

Enhanced Suffix Trees

 for Very Large DNA Sequences

Si Ai Fan

A Thesis

In the Department of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

August 2011

© Si Ai Fan, 2011

ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Si Ai Fan

Entitled: Enhanced Suffix Trees for Very Large DNA Sequences

and submitted in partial fulfillment of the requirements for the degree of

 Master of Computer Science

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

______________________________________ Chair

 Dr. Rajagopalan Jayakumar

 ______________________________________ Examiner

 Dr. Gregory Butler

 ______________________________________ Examiner

 Dr. Dhrubajyoti Goswami

 ______________________________________ Supervisor

 Dr. Nematollaah Shiri

Approved by__

 Chair of Department or Graduate Program Director

__

Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Date __

iii

ABSTRACT

Enhanced Suffix Trees for Very Large DNA Sequences

Si Ai Fan

Recent advances in bio-technology have provided rapid accumulation of biological

DNA sequence data. New techniques are required for fast, scalable, and versatile

processing of such data.

Suffix tree (ST) is a data structure used for indexing genome data. This, however,

comes with a price: it occupies a space that is about 10 times more than the input size.

Existing disk-based ST index techniques either suffer from data skew problem, like

TDD and HST, or are not space efficient for very large sequences, like TRELLIS and

B2ST. We propose a new disk-based ST index, called Compact Binary Suffix Tree

(CBST), together with a construction algorithm, which can support DNA sequences of

size up to 256 terabyte. The results of our numerous experiments indicated that,

compared to existing ST and suffix array techniques, CBST is superior in speed, space

requirement, and scalability. It is the fastest among the disk-based techniques for very

large sequences.

.

iv

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Nematollaah Shiri who

gave me the chance to pursue a Master’s degree. Without his continual support and

encouragement, finishing my thesis would be impossible. I thank him for teaching me

how to do research, for all valuable advices, and his tireless and patience in reviewing

and correcting my progress reports and this thesis.

I would like to thank Concordia University for providing me a dynamic environment

for my study and research. I had easily access to the computing facilities in the

database research labs as well as convenient access to the Concordia library, when I

needed, and where I needed, being on or off the campus. I would also like to thank all

fellow graduate students in the database research labs for their technical helps and

advices when needed.

I wish to thank my wife LingFang Dong from my heart. Her continuous support was

the key factor to overcome difficulties I faced during of my studies. She also

obtained her master’s degree from Concordia.

Finally, I wish to express my love and gratitude to our beloved daughters, Avery and

Brianna, to whom I dedicate this thesis

http://www.encs.concordia.ca/resources/faculty-and-staff-directory/details/?id=Shiri%2C%20N.&d=05

v

Table of Contents

List of Figures .. viii

List of Tables ... x

List of Abbreviations xi

1 Introduction ... 1

1.1 DNA Sequences .. 1

1.2 Suffix Tree (ST) and Suffix Array (SA) .. 4

1.3 Motivation ... 6

1.4 Research Contributions ... 8

1.5 Outline of the Thesis ... 9

2 Background and Related Work 11

2.1 Conventional Suffix Trees .. 11

2.2 Binary Suffix Tree (BST) .. 14

2.3 Suffix Tree (ST) Indexing Techniques .. 17

2.4 Suffix Tree Index Representations .. 23

ST Storage Requirements ... 23

WOTD Index Representation ... 24

TDD Index Representation ... 26

TRELLIS Index Representation .. 26

HST Index Representation.. 28

vi

DIGEST and B2ST Index Representation .. 30

2.5 Summary ... 32

3 CBST Representation and Construction

Algorithm .. 34

3.1 Compact Binary Suffix Tree (CBST) Index Representation 34

3.2 The CBST Algorithm for Chromosome-Scale Sequences 39

3.3 Sorting Suffixes in the CBST Algorithm .. 47

3.4 The CBST Algorithm for Genome-Scale Sequences and Larger 50

Creating partitions ... 51

Sorting Phase ... 53

Merging Phase ... 56

3.5 Analysis of the CBST Algorithm .. 58

3.6 Exact Match Algorithm Based on CBST Index .. 58

3.7 Summary ... 62

4 Experiments and Results 63

4.1 Experiment Sequence Data ... 64

4.2 Adjusting the Parameters for CBST Construction Algorithm 66

Choosing the Number of Partitions ... 67

Choosing the Output Buffer Size .. 67

4.3 Index Construction Time... 69

Results for “Type 1” Sequence .. 69

Results for Sequences of “Types 2, 3 and 4” Sequences 72

4.4 Index Storage Requirements ... 73

vii

Index Storage Requirements for “Type 1” Sequences 73

Index Storage Requirements for “Type 3” Sequences 76

4.5 Exact Match (EM) Search Performance ... 77

EM Search Operations for “Type 1” Sequence Data 78

EM Search Operations for “Type 3” Sequence Data 79

4.6 Summary ... 81

5 Conclusion and Future Work 83

Bibliography .. 87

viii

List of Figures

Figure 1. Number of Bases in GenBank Trend [GenBank, 2011] 2

Figure 2. The suffix tree for the sequence S = ACGTG$ 13

Figure 3. The BST for S = ACGTG$.. 15

Figure 4. WOTD Index Representation .. 24

Figure 5. The TDD Index Representation [Halachev., 2009] 26

Figure 6. TRELLIS Index Representation .. 27

Figure 7. STTD64 Index Representation .. 29

Figure 8. B2ST Branch and Leaf Node Representation 30

Figure 9. The two Levels of CBST Index Representation 35

Figure 10. CBST Index Data Structure ... 36

Figure 11. CBST Index Representation .. 36

Figure 12. CBST Representation on Disk for Sequence S = ACGTG$ 38

Figure 13. The Pseudcode for CBST Construction Algotithm 42

Figure 14. Construction of BST: (a). Adding S0; (b). Adding S1; (c). Adding S4 . 44

Figure 15. The BST Index After Adding the Suffix S2 ... 45

Figure 16. The Pseudocode for Partitioning Phase ... 53

Figure 17. The Pseudocode for Sorting Phase .. 55

Figure 18. The merging in the CBST Index Construction Algorithm................... 57

Figure 19. EM Search Algorithm On the CBST Index ... 60

Figure 20. EM Searching for Query P='G' .. 61

Figure 21. The 24 Human Chromosomes and Their Sizes 65

Figure 22. Index Construction Time Comparison .. 70

Figure 23. Comparison of CBST and Vmatch Index Construction Times 71

ix

Figure 24. Index Size for “Type 1” Sequence Data .. 75

Figure 25. EM Search Performance on “Type 1” Data with 100 Queries 78

Figure 26. EM Search Performance on “Type 1” Data with 1000 Queries 79

Figure 27. EM Search Time (in seconds) on “Type 3” Data with 100 Queries 80

Figure 28. EM Search Time (in seconds) on “Type 3” Data with 1000 Queries .. 80

Figure 29. Parallelization of Sorting Partitions... 85

x

List of Tables

Table 1. SA with LCP Length Information for Sequence S 43

Table 2. Comparison between Qsufsort and Msufsort .. 49

Table 3. CBST Construction on “Type 2” Data with Output Buffer of Size 50MB

... 67

Table 4. Query Results with Different Sub-ST Sizes for “Type 3” Data 68

Table 5. Comparison of Index Construction Times for HST, B2ST and CBST ... 72

Table 6. Index Storage for “Type 1” Data ... 74

Table 7. Index Storage Costs for “Type 3” Sequence Data 76

xi

List of Abbreviations

2PMMS Two-Phase Multi-way Merge-Sort

B2ST Big string, Big Suffix Tree

BST Binary Suffix Tree

BWT Burrows-Wheeler Transformation

CBST Compact Binary Suffix Tree

DIGEST Disk-Based Genomic Suffix Tree

EM Exact Match

ESA Enhanced Suffix Array

HGP Human Genome Project

ISA Inverse Suffix Array

LCP Longest Common Prefix

LRS Longest Repeating Substring

LT Lookup Table

NCBI National Center for Biotechnology Information

SA Suffix Array

ST Suffix Tree

STEM Suffix Tree Exact Match

STTD64 Suffix Tree Top-Down 64 bits

TDD Top Down Disk-based

TSQS Ternary-Split Quick Sort

TRELLIS An anagram of the bold letters in the phrase: External Suffix TRee

with suffix Links for Indexing genome-scaLe sequences

WOTD Write-Only Top-Down

http://www.ncbi.nlm.nih.gov/

1

Chapter

1 Introduction

1.1 DNA Sequences

Ever since 1965 the book “Atlas of a Protein Sequences and Structures” [Dayhoff,

1965] was published, molecular biology has witnessed tremendous growth. Recent

advances in sequencing technology have allowed the rapid generation and collection

of DNA. A huge amount of bio-sequences have been and are being generated in

laboratories all over the world. The Human Genome Project (HGP) [HGP, 2011] is an

international scientific research project started in 1989. The main goal of HGP is to

identify and map approximately 20,000 to 25,000 genes of the human genome from

both a physical and functional standpoint. The 1000 Genomes Project [1000 Genomes

Project, 2011], launched in January 2008, is another international research project. Its

objective is to sequence the genomes of at least one thousand anonymous participants

from a number of different ethnic groups, As of late 2010, the project is in its

production phase with a target of sequencing upwards of 2000 individuals. This will

produce a huge collection of human genetic variations.

The entire DNA of an organism comprises that organism’s genome. As of Feb 15,

2010, National Center for Biotechnology Information (NCBI) published its GenBank

release 182 through its web site. The current release contains 124 billion bases (1 base

= 1 character) from 132 million sequence records [NCBI, 2011]. In addition,

according to the GenBank release 162.0 (October 2007), the size of GenBank keeps

http://en.wikipedia.org/wiki/DNA_sequencing
http://en.wikipedia.org/wiki/Genome
http://www.ncbi.nlm.nih.gov/
http://en.wikipedia.org/wiki/Release_notes

2

growing fast; the number of bases in GenBank has doubled approximately every 18

months. Figure 1 borrowed from [GenBank, 2011] clearly shows the exponential

growth of the GenBank from 1982 to the 2009.

Figure 1. Number of Bases in GenBank Trend [GenBank, 2011]

How to analyze and understand this fast growing large data sets? As stated by

Gusfield [Gusfield, 2004], “the shift to data-driven biology and the accumulation and

exploitation of large-scale data has lead to the need for new computational technology

(machines, software, algorithms, theory).” New techniques are required for fast,

scalable, and versatile processing of biological sequences.

Although the DNA sequences are represented as strings of characters over the 4-letter

alphabet {A, C, G, T}, they are fundamentally different from numerical sequences or

http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Exponential_growth

3

text data. Firstly, genomes sequence data does not have a structure (Comparing to

natural languages), in that they cannot be meaningfully broken into parts/words. Thus,

the traditional database and natural language processing technology are not applicable

to genome sequence data. Secondly, the total size of inter-related information is

several orders of magnitude larger in DNA than in typical natural language texts. For

example, the long “volume” (chromosome) of a human genome is around 250 million

characters. In addition, DNA sequences are a wide range in size, which is between

several hundred nucleotides (e.g., expressed sequence tags, or ESTs) up to several

billions (e.g., the entire human genome) [EST, 2011]. A real challenge is to develop

efficient techniques to support various search tasks on short to very large sequences.

As genome sequences have no structure (Comparing to natural languages), it is

essential in many string processing applications, to have an index on top of the raw

sequences to speed up the process. Suffix tree (ST) and suffix array (SA) are the two

most popular index techniques often employed in such applications. For biological

databases, there are two main challenges. One is on constructing the index fast, and

the other is on accessing the index efficiently. Our research aims to address these two

problems.

Throughout this thesis, we use the term memory-based to refer to construction and

search algorithms that require both the input sequence and its whole index to fit

simultaneously in the main memory, and use disk-based to refer to algorithms that

relax this requirement. We will use the terms string and sequence interchangeably in

this thesis also.

4

1.2 Suffix Tree (ST) and Suffix Array (SA)

For indexing biological data, both ST and SA structures have attracted the attention of

developers and researchers active in genomics and bioinformatics. Examples of

techniques which use ST include Hunt [Hunt et al., 2002], TOP-Q [Bedathur and

Haritsa, 2004], DynaCluster [Cheung et al., 2005], TDD [Tian et al., 2005], and

TRELLIS [Phoophakdee and Zaki, 2007], HST [Halachev et al., 2007], DIGEST

[Barsky et al., 2008] and B2ST [Barsky et al., 2009], while examples of SA based

techniques include ESA [Abouelhoda et al., 2004], Vmatch [Vmatch, 2011], DC3 [20],

and LOF-SA [Sinha et al., 2008]. For an input string, a ST is a tree data structure

which indexes and records all the suffixes of the string. A SA, on the other hand, is an

array of integers indicating the starting positions of the suffixes of the input string in

lexicographical order. Next we compare these two index structures and discuss the

advantages of ST over SA.

The first advantage of ST over SA is its versatility for supporting many various search

tasks, including exact match search, k-mismatch search, and k-difference search. For

example, Apostolice [Apostolico and Galil, 1985] cites more than 40 references to ST,

and Gusfield [Gusfield, 1997] discusses more than 20 applications of ST in the area of

bioinformatics. Examples of these search tasks include looking for various types of

repeats in a single sequence, finding the longest common prefix (LCP) subsequence

of several sequences, and shortest superstring problem. Abouelhoda [Abouelhoda et

al., 2004] proposed enhanced suffix arrays (ESA) to address the same search

problems as an alternative to replace ST, criticized for its large index size. However

ESA index includes several additional tables in addition to the basic SA table. It is

also known that on average ESA requires 12N space, for an input string of size N for

http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Suffix_(computer_science)
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Lexicographical_order

5

storing all those tables.

