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ABSTRACT 

Computational Modeling of Cardiovascular Flows using                                           

Smoothed Particle Hydrodynamics 

Shahrokh Shahriari, Ph.D. 

Concordia University, 2011 

This dissertation presents the first attempt to verify the capability of smoothed particle 

hydrodynamics (SPH), a meshfree particle method, to simulate pulsatile flow in the 

cardiovascular system. Smoothed particle hydrodynamics has been extensively used to 

simulate astrophysical phenomena, free surface flows and transient start-up of the internal 

flows under constant driving forces at low Reynolds numbers. However, most of the fluid 

flow phenomena are naturally unsteady with moderate Reynolds numbers. In this thesis, 

first, a series of benchmark cases are conducted to address internal oscillating flows at 

moderate Reynolds numbers. The performance of the two most commonly used 

formulations to model the diffusing viscous term and the XSPH variant, proposed to 

modify the movement of the particles, is investigated. The relation between particle 

resolution and sound speed to control compressibility effects in SPH simulations and the 

spatial convergence rate of the SPH discretization are examined. Furthermore, a modified 

formulation for wall shear stress calculations is suggested and an approach to implement 

inflow and outflow boundary conditions in SPH is introduced. It is also shown how SPH 

simulations with different particle resolutions exhibit behaviors equivalent to a finite 

volume scheme of different accuracy orders for moderate Reynolds numbers. The 

application of SPH to cardiovascular fluid dynamics is extended by simulating pulsatile 
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flow inside a model of the heart’s left ventricle and through normal and dysfunctional 

prosthetic mechanical heart valves. The SPH simulations result in the realistic calculation 

of the shear stress loading on the blood components and illustrate the important role 

played by non-physiological flow patterns to shear-induced hemodynamic events. 
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Introduction 

Numerical simulations have significantly enhanced our knowledge of physical 

phenomena in science and engineering. In comparison with analytical analyses, 

computational methods generally require less unrealistic assumptions. They are also 

considered as a substitute for experimental studies which are expensive and time 

consuming. Numerical simulations have contributed widely to uncovering physical 

phenomena in emerging fields of research.  

Biomechanical engineering is an emerging multidisciplinary field integrating 

engineering and medicine. It involves several academic disciplines and professional 

specializations and aims to improve the quality of healthcare diagnosis and treatment. It 

combines the design and problem solving skills of engineering with medical and 

biological expertise. 

The study of blood flow in the cardiovascular system under normal and pathological 

conditions is of great importance in biomechanical engineering. Cardiovascular diseases 

are the major cause of death in North America (Heart and Stroke Foundation of Canada, 

2003). It is essential, therefore, to develop tools that can successfully study the 

hemodynamics of the heart and the arteries, investigate the hemodynamic complications 

encountered with cardiovascular diseases, test alternative surgical procedures and 

estimate their clinical impact on the hemodynamic condition of the patient. For this 

purpose, clinical researchers mainly rely on personal experience and in vitro facilities. 

It is of great significance then, to develop in silico tools capable of simulating 

cardiovascular fluid dynamics. Despite the great developments in computational methods 
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and computer capabilities, solving such problems using conventional mesh-based 

methods is complex. These methods have already demonstrated good capabilities in 

simulating cardiovascular flows and generated interesting results with significant clinical 

and practical implications. The main inherent limitation of mesh-based methods is their 

dependency on the process of mesh generation. Also, some important characteristics of 

cardiovascular flows, mainly under pathological conditions are difficult to capture using 

mesh-based methods.  Examples include, flow in complex geometries, tracking fluid 

properties history, thrombus formation and break up of red blood cells (microcirculation). 

The simulation of such characteristics requires computational fluid dynamic (CFD) 

methods based on a Lagrangian approach instead of Eulerian approach, and therefore 

simulating blood flow using meshfree particle methods. Meshfree methods do not spend 

time on the generation or regeneration of the mesh network and creation of connectivity 

between the nodes. In this thesis, Smoothed Particle Hydrodynamics (SPH), a fully 

Lagrangian meshfree method, is used to address this issue. SPH was applied originally to 

astrophysics in the 1970s and its first terrestrial application was performed in 1994 to 

simulate inviscid water flows. The SPH method has several advantages, including fully 

meshfree nature, presenting limited difficulties in treatment of complex geometries, easy 

to get time history of physical variables, naturally suited for parallel computation, and 

very wide application from micro- to macro-scale phenomena. 

In SPH, a continuum medium is comprised of a set of particles. Each particle has its 

own physical properties. Numerical discretization involves interpolating the value of a 

physical property for a given particle based on the properties of its neighboring particles 

using an interpolating function. 
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This thesis is the first work dedicated specifically to the SPH simulation of 

cardiovascular flows in a variety of flow characteristics and geometries. 

Chapter 1 provides an overview on computational mesh-based and meshfree methods 

and their advantages and disadvantages. The most widely used meshfree methods and 

their limitations are described and the motivations to select SPH as a promising candidate 

to simulate problems in cardiovascular fluid dynamics are provided. 

Chapter 2 provides a bibliography on the historical development of SPH and its 

mathematical formulation and numerical features such as different SPH discretization for 

Navier-Stokes equations, time integration technique and boundary condition 

implementations.   

In chapter 3, the ability of SPH to simulate oscillating and steady flows at different 

flow characteristics and moderate Reynolds numbers are examined. The selected 

benchmark cases have similarities in geometry and flow characteristics with the 

cardiovascular system. First, the performance of the two most commonly used 

formulations for viscous term modeling is studied. Then, the effect of using the XSPH 

variant, suggested to keep the movement of each particle consistent with the average 

velocity of its neighboring particles, on particle distribution is investigated. Some points 

regarding the use of symmetric form of pressure gradient modeling are discussed. After 

that, the application of SPH is extended to oscillating flows imposed by oscillating body 

forces and oscillating moving boundary for different oscillating frequencies and 

amplitudes. Also, a modified formulation for wall shear stress calculations is introduced 

and verified against exact solutions. The results for SPH simulation of the lid-driven 

cavity flow, at higher Reynolds numbers than reported in the literature, are shown. In this 
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simulation, an interesting feature of SPH in relation to particle resolution and sound 

speed to control the compressibility effects is revealed. 

Chapter 4 aims to extend the application of SPH to simulate flow inside a model of the 

heart’s left ventricle (LV). This is the first attempt to simulate flow inside LV using a 

meshfree particle method. Simulating this kind of flow, characterized by high pulsatility 

and moderate Reynolds number using SPH is challenging. First, the simulation results for 

a pulsatile flow in a rectangular cavity are presented and the results are compared to those 

obtained using the finite volume method. An approach to deal with inflow and outflow 

boundary conditions is introduced and verified. Finally, the flow in a model of LV under 

pulsatile inflow condition is simulated and the ability of SPH to track fluid properties 

history is illustrated. Some interesting features of SPH are also demonstrated including 

the relation between particle resolution and sound speed to control the compressibility 

effects and order of convergence in SPH simulations. 

Chapter 5 extends the application of SPH to simulate flow through normal and 

dysfunctional bileaflet mechanical heart valves (BMHVs) with a realistic aortic flow 

waveform. Evaluating shear induced hemodynamic events is of primary importance for 

the design of mechanical heart valves (MHVs). Currently, this relies on numerical 

simulations based on Eulerian approach. However, a more accurate evaluation should be 

based on the analysis of the Lagrangian dynamics of blood components. This chapter 

represents the first attempt to simulate turbulent pulsatile flow through BMHVs using 

SPH. The results obtained regarding the accumulation of shear stress patterns on blood 

components illustrates the important role played by non-physiological flow patterns and 

mainly vortical structures. The statistical distribution of particles with respect to shear 
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stress loading history provides important information regarding the relative number of 

blood components that can be damaged.  

Finally, an overall conclusion and future directions of this work are described. 
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Chapter 1 

Computational Mesh-Based and Meshfree Methods 

 

A comprehensive review of computational mesh-based and meshfree methods is 

presented and their advantages and disadvantages are discussed. The main advantages of 

using Smoothed Particle Hydrodynamics (SPH), a fully Lagrangian meshfree method, are 

also highlighted. 

1.1. Introduction 

Computational methods are essential to simulate different physical phenomena. 

Experimental studies are expensive and time consuming to adjust and analytical analyses 

are possible for limited physical problems with a series of unrealistic assumptions. 

Different types of computational methods have been developed and employed in the 

previous and present century. In conventional methods, the physical domain is discretized 

into meshes. The meshes are fixed in the domain (Eulerian approach) or attached to the 

material and move in the domain (Lagrangian approach). The meshes are defined in three 

forms including, connected nodes in the finite difference (FD) method, volumes (cells) in 

the finite volume (FV) method and elements in the finite element (FE) method. The 

meshes are used for transforming governing differential equations of physical phenomena 

(in physical domains) into a set of algebraic equations (in discretized computational 

domains). 
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Computational methods in fluid mechanics, known as computational fluid dynamics 

(CFD), are widely used to simulate fluid dynamic phenomena. In CFD, the physical 

governing equations of fluid motion, Navier-Stokes equations, are discretized in the 

spatial and temporal domain and approximated by a system of algebraic equations solved 

by computational algorithms. 

1.2. Mesh-based Methods 

In the finite difference (FD) method, developed in the 1920s, the physical differential 

equations are approximated to a series of FD equations at mesh points or nodes 

(Anderson, 1995). This method is difficult to implement for an unstructured mesh and not 

accurate for flow simulation in complex geometries. The derivatives of the variables in 

differential equations are approximated using Taylor series expansion.  

In the finite volume (FV) method, differential equations are represented as a set of 

algebraic equations based on an infinitesimal volume surrounding each point in a meshed 

geometry (Versteeg and Malalasekra, 2007). This method is able to handle flow 

simulations in complex geometries using unstructured meshes. However, the method has 

difficulties simulating 3D phenomena. In FV, interpolation techniques are applied to 

calculate the values of physical variables at the surface of each finite volume using 

computed variables at the central node of the volumes. Then the flux at the volume 

surface is evaluated (using quadrature formulae) and the volume integrals of the physical 

governing equations, in integral forms, are converted to surface integrals (using the 

divergence theorem). 
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Similar to the FV method, the finite element (FE) method discretizes the physical 

domain into elements in which the variables across the elements are calculated based on 

the values at the element nodes (Zienkiewicz et al., 2005). The differential equations are 

approximated by a set of numerically stable equations developed based on nodal points. 

The FE method is suitable for problems with complex geometries and has been used 

widely in different areas. 

Simulation of the interaction of fluid flow with structures, known as fluid structure 

interaction (FSI) modeling, is of great interest for the CFD community in which two 

common techniques are used: The immersed boundary method (IBM) and the arbitrary 

Lagrangian Eulerian (ALE) approach. 

Immersed boundary method uses a combination of Eulerian and Lagrangian variables. 

The fluid domain is described on a fixed, Eulerian, frame of reference and the structure is 

described in a Lagrangian manner (Peskin, 2002). The Navier-Stokes equations are 

solved based on discretized Eulerian grids and the structure is modeled as a set of 

connected points. These points move freely in a Lagrangian frame of reference through 

Eulerian grids in accordance with the applied hydrodynamic forces. The interaction 

between the structural points and the fluid grids is modeled based on force density 

functions. This interaction procedure employs a Dirac delta approximation function. 

In the ALE technique, nodes in the fluid domain can be fixed or move arbitrarily in a 

Lagrangian manner giving optimized shapes to the elements (mesh rezoning) (Souli and 

Benson, 2010). However, special treatment is needed for momentum remapping. Fluid 

elements interacting with moving structures, can easily track the boundary movements.  
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Conventional mesh-based methods have been used over a wide area in CFD and 

computational solid mechanics (CSM). These methods have several inherent advantages, 

including: 

- The algorithms and associated procedures are robust and well understood. 

- Several types of commercial software are available with convenient and user-friendly 

interface. 

- The computational time step is appropriate for engineering applications, although it 

depends on the selected technique and algorithm.  

- They have determined stability and high accuracy. 

The main difficulty in these methods is their dependence on the process of mesh 

generation, distortion and regeneration which are time consuming and can lead to 

additional computational error. The problems with complex geometries and moving 

boundaries are still challenging for these computational methods. Some limitations of 

these methods include: 

- Complex and irregular geometries are meshed with difficulty. 

- The entire domain needs to be meshed. (Liu and Liu, 2003)  

- In problems with large deformations, a mesh regeneration process is needed to prevent 

distortion of meshes.  This is complex and computationally expensive. 

