavior [45].  

 

1.4.2.  Nonlinear behavior of micro-plates 

 

Large deflection of plates received much more attention during 1940-1950 [46], but still 

there are many researches working on closed form solution of nonlinear deflection of 

plates under different boundary conditions [46-53]. Although the dynamic behavior of 

plates is very important, nonlinear dynamic behavior of plates is studied and regardless of 

the formulation, the solution of the constitutive equations is sought through numerical 

methods [54, 55]. 

 

1.4.3. Micro-plates 

 

Nonlinear dynamical behavior of micro-plates has been studied in Virginia Polytechnic 

Institute recently by professor Nayfeh and his team [56-58]. Mostly the work is focusing 

on nonlinear response of micro-plates. Other mathematical methods are used in micro-

plates such as BEM[59] where the method is used just for electrical field formulation and 

then tractions on the plate surface. 
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1.5. Thesis layout 

 

The thesis is divided into 5 chapters and 6 appendices. Chapter 1 presents the rationale of 

the present work and a brief introduction on the open literature in the non-linear micro-

systems formulations as well as the solution of the constitutive equations. In this chapter 

the geometric and the material non-linarite are presented along with the models that are 

usually employed in the open literature for such type of non-linearity. A brief review of 

the literature on the non-linear approaches used in micro beams and micro-plates is 

presented.  

 Chapter 2 presents the dynamic analysis of micro-cantilever beams electrically charged 

and subjected to electrostatic filed. Under higher fields higher attraction forces are 

generated such that the elastic structures may be projected on the substrate electrode. This 

phenomena known as snap-on is analyzed through the perspective of the non-linear 

dynamics. The conclusions of the investigations carried out using Lie groups method to 

reduce the order of the differential equation is that the linear model indicates more 

conservatory solution for the snap-on critical gap. The model was validated by 

experiments and indirect measurement of the resonant frequency of micro-structures 

exposed to electrostatic field. The study was extended through a parameter analysis on 

the influence of the geometric parameters on the performance characteristics of micro-

structures. 

Chapter 3 presents the static nonlinear model of a microstructure – micro-cantilever beam 

under multiple point loads. The solution to the problem was formulated for curved or 

straight beams and an exact analytical solution for the deflection was presented. Material 
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non-linears is assumed. The solution was derived based on Lie group symmetries. An 

example application is presented as an AFM probe and the numerical solution was 

presented. The results were validated against the existing literature which presents exact 

results for single point load conditions. A sensitivity analysis related to geometry and 

material is also presented in this chapter.  

Chapter 4 presents an extraction method that enables to determine with higher accuracy 

the inter-laminar stress developed in micro-plates made from multiple thin films of 

different materials. Here, the experimental results were assumed as baseline and the 

matching solution would require varying the pre-selected values of the internal stresses to 

match the aimed deflection. The stress in each layer was assumed to vary by + 40% of the 

nominal value. The extraction of the value of stress was performed using the gradient 

method optimization.  An algorithm that performs the extraction is presented. 

Chapter 5 presents the conclusions and the future work. The present study indicates the 

fact that linear static or dynamic assumption on MEMS microstructures will introduce 

significant errors in models of MEMS. The need to extend the present work is evident. 
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Chapter 2  

Linear Versus Nonlinear Dynamic Analysis 

of Micro-Structures under Electrostatic Field  

 

 

Rationale  

 

Dynamic performance of micro-systems is altered significantly when subjected to 

electrostatic fields. MEMS are often operating under such condition. The resonant 

frequency would dramatically drop while the structures may suffer significant damage if 

the difference of potential between the structure and the electrode exceeds a critical 

value. The findings reported in the open literature are related to linearized models of the 

“pull-in” phenomenon in micro-structures subjected to electric field. The mathematical 

formulation of such a phenomenon makes use of the one degree of freedom lump mass 

model, which is expressed as a nonlinear ordinary differential equation (ODE). The 

chapter presents a method of reduction by one the order of the nonlinear ordinary 
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differential equation that models such microstructures by using Lie symmetry groups. 

Cantilever beams are used as example of structures in this analysis. The reduced order 

equation shows two terms of the non-linear ODE equation. Linearized models of the 

“pull-in” voltage indicate that the structures become unstable and are attracted by the 

fixed electrode when they reach a position that corresponds to 2/3 of the original gap. 

However, the nonlinear model indicates a critical distance at which the structure reached 

a saddle point which corresponds to 11/20 (55% of the original gap instead of 66.6%) 

after which it settles at a stable position corresponding to a deflection of 9/40 of the 

original gap (22.5% instead of 33.33%). The pull-in voltage assessed through the 

nonlinear model indicates higher value than the one calculated through the linear 

approach. Potential exceeding the critical values will lead to the instability of the 

structure. Few equivalent stiffness models used in this assessment yield identical results 

from the critical gap point of view. The analysis of the “pull-in” voltage for the non-

linear model versus linear models or simplified non-linear models indicates a very close 

correlation with experiments carried out in the lab or presented in the open literature.  It 

is also proved that numerical methods might not yield a reasonable solution for problems 

extracted from microstructure applications subjected to electrostatic filed. Experimental 

validation of the static deflection and natural frequency decay when subjected to a 

difference of potential for two microstructures pointed towards the fact that various 

models match best specific experimental conditions and two different models could yield 

best results for two different case studies.  
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2.1.   Introduction 

 

At micro-level, mechanical structures are expected to dynamically operate in bandwidth 

way below their resonant frequency given the fact that micro-structures subjected to 

electrostatic field encounter their resonant frequency to a significantly lower value than to 

the identical micro-structures not subjected to electrostatic field. The laws of mechanics 

that govern the dynamics of micro-structures have been usually based on the Newtonian 

formulations. For micro-structures have also been proposed Newtonian formulations to 

model the effect of the electrostatic field on dynamic performance of micro-systems. 

Micro-cantilever beams are very popular in MEMS design because of several reasons 

including simplicity to fabricate and release from substrate, good match of their pre-

determined performance under the provision that they operate within a limited range, 

close within the linear domain.  Also they use low voltage for measurement purpose 

while they operate at frequencies significantly below their resonant frequency[60]. 

Most of the available published works present models that are described by differential 

equations. These equations have been formulated as linear or nonlinear [61-64]. 

However, most of the nonlinear equations are linearlized for simplicity [65-69]. 

However, very little contribution to the influence of the downscaling has been made with 

regards to the correctness of the linearity assumptions. All formulations of the Newtonian 

laws could be written either as ODE’s or PDE’s. A number of publications conclude that 

specific formulations could be assumed as linear in micro-systems modeling [61, 62, 66, 

67, 69-76]. Other publications have recommended the nonlinear models as necessary 

against the linear models [63-65, 68, 77-80]. In some cases authors consider the system 

as behaving nonlinear and solve the nonlinear differential equations [63, 65, 77, 78, 80]. 
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In other publications, the micro-systems are considered as nonlinear but linearization 

methods are used to simplify the path to the solution [64, 67, 68, 71, 74]. However, most 

of the contributions consider linear models and thus linear equation and solve those [61, 

62, 66, 69, 70, 72, 73, 75, 76, 79]. 

The attractive electrostatic forces are common in the actuating MEMS devices or they 

intervene during capacitive measurement in small scale electro-mechanical devices. 

Electrostatic forces have many implications as most of MEMS structures are subjected to 

electrostatic forces[81, 82]. Capacitive measurement based accelerometer have been 

widely used [83]. In MEMS, electrostatic forces are often used to actuate micro-

structures, including switches [84, 85], micro-grippers [86], micro-relays [87], 

electrostatic motors[88, 89]. For electrostatic micro-actuators with linear motion, they 

have been proposed parallel, quad, and comb types of configurations. The use of 

electrostatic actuation in MEMS is appealing because is quite efficient, produces high 

energy densities and large micro-scale forces, yet all gathered in simple 

configurations[90]. Moreover, electrostatic actuators have advantages of inherent 

simplicity of their design as well as fast response. The fabrication of electrostatic 

actuators is compatible with integrated circuit (IC) processes in contrast to other type of 

actuators [81]. Unfortunately, microstructures undergo large deformation when subject to 

electrostatic actuation. The interaction between a nonlinear electrostatic force and the 

coupled effects from different energy fields may cause pull-in instability and failure. 

Effects such as stiction, wear, dielectric changing and breakdown are likely to occur in 

microstructures subjected to electrostatic field. As a consequence of the popularity and 

utility of electrostatic MEMS, many aspects related to the effects subject to electrostatic 

forces in MEMS devices have largely been investigated in recent years. Researchers have 
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studied the pull-in instability [91-94], characteristics of the displacement during 

actuation[90, 95-97], shape and location of electrodes [98-100], dynamic response and 

optimization of the electrostatic force[85, 101], nonlinear dynamics, chaos and 

bifurcation of the electrostatically actuated systems and analysis methods (FEM) for 

evaluating the nonlinear electrostatic forces[102-106], simulation software (ANSYS) and 

systems to simulate the dynamic behavior [105, 107-109], influence of bonding 

parameters (applied voltage, temperature, etc.) on the electrostatic force[110], inherent 

nonlinear and stiffness softening effects [82, 102]. Without an understanding of the 

effects of electrostatic forces in MEMS, many phenomena of practical importance, such 

as instability, nonlinearity and reliability in MEMS cannot be mathematically modeled 

and therefore practically predicted, and consequently, the great potential of MEMS 

technology could neither be effectively explored nor optimally utilized. Therefore, it is 

important and necessary to investigate the dynamic characteristics of the electrostatic 

forces and their nonlinear effects on MEMS devices at micro-scale level [102]. In the 

present chapter, solution of the nonlinear ODE describing vibration of a micro-cantilever 

beam subjected to electrostatic force was studied by reducing the order of ODE. The 

nonlinear differential equation does not have any exact solution. It is shown that some 

common methods [111] which were used  to solve such equation introduce significant 

errors. The problem becomes more complex when micro-level dimensions are considered 

in the equation, which makes the equation highly stiff. As an example, it was shown that 

numerical methods embedded within Maple could not solve such stiff ODE problem as 

illustrated in the appendix A. In the present work, an exact method is used to reduce the 

order of ODE such that no error is introduced through the reduction calculations. The 

reduced (first order ODE) yields identical results with the second order non-linear ODE. 
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The first order ODE is further solved using A-stable numerical methods as the resulting 

ODE can be proved as non-reducible. 

 Lie symmetry method is a well-known mathematical method that can be used to solve or 

reduce the order of nonlinear ODEs and PDEs. Lie symmetry will be used below to 

reduce the order of the nonlinear ODE that is used to model the nonlinear mass- 

damping-spring model of a cantilever beam subjected to a uniform electrostatic force.   

 

2.2.   The vibration of a micro cantilever beam subjected to uniform electrostatic field 

 

The electrostatically actuated micro-cantilevers in MEMS and the equivalent lump mass 

dynamic model are illustrated in figures 2.1.1 and 2.1.2. For this simplified mass spring 

damping system, the governing equation of motion for the dynamics of the system in 

MEMS is [102] :  

       

m

tf
ty

dt

tdy

dt

tyd
nn

)(
)(

)(
2

)( 2

2

2

                                        (2.1) 

 

where: 

 

 f(t) is the electrostatic force  
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Figure  2.1.1. Fixed–free beam subjected to distributed uniform load (electrostatic attraction) 

 

 

 

Figure  2.1.2. The schematic of a mass-spring damper system of a beam 

 

The energy balance yields the force, which applies on the two parallel surfaces due to the 

electrostatic effect, which is[101]: 

 

                                                  
2

2

0

))((2
)(

tyg

AV
tf





                                                    (2.2) 

g is gap between the beam and base 

A is area of cantilever beam 

So the equation (2.1) will be: 
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where the initial conditions (initial speed at reference position and time) for this ODE is 

assumed as: 

 

0
0


t
y             and             

0

0

v
dt

dy

t




                                      (2.4) 

 

This is a nonlinear equation and there is no analytical formulation to express so far the 

result in close form. This equation becomes more complicated when one extends it to 

micro level dimensions, which may include very high stiff ODE. There have been many 

contributions in the literature towards solving this problem by using numerical methods 

[102, 111, 112] . In the current work, by using Lie symmetry method the order of 

equation (2.3) will reduce by one order. Therefore, instead of a second order ODE, one 

has to cope with a first order ODE that by all means is easier to solve. The solution of 

second order of the ODE is presented below. However, Lie symmetry method requires 

some definitions and terminologies. 

 

2.3.1. One-parameter groups 

 

The mathematical groups which are considered in this paper are point symmetric 

transformations [113] which means that each point ),( yx on the curve move into ),( 11 yx : 
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    ),,(1  yxx       ),,(1  yxy                              

(2.5) 

 

where ,  are diffeomorphism )( C
. If any transformation preserves the shape of a 

curve and it maps the curve on itself, the transformation is called symmetry [114]. The 

transformations (2.5) which satisfies the group properties is called one-parameter group 

[114] and α is called the parameter of the group. 

2.3.2. Infinitesimal transformation 

  

For a one-parameter group the infinitesimal transformation is defined as [115] : 

 

y

f
yx

x

f
yxUf









 ),(),(                                                          (2.6) 

 

where: 

 

 
0

),(








 yx    

0

),(








 yx        ),( yxff                             (2.7) 

 

U is the transformation operator on the function. 

 

The necessary and sufficient condition that a group is a symmetry transformation for a 

function ),( yxf  is [115] : 
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                                                            0Uf                                                  (2.8) 

 

This equation will be used to calculate the infinitesimal transformation of an ODE in next 

part.  

2.3.3.   Canonical coordinates 

 

Any pair functions ),( yxr , ),( yxs   that satisfy the conditions below are called canonical 

coordinates [114]: 

 

0),(),(  yx ryxryx   

1),(),(  yx syxsyx                                                (2.9) 

0
yx

yx

ss

rr

 

 

The canonical coordinates for a function ),( yxf  can be found by the characteristic 

equation [114]: 

 

                                                 ds
yx

dy

yx

dx


),(),( 
                                                (2.10) 

 

The solution of the below ODE is ),( yxr : 
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),(

yx

yx
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


                                                          (2.11) 

 

and ),( yxs will be: 

 

),(

)
)),(,(

(),(
yxrr

xryx

dx
xrs






                                          (2.12) 

 

2.3.4.  Algorithm for Lie symmetry point 

 

There have been investigations on calculation of Lie symmetry point [116-121]. There 

are, however, several methods to calculate Lie symmetry [121]. One method is the 

prolonged vector field [116, 120, 121]. It can be shown that [115, 116] for a second order 

differential equation like: 

 

                                                   ),,(
2

2

dx

dy
yx

dx

yd
                                                (2.13) 

 

If an infinitesimal group is applied as an operator on (2.13), both ξ and η in (2.7), must 

satisfy the below equation: 
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           (2.14) 
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By decomposing (2.14) into a system of PDEs, ξ and η can be calculated. The example 

below will present the calculation methodology. So from (2.5) the transformation φ and ψ 

can be found. For a first order differential equation like: 

 

                                                        ),( yx
dx

dy
                                                         (2.15) 

 

ξ and η in (2.7) must satisfy the below equation: 

 

                                    yxyxyx   2)(                                      (2.16) 

 

There are several commercial software packages such as Maple [116, 122] or 

Mathematica [118], that have built-in algorithms to calculate Lie point symmetry group, 

which means calculating ξ and η. After calculating ξ and η, one can calculate canonical 

coordinates by (2.10), (2.11), (2.12). Further, thought adequate selection of variables, the 

order of the ODE can be reduced by one unit. 

  

2.3.5. Reduction of the order of the ODE 

 

Let a one-parameter group G be the symmetry of a differential equation. The relations 

(2.10), (2.11), (2.12) which represent canonical coordinates can be calculated and further 



27 

 

dr

ds
v   can be calculated. By considering v  as a new variable and substituting in ODE, 

the new ODE will have one order less than the original ODE.  

2.3.6. Solution of first order ODE with Lie symmetry 

 

If the first order ODE (2.15) has a Lie symmetry, which can be calculated by (2.16), then 

the ODE (2.16) based on canonical coordinates can be written as[114]: 

 

yx

yx

ryxr

syxs

dr

ds

),(

),(








                                                      (2.17) 

 

This ODE will be in the form of: 

 

                                     )(r
dr

ds
                                                           (2.18) 

 

The general solution of (2.18) can be expressed as: 

 

  cdrrs )(                                                      (2.19) 

 

where c is an integration constant. Further, by substituting ),( rs by ),( yx one can 

calculate y as a function of x. 
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2.4. Identification  

 

 Lie symmetry method is further used to solve the linear free vibration of a mass spring- 

damper system. The equation in (2.20) defines free vibration of a system (see 

figure.2.2.2)   

 

 0)(
)(

2
)( 2

2

2

 ty
dt

tdy

dt

tyd
nn                                          (2.20) 

 

This ODE is easy to solve and there are known many methods to do it. One can find the 

solution of (2.20) in any vibration textbooks. Below, for illustration purpose, Lie point 

symmetry is used to solve the above ODE [111]. Equation (2.20) is therefore converted 

in: 
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)( 2

2

2

ty
dt

tdy

dt

tyd
nn                                           (2.21) 

 

from (2.13): 

 

))(
)(

2(),,(
2

ty
dt

tdy

dx

dy
yx nn                                    (2.22) 

 

For this form, condition (2.14) expresses the Lie symmetry point condition, because it 

satisfies: 
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where: 
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It is important to note that, the variables yyx ,,  are considered independent [113-115, 

120] which would not reduce the generality of the formulation. Most of Lie symmetries 

including rotating translation and scaling could be found with the below transformations: 

 

yCxCC

yCxCC

654

321








                                                (2.24) 

 

Substitution of (2.24) in (2.23) gives: 

 

 ))(()())(32( 2

3265654326 yCyCCCyCxCCyyyCCC     (2.25) 

 

By comparing y  coefficients power, one can show that (see appendix B): 
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05432  CCCC                                                  (2.26) 

 

Hence, 

yC

C

6

1








                                                             (2.27) 

 

Equations (2.27) give the general transformation for (2.20). It is possible to consider ξ 

and η as: 

 

y





 0
                                                                 (2.28) 

 

Where:  

 

1,0 61  CC  

yyfUf                                                               (2.29) 

 

From (2.10) and (2.11) one can finds the canonical coordinates as:  

 

)ln( ys

tr




                                                           (2.30) 

 

For reducing the order of ODE: 
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y
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v


                                                          (2.31) 

2
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2

y

y

y

y
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
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                                                        (2.32) 

 

From (2.31) and (2.32), one can calculate yy ,  as: 

 

)( 2v
dr
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yy

vyy
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                                                       (2.33) 

 

Substitution of (2.33) in (2.20) gives: 

02
22  nnvv

dr

dv
                                              (2.34) 

 

This is the reduced form of (2.20). Equation (2.34) has also Lie symmetry (this problem 

is solvable by separating the variables, but just for illustrating the Lie symmetry method, 

this method is further used): 

 

0

1








                                                              (2.35) 

 

Equations (2.35) can be calculated by considering (2.24) as Lie symmetry and 

substituting them in (2.15) where: 
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nn                                        (2.36) 

and: 
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Therefore: 

 

rfUf                                                              (2.38) 

 

For avoiding confusion between parameters (2.34) written with other notation as below: 
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22 qppp
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where: 
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Canonical coordinates of this infinitesimal transformation by using (2.10), (2.11) are: 
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Equation (2.17) can be formulated as: 
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1

ˆ
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 pr ˆ  is substituted in (2.39) such that: 
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This equation is separable, so for 1  the solution of this ODE is: 

 

))1ˆ1(tan(1ˆ
1

222  nnn Csr                          (2.44) 

 

By considering (2.40) and (2.41): 

 

))11(tan(1)( 1

222  nnn Crrv                         (2.45) 

 

where 1C  is the constant of integration. Substituting )(rv from (2.31) and r from (2.30) in 

(2.45) yields: 
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The solution of this ODE is: 

 

))(1cos( 1

2

2 CteCy n

tn 
                                         (2.47) 

 

This equation is the general solution of (2.20). Although Lie symmetry method looks 

more laborious then classical methods used in solving the second order linear differential 

equation, it also bears an important advantage versus the well-known methods. This is, 

Lie symmetry method could yield to the solutions of nonlinear differential equations that 

cannot be solved by other classical approach. 