Secondly, compared to SA index, ST index exhibits a larger capability for the index

construction and better locality of reference when used by disk-based search

operations. As the amount of biological data being generated is growing at

phenomenal rates, maintaining an index in memory may no longer be feasible. We

need to have an efficient external index algorithm. Examples of such disk-based

algorithms include TDD [Tian et al., 2005], TRELLIS [Phoophakdee and Zaki, 2007],

HST [Halachev et al., 2007], DIGEST [Barsky et al., 2008], and B2ST [Barsky et al.,

2009], all of which are capable of building genome-scale level ST index in a 2GB

RAM limitation. B2ST [Barsky et al., 2009] is a more recent technique that supports

this genome-scale level sequences. For input sequences of size 6GB, B2ST was used

to build the ST in 8 hours on a typical desktop computer with 2GB RAM. Vmatch is a

powerful in-memory tool that implements the ESA algorithm, but its application is

limited, in our experiments, to sequences up to 250MB on a computer with 2GB

RAM. DC3 [Dementiev et al., 2005] extended SA construction algorithm to an

external technique which can handle sequences up to 4GB, but its pipeline method is

designed for multi-processors with multiple disks units. On a normal desktop, it has

been shown that DC3 is inferior to TDD in construction time [Tian et al., 2005]. In

addition, DC3 only generates the basic SA, which unlike ST solutions, cannot support

many search operations. In addition, for longer sequences, query processing based on

SA index exhibits poor locality of reference, leading to inefficient disk I/Os due to

performing binary search in the array [Sinha et al., 2008].

While ST and SA are the two major index structures for biological sequence data, we

can convert ST to SA and vice versa, under certain conditions, as shown in [Farach et

6

al., 2000]. For a ST, we can traverse the ST by a depth-first order and save the offset

of a suffix inside a string to an array. This yields the SA of the string. On the other

hand, assuming that the SA is augmented with the length of the LCP between

consecutive suffixes in the SA, we can incrementally insert a suffix to a ST using the

LCP length information. We will elaborate on this in the following chapters.

A suffix tree (ST) index not only records all distinct substrings of a given string, but

also exposes the internal structure of the string in such a way that when exploited

provides efficient solutions to versatile sequence analysis problems. These problems

include the exact match (EM) search as well as various approximate search problems

which are more complex than exact match.

1.3 Motivation

Since the initial proposal of Weiner [Giegerich and Kurtz, 1997] to use a suffix tree as

an explicit index, data-driven biology and the accumulation and exploitation of

large-scale data has resulted in much improvement in ST indexing techniques. For

example, TDD [Tian et al., 2005], TRELLIS [Phoophakdee and Zaki, 2007], HST

[Halachev et al., 2007], and DIGEST [Barsky et al., 2008] to B2ST [Barsky et al.,

2009], are external ST index algorithms which can build ST for the entire human

genome in a couple of hours [Barsky et al., 2009]. The approach of these external

techniques is as follows. First, they divide a long sequence into smaller partitions,

each of which are treated separately, given the amount of main memory available in a

typical desktop computer. For each partition, they build a ST in isolation of other

partitions. The STs so created are then merged to build the final ST index for the

7

whole string.

Until B2ST [Barsky et al., 2009], all the disk-based ST algorithms had either data

skew problems, or were limited to handle up to genome-scale level sequences, mainly

because of the partitioning and merging methods they used or/and the memory

bottleneck problems. We will discuss details of these limitations and causes later.

B2ST [Barsky et al., 2009] is a more recent ST algorithm, which is capable of

handling very large strings using a typical personal computer. Using B2ST, it took

only about 8 hours to build the ST for a 6GB input sequence [Barsky et al., 2009].

We studied several disk-based index representations and construction techniques and

noted that we could improve both aspects. The TRELLIS index needs 36 bytes per

symbol in the worst case, and can handle DNA strings of up to 4GB. The B2ST index

has the same layout as DIGEST, and can support very long sequences, but its index

size is about 48 bytes per symbol. Considering also the intermediate data produced by

these algorithms, B2ST needs 1.3 terabytes to build the ST index for a 10GB

sequence. Although the external disk space is much cheaper than main memory, this

1.3 TB data results in increased I/O cost, which in turn reduces the index construction

and search operations time. The design objectives of the HST index were reducing the

intermediate space required during the index construction as well as provision for fast

search operations. For this, the authors studied the disk access patterns during the

index construction and search [Halachev et al., 2005]. For DNA sequences, HST

requires 13N bytes per character on average, for input of size N. Besides, HST uses a

“double” node index structure and saves the suffix depth information to its leaf nodes

to speed up the search algorithms. By design, HST shows good locality of references

for the disk-based indexes and also exhibits good performance during query

8

operations.

As our research goal is to develop a ST index technique that is efficient and also

capable of handling very long sequences on a typical desktop computer, to meet the

data-driven biological database requirements. At the same time, the ST index needs to

support efficient query operations. The question is: Can we design a new ST index

representation that is space-saving and efficient for query operations, like HST

[Halachev et al., 2007]? And at the same time, can we have an efficient and scalable

index construction algorithm, like B2ST [Barsky et al., 2009]? This thesis attempts to

answer these questions.

1.4 Research Contributions

As mentioned, for data-driven biological datasets, the real challenge is to develop

suitable techniques to support efficient search in short to very long sequences. The

main contribution of this thesis is development of a compact binary ST indexing

technique, which is efficient and scalable for short to very long sequences. More

details are as follows: We study and analyze the current ST index techniques, their

design and implementations, and propose a ST tree index representation based on the

binary alphabet, which we call as the compact binary suffix tree (CBST). It requires 9

bytes per node and 18 bytes per symbol for an input, and supports sequences as large

as 256 TB. We introduce our CBST index in Chapter 3.

We develop a ST index construction algorithm for CBST index representation, called

CBST algorithm. The algorithm is an extension of B2ST [Barsky et al., 2009]. We

show the effectiveness of CBST technique for in-memory and on-disk data. Our

9

CBST algorithm is efficient on short sequences (like single chromosome-scale

sequences) and on very long sequences (like the entire human genome and above).

We introduce it in Chapter 3.

Besides, we also consider the two suffix sorting algorithms, namely Msufsort

[Michael and Simon, 2008] and Qsufsort [Larsson and Sdakane, 1999], and explain

why our CBST algorithm uses Msufsort for sorting suffixes, and not Qsufsort which

was used by B2ST algorithm. We explain the reasons in Chapter 3, Msufsort is faster

and more space-efficient than Qsufsort.

We also implement an exact matching (EM) searching algorithm that uses the CBST

index. The EM algorithm we developed is similar to the one proposed in [Halachev et

al., 2005], which extends the memory-based ST exact match (STEM) algorithm to

disk-based and uses efficient buffering strategy. Experiments performed to evaluate

the CBST search algorithm indicate increased performance, and good locality of

references to the disk during query operations for the CBST index.

The results of our extensive experiments and their analysis in this research to study

the proposed index representation together with the construction and search

techniques developed indicate that our CBST algorithm is a desired efficient and

scalable disk-based ST index. It is the fastest disk-based ST index construction

algorithm so far.

1.5 Outline of the Thesis

The organization of the thesis is as follows.

10

In Chapter 2, we provide the necessary background, review related work, and discuss

a conventional suffix tree and its corresponding binary suffix tree (BST), and the

features of a BST. In addition, we study several disk-based suffix tree techniques and

their corresponding index representations. We compare them with their advantages

and disadvantages.

In Chapter 3, we propose our compact binary suffix tree (CBST) index representation.

We will also discuss the advantages and disadvantages of CBST in comparison with

existing ST based representations. At the same time, we provide technical details of

the proposed CBST model together with construction and search algorithms. We also

present an exact match search algorithm based on the CBST index.

To evaluate the performance of the proposed technique, we conducted numerous

experiments using short to very long sequences. Chapter 4 describes the experiment

setup, the data and queries used in our experiments. We present the results of these

experiments and compare them with the best-known alternatives.

Chapter 5 includes a summary of our contributions, concluding remarks, and an

outline of possible future work.

11

Chapter

2 Background and Related Work

In this chapter, we recall some definitions and concepts regarding the suffix tree (ST)

index. This includes a formal definition of conventional suffix trees for sequences

based on some particular alphabets. We then define binary ST (BST) that is based on

binary alphabet, which forms a basis for the development in this thesis. Besides, we

also review major disk-based ST algorithms and their corresponding ST index

representations that are related to our work.

2.1 Conventional Suffix Trees

A string S is a sequence of N symbols over an alphabet Σ. We use the symbol $ (not

included in Σ) as the terminal character, used to mark the end of S.

Definition 1: Given a sequence S of size N, a suffix Si of S is the substring S[i, N] of

S that begins at position i, where 0 ≤ i ≤ N . Thus S0 = S and SN = $. Each

suffix can be uniquely identified by its starting position. For example, for S

= ACGTG$, the suffix S1 will be CGTG$, S2 will be GTG$, S3 will be TG$,

etc.

Definition 2: A prefix P
i
 of a suffix Sx is the sub-string [0, i] of Sx, where ‘i’ is less

than the length of Sx. For example, for S = ACGTG$, the prefix P3 of the

suffix S1 (=CGTG$) will be CGTG, and P1 of the suffix S2 will be CG, etc.

12

Definition 3: The longest common prefix (LCP) of two suffixes Si and Sj is a

substring S[i, i+k] such that S[i, i+k] = S[j, j +k], and S[i, i+k +1] ≠S[j, j +k +1]. Thus, the

prefix S[i, i+k] (or S[j, j +k]) is the LCP of the suffixes Si and Sj. And their LCP

length is ‘k’. In another words, the LCP of two suffixes is the longest prefix

that is shared by this two suffixes. We denote the LCP of suffix Si and Sj as

LCP (i,j), and the LCP length as |LCP (i,j)|. For example, for S = ACGTG$,

considering S2 = GTG$, S4 = G$, we have that LCP(2,4) = G, and its length

|LCP(1,4)| = 1.

Definition 4: A suffix array (SA) of a sequence S is an array that stores the offsets of

all the suffixes of S in lexicographical order. If each offset of a suffix of S is

represented by an integer, then the SA will be an array of integers. Thus, a SA

of S holds all the integers ‘i’ in the range [0, N], where ‘i’ represents Si. Note

that the suffixes themselves are not stored in this array but are rather

represented by their start positions in S. For example, for S = ACGTG$, the

SA = [0, 1, 4, 2, 3]. The LCP between each consecutive SA pairs can be kept

for building suffix tree. For example, LCP (0,1)=0, LCP(1,4)=0, LCP(4,2)=1,

etc.

Definition 5: A suffix tree (ST) (also called PAT tree or, in an earlier form, position

tree) is a data structure that presents the suffixes of a given string in a way that

allows for a particularly fast implementation of many important string

operations [Wikipedia, 2011]. The ST of the sequence S is an edge-labeled tree

with N leaves (or suffixes of S). Each edge records the start and end positions

in S (which represents a substring of S). Each internal node in the ST

represents an end of the LCP for its children leaf nodes (or suffixes of S). The

http://en.wikipedia.org/wiki/Suffix_(computer_science)
http://en.wikipedia.org/wiki/String_(computer_science)

13

path from the root to a leaf defines a suffix of the sequence S.

Figure 2 shows the suffix tree for the sequence S = ACGTG$. In the figure, the label

on an edge lists the substring to the internal nodes or leaves. By traversing the whole

tree, going from the root down the internal node 1, we can get the LCP ‘G’ for the two

suffixes S4 and S2, from the root down to a leaf, like S4, we can get a suffix S4=G$ of

S. From the tree, we have the same number of leaves as the number of suffixes of S

and they are in the lexicographical order from the left to right. Thus, if we traverse the

whole tree from the root to all the leaves using a depth-first approach, , we get S0, S1,

S4, S2, S3, and record them in a SA of S. This yields [0,1,4,2,3].

Figure 2. The suffix tree for the sequence S = ACGTG$

In this chapter, we will also study different representations of suffix trees in memory

and on disk. Below we recall some definitions related to suffix trees.

14

Definition 6: For a node v in a ST for a sequence S, the leaf set of v, denoted L(v),

contains the positions of all its leaves and its children leaves in sequence S at

which we can find the suffix denoted by the edge labels from the root of ST to

node v.

For example, for the leaf node 4 in Figure 1, we have that L(4)={2}. For branch node

1, we have L(branch node 1)={2,4}.

Definition 7: The depth of a node v, denoted by depth (v), is defined as the length of

the path, which in turn is defined as in number of characters on the labels of

the edges from the root to the node v. For example, depth (4) = 3 and depth

(Node 1) =1.

Definition 8: For any node v in a ST, the left pointer of v, denoted by LP(v), is defined

as min L(v) + depth (the parent of v). For example, LP(1) = min L(1) +

depth(Root) = 2+0 = 2.

2.2 Binary Suffix Tree (BST)

Any alphabet Σ can be represented in binary by representing each character as a

binary sequence of b = log|Σ| bits. This can be done in linear time [Farach and

Muthukrishnan, 1996]. This means any string can also be represented by a binary

string. For example, we only need 2 bits to represent the symbols in the alphabet set

{A, C, G, T} of DNA sequences. In our work, we use the following encoding rule:

A = 00, C = 01, G = 10, T = 11.

If we build a suffix tree using binary strings, since we only have 0 and 1 in the binary

15

alphabet, any internal node in the tree may only have two children. Thus, we get a

binary ST (or BST, for short). (We remark that the suffix binary search tree mentioned

in [Irving and Love, 2003] is different from our BST, and stands for balanced search

tree.) Figure 3 lists the corresponding BST for the string S = ACGTG$. We can see

that this tree has the same collection of leaves as the tree in Figure 2. This is true

because we build the BST with the same number of suffixes for the same string S.

Figure 3. The BST for S = ACGTG$

Compared to conventional suffix tree, BST has the following features:

Each internal node can have maximum 2 children nodes. This allows the final tree to

be organized in arrays, which in turn supports fast tree traversals, since the

corresponding child can be located in constant time. In Chapter 3, we will show how

16

to build a BST.

