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ABSTRACT

A framework for automatic modeling of underground

excavations in homogeneous rock mass

Mohammad Hazegh Fetratjoo, PhD

Concordia University, 2011

Determining the optimum excavation sequence in mining or civil engineering

requires using stress analysis methods to repeatedly solve large models. Time con-

suming preparation of the model and lengthy computations, often measured in days,

can have major impacts on successful ongoing operation of an underground mine,

where stope failures can cost millions of dollars and perhaps result in closure of

the mine. Widespread acceptance of new tunneling methods such as NATM which

depend heavily on numerical stress analysis tools and the fact that the effects of

excavation at the face of the tunnel are distinctively three dimensional necessitates

the use of 3D numerical analysis of these problems.

A framework was developed to facilitate efficient modeling of underground

excavations and to create an optimal 3D mesh by reducing the number of surface

and volume elements while keeping the result of stress analysis accurate enough

at the region of interest, where a solution is sought. Fewer surface and volume

elements means fewer degrees of freedom in the numerical model. The reduction in

number of degrees of freedom directly translates to savings in computational time

and resources. The mesh refinement algorithm is driven by a set of criteria that

are functions of distance and visibility of points from the region of interest and

the framework can be easily extended by adding new types of criteria. A software

application was developed to realize the proposed framework and it was applied to

a number of mining and civil engineering problems to investigate the applicability,

accuracy and efficiency of the framework. The optimized mesh produced by the

framework reduced the time to solution significantly and the accuracy of the results

obtained from the optimized mesh is comparable to the accuracy of the input data

for mining engineering problems.
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CHAPTER 1

Introduction

1.1 Introduction

Underground excavations and tunnels are constructed under the surface of

the earth in a rock mass for different purposes. Tunnels improve transportation by

moving traffic underground and improving the quality of life above ground. Tun-

nels also are used for extraction of minerals from underground as part of a mine

infrastructure. Other usages for underground excavations are storage, power and

water treatment plants, civil defense and other activities. The use of underground

excavations often becomes a necessity when there is need for safe operation and

environmental protection [1]. However, tunneling projects are expensive and risky

and successful execution of these projects requires a high level of knowledge and

technical skills in design and construction.

In 1960’s a new improved method of tunneling was introduced by Ladislaus

von Rabcewicz, Leopold Müller and Franz Pacher [2] which is known as the New

Austrian Tunneling Method (NATM). In this method load carrying capacity of the

ground around the excavation is mobilized to stabilize the excavation. This means

that the ground around the excavation forms a load carrying ring and only a thin

layer of shotcrete is enough for the support (see section A.6 in appendix A). Today,

NATM is widely accepted as a standard tunneling method and is being used in

tunneling projects around the world. Modern tunneling techniques such as NATM

depend heavily on computer based simulation methods for numerical stress analysis

and designing of the underground excavations [3].

In numerical stress analysis of underground excavations, under certain con-

ditions (e.g. plane strain or plane stress fields), one can reduce the dimensions of

a 3D problem by one and simplify the solution significantly by solving only a 2D

problem. Solution of a 2D problem is easier and faster but has its limitations. This

assumption is valid only when the tunnel is relatively long and straight and the

Region Of Interest (ROI), where a solution to the problem is sought, is far enough

1
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from the edges of the model and the excavation face, which is not the case in most

real world tunneling practices.

Deformed Profile

Figure 1.1: Vertical section through a three-dimensional finite element
model of the failure and deformation of the rock mass sur-
rounding the face of an advancing circular tunnel [4].

In tunnel construction it is essential to ensure that the tunnel is stable at a

tunnel face where the excavation is in progress. Therefore one of the regions of

interest in the analysis of underground excavations is the vicinity of a tunnel face.

Figure 1.1 shows the results of a three-dimensional finite element analysis of the

deformation of the rock mass surrounding a circular tunnel advancing through a

weak rock mass subjected to hydro-static stress [4]. The plot shows displacement

vectors in the rock mass as well as the shape of the deformed tunnel profile. Fig-

ure 1.2 gives a graphical summary of the most important features of this analysis.

It is clearly seen that the tunnel end-effects at the tunnel face are distinctively

three-dimensional, therefore a 3D analysis of the problem domain is necessary.

But creating 3D geometric models of large scale mining problems, meshing

these 3D geometries and performing numerical analysis on these models is very

time consuming and challenging. The reason is that the amount of details in these

problems is often staggering and if the whole domain with all the details is to be

modeled the requirements for the computational resources will exceed resources that
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Radial displacement
reaches its final value 
at about one and one 
half tunnel diameters 
behind the face

Radial displacement reaches 
about one third of its final value 
at the tunnel face

Radial displacement starts about one half
a tunnel diameter ahead of the advancing face

Inward deformation 
of tunnel face

Direction of 
tunnel advance

Figure 1.2: Pattern of deformation in the rock mass surrounding an ad-
vancing tunnel [4].

are usually available in the engineering firms. Furthermore, to use state of the art

constitutive models for the rock mass and to carry out non-linear analysis of the

problem will require repetitive numerical solution of the model. These requirements

all add up to the complexity of the problem.

1.2 New Austrian Tunneling Method (NATM)

The NATM is defined as a tunneling method where the surrounding rock mass

formations of an excavation form a bearing ring that acts as a support structure. In

an article by Brown [5] it is noted that NATM can refer to both a design philosophy

and a construction method. The characteristics of NATM as a design philosophy

are: (a) the strength of the rock mass around a tunnel is mobilized to the maximum
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extent possible by allowing controlled deformation of the rock mass, (b) to ensure

safe tunneling operations, initial support is designed according to ground conditions

to have enough load bearing and deformation capacity and support installation is

timed and executed according to ground deformations and (c) the ability to monitor

deformation of the initial support system during construction is crucial to success of

the method therefore it is important to choose the right instrumentation during the

design process. NATM as a construction method has the following characteristics:

(a) it allows for sequential excavations that can be varied at each sequence, (b) the

initial ground support is usually a layer of shotcrete combined with reinforcements

such as fiber, welded wire-mesh and steel arches and (c) the permanent support is

provided usually as cast in place concrete lining.

NATM is widely accepted and used worldwide but there have been several

unfortunate collapses and stability issues where the method was implemented. The

most famous of these incidents is perhaps the Heathrow Airport collapse in October

1994. These incidents triggered a thorough review of the NATM by the British

Health and Safety Executive and resulted in a report that identified the heading

collapse as the main cause of the failures [6]. As mentioned earlier, the heading

is one of the regions that is of great importance in the design and construction of

tunnels.

Several causes contribute to these collapses including but not limited to the un-

expected ground conditions, errors in design process (especially underestimating the

stress and strain in critical regions of the problem domain), poor management and

quality control problems during the construction. While great care must be given

to eliminate problems that stem from each and every of these causes, this research

aims to alleviate the challenges and errors in the design process by introducing a

framework that simplifies creation of the optimized 3D models of underground exca-

vations. The optimized model yields more accurate results in the ROI and cuts the

time required for numerical analysis of the model. It is worth noting that here the

term optimization does not refer to a mathematical optimization technique, rather

it refers to finding a better solution by try and error.
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1.3 Numerical Methods in Geomechanics and Tunneling

When designing an underground excavation, there are design objectives that

must be met. These objectives may be identified as follows:

• Local and overall stability of the excavation and its support system must be

ensured.

• The induced displacements for the excavation being designed and any neigh-

boring excavations, structures and services must be within an acceptable

range.

Stress analysis of the underground excavation provides an assessment of these

important aspects of the design. If the excavation has a circular or oval section with

no irregularities and if there are no nearby structures or tunnels that have signifi-

cant effects on the stress and strain fields around the excavation, then a continuum

mechanics based closed form solution might exists for the problem which will be

used to solve it. When there exist no closed form solution, numerical methods are

used to solve the problem. Today, the availability of inexpensive sophisticated com-

puter hardware has made it possible for engineering firms to deploy computationally

intensive numerical methods to solve problems with complex domains.

In geomechanics, constitutive models are used to formulate the behavior of

rock mass. There is a large number of publications available on constitutive models.

To name just a few of these models we may refer to elasticity models (linear and

piecewise linear), hyper-elasticity and hypo-elasticity models, plasticity models and

hypo-plasticity models. Having the constitutive model of the rock mass, the problem

domain is formulated by partial differential equations (PDEs). Numerical methods

approximate the solution of a linear or non-linear PDE by replacing the continuous

system with a finite number of coupled linear or non-linear algebraic equations. This

process of discretization associates a variable with each of a finite number of points,

called nodes, in the problem domain. Depending on whether a scalar, vector or

tensor quantity is being calculated at nodes, there might be one or more degrees of

freedom (DOF) at each node.
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Some of the numerical methods used in geomechanics to solve boundary value

problems are the finite element method (FEM), the boundary element method (BEM),

the finite difference method (FDM) and the discrete element method (DEM). Elab-

orative discussions of each of these methods may be found in textbooks (e.g.,

Zienkiewicz, 1967 [7]; Desai and Abel, 1972 [8]; Britto and Gunn, 1987 [9]; Smith and

Griffiths, 1988 [10]; Beer andWatson, 1992 [11]; Potts and Zdravkovic, 1999 [12, 13]).

However, as mentioned earlier, to use the FEM, BEM, FDM and DEM methods,

one must consider the entire problem domain, break it up into a finite number of

discretized sub-regions or elements.

After discretization, the governing equations of the problem are applied sep-

arately and approximately within each of the elements, translating the governing

differential equations into matrix equations for each element. Compatibility, equilib-

rium and the boundary conditions are enforced at the interfaces between elements

and at the boundaries of the problem. The outcome of this process is a system

of equations. The solution to this system of equations is the value of the sought

after quantity at nodal points. The result at any point within problem domain can

then be approximated based on the available results at the nodes. The number of

nodes (and hence the number of DOF) directly affects the accuracy of the numerical

model. Usually the larger the number of DOF, the better the accuracy of the result

will be. On the other hand, using a large number of DOF results in a large system

of equations that requires more time and computational resources to get solved.

Because the number of DOF in a practical mining problem can be very large, it is

desirable to keep the number of DOF at a minimum in the regions of the model that

have less influence on the accuracy of the solution where the results are needed. In

this research a framework is proposed that addresses this issue.

1.4 Time to Solution

The design process in engineering is usually an iterative process and consists

of three distinct phases: pre-processing, numerical solution and post-processing (see

figure 1.3). One starts the design with a series of assumptions and a discrete model

is created in the pre-processing phase, based on these assumptions. A numerical
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method is used to solve the discrete model. In the post-processing phase the results

are compared to the design objectives. If current assumptions do not satisfy the

design objectives, new assumptions are made based on previous assumptions and a

new round of analysis starts. This loop continues until all assumptions satisfy the

design objectives.

Time to solution is defined as the cumulative time required for each of these

phases in all iterations that takes to reach the design goals.

Figure 1.3: Iterative design process

The first step in modeling a physical phenomenon is to idealize it. In the

idealization process a simplified version of the real problem is created and a math-

ematical formulation is developed that describes the problem domain. To solve the

governing equations using numerical methods, a discretized model (i.e. mesh) of the

domain is required. Preparing the mesh involves defining geometry of the excava-

tions, geological properties of the rock mass (e.g. modulus of elasticity and Poisson’s

ratio) and geological features of the rock mass (e.g. faults and dykes). The sizing of

the elements of the mesh has a great impact on the rest of the design process (i.e.

numerical solution and post-processing).

A mesh with a large number of elements and degrees of freedom potentially

yields more precise results but the numerical analysis can be lengthy and for a large

mining model it can take days or weeks [14, 15]. Therefore, it is important to refine

the mesh just to the point that the required precision for the problem is satisfied and

keep the resource requirements for solving the problem within the available means.

The focus of this research is reducing time to solution by simplifying the creation of

geometry of tunnels and producing an optimized mesh of the model.
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1.5 Objectives and Contributions

Finding the optimum excavation sequence in an underground mining opera-

tion involves decision making on different levels: mine planners should plan to meet

production requirement (amount of ore extracted per day) and rock engineers must

ensure safe operations, overall integrity of mine and stability of each stope during

excavation [16]. The rock engineer bases his recommendations on studying the be-

havior of rock mass around excavation by performing some form of stress analysis

in the ROI while the mining operation is in progress. Because of the lengthy calcu-

lations and the short time frame for decision making, the results of stress analysis

often can only confirm the stability of excavation after mining operation has taken

place [14].

The central focus of this research is to reduce time to solution and make use of

existing computational resources in the mining and civil engineering firms to solve

large scale problems. The goal is to reduce time to solution by automation and

simplification of the process related to preparing the geometry of the 3D models

for underground excavations and by creating optimized meshes. These optimized

meshes should produce accurate results in the vicinity of the ROI while minimize the

time required for numerical stress analysis. A review of the existing tools (see section

2.7) shows there is need for a specialized framework to address the requirements of

this research.

A framework is proposed to address these issues. The framework contributes

to reduction of time to solution at two levels: (a) it facilitates creation of geom-

etry of tunnels using minimal input data such as tunnel path and tunnel profile

for tunnels with regular shapes and by importing existing surface triangulation for

existing excavations with complicated geometry, and (b) it cuts the time required

for numerical analysis by reducing the number of DOF in the mesh while keeping

the results accurate enough at the ROI.

The simulation methods used for numerical analysis of underground excava-

tions consist of three distinct phases: pre-processing, numerical solution and post-

processing. Achieving a high level of automation among these three phases will

greatly enhance the efficiency and usability of the simulation method. The impor-
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tance of automation becomes evident, considering the fact that the tunnel engineer

often has to respond to unexpected ground conditions on site. Therefore, rapid

results from numerical simulation performed on site could serve as a tool which as-

sists critical decisions. In a study on the application of numerical simulation at the

tunnel site carried out by Golser and Schubert [17] it was found out that there is

great need for pre-processing tools with higher degree of automation and simplicity.

This automation brings along a lot of advantages and opportunities. One

possibility is to use a parametric representation of the model for analysis. In a

parametric model, one can specify different quantities as parameters that can vary

between a minimum and maximum value. For example, the tunnel path can be

defined using parametric formulation and then be optimized subject to existing

geological features and other constraints.

Another possibility would be the ability to run sensitivity analysis for different

parameters that define the model. The classical approach used in engineering design

is to calculate the capacity C (strength) of the load bearing element or structure

and the demand D (stress or disturbing force). The factor of safety of the structure

is defined as F = C
D

and failure is assumed to occur when F < 1. In this method

the design decision is based on only one calculated factor of safety.

An approach which is frequently used to give a more rational assessment of

the risks associated with a particular design is to carry out a sensitivity study. This

involves a series of calculations in which each significant parameter is varied system-

atically over its maximum credible range in order to determine its influence upon

the factor of safety. It provides a useful means of exploring a range of possibilities

and reaching practical decisions on some difficult problems [4].

1.6 Results Obtained from Application of the Framework

To make better predictions and obtain more realistic results from numerical

analysis of the problems in rock engineering, non-linear constitutive models were

developed and now personal computers have reached a point that they can provide

enough computational power to carry out 3D non-linear analysis of large scale prob-

lems, if the computational resources are used optimally. To reach this goal, the size
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of the model to be numerically solved must be reduced as much as possible while

the accuracy of the result is kept at a reasonable range in the vicinity of an ROI

where a solution to the problem is sought.

The framework that was developed in this research was applied to a number

of mining engineering problems and efficiency and accuracy of it was studied. To

reach a certain degree of accuracy, the framework was able to reduce the size of the

problem by 14 folds compared to a uniform mesh. The time required for a linear

finite element analysis was reduced by an incredible amount of 57 times, from 14.5

minutes to 15 seconds. The considerable improvement is because current personal

computers must use disk swapping to solve problems that their requirements for

the RAM (Random Access Memory) surpasses the available amount of RAM. The

framework optimizes the model so that it fits within the available RAM and improves

the performance of the finite element solver dramatically.

In certain instances, the size of the problem is so large that even disk swapping

can not help and the solver simply fails and refuses to solve the finite element

problem. To overcome this issue, the framework can be utilized to reduce the size

of these problems so that they fit the specifications of the available hardware and

computational resources while the accuracy of the numerical analysis is kept within

an acceptable range. Chapter 4 covers detailed discussions about the accuracy,

efficiency and applicability of the the framework.

1.7 Outline of the Thesis

The following is a summary of the material covered in each chapter. Chapter 2

contains a literature review of the meshing techniques as well as review of existing

meshing tools and related work. The objectives of effective meshing techniques such

as accurate modeling of the geometry, mesh gradation and quality of mesh structures

are discussed. Meshes are classified as structured and unstructured as well as surface

and volume meshes. Afterwards, the most important meshing algorithms in 2D and

3D are reviewed. Delaunay triangulation technique is given special attention as it

is the preferred method for meshing in this research. Post-processing of meshes is

also discussed. Finally, a survey of notable existing meshing tools is provided and
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the advantages and shortcomings of each tool is discussed.

Chapter 3 contains the development of contributions that are made in this

research. A framework is developed to facilitate efficient modeling of underground

excavations and to create an optimal 3D mesh by reducing the number of surface

and volume elements while keeping the result of stress analysis accurate enough at

the ROI, where a solution is sought. Fewer surface and volume elements means fewer

DOF in the numerical model which directly translates into savings in computational

time and resources. The mesh refinement algorithm is driven by a set of criteria that

are functions of distance and visibility of points from the ROI and the framework

can be easily extended by adding new types of criteria.

Chapter 4 is dedicated to the study of applicability, efficiency and accuracy of

the proposed framework. To illustrate the accuracy and efficiency of the framework,

it was applied to a few mining engineering problems. The error introduced by

optimizing the mesh and the time taken for mesh generation and stress analysis

were measured and presented. Finally, chapter 5, provides recommendations for

future research to be conducted. It also discusses the areas in which the framework

can be improved and the research work is summed up and conclusions are provided.

There are also two appendices that provide complementary information about

rock mechanics in general and numerical analysis in rock mechanics which are rele-

vant to subject under study but are not the focus of the research.

Appendix A is a review of rock mechanics and standard tunneling practices.

First the development of rock mechanics as a discipline is reviewed. Then some of

the basic and main terminology in rock mechanics are given and techniques to collect

and present geotechnical data are discussed. At the end, tunneling terminology and

different excavation techniques are reviewed. In appendix B different numerical

methods like Finite Element Method, Boundary Element Method, Coupled Finite-

Boundary Element Method and other methods are reviewed and their advantages

and disadvantages in numerical stress analysis of geotechnical design are highlighted.

Pre-processing which is the focus of this research is discussed as one of the three

important phases in numerical analysis.



CHAPTER 2

Review of Meshing Techniques

2.1 Introduction

Meshing is the process of dividing a geometric entity into smaller parts. It is

part of a broader branch in mathematics called computational geometry. Different

applications of meshing in engineering includes computer animation and numerical

solution of partial differential equations (PDEs), the latter being our main focus in

this research. The first step, namely the pre-processing phase, in numerical solution

of a PDE is to break up the problem domain into smaller sub-domains or elements.