- The location of deformable and moving interfaces is not determined precisely. (Liu 

and Liu, 2003) 
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- In some methods such as the FD method, it is necessary to map an irregular physical 

geometry to a regular computational domain. (Anderson, 1995) 

- These methods are not well adapted for monitoring material properties and 

determination of time history of the materials. (Liu, 2010) 

- In fluid structure interaction problems, a strong coupling between Eulerian and 

Lagrangian variables is needed which increases the computation time. 

Due to the above limitations, it is desirable to propose methods that are independent of 

mesh generation or regeneration processes. To overcome these limitations a new class of 

methods called meshfree methods was introduced.  

1.3. Meshfree Methods 

In meshfree methods, no kind of mesh is used to approximate physical quantities and 

to convert differential equations to algebraic equations. The physical domain is 

discretized with a set of points (nodes) that are not connected with each other, unlike 

mesh-based methods. The physical governing equations are approximated based on the 

points, not the elements. These methods have similar fundamental concepts, but differ in 

employing approximation functions, discretization equation systems and the 

implementation methodology. (Liu and Liu, 2003) 

Meshfree methods spend minimal time on generation or regeneration of the mesh 

network and the creation of connections between meshes. Some meshfree methods need a 

background mesh to integrate the system of equations locally or within the entire domain. 

Methods that do not use meshes in any way can be implemented easily, but they are 

sensitive to stability and accuracy related issues. (Liu, 2010) 
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Meshfree methods are in the development stage and several modifications remain in 

progress. In the following sections, the most developed and widely used meshfree 

methods are briefly described and their features are discussed. 

1.3.1. Molecular Dynamics Method 

Molecular dynamics (MD) is a meshfree computational method introduced for 

modeling molecular level systems based on statistical mechanics. It was developed to 

overcome the difficulties in analytical modeling of physical systems having an infinite 

number of atoms. 

The classical MD is based on Newton’s second law. In the computational domain, 

atoms or molecules interact based on intermolecular forces derived from an interaction 

potential function. Molecular dynamics was first applied in chemistry and physics and 

then to material science in 1960 by Gibson. Later, macroscopic physical models were 

introduced to extend the application of MD to simulate macro-scale phenomena. The first 

MD modeling of a system of liquid water was performed by Bernal (1962) and Stillinger 

and Rahman (1974). 

The MD method at macroscopic scales is not accurate enough to reproduce the 

realistic dynamics of a physical system. Simulation of a continuum fluid domain, 

determination of transport properties and accurate potential functions still need further 

examination.   

1.3.2. Monte Carlo Method  

Monte Carlo method is categorized as a probabilistic meshfree method. This method 

approximates the mathematical equations using random numbers and probability theory. 
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This method can be applied to problems with both inherent probabilistic and non 

probabilistic characteristics. The Monte Carlo method originated by Ulam and Metropolis 

on the subject of chance games (Metropolis, 1987).  

The first works extending the application of Monte Carlo to physics and engineering 

include: the book written by Hammersley and Handscomb (1964), the work done by 

Haji-Sheikh and Sparrow (1967) to model heat conduction problems, the study of Binder 

(1992) on determination of the physical properties of the condensed matters and 

simulation of inviscid fluid flow problem by Perez and Zachrich (2000).   

Implementation of the Monte Carlo method requires an iterative process including 

creation of the model, generation of random inputs and evaluation of the model.   

1.3.3. Lattice Boltzmann Method 

Lattice Boltzmann method (LBM) was first developed to solve governing equations in 

compressible fluid dynamics. The fluid domain is discretized by a series of uniformly 

spaced lattice nodes. The continuous Boltzmann equation is approximated based on the 

nodes and an interaction model is adopted to mimic the viscous flow behavior (Chen and 

Doolen, 1998). 

The motion of particles under the governing equations of fluid dynamics is mimicked 

using specific collision rules. Particle movements are modeled using distribution 

functions, which define the density and velocity at each lattice node.  

The significant developments in LBM were done by Hardy et al. in 1976 proposing a 

particle velocity model to determine the transport properties of the fluids and by Frisch et 
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al. in 1986 to correct governing equations of the fluid flow based on the lattice gas 

automata.  

To calculate pressure field, there is no need to solve the Poisson equation. This 

method is classified as a probabilistic meshfree method. The major disadvantages of this 

method for incompressible fluid dynamic applications are compressibility effects and 

instabilities resulting in limitations in increasing the time step for the simulations. Also, 

this method requires a background lattice of nodes and is not a fully meshfree method. 

This method is not applicable for solving solid dynamic equations leading to similar 

difficulties as in mesh-based method for FSI simulations.  

1.3.4. Element Free Galerkin Method 

The element free Galerkin (EFG) method was introduced by Belytschko et al. (1994). 

This method is a combination of finite element and meshfree methods. 

Numerical approximation is performed based on the moving least square (MLS) 

concept on a set of nodes in the entire domain to construct a shape function. The system 

of equations is descritized in Galerkin form and the integration procedure is done using a 

background mesh.  This method is also not fully meshfree. 

The challenges in the EFG method include the construction of an appropriate shape 

function and using background meshes for the integration process. 

1.3.5. Immersed Boundary Method 

The immersed boundary method was developed by Peskin in 1972 to model fluid 

structure interactions in biological systems, especially blood flow in the heart. The 

immersed boundary method can not be categorized exactly as a meshfree method, but the 
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implementation technique to model the interaction between the fluid domain and the 

moving solid structure is not performed like in conventional mesh-based methods. 

In the immersed boundary method, a Cartesian mesh is created in the entire fluid 

domain. The solid structure is not constrained by Eulerian fluid meshes and can move 

without restriction. The Eulerian fluid variables are linked to the Lagrangian solid 

variables by a Dirac delta function. (Peskin, 2002) 

This method needs a background mesh for integration of flow equations and is not 

implemented easily in problems with variable fluid viscosity and anisotropic solid 

elasticity.  

1.3.6. Vortex Method  

In this method, flow governing equations are transformed to the form of the vorticity 

transport equation. As a result, the method does not need to solve the pressure term in the 

Navier-Stokes equations. The discretized vorticity field is expressed as summation of the 

vorticities on vortex elements. The origin of this method was in the study of point 

vortices and surface vortex distributions in the 1930s. However, the vortex method as a 

computational tool was introduced by Chorin (1968) and Leonard (1980).  

The main difficulties in the vortex method are the complexity in modeling viscous 

terms and calculation of the velocity components. Moreover, in FSI problems this method 

should be coupled with a computational method capable of modeling the solid parts. 

1.3.7. Particle in Cell Method 

In the particle in cell (PIC) method, a set of particles is tracked in the Lagrangian 

frame of reference, then their properties are interpolated on Eulerian mesh points. This 
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method is a combination of Lagrangian and Eulerian approaches. The process of 

exchange between the two frames of reference and the related interpolation process is 

computationally time consuming.  

The early use of this method was in 1955 by Harlow, and the work of Brackbill and 

Ruppel (1986) which presented a successful application of PIC to simulate fluid flow. 

1.3.8. Smoothed Particle Hydrodynamics Method 

Smoothed particle hydrodynamics (SPH) is a fully Lagrangian meshfree method 

created originally to simulate compressible flow in astrophysics by Lucy and at the same 

time by Gingold and Monaghan in 1977. The physical domain is discretized by a number 

of particles. Each particle has its own physical properties. Numerical discretization 

involves approximation of the physical properties of each particle by interpolating the 

properties of its neighboring particles. The application of the SPH method in engineering 

began around 1994 (Monaghan, 1994). SPH can be applied in both fluid and solid 

dynamics and therefore FSI can be performed with less difficulty compared to mesh-

based methods. 

Table 1.1 provides a general comparison between mesh-based and meshfree methods, 

emphasizing the advantages and disadvantages for each. 
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Table 1.1. Comparison between mesh-based and meshfree methods. 

Numerical Complications Mesh-based Methods Meshfree Methods

Mesh generation
time consuming, needed in 

the entire domain 

no need (at least for 

discretization of equations) 

Complicated and 

irregular geometries

great effort to mesh and 

model 
less effort to model 

Moving and large 

deformation boundaries

mesh distortion, need to re-

meshing process which is 

computationally expensive 

less effort to model 

3D problems

difficult, especially in 

irregular and moving 

boundaries 

2D algorithm can be 

extended to 3D with less 

difficulty than in mesh-

based methods 

Time history of material 

elements

not easy to get, needs 

coupling with a Lagrangian 

method 

easy to get 

Algorithm and 

procedures
developed under development 

Time step
depends on the selected 

algorithm and procedure

smaller than in mesh-based 

methods 

Accuracy and stability
Already known with high 

accuracy and stability 

have reached an acceptable 

level for engineering 

applications 
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A comparison between different types of meshfree methods with emphasis on SPH 

advantages is provided in Table 1.2. 

 

Table 1.2. A comparison between SPH and other meshfree methods. (Adapted from Liu and Liu, 

2003; Liu, 2010) 

Conventional Meshfree Methods 
Smoothed Particle 

Hydrodynamics Method 

Molecular Dynamics 

Method 

Applicable for modeling 

systems at molecular level 

Applications are from micro 

to macro-scale. 

Monte Carlo Method 

Iterative method based on 

stochastic and perturbation 

theory 

Do not use random numbers 

and stochastic theories. 

Lattice Boltzmann Method 

In FSI problems, needs to be 

coupled with other methods 

capable of modeling solid part. 

Capable of solving solid and 

fluid dynamic equations in 

the same algorithm. 

Element Free Galerkin 

Method 

Use background mesh for 

integration; not a fully 

meshfree method. 

Completely a meshfree 

method. 

Immersed Boundary 

Method 

Need a background mesh for 

integration of flow equations; 

not straightforward to simulate 

cases with variable fluid 

viscosity and solid elasticity. 

Completely a meshfree 

method; variable properties 

can be considered without 

difficulty. 

Vortex Method 

Not able to simulate solid 

mechanic equations; velocity 

components and pressure are 

not computed directly.

Capable of solving solid and 

fluid dynamic equations; 

velocity components and 

pressure are derived directly.

Particle in Cell Method 

A combination of Lagrangian- 

Eularian approaches and a 

form of mesh is needed. 

Completely a Lagrangian 

meshfree method.
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1.4. Summary 

Smoothed particle hydrodynamic is selected in this thesis as a promising candidate to 

simulate problems in cardiovascular fluid dynamics due to the following reasons: 

1) The accuracy and stability of this method has reached an acceptable range for 

engineering applications. 

2) Direct tracking of real fluid particles in the domain allows determination of the fluid 

elements’ residential time which can be linked to risk of damage to blood components.   

3) There is no need for the process of mesh generation and regeneration in the simulation 

of problems with complex geometry and large deformation as in the cardiovascular 

system. 

4) SPH method is suitable for parallel computation. 

5) Its applications are very wide from fluid to solid mechanics and from micro-scale to 

macro-scale problems. 
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Chapter 2 

Smoothed Particle Hydrodynamics Method 

 

This chapter focuses mainly on fundamental concepts, mathematical formulation, and 

implementation techniques in the SPH method.   

2.1. Introduction 

Smoothed particle hydrodynamics is a fully Lagrangian meshfree particle method 

capable of satisfying conservation properties of continuum physical systems. The method 

was originally developed to model compressible flow in astrophysical phenomena by 

Lucy (1977) and Gingold and Monaghan (1977). Although the primary model did not 

exactly conserve the linear and angular momentum, it led to promising results in the 

simulation of complex behavior of celestial bodies (see Fig. 2.1).  

During the last two decades, the initial algorithm of SPH was improved to satisfy the 

conservation of momentum and energy and its applications have been extended rapidly to 

simulation of a variety of continuum solid and fluid mechanics phenomena (Libersky and 

Petschek, 1991; Monaghan, 1994). During the first developmental stage, the method was 

applied to shock tube problems by introducing the concept of artificial viscosity 

(Monaghan and Gingold, 1983). 
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The idea of using the artificial equation of state to calculate the static pressure in 

incompressible flow systems opened a new perspective to apply this method to a wide 

range of problems in fluid mechanics. The first attempt to simulate inviscid water flows 

subject to gravitational force was performed by Monaghan in 1994. 

 

Fig. 2.1.  Simulation of star formation using SPH. (Bate, 1995) 

There has been increasing interest among researchers, especially in hydraulic 

engineering, to apply and develop the SPH algorithm, increase its accuracy, and extend 

its application to simulate a variety of physical phenomena. 

The problems of solitary waves, breaking waves, shallow water and dam breakdown 

are among the first class of problems which have widely used the SPH method 

(Monaghan, 1994; Monaghan and Kos, 1999). Conventional computational methods have 

several difficulties simulating free surface flow and need to employ a two-phase flow 

modeling approach. 
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As the dominant force field in cosmological systems is the magnetic field, the SPH 

formulation in the presence of a magnetic field was investigated and applied to simulate 

Magnetohydrodynamics (MHD) problems (Price and Monaghan, 2004; Jiang et al., 

2006). 