In a BST for a sequence S, the total number of leaves and branch nodes is linear in the

length of S. If S has N suffixes, the BST of S will have N leaf nodes and N-1 branch

nodes (including the root). In addition, the total number of leaf and branch nodes is

independent of the alphabet of the sequence. For example, if a DNA sequence and a

protein sequence (with an alphabet of size 23) have the same length N, their

corresponding BST will have the same N leaves and N-1 branch nodes. Given a

certain representation of a branch and leaf node, the size of a BST index is linear in

the number of the characters in the sequence, and is independent of the alphabet. We

will present our proposed BST index structure in Chapter 3.

If all suffixes are sorted, BST can be constructed incrementally by following the path

from the root to the last added suffix. As it will be made clear in Chapter 3, we can

locate the insert point along the path by the LCP length information, and add a suffix

to the right child of the insert point.

This BST representation can support many common string queries. For example, in

order to find occurrences of a pattern in string S, we rename the pattern to a sequence

of bits by using the same policy applied to S while building the BST, and match these

bits along the path starting at the root. Once we reach an internal node, all the leaves

of this node are the answers. Also, if we are looking for the longest repeating

substring (LRS) of S, and the alphabet contains characters, each represented by “b”

bits, we find the internal node of the greatest depth, say “d”, from the root. We then

calculate the LRS (with respect to the original alphabet) as LRS = d/b.

17

2.3 Suffix Tree (ST) Indexing Techniques

Suffix trees are data structures used which index all the suffixes of a given sequence.

It is a versatile structure that can be used to evaluate a wide variety of queries on

sequence datasets, including evaluating exact and approximate match search

operations, and finding repeat patterns. However, methods for constructing suffix

trees are often very time consuming, especially for those large suffix trees that do not

fit in the available main memory.

Suffix trees, originally called position trees, were introduced by Weiner [Weiner,

1973]. Shortly after, a more space efficient algorithm was proposed by McCreight

[McCreight, 1976]. Later on. Ukkonen proposed a variant of McCreight’s algorithm

which was much easier to implement [Ukkonen, 1995]. In [Giegerich and Kurtz, 1997]

it was shown that these three proposals are similar in algorithmic ideas. The

algorithms are linear in construction time and memory based, i.e., they require both

the sequence and the ST index to fit and reside in the main memory. A key point to

have an implementation of the index construction algorithm that runs in linear time, is

the requirement to use suffix links [Gusfield, 1997]. However, it has been shown in

[Hunt et al., 2002] that the presence of suffix links results in reduced performance due

to random accesses to the tree during the index construction. Once some of these

variants data structures outgrow the main memory by accessing the data on disk, the

access time to disk-based arrays vary significantly depending on the relative location

of the data on disk, and the total number of random disk accessed is O(N), which is

extremely inefficient. This results in poor performance and lack of scalability of the

above three memory based algorithms for long sequences.

To address the above problem, several disk based ST index construction techniques

18

were proposed, including TDD [Tian et al., 2005], TRELLIS [Phoophakdee and Zaki,

2007], HST [Halachev et al., 2007], DIGEST [Barsky et al., 2008], and B2ST [Barsky

et al., 2009]. These techniques do not consider or record suffix links during the suffix

tree construction. (TRELLIS can recover suffix links after the ST is built). Amazingly

enough, although all these disk based algorithms run in O(N
2
) in the worst case, they

are much faster than linear time algorithms in practice, due to better locality of tree

accesses.

To our knowledge, Hunt et al. [Hunt et al., 2002] was the first practical external ST

construction algorithm, which is an incremental method that trades an ideal O(NlogN)

performance for locality of access to the tree during its construction. The algorithm

abandons the suffix links and partitioning the long sequence to shorter ones, for which

the ST can be built in main memory. The output tree is in fact represented as a forest

of several suffix trees. The suffixes in each such tree share a common prefix. Each

tree is built independently and requires scanning of the entire input string for each

prefix. This works well for non-skewed input data but fails if for a particular prefix

length, the number of suffixes in a partition is significantly larger. This is often the

case in DNA sequences with a large amount of repetitive substrings. For each possible

prefix length, in order to keep the balance of each partition and allow the tree built

under it to fit into the main memory, we can increase the length of the prefix. This

exponentially increases the total number of partitions, which in turn increases the total

number of input string scans.

TDD [Tian et al., 2005] suggests a Top-Down, Disk based ST construction algorithm.

This algorithm performances very well for the chromosome-level DNA sequences.

The algorithm extends the Write-Only Top-Down (WOTD) [Giegerich, et al., 2003]

19

index representation and incorporates the fixed-length prefix partitioning method

described in [Hunt et al., 2002]. To overcome the 1 gigabyte limit sequences, TDD

introduces two additional bitmap arrays to represent the rightmost bit and the leaf bit,

and the remaning 32 bits for the tree node representation. Thus TDD can handle long

sequence to 4 gigabyte in theory. We will study details of the TDD index

representation in the next chapter. TDD manages more efficiently the memory buffers

and is a cache-conscious method which performs very well for many practical inputs.

TDD has shown to be superior to other ST and SA solutions like [Bedathur and

Haritsa, 2004] and [Dementiev et al., 2005]. It is reported, for the first time, the suffix

tree for the entire human genome was constructed in about 30 hours using a typical

desktop [Tian et al., 2005].

HST [Halachev et al., 2007] further extends TDD index representation by considering

a two level index structure and employing a dynamic buffering strategy, that resulted

in improved index construction and search performance. While TDD uses two bitmap

arrays to overcome the 1GB index limitation, HST embodies the two bits to its 64 bits

suffix tree node representation, either a branch node or a leaf. This also allows HST to

handle sequences of up to 4GB. HST improves the on-disk STs, called STTD64

[Halachev et al., 2007]), proposed by the same authors by construction a second index

on the STs (called the lookup table) to speedup search operations. We will have a

closer look at HST in Chapter 4.

While TDD [Tian et al., 2005] and HST [Halachev et al., 2007] are scalable to long

genome-scale level sequences, they perform considerable random disk accesses to the

input string during the tree construction. To reduce the negative impact of this on

performance, both techniques required the input sequence to reside in the main

20

memory for better references. This limits the input string size to that of the main

memory. This also explains their use of compression methods for long sequences to

keep the sequence in memory by encoding the alphabet to binary format. Another

problem is their partition size and the on-disk tree layout due to the fixed-length

prefix technique. A long prefix may result in increased the number of partitions, with

possibly many smaller size, and hence poor space utilization. Also a short prefix may

cause some partitions to be larger than the memory. This requires buffering the index

nodes and hence incurring increased additional disk I/O cost. In addition, different

partitions have different index sizes, some possibly significantly larger than the main

memory. This poses some problems when loading the sub-tree into main memory for

querying. If a sub-tree cannot be loaded into the main memory, the depth first

traversal of such trees requires multiple random accesses to different levels of index

nodes in the disk, and hence poor performance.

TRELLIS [Phoophakdee and Zaki, 2007] was proposed to address the above

problems. It adopts an innovative method to partition the input to avoid data skew

problem by using a variable-length prefix method. It first computes all the

variable-length prefixes by scanning the input sequence multiple times. During each

scan, the prefixes up to a certain length are saved, such that a partition and the ST

built afterwards can be processed entirely in the main memory. It adopts Ukkonen’s

algorithms [Ukkonen, 1995] for creating the sub-trees. Once an independent suffix

tree for each partition is built in memory, it writes to disk the different sub-trees

correspond to the different variable-length prefixes. The subtrees of all the partitions

are then merged into a shared prefix subtree for the entire input string. TRELLIS

also contains a post-processing step for recovering all the suffix links. TRELLIS has

been shown to be superior to TDD [Phoophakdee and Zaki, 2007]. On the same

21

computer, TRELLIS completed the construction of the index for the entire human

genome in about 4 hours, and additional 2 hours for recovering all the suffix links.

TRELLIS also introduces another important technique during its partitioning phase,

as follows. In order to guarantee that the ST of a partition includes explicitly all the

suffixes from the partition, instead of stopping the tree construction for a partition

when exactly all the characters inside the partition have been read, the algorithm

continues to read some of the characters from the next partition, until enough suffixes

are explicitly obtained. That is, while building the ST for a partition, TRELLIS

continues to read characters from the next partition until it encounters a unique prefix.

This interesting idea was adopted in DIGEST [Barsky et al., 2008] and B2ST [Barsky

et al., 2009], discussed in Chapter 4.

TRELLIS is capable of handling sequences of up to 4 GB only. This limitation is due

to its index representation which are suited for sequences no longer than 4GB.

Another limitation of TRELLIS is that it requires the input sequence to be in the main

memory for better references. As mentioned, in order to construct the entire human

genome (about 3 GB) using a computer with 2GB RAM, TDD [Tian et al., 2005],

HST, and TRELLIS compress the input sequence to encode the alphabet symbols

{A,C,G,T} in binary, using 2 bits. Thus the entire human genome needs 725 MB in

the main memory.

To overcome this memory bottleneck, two other algorithms TRELLIS+ [Phoophakdee

and Zaki, 2008] and DIGEST [Barsky et al., 2008] have been proposed recently

which use a buffering strategy. TRELLIS+ buffers some parts of the sequences that

probably need to be accessed by the merging procedure and some initial characters of

each leaf node. On the other hand, DIGEST buffers a predefined fixed-length prefix

22

of each suffix. It was noted [Barsky et al., 2008] that references to the input sequence

happen only when comparing two suffixes to get their LCP in order to locate the

merging point in current being built ST. The buffered prefix of a suffix could help get

the LCP length of current suffix and the one added just before it. Thus, both

algorithms relax the requirement that the whole input sequence has to be in the main

memory. Using buffering, TRELLIS+ limits its access to the on-disk input sequence

to 5%, while DIGEST limits this access further to 2%. It has been shown that

DIGEST outperforms TRELLIS+ by about 40%. We remark that for a 10GB sequence,

the 2% disk accesses translates to 500 million random disk I/Os. This significantly

degrades the performance of the algorithms. Thus, both TRELLIS+ and DIGEST are

limited in practice to handle very long sequences. The technique proposed in DIGEST

to incrementally build the BSTs, for a given sequence, was extended and used in

B2ST [Barsky et al., 2009]..

The B2ST was more recently proposed for handling very large sequences under

limited resources. It divides an input sequence to equal chunks and builds suffix

arrays (SA) for each chunk. At the same time, B2ST also collects the LCP length and

suffix order information by sorting all possible chunk pairs. During the final merge

phase, B2ST obtains the lexicographical global order for all the suffixes. This is

done without needing to refer to the input any more. It was reported that B2ST was

able to build the ST index for a 12GB input sequence on a typical desktop in just 25

hours [Barsky et al., 2009]. To the best of our knowledge, B2ST is the fastest

disk-based ST algorithm to which we compare our work. This motivated our work in

this thesis to develop a faster and scalable ST index construction technique for long

sequences.

23

2.4 Suffix Tree Index Representations

We review several disk-based ST index representations, and discuss their advantages

and disadvantages. In the next chapter, we will then present the compact binary suffix

tree (CBST) index representation, which we proposed in this research and takes

advantages of the current disk-based ST representations.

ST Storage Requirements

Given a sequence S of size N on an alphabet set Σ, its ST will have exactly N leaf

nodes and at most N-1 branch nodes. Thus, the maximum number of nodes is linear in

N. It is common to represent the node in a ST together with the information about an

incoming edge label. Each node, therefore, contains two integers representing the start

and end positions of the corresponding substring of S. In fact, it is enough to store

only the start position of this substring as the end position can be deduced from the

start position of the child (for a branch node) or is simply a suffix offset in S (for a

leaf node). In a straightforward implementation, each ST node has pointers to all its

child nodes. These pointers can be represented as an array, as a linked list, or as a hash

table [Gusfield, 1997].

Compared to linked-list index representation, hash tables and arrays are more efficient

data structures for tree traversals, since the corresponding child node can be located in

a constant time. While it is easier to implement a ST index as an array, optimization is

required for the representation, since otherwise, each node can have |Σ| entries

24

pointing to its children, plus one entry to represent the start position of the edge-label

substring. If we use an integer to represent an entry, since there are at most 2N-1

nodes in the ST for sequence S, the total storage space required is (2N-1)(|Σ| +1)

integers. For a DNA sequence, which includes four symbols (|Σ| = 4), this requires

5*(2N-1) integers, which is 20(2N-1) bytes of storage for the input of N bytes.

In this chapter, we review major array based ST index representations. They include

WOTD [Giegerich, et al., 2003], TDD [Tian et al., 2005], HST [Halachev et al., 2007],

TRELLIS [Phoophakdee and Zaki, 2007], and B2ST [Barsky et al., 2009]. We will

then propose our CBST index representation.

WOTD Index Representation

The WOTD ST representation [Giegerich, et al., 2003] derives its name from a ST

construction approach called Write Only Top Down. It is implemented as a linear array

of 32-bit elements. As shown in Figure 4(a), each branch node in the ST occupies two

adjacent elements, while a leaf node is represented as a single array element, shown in

Figure 4(b).

(L means leaf bit and R means rightmost bit)

Figure 4. WOTD Index Representation

25

For a branch node, the first 32-bit element stores in 30 bits the left pointer value,

defined in Chapter 2, and the 2 bits, called the leaf bit and the rightmost bit. A leaf bit

value 1 indicates the node is a leaf; otherwise it is a branch node. A rightmost bit

value 1 indicates that this ST node is the rightmost child of its parent. The second

32-bit element of a branch node stores a pointer to its first child, which points to its

first child position in the WOTD index.

For a leaf node, the 32-bit element stores the same information as stored in the first

element allocated for a branch node: the left pointer value, the leaf bit (always set to

1), and the rightmost bit.

As the ST nodes are evaluated and stored in a top-down, left to right manner, the

advantage of the WOTD index representation is that the edge labels can be found in

constant time, using the left pointer values. The WTOD ST representations is the most

space efficient index [Giegerich, et al., 2003]. In the worst case, it only needs 12 bytes

per character for storage space. It was shown that for real-life DNA sequences, this

index requires about 9 bytes per character on average.