In this chapter the existing meshing techniques and tools are reviewed.

2.2 General Objectives

2.2.1 Correct Modeling of Geometry

One of the objectives of a meshing framework is to correctly model the ge-

ometry of the problem domain. In geomechanics one usually faces problems with

complex and possibly curved boundaries. Boundaries can appear in the exterior

or interior of the problem domain and are represented by a collection of edges or

faces in two or three dimensions respectively. Curved boundaries can be approxi-

mated with piecewise linear boundaries. In this research linear boundaries will be

considered only.

Exterior boundaries separate the meshed region from the unmeshed region of

space. They appear on the surface or in the internal holes of the model. Interior

boundaries enforce constraints that elements must conform to and may not pierce

through them. These boundaries separate regions with different physical properties

inside model; for example, zones of rock mass with different geological properties.

2.2.2 Mesh Gradation

Another goal of a meshing framework is to offer control over the size of elements

in the mesh. Ideally, this control includes the ability to grade from small to large

12
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elements over a relatively short distance. The reason for this requirement is that

element size has two effects on a finite element simulation, namely the accuracy

and the speed of the numerical solution. Small, densely packed elements offer more

accuracy than larger, sparsely packed elements; but the computation time required

to solve a problem is proportional to the number of elements. Therefore, there is

a trade off between speed and accuracy when choosing an element size. Also, the

element size required to achieve a given accuracy depends upon the behavior of the

physical phenomena being modeled, and may vary throughout the problem domain.

If elements of uniform size are used throughout the mesh, one must choose a size

small enough to guarantee sufficient accuracy in the most demanding portion of

the problem domain, and thereby possibly incur excessively large computational

demands. To avoid this pitfall, a mesh generator should offer rapid gradation from

small to large sizes.

2.2.3 Mesh Quality

The meshing framework should be capable of producing quality elements. This

is one of the most difficult goals that a meshing framework should attain. The

quality of elements are measured with mesh quality metrics. For the most part, mesh

quality metrics are based on geometric criteria. For example, does a given element

possess positive volume and a good (i.e. relatively “round”) shape? Element volume,

aspect ratio, skew, angles, stretching, and orientation are common geometric quality

metrics [18, 19]. Figure 2.1 shows an example of a well shaped and a degenerate

triangular element.

Figure 2.1: Well shaped (left) and degenerate (right) triangles.
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2.3 Classification of Meshes

2.3.1 Surface and Volume Mesh

The surface of a model is decomposed using 2D elements. 2D elements are

usually either triangular or quadrilateral. The volume of the model is decomposed

with tetrahedra or hexahedra. In this research triangles and tetrahedra are used for

2D and 3D meshing respectively. Figure 2.2 shows examples of 2D and 3D meshes.

Figure 2.2: Two and three-dimensional meshes. At left, each triangle is
an element. At right, each tetrahedron is an element.

2.3.2 Structured versus Unstructured Mesh

Meshes can be categorized as structured and unstructured. Figure 2.3 shows

an example of each. Structured meshes have a uniform topological structure while

unstructured meshes lack this uniformity. Another definition could be that in a

structured mesh the indexes of the neighbors of any node can be calculated by a

simple linear formula. In an unstructured mesh, the only way to know about the

index of the neighboring nodes is to store a list of each node’s neighbors.

Advantages and disadvantages of each are discussed bellow:

• For the same number of elements and nodes, solution of linear and non-linear

system of equations yielded by FEM and BEM is simpler and faster on struc-

tured meshes, because of the ease of determining each node’s neighbors. On the

other hand, unstructured meshes require more storage space and the memory
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Figure 2.3: Structured (left) and unstructured (right) meshes.

traffic is higher (hence slower) because they need to keep a list of the pointers

to each node’s neighbors in memory.

• The regularity of the node and element indexes in structured meshes makes it

straightforward to apply parallel computing algorithms to them, whereas the

complexity in the unstructured meshes necessitates the use of sophisticated

partitioning algorithms and parallel unstructured solvers [20].

• Many problems are defined on domains with irregularities that impose lots

of restrictions, making it very difficult (and sometimes impossible) to form a

structured mesh on them. To create a structured mesh that fully conforms to

the exterior and interior boundaries of the domain, one needs a significantly

larger number of elements compared to those of an unstructured mesh. Larger

number of elements means more memory space requirements and lower speeds.

To achieve a solution with the same degree of accuracy throughout the problem

domain, one can apply an unstructured mesh that can be flexibly tailored to

the physics of the problem resulting in fewer number of elements. Unstructured

meshes, far better than structured meshes, can provide multi-scale resolution

and conformity to complex geometries.

The disparity between structured and unstructured meshes is of more signifi-

cance in 3D domains and where the scales of the physical problem vary more [20].

In this research a combination of both structured and unstructured meshes are used.
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Individual geometric entities that have a regular and well defined shape are created

using a structured mesh. When a geometric entity intersects with another one, an

unstructured mesh is used near the area of intersection between the entities.

2.4 Meshing Algorithms in 2D and 3D

Although there is certainly a difference in complexity when moving from 2D

to 3D, the algorithms discussed here are for the most part applicable for both 2D

and 3D with some restrictions. Triangular and quadrilateral elements are the most

common forms of elements used in two dimensional meshing algorithms. Quadri-

lateral element are better suited for structured mesh (grid) generation but are

also used in unstructured meshing. These algorithms are classified under the fol-

lowing major groups Quadtree/Octree, Advancing front and Delaunay triangula-

tion/tetrahedralization and are discussed bellow.

2.4.1 Quadtree/Octree

In this method quadrilaterals containing the geometric model are recursively

subdivided until the desired resolution is reached. Figure 2.4 shows the two dimen-

sional quadtree decomposition of a model. Irregular cells are then created where

quadrilaterals intersect the boundary, often requiring a significant number of bound-

ary intersection calculations. Quadrilateral elements are generated from both the

irregular cells on the boundary and the internal regular cells. The resulting mesh will

change as the orientation of the cells in the quadtree structure is changed. To ensure

element sizes do not change too dramatically, maximum difference in quadtree sub-

division level between adjacent cells can be limited to one. Smoothing and cleanup

operations can also be employed to improve element shapes. The disadvantage of

this method is that it does not provide flexible control over the size of elements (i.e.

grading).

2.4.2 Advancing front

A popular method for triangular mesh generation is the advancing front, or

moving front method. Two of the main contributors to this method are Löhner [21,
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Figure 2.4: Quadtree decomposition of a tunnel cross-section.

22] and Lo [23, 24]. Advancing front methods [25] begin by dividing the boundaries

of the mesh into edges (in two dimensions) or triangular faces (in three dimensions).

These discretized boundaries form the initial front. Triangles or tetrahedra are

generated one at a time, starting from the boundary edges or faces, and moving

toward the center of the region being meshed as shown in Figure 2.5. An active

front is maintained where new triangles or tetrahedra are formed.

Advancing front methods require a good deal of second-guessing, first to ensure

that the initial division of the boundaries is prudent, and second to ensure that when

the advancing front of elements meet at the center of the mesh, they are merged

together in a manner that does not compromise the quality of the elements. In

both cases, a poor choice of element sizes may result in situation where a front

of small elements meets a front of large elements, making it impossible to fill the

space between with well shaped elements. Advancing front methods typically create

astonishingly good triangles or tetrahedra near the boundaries of the mesh, but are

much less effective where fronts meet.

A sizing function can be defined in this method to control element sizes.

Löhner [21] proposed using a course Delaunay mesh of selected boundary nodes

over which the sizing function could be quickly interpolated.
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Figure 2.5: Stages in the progression of an advancing front algorithm for
triangulation of a tunnel cross-section.

2.4.3 Delaunay Triangulation/Tetrahedralization

The most popular meshing techniques that use triangular elements for meshing

the domain follow Delaunay criteria to generate a well formed mesh. Delaunay

refinement has theoretical guarantees that back up its good performance in practice.

It is not easy to trace who first used Delaunay triangulations for solving PDEs.

These ideas have been intensively studied in the engineering community since the

mid-1980s, and began to attract interest from the computational geometry commu-

nity in the early 1990s.

Many of the earliest papers suggest performing vertex placement as a separate

step, typically using structured grid techniques, prior to Delaunay triangulation.

For instance, Cavendish, Field and Frey [26] generate grids of vertices from cross-

sections of a three-dimensional object, then form their Delaunay tetrahedralization.

The idea of using the triangulation itself as a guide for vertex placement followed

quickly; for instance, Frey [27] removes poor quality elements from a triangulation

by inserting new vertices at their circumcenters –the centers of their circumcircles–

while maintaining the Delaunay property of the triangulation.

Delaunay triangulation of a vertex set may be unsatisfactory for two reasons:

elements of poor quality may appear, and input boundaries may fail to appear. Both

problems have been addressed in the literature. The former problem is typically

treated by inserting new vertices at the circumcenters [27] or centroids [28] of poor

quality elements. It is sometimes also treated with an advancing front approach,

discussed briefly in Section 2.4.2.

The problem of the recovery of missing boundaries may be treated in several
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ways. These approaches have in common that boundaries may have to be broken

up into smaller pieces. For instance, each input segment is divided into a sequence

of triangulation edges which is referred to as subsegments, with a vertex inserted

at each division point. In three dimensions, each facet of an object to be meshed

is divided into triangular faces which is referred to as sub-facets. Vertices of the

tetrahedralization lie at the corners of these sub-facets.

In the earliest publications, boundary integrity was assured simply by spacing

vertices sufficiently closely together on the boundary prior to forming a triangula-

tion [27], surely an error-prone approach. A better way to ensure the presence of

input segments is to first form the triangulation, and then check whether any input

segments are missing.

2.4.3.1 Voronoi Diagrams

Given a finite set of points in the plane, the objective is to assign to each point

a region of influence in such a way that regions decompose the plane. Let S ⊆ R
2

be a set of points and define the Voronoi region of p ∈ S as the set of points x ∈ R
2

that are at least as close to p as to any other point in S, i.e.,

Vp = {x ∈ R
2 | ‖x− p‖ ≤ ‖x− q‖, ∀q ∈ S}.

Figure 2.6: n points define the same number of Voronoi regions.

For an illustration of this definition look at Figure 2.6. Now, let the half-plane



20

of points at least as close to p as to q be Hpq = {x ∈ R
2 | ‖x− p‖ ≤ ‖x− q‖}. The

Voronoi region of p, Vp, is the intersection of half-plane Hpq, for all q ∈ S − {p}.
It follows that Vp is a convex polygonal region, possibly unbounded, with at most

n− 1 edges.

Each point x ∈ R
2 has at least one nearest point in S, so it lies in at least

one Voronoi region. It follows that the Voronoi regions cover the entire plane. Two

Voronoi regions line on opposite sides of the perpendicular bisector separating the

two generating points. It follows that Voronoi do not share interior points, and if

a point x belongs to two Voronoi regions, then it lies on the bisector of the two

regions. The Voronoi regions together with their shared edges and vertices form the

Voronoi diagram of S.

2.4.3.2 Delaunay Triangles

If we connect the points p, q ∈ S whose Voronoi regions intersect along a

common line segment, a Delaunay edge is formed. The Delaunay edges decompose

the convex hull of S into triangular regions, which are referred to as Delaunay

triangles. Delaunay triangles are duals of of Voronoi diagrams. See Figure 2.7.

A triangulation is a collection of triangles together with their edges and ver-

tices. A triangulation K triangulates S if the triangles decompose the convex hull

of S and the set of vertices is S. An edge ab ∈ K is locally Delaunay if,

• It belongs to only one triangle and therefore bounds the convex hull, or

• It belongs to two triangles, abc and abd, and d lies outside the circumcircle of

abc.

This definition is shown in Figure 2.8. If every edge of K is locally Delaunay,

then K is Delaunay triangulation of S.

2.4.4 Meshing by Sweeping

To create a 3D mesh, a surface mesh on a bounded surface is swept through

space along a curve. This technique can be generalized to mesh certain classes of

volumes by defining source and target surfaces. Provided that the source and target
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Figure 2.7: The Voronoi edges (dotted) and their dual Delaunay edges
(solid).

c
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b
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d

Figure 2.8: To the left ab is locally Delaunay and to the right it is not.

surface have similar topology, the elements of the source area can be swept through

the volume to generate 3D elements. Different techniques and issues to find internal

points along the sweeping path are discussed in [29] and [30].

Blacker [31] generalizes and extends the applicability of sweeping by introduc-

ing the Cooper Tool. The Cooper tool allows for multiple source and target surfaces

while still requiring a single sweep direction. With this tool, the topology is allowed

to branch or split along the sweep direction. In addition, the topology of source

and target surfaces are not required to be similar. With these requirements relaxed,

a greater subset of geometry may be meshed with generally very high quality ele-

ments. There is obviously a great potential for using this technique in creating 3D

models for tunnels.
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2.4.5 3D Surface Meshing

There are different approaches for meshing a 3D curved surface. The following

is a review of these methods.

2.4.5.1 Mapping 2D Planar Meshes to 3D Curved Surfaces

NURBS1 surfaces are widely used in modeling the geometry of objects. Each

point on a NURBS surface has an underlying two-dimensional (u, v) representation

as well as a global (x, y, z) representation in the Cartesian coordinate system. The

algorithms in this method form the mesh in the (u, v) parametric space of the surface

and then map the (u, v) coordinates to the global (x, y, z) coordinate.

The drawback to this method is that the elements formed in parametric space

may not always form well-shaped elements in three dimensions once mapped to the

surface. To address this issue, the following solutions exist:

1. Modify the underlying parametric representation of the surface so there is a

reasonable mapping from (u, v) space to (x, y, z) space.

2. Modify the mesh generation algorithm so that stretched or anisotropic ele-

ments created in the (u, v) space will map to well-shaped, isotropic elements

in (x, y, z) space.

The first method requires that in order to have a good parameterization, the

surface derivatives, (Du, Dv), should not have enormous changes over the domain.

An exact arc-length re-parameterization was suggested by Farouki [32]. An approx-

imate arc-length parameterization (i.e. warped parameter space) can be defined by

selectively evaluating surface derivatives over the domain and adjusting (u, v) values

to hold the magnitude of (Du, Dv) roughly constant. A warped parametric space

can generate reasonable surface meshes for many cases, but there are many prob-

lems that the re-parameterization cannot provide an adequate solution. That’s why

much of the literature on surface meshing focuses on the second solution of forming

anisotropic elements in 2D and then mapping them to isotropic elements in 3D.

1The word NURBS is an acronym for nonuniform rational B-spline. Non uniform rational
B-splines can represent 3D geometry.
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In the second method, one can take advantage of the surface derivatives,

(Du, Dv). These are computed from the NURBS surface if the geometry is de-

fined using NURBS. In the case that the geometry is defined using an existing set

of elements that should be altered or refined, the surface derivatives are computed

using the nodes in the neighborhood of point (u, v). George and Borouchaki [33] use

a Delaunay based approach and propose the use of a metric derived from the first

fundamental form of the surface. The metric is in the form of a 2 × 2 matrix and

is used to transform vectors and distances in parametric space. In their Delaunay

approach, the empty circle property for delaunay triangulation, becomes an empty

ellipse property. Also included with the metric is the option to incorporate element

sizing and stretching properties. Similar research is carried out on the subject by

Chen and Bishop [34]. Equivalent advancing front surface mesh generation algo-

rithms, which utilize a metric derived from the first fundamental form of the surface

are presented independently by Cuilliere [35] and Tristano [36].

2.4.5.2 Direct 3D Surface Meshing

Direct 3D surface mesh generators form elements directly on the geometry

regardless of the parametric representation of the underlying geometry. In some

cases where a parametric representation is not available or where the surface pa-

rameterization is very poor, direct 3D surface mesh generators can be useful. Lau

and Lo [37, 38] present an advancing front approach for arbitrary 3D surfaces. In

this method surface normals and tangents must be computed in order to compute

the direction of the advancing front. In addition, a significant number of surface

projections are required to ensure that new nodes remain on the surface. Also of

significance is the increased complexity of the intersection calculations required to

ensure that triangles on the surface do not overlap.

Dey, Li and Ray [39] proposed a method that recovers the topology from

an input polygonal surface and then creates a 3D refined mesh for the recovered

topology using Delaunay triangles. The assumption about the input surface is that

it actually approximates a smooth surface both point-wise and normal-wise. This

means if the given polygonal surface has a very sharp edge (dihedral angle less than
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90 degrees), the algorithm may not work.

2.5 Mesh Post-Processing

It rarely happens that a meshing algorithms can directly produce a mesh that

is optimal without using any kind of post-processing that improves the quality of

the generated elements. The three main categories of mesh improvement include

smoothing, clean-up and refinement. Smoothing includes any method that adjusts

node locations while maintaining the element connectivity. Clean-up generally refers

to any process that changes the element connectivity. Refinement refers to any

operation that reduces element size locally.

2.5.1 Smoothing

Smoothing involve some form of iterative process that repositions individual

nodes to improve the local quality of the elements. Usually corner nodes of the

element are chosen for smoothing but it is also possible to relocate internal nodes

of the element. Salem [40] introduced a method providing criteria for repositioning

mid-nodes on quadratic elements to improve element quality. This method computes

a region surrounding the mid-node known as the mid-node admissible space where

the mid-node can safely be moved to maintain or improve element quality. There

are variety of smoothing techniques that will be discussed below.

2.5.1.1 Averaging Methods

Laplacian smoothing [41] is the simplest and the most straight forward method

among other smoothing algorithms. This method relocates the internal nodes of the

mesh to the average location of the nodes connected to it. This technique can be

used for any element shape with small modifications to the method. The smoothing

algorithms will iterate through all the nodes of the mesh several times until they

converge (i.e. no nodes move more than a predetermined tolerance). A drawback of

Laplacian smoothing is that it can position nodes outside of the boundaries. Similar

to Laplacian, there are a variety of other smoothing techniques, which iteratively

reposition nodes based on a weighted average of the geometric properties of the
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surrounding nodes and elements. Canann [42] provides an overview of some of the

common methods in use.

In the constrained Laplacian smoothing a comparison of local element quality

is made before and after the proposed move and the node is moved only if element

quality is improved. Canaan [42] shows the criteria for the movement of the nodes

using this method.

2.5.1.2 Optimization-Based Methods

Rather than relying on heuristic averaging methods, some methods use op-

timization techniques to improve element quality. Optimization-based smoothing

techniques measure the quality of the surrounding elements to a node and attempt

to optimize by computing the local gradient of the element quality with respect to the

node location. The node is moved in the direction of the increasing gradient until an

optimum is reached. Canann [42] and Freitag [43] both present optimization-based

smoothing algorithms.

While maintaining that optimization-based smoothing techniques provide su-

perior mesh quality, the computational time involved is generally too excessive to

use in standard practice. Canann [42] and Freitag [44] both recommend a combined

Laplacian/optimzation-based approach. Laplacian smoothing is done for the major-

ity of the time, reverting to optimization based smoothing only when local element

shape metrics drop below a certain threshold.