 

2.5. Reducing in the order of the ODE representing the vibration of a micro-cantilever 

beam under electrostatic field 

 

In the Appendix C it was proved that (2.3) has an infinitesimal transformation according 

to (2.24) as: 

 

                                                         xfUf                                                             (2.48) 

which satisfies (2.9) and therefore: 

 

1  and 0                                                    (2.49) 

 

From (2.10), (2.11) and (2.12) the canonical coordinates can be calculated as: 
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                                                          ),(),( tysr                                                         (2.50) 

 

by considering: 

 

                                                            ytyr ),(                                                          (2.51) 

 

and defining v  as: 

 

                                                              

dt
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v

1
                                                            (2.52) 

 

 As proved in appendix C the equation can be expressed by contact form as: 
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2

2
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Substituting (2.54), (2.55) and (2.56) in (2.50) yields: 
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This is a first order ODE with 
0

1
)0(

v
v   as the initial condition. According the recent 

investigations, there is no one-parameter group that satisfies its symmetric condition 

(2.55). It is the reason for which there is no analytical solution for this ODE. In the 

appendix D, it is shown that using a transformation like (2.24) the form (2.55) has no 

scaling or rotation symmetry. This equation has a singularity (where  ) and it cannot 

be integrated in closed form. Therefore, the numerical method approach is used as shown 

below. 

 

2.6. Numerical analysis for the first order ODE  

 

To illustrate the above findings, in the example presented below it is proved that the 

solutions of (2.3) and (2.55) are identical. A practical example is numerically solved 

using Maple 11. Both second order non-linear ODE and the reduced first order ODE 

equations are nonlinear and stiff. Isode algorithm is used to solve the equation. This 

algorithm is not provided in ODE Analyzer Assistant. As illustrated in appendix A, none 

of the algorithms provided within the ODE Analyzer Assistant of Maple 11 could solve 

the ODE. 
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2.6.1. Cantilever beam under electrostatic field forces 

 

In this example, geometry with relevance to microstructures is selected. A micro-

cantilever beam with the below dimensions and mechanical properties is considered: 

 

Length l =200 [μm] 

Width w =20 [μm] 

Thickness th =2 [μm] 

Density of material ρ= 2300 [
3m

Kg
] 

Damping factor  =0.1 

Young's modulus E= 169 [GPa] 

gap g = 4 [μm] 

 

The moment of inertia of the cross section of the beam and the longitudinal cross section 

area are: 

 

       ][10333.1
12

)( 423
3

m
thw

I                                       (2.56) 

][104 29 mwlA                                                 (2.57) 

 

 The stiffness of the beam, the mass and the natural frequency of system are: 
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The pull-in voltage can be calculated as: 

 

][  27.21
27

8 3

0
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A

k
V inpull 


                                         (2.60) 

 

Therefore, the applied voltage must be less than 21.27 [V] in order to achieve a finite 

solution to the problem. Under this provision, a potential of V=10 [V] is assumed. By 

considering this voltage, the beam would not induce the pull-in phenomena. Equations 

(2.3) and (2.55) become: 
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  For the IC as ][0.5)0(],[2.0)0(,0)0(
m

Sec
v

Sec

m
yy   the results produced by 

numerical methods are shown in the figures below. 

Figure 2.6.1 illustrates the solution of equation (2.61). Figure 2.6.2 illustrates the 

variation of the inverse of velocity  v  as a function of r , which is displacement. Figure 

 2.6.3 illustrates the phase diagram of (2.61) and (2.62) while figure  2.6.4 illustrates the 
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difference between the numerical solutions obtained for the original second order ODE 

(2.61) and the reduced to the first order ODE equation in (2.62). The maximum absolute 

error is less than 0.01% which came from numerical round out. 

 

Figure 2.6.1.  Time dependency of the deflection - numerical solution of the second order ODE equation (2.61). The 

potential is set to a low value such that the influence of the pull-in is insignificant. 

 

 

 

Figure  2.6.1. Numerical solution of the reduced form first order ODE (2.62).  (Inverse of velocity “v” versus 

displacement “r”) 
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Figure  2.6.13. Phase diagram of the second order ODE and the reduced first equations (2.61) and (2.62) 

 

The phase diagram indicates perfect overlapping of the solution of the second order ODE 

and first reduced order ODE. The time domain plot in figure  2.6.4 confirms the perfect 

matching of the solutions of the reduced equation and the initially considered form. 

 

Figure  2.6.14.  Numerical solutions for the second order ODE (2.61) and first reduced order ODE (2.62) 
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2.7. Effective stiffness 

 

One can model vibration of cantilever with vibration of mass-damper-spring model 

which has a one degree of freedom, as illustrated in figures  2.1.1 and  2.1.2. For this 

purpose, one has to define equivalent effective stiffness and damping for the model. In 

some prior work [112] effective stiffness for a cantilever under the electrostatic force is 

defined. In the current work, effective stiffness is used to model stiffness of the deflection 

of cantilever as mass-spring-damper model. Equivalent stiffness is used also to evaluate 

the dynamic performance of the micro-systems. The effective stiffness for distributed 

force is defined in [112] as: 

 

3

3*

3

2

l

bhE
Keff                                                             (2.63)         

                                  

where: 

 

       
2

*

1 


E
E                                                              (2.64) 

 

E is Young's modulus 

 is Poisson's ratio  

b is width of the beam 

h is thickness of the beam 
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l is length of the beam 

 

Based on the effective stiffness, pull-in voltage can be calculated like equation (2.60), but 

with effective values as [112]:  

  

eff

eff

p
A

gK
V
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27
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
                                                       (2.65) 

 

where: 

 

g is gap distance 

is the absolute permittivity 

effA is effective area 

 

where, from [112] : 

 

lbA effeff                                                          (2.66) 

 

 With: 

  

)
)1(

65.01(
b

d
bbeff


                                                     (2.67) 
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
 




 Arc                                              (2.68) 

45.033.0                                                           (2.69) 

 

The value of β is reselected to range between the two values in (2.69) as proposed in 

[123]. 

 

2.8.  Nonlinear behavior and pull-in voltage 

 

Pull-in voltage has widely been investigated [92, 93, 96, 101, 109, 112, 124, 125] . Pull-

in voltage is studied based on linearization [125] of the equation (2.3), whereas nonlinear 

pull-in voltage was calculated in this paper based on the solution of equations (2.3) and 

(2.55). Comparison between linear and nonlinear analysis shows significant difference 

between the values in the pull-in voltage yield by the solution of two models. The 

difference increases by increasing the gap distance. For the micro-cantilever beam, 

specified in section 4, the pull-in voltages of linear and nonlinear analyses are illustrated 

in the figure 2. 8.1. The numerical values are given in table 2.8.1. In this table, for each 

gap distance pull-in voltage was calculated by seven different methods. Second column 

(linear) shows the pull-in voltage based on equation (2.60). Third column (DCNF-

Discontinue-Cantilever-Natural-Frequency) shows the pull-in voltage value based on 

equation (2.3) or (2.55) where 
m

k
n   ,

3

3

l

EI
k  . Fourth column (CCNF- Continue-

Cantilever-Natural-Frequency) gives the pull-in voltage derived from equation (2.3) or 
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(2.55) by assuming  
3

515625.3
ml

EI
n  . Fifth and seventh columns represent the pull-

in voltages derived by equation (2.65) for 33.0  and 45.0  respectively. Sixth and 

eighth columns give the pull-in voltages from equation (2.3) or (2.55) by modifying the 

area by equation (2.66). As expected and as it can be seen from figure 2.8.1, DCNF in all 

cases yield results significantly different from the other models. Nonlinear analysis of 

CCNF model yields the maximum values for the pull-in voltage and the results come 

almost same as the modified for 45.0 from the equation (2.3) or (2.55). For modified 

models, in any case the equation gives slightly higher value than nonlinear analysis. 

Figure 2.8.1 also reveals that DCNF model predicts smallest pull-in voltage when 

compared to the other models whereas the modified 45.0   yields the largest pull-in 

voltage.  For small gaps, the CCNF model predicts pull-in voltage less than modified 

45.0   but by increasing the gap distance the pull-in voltage by CCNF will be higher 

than the modified  45.0 . This is illustrated in second graph of figure 2.8.1 which is a 

close-up of the indicated region in first graph of figure 2.8.1. This finding is consistent 

with the dependency of the beam stiffness of various models on the applied potential 

(figures 2.8.5, 2.8.9, 2.8.13, 2.8.17 and 2.8.21). The figures show that CCNF model 

yields the stiffest structure while DCNF produces the least stiff structure regardless the 

gap. Modified 45.0  model yields stiffer systems than the modified  33.0  model. 

The above is confirmed by the resonant frequencies predicted by the models when 

structures are subjected to low electrostatic forces. Thus, CCNF model exhibits highest 

natural frequency while DCNF shows the smallest natural frequency. 
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The behavior of the system close to pull-in voltage is another aspect that is studied in this 

work. For the specific micro-cantilever and gap distances, introduced in section 2.8, in 

figures 2.8.2-2.8.29, four sets of results are shown for these gap distances. These four sets 

are: the time response of the system under the application of a step potential close to the 

pull-in voltage, the phase portrait for the applied potential 99.999% very close of the pull-

in voltages, deflection under various voltages for different models and resonant frequency 

variation yield by each of the four selected models with the potential which is perceived 

as a loss of stiffness of the structure under the application of the potential (weakening 

phenomena yield by the selected models). These sets are calculated from the solution of 

equations either (2.3) or (2.55). It is important to mention that equation (2.55) enables 

extraction of the phase portrait of an easy fashion while same output through equation 

(2.3) would prove quite laborious. The solutions of each of the four models were derived 

and plotted. Each graph has four sets of solutions and each set represents the solution of 

one model.  The time domain solution of the ODE describing the dynamics of a 

microsystems such as a micro-cantilever beam subjected to electrostatic forces reveal 

interesting trend that has different aspect than the one reported in the open literature. 

Figure 2.8.2 illustrates the time response of the four selected models for the gap of 2 µm: 

DCNF (7.1V), CCNF (14.5[V]), non-linear modified 33.0  (14.3[V]) and non-linear 

modified 45.0  (14.6[V]). It is seen that after the potential is applied, the system 

responds with a ramp followed by a flat which is same for all models (deflection 

representing 4/9 or 45% of the initial gap). It is important to mention here that the quasi-

static analysis yield a unique limit position that corresponds to a deflection of 1/3 of the 

original gap [126]. The duration of the flat which is a saddle point in the stability of the 

structure is dependent on the model. Thus, the duration of the marginal stability is inverse 
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proportional with the instant stiffness; lower stiffness yields longer duration to settlement. 

Once the system leaves the marginal stability seen in the phase portrait as the saddle 

point, the equilibrium position is attain regardless the model in a position representing 2/9 

of the initial gap or half of the marginal stability position. Although CCNF model proves 

to exhibit the lowest resonant frequency at the applied potential, this is due to the fact that 

the rate of decay of the resonant frequency of the CCNF model is higher than of the other 

models. It is important to mention that if the critical voltage is assumed in any of the 

models, no solution is found.  

 

Table  2.8.1.  Pull-in voltage in linear and nonlinear analysis 

Gap 

distance 

[μm] 

Linear 

model 

[V] 

 

DCNF 

[V] 

 

CCNF 

[V] 

Modified 

33.0
[V] 

Non linear 

Modified by 

33.0  

[V] 

Modified 

45.0
 [V] 

Non linear 

Modified by 

45.0  

[V] 

2 7.52 7.17 14.57 14.36 13.69 15.38 14.66 

4 21.27 20.28 41.22 39.80 37.95 42.78 40.79 

6 39.80 37.26 75.73 71.70 68.36 77.32 73.72 

8 60.17 57.37 116.59 108.33 103.28 117.16 111.71 

10 84.09 80.18 162.94 148.66 141.74 161.24 153.73 

 

Phase portraits in figure 2.8.3 show that the system described by the four models is still 

stable but it has developed sharp edge along the x-axis. This edge is the saddle point that 

is seen in the time response as a flat at the peak deflection point or as previously 

described as the marginal stability duration. Table 2.8.2 illustratess the crytical distance, 

which is independent on the selectd model, at which the poll-in occurs as calculated 

through the present formulation.  
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Table  2.8.2. Pull-in distance 

 2 µm 4 µm 6 µm 8 µm 10 µm 

Pull-in distance 0.9 µm  1.8 µm 2.7 µm 3.6 µm 4.5 µm 

Ratio 45% 45% 45% 45% 45% 

 

All phase diagrams regardless the model show the saddle point at the critical pull-in 

distance. Further, the plot indicates a convergence point which is the settling position as 

illustrated in figure 2.8.2 The settlement distance represents 50% of the pull-in distance. 

The maximum velocity occurs in DCNF whereas minimum velocity is encountrerd in 

CCNF while velocities of the modified models are sensitively similar.   

  

 

 Figure  2.8.1.  The pull-in voltage for different gap distance and various models under discussion 
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Figure  2.8.2. Time response of the system near the pull-in voltage for the four selected models (gap= 2 µm) 

 

 

 

Figure  2.8.3. Phase portrait of the four models for potentials near the pull-in voltage (gap= 2 µm) 
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Figure  2.8.4. Dependency of the deflection with the applied voltage for the four different models (gap= 2 µm)  

 

 

Figure ‎2.8.5. Variation of the resonant frequency of the system for the four models with the applied voltage (gap= 2) 

 

The structure deflects when subjected to a difference of potential, as illustrated in figure 

2.8.4. The four models yield different deflections for same potential difference. DCNF 

model exhibit the highest deflection. However, the pull-in voltage exhibited by this 

model is closer to the linear model and about half of any other three discussed models. 

The other three models (CCNF, modified β = 0.33 and β = 0.45) exhibit the pull-in 

voltage to similar values. The deflection increases with the applied potential. The least 
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deflection is exhibited by the modified 45.0 and the most by the modified 33.0 . 

The plot showing the resonant frequency of the system according to the formulations of 

the four models is illustrated in figure 2.8.5 CCNF model yields the highest resonant 

frequency, which comes consistent with the other findings. The modified models yield 

about same resonant frequency and similar pull-in voltage. The resonant frequency of the 

two models branches out when the structure is subjected to potentials closer to the pull-in 

voltage. The modified 45.0 reduces less than modified 33.0 and the difference 

grows once the models are to potentials closer to the pull-in voltage. The DCNF model 

exhibits significantly the lowest resonant frequency.   

 

Figure  2.8.6. Time response of the system near the pull-in voltage for the four selected models (gap= 4 µm) 
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Figure  2.8.7.  Phase portrait of the four models for potentials near the pull-in voltage (gap= 4 µm) 

 

 

 

 

Figure  2.8.8. Dependency of the deflection with the applied voltage for the four different models (gap= 4 µm) 
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Figure  2.8.9. Variation of the resonant frequency of the system for the four models with the applied voltage (gap = 4 µm) 

 

 

Figure  2.8.10. Time response of the system near the pull-in voltage for the four selected models (gap= 6 µm) 
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Figure  2.8.11.  Phase portrait of the four models for potentials near the pull-in voltage (gap= 6 µm) 

  

 

Figure  2.8.12. Dependency of the deflection with the applied voltage for the four different models (gap= 6 µm) 
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Figure  2.8.13. Variation of the resonant frequency of the system for the four models with the applied voltage (gap = 6 µm) 

 

 

 

Figure  2.8.14. Time response of the system near the pull-in voltage for the four selected models (gap= 8 µm) 
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Figure  2.8.15. Phase portrait of the four models for potentials near the pull-in voltage (gap= 8 µm) 

 

 

 

Figure  2.8.16. Dependency of the deflection with the applied voltage for the four different models (gap=8 µm) 
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Figure  2.8.17. Variation of the resonant frequency of the system for the four models with the applied voltage (gap = 8 µm) 

 

Figure  2.8.18.  Time response of the system near the pull-in voltage for the four selected models (gap= 10 µm) 
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Figure  2.8.19.  Phase portrait of the four models for potentials near the pull-in voltage (gap= 10 µm) 

 

 

 

 

 

Figure  2.8.20.  Dependency of the deflection with the applied voltage for the four different models (gap= 10 µm) 
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Figure  2.8.21. Variation of the resonant frequency of the system for the four models with the applied voltage (gap = 10 µm) 

 

Further, figures 2.8.6 to 2.8.21 illustrate the same data as figures 2.8.2 to 2.8.5 but for 

assumed gap of 4, 6, 8 and 10 [µm]. The pull-in voltage values for the four models and 

the assumed gap are as those given in table 2.8.1 For the maximum assumed gap 

distance, the pull-in voltage for DCNF and CCNF increases a little more than 11 times 

while for the two modified models with 33.0 and 45.0 a bit more than 10 times. 

Figure 2.8.18 shows that the duration of the marginal stability of CCNF model 

significantly increases while for the other three models remains about same. This may be 

due to the fact that the assumed potential for the CCNF case (162.9[V]) is closer to the 

pull-in voltage than the voltage assumed for 2 [µm] gap. The phase portrait illustrated in 

figure 2.8.19 is similar with the one plotted for 2 [µm] gap.  It is important to mention 

that the dynamic behavior of the system regardless the model is same. Once the potential 

close to the pull-in voltage is applied, the structure ramps to a deflection corresponding to 

4/9 of the initial gap, and then settles in equilibrium position which corresponds to a 

deflection of 2/9 of the initial gap. The deflection vs. applied potential illustrated in figure 

2.8.20 is similar in trend with that of the model in which the gap was assumed at 2 [µm] 
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except that the lowest deflection for the same potential is performed by the CCNF model. 

The dependence of the natural frequency with the applied potential for 10 [µm] gap is 

illustrated in figure 2.8.21 Similarly as in figure 2.8.5, DCNF model yields the lowest 

resonant frequency while CCNF the highest.  

 

Figure  2.8.22. Dependency of the time response of the DCNF model for various gap distances at applied potentials 

close to the pull-in voltage. 
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Figure  2.8.23. Phase portraits of the DCNF model for various gaps at potentials close to the corresponding pull-in voltages 

 

 

Figure  2.8.24. Voltage vs. deflection in DCNF model for different gaps 
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Figure  2.8.25. Variation of the frequency with the applied potential for different gap separation for DCNF model 

 

Figure  2.8.26.  Effect of gap on time response in CCNF model 
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Figure  2.8.27. Effect of gap on phase diagram in CCNF model 

 

 

  

Figure  2.8.28. Voltage vs. deflection in CCNF model for different gaps 
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Figure  2.8.29. The variation of the frequency with the applied potential for different gap separation for CCNF model 

 

A parametric study to study the influence of the gap on the time response, critical 

position and equilibrium position, deflection vs. applied potential and variation of the 

resonant frequency is carried out for each of the four considered models. However, the 

results of models are presented in figures 2.8.22 to2.8.37. The general conclusion of the 

findings is that regardless the selected model and the gap choice, once a potential close 

enough to the pull-in voltage is applied to the micro-system, the mobile restoring element 

will ramp, saddle always at the same position which is 4/9 of the initial gap, and will 

settle in an equilibrium position which corresponds to a deflection of 2/9 of the initial gap 

and is always same, regardless the model.  The duration of the marginal stability for the 

system is dependent on the effective stiffness of the system which valueis highly 

sensitive with the applied potential when approaching the pull-in voltage. Thus, the 

duration of the marginal equilibrium for example  in figure 2.8.22, is found to be 

irrelevant as a slight increase with the gap from 2 to 6 µm and a slight decrease back 
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form 6 to 10 µm is observed. Closer is the applied voltage to the pull-in voltage, longer is 

the marginal stability period. The phase portrait for all assumed gap values provides same 

information as above and the results are illustrated in figures 2.8.3,2.8.7,2.8.11 and 

2.8.15. The variation of the deflection with the applied potential illustrated in figures 

2.8.4, 2.8.8, 2.8.12 and 2.8.16 show a strong non-linear dependence of the deflection with 

the potential for any gap value. Hovever, for low potential a linear dependency of the 

deflection with the voltage is noticed for a range of about 50% o of the pull-in voltage. 

The resonant frequency of the system is dependent of the model and on the applied 

potential. For the DCNF model, the resonant frequency of the system decays with the 

applied potential, faster for the lower gaps. However, the frequency drops significantly 

when the applied potential is approaching the corresponding value of the pull-in voltage. 