Smoothed particle hydrodynamics has also been applied to simulate industrial die 

casting processes (Cleary et al., 2002). The SPH method has been shown to capture more 

details of the flow and free surface waves than the volume of fluid (VOF) method when 

compared with experimental studies. The VOF method suffers from several limitations 

such as numerical oscillations and implementation complexities.  

The application of SPH is not limited to the fore-mentioned problems and has been 

extended to simulate other fields in fluid dynamics including multi-phase flows 

(Monaghan and Kocharyan, 1995; Richie and Thomas, 2001; Hu and Adams, 2006), flow 

through porous media (Zhu et al., 1999), viscoelastic flows (Ellero et al., 2002) and 

interacting and interfacial fluid flows (Monaghan et al., 1999; Colagrossi and Landrini, 

2003). Most SPH simulations of internal incompressible flow were performed at low 

Reynolds number (Morris et al., 1997; Sigalotti et al., 2003).  

Smoothed particle hydrodynamics is also highly flexible in terms of adding new 

physics and can easily be extended to three dimensions (Cleary et al., 2002; Gomez-

Gesteira and Dalrymple, 2004). In SPH literature, turbulence modeling has not been 

adequately investigated and has been applied mainly to simulate free surface flows in 

coastal engineering (Shao and Gotoh, 2004; Ting et al., 2005; Dalrymple and Rogers, 

2006; Violeau and Issa, 2007).  
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Smoothed particle hydrodynamics has also been applied to simulate the elastic 

dynamic behavior of solids with large deformation and structural distortion as well as the 

development of fractures in solid mechanics (Libersky L, Petschek, 1991; Wingate and 

Stellingwerf, 1994; Benz and Asphaug, 1995; Randles and Libersky, 1996; Bonet and 

Kulasegaram, 2000; Gray et al., 2001). For fluid structure interactions, an elastic gate 

interacting with water in a free surface tank behind the gate has recently been modeled 

(Antoci et al., 2007). 

New approaches have also emerged to overcome the time step constraint and the 

compressibility effect existing in classical SPH method (Cummins and Rudman, 1999; 

Lee et al., 2008). Although SPH has been successfully applied to different fields in fluid 

and solid mechanics, several aspects of the method are still under development.  

2.2. Mathematical Formulation  

2.2.1. SPH Formulation 

In SPH, a continuum domain is discretized by a set of particles. Each particle has its 

own physical properties that are statistically interpolated using the properties of its 

neighboring particles.   

To interpolate the value of any physical property  at position  in the domain, the 

concept of integral interpolant (Monaghan, 1992) is used as 

                       (2.1) 

where  is the smoothing length that determines the size of neighboring domain 

and is the weighting function or so called interpolating kernel which is a 

symmetric function. This kernel function has a similar appearance to the Gaussian 
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properties as being normalized and treated as a Dirac delta function when the smoothing 

length tends to zero (Liu et al., 2003). The first applications of SPH used a Gaussian 

kernel. Since then, different forms of kernel functions have been constructed and 

proposed in the literature. 

The most commonly used kernel function is in the form of a cubic spline. The cubic 

spline, when compared with higher order splines, has less computational cost, but shows 

lower stability. The standard form of the cubic spline kernel for 2D simulations is shown 

below (Morris et al., 1997) as 

                      (2.3) 

where .  

The fourth order, quartic, spline kernel (Violeau and Issa, 2007) has the form of  

            (2.4) 

Compared to the cubic kernel, this type of kernel has higher stability, but a wider 

influence domain which leads to higher computational time. The supporting size of these 

kernel types is  and , respectively.  

Using Eq. (2.2) and its derivatives, the governing equations of the fluid dynamics can 

be rewritten in the form of SPH formulation. In classical SPH, a weakly compressible 

fluid concept is used to formulate the governing equations of an incompressible flow. 
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2.2.3. Navier-Stokes Equations 

The Navier-Stokes equations in Lagrangian form are 

                          (2.5) 

                                (2.6) 

where  is for time,  is fluid density, is the velocity vector, and   is the body 

force indicating the applied forces per unit volume of the fluid element due to the 

external fields.  is thermodynamic pressure and  is dynamic viscosity. 

2.2.4. Conservation of Mass 

In SPH, the conservation of mass for a fluid particle ( ) leads to calculation of the 

particle density at its local position ( ). Two types of formulations are presented based 

on the summation and continuity density methods. 

The first SPH formulation for conservation of mass was derived directly from the 

summation interpolant, Eq. (2.2), as 

                         (2.7) 

here  and .  

The time derivative form of the conservation of mass (Monaghan, 1992) leads to 

                       (2.8) 

where  is the gradient of the kernel function with respect to coordinates of the 

given particle ( ). In this study, to evaluate the density of particle , Eq. (2.8) is 

employed because of its advantages compared to Eq. (2.7) (Morris et al., 1997; 
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Monaghan 1992). Equation (2.8) is more appropriate for liquids and links the rate of 

density change to the relative velocity of the particles within the support domain. It also 

creates an even distribution of weight ensuring stability in density calculations based on 

the interaction between velocity and pressure changes and reduces the computational 

time.  

2.2.5. Conservation of Momentum  

To formulate the conservation of momentum under the SPH scheme, pressure and 

viscous terms need to be modeled. In the literature, different forms for both terms have 

been suggested (Monaghan, 1992; Cleary, 1998; Monaghan, 2006). 

The conventional type for the pressure gradient is the symmetric form as it satisfies 

the conservation of linear and angular momentum. The pressure gradient can be rewritten 

as (Monaghan, 1992)

                      (2.9) 

and then 

                   (2.10) 

This form is symmetric for all values of parameter . The most prevalent type of the 

symmetric form is the one for , 

                                     (2.11) 

An alternative symmetric formulation for the pressure gradient is 
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                       (2.12) 

This form is variationally consistent (Colagrossi and Landrini, 2003) and was shown 

to give slightly superior results compared to the conventional pressure gradient term 

(Vila, 1999).   

For SPH simulations, incompressible flow is approximated as a slightly compressible 

flow. It is done by using an artificial equation of state to relate density to pressure, while 

the continuity equation is used to evolve the density over time. The use of a quasi-

incompressible equation of state is justified by the fact that the actual equation of state 

leads to a very small time step. In SPH literature, a stiff equation of state is often used for 

simulations with water as (Monaghan, 1994) 

                                     (2.13) 

where  is pressure at the reference density of  and  is the specific heat ratio. As this 

equation has been recommended for modeling free surface flows and is sensitive to 

density fluctuations, in this work the following equation of state is used (Morris et al., 

1997): 

                                   (2.14) 

where  is the speed of sound. This equation has shown minimal sensitivity to density 

fluctuations and is more suitable for the type of flows simulated in this thesis as there is 

no development of a free surface. In terrestrial applications of fluid mechanics, the speed 

of sound is high compared to the bulk velocity of the fluid, therefore an artificial sound 

speed should be employed to avoid very small computational time steps while keeping 
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density fluctuations within an acceptable range (  to , in order to maintain 

incompressible flow behavior). A value of or less is suggested as an approximate 

value for Mach number to specify the artificial sound speed (Monaghan, 1994; Morris et 

al., 1997).  

For the viscous term, the first expression proposed comes from the concept of artificial 

viscosity used to limit non-physical post shock oscillations in the original SPH algorithm 

dealing with inviscid flows (Monaghan, 1992; Monaghan, 1994). The most commonly 

used form is similar to the Von Neumann-Richtmyer viscosity in mesh-based methods. In 

SPH, it is presented as a combination of shear and bulk viscosity when the particles are 

approaching each other. In this approach the viscosity force per unit mass of a fluid 

particle can be modeled as   

                        (2.15) 

with addition of the following term (Ellero et al., 2002), 

                                (2.16) 

where  is defined as 

                        (2.17) 

here  is average artificial sound speed,  is average 

density,  and . The order of  is around 1 and . The 

 is a small term to avoid the singularity ( ).  

1.0
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The artificial viscosity should be applied only when a compression is happening 

(particles are approaching each other). Using this approach to model the real viscosity 

leads to spurious viscosity in areas away from the compression region and the fluid 

shows a more viscous behavior. To eliminate this unphysical effect, several attempts have 

been made and several types of artificial viscosities have been proposed. The common 

treatment is to multiply equation (2.16) by (Balsara, 1995; Morris and Monaghan, 1997) 

                      (2.18) 

where, 

                                 (2.19) 

In this way, the production of unphysical viscosity is limited only to the region of 

compression. Although this model is still adopted by some literature, it will not be used 

in this study as the viscous force results in unrealistically high viscous effects.  

A standard form to model the real viscous force, presented in its original form, is 

(Monaghan, 1994; Violeau and Issa, 2007) 

                                        (2.20) 

 This form was developed originally to simulate free surface flows and then has been 

widely used for other types of flow. It should be noted however that Cleary (1998) 

proposed and applied successfully a calibration coefficient for Eq. (2.20) based on a 

series of numerical tests. The proposed coefficient still needs to be generalized for 

different kernel functions. This is also the case for a new suggested formulation for 
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modeling viscous force in shear flows which possesses a dependent coefficient 

(Monaghan, 2006). 

Another formulation used to model the viscous term is obtained from a combination of 

standard SPH and finite difference approximations of the first derivative. This 

formulation was originally presented to model the viscous term at low Reynolds number 

flows (Morris et al, 1997). The term, in its original form, is presented as 

                              (2.21) 

The above formulation leads to conservation of linear momentum, while angular 

momentum is approximately conserved. In addition to being computationally efficient, it 

is also less influenced by computational errors in cases with low particle numbers (Morris 

et al., 1997).  

In Chapter 3 of this thesis, the accuracy of these two standard forms, Eqs. (2.20) and 

(2.21), is investigated under moderate Reynolds number flow conditions. 

2.2.6. Turbulence Modeling 

Turbulence modeling is not frequently reported in the SPH literature and is mainly 

applied to simulate free surface flows (Shao and Gotoh, 2004; Ting et al., 2005; 

Dalrymple and Rogers, 2006; Violeau and Issa, 2007). Monaghan in 2002 provided a 

SPH version of the alpha turbulence model for compressible flows. A large eddy 

simulation (LES) was applied by Shao and Gotoh in 2004 to wave propagation in coastal 

applications. Dalrymple and Rogers in 2006 introduced a sub-particle scaling technique 

using the LES approach in modeling breaking waves on beaches. Violeau and Issa in 

2007 presented a review on the recently adopted turbulence models to the SPH method 
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and applied mixing length,  model, explicit algebraic Reynolds stress model 

(EARSM) and large eddy simulation (LES) to free surface flows. 

In this thesis, the effect of turbulent fluctuations on mean flow is modeled using one 

equation  turbulence model (Wilcox, 2006; Violeau and Issa, 2007). The model is 

easy to code and computation takes less time than complex turbulence models, while 

being able to give reasonable results. (see Chapter 5)  

In Reynolds averaged Navier-Stokes (RANS) momentum equations, the effective 

viscosity is defined as 

                      (2.22) 

where  is dynamics viscosity,  is density and  is turbulent eddy viscosity. 

Turbulent eddy viscosity corresponding to particle  is given by 

                       (2.23) 

where  is turbulent kinetic energy,  is energy dissipation rate for particle , and 

. Turbulent kinetic energy for particle  is written as 

                 (2.24) 

where  indicates production of kinetic energy associated with particle , 

,  and . The production of kinetic energy considered in its 

classical form is given by 

                       (2.25) 

where,  is mean strain rate for particle . Violeau and Issa (2007) suggested 
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                   (2.26) 

and the dissipation rate is computed using 

                       (2.27) 

where  is mixing length. 

2.3. Numerical Features 

2.3.1. Particle Movement and XSPH Variant 

Fluid particles move in a Lagrangian frame of reference based on  

                                                   (2.28) 

The new position of particles is derived by time integration of the velocity at each 

instant. In SPH literature, a variant, referred to as XSPH, is proposed with the goal of 

modifying and smoothing SPH particle movements based on the average velocity of their 

neighboring particles (Monaghan, 1992) as 

                    (2.29) 

where,  is a constant between  and . The accuracy of both approaches (Eqs. 2.28 and 

2.29) will be investigated in Chapter 3. 