2.5.2 Clean-up

Like smoothing, there are a wide variety of methods currently employed to im-

prove the quality of the mesh by making local changes to the element connectivities.

Cleanup methods generally apply some criteria that must be met in order to perform

a local operation. The criteria in general can be defined as: shape improvement or

topological improvement.

In addition, cleanup operations are generally not done alone, but are used in

conjunction with smoothing. Freitag [45] describes how smoothing and cleanup may

be combined to efficiently improve overall element quality.
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2.5.2.1 Shape Improvement

For triangle meshes, simple diagonal swaps are often performed. For each

interior edge in the triangulation a check can be made to determine at what position

the edge would effectively improve the overall or minimum shape metric of its two

adjacent triangles. The Delaunay criteria can also be used to determine the position

of an edge. For Tetrahedral meshes, Joe [46] presents a series of local transformations

that are designed to improve the element quality. These include swapping two

adjacent interior tetrahedra sharing the same face for three tetrahedra. Likewise,

three tetrahedra can be replaced with two. Other more complex transformations

are also defined.

In some applications where mixed element meshes are supported, the element

quality of two adjacent triangles may be preferable to a single poor quality quadri-

lateral. When this is the case, selected quadrilaterals may be split.

In some cases, particularly with curved surfaces, the elements resulting from

the mesh generator may deviate significantly from the underlying geometry. For a

triangle mesh, edge swaps can be performed based on which local position of the

edge will deviate least from the surface. Although not strictly a cleanup operation,

local refinement of the mesh may also be considered to capture surface features.

2.5.2.2 Topological Improvement

A common method for improving meshes is to attempt to optimize the number

of edges sharing a single node. This is sometimes referred to as node valence or

degree. In doing so, it is assumed that the local element shapes will improve. For

a triangle mesh there should optimally be 6 edges at a node and four edges at a

node surrounded by quads. Whenever there is a node that does not have an ideal

valence, the quality of the elements surrounding it will also be less than optimal.

Performing local transformations to the elements can improve topology and hence

element quality. Several methods have been proposed for improving node valence

for both triangle [47] and quadrilateral [48, 49] meshes.

For volumetric meshes, valence optimization becomes more complex. In addi-

tion to optimizing the number of edges at a node, the number of faces at an edge
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can also be considered. For tetrahedral meshes this can involve a complex series of

local transformations. For hexahedral elements, valence optimization is generally

not considered tractable. The reason for this is that local modifications to a hex

mesh will typically propagate themselves to more than the immediate vicinity. One

special case of cleanup in hex meshes used in conjunction with the whisker weaving

algorithm is presented by Mitchell [50] .

2.5.3 Refinement

Element refinement procedures are numerous. For our purposes, refinement is

defined as any operation performed on the mesh that effectively reduces the local el-

ement size. The reduction in size may be required in order to capture a local physical

phenomenon, or it may be done simply to improve the local element quality. Some

refinement methods in themselves can be considered mesh generation algorithms.

Starting with a coarse mesh, a refinement procedure can be applied until the desired

nodal density has been achieved. Quite frequently, refinement algorithms are used

as part of an adaptive solution process, where the results from a previous solution

provide criteria for mesh refinement.

2.5.3.1 Point Insertion

A simple approach to refinement is to insert a single node at the centroid of

an existing element, dividing the triangle into three or a tetrahedron into four. This

method does not generally provide good quality elements, particularly after several

iterations of the scheme. To improve upon the scheme, a Delaunay approach can

be used that will delete the local triangles or tetrahedra and connect the node to

the triangulation maintaining the Delaunay criterion. Any of the Delaunay point

insertion methods discussed previously could effectively be used for refinement. See

Figure 2.9.

2.5.3.2 Edge Bisection

Edge bisection involves splitting individual edges in the triangulation. As a

result, the two triangles adjacent the edge are split into two. The same concept can

be extended to volumetric meshing, any tetrahedron sharing the edge to be split
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A
A

Figure 2.9: Delaunay refinement by point insertion.

must also be split. Rivara [51] proposes criteria for the splitting of edges based on

the longest edge of a triangle or tetrahedron.

2.5.3.3 Templates

A template refers to a specific decomposition of the triangle. One example is

to decompose a single triangle into four similar triangles by inserting a new node at

each of its edges as show in Figure 2.10. The equivalent tetrahedron template would

decompose it into eight tetrahedra where each face of the tetrahedron has been

decomposed into 4 similar triangles. To maintain a conforming mesh, additional

templates can also be defined based on the number of edges that have been split.

Staten [52] outlines the various templates needed to locally refine tetrahedra while

maintaining a conforming mesh. See Figure 2.10.

A

B

Figure 2.10: Triangles A and B are refined using the template method.

2.6 Previous and Related Work in Mesh Optimization

Because the time to solution increases by complexity of the problem in all

engineering disciplines, there have been several initiatives to reduce mesh size in

order to reduce time to solution. In structural and mechanical stress analysis, most
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of the problems deal with finding a solution for inside of the model and in the

entire domain and can be classified as interior problems. In rock engineering on

the other hand, the solution is sought in an ROI outside the excavations, therefore

these problems can be classified as exterior problems [53]. For interior problems, the

geometry details can affect the results in the domain. As a result, only small features

in the model can be simplified or removed [54, 55]. Work has also been done on

removing holes and modifying the topology of the so called interior models [56]. For

exterior problems, a recent study addresses geometry simplification and optimization

of surface meshes by adopting and extending algorithms that originated in computer

graphics field. In this study an existing surface mesh is simplified by defining a cost

function that drives the mesh simplification process [16].

In geomechanics, it is generally not necessary to compute field quantities ev-

erywhere in the problem domain. Rather, the stresses and strains are only sought at

specific regions that are close to the stope or regions that interact with other adja-

cent facilities and substructures [53]. Therefore it is acceptable for the regions that

are farther from the ROI to have a coarser mesh. Currently, to optimize the model,

human expert knowledge is required to simplify the mesh. The mesh is coarsened in

the regions that, based on the expert’s estimate, will not affect the field quantities

where the results are required. Because this form of mesh optimization requires hu-

man intervention, it is a very slow process. Also, the decisions made by the expert

are subjective and not based on quantitative measures. This research investigates

methods and measures that provide a framework for automating the creation of the

model and the mesh by taking into account the region of influence (see section 3.2),

principles of continuum mechanics and incorporating other problem specific knowl-

edge.

2.7 A Survey of Existing Meshing Tools

Here a survey of notable exiting meshing tools is provided and their capabilities

and limitations are discussed.



30

2.7.1 ANSYS, ANSYS Inc.

ANSYS [57] is a commercial product with closed source code. It provides finite

element solvers for problems in the fields of structural mechanics, explicit dynamics,

fluid dynamics and electromagnetics.

ANSYS is capable of producing tetrahedral and hexahedral meshes and pro-

vides two types of size functions. The first type of size function is designed to

capture the geometry while minimizing the number of elements in the model and

is used for mechanical applications. The second type of size function is designed to

capture the geometry while maintaining a smooth growth rate between the regions

of curvature and/or proximity and is used for fluids dynamics problems [57].

While both of these size functions are useful in reducing the total number of

elements and DOF and improve the accuracy of the results for the problem globally,

ANSYS does not provide the capability to define regions of interest with specific

mesh grading requirements to control the mesh sizing in the regions of interest.

Since there is no concept of ROI, ANSYS also does not account for visibility of

regions that are hidden behind other geometrical features from the ROI to optimize

mesh based on this criterion.

ANSYS is a closed source code application so it is not possible to extend the

meshing capabilities of the software to adapt to one’s particular needs.

2.7.2 CUBIT, Sandia National Lab.

CUBIT [58] is a two and three dimensional solid modeler and mesh generation

tool that is developed by Sandia National Laboratories. CUBIT can produce surface

and volume meshes for finite element analysis and uses a combination of techniques

including paving, mapping, sweeping and various other algorithms for discretizing

the geometry into a finite element mesh. CUBIT provides a few methods for con-

trolling the size of the surface mesh and volume [58].

2.7.2.1 Constant sizing function

The constant sizing function specifies that a uniform element size be used over

the interior of the surface or volume and is applied to the whole surface or volume
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part.

2.7.2.2 Geometry adaptive sizing function

The geometry adaptive sizing function (also referred to as the skeleton siz-

ing function), automatically generates a mesh sizing function based on geometric

properties of the model. In this method, sizing function is created to satisfy these

properties: (a) The sizes of the mesh elements vary smoothly throughout the mesh,

(b) the mesh elements resolve the geometry to a sufficient degree and (c) the mesh

elements do not over-resolve the geometry.

This sizing function uses geometric properties to influence mesh size. The

scheme calculates or estimates:

• 3D-proximity (thickness though the volume)

• 2D-proximity (thickness across a surface)

• 1D-proximity (curve length)

• Surface curvature

• Curve curvature

Regions of relatively high complexity will have a fine mesh size, while regions

of relatively low complexity will have a coarse mesh size. This method results in

meshes that represent the geometry of the model accurately on a global scale.

2.7.2.3 Other sizing functions

CUBIT provides an experimental sizing function which is still under research

and development and is not reliable yet. In this method a periodic sizing function

can be specified and the mesh will be sized in periodical intervals on the surface and

volume.

The meshing capabilities of CUBIT are very flexible and can be used in a

variety of applications but it lacks the ability to plug in user defined mesh sizing

functions to take full control of meshing process. The fact that it is a closed source

application does not allow further customization of the application to address certain
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needs such as accounting for ROI and geometry simplification based on location of

ROI.

2.7.3 TetGen

TetGen generates tetrahedral meshes that are suitable for finite element and

finite volume methods. It can generate tetrahedral mesh that cover of the interior

of a piecewise linear boundary of a 3D domain and preserve the boundary.

TetGen provides mesh a few mesh refinement controls. The mesh can be sized

so that the sizes of the tetrahedra are graded with respect to the input boundary. In

other words, the mesh size is small close to the boundary and is gradually increased

towards the interior of the domain [59].

It also supports mesh refinement through these methods that can be used for

adaptive meshing:

• Using a .vol file, one can specify a maximum volume for each tetrahedron.

Each tetrahedron’s volume constraint is applied to that tetrahedron.

• Using a .node file, one can specify a list of additional nodes that must be

included in the mesh.

• Using a nodal size map, one can specify the desired mesh edge size at each

node.

TetGen is an open source project. It is written in C++ and the source code

is available. While the mesh refinement capabilities of TetGen are very powerful,

it does not have the ability to differentiate between the edge size of surface facets

and volume cells. Also, since it conforms to the exact input geometry, it is not

suitable for generating meshes that simplify parts of the boundary of the domain.

TetGen also lacks the concept of ROI so it is not possible to define meshing criteria

to account for visibility from ROI.

2.7.4 Gmsh

Gmsh [60] is a a three-dimensional finite element mesh generator with built-

in pre-processing and post-processing facilities and is build around four modules:
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geometry, mesh, solver and post-processing. It is able to create 2D and 3D structured

and unstructured meshes [60].

Gmsh provides different methods to control mesh sizing.

• Characteristic length: The characteristic lengths at the geometrical points

of the model can be specified. The size of the mesh elements will then be

computed by linearly interpolating these characteristic lengths on the initial

mesh.

• Curvature: the mesh will be adapted with respect to the curvature of the

geometrical entities

• Box: the size of the elements inside and outside of a parallelipipedic region

• Explicit: the size of the mesh is specified using an explicit mathematical func-

tion.

Gmsh is written in C++ and the source code is available for modification. It

provides very flexible control over the mesh sizing but lacks the concept of ROI.

Because of this, it can not account for visibility of regions that are hidden behind

geometrical features from the ROI to optimize mesh based on this criterion.

2.8 Conclusions

All domain decomposition methods should satisfy the following major goals:

accurate modeling of geometry, mesh gradation, mesh quality. Meshes can be clas-

sified with respect to dimension (surface and volume mesh) or structure (structured

and unstructured mesh). Structured mesh is numerically more efficient in solving

some numerical problems but are hard to establish in complicated domains. Un-

structured meshes, on the other hand, might be less efficient but are a lot more

flexible and are applicable to complex domains.

The techniques used for 2D and 3D meshing were reviewed. Voronoi diagrams

and Delaunay triangles proved to be very useful and popular for generating good

quality meshes. Also some of the mesh post-processing methods were discussed that

put the final touch on the generated mesh to improve mesh quality.
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Finally a survey of notable exiting meshing tools was provided and their ca-

pabilities and limitations were discussed.



CHAPTER 3

The Proposed Framework

3.1 Introduction

Time to solution is defined as the total time involved in preparing the model,

carrying out the numerical stress analysis computation and post processing the re-

sult (see section 1.4). The goal of this research is to reduce time to solution by

automation and simplification of the process in preparing the models for under-

ground excavations and by creating optimized meshes that produce accurate results

in the vicinity of an ROI while minimizing the time required for numerical stress

analysis. A review of the existing tools (see section 2.7) shows there is need for a

specialized framework to address the requirements of this research.

A framework is proposed that contributes to reduction in time to solution

at two levels: (a) it facilitates creation of geometry of the tunnels using minimal

input data such as tunnel path and tunnel profile for tunnels with regular shapes

or by importing existing surface triangulation of an excavation with complicated

geometry, and (b) it cuts the time required for numerical analysis by reducing the

number of surface and volume elements in the mesh (which in turn results in fewer

DOF) while keeping the accuracy of results within a predetermined range at the

ROI.

Figure 3.1 shows the overall concept of the framework and how each component

relates to others. A brief description of the components shown in figure 3.1 follows.

Detailed discussion about each component is provided throughout the rest of this

chapter.

First and foremost, the geometry of a problem is defined by specifying the

geometry of each individual excavation or tunnel segment. Each tunnel segment is

defined using the minimal input data provided by the engineer. For excavations with

regular shapes, this data consists of tunnel path and tunnel profile. For excavations

with irregular shapes, if surface geometry is available in the form of a polyhedron,

it can be directly used as input.

35



36

Create geometry of 
tunnel segments in 3D

Intersect and merge all 
tunnels

Create optimal mesh 
(surface & volume)

ROI 

Extract surface mesh for 
Boundary Element Analysis

Bounding 
box

Tunnel path 
and profile

Tunnel surface 
as a polyhedron

Explicit Meshing 
Criteria 

(Optional)

Use volume mesh for 
Finite Element Analysis

Figure 3.1: Concept of the proposed framework

Having the geometry of individual tunnels as polyhedra, it is possible to apply

geometrical boolean operations on them and obtain the geometry of the whole prob-

lem domain as a polyhedron. Then a 3D Delaunay meshing algorithm is employed

to generate a well formed 3D tetrahedral mesh that respects a set of predefined

criteria to obtain the desired mesh. To improve the quality of the tetrahedra, a few

mesh smoothing techniques are applied to the mesh. Now, the tetrahedra can be

directly used for finite element analysis. For boundary element analysis, the surface

mesh can be extracted from the generated 3D mesh.

3.2 Region of Interest

The recommendations that a rock engineer makes, come from stress analysis

of the problem. In rock engineering, the domain of the problem is usually vast and

out of the whole domain only a specific region is of importance and subject to study

at a time. This region, where a solution to the problem is sought, is called the region

of interest (ROI).

For an example of an ROI, consider a case where the rock engineer must asses

the stability of the area around the face of excavation to ensure safe operations in
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an ongoing tunneling project (see figure 3.2). The result of the stress analysis is

required to be accurate in this region and the accuracy of the result in the rest of

the domain is of no importance at this time. In this case, the region close to the

face of excavation is the ROI. ROI is one of the key concepts in this research and

the mesh optimization techniques discussed later on depend on it.

The ROI can be a point or a volume that is reasonably small with respect

to the bounding box. There may be one or multiple ROI’s for a particular prob-

lem. Throughout this work only one ROI is assumed for developing the framework

but multiple ROI’s can be accommodated in the framework by following the same

principles laid out for one ROI.

3.3 The Bounding Box

The bounding box defines the bounding limits of the model and must include

the ROI (see figure 3.2). It can be as large as the whole problem domain or be

limited to just a region that contains a subset of features of the problem. In either

case the engineer will make the decision based on the available data and the engi-

neering knowledge. The proposed framework produces optimized meshes that result

in low computational costs even if the whole problem domain is modeled. Here, the

bounding box is represented by a closed polyhedron with oriented triangular facets.

3.4 Tunnel Geometry

In an underground excavation, depending on the purpose of the excavation

and the chosen method of construction, the tunnel geometry can have a regular or

irregular shape. Here, each case is considered individually and a proper solution

is proposed to facilitate generating the model and reduce the time required for

modeling the problem.

3.4.1 Model Representation

There are two major representation schemes that are used to describe a solid

model: constructive solid geometry (CSG) and boundary representations (B-rep) [61],

each having their own advantages and disadvantages.
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Bounding Box

Direction of Tunnel Advance
Point ROI

Figure 3.2: Bounding box and ROI

In CSG a solid is specified as boolean combination of a set of primitive objects.

The solid objects are represented implicitly with a tree structure that consists of

leaves, representing the primitive objects and interior nodes, representing boolean

operations. The algorithms that operate on a CSG tree, evaluate properties on

the primitive objects and propagate the results using the tree structure. CSG is

suited for solids that have a regular shape and can be exactly described with simple

primitives.

A B-rep, on the other hand, describes a solid in terms of the incidence struc-

ture and the geometric properties of all lower-dimensional features of its boundary.

These features include faces, edges and vertices. Faces are oriented to determine

the interior of the solid. B-rep is a proper choice for representing solids with highly

irregular geometry.



39

By nature, underground excavations can be very irregular in shape therefore

in this study B-rep is the chosen scheme for modeling the problem. In particular,

closed polyhedral surfaces that consist of triangular facets are used to represent the

boundary of the geometry.

3.4.2 Tunnels with Regular Shapes

The idea is to use the information about the tunnel path and cross-sections to

automatically create the geometry of the tunnel.

3.4.2.1 Tunnels as Generalized Cylinders

A generalized cylinder is a representation of an elongated object that has a

main axis (directrix or spine) and a smoothly varying cross-section (generatrix ) [62].

See Figure 3.3. Directrix and generatrix can both be open or closed curves.

Generatrix

Directrix (Spine)

Figure 3.3: A generalized cylinder

In tunneling, spine is analogous to tunnel path and generatrix is tunnel cross-

section. Spine is a bounded 3D curve serving as the tunnel path and is mathemati-

cally defined as:

A = A(s), 0 ≤ s ≤ 1 (3.1)
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Generatrix or tunnel cross-section is a closed curve that is defined as:

C = C(t; s) = [x(t; s), y(t; s), 0], 0 ≤ t ≤ 1 (3.2)

and the surface of the generalized cylinder or tunnel is given by:

R(t; s) = A(s) + x(t; s)X(s) + y(t; s)Y(s) (3.3)

whereX,Y,Z are orthogonal 3D unit vectors and Z is tangent toA(s), i.e. Z(s) = A′(s)
‖A′(s)‖ .