The decrease is insignificant for only for applied potentials that are remote form the pull-

in voltage.  
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Figure  2.8.30. Effect of gap on time response in Modified β=0.33 model 

 

 

Figure  2.8.31. Effect of gap on phase diagram in β=0.33 model 
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Figure  2.8.32. Voltage vs. deflection in Modified β=0.33 model for different gaps 

 

 

 

Figure  2.8.33. The variation of the frequency with the applied potential for different gap separation for β=0.33 model 
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Figure  2.8.34. Effect of gap on time response in Modified β=0.45 model 

 

 

Figure  2.8.35. Effect of gap on phase diagram in β=0.45 model 
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Figure  2.8.36. Voltage vs. deflection in Modified β=0.45 model for different gaps 

 

 

 

Figure  2.8.37. The variation of the frequency with the applied potential for different gap separation for β=0.45 model 
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2.9. Experimental validation  

 

Sets of experiments to measure natural frequency and deflection of micro-cantilever 

beam subjected to electrostatic force were carried out in CONCAVE laboratories [127]. 

Figure 2.9.1 illustrates the setup of the experiment which includes a HeNe laser and 

photodiode detector in a laser vibrometer configuration, from Brüel & Kjær. The 

measurement system made use of an oscilloscope for the time-domain reference and a 

spectrum analyzer for frequency domain analysis. The micro-structures were excited with 

sweep harmonic oscillation produced by an audio speaker from the internal signal 

generator in the frequency analyzer. To measure the frequency response, a swept low 

amplitude harmonic excitation was used. The test was performed using non-contact 

measurement, by focusing the laser beam onto the substrate to extract the frequency 

response of the substrate. Then laser focused onto the micro cantilever while same swept 

frequency was applied. Finally, micro-cantilever response was calculated with respect to 

the base response. A DC power supply was used to obtain the deflection of micro 

cantilever and static deflection was measured under an optical microscope. The deflection 

was measured from the overlapped pictures of the deflected cantilevers when specific 

voltages were applied, as illustrated in figure 2.9.2. Two micro-cantilevers with 

dimensions as presented in table 2.9.1 were studied.  
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Table  2.9.1.  Dimensions of beams 

 Length [µm] Width [µm] Thickness 

[µm] 

Young’s 

modulus  

[MPa] 

Beam I 351 34.5 0.94 169.5 

Beam II 299 35 0.96 169.5 

  

The resonance frequency of the beams subjected to the electrostatic forces was 

measured using the above-described procedure while a potential field was applied 

between the substrate and the beam and resonant frequency was determined for the 

various applied voltages.    

 

 

Figure  2.9.1. Experiment set up[127] 
 

Figure  2.9.2. Positions of micro-cantilever under 

different applied potentials. The charged electrode 

(not seen in the picture) was positioned parallel to the 

micro-beam on the upper side of the picture[127] 

 

The experimental and the calculated deflections under different voltages for two beams 

are illustrated in figures 2.9.3 and 2.9.4. For both beams, maximum applied voltage for 

measuring the static deflection was 500 [V]. The four different theoretical models, as 

detailed in section 2.8 were considered for validation. As illustrated, the best-fit curve for 
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beam I is for 755.0  and for beam II   for 73.0 . These values were calculated 

based on the minimizing the error. The error was calculated by relative error of 

theoretical deflection with respect to the experimental deflection for each voltage. 

Summation of squares of these errors was considered as target value to minimize.   The 

range of the effective stiffness values as recommended in [125] are significantly higher 

than reported values in [112]. By increasing the value of β, the effective area decreases. If 

effective area decreases, the applied force will decrease. It is clear that by decreasing the 

force, deflection will decrease. In this experiment, deflection is large so the area under 

the electrostatic force will reduced; by reducing force deflection will also reduce. It will 

need to increase the value of beta to match the experimental results with one model. 

According to the theoretical presented models and considering the above mentioned 

values for beta, the modified model has proved to yield closer results to experimental 

values. However, the matching value for β is considerably higher than the range 

recommended in [112]. The modified model proves to be the most suitable with the 

experiment for matching the deflection of the micro-cantilever beam. 
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a)                                                                                              b) 

Figure  2.9.3. a) Deflection as a function of the applied potential; theoretical and experimental values of the deflection of 

the micro-cantilever beam I; b) Zoom-in of the indicated zone 

 

 

             a)                                  b) 

Figure  2.9.4.   a) Deflection as a function of the applied potential; theoretical and experimental values of the deflection 

of the micro-cantilever beam II; b) Zoom-in of the indicated zone 

 

The natural frequency changes with the application of the potential field. The theoretical 

and experimental findings are illustrated in figures 2.9.5 and 2.9.6. The four different 

models were considered. As one can see from the two figures, the best fit with 

experimental is not anymore a modified model but the CCNF model. Modified stiffness 
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selected within its range gives results with small divergence but, however, far from 

experiments. Both cases yield values of the resonant frequency below the experimental 

values. Both figures show that, linear approach for the stiffness is much below the 

experimental values, even less than modified models. In both vibration experiments, 

maximum applied voltage was 225 [V]. The error for modified stiffness and linear k 

ranges from about 35% and goes up to 200% with respect to the experimental recorded 

values. 

 

Figure  2.9.5. The frequency dependence on the applied voltage for beam I in comparison with the considered models 

 

  

Figure  2.9.6.  The frequency dependence on the applied voltage for beam II in comparison with the considered models 
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The experimental results show that, although modified model can well fit the static 

deflection due to potential difference in microstructures, the appropriate model would not 

fit the dynamic response of the structure subjected to electrostatic field. The proposed 

CCNF can be a good matching model for dynamical model which gives significantly 

large errors in the static deflection model.   

 

2.10. Conclusion and discussion 

 

The analytical formulations in micro-systems have followed the formulations already 

available in the human-sized world. The simple explanation to this choice is that no other 

theories to be applied to micro-sized systems are available. The quantum physics targets a 

much smaller size. Most of the commonly used models of structures have been linearized 

for obvious reasons. The linearization would not be suitable with the micro-sized systems 

and here is the motivation to re-consider the fundamental models not neglecting non-

linearities. The non-linear systems are represented either by non-linear ODE or PDE. 

Both type of equations rise significant challenges when required to be solved somehow 

by non-numerical methods. The sense of sensitivity of a certain parameter requires 

significant effort to be perceived. Usually, extensive parametric studies are required to 

gain such knowledge. Otherwise, one could revisit mathematical methods to try solving 

the non-linear phenomenon-describing equations given the fact that an exact solution, if 

available, provides a wide perspective on the analysis of the behavior of the solution 

function. Under many circumstances, the popular routines for the well-known numerical 

methods which are embedded in multi-purpose software package such as Matlab, Maple, 
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Mathematica, MathCAD or, Macsyma would yield no solution to stiff ODE. This is the 

case of the equation that describes the dynamic behavior of a micro-system subjected to 

an electrostatic field.  

The present work uses Lie group symmetry to reduce the order of the second order 

ordinary differential equation to a first order differential equation. Unfortunately, the 

reduced first order ODE has no translation, rotation or scaling symmetry and the solution 

of the equation cannot be formulated in a close-form. If another type of symmetry is 

found, the differential equation could be analytically solved. However, certain interesting 

results are revealed by the reduced first order differential equation. The equation exhibit 

the non-linearity through two terms. If the third order term is assumed zero, one finds out 

the solution of the linearized solution for the second order ODE that models a dynamic 

micro-systems subjected to an electrostatic filed. Further, Isode numerical algorithm used 

for stiff differential equations was used to solve the ODE that describes the dynamics of a 

micro-system subjected to electrostatic forces. The time response of the system shows 

that a micro-system such as a micro-cantilever beam will respond to a voltage close to the 

pull-in value applied as a step input through a ramp that will hold in a marginal 

equilibrium position that occurs at a deflection that represents 4/9 of the initial gap. The 

system leaves the saddle point to settle in a position that corresponds to a deflection of 

2/9 of the initial gap. Various models built based on the open literature show significant 

differences. The deflection and the resonant frequency of two micro-cantilever beams are 

experimentally measured and compared to the numerical methods for static and dynamic 

models. Different models fit different experimental data.  
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The findings on this work bring more understanding on the phenomena at micro-size 

level. 

 

2.11. Summary 

 

This chapter presents an analytical model developed based on Lie Group symmetry that 

enables reduction of the non-linear ODE that is used to model the dynamic behavior of a 

micro-cantilever beam. The resulting equation is a first order ODE that could be easier 

solved. The solution based on numerical formulation for the second order ODE versus the 

first order show that the proposed method is robust. A detailed parametric study on the 

dynamic behavior of a micro-cantilever beam subjected to an electrostatic filed is further 

carried out. The results are finally validated through experimental work. The conclusion 

of the work is that non-linear models produce more accurate results that are closer to the 

real world than the linear models. The error yield through linearization is under certain 

conditions significant.  
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Chapter 3 

The Analysis of the Non-linear Deflection of 

Straight and Non-straight Beams Using Lie 

Symmetry Groups 

 

Rationale  

 

The large deflection of beams cannot be described by the linear formulation used for 

beams experiencing linear deflection.  Further, the linear models could in part 

accommodate large deflections at the cost of significant errors such as those encountered 

in some applications where bending exceeds three times the thickness of the beam. 

However, the deflection of cantilever type beams subjected to arbitrary loads that yield 

non-linear deflection has been solved so far only for two loading conditions, namely, 

point force and moment. The proposed solutions involve the solving of first and second 

kind elliptic integrals. The present work presented a general method based on Lie 

symmetry groups that yields an exact solution to the general problem involving any 

arbitrary loading. A general solution for the large deflection of a beam arbitrarily 

supported is provided. The formulation is further fully validated against the two available 

solutions available in the literature for the cantilever beams subjected to point moment 

and force. This chapter presents the solution to the non-linear deflection of non-straight 

cantilever deflection of cantilever beams subjected to concentrated loads, forces and 
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moment applied all at the free end. The deflections of straight cantilever beams subjected 

to loads that create deflections in the linear domain have been studied for a long time and 

the formulations are content of standard textbooks. However, the large deflection of 

straight cantilever beams problem was solved only seven decades ago and this only for 

particular type of loads. A generalized solution for the deflection of a non-straight beam 

subjected to both concentrated force and concentrated moment is presented below. Lie 

symmetry method is used to reduce the order of the ODE describing the large deflection 

of the beam. The solution is validated against the particular cases of loading for which the 

large deflection problem has been solved and presented in the open literature. These cases 

presented as validation examples are: straight cantilever beam subjected to concentrated 

free-end normal force, straight cantilever beam subjected to concentrated moment at the 

free end and straight cantilever beam subjected to both normal and axial forces applied at 

the free end.  

 

3.1.  Introduction 

 

Nonlinear deflection of beams under the various forces and boundary conditions has been 

widely studied. The prediction of deflection of beams has been of great interest to 

generations of researchers. This seems to be a mundane problem as it is subject of 

textbooks on elementary mechanics of materials. Although both analytical and numerical 

solution have been found for specific type of loads, the general problem for beams that 

are not geometrically perfectly straight has not been approached so far of a systematic 

fashion. Despite the interest in the subject, so far there is no general solution to describe 



79 

 

the general case of loading. This chapter presents an approach in solving the general 

problem based on Lie symmetry groups and a general analytical solution of the problem 

is presented below. The objective of the present work is to investigate a versatile 

mathematical method into the deflection of geometrically non-straight cantilever beams 

subjected point loads and moments applied at the free end while experiencing non-linear 

deflection. Lie symmetry method presented below can be used to any geometry of the 

bended beams under to condition that there is no residual stress in the unloaded beam. 

     Nonlinear deflection of beams subjected to various types of forces and boundary 

conditions have been extensively studied. The differential equation of large deflection of 

cantilever beam under a  point force at the tip was solved in 1945 [8]. In that approach 

the differential equation of the slope of the beam versus the length of the deflected curve 

was formulated and solved based on complete second and first kind elliptic integrals. The 

differential equation of slope versus length of the deflected curve based on consideration 

of shear force was numerically solved [128]. The authors used finite difference methods 

to solve ordinary differential equation (ODE) for distributed force on cantilever and 

simple supported beams. They also used the same method to solve the ODE of the simple 

supported beam under a point force. A numerical solution for the tapered cantilever beam 

under a point force at tip was presented in 1968 [129]. The author converted ODE to non-

dimensional ODE and used a computer to solve it. A cantilever beam, made from 

materials exhibiting nonlinear properties subjected to a point force was also studied 

[130].  

 The deflection equation was calculated based on Ludwick experimental strain-stress 

curve. The integral equation was solved numerically and the end beam deflection and 
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rotation were calculated. The same problem of large deflection cantilever beams made 

from materials behaving of non-linear fashion under the tip point force was solved by 

finite difference methods [10].   

 The authors solved the nonlinear ODE of curvature for a cantilever made from nonlinear 

characteristics a material and subjected to point force at the tip by numerical methods. 

Power series and neural network were used to solve large deflection of a cantilever beam 

under tip force [9].  Nonlinear ODE were decomposed to a system of ODEs and solved 

by neural networks. Large deflections of cantilever beams made from nonlinear elastic 

materials under uniform distributed forces and a point force at tip were also studied 

[131]. In this work a system of nonlinear ODEs was developed to model the system 

which was further solved by Runge-Kutta method. Researchers [1] in [1]used almost a 

similar method that was used in [8] to solve the large deflection of a cantilever under the 

point force at the tip and they validated their results with experiments. Also they used 

non-dimensional formulation to simplify the nonlinear deflection to linear analysis. They 

showed that nonlinear small deflection is same as those found through the linear analysis. 

Two dimensional loading of cantilever beams with point forces loads at the free end was 

studied for non-prismatic and prismatic beams [132]. Authors formulated the model for 

the general loading conditions in beams. The result is a nonlinear PDE which is presented 

in this paper. Further, the authors numerically solved the non-dimensional equation using 

a polynomial to define the rotating angle of the beam. They presented some examples 

applied to their methods.  A cantilever beam subjected to a tip moment with nonlinear 

bimorph material was theoretically and numerically studied [34]. The authors used an 

exact solution for the deflection of a cantilever with a moment applied at the tip. 
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Cantilever beam under uniform and tip point force was numerically and experimentally 

studied [12]. In this study, the authors used a system of ODEs to solve numerically this 

problem. Finite difference methods for analysis of large deflection of a non-prismatic 

cantilever beam subjected to different types of continuous and discontinuous loadings 

was studied [13]. Authors formulated the problem based on [132] and further used quasi-

linearization central finite differences method to solve the problem. An explicit solution 

for large deflection of cantilever beams subjected to point force at the tip was obtained by 

using the homotopy analysis method (HAM) presented in [133]. Large deflection of a 

non-uniform spring-hinged cantilever beam under a follower point force at the tip was 

formulated and solved numerically [134]. 

 

3.2. Nonlinear deflection of beams 

 

Deflection of a cantilever can be defined as y in the below nonlinear ODE: 

 

)()(

)(

))(1( 2

3

2

2

2

xIxE

xM

dx

dy

dx

yd




                                                     (3.1) 

where: 

 

E is Young modulus of elasticity of the material of the beam 

I is bending cross-section moment of inertia  

y is the current deflection 

x is the current coordinate along the beam 
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MxPx ),(),(
 are distributed, point forces and moment

 

 

Figure  3.1.1. Deflection of a beam subject to a distributed load and a concentrated moment        

 

As an example )(xM at any point for a point force at the tip of the beam (Fig. 3.1.1) is: 

 

)()( xlFxM x                                                                     (3.2) 

x horizantal deflection
 

3.3.   Lie symmetry analysis of large deflection of beams 

 

One can show that according to (E.6) and (E.7) infinitesimal transformation is defined 

as[122]: 

 

          
y

yx
x

yxXf








 ),(),(                                                     (3.3) 

 

 where: 
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




 yx        ,  

0
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


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


 yx                                        (3.4) 
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  and X is an operator       

,
    are continues transformation functions

 

                   

It can be shown [115] that for a second order differential equation like: 

 

),,( 
2

2

dx

dy
yx

dx

yd
                                                             (3.5) 

 

by applying an infinitesimal group on (E.7), ξ and η in (3.1) the transformation must 

satisfy the equation below[121]: 

 

yyxyx

yxyxy

yyxyyyxxxyxx

yy

y

yyy














))((

)32(

)2()2(

2

32

                                                    (3.6) 

 

By decomposing (3.4) into a system of PDEs, ξ and η can be calculated. Also from (3.2) 

the transformation φ and ψ can be calculated. If one considers the infinitesimal 

transformation in the form of below which is tarnslation and scaling: 

 

yCxCC

yCxCC

654

321









                                                  (3.7) 

 

where: 
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654321 ,,,,, CCCCCC  are constant numbers. 

 

Most of Lie symmetries including rotation, translation and scaling could be found with 

the above transformations.For equation (3.5) ,  is given by: 

 

2
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2

2

2

))(1(
)()(

)(
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dx

dy

xIxE

xM
yyx

dx

yd
 

                                    (3.8) 

 

Substitution of (3.7) and (3.8) in (3.6) gives: 
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
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                        (3.9) 

 

This can be further written as: 
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                          (3.10) 

 

As all three parentheses must be zero, in first parenthesis coefficients of  x and 

)
)()(

)(
(

xIxE

xM

dx

d
  are zero: 

 

             021 CC                                                          (3.11) 

  

and also: 

 

                      06 C                                                              (3.12) 

 

In the second parenthesis coefficient of y must be zero so: 

 

          03 C                                                                (3.13) 

 

In the last parenthesis, in order to yield a zero coefficient  05 C must be also zero. 

Therefore only 04 C , and one can write: 
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                     14 C                                                        (3.14) 

 

Therefore (3.3) becomes: 

 

         
y

f
Xf




                                                            (3.15) 

 

Canonical coordinates (E.12) and (E.13) can be calculated as[122]: 

 

                

),(
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)),(,(

(),(
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                                                  (3.16) 

 

where:  

 

 ),( yxr is the solution of: 

 

                                               
),(

),(

yx

yx
Xf




                                                       (3.17) 

 

One can show that: 

 

                                                        xyxr ),(           

       yyxs ),(                                                            (3.18) 
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Any canonical coordinates must satisfy the following conditions[114]: 

 

0),(),(  yx ryxryx   

   1),(),(  yx syxsyx      

     0








yx

yx

ss

rr
                                                       (3.19) 

 

It is easy to show that (3.16) satisfies (3.17). According to (E.17) and (E.18) the reduced 

form of (E.19) becomes: 

 

xv   

       
dx

xdy
vu

)(
)(                                                    (3.20) 

 

This transformation is a well-known and it is brought here just to show the method of 

deriving the canonical coordinates. Substituting (3.18) in (E.19) gives: 

 

                             2

3

2 ))(1(
)()(

vu
EI

vM

dv

vdu
                                             (3.21) 

 

This is a first order ODE and it is possible to further solve it by Lie symmetry method. 

It can be shown that [114] for a first order differential equation like: 

 

                                     ),( yx
dx

dy
                                                        (3.22) 
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where: 

                              2

3

2 ))(1(
)(

),(
)(

vu
EI

vM
vu

dv

vdu
                                  (3.23) 

 

if one is applying an infinitesimal group on (E.7), ξ and η in (3.21) which must satisfy the 

equation below: 

 

                  
yxyxyx   2)(                                        (3.24) 

 

And further substituting (3.23) in (3.24) yields: 
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                                     (3.25) 

 

There is no term of  
2

1

2 ))(1)(( vuvu   the left hand side of the equation, so the equation 

yields: 

 

                                                   0                                                            (3.26) 

 

Therefore (3.25) can be written as: 
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                           (3.27) 

 

Comparing the moment in both sides of equation one can show that 0u , so: 

 

                                )(v                                                             (3.28) 

 

By considering (3.28), equation (3.27) will simplify to: 
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which has as solution:    
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where C is a constant that can be considered to start with as the unit. Hence: 
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Therefore: 
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Canonical coordinates can be calculated as: 

         

)(),( vuvur   
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These canonical coordinates satisfy the conditions (3.19). Equation (E19) can be written 

as: 
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for which the solution is: 
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or: 
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Substituting (3.33) in (3.36) yields: 
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Further, substituting (3.20) in (3.37) results in: 
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Therefore, y becomes: 
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This solution is expressed in terms of two constants 1C  and 2C  that could be evaluated 

from the boundary conditions. A 3D graph for  1C  and 2C both equal to zero is illustrated 

below. The graph shows the deflection of each point on the beam with respect to the 

curvature 
)()(

)(

xIxE

xM  and its integral. The integral in closed curves has a property  which 

comes from Gauss-Bonnet Theorem in 3D space. This property states that the integral of 

the Gaussian curvature over a closed smooth surface is equal to 2π times the Euler 

http://www.applet-magic.com/curvature.htm
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characteristic of the surface. The Euler characteristic is a topological invariant, a number 

that describes a topological space's shape or structure regardless of the way it  bents. 