A disadvantage of the WOTD index representation is its limitation to handle up to 1

gigabyte long sequence theoretically due to its 20 bits for storing the left pointer. It is

suitable only for a memory based construction algorithm. We next introduce TDD, an

external ST index which extend this representation to disk based, and overcomes this

limitation.

26

TDD Index Representation

Figure 5 shows the TDD representation. It overcomes the 1 GB limit of the WOTD

representation by introducing two additional bitmap arrays: the rightmost bit and the

leaf bit, recorded for each ST node. Compared with the WOTD index, all the 32 bits

of the first element of a branch node and a leaf node are available for recording the

left pointer value. This makes TDD capable of handling sequences of size up to 2
32

characters, i.e., 4 gigabyte.

Figure 5. The TDD Index Representation [Halachev., 2009]

Although the TDD index representation extends the WOTD index to a disk-based

algorithm, it is inadequate to support efficient disk-based query operations. We

introduce the TRELLIS and the HST ST index representations next, which improve

the search performance.

TRELLIS Index Representation

As the TDD, the TRELLIS representation [Phoophakdee and Zaki, 2007] allows for

handling sequences of size up to 4GB in theory. As introduced in Chapter 2,

27

TRELLIS ST construction algorithm partitions an input sequence by a variable-length

prefix of suffixes. It merges all the partition STs to form a final forest of STs that

shares the same prefix. Further, each prefixed ST consists of two files, one for

recording the branch nodes, and the other for recording the leaf nodes. Figures 6 (a)

and (b) show the structures of branch and leaf nodes in TRELLIS.

Figure 6. TRELLIS Index Representation

Each branch node occupies seven 4 byte elements, for a total of 28 bytes. The first

two elements represent an edge [start index, end index] between a branch node and its

parents. The next 5 elements are allocated for the branch node, representing its

outgoing edges. The child0, child1, child2, child3, and child4 denote the child with

edge starting with $, A, C, G, T characters (corresponding to DNA sequences)

respectively. The child can take either one of the three possible values:

(a) 0 or NULL, indicating no child.

(b) A number in the range [1, t], denoting a leaf node, where ‘t’ is a threshold

obtained during index construction.

(c) A number larger than t, denoting an internal node.

28

Each leaf node occupies two 4 byte elements, for a total of 8 bytes. It represents the

edge [start index, end of input string] between a leaf and its parents.

Compared to the TDD index representation, TRELLIS avoids the data skew problem

due to the variable-length prefix partitioning technique. It stores all the child elements

in a branch node which yields more efficient disk-based traversal of the ST. As a

result, the exact match search using TRELLIS is faster compared to the

memory-based TDD search [Phoophakdee and Zaki, 2007]. TRELLIS also provides

an extra option to recover its suffix links after the ST has been built. Suffix links help

to speed up the ST traversal in some search problems.

A disadvantage of TRELLIS is its index size being large and being proportionate to

the alphabet size. Even for the small, five symbol DNA alphabet (which includes A, C,

G, T, $), the size of the TRELLIS index for real-life sequences is on average 25N

bytes (and up to 50N bytes, if the suffix links are recorded as well), where N is the

number of characters in the input sequence. Being proportion to alphabet size, the

TRELLIS index is thus more suited for DNA sequences.

HST Index Representation

HST [Halachev et al., 2009] index representation combines a lookup table (LT) and

the suffix tree index STTD64, that was proposed earlier [Halachev et al. 2007]. The

LT serves as an index to the STTD64 index.

STTD64 is an extension of TDD which outperforms TDD by integrating the leaf and

rightmost bits to the node representation. Each STTD64 node is represented as a

single 64-bit record, regardless of being a branch or a leaf node. Figure 7 shows the

29

structures of branch and leaf nodes in STTD64. For both types of nodes, the first 32

bits are allocated for storing the left pointer. Bit 33 records the leaf bit value and bit

34 records the rightmost bit value. For a branch node, the remaining 30 bits are used

to store the pointer to its first child, while a leaf node stores its depth information.

Thus, the STTD64 representation requires 16 bytes for a suffix in the worst case. On

average, however, it requires 13.5N bytes for a DNA sequence of size N [Halachev et

al., 2007].

('L' means leaf bit, 'R' means rightmost bit)

Figure 7. STTD64 Index Representation

The LT index of HST is implemented as an array of pointers to STTD64 nodes. It is

used as a reference to the disk-resident STTD64 to avoid extra disk I/Os during query

processing.

The HST index has the same capability as TDD and TRELLIS and can support up to

genome level sequence, e.g. 4 gigabyte. HST supports efficient query processing by

saving the depth information in the leaf nodes and having good locality of references

with the LT index. As a result, the exact match and k-mismatch search tasks on HST

are faster than these operations with TDD and TRELLIS indexes [Halachev et al.,

2007].

As is the case with TDD, a disadvantage of HST is the data skew problem associated

30

with this index due to its fixed-length prefix partition technique. Secondly, its LT

index is constructed after the STTD64 index is built and stored to the disk; the ST

needs to be read into memory again and perform a partial exact match search. Thus, it

takes another round of disk I/Os, which results in slower index construction algorithm

compared to TRELLIS. Thirdly, the HST index construction algorithm does not scale

to input sequences larger than 4GB. The same limitation exists with TDD and

TRELLIS. The B2ST index representation [Barsky et al., 2009] (same as DIGEST

[Barsky et al., 2008]) studied next overcomes this limitation.

DIGEST and B2ST Index Representation

As DIGEST [Barsky et al., 2008] and B2ST [Barsky et al., 2009] share the same

index layout, in the sequel we only consider B2ST. As in other disk-based indexes,

B2ST organizes its ST tree nodes in an array data structure in both memory and the

disk. However, B2ST is based on the binary suffix tree (BST). Figure 8 shows the

structure of the nodes in the B2ST index.

Figure 8. B2ST Branch and Leaf Node Representation

For both branch and leaf nodes, B2ST index representation includes 6 parts, each with

31

4 bytes, for total of 24 bytes. The first part is used to store the total number of

symbols from the root to a branch node (Or the length, as all the symbols along the

path from the root to the branch node defines a prefix of all its children nodes). The

second and the third parts are used to represent a suffix of a sequence, defined as [File

No., Offset in a File], i.e., [Partition No., Offset in a partition]. The next two parts

represent two pointers for storing the left and right children location in the array. As

B2ST index is based on BST, each ST branch node can only have two children nodes.

The last part of the index stores a pointer for storing the next leaf location that has the

same LCP length information as the current node.

Since [File No., Offset in a File] defines the total length of a sequence that B2ST can

support, we can see that B2ST can support sequences up to 2
64

in length, which is

much larger than handled by any of the old ST index representations.

A disadvantage of B2ST index representation is that it is not compact. Its index size is

48 times the input size, in the worst case. Our experiments show that B2ST requires

45 bytes per character. We noted that a leaf node in B2ST does not have any children,

a branch node does need to save its offset in the string neither, and the 6
th

 part that

stores the next leaf location in B2ST index is not really necessary.

Considering the above disadvantages of B2ST, we propose a compact binary suffix

tree (CBST) index representation, introduced next chapter, which also takes

advantage of and deploys a number of techniques used in the development of the

above disk-based index representations.

32

2.5 Summary

In this chapter, we recalled some definitions and concepts regarding the suffix tree

(ST) index. We also introduced the binary ST (BST) that is based on binary alphabet,

which forms a basis for the development in this thesis. Besides, we also reviewed

major disk-based ST algorithms and their corresponding ST index representations that

are related to our work.

we studied major ST index representations. WOTD is one of the most space-saving

representations, however, it is only suitable for a memory based ST construction

algorithm. TDD and HST indexes extend WOTD to disk based algorithms, both of

which are capable to handle sequences of up to 4GB. However, both indexes suffer

from data skew problem due to their fixed-length prefix partition technique. TRELLIS

is as powerful as TDD and HST, but it is limited to DNA sequences since its index

size is larger than TDD and HST, however it can grow even larger when the alphabet

becomes larger as is the case for proteins. While B2ST (and DIGEST as well) is based

on BST, it can support longer sequences than others could handle. However, the B2ST

index representation is not compact. Our proposed compact binary ST (CBST) index

representation improves this restriction. We introduce our CBST in the next chapter.

We summarize the advantages of the above disk-based ST index as below:

All these techniques store their STs files on disk in array format. As described, array

based representations are more efficient for tree traversals, since locating a child node,

which is done frequently during query processing, could be done in constant time.

Adopting a two level index structure can support efficient disk based query

operations, for providing good locality of references to STs on disk, by saving disk

33

I/Os.

Saving valuable information in the ST nodes results in increased performance. As in

HST, by storing the depth information in the leaf nodes, it can avoid extra jumps in

traversals of the STs.

Keeping the representation compact reduces the disk space utilization as well as I/Os

time. Like WTOD and HST use two bits to identify a leaf and a rightmost child.

In the next chapter, we will present our compact binary suffix tree (CBST) index

representation, which takes the advantages of current disk-based ST representations.

We investigate efficient ways for constructing the CBST index. We then perform

extensive experiments which illustrates that our CBST outperforms the other disk

based ST technques in several ways including construction time, search, and

scalability, for short as well as long sequences. The experiments will be presidented in

chapter 4.

34

Chapter

3 CBST Representation and Construction

Algorithm

In this chapter, we first introduce our proposed compact binary ST (CBST) index

representation. Our proposed CBST takes advantage of existing disk-based ST

representations. Then we introduce our CBST index construction algorithm, which is

the improvement from B2ST. We introduce the CBST index construction algorithm

for the chromosome-scale level sequences, and then extend it to genome-scale level

and above. For ease of presentation, we introduce the CBST algorithm in two parts,

called sorting and building, however, its actual implementation we developed is

monolithic. An important feature of our implementation is that it is adaptive to the

size of the input sequence, which takes into account the available main memory and

decides the size of the partitions in order to reduce the construction time. We elaborate

on this in the sequel.

3.1 Compact Binary Suffix Tree (CBST) Index

Representation

Our CBST representation is a two-level index structure, which like to HST combines

a lookup table (LT), called dividers in B2ST [Barsky et al., 2009]. Figure 9 shows this

structure. The small, memory-resident LT serves as an index to the large, disk-resident

35

STs.

Once we add a suffix to the tree, we do not need to access it any more. Thus, we can

save our CBST nodes to consecutive array elements in both memory and disk. This is

the same as TDD, STTD64 and B2ST. Inside a binary suffix tree, all the branch nodes

can have two children only, and leaves have no child. This allows using two child

pointers for branch nodes. We can represent the entire suffix tree as a fixed size array

for branch and leaf nodes. As such, we have the same number of tree nodes as before:

the tree has one leaf and one branch node for each suffix inserted. Figures 10 and 11

show the data structure used in our CBST index to store the binary suffix trees

(BSTs).

Figure 9. The two Levels of CBST Index Representation

36

Figure 10. CBST Index Data Structure

(‘L’ means leaf bit)

Figure 11. CBST Index Representation

In CBST index representation, a branch node has 3 parts, each with 4 bytes, in which

we store the left, right child offset in the BST array, and depth information,

respectively. Recall that the depth, as defined in the context of HST index, is the

37

length of the path (the number of symbols) from the root to its parent. The leftmost bit

of the left or right child part identifies a leaf node when it is equal to 1; otherwise it

identifies a branch node. Thus, each BST can store 2
31

 nodes, i.e., 2 billion nodes. In

the following chapter we will show how to adjust this to desired size of the output

BST files.

For a leaf node of CBST index, we use 2 bytes to represent the “partition id” (in

which the suffix can be located) and use 4 bytes to store the offset of the suffix inside

the partition. This would allow CBST to represent 2
16

 partitions with up to 2
32

 suffixes

in each partition. Thus, CBST can support input sequences of size up to 2
48

, i.e., 256

terabytes in length. We remark that the CBST size could be further extended beyond

this size by adding more bits to the leaf node representation and a slight change in the

ST construction algorithm.

Thus, we have 18 bytes for each suffix being added to the ST. There is one leaf node

and one branch node per inserted suffix. This means each tree node occupies 9 bytes

on average. If CBST only needs to support one partition of size up to 4 gigabytes in

length, as handled by TDD, HST and TRELLIS, we can delete the two bytes

representing the “partition id”. This makes the CBST index work with 8 bytes per

node (similar to the HST representation). While TRELLIS representation occupies 36

bytes, B2ST occupies 48 bytes per suffix.

When writing the output of each BST to disk files, we update the LT index by storing

the file name of the BST on the disk and a predefined-length prefix of the largest

suffix (the last added suffix) inside this BST. Thus, our LT index stores the references

to each on-disk BST files. Once all the BSTs are stored to disk files, at the end, we

write the LT index to disk. Figure 11 shows the layout of the CBST index layout on

38

disk for the BST considered in Chapter 2 for sequence S.

Figure 12. CBST Representation on Disk for Sequence S = ACGTG$

In Figure 12, the top array shows the branch nodes, while at the bottom it shows the

leaf nodes array. Note that the partition id of every leaf node is 1 since there is only

one partition. The number above each array element indicates its offset. The arrows

indicate a branch node pointing to their corresponding children. The letter 'L' next to

an offset means it points to a leaf node.

During query operations, the LT index is first loaded into the memory and stays there,

while the BSTs will be loaded into the memory only when required. As illustrated in

our experiments and results, this two-level structure exhibits good locality of

reference for a disk-based ST index. Both HST and B2ST indexes considered this

two-level index structure to speed up disk-based query operations

As explained above, our CBST index was inspired by HST and B2ST and took

advantage of their features, but superseded both. The HST representation stores the

depth information in a leaf node, which helped eliminate many back-jumps in search

39

operations, which in turn led to significant decrease in the number of disk I/Os

required during search operations. Following that idea, we also store the depth

information inside each branch node in CBST, while each leaf node stores the offset

in a partition only. Both HST and CBST representations use a look-up table to locate

the corresponding subtrees to reduce the number of disk I/Os required. The third

feature borrowed from the others is the format of the data stored on the disk, i.e., the

CBST representation also stores its branch and leaf nodes to the disk in consecutive

array elements.