2.3.2. Time Integration  

A second order accurate time integration scheme, predictor-corrector algorithm, is 

used for time integration of governing equations (Monaghan, 1989). For a differential 

equation in the general form of 
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                       (2.30) 

the predictor part consists of an explicit half time step integration as 

                                 (2.31) 

followed by a corrector part to correct the approximated properties in the previous part as 

                           (2.32) 

Finally, the properties at the new time step are calculated based on the values obtained 

at predictor and corrector steps as 

                                 (2.33) 

At each step, pressure is calculated using the equation of state. The structure of 

predictor-corrector algorithm is presented in Appendix A. 

2.3.3. Variable Time Step 

The time step in SPH is usually derived based on the three well-known criteria that are 

governed by the Courant-Friedrichs-Levy (CFL) condition, external force and viscous 

diffusion terms (Monaghan, 1992; Morris et al., 1997).  The variable time step should be 

chosen so 

                             (2.34) 

where  is the force magnitude per mass unit of a particle. This inequality states that 

the maximum speed of numerical propagation cannot exceed the maximum speed of 
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physical propagation. A variable time step is used according to Eq. (2.34) to obtain a 

reasonable compromise between computational efficiency and stability. 

2.3.4. Search of the Neighboring Particles- Linked List Method 

In contrast to mesh-based methods where the neighboring nodes for each node are 

clearly defined, in Lagrangian particle methods, the neighboring particles for each 

particle are changing with time and need to be found at each time step.  

The simplest way to find the neighboring particles, , of the particle under 

consideration, , within the kernel supporting size is to calculate the distance of all 

particles in the domain from particle    and compare it with the kernel supporting size. 

This approach generates a long computational time (order of ), where  is the number 

of particles in the domain. As a consequence, this simple method is usually limited to one 

dimensional problems. 

An efficient method to optimally search for neighboring particles is to employ a linked 

list method (Dominguez et al., 2010). In this method, an imaginary Cartesian network of 

cells, with dimensions corresponding to the kernel supporting size, is constructed on the 

domain (Fig. 2.3). After updating the particle positions at each time step, it is possible to 

determine how many and which particles are positioned in a specific cell in the domain. 

Therefore, only particles in the same cell as the particle of interest, , and in its 

neighboring cells are considered (in 2D simulations,  cells). Applying this method 

reduces the computational time to the order of . This method is not applicable 

when variable influence length is used.  

9
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integration algorithm, variable time step and linked-list method to search neighboring 

particles were provided. Different techniques in the treatment of the no-slip and periodic 

boundary conditions were explained.   
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Chapter 3 

Verification of Smoothed Particle Hydrodynamics Methodology 

and Validation of Developed Code 

This chapter aims to verify the accuracy of SPH methodology, provided in chapter 2, 

and validate the ability of the computational code developed to simulate steady and 

oscillating flows under flow characteristics similar to those found in the cardiovascular 

system. The required modifications are presented and the relation between particle 

resolution and sound speed to control compressibility effects and order of convergence in 

SPH simulations are demonstrated.    

3.1. Introduction 

Although the SPH method has passed its preliminary development stage, several 

studies are ongoing to improve the algorithm, verify its accuracy and discover new 

implementation features.  

Most of the reported unsteady incompressible flow simulations using SPH are limited 

to free surface problems including dam breaking, shallow water and wave flumes 

(Gomez-Gesteira et al., 2010). The SPH method has proven to be capable of successfully 

simulating transient start up of internal steady flows due to constant driving forces for 

low Reynolds numbers, typically compressible flows with  (Takeda et al., 1994), 
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incompressible flows with  (Morris et al., 1997; Sigalotti et al., 2003) and 

viscoelastic flows with  (Ellero et al., 2002). An attempt has been made to 

explain the transition to turbulence in a start up Poiseuille flow in the presence of a 

streamwise magnetic field (Jiang et al., 2006), but the comparison with an exact solution 

was not reported and flow patterns were only presented qualitatively.   

Most fluid flow phenomena in science and engineering vary with time at discrete 

locations and occur throughout a wide range of Reynolds numbers. For example, 

cardiovascular flows are characterized by moderate Reynolds numbers and unsteadiness 

due to the oscillatory driven forces and boundary movements.  

In this chapter, the transient behavior of Poiseuille flow is simulated for a range of 

Reynolds numbers up to 1500. For this benchmark case, the two most referred standard 

formulations to model viscous force suggested by Monaghan et al. (1994) and by Morris 

et al. (1997) are examined. In addition, the effect of the XSPH variant, suggested to keep 

the movement of each particle consistent with the average velocity of its neighboring 

particles, on particle distribution is investigated. Then, the capability of SPH to simulate 

unsteady flows induced by an oscillating pressure difference (Womersley type flow: 

 and ) and an oscillating moving boundary (Stokes’ second problem) with 

various frequencies (  and ) and amplitudes is examined. An 

applied formulation is introduced to approximate the wall shear stress in SPH. This 

formulation can also be used with other particle methods. Indeed, an accurate 

determination of wall shear stress is of primary importance for several applications and in 

particular for physiological flows where it is well correlated with damage to the cells 

lining blood vessels (Traub and Berk, 1998). 
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The results for SPH simulation of lid-driven cavity flow are presented and compared 

to reference data. This was performed because the flow characteristics induced, mainly 

by a large recirculation zone, are close to the ones observed in the human heart during the 

late filling phase. Furthermore, this test is also frequently considered as a benchmark for 

numerical simulations since reference data are available up to high Reynolds numbers. In 

SPH literature, the simulation of steady internal flows at high Reynolds numbers are 

reported (Ting et al., 2005), but the SPH simulations of lid-driven cavity flow are at 

Reynolds numbers up to  (Basa et al., 2009; Lee et al., 2008). In the present study, 

flows with higher Reynolds numbers (  and ) are considered. These 

values are selected to show the ability of SPH to simulate this kind of flow in laminar 

regime up to the onset of turbulence, occurring between 6000 and 8000 (Koseff and 

Street, 1984; Shankar and Deshpande, 2000). In this simulation, an interesting feature of 

SPH related to the link between particle resolution and sound speed to control the 

compressibility effects is demonstrated. 

3.2. Methodology and Formulations 

The conservation of mass and momentum for a fluid element (particle) in an 

incompressible flow are expressed as Eqs. (2.5) and (2.6).  

The time derivative form of the conservation of mass, Eq. (2.8), is used to calculate 

particle density. In the equation of motion, the common symmetric form, Eq. (2.11), is 

used for the pressure term, and the quasi-incompressible equation of state, Eq. (2.14), is 

employed to relate density to pressure. In this chapter, the accuracy of the two standard 

forms to model the viscous term is investigated under moderate Reynolds number flow 
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conditions. Since modeling the viscous term based on the concept of artificial viscosity, 

Eq. (2.15), creates unrealistic viscous effects, the standard forms of Eq. (2.20), refers to 

“Form I” and Eq. (2.21), refers to “Form II”, are considered in this study. Particle 

movements are studied based on the standard Eq. (2.28) and the modified Eq. (2.29). 

The quartic spline kernel, based on Eq. (2.4), is used to construct the interpolation 

form due to its high stability. The time integration of the governing equations is 

performed using predictor-corrector algorithm, a second order accurate time integration 

scheme (see Sec. 2.3.2).  

The no slip boundary conditions are implemented by placing a finite number of 

particles exactly on the wall boundaries and adding several layers of fixed imaginary 

particles parallel to the boundaries outside the domain (Fig. 2.7). There is no need to 

create mirror particles at each time step as in Cummins and Rudman (1999). These 

particles are placed in such a way to have the same spacing as the initial fluid particles. 

This ensures that fluid particles near the plates have enough homogeneous distribution of 

particles in their domain. So far, this implementation is similar to the technique which 

uses a series of dummy particle layers on the walls with zero velocity (Koshizuka et al., 

1998). In the present simulations, an extrapolated artificial velocity is allocated to the 

imaginary particles based on the velocity of the fluid particles approaching the plates (Eq. 

2.36). The velocity of the wall boundary particles is set to zero. The periodic boundary 

condition is applied at inlet and outlet boundaries to conserve the mass within the 

domain. 
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3.3. Poiseuille Flow 

The Poiseuille flow consists of the movement of a fluid between two infinite parallel 

plates similar to the flow in channels and pipes. There is no applied pressure difference in 

the vertical direction and the fluid is driven by an axial pressure difference resulting in a 

flow parallel to the plates. The fluid acceleration due to a directional pressure difference 

can be interpreted as the effect of an external body force in momentum equation, Eq. 

(2.6). A body force causes acceleration, , of a fluid element as 

                             (3.1) 

here,  is the body force per unit volume of the fluid element, so-called force 

density. The force applied on a fluid element with volume d  as a result of a pressure 

difference in  direction is  , so the force per unit of the mass becomes  . 

In this study, the plates are located at  and . The fluid starts to move from 

rest until it reaches steady state. Under such conditions, the analytical solution for the 

time dependent velocity is given by (Morris et al., 1997) 

(3.2) 

where,  is the flow velocity in the direction,  stands for time and  is kinematic 

viscosity.  is the force applied per unit of the fluid mass due to a pressure difference in 

 direction: 

                                 (3.3) 
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(Ellero et al., 2002; Liu and Liu, 2003). However, several reasons affect the accuracy of 

SPH calculations (Quinlan and Basa, 2006; Vaughan et al., 2008). The most important 

ones are the movement of SPH particles with regards to their initial regular distribution 

and the ratio of smoothing length to particle spacing (Vacondio et al., 2011).   

As it appears, increasing the number of particles did not have a significant impact on 

the accuracy of the results obtained using “Form I”. We found that the accuracy of this 

formulation is highly dependent on the selected type of kernel function and flow 

characteristics; however, this was not the case for “Form II”. It should be noted however 

that Cleary (1998) proposed and applied successfully a calibration coefficient for “Form 

I” based on a series of numerical tests performed on the case of time dependent Couette 

flow. The proposed coefficient still need, however, to be generalized for different kernel 

functions. This is also the case for a new suggested formulation for modeling viscous 

force in shear flows which possesses a dependent coefficient (Monaghan, 2006). The 

detailed investigation of these issues is beyond the scope of this study. 

The test conditions for “Form II” are then extended to different Reynolds numbers 

(  and ). The results are shown on Fig. 3.3. For all cases, there is a 

very good agreement between the numerical simulations and the analytical solutions. For 

the case of , the maximum relative error for the peak of the velocity during 

the simulation is 0.49% and the average relative error over all the particles in the domain 

at steady state is 0.68%. A simulation test with a lower number of particles (21 particles 

located in the span of the plates) showed 0.9% relative error for the peak of the velocity 

at steady state.  
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3.3.3. Pressure Gradient Term Formulation  

In this chapter, the standard symmetric formulation for pressure gradient (Eq. 2.11) is 

always employed as it conserves exactly the linear and angular momentum (the 

calculated pressure force on particle  due to its neighboring particle, , is equal to the 

applied force on particle  caused by particle ). 

At this point it should be mentioned that in experimental fluid mechanics, the 

thermodynamic pressure of a moving fluid is measured by a static pressure probe. By 

definition, “the static pressure is the pressure seen by the fluid particle as it moves (so it 

is something of a misnomer!)” (Fox et al., 2004). This definition is consistent with the 

Lagrangian motion of particles in SPH. However, in most of the SPH literature,  in 

Navier-Stokes equations is referred to as “hydrostatic pressure” and in some works it is 

called the total pressure and expressed as the summation of dynamic and hydrostatic 

pressures in which the equation of state is used to model dynamic pressure (Morris et al., 

1997; Sigalotti et al., 2003; Ma and Ge, 2008). It is then important to clarify that the 

pressure obtained through SPH simulations represents static pressure.   

Ma and Ge in 2008 examined the computational performance of standard symmetric 

formulations for the pressure gradient term compared to asymmetric ones. They reported 

that the symmetric formulation is less accurate, more sensitive to the selected value for 

sound speed and leads to larger errors. Their conclusion was based on simulation results 

with large fluctuations in flow variables. In the case of Poiseuille flow, they reported a 

noisy mean flow velocity and pressure term for values of 

. These values correspond to sound speeds of 25, 358, and 566 times of the 

peak velocity magnitude at steady state ( ) for ), 
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respectively. The error in their simulations was about 3% at the peak of the velocity 

profile at steady state for both symmetric and asymmetric pressure formulations. In the 

present simulation (Fig. 3.3b), this error was 0.49% for Re=1500 using the same 

formulation for modeling the viscous term. 

The time step ( ) reported in the Ma and Ge study cannot be appropriate for 

simulations with very high sound speeds due to CFL stability conditions (Morris et al., 

1997). The large fluctuations in the calculated pressure terms and mean velocity, which 

can also affect the order of particle arrangement in both symmetric and asymmetric 

forms, are not due to the computational performance of the SPH formulation employed 

for pressure gradient term but are instead due to the mismatch between the adopted 

values for sound speed and computational time step. 