 

Figure  3.3.1. A general solution of equation (3.39) 

 

As illustrated in figure 3.3.1 and from from equation (3.39) the large deflection of the 

beam has integral form.  The deflection is function of the bending moment,  Young 

modulus and the geometric moment of inertia  in each seaction.  Neglecting the 

denominator  will  provide small deflection equation for  a beam (linear solution).   

 

3.4. Example 

 

Below the two closed forms solution of the deflection in the open literature will be 

compared with the solution obtained by the proposed method. 

 

 

Case study 1- Large deflection of a cantilever beam subjected to a tip force 

http://en.wikipedia.org/wiki/Topological_invariant
http://en.wikipedia.org/wiki/Topological_space
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Figure 3.4.1. Cantilever beam loaded with an external vertical concentrated load at the free end and definitions of the 

parameters for large deflections[1]. 

 

If a point force is applied at the tip of a cantilever beam the bending moment can be 

expressed as (3.2).  Moment of can be written as: 

 

   )()( xLPxM x                                               (3.40) 

 

Hence, 
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)()(

)( 2x
Lx

EI

P
dx
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xM
x                                        (3.41) 

 

By considering the boundary conditions in the equation (3.38), 01 C . 

  

 

From (3.39) one can calculate y(x) as: 
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By assuming: 
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Equation (3.42) can be simplified to: 
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(3.44) 

 

This equation explicitly relates length and force to deflection. To calculate deflection, 

equation (3.44) must be solved simultaneously with:  

 

   dx
dx

dy
L

hL



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

0

2)(1(                                               (3.43) 

 

Numerical solution of these equations are given in the table 3.4.1 which is complete 

agreement with .  
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Figure  3.3.2. Large deflection of cantilever under point force at the tip in vertical and horizontal directions 

 
Table  3.3.1. Numerical non-dimensional solution of cantilever under point force at the tip 

 

 

 

EI

PL2

 
L

h  
L

v  

0 0 0 

0.2 0.0026466134 0.0663645377 

0.4 0.0103539307 0.1309752510 

0.6 0.0224876954 0.1923502946 

0.8 0.0381656225 0.2494515460 

1 0.0564330035 0.3017207122 

1.5 0.1079415014 0.4109782132 

2 0.1606417216 0.4934574795 

3 0.2544201850 0.6032534411 

4 0.3289412419 0.6699641822 

5 0.3876283604 0.7137915239 

6 0.4345888287 0.7445711491 

7 0.4729274194 0.7673691097 

8 0.5048277350 0.7849823718 

9 0.5318205639 0.7990555255 

10 0.5549956005 0.8106090210 

15 0.6352857811 0.8477156727 

  1 1 
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Case study 2-Larege deflection of a cantilever beam subjected to a tip moment 

 

 

Figure  3.3.3. Cantilever beam subjected to an end moment  . 

 

If a point moment is applied at the tip of cantilever beam as figure 3.4.3, equation (3.1) 

becomes: 
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                                                (3.44) 

According to [34] deflection is: 
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By considering the boundary condition as the deflection at the fixed point: 

 

                                              0)0(
0


xdx

dy
y                                               (3.46) 

 



98 

 

which satisfies equation (3.45). The equation (3.38) in which the boundary conditions are 

considered becomes: 
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


x
x EICMxCMx

CMx

dx

dy                                 (3.47) 

 

hence: 

 

        01 C                                                            (3.48) 

 

Equation (3.39) becomes: 

 

2
222

2
22

)(

))((

)()(
)(

C
EIxMM

MxEIMxEI

Cdx
EIMx

Mx
xy










 

                                  (3.49) 

 

By considering the boubdary conditions, 
2C  in equation (3.49) becomes: 

 

M

EI
C 2

                                                             (3.50) 

 

Finally equation (3.49) becomes: 
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            ))(11(
)()(

))((
)( 2

22 EI

Mx

M

EI

M

EI

MxEIM

MxEIMxEI
xy 




                     (3.51)               

 

and as one can see, it is identical to (3.45). Deflection of cantilever various to the respect 

of length and  
EI

M is given in the below 3D graph. This graph shows the variation of 

deflection of cantilever versus it’s curvature in defferent points. It shows that nonlinearity 

incearse by curvature faster than length of cantilever.   

 

Figure  3.3.4. Large deflection of cantilever beam under moment at the tip. 

 

Case study 3- Large deflection of a cantilever beam made of non-linear materials of 

Ludwick type subjected to a tip moment. 

Generally the relation between stress and strain under  small stress conditions is linear as 

stated by Hook Law. By increasing  stress nonlinear behavior of material is expressed.  

For most of materials the non-linear behaviour can be defined asa stress-strain relation 

like: 

               nB

1

                                                                     (3.51) 
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This kind of materials are called Ludwick materials. Here,  B and n represent constants 

related to material properties. For a rectangular cross section of beam subjected to a 

moment at the free end, 
)()(

)(

xIxE

xM   can be written as[130]: 

 

               

n

n

K

M

dx

dy

dx

yd



 2

3

2

2

2

))(1(

                                                   (3.52) 

 

Where  
nn

nnnn

n
n

Bhbn
K

)21(2 1

12








, b is width and h is thickness. By substituting (3.52) in (3.39): 

 

     











 2

2

1

1

)(1

)( Cdx

Cdx
K

M

Cdx
K

M

xy

n

n

n

n

                                          (3.53) 

 

As case 1, one can show that 01 C  and 
n

n

M

K
C 2

. Equation (3.53) simplified to: 

 

  22)(11)(()( x
M

K

M

K
xy

n

n

n

n                                                    (3.54) 

 

This equation was provided in [130]. When there is no moment y(x) limit is zero for any 

case of n. This result was evaluated by a freeware software developed in MIT called 

wxMaxima0.8.2. This a free mathematical software which is developed by Maxima 

which is a spin-off from the  MIT.  
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The deflection of cantilever to the respect to moment and length for a cantilever beam 

with 
209.0

1
  ],[  0.1],[  25.0  ninhinb and [Psi] 66100B is presented in graph 

below. 

  

Figure  3.3.5. Large deflection of cantilever beam from nonlinear material, under moment at the tip. 

 

Case study 4-Larege deflection of a cantilever beam of non-linear materials of Ludwick 

type subjected to a tip force 

 

Like case 3 ODE is (3.52) whereas: 

 

       
nnn

nnnn

n
Pn

Bhbn
K

)21(2 1

12








                                                   (3.55) 

 

and 

 

           )( xxLPM                                                   (3.56) 
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where: 

 

P is point force and 
x  is end deflection.  

Based on above equations, one can write: 

 

         
n

n

x

n

n

Kn

xL
dx

K

M
dx

xIxE

xM

)1(

)(

)()(

)(
1








 
                                       (3.57) 

 

For a cantilever beam B.C. is: 

 

           0
0


xdx

dy                                                            (3.58) 

 

From (3.38) 1C will be: 

 

          
n

n

x

n Kn

L

K
C

)1(

)(1
1

1





                                                        (3.59) 

 

By considering (3.57) and (3.59), one can write (3.39) as: 

 

 
 








21122

11

])()[()1(

)()(
)(

n

x

n

xn

n

x

n

x

xLLnK

dxxLL
xy



                                (3.60) 

This equations was introduced in [131]. To calculate 
h and )(xy , one has to use equations 

(3.60) and (3.43). Numerical solution of this system of two equation and two unknowns 



103 

 

is sought with Maple 11.0, for a cantilever like case 3 and P=10 [lb] which results yield 

the below graphs: 

 

 

Figure  3.3.6. Large deflection of cantilever beam with non- linear material, under point force at the tip. 

 

The shown figure t is for a cantilever beam with non-linear material  which follows 

Ludwick law,  Cantileveris subjected to point force at the free end-tip deflection for this 

case is: 

 

[in]  02644.2

  ],[  4570.11

x 





 iny
 

In general case solution of this system of equations geven below diagram. This graph 

shows vertical and horizantal deflection versus applied moment.  It shows that horzintal 

deflection increase with moment slitly compare to vertical deflection, where as in linear 

material with pint force, figure 3.4.2, horizantal deflection increase rapidly .    
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Figure  3.3.7.  Large deflection of a cantilever beams of non-linear materials of Ludwick type subjected to a tip force 

 

The deflection in horizontal direction maintains within a trend that could be accepted as 

linear while in vertical direction, it does not. 

 

3.5.  Small deflection 

 

In general application of engineering, the assumption of small deflection beams is used. 

To relate small deflection and large deflection, one can consider (3.39) while assumes 

that curvature 
)()(

)( 1

xIxE

CdxxM 
 is very small, so in the denominator 

22

1 ))()(())(( xIxECdxxM   , the equation will simplified to: 

 

 





 212

1

))((
1

)()(

)(
)( CdxCdxxM

EI
Cdx

xIxE

CdxxM
xy

                               (3.51) 
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where E and I are considered constant. 

 

This is the well-known small deflection of the beam.  One can assume above assumption 

because in small deflection    1)( CdxxM  is slope of curvature which is very small 

compare to EI. 

3.6.  Calculation of bending moment and stress based on known deflection 

 

If the large deflection of a beam can be described by a polynomial like: 

 

     



k

n

n

n xaxy
0

)(                                                        (3.52) 

 

where k can be infinite and y(x) satisfies boundary conditions. By substituting (3.52) in 

(3.39) and calculating  )()(

)(

xIxE

xM  , it yields: 

 

         













k

n

n

n

k

n

n

n

xxna

xna

xIxE

xM

0

22

0

)(
)()(

)(                                            (3.53) 
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
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n
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n

n

n
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n

n
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n

xxna
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xIxExM      

(3.54) 
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Based on elasticity theory, stress in a point at a cross section can be calculated as: 

 

             
)(

)(

xI

yxM
                                                          (3.55) 

 

Substitutions of (54) in (55) give: 

)(xyE )
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)2))(2)((
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
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n
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         (3.56) 

 

 

 

 

 

3.7.  Formulation of the large deflection of not-straight beam problem 

                                                                                                   

 

 

Figure  3.7.1. A non-straight cantilever under tip forces and moment             
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A non-straight cantilever beam as shown in figure 3.7.1 is subjected two orthogonal point 

forces and one moment. Internal reaction moment in any cross section on the left hand 

side of cantilever can be written as: 

 

         000 )()(),( MyyHxxVyxM                                           (3.57) 

 

where: 

 

) sin( 0PV   

) cos( 0PH   

uPM .0   

 

where u is distance from end of tip to neutral axis of the cantilever beam. Euler–Bernoulli 

moment–curvature relationship gives[11]: 

 

         ),( yxM
d

d
EI 




                                                 (3.58) 

where: 

 

       ) cos(



d

dx
                                                        (3.59) 

) sin(



d

dy
                                                         (3.60) 
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Derivative of (3.58) yields: 

 

      ) sin( ) cos(
 2

2 





HV

d

d
EI                                               (3.61) 

 

The boundary conditions for this ODE are: 

 

         0
0



                                                           (3.62) 

          
EI

M

d

d

L

0





                                                   (3.63) 

 

L is length of cantilever. 

 

3.8.  One-parameter Lie group of transformation (pure approach) 

 

The Lie group transformation has been intensively investigated. Bluman and Anio [121] 

have presented in detail algorithms that enable finding the symmetry of a specified 

problem. Below such as algorithm is used as presented [121]. For convenience, the 

definitions and the algorithm are reproduced from the above reference from chapter 3 to 7 

 

Definition 3.1: Let  ),...,,( 21 nxxxx  lie in region nRD  . The set of transformations 

 

     );(* xXx                                                        (3.64) 
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defined for each x in D and parameter ε in set   RS  , with ),(   defining a law of 

composition of parameters ε and δ in S, forms a one-parameter group of transformations 

on D if the following hold: 

 

(i) For each ε in S the transformations are one-to-one onto D.  

(ii) S with the law of composition  forms a group G. 

(iii)For each x in D, xx *  when 0   corresponds to the identity e, i.e., 

 

xxX );(                                                                             (3.65) 

 

(iv) If );(* xXx  , );( *** xXx  , then 

(v)   )),(;(** xXx                                                                                                (3.66) 

 

Definition 3.2:  A one-parameter group of transformations defines a one-parameter Lie 

group of transformations if, in addition to satisfying axioms (i)-(iv) of definition 1, the 

following hold: 

     

(vi) ε is a continuous parameter, i.e., S is an interval in R. without loss of generality, 

ε=0 corresponds to the identity element e. 

(vii) X is infinitely differentiable with respect to x in D and an analytical function 

of ε in S. 

(viii) ),(   is an analytical function of ε and δ, SS   , . 
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Theorem 3.1: There exists a parameterization )(  such that the Lie group of 

transformations );(* xXX   is equivalent to the solution of an initial value problem for a 

system of first-order ODEs given by (proof on page 112 [121]) : 

 

          )( *
*

x
d

dx



                                                     (3.67) 

 

With  

 

  xx *
 where 0                                                (3.68) 

 

In particular, 

 

     




0

)()( d                                                      (3.69) 

where : 

 

     
),(),( 1

),(
)(











bab

ba
                                     (3.70) 

 

and 

 

          1)0(                                                          (3.71) 
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3.9.   Infinitesimal generators 

 

Definition 3.3: The infinitesimal generator of the one-parameter Lie group of 

transformations  );(* xXX   is the operator 

 

  
 




n

i i

i
x

xxxXX
1

)().()(                                           (3.72) 

 

Theorem 3.2: The one-parameter Lie-group of transformations, );(* xXX   is equivalent 

to 

 

      xX
k

ex k

k

k
X 






0

*

!


                                                  (3.73) 

 

where the operator )(xXX   is defined by (3.72) and the operator )(xXX kk   is given by  

1 kk XXX , ,...2,1k  . In particular, )(xFX k
 is the function obtained by applying the 

operator X  to the function )(1 xFX k

, ,...2,1k , )()(0 xFxFX  ,with )()(0 xFxFX  . 
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3.10. Invariant functions 

 

Definition 3.4: An infinitely differentiable function )(xF  is an invariant function of the 

Lie group of transformation );(* xXX   if only if, for any group 

transformation );(* xXX  , 

 

         )()( * xFxF                                                              (3.74) 

 

If )(xF is an invariant function of );(* xXX  , then  )(xF  is called an invariant of 

);(* xXX   and )(xF is said to be invariant under );(* xXX  . 

 

Theorem 3.3: )(xF is invariant under a Lie group of transformation  );(* xXX    if and 

only if  

 

     0)( xXF                                                               (3.75) 

 

3.11. Canonical coordinates 

 

Definition 3.5: A change of coordinates )),(),...,(),(()( 21 xyxyxyxYy n defines a set of 

canonical coordinates for the one-parameter Lie group of transformations );(* xXX    if, 

in terms of such coordinates, the group );(* xXX   becomes 
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 ii yy *
  ni ,...,2,1                                                    (3.76) 

          nn yy*
                                                        (3.77) 

 

Theorem 3.4: For any Lie group of transformations );(* xXX  , there exists a set of 

canonical coordinates )),(),...,(),(( 21 xyxyxyy n  such that );(* xXX   is equivalent to 

(3.76) and (3.77). 

 

Theorem 3.5: In terms of any set of canonical coordinates )),(),...,(),(( 21 xyxyxyy n , the 

infinitesimal generator of the one- parameter Lie group of 

transformations becomes 

 

                   
ny

Y



                                                                (3.78) 

 

3.12. Point transformations and prolongations 

 

Definition 3.6: A one-parameter (ε) Lie group of point transformations is a group of 

transformation of the form  

     ),,(* uxXx                                                          (3.79) 

      ),,(* uxUu                                                          (3.80) 

 

  Acting on the space of mn   variables 
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  ),...,,( 21 nxxxx                                                          (3.81) 

    ),...,,( 21 muuuu                                                         (3.82) 

 

Theorem 3.6: The one-parameter Lie group of point transformations  

 

          ),,(* yxXx                                                      (3.83) 

      ),,(* yxYy                                                       (3.84) 

 

Acting on ),( yx  - space extends to the following one-parameter Lie group of 

transformations acting on ),,( 1yyx -space: 

 

 ),,,( 1

*

1 yyxYy                                                          (3.85) 

  

Theorem 3.7: The second extension of the one-parameter Lie group of point 

transformations (3.83) and (3.84) is following one-parameter Lie group of 

transformations acting on  ),,,( 21 yyyx -space: 

 

   ),,(* yxXx                                                             (3.86) 

      ),,(* yxYy                                                              (3.87)                                                                 

 ),,,( 11

*

1 yyxYy                         
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1

1
2

1
1

1

212

*

2 
                               (3.88) 

 

where ),,,( 111 yyxYY   is defined by (3.85). 

 

3.13. Extended infinitesimal transformations 

 

Definition 3.7: the one-parameter Lie group of point transformations 

 

  )(),(),,( 2*  OyxxyxXx                                      (3.89) 

      )(),(),,( 2*  OyxyyxYy                                        (3.90) 

 

Acting on ),( yx -space, has infinitesimals 

 

   ),( ),,( yxyx                                                            (3.91)    

                    

With the corresponding infinitesimal generator 

 

        
y

yx
x

yxX








 ),(),(                                                       (3.92) 

 

Theorem 3.8: The extended infinitesimals )(k  satisfy the recursion relation 
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                         


  j

jk

kk Dy
jjk

k
D 1

)()(

!)!(

!
        1k                                    (3.93) 

 

3.14. Solution of ODEs by Lie symmetry 

 

The solution algorithm for first order differential equation is presented in detail in [121].  

 

3.14.1. Solution of First-order ODEs 

 

Assume that a first order ODE 

 

    ),( yxf
dx

dy
y                                                          (3.94) 

 

has a one-parameter Lie group of point transformations, called a point symmetry, with 

the infinitesimal generator 

 

       
y

yx
x

yxX








 ),(),(                                                      (3.95) 

 

canonical coordinates ),(),,( yxsyxr  for  (3.94)  which are found by solving 
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                  0Xr                                                             (3.96) 

          1Xs                                                             (3.97) 

 

ODE  (3.94) in terms of canonical coordinates become 

 

       )(
),(

),(
rF

yxfrr

yxfss

dr

ds

yx

yx





                                                  (3.98) 

 

So  

 

),(

)(),(

yxr

cdFyxs                  ConstC                                     (3.99) 

 

3.14.2. Reduction of the order of ODE 

 

Theorem 3.9: assume a nontrivial one-parameter Lie group of transformations (3.89) and 

(3.90), with infinitesimal generator (3.92), is admitted by an n
th

-order ODE  

 

                 )1()( ,...,,,(  nn yyyxfy               2n                                       (3.100) 

 

Let ),(),,( yxsyxr  be corresponding canonical coordinates satisfying (3.96) and (3.97). 

Then the n
th

-order ODE (3.100) reduces to an (n-1)
th

-order ODE 

 

          ),...,,,(
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


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
n

n

n

n

dr

zd

dr

dz
zrG
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zd
                                         (3.101) 
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Where: 

 

        z
dr

ds
                                                           (3.102) 

 

The above set of definitions and theorems could be effectively used to solve a complex 

problem of cantilever beam, which stands as an initial conditions problem. The curvature 

of the beam might be due to previous plastic deflection (deformation) or due to inter 

laminar stress in polymorphous layered beams. The last case can be solved using the 

presented method assuming that the effective geometry of the beam is due to a 

concentrated moment load which applied the free-end of the beam. 

 

3.15. The algorithm formulation for Lie symmetry point 

 

The equation (3.61) can be written as 

 

     
EI

HV

d

d )sin()cos(
2

2 



 
                                                     (3.103) 

 

From (3.93) one can show that for a second order ODE )2(  is calculated as in [115] and 

[120] , 
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                   (3.104)  

 

Where: 

 

EI

HV ) sin() cos( 



  

 

By decomposing (3.104) into a system of PDEs, ξ and η can be calculated. Most of Lie 

symmetries including rotation translation and scaling could be found with the help of the 

below transformations: 





654

321

CCC

CCC




                                                (3.105) 

where: 

 

654321 ,,,,, CCCCCC  are constant numbers. 