X(s) and Y(s) can be chosen as the normal and binormal vectors of spine

curve A(s) or by rotation of those by a small angle. See figure 3.4.

t

k

O
j

i

s

Y(s)

X(s)

C(t;s)

A(s)

Z(s)

Figure 3.4: Mathematical representation of a generalized cylinder

3.4.2.2 Degeneracy of Generalized Cylinders

There are two kinds of degeneracies of generalized cylinders: local self-intersection

and global self-intersection. See figure 3.5 for illustration.

As illustrated in figure 3.6, a condition to avoid local self-intersection of gen-

eralized cylinders is [62]:

maxt(x
2 + y2) ≤ ρ2(s) (3.4)

for all s, where ρ(s) is the radius of curvature of the spine.
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Figure 3.5: (Left) Global self-intersection. (Right) Local self-intersection
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Figure 3.6: Criterion to avoid local self-intersection
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3.4.2.3 Tunnel Cross-Section

The shape of the cross-section is approximated with a polygon. This approach

is very flexible and can be used to represent very complex shapes. See figure 3.7.

Larger number of sides in the polygon will result in a more accurate representation

of the geometry of the tunnel.

Cross-section curve

Polygon approximation

Figure 3.7: A mouth cross-section (left) and an rather complex cross-
section (right) approximated with polygons

3.4.2.4 3D Tunnel Path

The 3D tunnel path is approximated using piecewise linear line-segments. The

cross section can be scaled along tunnel path if required. See figure 3.8.

3.4.2.5 Tunnel Surface by Sweeping

One of the methods for creating the polyhedral surface of a tunnel is the ex-

trusion of the two dimensional polygon that defines the cross-section. This method

works well for a number of problems in civil and mining engineering. In mining,

many of the excavations can be modeled by the extrusion process. For example,

shafts, drifts and crosscuts are just a few types of structures which can easily be

modeled using this process. As well, many underground civil engineering struc-

tures such as subway tunnels and hydroelectric power caverns can be modeled by
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Figure 3.8: Two tunnel paths and profiles as seen from 4 different views

extrusion [63].

The algorithm implemented in this research is a generalized form of extrusion

that is based on the concept of a generalized cylinder (see section 3.4.2.1). The

outcome of the process is a closed polyhedron with triangular facets. All facets

are oriented and have coherent normal directions. It is crucial that all facets have

coherent normal directions because this information is used to determine if a point

is topologically inside or outside of the polyhedron. In figure 3.9 three consecu-

tive points, P1, P2 and P3, on a tunnel path are shown with their corresponding

cross-sections and the normal vector n of triangle abc points toward outside of the

polyhedron.

Figure 3.10 shows the surface of two tunnels, one with a spiral path and the

other with a wave like path, generated by the application that was developed for

this research in order to implement the framework.
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Cross-section at P1

P1

P3

Cross-section at P3
Cross-section at P2

P2

a

b

c

n

+

Figure 3.9: Creating the surface of a tunnel by sweeping the cross-section
along the path.

Figure 3.10: Geometry of the two tunnels created by the framework.
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3.4.3 Tunnels with Irregular Shapes

The data that represents the shape of an irregular excavation can be gathered

using laser tunnel scanners. A tunnel scanner captures the surface of the tunnels in

the form of a point cloud which can then be converted to a polyhedral surface with

triangular facets using a surface reconstruction algorithm. This polyhedron, which

represents the exact geometry of the excavation, contains too much detail and if all

these details are to be considered for meshing, the numerical stress analysis will be

computationally expensive.

In order to achieve an acceptable computational cost, only the significant

features of the tunnel surface should be kept and the rest should be ignored while

creating the mesh. The meshing algorithm used in this study automatically discards

the insignificant details in the excavation surface and produces a mesh that closely

approximates the excavation surface according to a predetermined tolerance.

3.5 Intersection of Geometric Entities

To produce a mesh of the domain, the meshing algorithm requires a polyhedron

that defines the whole boundary of the domain as input. All facets of this polyhedron

must have coherent normal vectors to topologically identify the inside and outside

space of the excavation.

To obtain this polyhedron, boolean operations, such as union and subtraction,

must be performed on polyhedra that represent each tunnel and the polyhedron

that represents the bounding box. See section 3.5.2 for more details about boolean

operations on geometric entities.

3.5.1 Exact versus Inexact Arithmetic

Geometric objects are expressed in terms of a 3D coordinate system that

is based on real numbers. Arithmetic operations done by digital computers are

usually performed by using floating point numbers and suffer from a problem called

roundoff error. Predicate operations such as intersection of geometric entities can

return incorrect results if roundoff error occurs in the computations [20]. There

are numerous algorithms and software libraries that are designed to remedy this
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problem. Some use integer numbers altogether instead of floating point numbers,

others use different techniques to get around this problem [20].

In this research, exact arithmetic operations [64] that are available through

CGAL library [65] are used. Therefore, the framework is robust and never returns

false results that could originate from roundoff errors. Of course this robustness

comes at a cost: there is some speed penalty for using exact arithmetic but it is

inevitable when robustness and correctness have a high priority.

3.5.2 Boolean Operations on Geometric Entities

In this research B-rep is chosen to represent geometric entities. In particular,

polyhedra with oriented triangular facets are used to model the geometric enti-

ties. Boolean operations on polyhedra are a set of operations that result in a new

polyhedron. To perform boolean operations a specific kind of polyhedron, named

Nef-polyhedron, is employed.

The theory of Nef-polyhedra has been developed for arbitrary dimensions [66]

but here an implementation of Nef-polyhedra for 3 dimensions is used. A Nef-

polyhedron in dimension 3 is a point set P ⊆ R3 generated from a finite number of

open halfspaces by set complement and set intersection operations. Consider two

Nef-polyhedra P1 and P2. The union of P1 and P2, produces a new Nef-polyhedron,

PU , that contains the point set that exist in both P1 and P2:

PU = P1 ∪ P2 (3.5)

PU = {x ⊆ R
3 : x ∈ P1 or x ∈ P2} (3.6)

The relative complement (i.e. set difference) of P1 and P2, produces a new

Nef-polyhedron, PC , that contains the point set that exist in P1 but not in P2:

PC = P1 \ P2 (3.7)

PC = {x ⊆ R
3 : x ∈ P1 | x /∈ P2} (3.8)

To get the polyhedron that represents the whole model, first the union of all
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tunnel segment polyhedra is found:

Punion = P1 ∪ P2 ∪ P3 ∪ · · · ∪ Pn (3.9)

where Pi is the ith tunnel segment. Then the set difference of this union and the

bounding box is found:

Pfinal = PBBox \ Punion (3.10)

where PBBox is the bounding box polyhedron and Punion is obtained from equa-

tion 3.9. Pfinal is the polyhedron that contains all the points inside the bounding

box and outside of the tunnel segments and it is used by the meshing algorithm to

create the mesh.

3.6 The Meshing Algorithm

The meshing algorithm is the core component of the framework. It is respon-

sible for producing a mesh of the domain subject to certain criteria. These criteria

are either given explicitly or are inferred from other information such as location of

the ROI.

To mesh the domain, a 3D Delaunay meshing algorithm is used. Delaunay

based algorithms are capable of producing quality meshes and provide control over

mesh sizing throughout the domain. They have solid mathematical background and

are guaranteed to terminate [20].

In numerical stress analysis, fine meshes generally produce more accurate re-

sults compared to coarse meshes. A finer mesh means more DOF which translates

into longer numerical analysis and requires more computational resources. The gen-

eral idea is to refine the mesh in areas that have more contribution to the results

at ROI and keep a coarse mesh in other areas of the problem domain. This will

result in an optimum mesh that significantly reduces the time required for numerical

analysis.

The proposed algorithm extends the 3D Delaunay algorithm that was devel-

oped by Rineau et al. [67] to enable applying an ROI based mesh sizing function

over the domain. The output mesh is an optimized 3D triangulation of the domain
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that can be used for finite element or boundary element analysis.

3.6.1 How the Meshing Algorithm Works

The major components of information required by the meshing algorithm are:

• The input domain which is a polyhedron that defines the geometry of the

problem

• The ROI

• A set of optional explicit criteria

Figure 3.11 shows an overview of the meshing algorithm. The actual im-

plementation of the algorithm is based on a generic software design for Delaunay

refinement meshing that uses a recursive technique [68].

3.6.2 The Input Domain

For the meshing algorithm to work properly, the domain to be meshed must be

representable as a pure 3D complex. A 3D complex is a set of faces with dimension

0 (vertices), 1 (edges), 2 (facets) and 3 (cells) such that all faces are pairwise interior

disjoint, and the boundary of each face of the complex is the union of faces of the

complex. The 3D complex is pure, meaning that each face is included in a face of

dimension 3, so that the complex is entirely described as a set of 3D cells. The

set of faces with dimension lower or equal than 2 form a 2D subcomplex. By this

definition, Pfinal, the polyhedron that represents the model geometry (equation 3.10)

is an acceptable form of input for the meshing algorithm.

3.6.3 Meshing Criteria

To refine the mesh, the algorithm is driven by five criteria: three conditions

for mesh surface facets and two conditions for mesh volume cells.

1. The criteria for surface facets are:

(a) Angular bound which controls the facet shape,

(b) Radius bound which controls facet size, and
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2. Insert the initial
vertices to start

meshing

1. The input
polyhedral

domain

4. Is there any bad
cell left?

5. Refine the worst cell
by vertex insertion

3. Mark all bad cells
based on meshing

criteria

6. Mark all bad facets
related to this cell based on

meshing criteria

7. Is there any bad
facet left?

8. Refine the worst facet
by vertex insersion

End

Start

9. Save the
optimized

mesh output YesNo

Yes

No

Figure 3.11: A simplistic flowchart of the meshing algorithm

(c) Distance bound which controls how closely the surface facets approximate

the geometry of the problem.

2. The criteria for cells are:

(a) Radius-edge bound which controls the cell shape, and

(b) Radius bound which controls the cell size.

Each of these five criteria can be individually controlled throughout the prob-

lem domain. Each criteria can be evaluated at any point (x, y, z) in the domain. A

detailed discussion of these criteria follows.
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Facet Radius Bound

Radius bound of the facets, Qfr, controls the size of the surface facets. For

a triangular facet 
ABC the radius bound is equal to the circumradius of the

triangle. The meshing algorithm guarantees every facet in the triangulation has a

radius bound smaller than a specified value.

Facet Distance Bound

The distance bound, Qfd, controls how closely the surface facets approximate

the geometry of the problem. For a triangular facet 
ABC the radius bound is

calculated as follows. Let P be the circumcenter of
ABC andH be the intersection

of a line perpendicular to the plane of the triangle at P and the surface of the

boundary surface (i.e. the input polyhedron). The distance between P and H is

defined as the distance bound.

By manipulating the designated maximum distance bound for different regions

in the model it is possible to control the refinement of the surface facets in the mesh.

By choosing a larger facet distance bound in the regions that do not have significant

impact on the amount of stress at the ROI, the amount of detail in the surface

mesh can be reduced in those regions. This is particularly important when creating

optimized surface meshes for boundary element analysis.

Facet Angular Bound

Angular bound of the facets, Qfa, controls the shape of the surface facets of

the mesh. For the triangular facet 
ABC with sides a, b and c the angular bound

is defined as:

Qfa =
4S · dmin

abc
(3.11)

where

dmin = min (a, b, c) (3.12)

S is the area of the triangle and R is its circumradius. The meshing algorithm

guarantees every facet in the triangulation has an angular bound larger than a

minimum specified value.
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Cell Radius Bound

Cell radius bound, Qcr, controls the size of tetrahedra in the mesh. The radius

bound of a tetrahedron is equal to radius of the circumsphere of that tetrahedron.

The meshing algorithm guarantees every cell in the mesh has a radius bound smaller

than a specified value. This parameter plays an important role is optimizing the

volume mesh. By manipulating the designated value of the cell radius bound for dif-

ferent regions in the model smaller tetrahedra are used in areas that have significant

influence on the amount of stress at ROI and larger tetrahedra are used in other

areas resulting in an optimized mesh with lower number of cells which translates

into fewer DOF.

Cell Radius-edge Bound

For accuracy in the finite element analysis, it is generally necessary that the

shape of elements have bounded aspect ratio. The aspect ratio of an element is the

ratio of the maximum side length to the minimum altitude. For a quality mesh,

this value should be as small as possible. For example thin and flat tetrahedra tend

to have large aspect ratios. In this study, radius-edge ratio which is a similar but

weaker quality measure and is more suitable for the Delaunay algorithm [69] is used.

The radius-edge bound, Qce, controls the shape of the cells. For tetrahedron

ABCD with edges e1, e2, e3, e4, e5 and e6 the radius-edge is defined as:

Qce =
R

emin

(3.13)

where

emin = min (e1, e2, e3, e4, e5, e6) (3.14)

and R is the radius of the circumsphere of tetrahedron ABCD.

For all well-shaped tetrahedra, the radius-edge ratio is small (figure 3.12),

while for most of badly-shaped tetrahedra, this value is large (figure 3.13). Hence,

in a quality mesh, this value should be bounded as small as possible. However, the

ratio is minimized by the regular tetrahedron (in which the six edges have equal



52

(A) (B)

Figure 3.12: Radius-edge for well shaped tetrahedra. For tetrahedron A
(left): Qce ≈ 0.612 and for tetrahedron B (right): Qce ≈ 0.866

(A) (B)

Figure 3.13: Radius-edge for badly shaped tetrahedra. For tetrahedron
A (left): Qce ≈ 2.51 and for tetrahedron B (right): Qce ≈ 2.5

lengths and the circumcenter is the barycenter), that is:

Qce ≥
√
6/4 ≈ 0.612 (3.15)

A special type of badly-shaped tetrahedron is called sliver (see figure 3.14).

This type of tetrahedron is very flat and nearly degenerate. Slivers can have radius-

edge ratio as small as
√
2/2 ≈ 0.707 thus the radius-edge ratio is not a proper

measure for weeding out the slivers. However, Miller et al. [69] have pointed out

that it is the most natural and elegant measure for using in Delaunay refinement

algorithms. To remove slivers from the final mesh a few mesh smoothing techniques

have been used which are discussed in section 3.6.6.

Applying Multiple Criteria

The meshing algorithm supports applying multiple criteria when refining the

mesh subject to each of the five conditions mentioned previously. For example, to
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Figure 3.14: The radius-edge ratio of a sliver: Qce ≈ 0.707

control the cell size when refining the cells, it is possible to have the algorithm to

do the cell badness check against multiple criteria. If any of those criteria indicates

badness of a cell, it will be marked for refinement. This behavior is very well suited

for extending the current implementation by adding new criteria to the existing

ones.

3.6.4 ROI Based Mesh Sizing

To drive the refinement process automatically, a mesh sizing function is needed.

This function should account for the ROI in order to decide on the sizing of the

elements in each region of the domain. The following measure is proposed to estimate

upper bound of the meshing criteria:

S = Smin + (Smax − Smin) ·K (3.16)

K =
(wproximity · C1 + wvisibility · C2)

wproximity + wvisibility

(3.17)

and

Smin ≤ S ≤ Min (Scap, Smax) (3.18)

where S is the upper bound of the quantity that is being measured for element

refinement (e.g. Qfr, Qfd, Qfa, Qcr or Qce) and Smin and Smax are the minimum

and maximum desired upper bounds of S and are provided before the meshing

begins. Scap is a predetermined constant and is the final upper bound for the sizing

function.

The mesh sizing function is used to evaluate the badness of facets and cells.

For example, when applying the cell radius bound criterion(Qcr), S is evaluated for
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a cell and if Qcr > S then the cell is marked as bad to be refined further by the

meshing algorithm.

3.6.4.1 Proximity Factor

The concept of region of influence [70] is used in developing the framework.

It is known from the continuum mechanics that the degree of interaction between

regions in the continuum depends on the inverse of the squared distance between

them [3]. A direct result of this fact is that elements farther from the ROI have

less contribution to the amount of stress at ROI therefore these elements can be

coarsened without affecting the accuracy of results at ROI.

ROI

A

B

C

D

d

G

Surface Facet

Figure 3.15: Proximity for facet ABC

ROI

A

B

C

D

d

G

Figure 3.16: Proximity for cell ABCD
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In equation 3.17, wproximity ·C1 is the contribution of proximity of the element

to the ROI. The wproximity is the weight of proximity contribution factor and C1 is

defined as:

C1 =
d2

D2
(3.19)

0 ≤ d ≤ D (3.20)

where d is the distance between ROI and centroid of the current element being

refined and D is the maximum possible value for d (see figures 3.15 and 3.16.

The sizing function can be set up for each of the five criteria discussed in

section 3.6.3 and be activated for every one of them in the meshing process.

3.6.4.2 Visibility Factor

Regions of the domain that are not directly eying the ROI will have less in-

fluence on the results at the ROI. That is because the excavations that are laying

between the refinement point and the ROI disturb the stress field distribution in the

domain and act as a blockage that prevent direct influence of that point on ROI.

The second term in equation 3.17, wvisibility · C2, accounts for the contribution of

this phenomenon. The wvisibility is the weight of visibility factor and C2 is defined

as:

C2 =
i

N
(3.21)

0 ≤ i ≤ N (3.22)

where i is the number of intersections between the surface of excavations and the

line segment stretching from ROI to the centroid of the element currently being

refined. The larger the calculated value of i is for a point, the lesser influence it has

on the ROI. N is a predetermined positive integer and is the upper bound for i.

Figure 3.17 shows cross section of two excavations and three refinement points

A, B and C with i = 0 for point A, i = 2 for point B and i = 4 for point C.

To calculate i in equation 3.21, a line segment is constructed from the point

ROI to the refinement point and then the number of intersections of this line segment

with the input polyhedron is calculated. To test for the intersections, the simplest

method would be to use a brute force search. This method is computationally
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Figure 3.17: Cross section of an excavation showing point visibility from
the ROI

expensive because this intersection check is performed each time a facet or cell is

being refined and for a polyhedron with a large number of triangles this will be

inefficient.

Another approach which is more efficient is using the Axis-Aligned Bounding

Box Tree (AABB Tree) method [71]. The AABB tree provides the means to per-

form efficient intersection and distance queries against sets of finite 3D geometric

objects stored in a static data structure. The data structure is created once and

the same data structure is used for all future queries. The AABB tree construction

is initialized by computing the AABB of the whole set of triangles that make up

the input polyhedron (i.e. Pfinal). All triangles are then sorted along the longest

coordinate axis of this box, and the triangles are separated into two equal size sets.