How to efficiently build our CBST index? Our CBST index construction algorithm

can handle different size sequences, from several mega-bytes, like human

chromosome Y (18MB) to several gigabytes, such as the whole 24 human

chromosomes (3GB). That is, our proposed algorithm is suitable for

chromosome-scale as well as genome-scale level sequences. In principle, CBST can

handle huge input sequences of size up to 256 terabytes.

3.2 The CBST Algorithm for Chromosome-Scale Sequences

As mentioned earlier, we can convert each suffix tree into a suffix array (SA) in linear

time by a depth-first traversal of the suffix tree. We can also convert the suffix array

into a suffix tree in linear time, provided that the suffix array is augmented with the

LCP length information between consecutive suffixes in the suffix array [Cameron,

2006]. We build our CBST index by first building the SAs.

For building a ST from sorted suffixes, we incrementally add the next suffix by

40

comparing it to the last added suffix alphabet by alphabet, in order to identify the

storing location in the tree. This could be done easily for a binary suffix tree

construction, since we only need to consider 0 and 1 branches. Due to the suffixes are

sorted, the current suffix will be larger than the last one added, for which the first bit

after the LCP length information (The prefix with the LCP length of the two suffixes

are the same) should be ‘1’ (1>0). Thus, we can follow the path from the root to the

last suffix added in the tree, and traverse down for the LCP length information, until

we get to the storing location. We then insert a new branch node and move the

sub-tree below it to its left child, and add the current suffix to its right child. These

steps are formally expressed in the construction algorithm shown in Figure 13.

The CBST algorithm for chromosome-scale includes two main steps: sorting and tree

building. The longest human chromosome sequence is chromosome 2, with about

250MB. Thus, with a 2GB RAM in typical desktop computers today, we load each

one of the human chromosomes into the main memory, sort them, and then obtain the

suffix array. The remaining memory is used as an output buffer for building STs. For

sorting the suffixes, we use an efficient sorting algorithm, called MSufSort [Michael

and Simon, 2008], discussed in the following section 4.2. Once, all the suffixes are

sorted, we add the sorted suffixes to the output buffer one by one and incrementally

build the BSTs. Once the buffer is full, we flush it to the BST files on disk and update

the LT index at the same time. We then re-initialize the buffer and start building a new

BST again until all the sorted suffixes are dealt with. This creates on disk a collection

of balanced tree files, all of which, except the last one, are of the same size as the

output buffer. Finally, we write the LT index to a disk file. Following the presentation

of the algorithm, we use a short sequence to demonstrate how the CBST algorithm

works.

41

42

Figure 13. The Pseudcode for CBST Construction Algotithm

43

In the above algorithm, the boundary path refers to the path from the root to the last

added suffix on the BST.

Let us use the sequence S=ACGTG$ as an example to illustrate the CBST index

construction algorithm. There are 5 suffixes in S, which we call as S0, …, S4. After

sorting, we can easily get the SA of S as: [0, 1, 4, 2, 3]. Let us convert S to a binary

sequence B=0001101110$ by using A=00, C=01, G=10, and T=11. Table 1 below

shows every sorted suffix and its binary representation, the binary LCP length

between any two adjacent sorted suffixes, as well as the first bit of a suffix after the

LCP length.

Table 1. SA with LCP Length Information for Sequence S

Our CBST index representation and the corresponding index construction algorithm

are based on binary representation of the input sequence. However, in our

implementation, we do not convert input sequence into binary. Instead, we take

advantage of the efficient BST construction technique [Barsky et al., 2008]. In our

illustrative example below, we use binary form for ease of presentation. In order to

build BST, we only need to keep the LCP length information in binary format and the

first bit after the LCP length. For example, for DNA sequences, we need 2 bits to

represent the 4 alphabet letters (‘A’=00, ’C’=01, ’G’=10, ’T’=11). We thus can get the

SA# Suffix Binary Suffix
The LCP Length in

binary

The first bit

after LCP

length

S0 ACGTG 0001101110 * 0

S1 CGTG 01101110 1 1

S4 G 10 0 1

S2 GTG 101110 2 1

S3 TG 1110 1 1

44

LCP length in binary in two situations only:

1. The LCP length in binary is twice the original LCP length, if the next two

letters after the original LCP length are either ‘G’ (=10) and ‘C’ (=01), or A

(=00) and T (=11), for the two consecutive suffixes.

2. The LCP length in binary is twice the original LCP length plus 1, otherwise.

We start to build the BST in the output buffer from a root with no left and right

children. The suffix S0 is the smallest one among all the suffixes of S, which we add

to the output buffer. Since its first bit is ‘0’, we add S0 as the left child of the root. See

Figure 14(a).

Figure 14. Construction of BST: (a). Adding S0; (b). Adding S1; (c). Adding S4

Then, we add the next suffix S1 to the tree. As the LCP length in binary between S0

and S1 is 1, we traverse down from the root along the edge to the suffix S0, and count

1 bit to divide the edge between the root and S0, and add a new internal node, Node 1.

45

As the second bit of S1 is ‘1’, we add S1 to be the child[1] of this new internal node,

and move the sub-tree below this dividing point to its left child. The BST will be

updated as Figure 14(b).

Next, we add S4. Since the LCP binary length between S4 and S1 is 0, counting down

from the root, S4 is determined to be the child of the root. Since the first bit of S4 is 1,

we add S4 as child[1] of the root, shown in Figure 14(c).

Same for adding S2 and S3. Figure 15 shows the tree after adding S2. After adding the

last suffix S3, the final BST is the one shown in Figure 3 in Chapter 2.

Figure 15. The BST Index After Adding the Suffix S2

For the CBST construction algorithm, after all the suffixes are sorted in

lexicographical order, we start by adding the smallest suffix in the buffer. For each

step, we keep the path from the root to the last suffix added suffix to the tree. This

path, called the boundary path (Refer to the figure 13), is the path in the suffix tree

which corresponds to the largest lexicographical suffix being added [Barsky et al.,

46

2008]. Then following this path, we count down the LCP binary length along the

edges and nodes, until we get to the inserting point. Proposition 1 below establishes

the correctness of this process for building BST, the binary suffix tree. We remark that

in order to identify the inserting point when building a ST for an alphabet different

than binary, we need to calculate the LCP length for current suffix and all the

remaining suffixes.

Proposition 1 [Barsky et al., 2008]

Let S be an input sequence, BST be a binary suffix tree being built, S[i] be the last

suffix added to the ST, S[j] be the next suffix after S[i] to add to the BST, and LCP[i,j]

is the LCP between S[j] and S[i]. Then, the split edge for S[j] lies on the boundary

path of the BST, which is the path (including all the edges, internal and leaf nodes)

from the root to the last added suffix S[i].

Proof: Since S[i] is the last suffix added to the BST, i.e., S[i] is the sub-string of S at

positions i to N, the boundary path of BST corresponding to S[i] covers all the

prefixes of S[i] including the sub-string S(i,i+LCP[i,j]). As S(j,j+LCP[i,j]) =

S(i,i+LCP[i,j]), S[j] must be on the boundary path of the BST (which shares the same

|LCP(i,j)| length of the path from root as S[i]), which corresponds to S[i] from the

root.

Once we identified the inserting point for the current suffix S[j] to be added, we have

to compare the symbols between S[j] and the suffix tree after the length of LCP[i,j].

Normally, we need to compare S[j] with all the branches in the suffix tree in order to

47

decide to which child of S[i] we should add S[j]. However for a BST, we have only

two branches (0 or 1 child) to consider. Thus, S[j] has to be the right child (that is,

child[1[) of the insert node since S[j] is larger than S[i]. The only exception is when

the LCP length is equal to the length of the last suffix added. In this case, we may

need to add the current suffix to the left child (that is, child[0]) of the last suffix added

if the first bit after the LCP length of the current suffix is 0.

3.3 Sorting Suffixes in the CBST Algorithm

Suffix sorting is a key step in numerous applications, and is defined as the task of

listing all the suffixes of a string or sequence in lexicographic order. Notable

examples of such applications in our context include construction of the suffix array

data structure and the Burrows-Wheeler transformation (BWT) [Burrows and Wheeler,

1994]. The BWT technique provides lossless compression, used as the main idea in

the development of popular tools such as bzip2 [Seward, 2011]. Suffix sorting is also

the main bottleneck in our CBST algorithm. Based on our experiments, this step takes

more than 80% of the total index construction time. Thus, in order to speedup the

construction, we need to have a fast sorting algorithm. At the same time, the suffix

sorting algorithm should also be “lightweight”, that is, should require small memory

space. The B2ST algorithm uses the Qsufsort [Larsson and Sdakane, 1999] for sorting

the suffixes. In our CBST algorithm, instead, we decided to adopt and use the

Msufsort technique [Michael and Simon, 2008] to sort indexes. This decision was

based on the report in [SACA_Benchmarks, 2011]. We next compare these two suffix

sorting techniques.

48

Qsufsort [Larsson and Sdakane, 1999] is one of the most efficient implementations of

suffix sorting algorithm which uses the prefix-doubling technique. Qsufsort performs

several rounds and at each round, it adopts the ternary-split quicksort (TSQS)

technique proposed in [Bentley and Mcilroy, 1993]. The space complexity of Qsufsort

is 8N, for an input sequence of size N, and its time complexity is O(NlogN) in the

worse case.

In implementation of the CBST algorithm, we initially used Qsufsort for suffix sorting,

however,we found three disadvantages. First, it requires the input sequence to be

integers, that is, we needed an extra step to convert a DNA sequence into a number

sequence. The second disadvantage of Qsufsort is its large space requirement (8N),

which implies, compared to other techniques such as Msufsort [Michael and Simon,

2008], we can sort fewer suffixes using the same amount of main memory. We

elaborate more on this in the next chapter, but at this point we should mention that the

ability of sorting larger number of suffixes using the same amount of main memory

will result in creating fewer number of partitions, and hence improved index

construction. The third disadvantage of the Qsufsort algorithm is its speed, which we

found to be slower than Msufsort [Michael and Simon, 2008]. The Msufsort [Michael

and Simon, 2008] suffix sorting algorithm is shown to be a very space efficient and

fast technique on [SACA_Benchmarks, 2011]. It manipulates the inverse suffix array

(ISA) rather than the SA, where ISA is defined as the array ISA[j]=i, iff SA[i]=j. Thus,

ISA provides the lexicographic rank of all the suffixes. It groups together all the

suffixes having the same first character to form chains of suffixes, called bucket. Then

it starts to assign ranks to the suffixes in each bucket in lexicographical order, and

then use these ranks subsequently to speed up the assignment of ranks to the other

suffixes. When the algorithm completes, every suffix has been assigned a unique rank,

49

based on its lexicographical order. Finally, it converts ISA to SA. The core of

MSufSort is an efficient bucket sorting regime, called induction sorting [Michael and

Simon, 2008]. The Msufsort algorithm is also called “lightweight” since it only needs

(4+Z)×N working space, where Z is the number of bytes required per input symbol.

For a DNA string, using one byte to represent each of the letters {A, C, G, T},

Msufsort requires only 5N bytes. The time complexity of Msufsort is O(N
2
logN)

[Simon, 2005].

Table 2. Comparison between Qsufsort and Msufsort

In order to compare the two algorithms for sorting speed for the real DNA sequences,

we test them on a Lenova ThinkStation 4220 with Intel(R) Xeon(R), CPU X3450 @ 2.67GHz,

2GB RAM, and 8192 KB cache size. Table 2 shows the results for the two sorting

algorithms for real DNA sequences of different sizes. The results clearly indicates that

on all these sequences, Msufsort outperforms over Qsufsort. In terms of space

requirements, Msufsort is more space efficient for requiring only 5N bytes, as

opposed to 8N required by Qsufsort. As will be explained, using the suffix sorting

algorithm Msufsort in the CBST index construction technique, we can create fewer

number of large partitiones, which in turn results in increased efficiency.

Human Chromosomes
Sorting Time (Seconds)

QsufSort MsufSort

Chr19 (56MB) 12 8

Chr9 (112MB) 32 23

Chr6 (171MB) 90 51

Chr1 (238MB) 111 62

Space requirement 8*N bytes 5*N bytes

Time complexity O(n log n) O(n
2
 log n)

50

3.4 The CBST Algorithm for Genome-Scale Sequences and

Larger

Our index construction technique is suitable for short sequences as well as very long

sequences, such as genome-scale sequences and beyond, even when the input

sequence is larger than the size of the available main memory. Recall that TDD, HST

and TRELLIS algorithms require the input sequence to be in the main memory, and

hence their capability to handle large sequences is limited by the available memory. In

order to overcome this limitation to some extent, they resort to some compression

method, using two bits to represent the DNA alphabet symbols. This allows them to

build ST index for the entire human genome when the computer has 2GB RAM. This,

however, is the largest sequence they can handle efficiently, or their efficiency reduces

significantly for performing many random disk I/Os. The TRELLIS+ algorithm is an

extension of TRELLIS which uses a buffering strategy for parts of the sequence,

while the DIGEST algorithm adopts a method to buffer some fixed size prefix of each

suffix. However, neither TRELLIS+ nor DIGEST can handle sequences larger than

human genome-scale efficiently on a computer with 2GB RAM. Recently, the B2ST

algorithm has been proposed, which partitions a long sequence, and then uses a

sort-merge technique to sorts these partitions, and then merges them to BSTs. Our

CBST algorithm for long sequences, introduced next, is an extension of the B2ST

algorithm.

For the genome-scale and longer sequences, our CBST algorithm takes a “divide and

conquer” approach and divides a long input sequence into short ones, called partitions,

for which we can build SAs in the main memory. It then sorts the partitions and

merges them to build the final BSTs on disk. Thus, our CBST algorithm performs

51

three main phases: (a). Partitioning the input sequence; (b). Sorting each partition; (c).