Substitution (3.104) in (3.105) yields: 

 

))(
)sin()cos(

()
)sin()cos(

)(32( 654326 


 CCC
EI

HV

EI

HV
CCC 





 

  
 (3.106) 

 

By comparing terms, one can show that 
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065432  CCCCC                                                  (3.107) 

 

Therefore: 

 

0

1







 C
                                                                (3.108) 

 

Equations (3.108) give the general transformation for (3.103). It is possible to consider ξ 

and η as: 

 

              1),(                                                              (3.109) 

   0),(                                                             (3.110) 

 

Hence, (3.95) can be simplified as an operator: 

 

     



X                                                             (3.111) 

 

To calculate canonical coordinates, one can use (3.96) and (3.97); however, the solution 

of below ODE is ),( r   [135], [116]: 

     
),(

),(










d

d
                                                     (3.112)     

and ),( s  will be: 
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),(

)
)),(,(

(),(







rr
r

d
s



                                 (3.113)        

 

where (3.96) and (3.97) can be considered as boundary conditions. Substituting (3.109) 

and  (3.110) in (3.112) and (56) (3.113) yields: 

 

         ),(r                                                          (3.114) 

            ),(s                                                          (3.115) 

 

which satisfies  (3.96) and  (3.97) respectively.  

By defining u(r) as: 

 

      





d

d
ru

1
)(                                                         (3.116) 

 

One can show that: 

 

      
2

2

2

)(

)(









d

d

d

d

dr

rdu
                                                  (3.117) 

 

 So according to (3.83), (3.84), and (3.85): 
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dr

rdu
ru

d

d )(
)( 3

2

2





                                           (3.118) 

 

Substitution of (3.116) and (3.117) in (3.118) gives: 

 

             
3)()

)sin()cos(
(

)(
ru

EI

HV

dr

rdu  
                                             (3.119) 

 

Substitution of (3.114) and (3.115) in (3.119) will yield: 

 

  3)()
)sin()cos(

(
)(







u

EI

HV

d

du 
                                                (3.120) 

 

For a first order ODE like (3.120) equation (3.93) can be written as [114], [122]: 

 

          uuu    2)(                                          (3.121) 

 

Where: 

 

3)()
)sin()cos(

( 


 u
EI

HV 
  

 

Substituting  and its derivatives in (3.121) yields 
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2

3

62

2

3

))sin()cos((
3

))sin()cos((
1

))sin()cos((
)(

1

))sin()cos((

)(
1

uHV
EI

uHV
EI

uHV
EI

uHV

EI

u

u









 











                                               (3.122) 

 

 From (3.122), equating  
6u  and free term, it is found that 

 

     0 u                                                            (3.123) 

 

By comparing the coefficients of
3u , one can write 

 

      ))cos()sin(())sin()cos()((   HVHVu                             (3.124) 

 

To satisfy (3.124),   must be assumed as zero 

 

0                                                             (3.125) 

 

hence (3.122) becomes 

 

   3uu                                                        (3.126) 
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The integral of this ODE is: 

 

         3u                                                            (3.127) 

 

So (3.95) becomes: 

 

             
u

uX



 3

                                                         (3.128) 

 

Based on (3.128), canonical coordinates can be calculated from (3.112) and (3.113) as: 

 

                  ),( ur                                                            (3.129) 

             
22

1
),(

u
us                                                         (3.130) 

 

Substituting (3.129) and (3.130) in (3.98)  yields: 

 

       ))sin()cos((
1

rHrV
EIdr

ds
                                            (3.131) 

So: 

            
1))sin()cos((

1
CrHrV

EI
s                                        (3.132) 

 

Further, by substituting (3.116), (3.129) and (3.130) in (3.132) one gets: 
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   1

2 ))sin()cos((
2

)( CrVrH
EId

d





                                     (3.133) 

 

By considering boundary condition (3.62), C1 becomes: 

 

  ))sin()cos((
2

)( 20
1 ff VH

EIEI

M
C                               (3.134) 

 

where f is final angle in the tip. 

Solution of (3.133) yields: 

 

      2

1))sin()cos((
2

C

CVH
EI

d




 



                                 (3.135) 

 

From equations (3.59) and (3.60) one can write equation (3.133) as: 

 

       




f

CVH
EI

d
dx

a 





0
1

0 ))sin()cos((
2

)cos(
                                    (3.136) 

      




f

CVH
EI

d
dy

b 





0
1

0 ))sin()cos((
2

)sin(
                                    (3.137) 

 

which relationship, after the integration will yield the deflection at the tip of the not-

straight cantilever beam.  
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3.16. Validation 

 

The below examples are special cases of the presented general problem. All these 

presented cases refer to deflection in the non-linear domain and they have been 

formulated at different times and solved using different methods such as provided in  [1], 

[34], [136]. Each solution has employed same formulation but different methods were 

used to prove the solution, which are identical with the solutions obtained from the 

proposed general formulation for the same problem. The three cases are recognized in the 

literature as the large deflection cases for straight cantilever beams subjected to point 

loads: cantilever beam subjected to vertical point force, cantilever beam subjected to 

moment at the tip and cantilever beam subjected to horizontal and vertical force at the tip. 

 

 

3.16.1. Cantilever beam under vertical point force at tip  

 

For a straight cantilever beam under a tip force, C1 and ρ from (3.134) and (3.135) will 

simplify to: 

 

        )sin(
2

01 
EI

V
C                                                         (3.138) 






1))sin((
2

CV
EI

d




                                                  (3.139) 
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Substituting (3.138) in (3.139) gives: 

 

   2

0 ))sin()(sin(
2

C

EI

V

d




 



                                             (3.140) 

 

Further, by applying the  0
L

d

d





as a boundary condition, one can show that 02 C , 

and therefore: 

 

         



))sin()(sin(2

0 




d

V

EI
                                    (3.141) 

 

An identical solution was formulated using a different approach and proved in the 

reference [1] . 

 

3.16.2. Cantilever beam under moment at tip 

 

For a straight cantilever beam under a moment 1C  and y from (3.134) and (3.137), for tip 

deflection will simplify to: 

 

     20
1 )(

EI

M
C                                                     (3.142) 

       
1

0

)cos( C
M

EI
y                                        (3.143) 
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Further, assuming  0
0



y as a boundary condition 

2C  will become: 

 

       
0

2
M

EI
C                                                          (3.144) 

 

therefore:  

 

   ))cos(1(
0


M

EI
y                                              (3.145) 

 

which was proved using another approach in [34] .  

 

3.16.3. Nonlinear cantilever beam subjected to inclined point force at the tip   

 

If in figure  3.7.1 horizontal force is considered as a fraction of the vertical force nVH  . 

Equation (3.134) can be written as: 

 

     
EI

P
C

2
1                                                           (3.146) 

 

where: 

 

               )cos()sin( 000  n                                      (3.147) 
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VEI

M

2

2

0
0                                                                 (3.148) 

 

Further, (78) can be written as: 

 

   2
))sin()cos((2

C
n

d

V

EI



 




                                              (3.149) 

 

This solution was proved by a different method in [136] . 

 

3.17.   Sensitivity analysis of the non-straight beam 

 

The sensitivity analysis for large deflection of micro-cantilever beams and AFM is 

carried out in this section.  The main question here is, if one uses curved micro-cantilever 

beams how significantly its sensitivity is different from straight micro-cantilever beam? 

Manufacturing micro-cantilever beam like the one in figure 3.7.1 is relatively 

unchallenging. However, can such micro-beams be used as AFM probes? If micro-

cantilever beam of AFM reaches a large deflection region, does it have the same 

sensitivity? To answer these questions, the AFM micro-cantilever beam of [135] was 

considered as figure 3.7.2. The dimensions and the mechanical properties of micro-

cantilever beam are presented in table 3.7.1. 
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Figure  3.7.1. Permanently curved micro-cantilever beams (CONCAVE Laboratory) 

 

 

Figure  3.7.2. AFM Micro-cantilever beam and its tip close up [135] 
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Table  3.7.1.  Dimensions and mechanical properties of AFM [135] 

Length 
[µm] 

Width  

[µm] 

Thickness 

[µm] 

Young Modulus 

[GPa] 

Tip’s 

length 

[µm] 

Density 

[
3Kgm ] 

299 35 0.96 169.5 15 2330 

 

 

First, a very important result from equation (3.135) can be derived. This equation shows 

that the deflection of straight beam is same as curved beam when they have same 

dimensions and are subjected to same loads. Therefore, the deflection of the curved 

beams is same as straight beam’s behavior.  In order to evaluate the effect of different 

parameters on deflection, at the first step geometry and then mechanical properties of 

beam were considered constants. In order to simplify the results all analysis were carried 

out for the above mentioned AFM beam. All variations were considered around this AFM 

beam. Referring to the equations (3.135) to (3.137), the variables that can effect 

curvature, vertical and horizontal deflections are uLIP f ,,,,, 0 ,where  P   is applied 

force on the tip of cantilever beam, I is moment inertia of cross section, L is length of 

cantilever, f is the final angle of free end of cantilever beam after deflection, 0 is the 

angle of applied force to the tip of  AFM beam with  horizontal surface and u is length of 

tip. As one can see, there are six different variables.  P  is assumed to vary from 0  to 

2 [µN] . For the problem, the maximum value of P  is selected. There are two criteria’s 

that one has to consider. One criterion is the buckling problem. If  one assumes that as 

worst case, the  tip of beam touches the surface in the way that all applied forces are 

horizontal, so maximum stress for a straight cantilever beam under eccentric force under 

buckling can be calculated from the secant formula [123]: 
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))
2

sec(1(
2max

EA

P

r

L

r

ec

A

P
                                           (3.150) 

where: 

][10113 6

max Pa  is the ultimate stress 

P is the applied force 

][103.360 2-11 mA   is the cross section of micro-cantilever beam 

][1051 -6 me   is the eccentric distance which is  tip’s length 

][1048.0c 6 m is half of thickness 

][10277.0 -6 mr   is the radius of gyration 

][10299 -6 mL   is the length of micro-cantilever beam 

][105.169 9 PaE   is Young modulus of micro-cantilever beam  

][1058048.2 4-24 mI  is the moment of inertia 

 

Substituting above values in equation (3.150) will yield to: 

 

810 1013.1))051.226sec(75.931(102.9762  PP                        (3.151) 

 

 The solution of this equation for P is: 

 

][107.20 6 NP   
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The second criterion for P  is maximum stress due to the bending moment. From bending 

stress one can write: 

 

6

24-

66

max 10113
1058048.2

1048.010299







P

I

PLc

I

Mc
     ][Pa               (3.152) 

 

The terms in this equation are introduced above.  The maximum force derived is found as 

][102.07P -6 N . Following the aforementioned equations and considering the force as 

][102.07P -6 N  in nonlinear area, the applied force will create large deflection on 

micro-cantilever. Also, if one assumes small deflection for this force, the deflection will 

be: 

 

][107.40
1058045.2105.1693

)10299(2

3

PL 6

249

363

m
EI











                 (3.153) 

 

which represents 14% of length of micro-cantilever beam and 42 times larger than its 

thickness. So for analysis of micro-cantilever beam maximum force ][  2.0 N  was 

considered. In all cases four forces were considered, 
-6-6-6 100.1,101.0,1001.0P   

and ][100.2 -6 N . Interval of 0 is assumed as 
2

0 0


  , because contact angle between 

surface and tip of AFM micro-cantilever beam can start from horizontal to reach vertical 

direction. Also, for f  was considered same interval as 0 . If micro-cantilever does not 
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deflect, under zero force 0f . Maximum f  cannot reach at
2


, because, if one 

assumes 
2


 f

, so: 

 

           ][  10190
102992 6

6

m
L

R
f










                              (3.154) 

 

In this case, R  represents the deflection. This deflection is 63% of length of the micro-

cantilever beam. Figure 3.4.2, shows that in 63.0
L

h  cantilever beams lose their 

sensitivity with respect to the applied force. So
2


 f

  is an acceptable boundary for f . 

In all cases for f and 0  angles were considered within the assume range:
 2

,
12

5
,

4
,

8


.  

Three values were considered for length of the tip. The actual available value for u  based 

on data in table 3.7.1 shows ][1015 6 mu  . Two other theoretical values were one third 

and three times of effective value. First, analysis showed that u   has little effect on 

sensitivity, so large variations of u were studied to produce a large range of results. In all 

cases for u  the following three values were considered: ][1045,1015 ,105 666 m  .  

Stiffness of the micro-cantilever beam is function of moment of inertia; clearly stiffness 

is an important factor in deflection of micro-cantilever beam. To evaluate the sensitivity 

of micro-cantilever beam with respect to the moment of inertia, three different moments 

of inertia were considered: ][103 ,102 ,101 4242424 mI   .  
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Four sets of analysis were performed for this specific AFM micro-cantilever beam. In the 

first set, sensitivity of micro-cantilever beam versus f , 0  and P  were studied. The 

sensitivity study of these variables were carried out in six different analysis:  

1- Curvature (  ) versus curvature angle .  

2- Deflection in x  direction versus curvature angle .  

3- Deflection in y  direction versus curvature angle .  

4- Deflection in y  direction versus deflection in x  direction  

5- Curvature (  ) versus deflection in x  direction.  

6- Curvature (  ) versus deflection in y  direction.  

First three analyses are direct solution of (3.135) to (3.137) for specific values of f , 0  

and P . The fourth analyses are implicit solution of (3.136) and (3.137), fifth one is 

implicit solution of (3.135) and (3.136) and final one is implicit solution of (3.135) and 

(3.137). In each analysis; for a specific value of f , above mentioned values, the six 

analyses were performed by evaluating the variations of the variables with respect to 

variation of 0  and P .  For example for the first set of analysis with  
8

5
 f

 the six 

analyses are presented in figures 3.17.3 to 3.17.8.  

 



136 

 

  

Figure  3.7.3. Numerical solution for the curvature versus the current angle as per  (3.135),  
8

5
 f

 

 

Figure  3.7.4. Numerical solution for the vertical deflection versus the current angle as per (3.136), 
8

5
 f
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Figure  3.7.5. Numerical solution for the horizontal deflection versus the current angle as per (3.137), 
8

5
 f

 

 

Figure  3.7.6. Numerical solution for the vertical deflection versus the horizontal deflection as per, (3.136) and (3.137), 

8

5
 f
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Figure  3.7.7. Numerical solution for the curvature versus the horizontal deflection as per, (3.135) and (3.136), 

8

5
 f

 

 

Figure  3.7.8. Numerical solution for the curvature versus the horizontal deflection as per, (3.135) and (3.137), 

8

5
 f
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One can see that 0  (the contact angle of tip with surface) has significant effect on 

nonlinear domain for large force. This effect increases by increasing the force.  So if the 

micro-cantilever beam is used in large forces, it is more sensitive to 0 .   

The numerical analysis shows that solution of equation (3-136) for 
8


 f  in 

][  01.0 NP   varies by 28% and by varying 0  from 0 to
2

0


    and 

for ][  0.2 NP  variation of the solution is of 32%. If f  increases to 
2


  for any force 

the solution variation for (3.136) is almost 50%. This variation is almost similar to 

(3.135) and (3.137).  For (3.135), solution for
8


 f varies 10% for  ][  01.0 NP   and 

12% for ][  0.2 NP  . For
8

5
 f

the variation of solution for any force is almost 25%. 

For 
8


 f  

and ][  01.0 NP  variation of 0 from 
8


 to

2
0


  , in equation (3.137), 

creates 9% variation in solution, and in
8

5
 f and ][  0.2 NP  the solution varies by 

50%.   

Implicit solutions give similar results to variation of 0 .  For any force at 
8


 f   

variation of 0 from 0 to
2

0


  changes approximately 16% the implicit solution of 

(3.136) and (3.137), while for
8

5
 f

  this value increases to 39%.  
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In implicit solution of (3.135) and (3.136) yields an antithetical behavior with respect to 

other solutions.  For any force at 
8


 f   variation of 0 from 0 to 

2
0


   

approximately 16% variation is solution is encountered, but by increasing f from 0 to 

8

5
 the variation of the solution reduces to 12%.  

 

Behavior of the implicit solution of (3.135) and (3.137) shows that variation of solution 

for 0, while any force is around 15% and by increasing f to 
8

5
 for any force variation 

the solution is higher by 50%.  

As mentioned above 0  is angle between horizontal axis and applied force and it is 

shown in the above results that variation of 0  
has significant effect on solution of 

explicit and implicit solutions (3.135) to (3.137). Although this effect is reduced by 

increasing the force, it is still significant. The reason of this reduction can be explained 

by the illustration in figure 3.4.2. As one can see in this figure, the deflection increases 

much less than force as the force reaches the nonlinear domain. Hence for the forces that 

makes large deflection significant change occur in the solution. Changing 0 does not 

affect deflection too much. The behavior of the solution with respect to the variation of 

0 comes from the nature of integrals in the equations.   

Sensitivity of presented AMF micro-cantilever beam to force P is illustrated in above 

graphs. Variation of  P  in all implicit solutions has the same affect. In the all above 

graphs, for any X  (angle 0 , deflection in X or Y directions) axis and Y  axis, by 
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increasing force P   sensitivity of axis reduces for any angle of curvature. This means that  

for  , X andY ,  variation of angle for large forces are higher than for small forces for 

the same deflection. Implicit solutions of (3.136) and (3.137) are identical  to the 

solutions presented in [8] which represent only particular cases of the general solution in 

the present work. For a specified deflection in X  direction large force produces large 

deflection in Y  direction. These phenomena in simple case can be explained from figure 

3.4.2.  It is clear that in any case, deflection of beam in X  direction is less than 

deflection in Y  direction.  

Implicit solutions of (3.135) and (3.135) yield the same pattern as implicit solutions of 

(3.136) and (3.137). For a specific deflection in X  direction for large force, one will 

obtain larger curvatures.      

Solution of (3.135) and (3.137) follows the same logical algorithm as above. On the other 

hand the solution shows that for large deflections in Y  direction and for any force the 

relation between deflections in Y  direction is linear with respect to curvature.  

The performed investigation shows that the variation of f  does not change the pattern 

of the above graphs, although it affects the solution of the equations.  

Numerical analysis shows that for 01.0P ][ N  any 
0 variation and any varieties of

 f  

in the solution of (3.136) yields variation of 82% while for 2P ][ N  this variation 

ranges between 72% and 65% when 0  varieties from 0 to
2


.  In the equation (3.137) for 

01.0P ][ N  and
8

0


   variation of f  from 0 to

2


 yields change in the solution of 

79% whereas for same force with 
2

0


  this variation of the solution is 68%. These 
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values for 2P ][ N  are 79% and 70%, respectively. Explicit solution of (3.135) which 

gives the curvature yields variation of f .  As above, the numerical analysis performed 

for sensitivity of curvature deflection to f  shows that for any force and
8

0


   , variation 

of 
f affects by 74% the solution and this value changes to 63% when 

0 is 
2


.  

Effect of variation of 
f  on all implicit solutions, (3.135) and (3.136), (3.135) and 

(3.137), (3.136) and (3.137) is same. For any force and 
8

0


   the implicit solutions vary 

by 74% and when  
0  is 

2

 , the variation of solution reduces to 63%.  

 

 

Figure ‎3.7.9. Numerical solution for curvature versus the current angle as per (3.135) for different tip length 
8

5
 f

 

and 

2
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
 
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Figure ‎3.7.10.  Numerical solution for horizontal deflection versus the current angle as per (3.136) for different tip 

length  
8

5
 f

 and 
2

0


   

 

Figure ‎3.7.11. Numerical solution for vertical deflection versus the current angle as per (3.137) for different tip length  
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 and 
2

0


   
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Figure ‎3.7.12. Numerical solution for vertical deflection versus the horizontal deflection as per (3.136) and (3.137) for 

different tip length 
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 and 
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Figure ‎3.7.13. Numerical solution for curvature versus the horizontal deflection as per (3.135) and (3.136) for different 

tip length 
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 and 
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
   
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Figure ‎3.7.14. Numerical solution for curvature versus the vertical deflection as per (3.135) and (3.137) for different 

tip length 
8

5
 f

 and 

2
0


   

 

The second set of analyses of the sensitivity was focused towards the study of the effect 

of the tip length on the explicit and implicit solution of the equations (3.135) to (3.137). 