Figure 3.7 shows the mean flow velocity calculated in this thesis, using the standard 

symmetric formulation for pressure gradient and considering all moving particles in the 

domain. The geometry and flow characteristics are selected as in the work of Ma and Ge 

(2008): , 

, 50 particles in span of the plates and the worst value for sound speed, 566 times 

greater than the peak velocity magnitude ( ). The results do not 

show large fluctuations as it was reported by Ma and Ge (2008). 
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3.4. Oscillating Flow Cases 

3.4.1. Internal Flow Driven by Oscillating Pressure Difference

This case is similar to Poiseuille flow except that the pressure difference does not 

remain constant but instead varies with time. This type of flow is commonly found in 

large arteries and in industrial piping systems due to changes in direction of pressure 

waves. The flow between two plates oscillates due to an axial oscillating pressure 

difference of 

                            (3.5) 

where,  is the amplitude of the imposed pressure difference,  is the oscillation 

frequency ( ,  is the period of oscillation) and  stands for time. The analytical 

solution for velocity in this case is found as (Loudon and Tordesillas, 1998) 

      (3.6) 

where, 

                    (3.7) 

and 

                      (3.8) 

The variables  and  are the distance between the plates and Womersley number, 

respectively. Womersley number is an important dimensionless number in oscillating 
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SPH particles show the capability to accurately follow rapid changes in the 

acceleration and deceleration phases. The simulations then accurately reproduce the 

phase shift between the applied pressure difference and the velocity. At instants when the 

driving pressure difference becomes zero, SPH particles still move properly dependent 

upon their acquired energy from previous instants. 

In practice, the total volume flow rate is a more important parameter than velocity, 

because it determines the time that fluid resides in the region of interest. It also can be a 

valuable indicator to examine the accuracy of the SPH incompressibility assumption and 

velocity calculations with respect to particle resolution. When using particle methods, the 

volume flow rate can be approximated by a summation over the particles located in a 

strip across the flow cross section with the width of particle spacing. In the present 

simulation, this gives 

                     (3.10) 

where  indicates the number of particle layers extended across two plates and  is the 

width of the stream channel that a particle flows through (particle spacing).  

The time variation of the calculated volume flow rate is compared with the exact 

solution in Fig. 3.12 for a case with  and . The results are in a 

very good agreement with an average relative error of 0.6% over one period. 
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Fig. 3.12. Applied oscillating pressure difference and resulting oscillating volume flow rate 

through two plates;  and . 

3.4.2. Flow above an Oscillating Plate  

In literature, this problem is referred to as Stokes’s second problem. A stationary fluid 

above a plate starts to move due to oscillation of a plate. The numerical simulation of this 

problem is of great interest and there is a wide practical application, such as the study of 

the mechanical behavior of blood cells under oscillating shear stress (microscale), 

controlling the coating thickness in oscillating film flows and the investigation of the 

hydrodynamic loads produced by structural vibration which is an important design factor 

in mechanical systems (macroscale).  

This case is characterized by a varying phase lag between the velocities of different 

layers of particles above the plate. The plate moves in direction with a velocity of

, where is the amplitude of the velocity oscillation and is the 
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oscillation or angular frequency ( , is the period of oscillation). The analytical 

solution for this problem is obtained as (White, 1991)

                  (3.11) 

The flow oscillating velocity is damped as  increases (  leads to ). 

The instantaneous velocity profiles over one period for the plate velocity amplitude of 

 and  with oscillation frequency of  

and  are shown in Figs. 3.13 and 3.14. The fluid physical properties are 

selected similar to previous cases. Particles are initially spaced  and 

 apart for  and cases, respectively.  

The maximum relative variation in density is 0.078% occurring when  

for cases with a velocity amplitude of . For cases with velocity amplitude 

of  the maximum variation in density is 0.000047%, also occurring when 

. These results are perfectly within the acceptable range. The maximum 

density variation occurred for cases with low oscillation frequency. 
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SPH shows the capability to capture the oscillating boundary layer region. This case 

has the most complex oscillating flow features since different layers of fluid experience 

different phase lags with regard to plate oscillations. SPH particles are able to follow 

these oscillations and there is a good agreement with the analytical solution. The particles 

far from the plate remained at rest as predicted by the analytical solution even for high 

magnitude and frequency of the oscillations.  

The highest error in velocity calculations for the layer of particles near to the 

oscillating plate (subjected to the most elevated velocity gradient) occurs at  and 

. These instants correspond to a change in direction of the oscillating plate. For 

higher oscillation frequency cases (Fig. 3.14), the average relative error in velocity 

calculations for the layer of particles near to the plate is 1.54% (excluding  and 

) and the largest error is 5.5% (at  and ), however, for lower 

oscillation frequency cases (Fig. 3.13), the average error is 0.97% and the largest one is 

4.9%. Although the cases with higher oscillation frequency (Fig. 3.14) has a particle 

spacing two times smaller than that of the case with lower frequency (Fig. 3.13), there is 

a higher average relative error in comparison with the theoretical solution. 

The convergence rate in L2 relative error norm is shown in Fig. 3.15, which is close to 

first order. Interestingly, the cases with the same oscillation frequency show quite similar 

spatial convergence behavior. The average relative error in velocity calculations is larger 

in higher oscillation frequencies compared with the lower frequencies. 
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Fig. 3.15. Flow over an oscillating plate: Average -norm of relative error for axial velocity over 

a period. 

 

In fact, a higher oscillation frequency limits the wave propagation and results in a 

thinner oscillating boundary layer subject to a higher velocity gradient. The high 

oscillation frequency cases need high particle resolution which should be selected with 

respect to the thickness of the oscillating layer. 

A good estimate for the particle resolution in the oscillating layer can be obtained 

knowing that the thickness of this layer is approximated where , (White, 

1991) as

(3.12) 

To minimize the error in velocity calculations, it is of use to determine the optimal 

number of particle layers in the oscillating layer. Figure 3.16 shows the variation of the 
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A good initial value for particle spacing can be obtained by dividing the estimated 

oscillating layer thickness (Eq. 3.12) by 40.   

3.4.3. Oscillating Wall Shear Stress 

An important parameter to take into account for oscillating flows is the wall shear 

stress. Wall shear stress plays a significant role in natural and industrial phenomena 

including cholesterol deposition in arteries (Irace et al., 2003), erosion in mechanical 

systems (Yamaguchi et al., 2005) and membrane based filtration processes (Gésan-

Guiziou et al., 1999). 

In laminar Newtonian flows, the wall shear stress, , is proportional to the local 

tangential velocity gradient with respect to normal distance from the wall boundaries, 

irrespective of wall shape.  This is expressed in Eq. (3.13) as 

           (3.13) 

where  is the local coordinate normal to the wall and  is the tangential local velocity 

with respect to the wall.  

For flat wall boundaries, this expression can simply be determined using a finite 

difference scheme, which requires knowing the velocity of one or two layers of particles 

adjacent to the wall. However, in meshfree particle methods, this scheme is limited and 

inappropriate. In this section the possibility of developing a general formulation for the 

calculation of wall shear stress is examined. 

There are several possible ways in SPH to approximate the gradient of a quantity. 

Using the summation approximation of Eq. (2.2), the gradient of the tangential velocity 
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with respect to the normal coordinate of the wall can be derived. Then, the wall shear 

stress becomes 

                            (3.14) 

here, 

                                  (3.15) 

Based on the general expression of (Monaghan, 1992) 

                                (3.16) 

and using the SPH standard approximation of Eq. (2.2), the wall shear stress reads 

                           (3.17) 

For oscillatory flows, analyzing instantaneous variations, rather than average values, 

of wall shear stress is of primary importance. It is difficult to allocate the appropriate 

velocity to the imaginary particles, so as to resemble the exact velocity slope at the 

position of the wall particle. It should be mentioned that based on Eq. (2.36), the 

allocated artificial velocity of the imaginary particles, during computation, does not 

reflect the accurate velocity slope of the fluid particles near the plate. Therefore, this 

constraint should be taken into account when proposing a general formulation. Moreover, 

some SPH implementations do not use imaginary particles for simulation of wall 

boundaries. Consequently, only a limited number of particles will contribute to the 

summation in Eqs. (3.14) and (3.17) (kernel is truncated).  
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One can employ a methodology based on the kernel function modification (Bonet and 

Lok, 1999). However, this can be computationally expensive and it is preferable to 

implement an approach based on a general correction coefficient.  

The proposed approach in this thesis displays its strength when computing the wall 

shear stress on the surface of thin structural bodies immersed in a fluid. The neighboring 

domain of a particle on the surface consists of particles on other sides of the body, 

however only the fluid particles on the same side of the surface should contribute to the 

summation of the particle’s properties. In this study, imaginary and wall particles are not 

used to calculate the summation of wall shear stress, even though the wall particles are 

solved at each time step and their density is updated 

Equations (3.14) and (3.17) can be modified by multiplying their right hand side by a 

correction coefficient, , without any modification to the kernel function, resulting in 

                               (3.18) 

and 

               (3.19) 

By employing a quartic spline kernel (influence domain of ) with  equal to 

 times the initial particle spacing, each fluid particle would have nearly  particles 

in its neighboring domain. However, to calculate wall shear stress, a particle on the wall 

will only have about  particles in its neighboring domain (see Fig. 3.17). Therefore, a 

correction coefficient of  is proposed to compensate for the kernel 

truncation on the wall boundary. 
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Fig. 3.17. A particle on the wall has 11 particles in its neighbouring domain (excluding other wall 

particles) instead of 29; for a kernel with the influence domain of  and  equals to  

times the particle spacing. 

Employing different kernel functions and smoothing lengths will result in different 

numbers of particles in the neighboring domain of each particle. However, the correction 

coefficient will remain approximately the same. Using a kernel function with an 

influence domain of  (quartic spline kernel) but having a smoothing length of 

 and  results in a correction coefficient of  and , 

respectively. Changing the kernel function to one with an influence domain of  with  

 and  results in a correction coefficient of  and  

respectively. Therefore, to generalize the correction coefficient, the approximated value 

of  can be used for all cases.  

Figure 3.18 shows the wall shear stress variation on the lower plate for flow driven by 

an oscillating pressure difference (see Sec. 4.1) using general Eqs. (3.14) and (3.17) and 

modified Eqs. (3.18) and (3.19) with the same particle resolution (

). The results are compared with the analytical solution and show the capability of 

each equation to reach the accurate analytical prediction.  
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Fig. 3.18. Wall shear stress profiles for oscillating flow between two parallel plates using 

different formulations and comparison with analytical solution;  and . 

 

In the above simulation, the wall boundary is stationary ( ) and both Eqs. 

(3.18) and (3.19) give the same value for wall shear stress. The performance of these 

formulations can therefore be examined more precisely in problems dealing with flow in 

interaction with moving wall boundaries.  

The spatial convergence of different formulations for calculating wall shear stress is 

depicted in Fig. 3.19 using L2-norm of relative error. The error norm converges to a high 

value when Eqs. (3.14) and (3.17) are used. The error norm of wall shear stress converges 

with a rate between first and second order for Eqs. (3.18) and (3.19).  
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facing step was modeled at  (Issa et al., 2005) and it required a value for the 

speed of sound representing forty times the maximal flow velocity. In the simulations of 

lid-driven cavity flow, applying a speed of sound equal to  was 

required, for low particle resolution cases (less than ), to prevent void 

appearance in the domain for all Reynolds numbers ( ). Interestingly, it 

is found in this thesis that for cases with a particle resolution higher than , a 

more realistic speed of sound in the range of  can prevent the 

occurrence of the void. 

3.6. Summary 

In this chapter, the ability of the SPH method to simulate internal transient and 

oscillating flows at different flow characteristics and lid-driven cavity flow at moderate 

Reynolds numbers were examined. The selected test cases were chosen because the exact 

solutions and reference data are available to ensure a precise validation of the numerical 

results. Also the selected benchmark cases have similarities to the geometry (arterial 

channels and heart cavities) and flow characteristics (oscillating pressure waveforms and 

arterial wall movement) found in the cardiovascular system. The main conclusions of this 

work are summarized as follows:  

1) “Form II”, Eq. (2.21), for modeling the viscous term showed more accuracy in the 

simulations, and unlike “Form I”, Eq. (2.20), it is not dependent on the type of kernel 

function and flow characteristics.  

2) Using the XSPH variant, especially when particle resolution is not high and flow is 

subjected to high velocity gradients, can generate undesirable particle disorders.  
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3) The SPH method was able to correctly simulate internal oscillating flows even when 

there was a large phase lag between the oscillation of the derived velocity and applied 

pressure difference and moving boundary.  