This procedure is applied recursively until an AABB contains a single triangle. An

intersection query traverses the tree by computing intersection tests only with re-

spect to the AABB’s during traversal, and with respect to the input triangle at the

end of traversal (in the leafs of the tree).
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Sizing Function Diagram

A closer look at the definition of the sizing function in equations 3.16 and 3.17

shows that it is a parabolic function (figure 3.18) and the upper and lower bounds

of S are as follows:

Smin ≤ S ≤ Min (Scap, Smax) (3.23)

d

S

S

S

max

min

Scap

D

Figure 3.18: The solid line is the ROI based mesh sizing function accord-
ing to equation 3.16

3.6.5 Explicit criteria

In addition to the criteria that are calculated based on equation 3.16, it is also

possible to use an explicit algebraic sizing function, Sf = f (x, y, z), to control the

mesh refinement process. An independent sizing function can be applied to each of

the five criteria mentioned in section 3.6.3.

3.6.6 Mesh Smoothing

At some point the meshing algorithm will stop the refinement process and

guarantee that all elements in the output mesh satisfy all five criteria that drive

the meshing process (see section 3.6.3). For better accuracy in the finite element

analysis, the tetrahedra in the mesh must have a small aspect ratio. As it was

discussed earlier, the radius-edge which is a weaker criteria similar to aspect ratio is
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used in the meshing algorithm. The radius-edge is not a good measure for slivers.

As a result, there will be some slivers in the output mesh. To eliminate the slivers

and improve mesh quality the following process is applied to the mesh.

3.6.6.1 Lloyd Smoother

The Lloyd smoother is a global mesh optimizer and improves the mesh by

moving vertices in order to minimize a global mesh energy. The mesh energy is the

error resulting from interpolation of function f (x) = x2 by a piecewise linear func-

tion [72]. Lloyd improves the whole mesh rather than focusing on removing slivers

but it is known empirically to be very efficient as a preliminary mesh optimization

phase that will enhance the efficiency of Perturber and Exuder that are applied

after.

3.6.6.2 Perturber

Perturber aims to remove slivers by relocating the vertices of the mesh while

keeping the mesh Delaunay. There are methods that explicitly perturb the slivers

through random vertex relocation. These methods are effective but slow. Here a

more efficient and effective method that favors deterministic over random perturba-

tion is used [73].

3.6.6.3 Exuder

Exuder chases down the remaining slivers and removes them. To do so, the Ex-

uder turns the Delaunay mesh into a weighted Delaunay mesh with optimal weights

applied to vertices [74]. The Exuder must be the last optimization process that is

run on the mesh because it changes the weights of the Delaunay mesh.

3.7 The Meshed Model

After the mesh smoothing process is finished, the final mesh can now be used

for stress analysis. For finite element analysis the tetrahedra are extracted, rock mass

properties are assigned to the cells, boundary conditions and loading are applied and

then a finite element analysis tool is used to run the stress analysis process. To use
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ROI

Figure 3.19: Geometry of the underground excavation.

the output mesh for boundary element analysis, the surface facets are extracted from

the volume mesh. After boundary conditions and loading are applied, a boundary

element analysis tool can be used for stress analysis.

Figure 3.19 shows a 3D view of an underground excavation along with the

location of the ROI. The framework was used to create the mesh of the model. A

uniform mesh created by the framework with Qcr = 0.4 has a total number of DOF

equal to 287, 000 and a linear finite element analysis for this uniform mesh takes

about 875 seconds to finish.

Figure 3.20 is an optimized mesh of the same geometry produced by applying

proximity and visibility factor to control cell radius (Qcr) and facet distance (Qfd)

criteria. Number of DOF in the optimized mesh is 19, 400 and the linear finite

element solution takes only 15 seconds. The results obtained for the optimized

mesh shows 93% reduction in the number of DOF and 98% reduction in the stress

analysis time.

It is worth noting that this significant improvement introduces only 20% of

error to the amount of principal stress (σ1) at ROI compared to the uniform mesh.
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Figure 3.20: Cross section of the 3D mesh optimized with cell ra-
dius bound and facet distance bound: wproximity = 1.0 and
wvisibility = 0.1

This amount of error is acceptable because the rock mass property seldom has

an accuracy better than 10 − 20% [53]. These reductions in time to solution are

for a linear stress analysis. For a non-linear stress analysis the savings in time

and resources will become even more significant. In chapter 4 the efficiency of the

method and the effects of each of the five cell and facet criteria on the number of

DOF and the accuracy of the stress analysis results at the ROI are investigated.

3.8 Implementation of the Framework

To realize the proposed framework and study the application of the framework

on some problems in mining and civil engineering a software application was devel-

oped. The software application is designed to be cross platform, meaning that it can

be run under different operating systems including Windows, Mac OS X and Linux

family of operating systems. It is developed using the C++ programming language
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and uses advanced C++ programming techniques like template programming. It

also leverages several C++ libraries such as Nokia Qt, Boost, OpenGL and CGAL.

The software application operates both from command line and through a

Graphical User Interface (GUI). In the command line mode, it takes a text file

containing the description of the problem in form of Extensible Markup Language

(XML), produces the output mesh and then saves the resulting mesh along with some

statistical information into designated output files. In the command line mode, no

human intervention is required to create the mesh from the input file which makes it

ideal for integration as part of an automated finite element analysis tool-chain. The

GUI mode is used to provide visual insight into different stages of mesh generation

and help in debugging and finding out problems in the process of modeling.

3.9 Conclusions

Successful employment of new tunneling methods such as NATM to design

and execute underground excavation projects depends on accurate estimation of

stresses and strains for a 3D model of the excavation. Creating the 3D geometry of

the problem and preparing an optimal mesh for numerical stress analysis is a time

consuming process. Right now this process requires human intervention and depends

on expert knowledge to simplify the model in certain regions and keep the details in

other areas and the decisions made by the expert are subjective. Because of the sheer

size of the mining problems the numerical solution can be very lengthy. Besides,

because of non-linear constitutive models that govern the behavior of rock mass the

numerical solution must be run iteratively which means even longer computational

times (often measured in days or weeks).

A framework was introduced that reduces time to solution by simplifying cre-

ation of the geometry of underground excavations and by creating optimal meshes.

The framework contributes to reduction in time to solution at two levels: (a) it

facilitates creation of geometry of the tunnels and (b) it cuts the time required for

numerical analysis by reducing number of surface and volume elements in the mesh

while keeping the results accurate enough at the ROI.

The concept of the framework was first depicted in a diagram that shows
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the components involved and their interrelationship. Then each component in the

framework was discussed individually. A generic sizing function (equation 3.16) was

proposed that is capable of incorporating the effects of proximity and visibility to

predict a proper value for a given meshing criteria (such as cell radius bound or

facet distance bound).

Mesh smoothing operations such as Lloyd Smoother, Perturber and Exuder

were discussed. These operations are required for producing high quality meshes

that are to be used for numerical analysis. Finally a brief overview of the technology

used in developing the software application that realizes the proposed framework was

provided.



CHAPTER 4

Applicability, Accuracy and Efficiency of the Framework

4.1 Introduction

A framework for automated modeling of underground excavations was devel-

oped in chapter 3. The framework produces an optimized mesh of the problem by

accounting for the location of ROI and produces a mesh that is coarser in the regions

that have little or no influence on the solution at the ROI.

Since the input data such as rock mass property has seldom an accuracy better

than 10-20% [53], the accuracy of the solution is also allowed to be about the same.

The optimized mesh maintains the accuracy of the solution at the ROI within this

range while reduces the time to solution by an average of 90%.

The optimized mesh produced by the framework should be appropriate (i.e.

the elements must be well shaped) in order to be suited for use in numerical stress

analysis. The mesh refinement process is governed by five criteria: cell radius bound,

cell radius-edge bound, facet distance bound, facet radius bound and facet angular

bound. In this chapter, the effects of each of these five criteria on the optimized

mesh are studied.

This chapter is dedicated to evaluating the applicability, accuracy and effi-

ciency of the proposed framework. To illustrate this, the framework was applied

to a few practical mining problems and the reduction in time to solution was mea-

sured for each case. A strict measure for accuracy of results of a stress analysis

is the principal stress induced in the rock mass. Therefore, in order to determine

the accuracy of the results produced by the optimized meshes, principal stress was

used as a metric. Detailed comparison of the results produced by the framework are

provided for different scenarios in the following sections of this chapter.

4.2 Meshing Criteria

The Delaunay meshing algorithm incorporated in the proposed framework

refines the mesh subject to five criteria: Qcr, Qce, Qfr, Qfd or Qfa (see section 3.6.3).

63
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Each of these five criteria can be evaluated using the ROI based equation suggested

earlier (see equation 3.16) or can be explicitly calculated from a scalar function

f(x, y, z) for each point in the domain. Table 4.1 shows a template of the matrix

of parameters that control the meshing algorithm (wproximity, wvisibility, Smin, Smax

and Scap are defined in section 3.6.4).

wproximity wvisibility Smin Smax Scap

Qcr (cell radius)
Qce (cell radius-edge)
Qfd (facet distance)
Qfr (facet radius)
Qfa (facet angle )

Table 4.1: Template of the matrix of parameters that control the meshing
algorithm.

The framework uses equation 3.16 to calculate each criterion if the parameters

are provided for it. If no parameters are specified for a criterion, the framework will

not account for that criterion when refining the mesh.

Depending on what numerical method is going to be used for stress analysis,

one or more criteria are the key criteria for controlling the meshing process while the

others have no significant influence on it. For example, when creating 3D volume

meshes for finite element analysis, cell radius, cell radius-edge and facet distance are

the key criteria and the other criteria are not important because they are indirectly

influenced by these three criteria and imposing them as extra conditions to control

the mesh will not create a better mesh, only prolongs the mesh refinement process.

When creating 3D surface meshes for boundary element analysis, facet distance,

facet radius and facet angle are the key criteria and the other criteria can safely be

discarded. A more detailed discussion about each criterion follows.

4.2.1 Cell Radius Bound (Qcr)

Cell radius bound controls the size of the tetrahedra in the mesh. Assuming

all tetrahedra in the mesh are well shaped and have an aspect ratio that is suitable

for numerical stress analysis, the smaller tetrahedra potentially provide a better

accuracy for finite element analysis of a continuum. On the other hand, employing
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small tetrahedra throughout the mesh will increase the number of DOF and the

number of the equations that should be solved by the finite element solver. The

larger the number of equations, the longer it takes to solve the system of equa-

tions and the amount of resources like CPU cycles and RAM to solve the problem

increases. Therefore it is best to refine the mesh in a way that while the result

remains accurate at ROI, the number of DOF is kept to a minimum.

For boundary element analysis, only the surface mesh is required and the size

of the tetrahedra in the volume mesh have no effect on the resulting surface mesh.

Therefore, when creating the surface mesh for the boundary element analysis, this

criterion is not enforced or it is relaxed by setting it to a value larger than the

dimensions of the bounding box. Because all cells have a smaller cell radius than

the dimensions of the domain, the meshing algorithm will not insert any new vertices

based on cell radius criterion.

4.2.2 Cell Radius-edge Bound (Qce)

To obtain meshes that are proper for finite element analysis, the aspect ratio

of the tetrahedra in the mesh must be as low as possible. In practice, radius-edge

which is a similar but weaker criterion is used instead of the aspect ratio because it is

a more natural and elegant measure to use in a Delaunay meshing [69]. Cell radius-

edge bound controls the quality of the tetrahedra in the mesh and its impact on the

solution time is insignificant but to avoid unnecessary introduction of errors into the

solution it is bounded to a maximum value. The maximum value for radius-edge

bound depends on the type of the element used in the finite element stress analysis

of the problem. In this study a 4-node tetrahedron element with one integration

point is used and a maximum radius-edge bound of 2.0 yielded appropriate results.

On the other hand when creating surface meshes for boundary element analy-

sis, since all tetrahedra will be ignored and only the surface facets are extracted to

represent the surface mesh, this criterion is not enforced.

4.2.3 Facet Distance Bound (Qfd)

Facet distance is a key criterion in mesh generation when creating meshes for

either finite element analysis or boundary element analysis. Facet distance bound
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can be leveraged as a means to remove unnecessary details in the boundary of the

model. It comes very handy when there is an staggering amount of detail in the

geometry of the problem.

When creating volume meshes for the finite element analysis, this criterion

can be used along with the cell radius bound to further simplify the mesh in the

boundary of the domain. By increasing the value of facet distance in the areas of

the model that have little or no influence on the results at the ROI, the number of

elements in the vicinity of these regions is reduced, hence the the number of DOF

is lowered and the efficiency of the mesh for the numerical analysis is improved. As

it is shown in a case study in section 4.4.5, this criterion, when evaluated using the

ROI based equation introduced earlier in section 3.6.4, reduced the number of DOF

by 40% compared to when facet distance bound was assumed constant throughout

the domain.

4.2.4 Facet Radius Bound (Qfr)

When generating surface meshes for boundary element analysis, facet radius

bound is used to control the sizing of the facets of the mesh. The facets are re-

fined further in the areas that have significant influence on the solution at ROI and

coarsened elsewhere.

In mesh generation for finite element analysis, the size of the tetrahedra in

the volume mesh are the major factor in improving the efficiency of the numerical

analysis and surface facets have no impact of the solution accuracy or efficiency.

Furthermore, facet radius bound is indirectly related to cell radius and cell radius-

edge criteria and by imposing the latter two criteria, the facet radius is confined

indirectly as a result. Therefore this criterion is relaxed by setting it to a value

larger than the dimensions of the bounding box. This will ensure that the meshing

algorithm will not insert any vertices to refine the mesh based on this criterion.

4.2.5 Facet Angular Bound (Qfa)

Facet angular bound controls the shape of the surface facets and is useful to

control the quality of the surface mesh when creating meshes for boundary element
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analysis. The appropriate minimum value of this criterion depends on the type of

element that will be used in the boundary element stress analysis of the problem.

When creating volume meshes for finite element analysis, facet angular bound

is not a determining factor in refining the mesh cells so it can be safely ignored.

4.3 Accuracy and Efficiency of the Framework

To determine the accuracy of the optimized model, the results obtained form

the numerical solution of the optimized model should be compared with the reference

solution. This comparison is established by measuring the relative difference between

the results from the optimized and the results from the reference solution.

A rigorous measure to assess the accuracy of the results of a stress analysis

is the principal stress. Principal stresses are found at the ROI and the difference

between optimized and reference solutions are evaluated as follows. Stress at any

point of the domain of a continuum can be defined by the nine components of a

second-order tensor, σ:

σ =

⎡
⎢⎢⎣
σxx σxy σxz

σyy σyz

sym σzz

⎤
⎥⎥⎦ (4.1)

The principal stresses, σi (i = 1, 2, 3), for any point in the domain are found by

calculating the eigenvalues of the above matrix [3]. To provide a quantitative mea-

sure for the error introduced in the solution, the percent difference of the principal

stress at a given point is calculated based on the following equation:

Δσi =

(
σref
i − σoptimized

i

σref
i

)
× 100 (4.2)

where i = 1, 2, 3 and σref
i is the reference principal stress, σoptimized

i is the principal

stress obtained from the model with the optimized mesh and Δσi is the percent

difference of the principal stress at a point.

To obtain the reference results, the problem domain was meshed using a uni-

form fine mesh (Qcr about 2% of the size of the bounding box) and the solution to

the problem was found at the ROI. Then, in order to ensure the convergence of the
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solution, the mesh was refined further and the solution at the ROI was evaluated

for each refined mesh. The results from each refinement indicated the convergence

of the solution (see figures 4.7 and 4.8).

To measure the effect of each meshing criterion on the resulting mesh, individ-

ual and combined effect of those criteria were studied. First the effect of cell radius

criterion (evaluated using equation 3.16) was studied when (a) under influence of

proximity factor, (b) under influence of visibility factor and (c) under combined

influence of proximity and visibility factors. In this study the best result was ob-

tained from the combined influence of proximity and visibility factors on the cell

radius criterion by reducing the number of DOF from 287,022 to 32,682. That is

a reduction of 89% in the number of DOF while the maximum principal stress, σ1,

was only 3.5% different from the reference result obtained from a fine uniform mesh.

In another case study, to further optimize the mesh, the effect of the facet

distance combined with cell radius from the previous study was examined. This

reduced the number of DOF from 287,022 to 19,404. That is a reduction of 93%

in the number of DOF compared to the uniform mesh used to obtain the reference

result. In this case, the principal stress, σ1, was 19% different from the reference

result which is within the acceptable range for a rock engineering problem.

To measure the efficiency of the framework, the time required for meshing, the

time required for the numerical stress analysis and the total time were measured for

each case study. The percentage of time savings was calculated using the following

equation:

Δt =

(
tref − toptimized

tref

)
× 100 (4.3)

As it is shown in section 4.4.5, applying both cell radius and facet distance

criteria improved the total time required for mesh generation and finite element

analysis by 95% compared to a uniform mesh.

4.4 Application of the Framework

4.4.1 Uniform Mesh (Constant Cell Radius Bound)

In this study, the cell radius bound is kept constant throughout the domain.

The model is meshed several times independently using uniform meshes with differ-
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ent cell radius bounds. Effect of the cell size on the number of DOF, time to solve

the finite element model and the accuracy of the solution around ROI is studied. By

using the h-refinement approach (i.e. reducing the cell radius of the uniform mesh

each time), it was demonstrated that the solution is convergent.

4.4.1.1 The Model

A power cavern which is adjacent and parallel to an access tunnel was chosen

for this case study. The tunnel path is straight for both tunnels. The bounding box

which defines the confinement of the model is a 20m× 20m× 20m cube. The point

ROI is located at (0.0,−5.0,−0.5) (see figure 4.1).

wproximity wvisibility Smin Smax Scap

Qcr – – – – 0.4 ≤ Scap ≤ 4.0

Qce – – – – 3.0

Qfd – – – – 0.1

Qfr – – – – 5.0

Qfa – – – – 25◦

Table 4.2: The set of parameters used for uniform meshes.

Several meshes were created using the criteria shown in table 4.2. Qcr, Qce,

Qfd, Qfr and Qfa are constant in the whole domain. Qcr changes from 0.4 to 4.0

for each individual mesh. Figure 4.2 shows a 3D cross section of the mesh produced

by the framework when Qcr = 0.4. Figures 4.3 and 4.4 shows cross section of two

other meshes made from the same geometry using different values for Qcr.

For finite element stress analysis, the model is assumed to be under gravity

loading (the weight of the rock mass). As for the boundary conditions, the horizontal

DOF (i.e. horizontal displacement of nodes) on the vertical sides of the bounding

box are restricted and nodes on the bottom of the bounding box are encastré.

A static perturbation load-type is used to apply the loading and SIMULIA

Abaqus FEA [75] software was used to perform the finite element analysis. A 4-node

tetrahedron element was used to model the problem. Poisson’s ratio of the rock

mass was 0.2, modulus of elasticity was equal to 40,120 MPa and density of the rock

mass was 1,980 kg/m3.
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ROI

Figure 4.1: Geometry of the excavations and the bounding box

Figure 4.2: 3D cross section of the uniform mesh produced by the frame-
work (Qcr = 0.4)
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Figure 4.3: Cross section of the uniform mesh (Qcr = 1.0)

Figure 4.4: Cross section of the uniform mesh (Qcr = 4.0)
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4.4.1.2 Time Required for Finite Element Analysis

To study the effect of cell radius on the time required for finite element analysis,

the domain was meshed several times using different cell sizes. Cell radius, Qcr, was

kept uniform across the domain and the same loading and boundary conditions were

applied to the model each time. Other meshing criteria were kept constant across

the domain as seen in table 4.2.