Figures 3.17.9 to 3.17.14 show a sample set of implicit and explicit the numerical 

solution for 
2

0


  and 

8

5
 f with different tip length.  Figures 3.17.9 to 3.17.11 are 

implicit integral of (3.135) to (3.137) for different tip lengths and forces. Also figures 

3.17.12 to 3.17.14 are explicit solutions of (3.135) to (3.137) for different tip lengths and 

forces. Comparing this set of analysis with pervious set, sensitivity analysis for 0 , 

f and P ,shows that the pattern of all graphs are the same.  Sensitivity analysis shows 

that for any force with any 0 and f , the variation of u  affects neither the explicit 

solution nor the implicit solution. Numerical analysis shows that the moment about 



146 

 

neutral axis was created by H force and is negligible as it yields between 50 times to 100 

less in value when compared to the moment created by forceV .  Moment was created by 

H and V are uHM .0   and )1(0 xVM   respectively.  

 

 

Figure ‎3.7.15. Numerical solution for curvature versus the current angle as per (3.135) for different length 
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Figure ‎3.7.16. Numerical solution for horizontal deflection versus the current angle as per (3.136) for different length 
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Figure ‎3.7.17. Numerical solution for vertical deflection versus the current angle as per (3.137) for different length 
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Figure ‎3.7.18. Numerical solution for vertical deflection versus the horizontal  as per (3.136) and (3.137) for different 

length 
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Figure ‎3.7.19. Numerical solution for horizontal deflection versus the current angle as per (3.135) and (3.136) for 

different length 
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Figure ‎3.7.20. Numerical solution for curvature versus the vertical deflection as per (3.135) and (3.137) for different 

length
8
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 and 

8

5
0


   

Figures 3.17.15 to 3.17.20 illustrate the implicit and the explicit numerical solution of 

integrals (3.135) to (3.137) for 
8

5
0


  f

and different lengths of the micro-cantilever 

beam: 200, 250, 300, 350 and 400 µm. It is clear that the curvatures and deflections 

increase at any force when the length of beam increases. However, sensitivity reduces 

when the applied force increases. Again, the cause of this phenomenon can be explained 

by figure 3.4.2. As one can see from this graph, the deflection increases just slightly by 

increasing the force within the nonlinear range. Numerical analysis shows that, sensitivity 

in y direction is almost similar to the one in x direction, however,  less than the  

sensitivity of the curvature. For any force and any angles 0 and f  deflection in x 

direction which is the solution of (3.136) varies in average more than 100% by increasing 

length from 200 to 400 µm. However, for y direction, solution of (3.137) in small forces 
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domain yields variation is 80% while for larger forces it rises to 100%. Solution of 

(3.135) varies with respect to length change, for N][  01.0 P and any angle 0 and f  , 

the average variation is 94% while for N][  0.2 P   the average of variation of solution 

reduces to 72%. Numerical analysis of implicit solutions for (3.135), (3.136) and  

(3.135), (3.137) as well as (3.136), (3.137) show that for any force and angles variation of 

length, changes in solutions vary the solution by up to 100%.  One can see that increasing 

the length yields increase in the sensitivity for all forces, but sensitivity decreases by 

increasing the deflection.        

 

 

Figure ‎3.7.21. Numerical solution curvature versus the current angle as per (3.135) for different moment of inertia 
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Figure ‎3.7.22. Numerical solution for horizontal deflection versus the current angle as per (3.136) for different moment 

of inertia 
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Figure ‎3.7.23. Numerical solution for vertical deflection versus the current angle as per (3.137) for different moment of 

inertia, 
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 and 
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Figure ‎3.7.24. Numerical solution for vertical deflection versus the horizontal deflection as per (3.136) and (3.137) for 

different moment of inertia,
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 and 
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Figure ‎3.7.25. Numerical solution for curvature versus the horizontal deflection as per (3.135) and (3.136) for different 

moment of inertia,
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 and 
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Figure ‎3.7.26. Numerical solution for curvature versus the vertical deflection as per (3.135) and (3.136) for different 

moment of inertia,
8

5
 f

 and 
8

5
0


   

Figures 3.17.21 to 3.17.26 illustrate the implicit and the explicit  numerical solution of 

integrals (3.135) to (3.137) for constant angles
8

5
0


  f  for different moments of 

inertia for cross section of micro-cantilever beam,  I = 2, 3, 4 
4m .  Figures 3.7-21 to 

3.7-23 are implicit integrals of (3.135) to (3.137) for different moments of inertia. In all 

cases, an increment in the moment of inertia for a constant angle the sensitivity decreases.  

Meanwhile, increasing the applied force reduces the sensitivity. The solution of (3.135), 

(3.136) and (3.137) for any 0   and f for N][  01.0 P  varies by 36%, 46% and 42% 

respectively. By increasing the force to N][  02. P variations of the solution for 

(3.136) and (3.137) do not modify while for curvature as the solution of (3.135) reduces 

by 36%.  Figure 3.7-24 shows the sensitivity of y with respect to x for different moments 

of inertia and forces. By increasing the moment of inertia, shown in the figure, sensitivity 
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decreases since cross section produces a stiffer structure. Also this fact can be seen in 

figures 3.7-25 and 3.7-26. Numerical analysis shows that for any implicit solution no 

matter what force or angle 0 and f are, variation of the moment of inertia effects the 

solutions by 42%. It is important to note that although the moment of inertia changes 

twice, it does not affect more than 46% the deflection. This analysis shows that deflection 

of AFM micro-cantilever is not very sensitive to width and thickness of micro-cantilever 

beam.  

 

3.18. Conclusion 

 

The problem of large deflection of non-straight cantilever beams subjected to multiple 

loads consisting of point forces as well as point moment is formulated and a solution that 

yields the correct solution to the problem is presented. Lie group symmetry method is 

used to solve the general mathematical problem. Lie symmetry method is generally used 

to reduce the order of the differential equation that describes the large deflection equation 

of the cantilever beam subjected to multiple point loads, by one unit. The first order 

differential equation can usually be easily integrated and for all three particular cases 

presented for validation purpose, the solution found coincides with the particular solution 

presented in the references. The method brings a major advantage to the solution of the 

general problem, as it does not impose any restrictions on the curvature of the beam. The 

general proposed solution has applications in evaluation of the static large deflection of 

not-straight cantilever beam type structures. A general solution of the large deflection of 
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beams subjected to any type of loading has been obtained using Lie symmetry groups. 

The analytical formulation for the deflection could yield closed form solutions for some 

type of loadings. However, a numerical solution could be always obtained for any 

loading case. Although the solution might look laborious, this is the only solution to the 

general problem at this time. The validity of the solution is checked on two particular 

loading conditions, namely the ones available in the open literature: cantilever beam end-

loaded with point moment force and. The solution produced by the Lie symmetry based 

method perfectly matches the corresponding solutions in the literature. 

 

3.19.  Summary 

 

The chapter presents the results encountered by using a non-linear deflection model of a 

micro-cantilever beam subjected to point loads and moments. As an example an AFM 

beam is used in the discussion. Lie group symmetry method is used to solve the 

constitutive equation. From distinct cases are considered in the model: 

1) Large deflection of a  cantilever beam subjected to  tip force. 

2) Large deflection of a  cantilever beam subjected to a tip moment 

3) Large deflection of a cantilever beam made of non-linear material of Ludwick 

type subjected to a tip moment 

4) Large deflection of a cantilever beam of non-linear material of Ludwick type 

subjected to a tip force. 
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The assumption of small deflection yields the results encountered by the linear model. 

Further, the performance of the non-straight beam is analyzed. Again, The Lie group 

formulation is used.  

The conclusion of the study is that the deflection of because of same geometry and 

material  subjected to same loading either straight or non-straight yield same deflection. 

The validation of the results in carried out for particular cases of analysis found in the 

open literature. A sensitivity analysis is carried out for the non-linear models. 
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Chapter4 

Extraction Method for the Residual Stress 

in Multilayer Micro-plates under Large 

Deflections 
 

 

 

Rationale 

 

Chapter four presents a method of extraction of the built-in stress in film grown by thin 

film deposition in micro-plates. Although the fabrication processes are well controlled, 

the stress values are varying within + 40% and the assumption of variance yields more 

accurate solutions for the deflection than the ones obtained by assuming the exact inter-

laminar stress yield by the deposition process. The extraction method was using on a 

gradient based optimization method. The estimation of the deflection in the model vs. the 

experimental method was based on static deflection matching. The estimation RMS of 

error based on model was reduced by 0.38 vs. the deflection resulting from the 

assumption of the nominal inter-laminar stress. 
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4.1  Introduction 

 

Large deflection of micro-plates and analysis of inter layer residual stress in micro-plate 

based sensors are studied in this chapter. Large deflection of plates widely was studied 

[46, 137, 138] and as matter of fact, the governing equations were derived [139] in 1910 

for a single layer plate. To solve the set of partial differential equations some new 

numerical methods like finite element method [140] was developed. Governing equations 

were recently developed [141] for small and large deflection by using tensor analysis for 

multilayer plates. The method is based on single layer plate deflection but the analytical 

analysis of multilayer plates has recorded more history. An analytical method for failure 

of laminated  evaluate to calculate the stress-strain was derived on late 60’s [142]. The 

nonlinear behavior of unidirectional laminated was developed for laminated composites 

and compared with experimental results [143] and the author showed that the solution of 

governed equations were fully in agreement with the experimental results. Dynamic 

analysis of multilayer  composites was also studied by analytical methods and governed 

equation was derived [144]. Here the governing equation of multilayer composite 

material behavior in cylindrical coordinates form was derived. For a composite plates 

with different relaxed planar dimensions a new theory was presented and some particular 

cases were detailed [145]. For thicker plates under large deflection, higher accuracy was 

obtained in comparison to Von Karman theory. The governing equation was derived in 

[146] where the authors numerically solved the equations and compared the results with 

other theories. They showed that differences up to 33% among various theories were 

found. From the other side, manufacturing of micro-plates by MEMS technology [147, 



159 

 

148] started rising rapidly from 70’s. Micromachining technology  was used to fabricate 

perforated silicon nitride and porous silicon membranes [149]. Although the mechanical 

stability was a key issue for filtration, full characterize of the mechanical and the 

geometrical properties of the membrane was carried out. They used ANSYS for 

numerical simulation. However, the residual stress in layers was not considered although 

two layers were deposited on the substrate.  To better understand the behavior of micro-

plates, researchers use the classical plate theories were developed before the concept of 

miniaturization.  One of the main issues in today MEMS structures is determination of 

the residual stress between the layers of a micro-plate. This residual stress is produced 

mainly by the thermal mismatching practically resulting from the deposition of different 

materials at different temperatures [150-152]. In [2], a membrane was manufactured of a 

weakly stressed quadruple stack. The plate contains of four different layers which are: 

SOI buried oxide, LPCVD nitride, densified PECVD and the devices passivation layer. 

The advantages of this method of manufacturing from authors point of view is the 

inherent co-integration process capability allowing fabricating sensors and their 

associated electronics on the same die. Previous studies considered residual stresses in 

layers and evaluated the internal stresses in each layer known output based on the 

fabrication.  In the present study a method of evaluating the residual stress and the values 

of pre-determined stress have been adjusted. Authors of [153] optimized the 

performances of an existing piezoresistive silicon pressure sensor by changing the 

etchant. They used ANSYS to simulate the micro-plate behavior. Again, in any case they 

did not consider any internal stresses in their analysis.  The work in [154] focused on 

manufacturing of  two types of pressure sensors, the sensor cavity and the sensor 
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diaphragm by using SU-8.The advantage of this method from authors point of view is the 

possibility of measuring high pressure within wide range. They derived governing 

equations but they did not considered residual stress in their analysis. Resonant pressure 

sensor with piezoelectric was manufactured [155] on LTCC structure. The authors used 

this sensor to measure the resonant frequency while they were applying pressure on 

micro-plate. By applying pressure, the stress in the composing layers increased and this 

resulted in shifted resonant frequency.  To calculate residual stress between layers, 

researchers use the classic formulation of Stoney equation [156].  In order to improve the 

accuracy of Stoney equation   some analytical formulations were developed [157, 158]. 

In [159], authors used dynamic  properties of  micro-plates to calculate the internal 

stresses between layers. The drawback of these methods is the instability of the structure 

during measurement. Authors of [160]  managed  to prove that by moving  the aluminum 

bond pads away from the structure they reduced the thermal stress in the micro-plate. A 

software algorithm was developed in [161] to calculate equivalent reference temperature, 

residual stresses and strains. They tested their software by comparing the results with 

those yield by ANSYS and experimental tests. As mentioned before the Stoney formula 

does not provide enough accuracy to evaluate the real residual stress. In [162] a method 

was presented to calculate the residual stress when the stress distribution is not uniform.  

A correction factor for Stoney formula was presented [163] to calculate stress in thicker 

coated layers.  Another formula to correct Stoney equation was introduced in [164]. 

Authors proved that the original formula can yield up to 40% error.  
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4.2.  Theory 

 

Deflection of plates was studied widely in the case of single and composite layer [137, 

138, 141]. In order to compare and have drawn a conclusion from experimental results, 

analytical results of small and large deflection of single and composite plates are 

presented here. Given the fact that the present investigations have focused on square 

plates and that the fabrication and the experiments are carried out on this shape, below we 

only discuss analytical formulations for square multi-layered plates subjected to uniform 

pressure. 

4.3. Linear and nonlinear deflection of single layer plates 

 

Based on definition for a thin plate [138], the ratio of its thickness to smaller  length 

should be less than  
20

1
. By this assumption, Kirchhoff hypotheses for isotropic, 

homogeneous, elastic plate are defined as follows[138]:  

a) The deflection of the mid-surface is small compared to the thickness of plate. 

b) The mid-plane remains unstrained subsequent to bending. 

c) Plane sections initially normal to mid-surface remain plane and normal to the 

surface after the bending. 

d) The stress normal to the mid-plane is small compared with the other stress 

components and is assumed as negligible.   

Governing equation for small deflection of thin plate, based on Kirchhoff hypotheses, is 

derived as following: 
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 is deflection 

is uniformly distributed load per unite area 

 is the flexural rigidity: 

)1(12 2

3




Eh
D                                                      (4.2)        

 

one can show that maximum deflection of simple supported square plate subjected to 

uniform pressure under the assumption of linearity yields [138]: 

 

                
D

a
Pw

4

0max 0040.0                                             (4.3) 

0P  is the applied pressure 

a   is length of the square 

E is Young's modulus 

h  is thickness of plate  

   is Poisson's  ratio  

Maximum deflection of the square plate with fixed supports subjected to uniform 

pressure under the assumption of linear deflection is [138]: 

 

                       
D

a
Pw

4

0max 00126.0                                                            (4.4) 
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Maximum deflection of simple supported square plate under uniform pressure in 

nonlinear deflection domain can be calculated from [137]: 
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The relation can calculate maxw  as: 
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Where: 

 

8595.51 k  and 
4

4

0
2 26334.0

Eh

aP
k   

 

Maximum deflection of fixed supports  plate under uniform pressure in nonlinear analysis 

is calculated as shown below [46, 137]: 

0amm                                                                       (4.7) 

02aa 
                                                                       (4.8)                                                                                                                                                                                        

)25.0(  mm     m=1, 2, 3...                                         (4.9) 
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The force applied can be defined as a series: 
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Where: 
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If one defines rmpM1 , rmpM 2

rmpM 3 , imrM 2 , ipK1  and jnL1  as functions like :  
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The large deflection  equation for a plate is [137]:                  
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  is Airy stress function  

 w  is deflection 

 

Substitution of  (4.6) into (4.21) and into (4.22) will give [137] : 
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These series are simplification of the equations (4.21) and (4.22). To solve a large 

deflection of plate problem instead of using (4.21) and (4.22) which are two nonlinear 

differential equations, one can use (4.23) and (4.24) which are two nonlinear algebraic 

equations. Indexes sqnN ,,,  which are used in equations (4.23) and (4.24) can be 

calculated by below interchanging in the above equations: 

 

  srqpnmyxYXNM  ,,,,,                                       (4.25) 

 

Two special cases of micro-plates, which are simple supported and fixed supported, were 

studied assuming the following geometry: thickness - ][10 mh  , side - ][250 ma  , 

Young modulus of Elasticity - ][70 GPaE  , and Poisson Ratio 31.0 . The main 

purpose of this analysis was the selection of the suitable element type for ANSYS
®

. 

ANSYS
®
 has several suitable elements, SHELL 181, SHELL 281, SOLID 185L, SOLID 

185, SOLID 187, SOLID186, SOLID 186L that enable large deflection analysis and 

residual stress options. Table 1 shows the maximum deflection for different elements of 

the same plate with fixed supports subjected to a steady pressure of 2.75 MPa. This 

pressure was assumed given the selected size and material of the micro-plate such that 

non-linear deflection occurs.  The element that yield identical results as the analysis was 
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SHELL 181. Figures 4.3.1, 4.3.2 show the maximum deflection of plate for simple 

support and fixed support plates in the linear and nonlinear analysis. As one can see the 

results of nonlinear analysis are identical for   ANSYS
®
 when SHELL 181 is selected as 

element type. The results of the analytical formulation have been compared with the 

numerical results yield by ANSYS
®
. For the FEM from the selected element type, one 

has yield identical results.   

 

 

Table 4.3.1.   Maximum Deflection of plate with different elements 

Analytical Shell181 Shell281 Solid185L Solid185 Solid187 Solid186 Solid186L 

2.14e-6 2.14e-6 2.57e-6 0.58e-7 0.280e-7 1.4e-6 1.45e-6 1.45e-6 

 

 

 

Figure 4.3.1. Linear vs. nonlinear analysis for simple support plate as defined above 

 



168 

 

 

Figure 4.3.2. Linear vs. nonlinear analysis for fixed support plate as described above 

 

 

4.4.   Mismatch stress in composite materials with large deflection 

 

The large deflection of laminated composite plates was widely studied [146, 165-167] . 

The equations of motion of the plate are [141]: 
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I  is the mass momentum of inertia. 

xxN , xyN , yyN , xxM , xyM , yyM are forces and moments in the cross section of plate as 

shown in the figure 4.4.1 
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Figure 4.4. 1. Force and moment resultant on a plate element[141] 
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][],[],[ DBA  are the extensional stiffness, the bending-extensional coupling stiffness and 

the bending stiffness respectively which are defined as: 
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 )(k

ijQ is the lamina, stiffness. 000 ,, wvu  are the displacement components of midpoint of 

mid-plane along the ),,( zyx  coordinate directions, respectively. 0  is the density of the 

material where ),,( zyxq is the distributed force. 

4.5.  Stoney equation 

 

Deposition process in MEMS fabrication generally is usually performed at high 

temperature process. High temperature creates residual stress. The stress is determined 
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through a simple measurement of the curvature of the full wafer due to the thermal 

mismatching. Equally, the deflection at the center of the wafer with respect to the edges 

reveals the built-up stress in a deposited layer. Stoney equation gives the residual stress 

[156, 168]:  
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Where δ is the defection of the center of the wafer, t is the film thickness, R is the radius 

of the wafer, and T is the thickness of the wafer. In order to reach an acceptable result 

from Stoney equation, the substrate must be significantly thicker than thickness of the 

deposited film and Young modulus ratio of two materials must be close to one. Therefore 

there are serious limitations in the usage of Stoney equation. To evaluate these limitations 

in validity of Stoney equation, the following example is presented.  A circular plate with 

radius of ][047.141 m with Young modulus of ][380 MPa  and equal thickness of wafer 

and deposited film, ][5.2 mTt  , was considered. A circular plate was considered 

because Stoney equation was presented for circular plate. The area of plate is same as of 

square plate with length of ][250 m , which experiments were done by that. Also Young 

modulus of  Si3N4   and  residual stress of SiO2 , ][225 MPaf 

 

from [3] where 

considered for this example. One can calculate , the deflection at the center of the plate, 

from (4.36) which will result is ][67.9 m  whereas ANSYS
®
 analysis, in figure  4.5, 

shows ][704.0 m . These results prove the substantial difference between the two 

estimates as based on Stoney assumptions, thickness of wafer should be much greater 
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than deposited film. Whereas, if  ][100 mT  and ][5.2 mt   for above mentioned 

data deflection from Stoney can be calculated as ][106686.9 8 m . For this case, the 

numerical evaluation of the deflection performed with ANSYS
®
 result is shown in Figure 

4.6. So when thickness of wafer is much higher than thickness of deposited film like in 

this case, the error of Stony equation reduces %32. According to the cited references 

[164, 169], such error is acceptable. As introduced in reference [169] the error of Stoney 

equation can be calculated as shown below: 
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fE is Young modulus of deposited layer. Figure 4.5.1 shows the equation (4.36). This 

figure is in a good correlation with the above example: 
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Figure 4.5.1. ANSYS result for deflection of plate, ][  5.2 mTt 

 
 

 

Figure 4.5.2 ANSYS result for deflection of plate,

 

][100 mT   and ][5.2 mt   

 

 These results show that Stoney equation cannot correctly predict residual stress when 

the ratio of wafer thickness to deposited layer is small [156]. One cannot make use 
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this equation for multilayer micro-plates that have almost equal thickness layers. 