4) Although the theoretical convergence rate of SPH discretization has been proven to be 

second order; several reasons affect the accuracy of SPH calculations and the rate of 

spatial convergence lies between first and second order, 

5) A modified formulation for wall shear stress calculations was presented and verified 

against exact solutions.  

6) Increasing particle resolution can avoid the occurrence of computational voids while 

maintaining the speed of sound at a reasonable value.  

All simulated cases did not show unacceptable compressibility effects.  
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Chapter 4 

Pulsatile Flow inside a Model of Left Heart Cavity 

The previous chapter provided a comprehensive verification of SPH formulation and 

validation of the computational code. In this chapter, the results of the first attempt to 

simulate flow inside a model of the left ventricle (LV) of the heart, using the SPH 

method, are presented. Flow in the LV is comprised of a combination of oscillating flow 

in tubes and flow in a lid-driven cavity. First, the combination of these two benchmark 

cases is tested by simulating a pulsatile flow inside a rectangular cavity. An approach to 

deal with inflow and outflow boundary conditions is introduced and the important role of 

particle resolution in determining the order of accuracy of SPH simulations is also 

demonstrated.  Finally, the flow in a model of LV cavity under pulsatile inflow condition 

is simulated and the ability of SPH to track fluid properties history is illustrated. 

4.1. Introduction 

The flow pattern in heart cavities is of great interest when studying cardiovascular 

diseases. Current numerical simulations dealing with flow inside the heart cavities are 

mainly based on conventional mesh-based methods: finite differences, finite volumes and 

finite elements (Taylor and Yamaguchi, 1995; Baccani et al., 2001; Nakamura et al., 

2002; Long et al., 2003; Saber et al., 2003; Cheng et al., 2005; Pedrizzetti and 

Domenichini, 2005; Liang et al., 2007; Doenst et al., 2009), immersed boundary method 
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(Lemmon and Yoganathan, 2000; McQueen and Peskin, 2000; Peskin, 2002) and 

arbitrary Lagrangian-Eulerian approach (FV discretization: Vierendeels et al., 2000 and 

FE discretization: Watanabe et al.,  2002). These methods have already demonstrated 

good capabilities in simulating cardiovascular flows and generated very interesting 

results with clinical and practical implications. However, some important aspects in 

cardiovascular flows, mainly those related to pathological conditions, can be difficult to 

capture using mesh-based methods. Examples include flow in complex geometries, 

tracking the history of blood flow properties, thrombus formation and the break off of red 

blood cells (microcirculation). The simulation of such characteristics requires CFD 

methods based on a Lagrangian particle approach instead of an Eulerian mesh-based 

approach.  

In this chapter, the results of SPH simulation of a pulsatile flow inside a model of LV 

cavity (see Fig. 4.1) are presented. As this work represents the first attempt to simulate 

such flow using a particle method, the model does not include moving boundaries. 

Therefore, the main objective is to extend the application of SPH to simulate internal 

pulsatile flows at moderate Reynolds number in a complex geometry mimicking an LV 

cavity. 

Simulating flow that is characterized by high pulsatility and moderate Reynolds 

number using SPH is challenging. Chapter 3 has already provided a comprehensive 

verification of SPH formulations and validation of the computational code developed. 

The combination of oscillating flow in tubes and flow in a lid-driven cavity is tested by 

simulating pulsatile flow in a rectangular cavity and the results are compared to those 
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In this work, Navier-Stokes equations are discretized based on Eqs. (2.8), (2.12), and 

(2.21) as 

                                                                                (4.1) 

                             (4.2) 

where is the relative velocity vector between particles  and ,  is 

pressure,  is dynamic viscosity and  is a small term to avoid the singularity. 

Alternative forms are available in the literature (Monaghan, 1992; Cleary, 1998; 

Monaghan, 2006). The formulation for pressure gradient in Eq. (4.2) was shown to give 

slightly superior results compared to the conventional pressure gradient term (Colagrossi 

and Landrini, 2003) and is variationally consistent (Vila, 1999). The formulation for the 

viscous term used in Eq. (4.2) was previously shown to model the viscous behavior with 

good accuracy for the current application at moderate Reynolds numbers. The equation of 

state based on Eq. (2.14) is used to compute the pressure field.  

A fourth order, quartic, spline kernel for 2D simulations, Eq. (2.4), is used due to its 

high stability. The smoothing length, , is considered  times larger than the initial 

particle spacing.  

The new position of the particles at each instant is derived by time integration of the 

velocity field based on Eq. (2.28). A second order predictor-corrector scheme is 

employed for time integration of the equations (see Sec. 2.3.2) and the time step is 

controlled by Eq. (2.34). 

Wall boundary conditions are implemented by placing a set of particles exactly on the 

wall with the same distance as the initial fluid particles and some layers of fixed 
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imaginary particles parallel to the walls outside the domain (see Sec. 2.3.6). To easily 

apply a Neumann type boundary condition for pressure on the walls, imaginary particles 

are arranged so that each one is allocated to a normal line drawn from a wall particle. 

Implementation of this idea is presented in Fig. (4.2) for different configurations of wall 

boundaries.  

 

Fig. 4.2. Treatment of wall boundaries; one layer of wall particles and two layers of imaginary 

particles for different boundary configurations. 

 

In this study, the velocity of wall particles is set to zero, but contrary to previous 

studies (Koshizuka et al., 1998; Shao and Lo, 2003; Violeau and Issa, 2007; Lee et al. 

2008), the imaginary particles are given extrapolated velocities based on Eq. (2.36). 

Through a series of numerical tests, it is found in this thesis that giving extrapolated 

velocities instead of zero velocity to the imaginary particles better prevents the particles 

from penetrating the walls. It is caused by reducing the magnitude of the perpendicular 

velocity component of the fluid particles approaching a wall boundary. This approach is 

efficient when modeling highly inertial flows with a relatively low particle resolution. 
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A linked list method (See Sec. 2.3.4) is employed here to optimally search for 

neighboring particles.  

4.3. Oscillating Flow with 

The specific oscillating frequency of the flow in LV leads to perform a validation for a 

Womersly type flow with the oscillation period of  which is in the same 

order of magnitude as that for simulating flow in the LV model. The results are compared 

to theoretical predictions (Eq. 3.6).  

The distance between the two plates is , an average diameter for arteries, 

and the fluid density and kinematic viscosity are  and 

, respectively. This corresponds to an oscillating Reynolds number (

) of  and Womersly number ( ) of . The simulation is 

performed for pressure gradient amplitude of . The particles are initially 

distributed with a uniform spacing of  (  particles in 

span of the plates).  

The oscillating velocity profiles are shown in Fig. (4.3) and the results are compared 

to the existing analytical solution (Eq. 3.6). There is a very good agreement between SPH 

results and the analytical solution. The variation in density remains well within the 

acceptable range of incompressibility assumption, with variations less than . 
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4.4.1. Inflow and Outflow Boundary Conditions 

Rigid walls and periodic open boundaries are widely simulated in SPH (Monaghan 

1994; Takeda et al., 1994; Morris et al., 1997; Koshizuka et al., 1998; Cummins and 

Rudman, 1999; Shao and Lo, 2003). On the other hand, implementation of inflow and 

outflow boundary conditions in SPH is not straightforward and is still under investigation 

(Lastiwka, 2009). The difficulties in simulating such boundary conditions in SPH 

originate from the meshfree nature of the particle methods. There are two primary 

challenges: (1) As fluid elements are represented by a set of particles moving in a 

Lagrangian frame of reference, there is no way to ensure the existence of particles exactly 

at these boundaries at all instants during the simulations; and (2) particles near such 

boundaries do not have enough particles in their neighboring domain.  

One way of dealing with these issues is to apply a periodic boundary condition in 

which particles near the inlet interact with the particles near the outlet. However, for the 

test case under consideration here, this approach is problematic, as the arrangement of 

particles at the inlet is uniform (imposed boundary condition) and this is not the case at 

the outlet. Furthermore, applying the periodic boundary condition restricts the types of 

inflow and outflow boundary conditions to be used. So, in this study an alternative simple 

and effective approach to handle the difficulties in simulating this kind of inflow and 

outflow boundaries is applied. The physical inflow and outflow boundaries are displaced 

to new locations called numerical injection and ejection boundaries (Fig. 4.6). The 

numerical particle injection boundary is located upstream of the physical inflow 

boundary and the numerical ejection boundary is located downstream of the physical 

outflow boundary. The two boundaries (numerical and physical) are connected by an 
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here,  is the cross section area of the channel and  is the mean velocity normal to the 

cross section at the inlet and outlet. Having the same size, in this case, for both the inlet 

and outlet naturally leads to 

                                                         (4.4)      

Therefore, conservation of mass results in an equality of mean velocity normal to the 

inlet and outlet. The inlet velocity profile is imposed and the outlet velocity is determined 

based on Eq. (4.4) at each instant. 

Particles located in the inlet region, between the numerical and physical boundaries, 

are forced to maintain the imposed inlet velocity at each instant, while density and 

pressure of these particles are unknown and calculated based on SPH formulations and 

information about their neighboring particles, particularly those located in the interior 

domain. The same strategy is applied for the particles located in the outlet region. 

4.4.2. Velocity Profiles 

After satisfying the periodicity of the results, the velocity profiles at different instants 

of a cycle at mid-vertical and mid-horizontal cross-sections of the cavity were extracted 

and compared with the results of the FV method in Figs. 4.7(a-f). The effect of spatial 

resolution on the results is examined by considering different particle resolutions. Here, 

the data for four different particle resolutions (  fluid particles, 

;  fluid particles, ;  fluid particles,

;  fluid particles, ) are plotted. 

Smoother velocity profiles result with increased particle resolution.  

 



Fig. 4.7. SPH velocity pro

comparison with FV and th

section: a) , b

section: d) 

Along the centerlines 

there is a discrepancy for

The reason for this is not

94 

ofiles at mid- horizontal and vertical cross-sections of

he effect of particle resolutions on the profiles; at mi

b) , and c)  of a cycle; and at mi

, e) , and f)  of a cyc

 

in Fig. 4.7, convergence of the velocity profile

r the peak velocity magnitudes between the SPH

t known. The vertical component of the velocit

 

f the LV cavity in 

id horizontal cross 

id vertical cross 

cle. 

es is evident, but 

H and FV results.  

y at  (peak 



ejection phase) at mid-se

compared with the results

Fig. 4.8. SPH velocity 

comparison with FV and th

In general, the SPH re

FV, particularly close t

efficiency of the approa

profile of the vertical co

cavity for different instan

95 

ections along the inlet and outlet boundaries a

s of the FV method in Figs. 4.8(a-b).  

profiles at left and right vertical cross sections of the

he effect of particle resolutions on the profiles at: a) 

section; and b) right vertical cross-section. 

 

esults are in satisfactory agreement with those ex

to the inlet and outlet regions. To examine 

ach adopted for inflow and outflow boundary

mponent of the velocity vector across the outle

nts of a cycle at  are shown in Fi

are presented and 

 

e LV cavity in 

left vertical cross-

xtracted based on 

specifically the 

y conditions, the 

et channel of the 

igs. 4.9(a-c). The 



SPH results are in reason

Fig. 4.9. SPH velocity pr

result: a) , b)

 

This case also allows

Indeed, from SPH form

accuracy in SPH calculat

and non-uniformity dist

simulation (Quinlan et a

that SPH simulations exh

(Vacondio et al., 2011)

schemes by employing lo

shown in Figs. 4.10 (a-d

cavity at  are plo

(  fluid particles,

the first order accurate F

96 

able agreement with the results of the FV metho

rofile across the outlet channel of the cavity in comp

, and c)  of a cycle. (  flu

) 

s the discussion of the truncation errors in S

mulation, one expects second order accuracy

tions is highly affected by the smoothing length

tribution of the particles due to their movem

al., 2006; Vaughan et al., 2008).  It has previou

hibit accuracy greater than first order but less th

). The equivalence with first and second-ord

ow and high particle resolutions on the accuracy 

d) where SPH velocity profiles at two mid cros

otted. The SPH results of employing a low pa

) are compared with thos

FV spatial discretization, while the SPH results 

od.  

 

parison with FV 

uid particles,

SPH simulations. 

y. However, the 

h, particle spacing 

ment during the 

usly been shown 

han second order 

der accurate FV 

of SPH results is 

ss-sections of the 

article resolution 

se obtained using 

for high particle 



resolution (  flui

obtained using the second

Fig. 4.10. SPH velocity pr

compared to FV at 

compared to FV with 1st 

compared to FV with 2nd or

c) SPH low particle resolu

high particle resolu

97 

id particles, ) are com

d order accurate FV spatial discretization. 

 
rofiles in mid- horizontal and vertical cross sections 

. In mid vertical cross section: a) SPH with low p

order accurate spatial discretization, b) SPH high pa

rder accurate spatial discretization; and in mid horizo

ution against FV with 1st order accurate spatial discre

ution against FV with 2nd order accurate spatial discr

mpared to those 

 

of the LV cavity 

particle resolution 

article resolution 

ontal cross section: 

etization, d) SPH 

retization. 