Merging all the partitions to build the final trees, in the order mentioned. We next

discuss details of each of these phases.

Creating partitions

We divide a long input sequence into a number of short sequences, called partitions.

The size of each partition is determined by the amount of main memory available. In

order to sort a partition and build its corresponding SA, we use the sorting algorithm

Msufsort [Michael and Simon, 2008], which requires 5N bytes memory space, where

N is the size of each partition. We also keep a small size of memory for an output

buffer for building BSTs, then flushing to on-disk SA files once full. This is an

additional step comparing to the chromosome scale algorithm introduced above in

section 4.2 due to the large size of the input and the memory limitation, In our work

using a typical desktop computer with 2GB RAM, we managed to sort a partition of

about 330 MB.

When we divide the input sequence into partitions, we also add a short ‘tail’ to each

partition, except the last one. And this ‘tail’ is not a substring of the partition. We get

this ‘tail’ from the next partition, which is a short prefix of the next partition. This

prefix serves as a sentinel to make sure all the suffixes in a partition are in the same

order as they are in the original sequence. The following proposition from [Barsky et

al., 2008] estabilishes this is necessary and sufficient. For two suffixes S[i] and S[j] of

a big sequence S, we use the notation S[i] <= S[j] to mean S[i] is smaller or equal to

S[j] in lexicographical order.

52

Proposition 2

Let S be a long sequence, Pk be the ‘k’th partition of S (not the last partition), t be the

‘tail’ of Pk, which is a short prefix of the partition P(k+1) and is not a substring of Pk,

S[i] and S[j] be the suffixes of S starting at positions i and j, respectively, and Pk[i]

and Pk[j] be the suffixes of P starting at i and j (globally). Pk[i]·t means the

concatenation Pk[i] and the tail ‘t’. Then, the concatenation Pk[i]·t<Pk[j]·t if and only

if S[i]<S[j], here the sign ‘<” means lexicographically smaller while comparing two

strings.

Proof: The Only if part. This is straightforward.

The If part. Without loss of generality, let us suppose i<j, i.e., the length of Pk[i] is

larger than Pk[j]. As the tail ‘t’ is not a substring of partition Pk, Pk[j]·t cannot be a

prefix of Pk[i]·t. Let us assume the LCP length between Pi·t and Pj·t is L, and suppose

C(i+L+1) and C(j+L+1) are the first letter of Pk[i] and Pk[j] after the LCP length,

which must be different. Clearly, if C(i+L+1) > C(j+L+1) (or <) lexicographically,

then Si > Sj (or <).

The partitioning phase is presented in Figure 16. The short tail guarantees the global

order of the suffixes in each partition. We can determine it by keep reading from the

next partition until we get a unique one for the current partition. If we cannot find it,

we need to increase the size of a partition. In our experiments, we found that, for

DNA sequences, the tail length does not exceed 125 characters when the partition size

is about 150 MB. This explains why the tail is a “short” prefix.

53

Figure 16. The Pseudocode for Partitioning Phase

Sorting Phase

In this phase, CBST performs two steps. Firstly, it sorts each partition and outputs

its corresponding SA to a file on the disk. As the second step, CBST loads every

possible partition pairs sequentially to the memory, and collects the longest common

prefix (LCP) length with the order information for all the suffixes inside the partition

pair. At the same time, we also collect a fixed length of prefix of each suffix in order

to refer to it during the merging phase, introduced next. The tails will be excluded

from the output SAs. Thus, if we have K partitions, the CBST algorithm collects the

54

LCP length and order information for K(K-1)/2 partition pairs. For example, these

pairs include partition 0 with 1, 2, ..., (K-1), then partition 1 with 2,3,,(K-1), until

partition (K-2) with (K-1).

In the sorting phase, presented in Figure 17, our CBST algorithm differs from B2ST

in three ways. First, we use the Msufsort algorithm, which is faster and more space

efficient than Qsufsort used in B2ST. The second difference is that CBST sorts each

partition separately, while B2ST sorts suffixes based on partition pairs. For this, the

B2ST algorithm concatenates partition pairs and includes their tails. It then collects

the SAs for each partition and the LCP length and order information for each partition

pairs. As a result, B2ST needs to sort more partition pairs, which is the key factor

responsible for increased construction time. For example, sorting partition pairs using

a typical computer with 2GB RAM, the maximum partition size that can be handled

would be 200MB (=2000MB / 5bytes per symbol / 2 partitions). Considering the

memory allocation for buffers to collect the LCP length and the prefix of suffix

information, the size of a partition which B2ST processes will be even smaller. In our

initial experiments with B2ST, the maximum partition size it could handle in a 2GB

RAM was 150MB. This leads to increased number of partitions and hence longer

sorting phase, resulting in long index construction time. The last difference is that

CBST avoids converting the original sequence to number and binary format, which

saves an extra time for the index construction comparing to B2ST.

55

Figure 17. The Pseudocode for Sorting Phase

At the end of this phase, for a sequence S with K partitions, we have collected the

following two sets of data files on the disk:

 Each SA for K partitions, and the fixed length of prefix of each suffix;

56

 K(K-1)/2 LCP lengths and suffix order information for all partition pairs.

With the above information, we can get all the suffixes in global order. Then we can

build the BSTs for the input sequence S using the algorithm shown in Figure 13,

phase II. We do not need to load the entire input sequence into the main memory

again. Actually, we will never need to access the input sequence again.

Merging Phase

In this phase, our CBST algorithm uses the external two-phase multi-way merge-sort

technique (2PMMS) [Garcia-Molina et al., 1999]. This is the same technique used in

the B2ST algorithm. Normally, the K partitioned SAs will need K input buffers and

K(K-1)/2 LCP length and order information input buffers in memory, and another

output buffer for building BST. Figure 18 shows the the merging phase.

Once all the buffers are initialized, CBST starts to fill the input buffers with SAs and

the LCP length and order information. A competition will be run against the top suffix

inside all the SA buffers. The winner (smallest suffix) will be added to the output

buffer. CBST keeps re-filling any one of the input buffers if it is exhausted, until all

the suffixes inside all the SAs have being added to the output buffer (or the final

ST).

57

Figure 18. The merging in the CBST Index Construction Algorithm

Every suffix being added to the output buffer, CBST incrementally adds it to the BST

using the algorithm presented as Phase II in Figure 13. Once the output buffer is full,

it is flushed to a BST file on the disk. At the same time, CBST updates the LT index

with the name of the files in which we saved BST and the predefined length prefix

(refer to the sorting phase) of the last added suffix to this tree.

The whole merging phase will end after all the suffixes from all the SAs (all the

partitions) are being added to the final trees. Finally, we output the LT index to a disk

file also, which is an index to all the on disk balanced BSTs. Note, CBST algorithm

accesses disk sequentially for both re-filling the input buffers and flushing output

buffer to disk trees. Compared to random disk I/Os, the sequential scan saves

58

considerable time, as shown in our experiments. We present our experiments and

results in Chapter 5.

3.5 Analysis of the CBST Algorithm

Our CBST algorithm is designed to support both short and long input sequences, and

even sequences which do not fit in the main memory. It does not require the whole

input to be resident in the memory. It also has very good locality of reference for tree

construction. This is because the CBST algorithm performs sequential access to disk

for both loading the input string and flushing the trees built. Given a sequence S with

N symbols, we divide S into K partitions in order to build the SAs in the memory. In

both partitioning and merging phases, the time complexity of CBST algorithm is O(N),

that is, linear in the size of the input sequence. The time complexity of CBST for

sorting is O(N
2
logN), for using the Msufsort suffix sorting algorithm. Thus, the

overall running time of the CBST algorithm is O(N
2
logN), in the worst case.

3.6 Exact Match Algorithm Based on CBST Index

Exact match (EM) search is at the core of numerous exact and similarity

(approximate) search applications in bioinformatics, and occupies 85% of the overall

search time [Cameron, 2006]. In our work, we implemented a similar EM solution to

the one proposed in [Halachev et al., 2005], which extends the memory based STEM

technique to a disk based technique using buffering strategy. Figure 19 shows the EM

algorithm that works based on the CBST index.

59

60

Figure 19. EM Search Algorithm On the CBST Index

The EM algorithm based on CBST index includes three components: buffer

management, finding the answer node, and final verification. In first step, we only

load the query set and the LT index in the main memory; the BSTs are read only when

required. Once a BST is being loaded, we traverse the BST according to the query

pattern bits (binary) until reaching a leaf or an internal node that its depth is equal to

the length of the query pattern (in binary). We call the located leaf or the internal

nodes are the answer node. Unlike traversing a traditional ST, the EM algorithm based

on CBST index avoids comparing each character with the query pattern along the

edges under a certain internal node. When the bit of the pattern is ‘1’, then we

continue searching on the right child subtree (or child[1]), otherwise on the left child

61

subtree (child[0]). In the last step, we verify the search result. If the answer node is a

leaf node, then we simply verify it with the input. If the answer node is a internal node,

we verify the smallest suffix (or the first leaf if traversing from top to down, left to

right) under this answer node with the input. If it is the desired answer, then all the

leaves of the answer node are query results.

We use a simple example to show how to find the answer root query pattern P=’G’ for

the BST example in Figure 3. We list below the BST with traversing path in Figure 20.

The arrows show the traverse path for the query pattern P.

By applying the same encoding rule as the CBST tree, the query pattern P in binary is

equal to “10”. We traverse the BST starting from the root to its right child of the root,

then go to the left child of the branch node 3. We reach the answer root - the branch

node 2. The leaves of node 2 indicates the final two suffixes are S4 and S2.

Figure 20. EM Searching for Query P='G'

62

3.7 Summary

In this chapter, we introduced the CBST index construction algorithm for sequences

of a wide ranges of sizes, short to very long. We also developed an exact match search

algorithm (EM) based on the CBST index. Our CBST algorithm is an extension of the

B2ST algorithm, but as will be shown in the next chapter, CBST out-pereforms B2ST

and requires less disk and main memory space, due to the compact representation of

CBST index and the “lightweight” suffix sorting algorithm it uses. Compared to TDD,

HST and TRELLIS, all of which require the entire input sequence to be in the main

memory during the index construction, our CBST algorithm overcomes this

restriction and avoids data skew problem. Moreover, CBST produces balanced and

equal size BSTs in disk files.

The two level index data structure of CBST provides good locality of reference for

disk based query processing. The disk-based trees are only loaded when required.

Besides, the size of the BSTs is also the key issue for disk-based ST index. Given a

query, a large size ST would mean long time would be required to load the tree into

the main memory. Thus, another important feature of our CBST algorithm is that we

can adjust the final size of the BSTs to the disk without increasing the index

construction time and space. This is not true for other disk-based ST algorithms but

the DIGEST and B2ST algorithms. Our extensive experiments and results obtained

confirms all of the above. They are discussed in the following chapter.

63

Chapter

4 Experiments and Results

In this chapter, we evaluate the CBST index representation and its construction and

search techniques. We compare CBST to the best known techniques in terms of the

index construction time, the index size, and exact match (EM) search performance.

The B2ST [Barsky et al., 2009] is the most recent disk based ST construction

algorithm. It has being reported to be the fastest among the disk based ST algorithms

for sequences larger than the human genome. We consider it in our study when

comparing the performance of techniques that can handle large sequences. The source

code for B2ST was made available to us by the authors, for which we are thankful

[Barsky, 2011].

Both TRELLIS [Phoophakdee and Zaki, 2007] and HST [Halachev et al., 2007] can

be used for creating ST indexes for large sequences like human genome. Both

techniques are shown to perform well for disk based search operations. We compare

them with our CBST for individual chromosomes as well as genome sequences. We

obtained the codes for both algorithms from the authors (the binary code of TRELLIS,

and the source code of HST). However, we faced problem running the HST code for

the second level index and hence consider STTD64 [Halachev et al., 2007], the first

level of HST index, in our performance evaluation and comparison of index

construction time and storage requirements.

We also include suffix array (SA) based techniques in our comparison. For this, we

64

consider Vmatch [Vmatch, 2011] which is a commercial software tool that

implements enhanced SA (ESA) [Abouelhoda et al., 2004]. It is a memory based

algorithm and can only support chromosome-scale level sequences under a typical

desktop of 2GB RAM). There is a disk based SA index construction algorithm, called

DC3 [Dementiev et al., 2005], which uses the pipe-line technique and needs multiple

disks. It only constructs the basic SA and has been shown to be inferior to TDD [Tian

et al., 2005] on a typical computer. Thus we only include Vmatch in our comparison

for chromosome-scale level sequences, although it is not disk based. After authorized

by the authors, we obtained Vmatch code from their web site [Vmatch, 2011].

We implemented our CBST algorithm in C++ and compiled under Eclipse Galileo

Version 3.5.1 (build id: M20090917-0800) with optimization parameters “-O3 -Wall

-c -fmessage-length=0. The code for Msufsort [Michael and Simon, 2008] was

obtained from [Michael, 201]. We conducted all our experiments on a Lenovo

ThinkStation 4220 with Intel(R) Xeon(R), CPU X3450 @ 2.67GHz, 2GB RAM, and

8192 KB cache size. The desktop runs Fedora release 13 (Goddard).

Next, we describe the DNA sequence data we used in our experiments. Then, we

describe how to adjust the parameters for our CBST algorithm to get the best

performance. After that, we compare the performance of CBST and other techniques,

based on the construction time, storage space requirements, and the exact match (EM)

performance.

4.1 Experiment Sequence Data

The sequences we used in our experiments include all the 24 human chromosomes,

65

downloaded from [NCBI, 2011], and the chimpanzee and zebra fish genomes from

[USCS, 2011]. The chimpanzee DNA sequence has around 3.2 GB, while zebra fish

has around 1.3 GB. Figure 21 shows the size of the 24 human chromosomes in MB.