Authors recommended a Stoney modified equations [145, 157, 163]. Another 

limitation for this equation was introduced in the above mentioned publications. The 

film and substrate must be attached together without any disturbance. For MEMS 

devices, in some cases, one cannot consider this assumption. The discontinuity of the 

layer with the substrate introduces stress concentration that is often uncertain. 

Moreover, when derive Stoney equation; one uses the linear relation between stress 

and strain. This assumption should be regarded with skepticism   given the large 

stress value encountered in the inter-laminar stress sometimes much higher than the 

yield stress. This leads to a legitimate question: is the assumption of linearity between 

stress and strain standing in micro-systems?  

Another issue in using Stoney equation is in measuring the curvature of the structure. 

This curvature is out of plane and  it requires specific tools for measurement [162].   

In very small features, the task is quite challenging.  

 

Figure 4.5.3.  Error variation in Stoney equation versus film - substrate thickness and Young modulus of elasticity 

ratios 
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4.6.    Difference between theory and experiments 

 

In the part above, analytical methods in determining of small and large deflection of 

single layer and multilayer plates were presented. To validate the theory, a set of 

experiments was used. A fabricated square micro-plate with the side of  ][250 m  [3] 

made from four layers of different materials was used. Mechanical properties and the 

assumed stresses which were established based on the process parameters are shown 

in table  4.6.1. Although the deflection of this micro-plate is numerically evaluated by 

ANSYS
®
, the results were very much different from the ones resulting from 

experiments. The numerical and experimental results are illustrated in Figures  4.6.1 

and 4.6.2. In this analysis, the element SHELL181 with residual stress is used.  

 

 

Figure 4.6.1. ANSYS analysis result for deflection of micro-plate P=2 bar 
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Figure 4.6.2. Pressure versus deflection of the square micro-plate 250µm side size 

 

 As seen from figure 4.6.2, there is a very significant difference between the numerical 

analysis and the experimental results. Meanwhile, the experimental results show a 

nonlinear behavior whereas the numerical results follow a linear trend. 

 

Table 4.6.1. Mechanical properties and estimated stress in micro-plates[3] 

 

 

 

 

 

 

 

 

This significant difference provided the rational of this investigation. The source of this is 

difference also investigated. For this purpose, authors used the results of the following 

Material Thickness        

[nm] 

Stress 

[MPa] 

Young’s 

Mod. [GPa] 

Poisson 

ratio 

Single crystal  SI 100 0 165 0.25 

Polysilicon 340 1000 180 0.22 
Thermal Oxide (SIO2) 433 - 225 70 0.17 

PECVD (SIO2) 283 -172 85 0.25 

APCVD (SIO2) 560 383 69 0.17 

LPCVD (SI3N4) 288 860 380 0.25 

Aluminum 1000 -10 70 0.33 
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experiment and numerical methods to validate the results of the experiments and then 

identify the cause of the difference. The method evaluates tore-iterate the stress values in 

the layers. 

 

4.7.  The experiments 

 

It is important to mention here out the fact that the results of the measurements show also 

non-monotonous behavior in the deflection vs. pressure. The results have been used as 

collected from measurements and the variations are assumed due to instrumental error 

associated with the measurement method. The deflection in the experiments is measured 

by interferometer. The nozzle that creates pressure on the membrane, although 

transparent, may induce some error in measurement due to the interference of the incident 

and reflecting light wave through the transparent material of the nozzle (quartz). The 

results of the numerical simulations are compared to the measured deflection which 

values are assumed as reference. 

 

4.7.1 Fabrication of the devices 

 

To evaluate the internal stress in each layer several micro-plates were fabricated. Plates 

had various dimensions and number of layers. Details of manufacturing are defined in [2, 

3]. Below, a brief description of manufacturing process which is a standard SOI CMOS 

process that includes some extra fabrication steps is presented. A <100> UNIBOND SOI 

wafer film and a layer of oxide is used. Two types of multi-layered are built as illustrated 
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in figure 4.7-1. By photolithography the active Si film is removed. A patterned LPCVD 

nitride film which acts as a mask for locally wet thinning the top silicon film and for the 

LOCOS oxidation is deposited. Another LPCVD nitride layer is deposited and patterned. 

A combination of SF6 and CHF3 based plasmas is used for etching. Wafers follow the 

process of gate oxidation, channel implantation, poly-silicon gate deposition and 

patterning.   Figure 4.7.1 Shows, schematics of the measurement system for the 

deflection of the plate subjected to steady pressure. The laser interferometer, measures, 

with a sensitivity of 10 [nm], the deflection of the multiple layered plate at the centers.  

The pressure reading is correlated to the deflection.    

 

Figure 4.7.1. Schematics of the measurement system for deflection of the plate 
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4.7.2.  Mechanical behavior of the membrane under uniform distributed load 

 

Mechanical properties and the estimated internal stress in each layer are presented in 

table 4.7-1 The method of calculation of the residual stress is in detail  provided in [2]. 

When a process is preformed a layer is grown and the stress is measured by the curvature 

of the wafer, by Stoney equation. All layers deposited with same process are assumed to 

have developing the same predetermined internal laminar stress. Two types of 

membranes have been studied: 3-layers and 4-layers, as are shown in Figure 4.7-2where 

the thickness of each layer is indicated. The experimental values of the deflections of 

plates are given in Figures 4.7-3 and 4.7-4, and the numerical values of deflection at 

specific pressures are provided in tables 4.7-2 and 4.7-3   

   

Table  4.5. Mechanical property and internal stress of each layer[3] 

Material Stress 

 (MPa) 

Young’s Mod.  

(GPa) 

Poisson 

ratio 

SiO2 (Thermal) -225 70 0.17 

SiO2 PECVD -172 85 0.25 

SiO2 APCVD 383 69 0.17 

Si3N4 LPCVD 860 380 0.25 

 

 

Figure.4.7.2  The two different types of plates [2] 
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Figure  4.5.3. Experimental results for deflection of 3-layer plates under uniform pressure [2] 
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Figure 4.7.4.  Experimental results for deflection of 4-layer plates under uniform pressure(dashed lines represent the 

deflection of the  3-layers membranes deflection) [2] 
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Table  4.52. Deflection of 3-layer plates at specific values of the pressure [2] 

 

 

 

 

 
Table  4.5.  Deflection of 4-layer plates under pressure [2] 

 

 

 

 

4.8.  The numerical analysis 

 

A series of analysis algorithms are developed to run simulations by ANSYS. A code was 

developed to evaluate strain analysis on a plate made from several uniform thickness 

layers. The element SHELL 181 was used in this analysis. The below graphs, Figures 

 4.8-1 to  4.8-8, illustrate the differences between the experimental results and the 

numerical analysis performed by ANSYS. The highlight of the analysis is given below. 

 

pressure (bar) 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 

size (µm) Deflection at the center of the membrane (micrometers) ↓ 

778 5.88 10.01 12.77 15.39 18.6 21.32 23.67 25.35 28.63 31.33 

583 3.96 6.98 8.69 10.22 12.51 14.59 15.52 17.52 19.79 21.11 

485 3.05 4.47 6.1 7.69 9.23 10.97 12.43 13.29 15.51 16.4 

235 0.8 1.17 1.8 2.16 3.14 3.56 4.09 5.15 6.04 6.17 

pressure(bar) 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 

size (µm) Deflection at the center of the membrane (micrometers) ↓ 

765 7.26 11.63 14.25 16.83 20.09 23.18 25.28 27.28 30.62 33.43 

572 4.14 7.32 8.94 10.99 13.21 15.24 17.03 18.34 20.98 21.75 

500 3.89 5.48 7.69 8.37 10.76 12.66 13.84 14.04 16.64 17.07 

231 0.95 1.5 2.64 2.81 3.82 4.34 4.88 5.22 5.97 6.06 
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a) In all cases, numerical results yield deflection values below the experiments. This 

is due to the stiffness of the SHELL 181 elements which is overestimated. 

b) In most cases the error decreases by increasing the pressure. The route of the error 

encountered for deflection measurements with pressure varying from 0 to 5 bar 

decreases with the increase in size of the plates.    

c) In all cases the experimented and the analytical results exhibit nonlinear behavior. 

However, the numerical method yields monotonous results with regards to the 

pressure.  

d) The gradual increase in pressure yields an increase in the deflection this means 

that pressure is related by deflection through a continuum function. 

e) The error recorded between numerical and experimental values is non-

monotonous. 

f) By increasing the dimensions the average error reduces.  

g) 3 layer configurations yield less error route than 4 layer configuration. 
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Figure  4.8.1.  Experimental versus numerical deflection and error of numerical value with respect to experiments for 3 

layers plate 231µm×231µm 

 

 

Figure  4.8.2. Experimental versus, numerical deflection and error of numerical respect to experiments for 3 layers 

500µm ×500µm plate 

 

 



185 

 

 

Figure  4.8.3. Experimental, numerical deflection and error of numerical respect to experiments for 3 layers 572µm 

×572µm plate 

 

 

Figure  4.8.4. Experimental, numerical deflection and error of numerical respect to experiments for 3 layers 

765µm×765µm plate 
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Figure  4.8.5.  Experimental, numerical deflection and error of numerical respect to experiments for 4 layers 

235µm×235µm plate 

 

 

Figure  4.8.6.  Experimental, numerical deflection and error of numerical respect to experiments for 4 layers 

485µm×485µm plate 

 

Figure  4.8.7. Experimental, numerical value of the deflection and the error of numerical solution with respect to the 

experiments for 4 layers 583µm×583µm plate 
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Figure  4.8.8.  Experimental, numerical deflection and error of numerical respect to experiments for 4 layers 778µm × 

778µm plate 

The source of the error is assumed to be related to the unrealistic values of the stress in 

the structural layers. If assume that the error in estimating the stress is within the range of 

the error encountered when Stoney equation is used, the potential variation of the stress 

within these limits may yield an accurate estimate. The problem becomes now an 

optimization and the gradient-descent like algorithm for three or four variables. A 

formulation is implemented to numerically evaluate the stress that yields a good matching 

of the experiments with numerical simulation using ANSYS.  

The optimization method requires proving that the continuous variation of the stress in 

the layers produces continuous variation in the deflection of the composite made 

membrane. For 3 layers micro-plates, it is shown that continuous relation is established 

between the inter-laminar stress and deflection. For this purpose, a numerical analysis 

was accomplished for all 3 layers plates by considering this fact that Stoney equation 

yields up to 40% error [163]. A set of different stress values in layers is applied in the 

plates and deflections were computed. The stresses are assumed to vary within 60%-

to140% from the one estimated initially for every layer. The results are shown in figures 

 4.8-1 to 4.8-8. As one can see from these plots and governed equation for stress, equation 
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(4.26) to (4.28), there is no discontinuity in graphs and no pole in equations. In the other 

words, the deflection does not come discontinued despite the fact that the stress is varied 

in figure below from 60% to 140%, the deflection covers a continuous domain which is 

represented by the thick gray line.  If one checks 4 layers plates, similar results will be 

found. In order to avoid repeating the similar plots, in the below chapter the results for 

four layer composite plate are not illustrated. However, the results are quite similar as the 

ones for three layer configurations.   

   

  

Figure  4.8.9.  Plate with 3 layers, 231µm×231µm, 10 different stresses distribution in layers (A: experiment as in table 

4.4-1B: 60%-140%-60% stresses of Stoney equation in each layer respectively) 

 

 

Figure  4.8.10. Plate with 3 layers, 500µm ×500µm, 10 different stresses distribution in layers(A: experiment as in 

table4.4-1, B: 60%-140%-60% stresses of Stoney equation in each layer respectively) 
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Figure  4.8.11. Plate with 3 layers, 572µm ×572µm, 10 different stresses distribution in layers(A: experiment, B: 60%-

140%-60% stresses of Stoney equation in each layer respectively) 

 

Figure  4.8.12. Plate with 3 layers, 765µm ×765µm, 10 different stresses distribution in layers (A: experiment, B: 60%-

140%-60% stresses of Stoney equation in each layer respectively) 

 

4.9.  The optimization technique 

 

The governing equations for the multilayer micro-plate with residual stress were 

presented in section 4.4 followed by the equations (4.26)-(4.28) give the large deflection 

of plates of multilayer configurations with residual stress.  As showed in the previous 
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section, the deflection of the micro-plates follows a continuous function with regards to 

the inter-laminar stress. Because the micro-plate experiences large deflection which is a 

nonlinear phenomenon, the governed equations, (4.26) to (4.28), are selected as 

nonlinear. The exact value of stress in each layer is sought through a nonlinear 

optimization technique that has an objective minimization of the error between the 

experimental and analytical computed deflection of the multi-layered micro-plate for 

various pressure values varying from 0 to 5 [bar]. Nonlinear optimization gets faster 

convergence compare to linear optimization. By considering that in each step of this 

optimization for each point several times must run ANSYS®, so one can see that fast 

convergence is essential.  In general, the problem formulation  is as in [170]: 

Let ( X ,

 

. ) be a real normed space; let S be a nonempty subset of X ; and let  

Sf : be a given functional. Under this assumption, we investigate the optimization 

problem )(min xfSx . One can prove the below theorem [170]: 

Let S  be a nonempty convex subset of a real normed space. Every local minimal point of 

a convex functional Sf :  is also a minimal point of f  on S . 

By considering analyses which were carried out in the previous sections and the above 

theorem, one can conclude that the problem to find an optimum stress distribution in 

layers is possible. As mentioned before the stress is continuous function in the normed 

space, and also a real numbers . Also for this case the objective function f

 

 is 

expressed as the square error, )ˆ(MSE  between the calculated and the measured values 

of the deflection at the center of the micro-plate. This function is minimized. Stress in 

each layer was considered in the range 140% to 60% of Stoney equation and these were 
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constrain equations for optimization problem. It means that the interval of residual stress 

variation for each layer was considered as below: 

][3154.1225][1536.0225
1

MPaMPa
layeret  

 ][8.2404.1172][2.1036.0172
2

MPaMPa
layered  

 ][12044.1860][5166.0860
3

MPaMPa
layered    

The applied pressure represents a constraint equation. The analysis was run using 

ANSYS. For each case the error function is computed.  The minimum one was selected 

from the error functions which is further used to decide what iteration if further 

performed by the FEA program.  Pressure values are: 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 

3.0, 4.0 and 5.0 [bar] respectively. In the code, for a specific dimension, first assumed 

that pressure is 0.25 [bar] then for first layer  ][153
1

bar
layeret    assumed as residual 

stress also for second layer and third layer residual stress was 

considered ][2.103
2

MPa
layered  , ][516

3
MPa

layered    respectively. Then ANSYS® 

calculated deflection for this case. The error from the experimental for ][25.0 barP  , 

][225
1

bar
layeret  , ][72

2
MPa

layered  , ][860
3

MPa
layered   was calculated. Then 

][5.0 barP   was considered without changing the residual stresses and the deflection 

and the error were derived. Further, the deflection corresponding to the max pressure was 

calculated and the corresponding error was found. After that )ˆ(MSE

 

was calculated for 

all pressures.  In the second step for ][25.0 barP   was assumed and the residual stresses 

in first and second layers was left unchanged while the residual stress in third layer was 

increased 1% this is ][1.521
3

MPa
layered  , and all procedure repeated again and another 
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)ˆ(MSE calculated. When the error reduces, the change follows the same trend. This 

algorithm repeated till the smallest value of the )ˆ(MSE is found for a combination of 

residual stress in layers for all pressures. To complete comprehensive analysis for a plate 

one may need for more than five million times of running ANSYS® which means 

significant amount of time. Even if the solution may lead a local optimum, it is thought 

that the error which has reached 0.385% is considered more acceptable than running such 

a huge number of simulations to cover the entire range of possibilities. At the end, 

minimum value of )ˆ(MSE  was selected as an optimum value that reduces the error 

between experiments and numerical analysis. For example for plate 231µm×231µm, 

minimum )ˆ(MSE happens when the residual stress in first layer is 135% of Stoney 

equation, ][255
1

MPa
layeret 

 
and second and third layers stresses are %72 and 63%, 

][124
2

MPa
layered  , ][542

3
MPa

layered   of Stoney equation respectively, as shown in 

figure 4-9.1.   

 

 

Figure 4.9.1. Optimized stress distribution in 3-layer micro-plate, 231µm×231µm, in the first layer 135% in the second 

layer 72% and in the third layer 63% of Stoney equation estimated are in the layers. 
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Figure  4.8. Optimized stress distribution in 3-layer micro-plate, 500µm×500µm, in the first layer 135% in the second 

layer 72% and in the third layer 63% of Stoney equation estimated are in the layers. 

 

 

Figure  4.8. Optimized stress distribution in 3-layer micro-plate, 572µm×572µm, in the first layer 135% in the second 

layer 72% and in the third layer 63% of Stoney equation estimated are in the layers. 
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Figure 4.9.5. Optimized stress distribution in 3-layer micro-plate, 765µm×765µm, in the first layer, 135% in the 

second layer 72% and in the third layer 63% of Stoney equation estimated are in the layers. 

 

As one can observe from figures  4.9-1 to 4.9-4, the residual stress distributions in layers 

are for from Stoney equation predicted values. In two layers stress is less than predicted 

values and in one layer is more than it is. Based on the experiments done in [2, 3], 

stresses in layers are as table 4.7-1, whereas optimization method shows that the stresses 

are as table 4.9-1: 

Table  4.8. Stress distribution in 3 layer micro-plate 

Material Stress (MPa) 

(Stoney Eq.) 

Stress  (MPa) 

(optimized) 

SiO2 (Thermal) -225 -304 

SiO2 PECVD -172 -108 

Si3N4 LPCVD 860 620 

 

4.10. Summary 

 

In practical application involving fabrication of micro-structures of multi-laminar films is 

essential to prior know the value of the stress developed in each layer. These values are in 

general terms well known. However, the effective values may vary as much as ± 40% 
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with respect to the generic values.  The design of the geometry of a micro-structure is 

strongly dependent on the built-in stress in the constitutive layers. The more accurate this 

information is more accurate prediction of the mechanical or elastic properties could be 

performed. The classical linear theory of the in-layer stress by Stoney proves to be 

substantially off the experimental values. As the experimental measurement are assumed 

as the gold standard, the present investigation proposes an extraction algorithm for the 

values of the inter-laminar stress based on the reduction of the error between the 

experimental static deflection vs. the calculated value. The base-line of the analysis is the 

stress generic values yield by the features of the process. Based on the analytical 

formulation of the problem, a solution that involved Kirchhoff assumptions is proposed. 

A finite element analysis for a generic size of micro-plate using multiple element types 

shows that SHELL 181 yields the closest values of deflection if compared to the 

analytical solution found by series expansion. Thus, this type of element is further used in 

the extraction algorithm. The deflection is established for the base line and again, for 

extreme variations of the stress in the structural films: 60% and 140%. The gradient 

method is further used to evaluate the direction of increasing the stress by 5% in the 

layers that yield the highest sensitivity. When the gradient on the RMS error increases, 

the revising calculations are performed with increments of 1%.  The process is followed 

as long as convergence is attained. In this paper, the results for square micro plates made 

of 3 and 4 layers of four different geometric sizes are analyzed. The method enables fine-

tuning of the resonant properties of microstructures as well. 
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Chapter 5 

  Conclusion and Future Work 

 

 

5.1. Conclusion 

 

This thesis focuses on analytical analysis of nonlinear behavior of MEMS devices. 

MEMS structures show nonlinear behavior, due to the physics at small scale, 

manufacturing process and the properties of materials in thin films. These phenomena do 

not usually come into picture at large scale. 