98 
 

These results illustrate how the SPH simulations with particle resolution exhibit 

behavior equivalent to a FV scheme of different accuracy order. The lower particle 

resolution gives results similar to the first-order FV scheme, while the second-order 

accuracy can be reached by increasing the particle resolution.  

As it has been previously mentioned in Sec. 3.4, for simulations with low particle 

resolution in lid-driven cavity case, employing a high speed of sound was needed to 

prevent the appearance of the void at the center of the main vortex. Interestingly, this 

void did not appear when simulating pulsatile flow inside the cavity even when a 

standard value for the speed of sound was used ( ). This can be explained by 

the unsteady nature of the flow. The coherent structures in the domain dynamically 

change in response to the pulsatile inlet flow. This probably does not allow enough time 

for the creation of a void in the domain. The particles located at the center of the domain, 

potentially subjected to numerical void appearance, do not stagnate in this region and are 

convected away by the unsteady entering flow. This is analogous to the delayed transition 

to turbulence in pulsatile flows.  

4.4.3. Comparison between Linked List and Simple Particle Search Methods  

The linked list method has been used in all simulation cases as an effective method to 

search for the neighboring particles at each time step. As shown in Table 4.1, the 

efficiency of the method increases with increasing the number of particles. For instance, 

the computation with a number of  fluid particles runs  times faster than 

when the linked list method is not applied, while for a case with  fluid particles the 

computation runs  times faster. This comparison is based on simulation runs on a 

,  Intel Personal Computer. 
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Table 4.1. The effect of applying linked list method on decreasing computation time. 

Initial 

Particle 

Spacing 

(mm)

Number of Particles

Computation Time per    

Time Step (s)

Decrease in 

Computation Time

Simple 

Particle 

Search 

Method

Linked 

List 

Method

0.83333  

Fluid Particles: 3071 

Wall Particles: 258 

Imaginary Particles: 528 

13.2 0.5 0.038 
26

1
=  

0.38155  

Fluid Particles: 14705 

Wall Particles: 546 

Imaginary Particles: 1104

257.5 2.4 0.009 
107

1
=  

0.29450  

Fluid Particles: 25250 

Wall Particles: 708 

Imaginary Particles: 1428 

746.6 4.5  0.006
166

1
=  

0.20833 

Fluid Particles: 50506 

Wall Particles: 998 

Imaginary Particles: 2008 

2457 9.7 0.004 
253

1
=

 

0.17241 

Fluid Particles: 73848 

Wall Particles: 1202 

Imaginary Particles: 2416 

4880 14.2 0.003 
343

1
=

 

0.14706 

Fluid Particles: 101616 

Wall Particles: 1410 

Imaginary Particles: 2832 

8989 21 0.002 
428

1
=

 

4.5. Pulsatile Flow inside a Model of Left Ventricle 

A 2D realistic asymmetric model of LV (dimensions of  by ) with a 

pulsatile inlet velocity similar to the rectangular cavity case is shown in Fig. 4.11. The 

inlet velocity condition is the most applicable type of boundary condition in biofluid 
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The flow displayed a number of complicated characteristics. The acceleration period 

of the filling phase (Fig. 4.14a,b) is mainly characterized by a pulsatile jet emerging into 

the cavity. The inlet jet dominates the main vortex remaining from the previous cycle. As 

a result of jet breakdown during the deceleration period (Fig. 4.14c), the coherent 

structure grows in the space between the inlet and the outlet. At the end of the cycle (Fig. 

4.14d), this coherent structure grows rapidly and occupies the central region in the cavity. 

These flow characteristics are close to physiological flow characteristics in the human LV 

where the filling phase is mainly characterized by a pulsatile jet emerging from the left 

atrium, through the mitral valve, into the LV cavity. During a normal filling phase, this 

jet flow strikes the apex of LV and then turns back up towards the septal wall resulting in 

a large asymmetric vortex that effectively fills the entire LV, with velocities directed 

towards the LV outflow tract (Rodevand et al, 1999). The role of this vortex is to store 

some kinetic energy during the filling (diastolic) phase and release it during the ejection 

(systolic) phase (Pedrizzetti and Domenichini, 2005).  

The results obtained here are promising, since this work represents a first attempt to 

simulate the flow inside a model of LV using a meshfree particle method. The anatomy 

of the LV is simplified (no boundary movement), and as a consequence, to satisfy the 

conservation of mass in the domain, the outlet remains in the open position. Therefore, in 

present simulations during the acceleration phase, the flow at the inlet is immediately 

directed towards the aortic side (outlet). The main features of the flow, however, are 

similar to what is reported in clinical papers in terms of emerging inlet jet and main 

vortex in the LV (Kilner et al., 2000). Conducting simulations with a moving boundary 

represents the next logical development. 
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simulated. The results of the simulation were compared with the finite volume method. In 

addition, an approach to incorporate inflow and outflow boundary conditions was 

introduced. Finally, pulsatile inlet flow in a rigid LV model was simulated. The results 

demonstrated the ability of SPH to model complex flows and to track the time history of 

fluid properties. This chapter also highlighted some interesting characteristics of the SPH 

method. The order of accuracy in SPH simulations is still a controversial issue and its 

determination is not as straightforward as for mesh-based methods. The SPH formulation 

should lead to a second order accuracy, but it was shown that particle resolution plays an 

important role in the order of the accuracy. Low particle resolution can be sufficient to 

analyze the general behavior of the flow and to be applied to engineering problems. Also, 

the Lagrangian nature of SPH permits tracking the history of fluid shear stress with 

application to blood hemolysis analysis of cardiovascular devices.  
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Chapter 5 

Blood Components Damage in Bileaflet Mechanical Heart 

Valves 

 

Shear induced damage to blood components occurs due to unphysiological flow 

patterns and is of primary importance in the design of prosthetic cardiac devices. This 

chapter presents the first SPH simulation of the complex hemodynamics of bileaflet 

mechanical heart valves (BMHVs) with emphasis on the determination of shear stress 

loading history on blood components. One of the main characteristics of SPH, discussed 

in the previous chapter, is its ability to determine the realistic time history of the fluid 

elements in the domain. This study illustrates the effects of unphysiological shear stress 

patterns and vortical structures on the potential number of blood components damaged. 

5.1. Introduction 

Valve replacement by a prosthetic heart valve is the only viable solution in 

symptomatic patients with severe valve stenosis. The prosthetic heart valve can be either 

biological or mechanical. Due to the elevated structural durability of mechanical heart 

valves (MHVs) compared to biological heart valves, 2/3 of all valve replacements are 

performed using MHVs. Several in vivo, in vitro and in silico studies have been dedicated 

to the investigation of flow characteristics downstream of MHVs. A review on these 
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studies, the current challenges and future directions can be found in (Yoganathan et al., 

2005; Sotiropoulos and Borazjani, 2009).  

Despite decades of improvements in the design of MHVs, thrombus formation and 

hemolysis are still the major drawbacks associated with MHVs. In vivo evaluation of 

such shear induced hemodynamic events is still a difficult task. As a consequence, most 

studies rely on in vitro tests and numerical simulations, with a preference towards 

numerical simulations as they provide a large spectrum of flow characteristics with a 

significantly high spatial resolution.   

Commercial and in house computational codes have studied MHVs in a wide range of 

applications ranging from simplified geometry, symmetrical assumptions, steady flow 

and laminar regimes to detailed geometrical models, applied pulsatile velocity 

waveforms, turbulence modeling and fluid structure interaction (King et al., 1996; Ge     

et al., 2003; Cheng et al., 2004; Redaelli et al., 2004; Dumont et al., 2007; Nobili et al., 

2008; de Tullio et al., 2009). These methods demonstrated good capability in simulating 

the hemodynamics of MHVs.  

Almost all studies investigating thrombus and hemolysis events in MHVs rely on 

simulations based on an Eulerian approach. However, an accurate evaluation of such 

events has to take into account the loading history and the cumulative effect on blood 

components (Grigioni et al., 2005). This requires using a Lagrangian integral of the fluid 

over time (Moiseyev and Bar-Yoseph, 2010) and therefore, to analyze the Lagrangian 

dynamics of blood components trajectories in the unsteady flow field (Yoganathan et al., 

2005). This can more accurately be performed using meshfree particle Lagrangian 

methods. 
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One of the first contributions dedicated to the application of particle methods to 

simulate blood flow through MHVs was performed using the Lattice Boltzmann method 

(LBM) (Krafczyk et al., 1998; Krafczyk et al., 2001; Pelliccioni et al., 2007). The LBM 

method is based on statistical and probabilistic physics and requires collision sub-

processes to simulate the physical interaction between the particles. The simulations were 

capable of capturing the main flow characteristics downstream of bileaflet MHVs 

(BMHVs) and the results were very promising. The algorithm and the methodology are 

still under improvement, much like all other particle methods. The LBM method is not a 

fully meshfree Lagrangian method since it still requires a background mesh for particle 

distribution. This, similar to Eulerian based methods, may limit its accuracy for the 

evaluation of shear induced hemodynamic events. 

The study presented in this chapter is dedicated to study blood flow through a BMHV 

using SPH. This study first demonstrates the potential of the SPH method to simulate the 

complex flow through a BMHV. Then, the risk of shear stress hemodynamic events 

(thrombus formation and hemolysis) induced by a BMHV is evaluated without 

employing a fictitious particle injection and tracking techniques. The simulations are 

performed for both normally functioning and dysfunctional BMHVs.  

5.2. Methodology and Formulations 

The Navier-Stokes equations can be discretized, using SPH, in different forms 

(Chapter 2). The continuity and Reynolds averaged Navier-Stokes (RANS) momentum 

equations for turbulent flows are adopted based on Eqs. (2.8), (2.12), and (2.21) as  

                                                (5.1) 
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                 (5.2) 

where is the relative velocity vector between particles  and ,  is 

pressure,  is effective viscosity defined as , where  is dynamic viscosity 

and  is turbulent eddy viscosity and  is a small term to avoid the singularity. The 

equations presented here are based on the turbulent mean flow and  the traditional symbol 

representing time-averaged variables is omitted for simplicity. Turbulence modeling in 

SPH has been more applied to free surface flow simulations (Shao and Gotoh, 2004, Ting 

et al., 2005; Dalrymple and Rogers, 2006; Violeau and Issa, 2007). The effect of 

turbulent fluctuations on the mean flow through BMHV is modeled using 

turbulence model (Wilcox, 2006; Violeau and Issa, 2007). A detailed description of the 

adopted turbulent model is presented in section 2.2.6. This model is less computationally 

demanding, while it is able to answer the demands of this study. 

The pressure is related to the density by the equation of state shown in Eq. (2.14). The 

standard formulation of Eq. (2.28) is used to track the movement of the particles in the 

domain and a variable computational time step is employed based on Eq. (2.34). The time 

integration of the governing equations is based on a predictor-corrector scheme.  

The effect of wall boundaries is modeled by placing a layer of particles on the walls 

and three layers of imaginary particles outside of the fluid domain parallel to the walls 

(see Sec. 3.3.6). A zero velocity is given to wall particles but an extrapolated velocity is 

given to the imaginary particles to force no slip boundary condition on the walls and 

avoid fluid particles penetrating the walls. 
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Figure 5.3(b) depicts the vorticity field at the same instants. The shear layer around the 

leaflets rapidly separates into unsteady vortices downstream of the valve. As a 

consequence of such flow configuration, SPH particles experience a turbulent shear stress 

that can reach up to (Fig. 5.3c). This value is close to the value ( ) 

obtained experimentally by (Liu et al., 2000). 

The consequence of one valve leaflet dysfunction on velocity, vorticity and turbulent 

shear stress is shown in Fig. 5.4. An opening of one leaflet of the BMHV up to 50° 

instead of 85° (for St-Jude HP BMHV), corresponding to 76% severity in leaflet 

dysfunction, leads to a significant increase in the maximal velocity reaching up to 

. Furthermore, the maximal velocity is not located through the central orifice 

anymore, as expected in the healthy case, but through the lateral normally functioning 

orifice. This has a significant in vivo practical consequence, since in the evaluation of the 

performance of BMHVs by Doppler echocardiography, the ultrasound beam is aligned 

with the central orifice. Under such conditions, the velocity recorded will be  

instead of , representing an underestimation of the maximal velocity by 60%.  