24 Human Chromosomes

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 X

Chromosomes

S
iz

e
 (

M
B

)

Figure 21. The 24 Human Chromosomes and Their Sizes

Our CBST algorithm is effective in handling short to very long sequences. In our

performance study, we classify our experiments based on the size of the input

sequences into 4 types, described as follows.

● Type 1: short sequences of size up to 250 MB. This includes each one of the 24

human chromosomes sequences;

● Type 2: medium size sequences up to 1 GB. For this, we consider the

concatenation of the human chromosomes 1 and 2;

66

● Type 3: long sequences between 1 GB and 4 GB. For this, we concatenate all

the 24 human chromosomes;

● Type 4: very long sequences with more than 4 GB. For this, we concatenate the

24 human chromosomes, chimpanzee, and zebra fish sequences.

4.2 Adjusting the Parameters for CBST Construction

Algorithm

Our CBST index representation can support up to 256 terabytes long sequences in

theory. It can adapt to the size of a given input sequence and the available main

memory, and decide the number of partitions needed for the sequence. In our

experiments, we found two key parameters that heavily influence the performance of

the CBST algorithm: the number of partitions and the output buffer size. As the CBST

algorithm needs to collect the LCP length information for any partition pairs, more

number of partitions would mean more number of LCP length pairs information

required to be sorted and collected. It would also mean more disk I/Os. While another

key parameter of CBST algorithm is the size of the output buffer. As mentioned in

Chapter 5 and 6, the CBST algorithm outputs balanced, equal size BSTs on disk

(except for the last BST), which is defined by the size of the output buffer. We noted

that the performance of search operations heavily relies on the size of the BSTs on

disk. We show the best values for these two parameters of CBST algorithm based on

experiments on our computer system setup.

67

Choosing the Number of Partitions

We first perform experiments on the “Type 2” data sequence for CBST algorithm with

different sizes of partition but with a fixed size (50 MB) output buffer. Table 3 shows

the results. As the partition size decreases and the number of partitions increases, the

whole index construction takes more time. The construction time for the same

sequence with 6 partitions is doubled compared to when considering only 2 partitions.

Thus, under the main memory limitation, CBST needs to divide a sequence into few

partitions as possible in order to gain fast construction. This indicates when more

memory is available, the construction will require less time.

Table 3. CBST Construction on “Type 2” Data with Output Buffer of Size 50MB

Partition Size (MB) Number of Partitions Construction Time (Seconds)

1 330 2 480

2 190 3 550

3 120 4 679

4 100 5 850

5 80 6 974

In our experiments, we chose 330MB as the partition size based on our computer with

2GB RAM.

Choosing the Output Buffer Size

In order to find how the size of the BSTs influences the EM search performance, we

run the CBST algorithm 4 times with different output buffer size for the “Type 3” data.

68

Then, we obtained the following 4 groups of different sizes of BSTs on the disk:

7MB, 10MB, 100MB, and 1GB. In each group, all the BSTs are of the same size

(except for the last tree) since CBST produces balanced equal size of trees. For

example, for the first group, all the trees produced are of size 7MB. We then

performed the exact match (EM) search queries based on each group trees. We also

created and used two query sets: Set-100 and Set-1000. Set-100 included 100 query

patterns, while Set-1000 inlcuded 1000 query patterns. In each query set, we

randomly extracted the query patterns from the human chromosome 2 with different

lengths: 7, 11, 15, 41 and 91. For example, Set-100 with pattern length 7 included 100

queries and each query included a pattern with 7 symbols. Table 4 shows the results of

these experiments.

Table 4. Query Results with Different Sub-ST Sizes for “Type 3” Data

Query Sets Query Time (Seconds) with Different BST Size (MB)

Query Set
Pattern

Length
1000MB 100MB 10MB 7MB

Set-100

7 415 109 13 15

11 383 72 9 10

15 375 72 8 12

41 385 73 8 11

91 367 70 8 10

Set-1000

7 877 752 80 175

11 475 369 73 92

15 464 355 71 96

41 462 310 72 99

91 462 353 71 95

The results of our experiments indicate that when the size of the on-disk BSTs reduces

69

from 1GB to 100MB, we get a speed-up of 5 for processing the set of 100 queries,

and speed-up of 1.5 for the set of 1000 queries. If we keep reducing the size of the

BSTs to 10M, the EM search performance tends to improve, until the size of the BSTs

reaches to 7MB. As the EM algorithm introduced in Chapter 4, for a query set, we

load and keep the LT index inside the memory, while loading the BSTs only when

required. Thus, the EM search performance is based on the disk access speed and the

size of the BSTs.

In our experiments, we chose 10MB as the output buffer size for building the CBST

index BSTs, and the EM search queries are based on this size of the BSTs.

4.3 Index Construction Time

Results for “Type 1” Sequence

We compare the performance of the construction algorithms of CBST with existing

indexing techniques for chromosome-scale level sequences. These techniques include

Vmatch, TRELLIS and STTD64. According to the “readme” file for TRELLIS source,

we set its initial prefix length to 3 for the “Type 1” sequences. Figures 22 and 23 show

the results for the 24 human chromosomes. The B2ST code we have worked only for

the “Types 3 and 4” sequences. and hence we do not consider B2ST here for the

“Type 1” category.

70

Index Construction Time

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Human Chromosomes

S
e
c
o
n
d

CBST

STTD64

Vmatch

Trellis

Figure 22. Index Construction Time Comparison

71

Index Construction Time

0

20
40

60
80

100

120
140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Human Chromosomes

S
e
c
o
n
d

CBST

Vmatch

Figure 23. Comparison of CBST and Vmatch Index Construction Times

For the “Type 1” data, CBST is twice faster than STTD64 and three times faster than

TRELLIS on each of the 24 choromosomes. This is mainly due to better locality of

reference of CBST and the fast sorting algorithm it uses. Providing enough memory

(2GB in our context), the STTD64 algorithm performs better than TRELLIS on short

sequences. Recall that STTD64 loads a sequence into memory partitions it, and then

loads each partition again to build the final suffix tree. That is, STTD64 performs 4

disk I/Os, while CBST performs only 2 disk I/Os. This is because for short sequences,

CBST can load and sort a sequence to memory once, and then build BSTs

incrementally in the output buffer; once the buffer is full, it is flushed to disk.

For index construction, the performance of CBST is close to Vmatch, which is

memory based. When the input sequence is no more than 150 MB, Vmatch and

72

CBST show similar performance for index construction. However, the advantage of

CBST is that it is adaptabile, in that knowing the size of the available main memory, it

can decide the number of required partitions and hence adapts itself suitably to short

and long sequences accordingly. the number of partitions required. For short

sequences of the “Type 1”, CBST needs only one partition for a 2GB main memory.

We next compare the CBST algorithm to others on long sequences.

Results for Sequences of “Types 2, 3 and 4” Sequences

Table 5 shows the performance of different index construction algorithms for

sequences of the “Types 2, 3 and 4”. Due to STTD64 and TRELLIS can not support

“Type 4” data sets, we use an ‘n/a’ in the table to indicate that the experiment could

not be carried out. Memory-based Vmatch is not capable to these three types of

sequences.

Table 5. Comparison of Index Construction Times for HST, B2ST and CBST

Data set Sequences STTD64 TRELLIS B2ST CBST

Type-2
Human Chr1 & 2 (total

size:461MB)
10m19s 25m51s 21m18s 8m01s

Type-3
24 Human chromosomes

(total size:2.85GB)
11h32m 4h30m 4h5m 2h57m

Type-4

24 Human chromosomes &

chimpanzee & zebra fish

genomes (total size:7.67GB)

n/a n/a 13h12m 9h47m

73

CBST outperformes the disk based algorithms: TRELLIS, STTD64 and B2ST.

Compared to B2ST, CBST has two advantages: (1) uses a fast and space efficient

sorting algorithm and (2) produces compact BST representation (CBST). These two

factors together result in reduced time for sequential I/Os. STTD64 is slow on “Type

3” data set, because it needs to keep the whole input sequence in the main memory for

better locality of references. This in turn leaves less space for STTD64 to keep its

dynamic buffers. We remark that in our experiments, B2ST index construction

algorithm was slower than reported in [Barsky et al., 2009], perhaps due to different

computer setups.

4.4 Index Storage Requirements

Normally, the size of a suffix tree index is linear in the size of the input sequence.

Thus, In this section, we only compare the space requirements for ST index for “Type

1” and “Type 3” data, which are the chromosome-scale and genome-scale sequeces.

We choose these two types of sequences due to Vmatch is only capable to

chromosome-scale sequences and both STTD64 and TRELLIS are only capable to

genome-scale sequences. The other types of data will get the similar results to these

two data sets.

Index Storage Requirements for “Type 1” Sequences

Table 6 shows the storage requirement comparison for “Type 1” data. It includes both

74

the total index size and the average size of each 24 human chromosome. For the

TRELLIS algorithm, we collect the data without the suffix links. TRELLIS takes

more disk spaces If including the suffix links. The B2ST was coded only for the

“Types 3 and 4” sequences and hence not included here.

Table 6. Index Storage for “Type 1” Data

Total Size (GB) Average Size (Byte per alphabet)

Chr# CBST STTD64 Vmatch TRELLIS CBST STTD64 Vmatch TRELLIS

1 4.26 2.86 2.77 5.74 19.12 12.83 12.43 25.78

2 4.56 3.05 2.96 6.12 19.14 12.82 12.45 25.71

3 3.80 2.54 2.47 5.11 19.17 12.85 12.47 25.80

4 3.63 2.43 2.36 4.56 19.17 12.85 12.47 24.05

5 3.41 2.29 2.22 4.59 19.16 12.84 12.46 25.78

6 3.27 2.20 2.13 4.41 19.16 12.85 12.46 25.81

7 2.96 1.99 1.93 4.00 19.09 12.82 12.42 25.77

8 2.75 1.84 1.79 3.69 19.16 12.83 12.46 25.74

9 2.14 1.43 1.39 2.87 19.06 12.77 12.40 25.62

10 2.50 1.68 1.63 3.37 19.14 12.82 12.44 25.73

11 2.54 1.71 1.65 3.43 19.16 12.85 12.46 25.81

12 2.54 1.70 1.65 3.42 19.14 12.85 12.45 25.83

13 1.85 1.24 1.21 2.48 19.17 12.81 12.47 25.67

14 1.70 1.14 1.10 2.29 19.15 12.84 12.45 25.77

15 1.52 1.02 0.99 2.04 19.07 12.78 12.40 25.65

16 1.45 0.98 0.95 1.98 18.89 12.78 12.38 25.70

17 1.47 0.99 0.96 2.00 18.99 12.77 12.35 25.71

18 1.45 0.97 0.94 1.94 19.17 12.80 12.46 25.63

19 1.07 0.72 0.69 1.47 18.95 12.88 12.32 26.13

20 1.16 0.77 0.75 1.55 19.13 12.80 12.44 25.67

21 0.65 0.43 0.42 0.87 19.10 12.76 12.42 25.54

22 0.66 0.44 0.43 0.89 19.04 12.80 12.39 25.75

X 2.64 1.78 1.72 3.59 18.11 12.21 11.78 24.62

Y 0.36 0.24 0.23 0.49 18.13 12.27 11.80 24.78

75

Index Size

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Human Chromosomes

S
iz

e
 (

G
B

)
- CBST

STTD64

Vmatch

Trellis

Figure 24. Index Size for “Type 1” Sequence Data

The graphs in Figure 24 conveniently present the index size data shown in the table

above. As can be seen, STTD64 takes the least amount of storage space among disk

based ST, which by the way is almost the same as Vmatch. On average, STTD64

needs around 12.8 bytes per alphabet symbol. The TRELLIS index occupies more

space than the others -- about 25.5 bytes per alphabet symbol on average. CBST lies

between TRELLIS and STTD64, requiring about 19.13 bytes per symbol. However,

for “Type 1” sequences, only one paritition required in CBST index, we can save one

byte for each symbol by deleting the byte that represents the partition id in the index

representation (Refer to index construction section in Chaper 4). This means, for

“Type 1” data, CBST needs on average 18.13 bytes per alphabet symbol.

Index Storage Requirements for “Type 3” Sequences

To determine the storage requirements for “Type 3” sequence data, we collect the size

of the final index and the size of all intermediate temporary data required in building

the STs for all the algorithms. Same as for ‘Type 1’ data, we do not consider the size

of the suffix links used in TRELLIS. Table 7 shows the results.

Table 7. Index Storage Costs for “Type 3” Sequence Data

Size \ Algorithms TRELLIS STTD64 B2ST CBST

Final ST index size (GB) 71.86 34 122 52

Intermediate data size (GB) 0 21 236 107

Average (byte per character) 25.22 11.93 42.82 18.25

 77

On average, STTD64 requires the least storage space, for an average of 11.93 bytes

per alphabet symbol. However, it can only support up to 4GB long sequences. For

such size sequences, TRELLIS requires 25.22 bytes per symbol, CBST requires 18.25

per symbol, and B2ST requires more space than all others. B2ST requires 42.82 per

symbol. Compared to CBST, the space required by B2ST to keep intermediate

temporary data is doubled as it needs to encode the input sequence to numbers for

sorting and to binary format for merging.

All of the above indexing algorithms for sequences produce a forest of STs. The

largest ST produced by STTD64 is 1.447GB, while the smallest one is 83MB. As

mentioned before, in this case, a query that uses this largest tree results in many

random disk I/Os on a computer system with less than 1.4GB RAM. However, both

CBST and B2ST produce equal size BSTs. And the size is equal to the size of the

output buffer, which is adjustable in CBST, depending on the the available main

memory and the query requirement.

4.5 Exact Match (EM) Search Performance

We also evaluated the exact match (EM) search performance of the CBST algorithm

and compared it with existing techniques. For this, we used two datasets. For short

sequences like “Type 1” data, we compare our algorithm with Vmatch, a memory

based indexing technique which implements enhanced suffix array. For long

sequences like “Type 3” data (TRELLIS is not capable to “Type 4” sequence), we

compare CBST with TRELLIS and B2ST. To ensure that caching is not playing a role

and the results of previous queries are not reused, we had a “cold strat” for our

 78

experiments, i.e, the memory was purged before each run.