Figure 4.5 shows the relation between cell radius bound and number of gener-

ated cells, vertices and DOF.
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Figure 4.5: Relation between the cell radius bound and the number of
generated cells, vertices and DOF

The trend lines are:

Ncell = 51858

(
1

Qcr

)1.952

and R2 = 0.9588 (4.4)

and

Nvertices = 32954

(
1

Qcr

)1.596

and R2 = 0.9305 (4.5)

and

NDOF = 10985

(
1

Qcr

)1.596

and R2 = 0.9305 (4.6)

where Qcr is the cell radius bound, Ncell is number of cells, Nvertices is number of

vertices and NDOF is number of DOF.
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These relations would be more generic if cell radius is expressed relative to the

dimensions of the whole problem. For this purpose, we divide cell radius bound by

the space diagonal of the bounding box to get the dimensionless quantity, relative

cell radius :

q = Qcr/D (4.7)

For a bounding box with sides a, b and c, the space diagonal is equal to:

D =
√
a2 + b2 + c2 (4.8)

In this problem a = b = c = 20.0 therefore D = 34.641. Substituting equation 4.7

into equation 4.6 we get:

NDOF = 38.33

(
1

q

)1.596

(4.9)

where 0 < q < 1. Equation 4.9 is useful for estimating the number of DOF in terms

of q, the relative cell radius. In section 4.4.2 it is shown how reaching a desirable

accuracy at the ROI impacts choosing a proper cell size for the mesh.

Figure 4.6 shows the relation between the number of DOF and the time re-

quired for finite element analysis. The trend line for this diagram is:

TFEA = 2× 10−6 ·NDOF
1.579 and R2 = 0.9996 (4.10)

Since the main goal is to reduce time to solution when creating the mesh, it is

desirable to find a relation between cell radius bound and the time required for

finite element analysis. Substituting equation 4.9 into equation 4.6 we get:

TFEA = 6.33× 10−4

(
1

q

)2.52

(4.11)

Equation 4.11 predicts that if the cell radius is about 0.1% of the diameter of

the bounding box (i.e. q = 0.001), there will be roughly 2,350,000 degrees of freedom

in a uniform mesh. Solving a problem of this magnitude can take considerably longer

that the 6 hours predicted by equation 4.11 because the problem description (i.e.

the stiffness matrix in the case of a finite element analysis) does not fit in the RAM
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Figure 4.6: Relation between the DOF and the time required for finite
element analysis

available on a computer used in today’s average engineering firm. A more detailed

discussion about scalability of solution is provided in section 4.4.2. It is worth noting

that the equations derived here cannot be applied to an arbitrary geometry and are

used to illustrate how the number of DOF affects time to solution for this problem.

4.4.1.3 Accuracy of the Results

The smaller the cell radius, the better the accuracy of the finite element results

will be. To find out how cell size affects the accuracy of the results, the model

was meshed using different cell radiuses ranging between 0.4 ≤ Qcr ≤ 3.0. The

finite element analysis was repeated for each mesh using the same loading and

boundary conditions. Then the value of stress was measured at the ROI to conduct

a comparison. Figure 4.7 shows the result of this comparison. It is observed that

by reducing the cell radius, the stress converges at a value about 920 kPa.

To Measure the accuracy of the solution, equation 4.2 was used to evaluate

the percent difference in stress values at the ROI for each mesh. Figure 4.8 shows

the result of this comparison and the trend line is:

Δσvm = 0.0518Qcr + 0.0135 and R2 = 0.5911 (4.12)
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where Δσvm is the percent difference from the reference value of Von Mises stress.

4.4.2 Scalability of a Solution Using Uniform Meshes

Consider a mining engineering problem with a bounding box size of 500m ×
500m × 500m. To reach an accuracy of 5% (Δσvm = 0.05) in the stress analysis,

the approximate number of DOF in a uniform mesh can be roughly estimated using

equations 4.9, 4.11 and 4.12 as: NDOF ≈ 2, 000, 000. If all the information required

for solving this problem could fit in the RAM of the computer, it would take about

5 hours for the finite element solver to solve the linear version of the problem. As

it is shown subsequently, this is not the case. The size of this problem is orders of

magnitude larger than what an ordinary computer used at an engineering firm can

handle.

The number of equations to be solved for this problem is NDOF
2 = 4 × 1012.

According to IEEE 754 standard for floating-point arithmetic [76], a double precision

floating point number requires 64 bits (i.e. 8 bytes) of memory space. Therefore,

the space required for storing the system of equations can be estimated to about

4 × 1012 × 8 = 3.2 × 1013 bytes or 29 terabytes which is about 10 times of the size

of the largest hard disk drive you can find in the consumer market today. Therefore

persisting the data that represent a problem of this size on a hard disk would be

the first obstacle in everyday practices in an engineering firm.

On the other hand, the amount of memory available on computers used in

engineering firms can be around 32 gigabytes at best (the average amount of RAM

available on a personal computer is about 4 gigabytes today). So, in the best

scenario, the available memory is about 1000 times smaller than the size of the

problem. In these situations a frontal solver [77] or a multifrontal solver [78] is

used. Frontal solver is a variant of Gauss elimination approach for solving system

of equations and it automatically avoids a large number of operations involving

zero terms that usually appear in the system of equations formed for finite element

analysis.

Frontal solvers break down the problem into smaller blocks that fit in the

available RAM and load just enough data from the hard disk into memory at each
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time. This process enables solution of very large system of equations but causes disk

swapping and dramatically slows down the speed of the solver [53] and increases the

time to solution. It is worth mentioning that these numbers are for the linear

analysis of the problem. For a non-linear analysis, the time to solution will increase

significantly as the problem needs to be solved iteratively.

4.4.3 Cell Radius Bound Influenced by Proximity Factor

In this section the effects of proximity (as defined in section 3.6.4.1) on cell

radius, number of DOF and the solution time are studied. The cell radius is evalu-

ated based on the proposed sizing function in equation 3.16. The goal is to reduce

the number of DOF while keeping the results accurate enough at the ROI.

4.4.3.1 The Model

The model consists of 3 excavations: a tunnel that intersects with a power

cavern and a third access tunnel that has a smaller profile and is parallel to the

power cavern (see figures 4.9, 4.10 and 4.11). The bounding box which defines the

confinement of the model is chosen to be a 30m× 30m× 30m cube. The point ROI

is located at (−1.0,−0.5,−3.7).
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ROI

Figure 4.9: The geometry of the tunnels and the bounding box: front
view
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ROI

Figure 4.10: The geometry of the tunnels and the bounding box: top
view
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Figure 4.11: The geometry of the tunnels and the bounding box: side
view
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4.4.3.2 Meshing and Finite Element Analysis

The domain was meshed first using a uniform cell radius bound (Qcr) and

then using a variable cell radius bound calculated from equation 3.16 to obtain an

optimum mesh.

wproximity wvisibility Smin Smax Scap

Qcr – – – – 0.7

Qce – – – – 2.0

Qfd – – – – 0.1

Qfr – – – – 5.0

Qfa – – – – 25◦

Table 4.3: The set of parameters used for the uniform mesh.

Figure 4.12: Cross section of the uniform mesh (meshing parameters cho-
sen according to table 4.3)

The parameters used for meshing are shown in table 4.3 and table 4.4 respec-

tively. Cell radius is constant Qcr = 0.7 for the uniform mesh and for the optimized

mesh, Qcr is evaluated using the ROI based formula with the following parameters:
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Smin = 0.4, Smax = 10.0, Scap = 4.0, wproximity = 1.0 and wvisibility = 0.0. Other

meshing criteria were kept constant across the domain as follows: cell radius-edge

Qce = 2.0, facet radius Qfr = 5.0, facet distance Qfd = 0.1, facet angle Qfa = 25◦.

In both cases the mesh was smoothened to remove slivers and improve the mesh

quality for the finite element analysis.

wproximity wvisibility Smin Smax Scap

Qcr 1.0 0.0 0.4 10.0 4.0

Qce – – – – 2.0

Qfd – – – – 0.1

Qfr – – – – 5.0

Qfa – – – – 25◦

Table 4.4: The set of parameters used for the mesh with variable cell
radius.

Figure 4.13: Cross section of the optimized mesh (meshing parameters
chosen according to table 4.4)
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Figures 4.12 and 4.13 show cross sections of the mesh with plane x = −1 that

passes through the point ROI. The model is assumed to be under geostatic loading

that varies linearly from top to bottom of the bounding box. The vertical component

of the load starts at Bz,top = −2.0MPa on the top and reaches Bz,btm = −2.6MPa

at the bottom of the bounding box (negative value indicates that direction of the

force is in the opposite direction of the z-axis). The horizontal components of the

load are functions of the vertical load: Bx = Kx · Bz and By = Ky · Bz where

Kx = Ky = 0.85. For the boundary conditions, the horizontal translation of the

nodes on the vertical sides of the cube are restricted and the nodes on the bottom

of the cube are encastré. SIMULIA Abaqus FEA software was used to perform

the finite element analysis. A 4-node tetrahedron element was used to model the

problem. Poisson’s ratio was 0.2 and modulus of elasticity of the rock mass was

equal to 40,120 MPa. Density of the rock mass was 1,980 kg/m3.

Figure 4.14 and figure 4.15 show distribution of maximum principal stress on

cross section of plane x = −1 that passes through ROI. The stress distribution in

the model with optimized mesh generally follows the same trend as the model with

uniform mesh, specially in the vicinity of the ROI which is the desired behavior.

A quantitative comparison is given in table 4.5. Figure 4.16 and figure 4.17 show

distribution of minimum principal stress on cross section of plane x = −1 that passes

through ROI. Again, the stress distribution in the model with optimized mesh the

same trend as the model with uniform mesh.

4.4.3.3 Accuracy and Efficiency

Table 4.5 shows a side by side comparison of important values extracted for

each model. In the optimized model, number of DOF is only 14% of the model with

uniform mesh and the stress analysis of the optimized model clearly finishes faster.

In fact it is 20 times faster than the model with uniform mesh. The computations

are performed on a PC with 3GB of RAM which is normal for personal computers

that are used in the consulting engineering firms.

The difference in maximum principal stresses (σ1), minimum principal stresses

(σ3) and Von Mises yield stress (σvm) are 21%, 7% and 0.8% respectively. This much
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ROI

Figure 4.14: Distribution of the maximum principal stress in the model
with uniform mesh

ROI

Figure 4.15: Distribution of the maximum principal stress in the model
with optimized mesh
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ROI

Figure 4.16: Distribution of the minimum principal stress in the model
with uniform mesh

ROI

Figure 4.17: Distribution of the minimum principal stress in the model
with optimized mesh
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accuracy is quite acceptable for rock engineering problems where accuracy of the

input data are within the same range. In this case, compared to the uniform mesh,

the results of the optimized mesh are even more accurate in the vicinity of the ROI

because the mesh is about 40% finer in that area.

Table 4.6 also shows the time savings made by optimizing the mesh. The

optimized mesh took 79.5% less time to get created and the finite element analysis

of it took 95.4% less time to finish. The total time saving, Δttotal, compared to the

uniform mesh was 85.2%.

# DOF tmesh(sec) tfea(sec) σvm(kPa) σ1(kPa) σ3(kPa)

Uniform mesh 181755 688 392 1915.7 440.3 -1710.3

Optimized mesh 26154 141 18 1931.2 562.4 -1600.0

Table 4.5: Comparison of the results for uniform and optimized mesh

Δtmesh Δtfea Δttotal Δσvm Δσ1 Δσ3

Optimized mesh 79.5% 95.4% 85.2% 0.8% 21.0% 7.0%

Table 4.6: Percent difference relative to the uniform mesh

4.4.4 Cell Radius Bound Influenced by Visibility Factor

The effects of the visibility (as defined in section 3.6.4.2) on cell radius bound

are studied. The intent is to visually demonstrate how the visibility factor affects

the final mesh.

Cell radius bound (Qcr) is evaluated based on equation 3.16. The parameters

used to set up the formula were: Smin = 1.0, Smax = 10.0, Scap = 5.0, wproximity = 0.0

and wvisibility = 1.0. Other meshing criteria were kept constant across the domain as

follows: cell radius-edge Qce = 2.0, facet radius Qfr = 5.0, facet distance Qfd = 0.1,

facet angle Qfa = 25◦ (see table 4.7).

Figure 4.18 show cross section of the mesh at plane x = −1 which passes

through the point ROI. It can be observed that the mesh in areas of the model that

are hidden from ROI is radically coarsened and the areas that are visible from ROI

are refined further which is the expected behavior.
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wproximity wvisibility Smin Smax Scap

Qcr 0.0 1.0 1.0 10.0 5.0

Qce – – – – 2.0

Qfd – – – – 0.1

Qfr – – – – 5.0

Qfa – – – – 25◦

Table 4.7: The set of parameters used for meshing.

ROI

Figure 4.18: Cross section of mesh at the ROI. Cell radius is influenced
by the visibility factor
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Although this helps in legitimately reducing the number of DOF globally,

if it is accompanied by the proximity factor it will produce a more balanced and

effective mesh (see section 4.4.5). Visibility factor is particularly helpful in detecting

areas that are geometrically in proximity of the ROI but are hidden behind an

excavation (i.e. not visible to the ROI) and have little influence on the stresses at

the ROI. Therefore, visibility factor assists in coarsening the mesh in these areas,

hence reducing the number of DOF.

4.4.5 Optimized Mesh

To overcome the obstacles mentioned in section 4.4.2, the proposed framework

is used to produce optimized meshes that fit within the available computational

resources. Optimized meshes allow solution of large size problems using the currently

available computational resources that previously were not able to tackle problems

of this size. A combination of proximity and visibility factors affecting cell radius

bound, Qcr, and facet distance, Qfd, are used for producing the optimized meshes.

Several meshes are produced for the same model using different sets of parameters

and the effects of the choice of parameters is discussed for each case.

4.4.5.1 The Model

The model helps to better observe the combined effects of proximity and visi-

bility factors. Figure 4.19 shows the model. A narrow excavation, located in between

the power cavern (right) and the adjacent tunnel (left), hides the power cavern from

the ROI located at (−1.0,−0.5,−3.7).

The model is under geostatic loading that varies linearly from top to the

bottom of the bounding box. The vertical component of the load starts at Bz,top =

−2 × 106Pa on the top and reaches Bz,btm = −2.6 × 106Pa at the bottom of the

bounding box (negative value indicates that direction of the force is in the opposite

direction of the z-axis). The horizontal components of the load are factors of the

vertical load: Bx = Kx · Bz and By = Ky · Bz where Kx = Ky = 0.85. For the

boundary conditions, the horizontal translation of the nodes on the vertical sides

of the cube are restricted and the nodes on the bottom of the cube are encastré.

SIMULIA Abaqus FEA software was used to perform the finite element analysis. A
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4-node tetrahedron element was used to model the problem. Poisson’s ratio is 0.2

and modulus of elasticity of the rock mass is equal to 40,120 MPa. Density of the

rock mass is 1,980 kg/m3.

ROI

Figure 4.19: Geometry of the model. An narrow excavation (middle)
hides the power cavern (right) from ROI

4.4.5.2 Meshing

Figures 4.20, 4.21, 4.22 and 4.23 show cross sections of the three different

meshes created from the same model based on different criteria.

In the first three cases the mesh is optimized subject to the cell radius bound,

Qcr, computed from the ROI based equation (equation 3.16) by varying values for

proximity (wproximity) and visibility (wvisibility) while the rest of the criteria were

kept constant. In case #4, the mesh is optimized subject to both cell radius bound,

Qcr, and facet distance bound Qfd evaluated from equation 3.16. The meshing

parameters are tabulated in tables 4.8, 4.9, 4.10 and 4.11.
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Case #1: In the first case, the mesh is optimized based on cell radius bound,

Qcr, evaluated from the ROI based equation where wproximity = 1.0 and wvisibility =

0.0. The proximity factor is dominant and contribution of the visibility factor is

null. It can be seen that the cell radius is increasing at a quadratic rate regardless

of the visibility from the ROI (see table 4.8 and figure 4.20).

Case #2: In the second case, the mesh is optimized based on cell radius

bound, Qcr, evaluated from the ROI based equation where wproximity = 1.0 and

wvisibility = 0.5. The visibility factor has significantly influenced the mesh. It can be

observed that the mesh is radically coarsened in areas of the model that are hidden

from ROI and it is refined further in the areas that are visible from the ROI which is

the expected behavior. As it is shown in case #3, when the proximity and visibility

are used in a balanced way they produce a more efficient mesh.

Visibility factor is particularly helpful in detecting areas that are geometrically

in proximity of the ROI but are hidden behind an excavation (i.e. not visible to the

ROI) and have little influence on the stresses at the ROI. Therefore, visibility factor

assists in coarsening the mesh in these areas, hence reducing the number of DOF

(see table 4.9 and figure 4.21).

Case #3: Here the mesh is again optimized subject to cell radius bound, Qcr,

and wproximity = 1.0 and wvisibility = 0.1. It can be observed that there is a better

balance between the influence of the proximity factor and visibility factor. There

are no abrupt changes in the size of cells as there were in case #2. The produced

mesh has the least number of DOF among the first three cases (see table 4.10 and

figure 4.22).

Case #4: Facet distance criteria can help reduce the details on the boundary

of the geometry. To investigate this hypothesis, the mesh optimized in case #3

using the cell radius criterion, Qcr, is further optimized by incorporating the effects

of facet distance, Qfd, and evaluating it using equation 3.16. Table 4.11 shows the

values used for each parameter to drive the meshing algorithm and figure 4.23 shows

the resulting mesh.
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wproximity wvisibility Smin Smax Scap

Qcr 1.0 0.0 0.3 10.0 5.0

Qce – – – – 2.0

Qfd – – – – 0.1

Qfr – – – – 5.0

Qfa – – – – 25◦

Table 4.8: Parameters used for case #1

ROI

Figure 4.20: Case #1: Cross section of the mesh optimized subject to
cell radius bound, wproximity = 1.0 and wvisibility = 0.0
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wproximity wvisibility Smin Smax Scap

Qcr 1.0 0.5 0.3 10.0 5.0

Qce – – – – 2.0

Qfd – – – – 0.1

Qfr – – – – 5.0

Qfa – – – – 25◦

Table 4.9: Parameters used for case #2

ROI

Figure 4.21: Case #2: Cross section of the mesh optimized subject to
cell radius bound, wproximity = 1.0 and wvisibility = 0.5
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wproximity wvisibility Smin Smax Scap

Qcr 1.0 0.1 0.3 10.0 5.0

Qce – – – – 2.0

Qfd – – – – 0.1

Qfr – – – – 5.0

Qfa – – – – 25◦

Table 4.10: Parameters used for case #3

Figure 4.22: Case #3: Cross section of the mesh optimized subject to
cell radius bound, wproximity = 1.0 and wvisibility = 0.1
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wproximity wvisibility Smin Smax Scap

Qcr 1.0 0.1 0.3 10.0 5.0

Qce – – – – 2.0

Qfd 1.0 0.1 0.05 2.0 1.0

Qfr – – – – 5.0

Qfa – – – – 25◦

Table 4.11: Parameters used for case #4

Figure 4.23: Case #4: Cross section of the mesh optimized subject to
cell radius bound and facet distance bound, wproximity = 1.0
and wvisibility = 0.1
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Table 4.12 shows the comparison of the results for the uniform mesh and the

four optimized meshes. tmesh is the time required to generate the mesh, tfea is the

time required for finite element analysis, σ1 is the maximum principal stress, σ3 is

the minimum principal stress and σvm is the Von Mises yield stress.