These values are in agreement with the experimental study of (Baumgartner et al., 1993) 

and the numerical simulations of (Smadi et al., 2010). 
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5.5. Shear Stress Accumulation on Particles  

The Lagrangian nature of the SPH method gives direct access to the shear stress 

history imposed on blood components. As the flow in SPH is modeled by real fluid 

particles, there is no need to consider a complex particulate two phase flow approach or 

injection of particles and stochastic models to investigate the effect of turbulence on 

particle trajectories (Bluestein et al., 2000; Dumont et al., 2007; Govindarajan et al., 

2009). Also, there is no need to adopt virtual particle integration (VPI) method proposed 

recently by (Moiseyev et al., 2010) to overcome disadvantages inherent to particle 

injection and tracking techniques. 

The concept initially developed by (Hellums et al., 1987), to quantify the shear stress 

history of platelets flowing through a stenosis (Bluestein et al., 1997) is used to compute 

the shear stress loading of blood elements. It was then used by (Bluestein et al., 2000) to 

study the thromboembolic complications in MHVs. The cumulative effect of 

instantaneous turbulent shear stress, , and exposure time, , on each blood component, 

, in the domain is computed as . 

The accumulative shear stress pattern supported by SPH particles is shown in Fig. 

(5.5). A dysfunctional BMHV has significantly more potential to damage blood 

components than a normally functioning valve. This is mainly due to the combination of 

elevated turbulent shear stresses and larger coherent structures, mainly downstream of the 

dysfunctional leaflet, trapping the particles in the large flow recirculation regions.  



Fig. 5.5. Instantaneous pa

passing through: (a) norm

Blood particles passin

turbulence shear stress (

components. Particle shea

patterns trap fluid particl

of shear stresses. The acc

terms of flow patterns (

unphysiological vortices 

117 

atterns associated with accumulative shear stress app

mal bileaflet mechanical heart valve; and (b) dysfunc

mechanical heart valve. 

 

ng through the leading edge of the leaflets are 

(Figs. 5.3c and 5.4c) which may trigger dama

ar stresses are lower in the deceleration phase, b

les in the domain for a longer period and increa

cumulative shear stress field is analogous to the

Figs. 5.3b and 5.4b). This shows the potentia

in damaging blood components.  

 

plied on particles 

ctional bileaflet 

exposed to high 

age to the blood 

but more complex 

ase accumulation 

e vorticity field in 

al role played by 



Figure 5.6 shows a hi

 of the cardiac cycle

valve are compared to th

76% and 100% reduction

Fig. 5.6. Statistical distri

The SPH particles m

accumulation, which illu

blood components. The r

of valve dysfunction. Di

platelets (Hellums et al.,

tolerate much higher she

118 

stogram of the accumulative shear stress loadin

e in the entire domain. The results for the norm

hose obtained for the dysfunctional valve (for 2

n in area).  

ibution of particle accumulative shear stress loading 

cardiac cycle. 

moving through a dysfunctional BMHV car

ustrates the high potential of even a mild dysfun

resulting thrombus can contribute rapidly to incr

fferent threshold levels are reported for shear 

, 1987) and red blood cells (Lu et al., 2001). 

ear stress than platelets. In a normal BMHV 

ng on particles at 

mally functioning 

25%, 42%, 60%, 

 

at  of the 

rry higher stress 

nction to damage 

rease the severity 

stress damage to 

Red blood cells 

 of particles 



119 
 

have an accumulative shear stress less than  ( ), however in a 

case with one completely blocked leaflet,  of particles tolerate the same range of 

shear stress accumulation. In a healthy case, no particle tolerates an accumulative shear 

stress higher than . Higher degrees of valve dysfunction result in a larger number 

of particles with elevated shear stress loading.  

5.6. Summary 

The SPH methodology was further developed to simulate flow through normal and 

dysfunctional BMHVs with a realistic aortic flow waveform. The results showed the 

capability of SPH to simulate the complex flow through prosthetic mechanical heart 

valves. As this work represents the first attempt to apply SPH to simulate the complex 

pulsatile flow through a normal and dysfunctional bileaflet mechanical heart valve, some 

simplifications had to be adopted. Mainly, two dimensional simulations and fixed valve 

leaflets. 

Evaluating shear-induced hemodynamic events is of primary importance for the 

design of mechanical heart valves. Currently, this relies on numerical simulations based 

on an Eulerian approach. However, a more accurate evaluation should be based on the 

analysis of the Lagrangian dynamics of blood components. The results obtained 

regarding the accumulation of shear stress patterns on blood components illustrates the 

important role played by unphysiological flow patterns and mainly vortical structures. 

The statistical distribution of particles with respect to shear stress loading history 

provides important information regarding the relative number of blood components that 
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can be damaged. This can be used as a measure of the response of blood components to 

the presence of the valve implant or any implantable medical device.  

Finally, it should be mentioned that implementation of FSI can result in higher levels 

of blood components damage due to the interaction between valve leaflets and blood 

elements mainly during closing and regurgitation phases. 
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Conclusions and Future Works 

This thesis aimed to develop smoothed particle hydrodynamics (SPH), a fully 

Lagrangian meshfree method, to study blood flow in the cardiovascular system. The SPH 

method demonstrated good reliability to simulate hemodynamics in the heart and arteries. 

It also demonstrated the capability of modeling a number of flow characteristics that are 

difficult to capture using mesh-based methods. Moreover, some interesting features of 

SPH methodology were discovered and highlighted through a series of numerical tests. 

The performance of the two most commonly standard formulations for modeling the 

viscous term, the XSPH variant and symmetric formulation for pressure gradient 

modeling was investigated. The standard “Form II” for modeling the viscous term 

showed more accuracy, and unlike “Form I”, it was not dependent on the type of 

interpolating kernel function and flow characteristics. Using XSPH variant to modify the 

movement of the particles created undesirable particle disorders. Based on this study, it is 

recommended that XSPH be used with caution in the presence of the real viscosity. The 

symmetric form for pressure gradient provided accurate results and did not show 

sensitivity to the selected value for sound speed. It was shown that the particle resolution 

plays an important role in the order of the accuracy in SPH simulations and the velocity 

profiles converge with a rate of convergence that is between first and second orders. To 

search the neighboring particles, the linked list method was used in all simulations. The 

method resulted in a decrease in the computational cost on the order of several hundred 

times for simulations with high particle resolution compared to the simple search method. 
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A modified formulation for wall shear stress calculations was introduced and verified 

against exact solutions. Simulation of a lid-driven cavity flow at laminar high Reynolds 

numbers showed that increasing particle resolution can prevent compressibility effects in 

SPH while maintaining the speed of sound at a reasonable range. An effective approach 

to handle the challenges of simulating inflow and outflow boundary conditions was 

provided and tested. The SPH method was able to correctly simulate internal oscillating 

flows even in the presence of a large phase lag between the oscillation of the applied 

pressure difference and the moving boundary with the derived velocity. 

Smoothed particle hydrodynamics method was applied successfully to simulate 

pulsatile flow inside a model of the left ventricle (LV). The method showed good 

capability as an effective substitute for conventional mesh-based methods to simulate 

complex hemodynamics of the LV while easily tracking the history of fluid elements in 

the domain. Understanding the performance of LV filling is not only important from a 

clinical point of view, but also for the development of the cardiovascular assist devices. 

The results obtained here are promising as this work represents the first attempt to 

simulate the flow inside a model of the LV using a meshfree particle method. The main 

features of the simulated flow are similar to what is reported in clinical papers in terms of 

emerging inlet jet and main vortex in the LV. 

Smoothed particle hydrodynamics was also successfully applied to simulate flow 

through normal and dysfunctional BMHVs with a realistic aortic flow waveform. The 

results showed the capability of SPH to simulate the complex flow through BMHVs 

including lateral and central jets, vortex shedding downstream of the valve leaflets and 

large recirculation regions downstream of the dysfunctional leaflet. In this study, the 
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effect of turbulent fluctuations on the mean flow through BMHVs was also considered. 

The results obtained regarding the accumulation of shear stress patterns on blood 

components illustrates the important role played by non-physiological flow patterns and 

mainly vortical structures. The cumulative shear stress patterns provided in this study are 

clearly similar to the vorticity patterns, which clearly demonstrates the role of vortices in 

the accumulation of shear stress on blood particles. The elevated potential to damage 

blood components starts when particles bear high shear stress, especially near the leaflets. 

For a healthy valve, particles passing near the leaflets spin downstream of the leaflets. In 

a dysfunctional MHV, particle motion presents a complex vortical nature with a large 

recirculation downstream of the dysfunctional leaflet, which affects a larger number of 

blood components and traps them.  

 All simulated cases in this thesis did not show unacceptable compressibility effects. 

This is despite the fact that in some cases, fluid particles experienced rapid changes in 

acceleration magnitude and direction, and were subjected to higher inertial effects when 

compared to previous studies. As this thesis represents the first essential attempt to apply 

SPH in the simulation of complex pulsatile flow inside a LV cavity and through BMHVs, 

some simplifications had to be adopted which are described below. 

The anatomy of the LV was simplified (no boundary movement), and as a 

consequence, to satisfy the conservation of mass in the domain, the outlet remained in the 

open position. In the future, conducting simulations with a moving boundary represents 

the next logical development. The meshfree nature of SPH allows implementation of the 

moving boundaries with less difficulty than in mesh-based methods. The complexity of 
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the geometries and movement of the boundaries leads to elevated computational costs in 

mesh-based methods because of the process of mesh generation and re-meshing.  

Using in vivo phase-contrast magnetic resonance imaging (MRI), it is possible to 

acquire patient specific myocardium movements. In the future, a combined MRI and SPH 

study can provide reproduction of flow patterns in the patient’s LV. The meshfree 

particle nature of SPH will allow easy testing, in silico, of alternative surgical procedures 

and to estimate their clinical impact on the hemodynamic condition of the patient. The 

two-dimensional simulation is not an important limitation since most of the imaging 

instruments used by clinicians derive two velocity components. 

The main assumption adopted in modeling the hemodynamics of BMHVs was fixed 

valve leaflets. It should be mentioned that considering the movement of the leaflets in the 

future can result in higher levels of blood components damage due to the interaction 

between valve leaflets and blood elements, mainly during closing and regurgitation 

phases. The proposed technique, based on SPH for evaluating the shear stress loading of 

particles, can also be used to measure the response of blood components in the presence 

of valve implants or any implantable medical device. The turbulent model used in this 

study can predict the flow behavior at an acceptable level of accuracy for the purpose of 

this study, while having low computational cost. The complexity and unsteadiness of the 

flow through a BMHV may require employing a more advanced turbulence model 

demanding high performance computing facilities. Running the code in parallel CPUs or 

executing on graphics processing units (GPUs) can overcome this limitation and speed up 

the calculations enormously. 
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Another perspective for future work is to integrate simulations based on SPH and 

ultrasound to evaluate the potential of the emerging techniques for imaging arterial 

hemodynamics and wall movement. Newly developed ultrasonic measurement 

techniques such as Echo particle image velocimetry (EchoPIV), have shown 

experimentally to be a promising tool capable of well estimating blood velocity as well as 

wall artery motion in complex geometries. However, prior to a wider clinical application, 

Echo PIV has to be thoroughly validated. Currently, the validation strategy is mainly 

based on coupling mesh-based computational methods with ultrasound simulations using 

random point scatters. Random virtual point scatters are used and their dynamic 

displacement resembles movement of the blood components and wall arteries. At each 

time step, the velocity vector of the scatters can be derived using a complex mapping 

approach between Lagrangian and Euleran frames. Using SPH, both fluid and structure 

domains are solved through the same algorithm. Furthermore, SPH particles can act as 

point scatters and there is no need to consider random virtual point scatters and use 

complex and low-accuracy techniques to track their movement in the domain. Therefore, 

the coupling fluid-solid-ultrasonic simulations will be more realistic. Smoothed particle 

hydrodynamics can provide an accurate reference for verification of ultrasound derived 

velocity fields.  

  

 

 

 

 



The algorithm for seco

SPH is described below.

algorithm was implement

Fig. A.1. General algorith

126 

Appendix A 

Computational Algorithm 

ond order accurate predictor-corrector time integ

 The differential equations have a general form

ted using the programming language FORTRAN

hm for SPH calculations based on predictor-corrector

scheme. 

gration scheme in 

m as . The 

N. 

 
r time integration 



SPH

A fast method to sear

The following code des

positioned in a specific ce

 

After all particles we

compute the right hand 

interest, a, located at the 

same cell and in the neig

particles in the domain is 

127 

Appendix B  
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