The theory of beams and plates has been well defined in the past and the assumptions 

used in these theories have been used in the analysis of microstructures just because other 

available theories were not handy. As the fundamental theories make use of simplifying 

assumptions accepted in the classical theory given the specific application of the 

respective structure, in MEMS such assumption are not reasonable anymore. 

 The deflection of a macro-cantilever beam in construction structures or in vehicle 

applications is not affected by any electrostatic field, whereas this phenomenon is 

common in MEMS. If the potential difference between substrate and micro-cantilever 

beam increases, the beam will collapse. The event occurs when the potential difference 

reaches pull-in voltage inducing static instability. Linear analysis of pull-in voltage shows 

that the beam will collapse if deflection reaches 1/3 of the initial distance between beam 
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and substrate. These results do agree with nonlinear analysis which was carried out in this 

investigation. It has been shown that the critical distance is 4/9 of the original distance. 

The behavior of micro-cantilever beam was studied under the voltage very close to pull-

in voltage. Experimental result with direct measurements is not feasible for this 

phenomenon.  Indirect measurements were performed at potentials large enough but not 

close to the pull-in. The deflection of the beams modeled through the non-linear 

assumptions better suits the experimental results that the linear assumptions.  

Analytical solution of differential equation by Lie symmetry groups preserved the 

nonlinear terms for pull-in voltage formulation. This term relates the pull-in voltage, the 

gap between micro-cantilever beam and substrate to pull-in distance independently of 

beam geometry.  

Micro-cantilever beam as a probe in AFM has a crucial role. Using a curved 

manufactured beam may significantly affect the sensitivity of the probe. If micro-

cantilever beam experiences a large deflection during an experiment, the sensitivity of 

AFM will change. To answer these questions, the governing differential equation of non-

straight beam under the point force tip which creates large deflection was derived and 

solved by Lie symmetry groups. The analytical solution was compared with the straight 

beam in the large deflection subjected to the same force. The results showed that there 

was no difference between the two solutions. Also sensitivity analysis was carried out for 

all the possible parameters and the effect of each such parameter was investigated for 

several cases.  

Pressure sensors are largely used in industrial applications.  One type of pressure sensors 

is micro-plate sensors. To manufacture this type of sensors, different materials are 

deposited on the substrate.  Deposition of each layer builds up residual stress between 
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layers.  Stoney derived a simple equation for evaluation of the residual stress in 1907. 

Only recently the equation has been used.  In this thesis, it was shown that this equation 

will not predict correctly the values for stress in layers. A numerical optimization method 

was presented to calculate correct values of residual stress in three and four layers 

laminate micro-plates. The experimental results have been used to optimize the values of 

the laminar stress such that deflection matches the experimental data. 

 

5.2. Lie Symmetry Group Method 

 

Sophus Lie found in nineteenth century that most of the methods for solving differential 

equations are using group theory. Lie symmetry methods are central to the modern 

approach for solving nonlinear differential equations.  

The main idea came from symmetry in geometry. In smooth manifold a differential 

equation relates its elements to another smooth manifold similar as in mapping process. 

An infinitesimal transformation which is invariant of the differential equation does not 

change the form of differential equation. The infinitesimal   transformation makes a 

symmetric group that is also Lie group. This group transfers the differential equation 

from main domain to a new manifold which is tangent bundle. The manifold is called 

canonical coordinates.  By this transformation the order of original differential equation 

reduces one degree and if it is first order differential equation it will be separable. The 

reduction order process can continue until it reaches a first order differential equation.  

All this process is possible if the invariant transformation is available. In this 

investigation, although three different approaches of Lie symmetry were presented, just 

one type of invariant that includes scaling and rotating was studied.  
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 5.3.   Nonlinear vibration of micro-cantilever beams under electrostatic field   

 

Nonlinear vibration of micro-cantilever beam under electrostatics field was studied. The 

governing ordinary differential equation (ODE) was derived by using the energy method.  

The equation was taken into account as second order nonlinear ODE. It was shown that 

the equation is invariant under the scaling transforming. The transformation of the second 

order differential equation produced a first order ODE. The new ODE is nonlinear and so 

far, there is no invariant for this ODE to yield a close form solution. The first order ODE 

has a term which is dependent on the pull-in voltage. This term also makes the ODE 

nonlinear. Neglecting this term makes the ODE solvable, but the solution excludes the 

damping parameter.  

Numerical solution of second order ODE, is another issue that was studied in the present 

investigation. It was shown that all the solutions that used Maple included algorithms, 

except one, are not suitable to solve this ODE. The only method that can be used is lsod 

algorithm. This method is used for stiff ODE’s. 

As most the of numerical methods fail in solving the nonlinear ODE, the objective of 

finding an analytical solution to this problem is a natural intention.  

Pull-in voltage is an important subjected that was widely studied. This is the reason for 

which the subject was also investigated in this research. Although this phenomenon was 

studied in many articles, most of them solved the linearized ODE. In the present 

investigation it has been shown that using linearized solution yields to different output 

than the one obtained from nonlinear solution. Several models of pull-in voltage which 

were introduced in the open literature were addressed in this research.  Nonlinear solution 

of the models was compared with the linear models solutions and also with the 

experimental results. It was proved that linear models yield solutions that are far from the 
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experimental results. Moreover nonlinear models would not match with experimental 

results within the recommended range of the papers. For seven types of models the pull-

in voltage the behavior of system close to pull-in voltage was analyzed including the 

stability of system, large deflection of cantilever and resonance frequency. The results of 

the analysis were studied and compared with experiments which the results were fit 

experiments. Similar behavior is expected to be resulting from exposure of micro-systems 

to other field forces. 

 5.4.  Large deflection of micro-cantilever beams 

 

Analytical analysis of large defection of beam has more than sixty years of history. Many 

kinds of forces, supports, analytical methods and numerical methods have been 

investigated. Advent of MEMS and also the successful manufacturing of the micro-

cantilever beam leads to the importance of beam large deflection analysis. Most of the 

microstructures including cantilever beams experience large deflections. The governing 

equation of large deflection for a beam under any kind of loading is represented by a 

second orders nonlinear ODE.   

In the third chapter of this thesis, a general solution for large deflection of beams is 

analyzed. The applications of the method are for beams under any kind of load and any 

type of material. A general solution was derived for beams of arbitrary cross section 

using Lie symmetry groups. By this solution, an explicit formulation was derived for the 

first time for a cantilever beam under a point force at the tip. The result was compared 

with those obtained from the implicit solution. Three cases were selected from the open 

literature and they were examined through the presented solution as well as by numerical 
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methods.  Method of deriving small deflection from large deflection was validated from 

the general solution. All derived relations were valid at the micro level. 

One of the problems that researchers are facing when analyzing micro-cantilevers beams 

is to calculate the residual stress in such beams with large deflections. To overcome this 

problem, a semi-analytical formula based on Taylor expansion was presented and 

validated. 

Another application for large deflection of micro-cantilevers is in AFM. In AFM 

normally, micro-cantilever beams are straight and they are subject to small deflections. 

However, the fabrication process effort of the AFM would be significantly reduced if 

non-straight beams would be used as probes. Moreover, the beams could be subjected to 

large deflections under specific tapping mode conditions.  For an originally curved beam 

under large deflection, the governing ODE was derived and solved by Lie symmetry 

method. It was shown that curved beam had the same deflection as straight beam of the 

same geometry and material in large deflection. The sensitivity of beam was investigated 

with respect to the geometric parameters of the beam and the material for various loading 

conditions including tip force of variable angle. It was proved that the sensitivity with 

respect to the intensity of the load reduces in large deflection when compared with large 

deflection beams.  

 

5.5. Large deflection of multi-layered micro-plates 

 

As mentioned above, micro-plates have a wide range of applications in industry. In this 

thesis, the governing equations for single layer and multilayer plates with large deflection 
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were presented. A series of micro-plates with three and four constitutive layers were 

modeled in the present investigation. The micro-plates were manufactured and tested by a 

collaborator of Concave Research Centre. The experimental results for the deflection of 

the plates under the assumed values of the inter-laminar stress showed very large 

abatement from the numerical results obtained from the numerical simulation carried out 

with ANSYS. All these stresses were taken into account while a uniform pressure was 

assumed to act on the micro-plate. The experimental value of the maximum deflection 

was compared with the peak deflection resulting from the numerical computation. In 

calculating the residual stress in layers, Stoney equation was used whereas it was proved 

that the equation can yield up to 40% error. Based on this fact, the effective value of the 

stress in each layer was found using a numerical optimization method in conjunction with 

ANSYS. In each micro-plate the corresponding deflection for a uniform known pressure 

were measured and recorded. An optimization algorithm was presented to determine the 

stress values in each layer such that they range within ±40% of Stoney predicted stress, 

some constrains were applied to reduce number of iterations  . The objective function was 

set as to minimize the error of the deflection vs. pressure with respect to experimental 

deflection within the given experimental range.  The results showed that there are 

residual stresses in all micro-plates in the predicted range in the way that deflection by 

numerical analysis is very close to the experimental results.  Also it was shown that for 

all different dimensions of micro-plates with the same number of layers the calculated 

residual stresses are same.  It was shown that in three layer plate real residual stress in 

layers are 135% of initially assumed stress in the first layer, 72% in the second layer and 

63% in the third layer.  The values are specific for the fabrication process. 
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5.6. Future recommended work 

 

Nonlinear analysis is important in MEMS accurate modeling. A basic fundamental theory 

is missing and the reason of this absence is obvious. The nonlinear theories are difficult 

to apprehend and they represent a step away from the reasoning of engineering which 

aims simplified theories. However, when linearizing differential equations in micro-

systems modeling, that operation should be carried with caution.  For this reason, it 

seems reasonable that for all MEMS applications one should perform analysis solving the 

nonlinear differential equations. To extend the objectives of this thesis, author has 

formulated few suggestions for the future work. 

In classical theory of the mechanics of materials it is undisputed that a beam would 

deflect within a linear domain, this is a fraction of its thickness. In microstructures the 

deflection of a beam might exceed few hundred times the thickness of the beam and 

despite the deflection range, the beam resumes its original position when the exciting 

load is removed. It is clear from here that despite the large strain the stress has not exceed 

the yield value for the material of the micro-beam. A paradox in the physics of micro-

systems is thus re-formulated as previously stated in the thesis; the relation between 

stress and strain at micro-level is non-linear. Based on this justification the future 

investigations should be directed towards: 

1. Deriving complete solution for first order ODE in vibration of micro-cantilever 

beam by Lie symmetry. This requires finding some type of other symmetry of the 

equation rather than rotation or translation. An analytical solution will enable a 

direct design of microstructures which operate in electric fields. 

2. Deriving an analytical formulation for stability of micro-cantilever beam. This 

will help to predict the stability of system without any need to numerical solution.  
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3. Deriving an analytical formulation for pull-in voltage with nonlinear analysis. 

Still there is no analytical value for pull-in voltage. This will give exact value for 

pull-in voltage and there will be no need to solve a stiff ODE or PDE to get 

approximate solution. Also it helps to design the micro-cantilever in way that to 

avoid pull-in. This can be done by finding an analytical solution by Lie symmetry 

method to first order ODE.  

4. Solving the large deflection of micro-beam with PDE by Lie group. For this 

purpose , the algorithm of finding symmetries of PDE and method of solving the 

PDE by Lie symmetry should studied carefully.   

5. Finding the physical meaning for nonlinear terms of reduced form of ODE. This 

may can be done by understanding the physical meaning of infinitesimal 

transformation and physical meaning of canonical coordinates and transferred 

equations. It need to deep understanding of Manifold and Lie groups and their 

physical properties.       

6. Deriving an explicit solution for large deflection of curved beam. It may be 

possible to follow the presented method for large deflection of beam in current 

work. 

7. Solving the PDE of large deflection of micro-plate by Lie symmetry method. It 

can be done as mentioned for PDE of large deflection of beam.    

8. Deriving analytical formula for residual stress between layers. Still the behavior 

of plate under the variation of residual stress in different layers is unclear. To 

understand this behavior, Solution method for system of nonlinear PDE by Lie 

symmetry should be study and applied to this problem.   
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APPENDICES 

 

Appendix A: 

 

            Failure of numerical method for solving the ODE 

 

Below, an example to prove the lack of solution for a practical problem is presented. For 

the micro-cantilever beam which is studied in the second chapter and has the property 

below: 
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 The equation (2.3) can be written as: 
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             (A.1)     

The research revealed that any kind of numerical solution using Maple module for ODE 

could not solve this specific equation. Table (A-1) shows these results. As one can see in 

the cases that y values are same y  values are not equal. Each solution was done for three 

different tolerances, 
14107 10,10,10 

 respectively. However, lsode algorithm provided a 

good result to this specific problem. 
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Table A-2.  Illustration of the solution availability for equation (A.1) using Maple solving models for ODE 
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Appendix B: 

 

                  Method of calculating iC  coefficients in (2.24) for equation (2.20): 

 

By expanding (2.25) one has: 
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                                     (B.1) 

 

Coefficients of 2y  in left hand and right hand must be equal: 

 

 333 CC                                                    (B.2) 

 

therefore:  

 

03 C                                                           (B.3) 

 

As above, coefficients of y  in left hand and right hand must be equal: 

 

26226 32 CCCCC                                         (B.4) 

 

Simplifying it gives: 
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03 22   CC                                                  (B.5) 

 

02 C                                                          (B.6) 

 

Coefficients of x in left hand and right hand must be equal: 

 

05 C                                                           (B.7) 

 

By considering (B.3), (B.6) and (B.7) equation (B.1) becomes: 

 

yCCyC 646                                                  (B.8) 

 

So: 

 

04 C                                                          (B.9) 
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Appendix C: 

 

                      Contact form for equation (2.53)[120]: 

 

Generally if ),( ux  and ),( xwuy  . One can write : 

 

dy

dw
wy                                                           (C.1) 

 

or: 
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therefore: 
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For second derivative:  
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duwdu
u

dywdw yyx

x

yyy 
2

1
                              (C.5) 

 

therefore: 
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u
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yyy                           (C.6) 

 

For
dx

du
w x

xx  , one can write: 

 

0 dxudu xxx                                                  (C.7) 

 

By comparing the first parenthesis of (C.6) with (C.7): 

  

3

xyyxx uwu                                                      (C.8)    

                           

or: 
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By substituting of vrty ,,,  in equation (2.53) with wyxu ,,, in equation (C.9), one 

will reach the equation (2.3). 
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Appendix D: 

 

In this part, it is shown that a transformation like (2.24) doesn’t give a symmetric for 

equation (2.55).A transformation like (2.24) has to satisfy (2.16), as it is shown in section 

2.3.4.  in equation (2.16) is defined as:  

 

                                (D.1) 

 

If one substitute (2.24) and (D.1) in (2.16), will have: 
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             (D.2)
 

Any set of  doesn’t satisfy (D-2). For example even if one considers the simple 

transformation like (2.49), equation (D-2) will simplify to: 

 

                                           (D.3) 

which is non-zero.  
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Appendix E: 

 

          Definitions and theorems 

 

Group: 

 

A group is an ordered pair (G, ) such that G is a set,   is an associative binary operation 

on G, and Ge  such that: 

 

a) if Ga , then aea   

b) is Ga , then Ga  1  such that eaa  1 . 

        

Manifold: 

 

Let k> 0. Suppose that M is a subspace of nR having the following property: for 

each Mp , there is a set V containing p that is open in M, a set U that is open in kR , 

and a continuous map VU :  carrying U onto V in a one-to-one fashion, such that:  

 

a)   is of class rC .  

b) VU  :1  is continuous.  

c) )(xD  has rank k for each .Ux  
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Then M is called a k-manifold without boundary in nR , of class rC . The map   is called 

a coordinate patch on M about p. 

 

r-parameters Lie group : 

 

An r-parameter Lie group is a group G which also carries the structure of an R-

dimensional smooth manifold in such a way that both the group operation:    

 

                                     (E.1) 

 

and the inversion    

 

                                             (E.2)  

 

are smooth maps between manifolds.   

 

Local group of transformations: 

 

A transformation group acting on a smooth manifold M is determined by a Lie group G 

and smooth map  denoted by  , which satisfies 

 

                          (E.3) 

 

Tangent vector: 
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C is a smooth curve on a manifold M, parameterized by , where I  is a 

subinterval of R. In local coordinates ,  C is given by m smooth functions 

))(),...,(()( 1  m  of the real variable ε. At each point )(x  of C the curve has a 

tangent vector, namely the derivative  

))(),...,(()( 1 



 m

d

d                                               (E.4)          

Tangent space: 

A tangent vector to a manifold M at a point Mx  is geometrically defined by the 

tangent to a (smooth) curve passing through x 

 

Vector field: 

 

A vector field v  on M assigns a tangent vector
xx

TMv   to each point Mx , with 

x
v varying smoothly from point to point. In local coordinates ),...,( 1 mxxx  , a vector 

field has the form 

 

m

m
m

x x
x

x
xv









 )(...)(

1

1                                             (E.5) 

 

where each )(xi  is a smooth function of x.  
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Flows: 

 

If v  is a vector field, we denote the parameterized maximal integral curve passing 

through x in M by   and call   the flow generated by v . 

 

Infinitesimal generator: 

 

The flow generated by a vector field is the same as a local group action of the Lie group 

R on the manifold M is often called a one-parameter group of transformations. The vector 

field v  is called the infinitesimal generator of the action since by Taylor's theorem, in 

local coordinates: 

 

)()(),( 2 Oxxx                                                        (E.6) 

 where ),...,( mi   are the coefficients of v . If ),( x  is any one-parameter group of 

transformations acting on M, then its infinitesimal generator is obtained by: 

 

                  ),(
0

x
d

d


 




                                                       (E.7) 

 

Symmetry group: 

 

A group G is called a symmetry group of a system of k equations 

 

                                                       (E.8) 
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if and only if the variety  is a G-invariant subset of M.  

 

Invariant function: 

 

G is a local group of transformations acting on a manifold M. A function , 

where N is another manifold, is called a G-invariant function if for all   and 

all   such that    is defined: 

 

                                                      (E.9) 

 

 

 

 

Invariant function: 

 

If G acts on M, and  is a smooth function, then F is a G-invariant function if 

and only if every level set lRccxF  },)({  is a G-invariant subset of M. 

 

Invariant of differential equation: 

 

 Let   be a system of differential equations. A symmetry group of the system   is a 

local group of transformations G acting on an open subset M of the space of independent 

and dependent variables for the system with the property that whenever )(xfu   is a 
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solution of  , and whenever fg.  is defined for Gg , then )(. xfgu   is also a 

solution of the system.  

 

Prolongation: 

 

Any diffeomorphism, 

 

)ˆ,..,ˆ,ˆ,ˆ(),...,,,(: )()( nn yyyxyyyx                                      (E.10) 

 

acting on the plane ,where 

 

k

k
k

xd

yd
y

ˆ

ˆ
ˆ

)(
)( 

   
k=1,…,n.                                              (E.11) 

 

This mapping is called n
th

 prolongation of  . 

 

Canonical coordinate:  

 

A change of coordinates: 

 

))(),....,(),(()( 21 xyxyxyxYy n                                               (E.12) 

 

defines a set of canonical coordinates for the one-parameter Lie group of transformations 

),(* xXx   if in terms of such coordinates the group ),(* xXx   becomes: 
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ii yy *                  1,...,2,1  ni  

                                                   (E.13) 

 nn yy*  

Theorem for reduction of order of an ODE: 

 

Assume that the nontrivial one-parameter Lie group transformations  

 

)(),();,(

)(),();,(

2*

2*





OyxyyxYy

OyxxyxXx



                                                    (E.14) 

 

with infinitesimal generator  

 

y

f
yx

x

f
yxXf









 ),(),(                                                   (E.15)                      

 

is admitted by the n
th

 order ODE: 

 

),...,,,( )1()(  nn yyyxfy    2n                                             (E.16) 

 

Let )),(),,(( yxsyxr  be corresponding canonical coordinates satisfying 0Xr , 1Xs . 

Then solving the n
th

 order ODE reduces to solving an (n-1) order ODE: 
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2
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                                      (E.17) 
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where: 

z
dr

ds
                                                        (E.18) 

 

Suppose that Lie symmetry of a first order ODE ),( yxy   is given, and then the ODE 

can be reduced to quadrature by rewriting it in terms of canonical coordinates as fallow: 

 

yx

yx

ryxr

syxs

dr
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
                                               (E.19) 

 

the ODE (E.19) is of the form: 

)(r
dr

ds
                                                        (E.20) 