# DOF tmesh(sec) tfea(sec) σvm(kPa) σ1(kPa) σ3(kPa)

Uniform Mesh 287022 1125 875.0 1698.7 568.1 -1372.8

Case #1 37794 220 33.3 1638.3 551.2 -1320.7

Case #2 38850 218 34.9 1680.4 487.0 -1430.9

Case #3 32682 200 25.1 1648.2 548.4 -1332.6

Case #4 19404 84.5 15.3 1781.6 458.9 -1574.3

Table 4.12: Comparison of the results for different meshes derived from
the same model

The lowest number of DOF belongs to case #4 where there is a good balance

between wproximity and wvisibility. By combining the effects of cell radius bound,

Qcr, and facet distance, Qfd, the number of DOF is reduced by 40% and the time

required for finite element analysis is reduced by 39% compared to case #3 where

the mesh optimized was only subject to cell radius criterion.

Δtmesh Δtfea Δttotal Δσvm Δσ1 Δσ3

Case #1 80.4% 96.2% 87.3% 3.6% 3.0% 3.8%

Case #2 80.6% 96.2% 87.3% 1.1% 14.3% 4.2%

Case #3 82.2% 97.1% 88.7% 3.0% 3.5% 2.9%

Case #4 92.5% 98.3% 95.0% 4.9% 19.2% 14.7%

Table 4.13: Percent difference relative to the uniform mesh

Table 4.13 shows the percent difference of time and stresses relative to the

uniform mesh. Δtmesh, Δtfea and Δttotal calculated using equation 4.3 are percent

difference of the time required for meshing, finite element analysis and the total

time respectively. Δσ1 , Δσ3 and Δσvm are evaluated based on equation 4.2 and

are percent difference of maximum principal stress, minimum principal stress and

Von Mises yield stress respectively. The tabulated results show that the mesh op-

timized by applying both cell radius and facet distance criteria (case #4) improves

the total time required for mesh generation and finite element analysis, Δttotal, by
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95% compared to the uniform mesh. Also, the error in principal stresses at the ROI

compared to the uniform mesh remains within the acceptable range of under 20%

(i.e. the accuracy of the input data for rock engineering problems).

4.5 Conclusions

For large scale problems in mining and civil engineering, it is often impos-

sible to use a uniform mesh for the finite element analysis because the hardware

requirements for solving the problem surpasses the available resources available on

the computers used at consulting engineering firms. Therefore a model with less

number of DOF is required. To obtain such a model, an optimized mesh with fewer

number of nodes and elements should be created.

The framework was applied to several practical mining and civil engineering

problems. The effects of each meshing criteria was studied on the solution time and

the accuracy of the results. Using a combination of cell radius bound and facet

distance bound calculated based on equation 3.16 proved to produce an optimized

3D volume mesh that provides results with accuracy comparable to the accuracy of

the input data in the vicinity of the ROI. The optimized mesh significantly reduces

the number of DOF and time to solution.



CHAPTER 5

Future Research and Conclusion

5.1 Future Research

This research provides the necessary framework to simplify defining the ge-

ometry of underground excavations and to generate optimized volume and surface

meshes for finite element analysis and boundary element analysis respectively. One

ROI was assumed in developing the principals that govern the framework. In some

mining and civil engineering problems there might be multiple regions that are of

importance while carrying out stress analysis. In those cases, it would be useful to

define multiple ROI. Even though the framework was developed using only one ROI,

the same principles apply to multiple ROI so it should be fairly simple to extend

the framework in order to support multiple ROI.

Another area that can be improved is the ability to mesh input domains that

have multiple regions (i.e. subdomains), for example rock mass with different mate-

rial property. In its current form, the framework takes one polyhedral domain and

creates the mesh. The Delaunay meshing algorithm that is used is generic enough

to handle domains with multiple regions because it takes an oracle as input. This

oracle must be able to answer certain queries. For example, it must be able to tell

whether a point is inside the domain or not and if the point is inside the domain, it

must return the index of the subdomain. A new oracle that can answer these ques-

tions can be constructed and added to the existing framework to support multiple

domains.

To further optimize the mesh, more criteria can be added to provide more

information to the framework and drive the meshing process more effectively. For

example, the effects of the direction of normal vector of the surface facets can be

taken into consideration. A facet that point away from the ROI has less influence on

the results of the numerical analysis than one that is directly facing the ROI. Once

the framework supports multiple regions, domains with different material property

(e.g. modulus of elasticity and Poisson’s ratio) can be used to study the effect of

97



98

material property on the mesh optimization process.

Right now, exact arithmetic is being used for some of the operations like

intersection of geometrical entities to ensure stability of the geometric algorithms.

Using exact arithmetic operations will provide the user with a robust tool that

can be trusted. The disadvantage is that the tool will be slower compared to a

similar tool that uses floating point arithmetic operations. Of course using floating

point operations for geometric algorithms will result in less reliable applications that

might fail on many occasions. Even though the time required by the framework for

producing an optimized mesh of a typical problem is reasonable (e.g. producing a

mesh of 6500 vertices, 3000 facets and 37000 cells takes only about 1.5 minutes),

there is still room for improving the performance of the algorithm. This will be

useful in certain use cases. Imagine a software application that enables the user to

define the ROI and then control values of the meshing criteria with sliders made

available through the GUI to observe the changes to the output mesh in real time.

In this scenario, having the mesh produced in seconds (rather than minutes) will

greatly improve the user experience.

5.2 Conclusions

There is no doubt that the computational power of the personal computers

that are used in engineering firms is rapidly increasing over time but so does the

complexity of the problems solved by engineers. Until a few years ago, most of the

computations in the mining and geotechnical engineering were performed using 2D

methods because producing a 3D model of the problem was very time consuming

and the existing computational tools did not allow practical use of 3D models. Over

time more sophisticated construction methods (such as NATM) were developed for

tunneling that depend heavily on numerical stress analysis tools because the tunnel

end-effects at the tunnel face are distinctively three-dimensional. Therefore the need

for 3D stress analysis has increased recently.

To make better predictions and obtain more realistic results from numerical

analysis of the problems in rock engineering, non-linear constitutive models were

developed. Now personal computers have reached a point that they can provide
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enough computational power to carry out 3D non-linear analysis of the large scale

problems, if the computational resources are used optimally. To reach this goal,

the size of the model to be numerically solved must be reduced as much as possible

while the accuracy of the result is kept at a reasonable range in the vicinity of ROI

where a solution to the problem is sought.

This thesis makes an organized attempt to address these issues. A framework

was proposed that reduces time to solution. The framework contributes to reduc-

tion in time to solution at two levels: (a) it facilitates creation of geometry of the

underground excavations and (b) it cuts the time required for numerical analysis

by reducing number of surface and volume elements in the mesh while keeping the

results accurate enough at the ROI.

To investigate the applicability and effectiveness of the framework, a software

application was developed and the it was applied to a few mining and civil engi-

neering problems. To reach a certain degree of accuracy, the framework was able to

reduce the size of the problem by 14 folds compared to a uniform mesh. The time

required for a linear finite element analysis was reduced by an incredible amount

of 57 times, from 14.5 minutes to 15 seconds. The considerable improvement is

because current personal computers must use disk swapping to solve problems that

their requirements for the RAM surpasses the available amount of RAM. The frame-

work optimizes the model so that it fits within the available RAM and improves the

performance of the finite element solver dramatically.

In certain instances, the size of the problem is so large that even disk swapping

can not help and the solver simply fails and refuses to solve the finite element

problem. To overcome this issue, the framework can be utilized to reduce the size

of these problems so that they fit the specifications of the available hardware and

computational resources while the accuracy of the numerical analysis is kept within

an acceptable range.

In view of these facts, the proposed framework can be of paramount importance

and a great help in solving everyday problems solved by engineers in the field of

mining and civil engineering.



APPENDIX A

Rock Mechanics and Standard Tunneling Practices

A.1 Introduction

This appendix provides a review of rock mechanics and standard tunneling

practices. First the development of rock mechanics as a discipline is reviewed. Then

tunneling terminology and different excavation techniques are reviewed.

A.2 Rock Mechanics

Rock mechanics is concerned with the application of principles of engineering

mechanics in design and construction of underground excavations in rock mass.

Rock mechanics itself is part of a broader subject named geomechanics which is

concerned with the mechanical responses of all geomaterials including soils [3]. A

widely accepted definition of rock mechanics is given by the US National Committee

on Rock Mechanics in 1964 and subsequently modified in 1974 [3]:

“Rock mechanics is the theoretical and applied science of the mechan-

ical behavior of rock and and rock masses; it is that branch of mechanics

concerned with the response of rock and rock masses to the force fields of

their physical environment.”

The earliest academic paper on rock mechanics was published by Coulomb.

In 1773, Coulomb included results of tests on rocks from Bordeaux in a paper read

before the French Academy in Paris [79]. French engineers started construction of

the Panama Canal in 1884 and this task was taken over by the US Army Corps

of Engineers in 1908. In the half century between 1910 and 1964, 60 slides were

recorded in cuts along the canal. In discussing the Panama Canal slides in his

Presidential Address to the first international conference on Soil Mechanics and

Foundation Engineering in 1936, Karl Terzaghi [80, 81] said:
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“The catastrophic descent of the slopes of the deepest cut of the

Panama Canal issued a warning that we were overstepping the limits

of our ability to predict the consequences of our actions ...”

In 1920 Josef Stini started teaching Technical Geology at the Vienna Technical

University. He was probably the first to emphasize the importance of structural

discontinuities on the engineering behavior of rock masses. Other notable scientists

and engineers from a variety of disciplines did some interesting work on rock behavior

during the early part of the 20th century. Von Karman, 1911 [82]; King, 1912 [83];

Griggs, 1936 [84]; Ide, 1936 [85]; and Terzaghi, 1945 [86] all worked on the failure

of rock materials.

The principles of rock mechanics has long been known and used in practice

by civil engineers. Rock mechanics is simply a formal expression of some of these

principles and it is only during the past few decades that the theory and practice

in this subject have come together in the discipline which we know today as rock

mechanics. The formal development of rock mechanics as an engineering discipline

in its own dates back to early 1960s.

Rockbursts are explosive failures of rock which occur when very high stress

concentrations are induced around underground openings. A characteristic of almost

all rockbursts is that they usually occur in deep level excavations that are highly

stressed and consist of brittle rock.

Analysis of stresses induced around underground excavations can be carried

out by means of the theory of elasticity. In the first edition of Jaeger and Cook’s book

Fundamentals of Rock Mechanics [87], elastic theory is the dominating approach in

solving rock mechanics problems in deep excavations. Books by Coates [88] and by

Obert and Duvall [89] reflect the same emphasis on elastic theory. Stini, one of the

pioneers of rock mechanics, emphasized the importance of structural discontinuities

in controlling the behavior of rock masses [90].

An important event in the development of the rock mechanics was the merging

of elastic theory with the discontinuum approach. The gradual recognition that rock

could act both as an elastic material and a discontinuous mass resulted in a much

more mature approach to the subject than before.
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A.3 Rock Mass Structure

Rock material is the term used to describe the intact rock with no discontinuity.

The collection of the intact rock material, groundwater, as well as joints, faults and

other natural planes of weakness that divide the rock into interlocking blocks of

varying sizes and shapes is called rock mass. Rock masses are discontinuous and

often have anisotropic and heterogeneous engineering properties. Rock structure is

the distribution of this discontinuous structure throughout the rock mass [3]. Rock

structure has a significant effect on the underground excavation operations. Since

the rock structure controls the stability of excavation spans, support requirements,

subsidence and fragmentation, it will influence the choice of excavation method and

designing of tunneling layouts.

A.3.1 Major Geological Features

Faults: Faults are fractures in the rock that are the result of shear displacement.

They are recognized by the relative displacement of rock on opposite sides of

the fault plane. The sense of this displacement is used to classify faults. The

two sides of a fault are called the hanging wall and footwall. By definition,

the fault always dips away from the footwall. Faults can be categorized into

three groups based on the sense of slip. A fault where the main sense of

movement (or slip) on the fault plane is vertical is known as a dip-slip fault.

Where the main sense of slip is horizontal the fault is known as a strike-slip

(or transform) fault. Oblique-slip faults have significant components of both

strike and dip-slip.

Dip-slip faults include both normal and reverse. A normal fault occurs when

the crust is in tension. The hanging wall moves downwards relative to the

footwall. A reverse fault is the opposite of a normal fault - the hanging wall

moves up relative to the footwall. Reverse faults are indicative of compres-

sional forces and shortening of the local crust. The dip of a reverse fault is

relatively steep, greater than 45 degrees.

Strike-slip fault surface is usually near vertical and the footwall moves either

left or right or laterally with very small vertical motion. Strike-slip faults with
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left-lateral motion are also known as sinistral faults. Those with right-lateral

motion are also known as dextral faults.

Fault thickness might vary from meters to millimeters in different cases and

might contain weak material such as fault gouge (clay), fault breccia (re-

cemented), rock flour or angular fragments. The wall rock may be coated

with low friction minerals such as graphite and chlorite. These factors make

fault zones, areas of low shear strength that slip may readily occur in them [3].

Dykes: A dyke is an intrusion of generally fine-grained igneous rock into a cross-

cutting fissure. In geology, intrusion is usually a body of igneous rock that has

crystallized from a molten magma below the surface of the Earth. A dyke cuts

across other pre-existing layers or bodies of rock, meaning a dyke is always

younger than the rocks that contain it. Dykes are usually high angle to near

vertical in orientation, but subsequent tectonic deformation may rotate the

including sequence. The thickness is usually much smaller than the other two

dimensions. Thickness can vary from sub-centimeter scale to many meters in

thickness and the lateral dimensions can extend over many kilometers.

Joints: Joints are fractures in rock along which no appreciable movement has oc-

curred. A group of parallel joints is called a joint set. The intersection of joint

sets forms a joint system. Joints may be open, filled or healed. Commonly,

streams develop along zones of weakness caused by joints in rocks, and thus

the regional pattern of joint orientation often exerts a strong control on the

development of drainage patterns.

Discontinuity: It is common in rock mechanics to use the term discontinuity as

a collective term for all fractures or features in a rock mass such as joints,

faults, shears, weak bedding planes and contacts that have zero or relatively

low tensile strength.

A.3.2 Geomechanical Properties of Discontinuities

In this section the geomechanical properties of discontinuities that influence

the engineering behavior of rock mass are discussed briefly. For a comprehensive
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review of these properties, the reader may refer to Suggested methods for the quali-

tative description of discontinuities in rock masses prepared by the Commission on

Standardization of Laboratory and Field Tests [3].

Spacing: The perpendicular distance between adjacent discontinuities is called

spacing. It is usually expressed in terms of the mean value of the spacing

of a joint set. The size of the blocks that make up the rock mass is determined

by the discontinuity spacing. Discontinuity spacing is a factor that is used

in classifying rock masses for engineering purposes. To quantify discontinuity

spacing, Rock Quality Designation (RQD) is defined as:

RQD =
100Σxi

L
(A.1)

where xi are the length of individual pieces of core that have a length of 0.1

meter or greater in a drill run and L is the total length of the drill run.

Persistence: Persistence is the term used to describe the size and extent of discon-

tinuities within a plane. It can be quantified by observing the trace lengths of

discontinuities on exposed surfaces. It is one of the most important rock mass

parameters yet one of the most difficult to determine.

Roughness: Roughness is a measure of surface unevenness and waviness of the

discontinuity relative to its mean plane. The wall roughness of a disconti-

nuity has an important effect on its shear strength, especially in the case of

undisplaced and interlocked features (e.g. unfilled joints). The importance of

roughness declines with increasing aperture, filling thickness or previous shear

displacement.

Aperture: Aperture is the perpendicular distance between the adjacent rock walls

of an open discontinuity. The intervening space in an open discontinuity is

filled with weather or water therefore it is distinguished from the width of a

filled discontinuity. Large aperture may result from outwash of filling mate-

rials (e.g. clay) or other causes. In most subsurface rock masses, however,

aperture will be small and in order of millimeters but varies over the extent of
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the discontinuity. Aperture and its spatial variation will influence the shear

strength and permeability (i.e. hydraulic conductivity) of the discontinuity

and the rock mass.

A.4 Tunneling

A.4.1 Geometry of Tunnels and Related Terminology

Considering the cross and longitudinal sections of tunnels in Figure A.1 and

A.2, the various parts are referred to by the the names shown in the diagrams. The

word chainage is used to identify a point along the axis of a tunnel defined by its

distance from a fixed reference point.

Figure A.1: Parts of the tunnel cross-section [1].

Figure A.2: Longitudinal section of heading [1].
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A.4.2 Cross-Sections

The shape of a tunnel cross-section is also called profile. Various profiles

are possible, e.g. rectangular ones. The most popular ones, however, are circular

and mouth profiles (Figure A.1). The choice of a profile follows the performance

requirements of the tunnel. Moreover it should minimize bending moments in the

lining as well as costs for excavation and lining. Further aspects for the choice

of the profile are: ventilation, maintenance, risk management and avoidance of

claustrophobia2 of users [1].

The size of a tunnel is often given by its cross-sectional area. Typical values

for tunnel cross-section areas are given in table A.1.

Type of Tunnel Area (m2)
Sewer 10
Hydropower tunnels 10 - 30
Motorway (one lane) 75
Rail (one track) 50
Metro (one track) 35
High speed rail (one track) 50
High speed rail (two tracks) 80 - 100

Table A.1: Typical values for tunnel cross-section areas [1]

A.5 Heading

The heading of a tunnel comprises the following actions: excavation, support

of the cavity and removal of the excavated earth (mucking). Two different heading

methods are distinguishable: conventional (also called incremental or cyclic) heading

and continuous heading. A rigorous classification of heading methods is difficult

since these methods are often combined.

A.5.1 Core Heading

This is also known as German heading method (although it was first used in

France). It consists of excavating and supporting first the side and top parts of the

cross-section and subsequently the central part (core). The ring closure at the invert

2An abnormal fear of being in narrow or enclosed spaces.
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comes at the end. The first gallery also serves for exploration. The crown arch is

founded on the side galleries thereby keeping the related settlements small.

A.5.2 Old Austrian Tunneling Method

This method is schematically represented in Figure A.3. Its characteristic

feature is the crown slot. The simultaneous work in several excavation faces allows

a fast advance.

Figure A.3: Excavation Sequence of the Old Austrian Method [1]

A.5.3 Top Heading

The crown is excavated before the bench (Figure A.4 and A.5). The temporary

support of the crown with shotcrete can be conceived as a sort of arch bridge. This

explains why the abutments are prone to settlements, which include settlements

of the ground surface. Countermeasures are to enlarge the abutments (so-called

elephant feet) or the construction of a temporary invert. The latter must be con-

structed soon after the heading of the crown. A soon construction of the crown

section or better, the soon excavation and support of the bench and invert helps

avoiding large settlements of the abutments of the crown arch [1]. This means that
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the length a = a1 + a2 (Figure A.5) should be kept as small as possible. On the

other hand, a1 should be sufficiently large to enable efficient excavation and support

works in the crown.

If the crown and the bench are excavated simultaneously, then the ramp must

be continuously moved forward (i.e. every now and then). Alternatively, the ramp

is not placed at the center, as shown in Figure A.5, but on the side of the bench.

Then, the other side of the bench can be excavated over a longer distance. If the

excavation of a ramp may cause instability, then the ramp must be heaped up after

excavation and support of the bench.

Figure A.4: Top heading, cross and longitudinal sections. 1: calotte, 2:
bench [1].

A.5.4 Sidewall Drift

The side galleries are excavated and supported first. They serve as abutment

for the support of the crown, which is subsequently excavated (Figure A.6). This

type of heading is approximately 50% more expensive and slower than top heading.

Therefore it is preferred in soil/rock masses with low strength. Note that a change

from top heading to sidewall drift is difficult to accomplish.

A.6 New Austrian Tunneling Method (NATM)

The New Austrian Tunneling Method (NATM), emerged in the years 1957

to 1965 [91]. The NATM was developed by Austrian tunneling specialists von

Rabcewicz, Pacher and Müller-Salzburg. As defined by the Austrian Society of



109

Figure A.5: Schematic representation of top heading [1].

Engineers and Architects, the NATM constitutes a method where the surrounding

ground (rock and/or soil) formations of a tunnel form a bearing ring that acts as a

support structure. Thus the supporting formations will themselves be part of this

supporting structure.

In world-wide practice, however, when shotcrete is proposed for initial ground

support of an open-face tunnel, it is often referred to as NATM. The term NATM

with reference to soft ground, however, can be misleading. As noted in a very

thoughtful article by Emit Brown [5], NATM can refer to both a design philosophy

and a construction method. Key features of the NATM design philosophy are:

• The strength of the rock mass/soil around a tunnel is deliberately mobilized

to the maximum extent possible.

• Mobilization of rock mass/soil strength is achieved by allowing controlled de-

formation of the ground.

• Initial primary support is installed having load-deformation characteristics

appropriate to the ground conditions, and installation is timed with respect

to ground deformations.



110

Figure A.6: Sidewall drift [1]

• Instrumentation is installed to monitor deformations in the initial support

system, as well as to form the basis of varying the initial support design and

the sequence of excavation.

Key features of NATM construction methods are:

• The tunnel is sequentially excavated and supported, and the excavation se-

quences can be varied.

• The initial ground support is provided by shotcrete in combination with fiber

or welded-wire fabric reinforcement, steel arches (usually lattice girders), and

sometimes ground reinforcement (e.g., soil nails, spiles3).

• The permanent support is usually (but not always) a cast-in-place concrete

lining.

It should be noted that many of the construction methods described above were

in widespread use in the US and elsewhere in soft-ground applications before NATM

was described in the literature. In current practice, for soft-ground tunnels which

are referred to as NATM tunnels, initial ground support in the form of shotcrete

3A column of wood or steel or concrete that is driven into the ground to provide support for a
structure.
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(usually with lattice girders and some form of ground reinforcement) is installed as

excavation proceeds, followed by installation of a final lining at a later date [6].

Soft ground can be described as any type of geomaterial requiring support as

soon as possible after excavation in order to maintain stability of the excavation. For

tunnels in dense urban areas, it is very important to control the settlements in order

to avoid damage to overlying structures. In order to limit settlement and ensure a

safe work environment, soft ground tunnels must employ the following measures:

• Dimensions and duration of excavation stages must be adequately short.

• Formation of the full ring of initial ground support must be completed imme-

diately after excavation.

A.6.1 NATM for Soft Ground

In soft-ground tunneling, safety dictates that the ground support be placed

immediately after excavation. As long as the ground is properly supported, NATM

construction methods are appropriate for soft-ground conditions. However, there are

cases where soft-ground conditions do not favor an open face with a short length of

uncompleted lining immediately next to it, such as in flowing ground or ground with

short stand-up time (i.e., failure to develop a ground arch). Unless such unstable

conditions can be modified by dewatering, spiling, grouting, or other methods of

ground improvement, then NATM may be inappropriate. In these cases, close-face

shield tunneling methods may be more appropriate for safe tunnel construction.

A.6.2 NATM and Numerical Modeling Frameworks

Numerical modeling frameworks are useful tools for design of sequentially ex-

cavated, shotcrete-lined tunnels. They are used to evaluate stresses and strains in

the ground and tunnel support (i.e. lining). These frameworks usually use finite

or boundary element methods for numerical solution of the problem and the results

are strongly dependent on the geotechnical input parameters and the constitutive

models used for analysis. The engineer should clearly understand the limitations of

numerical modeling. Most importantly, field observations and measurements should

be used to confirm assumptions and calibrate future models.
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In particular, numerical modeling is useful where interacting tunnels, unusual

geometries, discontinuities or adjacent structures are present [6]. However, if a

shotcrete-lined tunnel has a section that is nearly circular or oval with no irregulari-

ties, and if there are no adjacent surface or subsurface structure interacting with the

tunnel, then approximate or closed-form solutions for interaction between ground

and lining can be used if they exist. The closed-form solutions can also be used for

a prudent check on the results from numerical modeling.

A.6.3 Instrumentation and Monitoring

As noted above, instrumentation and monitoring play a key role in verifying

design assumptions and calibrating numerical models. More importantly, however,

monitoring serves to alert the designer and the constructor if the lining is not per-

forming as intended, or is in danger of collapse. In this respect instrumentation

of NATM construction is no different from other types of geotechnical construc-

tion. Therefore the following geotechnical instrumentation rules equally apply to

NATM [6]:

1. Predict mechanisms that control behavior, and define the geotechnical ques-

tions to be answered.

2. Define the purpose of instrumentation, and select parameters to be monitored.

3. Predict magnitudes of change, and determine threshold limits and remedial

actions.

4. Assign tasks and responsibilities.

5. Select instruments and locations.

6. Devise methods to ensure correctness.

7. Plan data collection, processing, presentation, interpretation, and reporting.

If these steps are correctly followed in a systematic instrumentation and moni-

toring approach then there is a chance of getting good data that can be relied upon,

in order to make decisions during construction.
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A.6.4 Tunnel Collapses

Unfortunately there have been several collapses or other stability failures of

NATM projects around the world including, most recently in Turkey and the US.

Perhaps the most famous is the Heathrow Airport collapse in October 1994, which

triggered a thorough review of the NATM by the British Health and Safety Executive

(HSE). In a 1996 report, the HSE examined 39 NATM failures, categorizing the

location (in the tunnel) of the failure. In most cases, the failure was a result of

heading collapse.

Broadly speaking the causes of these failures were varied, from unanticipated

geologic conditions, to design errors, to construction quality problems, to poor man-

agement. Nevertheless NATM failures, or for that matter any tunnel failure, have

one thing in common: most are caused by human error. Its not the fault of the

method, but misapplication of the method.

A.7 Conclusions

The development of rock mechanics as a discipline was reviewed. In the early

stages of rock mechanics development, theory of elasticity was being used for analysis

of stress induced around underground excavations but the work of pioneers like Josef

Stini resulted in gradual recognition that rock could act both as an elastic material

and a discontinuous mass which resulted in the merging of elastic theory with the

discontinuum approach.

Major geological features such as bedding planes, folds, faults, dykes, joints

and other kinds of discontinuities were defined and data collection using mapping

exposure, drilling and core logging were visited briefly. After an overview of tunnel-

ing terminology, heading methods such as core heading, top heading and sidewall

drift were introduced. Finally New Austrian Tunneling Method was introduced and

the need for a modeling framework was emphasized.



APPENDIX B

Numerical Methods in Geomechanics and Tunneling

B.1 Introduction

The desire to understand the physical world and to describe it using mathe-

matical concepts has long been a goal of scientists and engineers. After a physical

phenomenon is formulated mathematically, an in-depth analysis of it is made pos-

sible through studying the governing equations.

When designing a tunnel or excavation, there are design objectives that must

be met. These objectives may be identified as follows:

• Local stability of the underground structure and its support system as well as

overall stability should be ensured.

• The induced displacements must be tolerable, not only for the structure being

designed but also for any neighboring structures and services.

Analysis of the mathematical model of a geotechnical problem provides an

assessment of these important aspects of the design. Traditionally, geotechnical

design has been carried out using simple analysis or empirical approaches but these

methods have their limitations and are not sufficient for problems with complex

domains. Today, the availability of inexpensive sophisticated computer hardware

has made it possible for engineers to deploy computationally intensive numerical

methods to solve problems with complex domains.

In geomechanics, constitutive models are used to formulate the behavior of

geomaterial (soil or rock mass). There is a large number of publications available

on constitutive models. To name just a few of these models we may refer to elastic-

ity models (linear and piecewise linear), hyper-elasticity and hypo-elasticity models,

plasticity models and hypo-plasticity models.

Having the constitutive model of the geomaterial, it is possible to formulate

the problem domain by partial differential equations (PDEs). When these equations

have complicated boundary conditions or are posed on irregularly shaped objects

114
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or domains, they usually do not admit closed-form solutions. A numerical approx-

imation of the solution is thus necessary. These methods numerically approximate

the solution of a linear or non-linear PDE by replacing the continuous system with

a finite number of coupled linear or non-linear algebraic equations. This process

of discretization associates a variable with each of a finite number of points, called

nodes, in the problem domain. A brief review of the numerical methods used in

geomechanics is given here.

B.2 Numerical Methods in Geomechanics

Some of the numerical analysis methods used in geomechanics to solve bound-

ary value problems are the finite element method (FEM), the boundary element

method (BEM), the finite difference method (FDM) and the discrete element method

(DEM). Detailed descriptions of each of these numerical methods may be found in

a large number of textbooks (e.g., Zienkiewicz, 1967 [7]; Desai and Abel, 1972 [8];

Britto and Gunn, 1987 [9]; Smith and Griffiths, 1988 [10]; Beer andWatson, 1992 [11];

Potts and Zdravkovic, 1999 [12, 13]). However, it is probably worth noting that to

use the FEM, BEM, FDM and DEM methods, one must consider the entire problem

domain, break it up into a finite number of discretized sub-regions or elements.

The governing equations of the problem are applied separately and approxi-

mately within each of these elements, translating the governing differential equations

into matrix equations for each element. Compatibility, equilibrium and the bound-

ary conditions are enforced at the interfaces between elements and at the boundaries

of the problem. On the other hand, in the BEM only the boundary of the problem

domain under consideration is discretized, thus providing a computational efficiency

by reducing the dimensions of the problem by one. The BEM is particularly suited

to linear problems. For this reason, and because it is well suited to modeling infinite

or semi-infinite domains, the BEM is sometimes combined with the finite element

technique.
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B.2.1 Finite Element Method

The finite element method is still the most widely used and probably the

most versatile method for analyzing boundary value problems in geomechanics. The

main advantages and disadvantages for geotechnical analysis may be summarized

as follows.

Advantages

• Non-linear material behavior can be considered for the entire domain

analyzed.

• Modeling of excavation sequences including the installation of reinforce-

ment and structural support systems is possible.

• Structural features in the soil or rock mass, such as closely spaced parallel

sets of joints can be efficiently modeled.

• Time-dependent material behavior may be introduced.

• The system of equations is symmetric (except for non-associated flow

rules in elasto-plastic problems using tangent stiffness methods).

• The conventional displacement formulation may be used for most load-

path analysis.

• Special formulations are now available for other types of geotechnical

problem, e.g., seepage analysis.

• The method has been extensively applied to solve practical problems and

thus a lot of experience is already available.

Disadvantages

• The entire volume of the domain analyzed has to be discretized, i.e., large

pre- and post-processing efforts are required.

• Due to the large system of equations, run times and disk storage re-

quirements may be excessive (depending on the general structure and

the implemented algorithms of the finite element code).
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• Sophisticated algorithms are needed for strain hardening and softening

constitutive models.

• The method is generally not suitable for highly jointed rocks or highly

fissured soils when these defects are randomly distributed and dominate

the mechanical behavior.

B.2.2 Boundary Element Method

Significant advances have been made in the development of the boundary

element method and as a consequence this technique provides an alternative to the

finite element method under certain circumstances, particularly for some problems in

rock engineering [11]. The main advantages and disadvantages may be summarized

as follows.

Advantages

• Pre- and post-processing efforts are reduced by an order of magnitude

(as a result of surface discretization rather than volume discretization).

• The surface discretization leads to smaller system of equations and less

disk storage requirements, thus computation time is generally decreased.

• Distinct structural features such as faults and interfaces located in arbi-

trary positions can be modeled very efficiently, and the non-linear behav-

ior of the fault can be readily included in the analysis [92].

Disadvantages

• In general, non-symmetric and often fully-populated system of equations

is obtained.

• Detailed modeling of excavation sequences and support measures is still

a problem that is being studied and is not completely solved [93].

• The standard formulation is not suitable for highly jointed rocks when

the joints are randomly distributed.
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• The method has only been used for solving a limited class of problems,

e.g., tunneling problems, and thus less experience is available than with

finite element models.

B.2.3 Coupled Finite Element - Boundary Element Method

It follows from the arguments given above that it should be possible to mini-

mize the respective disadvantages of both methods by combining them. This is in

fact true and very efficient numerical models can be obtained by discretizing the soil

or rock around the region of particular interest, e.g., representing the region around

a tunnel by finite elements and the far field by boundary elements [11, 94]. Two

disadvantages however remain, namely the cumbersome modeling of major discon-

tinuities intercepting the ROI in an arbitrary direction, e.g., a tunnel axis, and the

non-symmetric system of equations that is generated by the combined model. The

latter problem may be resolved by applying the principle of minimum potential en-

ergy for establishing the stiffness matrix of the boundary element region [11]. If this

is done, then after assembling with the finite element stiffness matrix, the resulting

system of equations remains symmetric.

B.2.4 Finite Difference Method

The finite difference method is not as popular as finite element or boundary

element methods in geotechnical engineering but is used in analyzing flow problems

including those involving contaminant transport [95].

B.2.5 Discrete Element Method

The methods described so far are based on continuum mechanics principles and

are therefore restricted to problems where the mechanical behavior is not governed

to a large extent by the effects of joints and cracks. If this is the case, discrete

element methods are much better suited for numerical solution. These methods

may be characterized as follows:

• Finite deformations and rotations of discrete blocks (deformable or rigid) are

calculated.
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• Blocks that are originally in contact may separate during the analysis.

• New contacts which develop between blocks due to displacements and rotations

are detected automatically.

Due to the different nature of a discontinuum analysis, as compared to continuum

techniques, a direct comparison seems to be not appropriate. The major strength

of the distinct element method is certainly the fact that a large number of irregular

joints can be taken into account in a physically rational way. The drawbacks asso-

ciated with the technique are that establishing the model, taking into account all

relevant construction stages, is still very time consuming, at least for 3D analysis. In

addition, a lot of experience is necessary in determining the most appropriate values

of input parameters such as stiffness of joints. These values are not always available

from experiments and specification of inappropriate values for these parameters may

lead to computational problems. In addition, run-times for 3D analysis are usually

quite high.

B.3 Processing Phases in Numerical Analysis

Numerical analysis of a problem consists of three distinct phases: pre-processing,

numerical solution and post-processing. Achieving a high level of automation among

these three phases will greatly enhance the efficiency of the numerical analysis. A

brief description of each phase follows.

B.3.1 Pre-Processing

The first step in modeling a physical phenomenon is to idealize it. In the

idealization process a simplified version of the real problem is created. Only the most

essential aspects of the problem are considered in the simplified version to create a

mathematical formulation of the problem. This is one of the most important phases

in problem solving. This step needs human intervention and engineering judgment.

It can not be easily automated.

If the problem is complicated and there exist no closed form solution, then

a numerical method is chosen to solve the idealized version of the problem. FEM,
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BEM or a hybrid of them has successfully been used in geomechanics. To use any

of the aforementioned methods one needs to establish a discretized version of the

problem. Therefore the next step after idealization is discretization of the problem

domain. Automation of the discretization process (i.e mesh generation) is the central

focus of this research.

In FEM, the problem domain (or in the BEM, the boundary of the problem

domain) must be partitioned into small pieces of simple shape. These pieces are

called elements, and are usually triangles or quadrilaterals (in two dimensions),

or tetrahedra or hexahedral bricks (in three dimensions). FEM and BEM employ

a node at every element vertex (and sometimes at other locations); each node is

typically shared among several elements.

A mesh is the collection of these nodes and elements and conforms to the

geometry and boundaries of the physical problem one wishes to model. This mesh

should be composed of elements whose sizes possibly vary throughout the mesh and

are well shaped. Reconciling these constraints is not easy. Historically, the automa-

tion of mesh generation has proven to be more challenging than the entire remainder

of the simulation process [20]. For a review of model discretization techniques see

chapter 2.

B.3.2 Numerical Solution

Once model discretization is complete, one can solve the problem with a nu-

merical method that best suits that specific problem. FEM, BEM or a hybrid of

them are the most commonly used methods to solve problems in geomechanics. A

brief review of these methods is given in the sections B.2.1 through B.2.3.

B.3.3 Post-Processing

The result of a numerical solution is a dataset that describes the behavior of

the model at a finite number of points, called nodes, in the problem domain. The size

of this dataset depends on the size of the problem and the number of nodes used in

the discretized model. In the real world problems with large domains, this is usually

an enormous amount of data that is prohibitively large for human observation alone.
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Data mining and data visualization techniques respond to this problem. Data

visualization is the graphical presentation of these datasets, with the goal of provid-

ing the viewer with a qualitative understanding of the behavior of the system.

B.4 Conclusions

The pros and cons of different numerical methods used in geomechanics were

discussed. Finite and boundary element methods or a hybrid of them are the most

popular methods in geomechanics. All these methods need the problem domain be

subdivided into elements of regular shapes which is one of the processing phases

in numerical analysis of a problem. Finally, the three distinct phases in numerical

methods were identified as pre-processing, numerical solution and post-processing

and each were discussed individually.
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