For easy of presentation, we use q_x_y to denote a query set that includes x number

of queries with a query pattern length y. For example, q_7_100 refers to a query set

which includes 100 queries, each of length 7 (7 symbols). As done in [Halachev, 2009]

and [Abouelhoda et al., 2004], each query pattern in a query set we used in our

experiments is randomly extracted from human chromosome 2 and its reverse.

EM Search Operations for “Type 1” Sequence Data

Figures 25 and 26 show the results of EM search performance for CBST and Vmatch

algorithms with query sets of 100 and 1000 queries, respectively. Each value shown in

these figures is the average for all the 24 human chromosomes in “Type 1” sequences

data.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

q_7_100 q_11_100 q_15_100 q_41_100 q_91_100

Query_Length_Sets

T
im

e
 (

S
e
c
o

n
d

s
)

Vmatch

CBST

Figure 25. EM Search Performance on “Type 1” Data with 100 Queries

 79

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

q_7_1000 q_11_1000 q_15_1000 q_41_1000 q_91_1000

Query_Length_Sets

T
im

e
 (

S
e
c
o

n
d

s
)

Vmatch

CBST

Figure 26. EM Search Performance on “Type 1” Data with 1000 Queries

From the above two figures, it can be seen that CBST is twice faster than Vmatch for

the set with 100 queries, while it is slower for 1000 queries set. An explanation for

this is follows. Since Vmatch is a memory based algorithm, it needs the whole index

to be present in the memory for it to perform, and this is done only once during the

processing of all the queries in the set. On the other hand, CBST is a disk based index

which loads the sub-tree indexes into the main memory only when required. Thus,

when the query set is larger, Vmatch is at the advantage and hence faster. However,

Vmatch is not suitable for long sequences, including “Type 2” data. In what follows,

we thus compare CBST with disk based index which can handle long sequences.

EM Search Operations for “Type 3” Sequence Data

As mentioned above, both CBST and B2ST are capable for handling long sequences, while

TRELLIS can only support sequences of size up to 4GB. In order to compare the search

performance of these disk-based indexes, we consider “Type 3” sequences in this set of

 80

experiments. Figures 27 and 28 show the results. Note, the results here for the TRELLIS algorithm

are based on its ST index with suffix links.

Sets with 100 queries

0

10

20

30

40

50

60

q_7_100 q_11_100 q_15_100 q_41_100 q_91_100

Query_ Length_Sets

T
im

e
 (

S
e

c
o

n
d

s
)

--
--

cbst

Trellis

b2st

Figure 27. EM Search Time (in seconds) on “Type 3” Data with 100 Queries

Sets with 1000 queries

0

20

40

60

80

100

120

140

q_7_1000 q_11_1000 q_15_1000 q_41_1000 q_91_1000

Query_Length_Sets

T
im

e
 (

s
e

c
o

n
d

s
)

--
--

cbst

Trellis

b2st

Figure 28. EM Search Time (in seconds) on “Type 3” Data with 1000 Queries

 81

For long sequences, our results indicate that the EM search performance by CBST

shows better performance, compared to TRELLIS and B2ST. For the smaller dataset

of 100 queries, both CBST and B2ST are 5 times faster than TRELLIS. When the

number of queries is 1000, the efficiency of TRELLIS catches up with CBST due to

TRELLIS’ suffix link advantage. In this case, both CBST and TRELLIS are 2 times

faster than the B2ST algorithm. For large number of queries, we believe the EM

search operations based on CBST is more advantageous over B2ST for its

buffering strategy.

4.6 Summary

In this chapter, we evaluated the performance of the proposed CBST index. Our

results indicated that CBST is a desired choice as it is suitable for indexing a wide

range of sequences, from short to very large sequences. This capability is due to its

design being parametric, making it suitable to handle any sequence size, effectively

and efficiently. It can be easily configured and adapted based on the available main

memory size to decide the possible largest partition size, which in turn results in

increased efficiency in index construction. We also explained how to decide the two

key parameters of the CBST algorithm in order to gain the best performance in index

construction and exact match search tasks.

For index construction, our CBST is 2 times faster than STTD64 and 4 times faster

than TRELLIS, for short sequences. It almost enjoys the same efficiency as the

memory based algorithm Vmatch. For large sequences such as the entire human

genome, CBST is 1.3 times faster than B2ST, 1.5 times faster than TRELLIS, and 2.8

 82

times faster than STTD64. CBST is moderate in spare requirement by being between

STTD64 and TRELLIS, and requires much less space than B2ST. However, both

STTD64 and TRELLIS can support sequences of size up to 4GB, while CBST can

support up to 256 TB long sequences.

We also compare the EM query operations based on the final indexes they generate.

For short sequences and with small number of queries, CBST outperformes Vmatch.

For disk based STs, CBST performs at least twice faster than TRELLIS and B2ST.

The CBST algorithm outputs a forest of balanced, equal size ST files on disk.

Furthermore, our index can adjust the output buffer size in order to produce tree files

of different sizes according to the query requirements. Based on our experiments and

the results presented in this chapter, we conclude that our CBST algorithm is a desired

efficient and scalable disk based ST technique. We also conclude that CBST is the

fastest disk-based ST index construction algorithm so far.

 83

Chapter

5 Conclusion and Future Work

The amount of biological sequence data is growing exponentially. To analyze such

large amount of data, time and space efficient methods are necessary. In this thesis,

we studied existing external suffix tree (ST) indexing techniques, and proposed a new

disk-based ST index representation on binary alphabet, called compact binary ST

(CBST). We also introduced an efficient index construction and exact match (EM)

search algorithms based on the CBST index. The results of our extensive experiments

and their analyses clearly indicated that the proposed indexing technique outperforms

existing ST techniques.

WOTD is one of the most space-saving memory-based ST index representations.

TDD and HST extend WOTD to disk based algorithms, both of which can support

large sequences of size up to 4 gigabyte. However, they have data skew problem due

to their fixed length prefix partition technique. TRELLIS adopts a variable-length

prefix partitioning technique to overcome the data skew problem, however its index

representation is limited to DNA sequences due to storing only 5 pointers that are

corresponding to the DNA symbols (A, G, C, T) and the terminal symbol “$” in its ST

nodes, and its index size is larger than others. TRELLIS’ capability is also limited to

large sequences of size up to 4 gigabyte. While B2ST (same as DIGEST) is based on

the binary ST (BST), it can support much longer sequences than others could handle,

however, its index representation is not compact.

Our proposed CBST index representation has the following advantages:

 84

1. All the BST nodes are stored on disk files as array format. This allows efficient tree

traversals since locating corresponding child nodes could be done in constant time.

2. It includes a two level index structure – a small size lookup table (LT) and

relatively much larger BSTs. The LT is a reference to the disk BST files. During

query processing, the LT index is resident in the main memory, while the BSTs files

are loaded from disk on demand. This avoids many disk I/Os during query operations

due to its good locality of references.

3. CBST saves the depth information to the ST branch nodes and suffix starting

position in the leaf directly. This is similar to the HST index representation that saves

the depth information in leaf nodes to avoid extra jump traverses on the STs. This

allows fast tree traversal during search tasks.

4. CBST is a compact, uncompressed disk based ST index representation. It needs

only 9 bytes per ST node and 18 bytes per suffix. It can support sequences of size up

to 256 terabyte. This is independent of the alphabet of the input, being DNA or

otherwise.

Our CBST index representation and associated algorithms can handle

chromosome-scale sequences, genome-scale, and beyond. While it is an extension of

the B2ST algorithm, it is superior to it in several aspects. CBST requires less space on

disk and in main memory due to its compact representation and the “lightweight”

suffix sorting algorithm it uses. Compared to TDD, HST and TRELLIS, our CBST

algorithm overcomes the memory bottleneck problem that requires the whole input to

be resident in the main memory during index construction. In theory, CBST algorithm

can handle any size input under a standard personal computer.

 85

The results of our numerous experiments shows that CBST is an efficient and scalable

disk based ST technique. It is also the fastest disk-based ST index so far.

During our experiments, we noted that sorting the partition pairs takes most of the

index construction time, especially for large sequences. Since sorting partitions could

be done independently, paralleizing this phase would result in significant speedup of

the whole index construction process. Figure 29 below shows an architecture for this

parallelization.

Figure 29. Parallelization of Sorting Partitions

Finally although we considered DNA sequences in our experiments, CBST can be

applied to sequences over any alphabet. For example for protein sequences, we only

need 5 bits to represent the amino acids alphabet of size 23, instead of 2 bits used for

 86

DNA sequences. Another direction to extend the EM search task proposed here is to

develop other search operations based on CBST, like longest repeated substrings

(LRS), approximate match, etc.

 87

Bibliography

[1000 Genomes Project, 2011] 1000 Genomes Project, http://en.wikipe-

dia.org/wiki/The_1000_Genomes_Project, last accessed, Jan., 2011

[Abouelhoda et al., 2004] Abouelhoda, M.I., Kurtz, S., and Ohlebusch, E. Replacing

Suffix Trees with Enhanced Suffix Arrays. In Journal of Discrete Algorithms, Vol. 2(1),

pp53-86, 2004

[Apostolico and Galil, 1985] Apostolico, A. and Galil, Z., The Myriad Virtues of

Subword Trees. In: Combinatorial Algorithms on Words, Vol. 12 of NATO Advance

Science Institute Series. Series F: Computer and Systems Sciences. Springer Verlag,

Berlin, pp85-95, 1985

[Barsky et al., 2008] Barsky, M., Stege, U., Thomo, A., A New Method for Indexing

Genomes Using On-Disk Suffix Trees. Proceedings of the 17th ACM Conference on

Information and Knowledge Management, CIKM, pp649–658, 2008.

[Barsky et al., 2009] Barsky, M., Stege, U., Thomo, A., and Upton, C., Suffix Trees for

Very Large Genomic Sequences. CIKM '09: Proceedings of the 18th ACM Conference

on Information and Knowledge Management, 2009

[Barsky, 2011] Barsky, M., Research at UVic, http://webhome.cs.uvic.ca/

~mgbarsky/publications.html, last accessed, Jan. 2011

[Bedathur and Haritsa, 2004] Bedathur, S.J., Haritsa, J.R., Engineering a fast online

persistent suffix tree construction. Proceedings of the 20
th

 International Conference on

Data Engineering pp. 720-731, 2004

 88

[Bentley and Mcilroy, 1993] Bentley, J. L. and Mcilroy, M. D., Engineering a sort

function. Software-Practice and Experience 23, 11, p1249-1265, 1993

[Burrows and Wheeler, 1994] Burrows, M. and Wheeler, D. J., A block sorting

lossless data compression algorithms. Tech. Rep. 124, Digital Equipment Corporation,

Palo Alto, CA, 1994

[Cameron, 2006] Cameron, M. Efficient Homology Search for Genomic Sequence

Databases. PhD Thesis, RMIT University, Melbourne, Victoria, Australia, 2006

[Cheung et al., 2005] Cheung, C., Yu, J., and Lu, H. Constructing suffix tree for

gigabyte sequences with megabyte memory. IEEE Transactions on Knowledge and

Data Engineering, 17 (1), pp90-105, 2005

[Dementiev et al., 2005] Dementiev, R., Karkkainen, J., Mehnert, J., and Sanders,P.

Better external memory suffix array construction. Proc. Of Algorithm Engineering

and Experiments, ALENEX’05, pp86-97, 2005

[EST, 2011] Expressed sequence tag, http://en.wikipedia.org/wiki/

Expressed_sequence_tag, last accessed, Jan., 2011

[Farach and Muthukrishnan, 1996] Farach, M., and Muthukrishnan, S., Optimal

Logarithmic Time Randomized Suffix Tree Construction. Proceedings of the 23rd

international Colloquium on Automata, Languages and Programming, LNCS, 1099,

pp550-561, 1996.

[Farach et al., 2000] Farach, M., Ferragina, P., and Muthukrishnan, S., On the sorting

complexity of suffix tree construction. Journal of the ACM, 47 (6), pp987-1011, 2000

[Garcia-Molina et al., 1999] Garcia-Molina, H., Ullman, J. D., Widon J. D., Database

http://en.wikipedia.org/wiki/%20Expressed_sequence_tag
http://en.wikipedia.org/wiki/%20Expressed_sequence_tag

 89

System Implementation. Prentice-Hall inc., 1999

[GenBank, 2011] GenBank, http://en.wikipedia.org/wiki/GenBank, last accessed,

March, 2011

[Giegerich and Kurtz, 1997] Giegerich, R. and Kurtz, S., From Ukkonen to McCreight

and Weiner: A Unifying View of Linear-time Suffix Tree Construtcion. Algorithmica,

19(3), pp331-353, 1997

[Giegerich, et al., 2003] Giegerich, R., Kurtz, S., and Stoye, J., Efficient

implementation of lazy suffix trees. Software Practice & Experience, 33(11),

pp1035–1049, 2003.

[Gusfield, 1997] Gusfield, D., Algorithms on Strings, Trees, and Sequences:

Computer Science and Computational Biology, Cambridge University Press, New

York, 1997

[Gusfield, 2004] Gusfield, D., Introduction to the IEEE/ACM Transactions on

Computational Biology and Bioinformatics, IEEE Transactions on Computational

Biology and Bioinformatics, Vol. 1, No. 1, Jan.-Mar., 2004

[Halachev et al., 2005] Halachev, M., Shiri, N., A. Thamildurai, Exact Match Search

in Sequence Data Using Suffix Trees. The ACM Conference on Information and

Knowledge Management, CIKM’05, Oct. 31-Nov.5, 2005

 [Halachev et al., 2007] Halachev, M., Shiri, N., A. Thamildurai, Efficient and

Scalable Indexing Techniques for Biological Sequence Data, Bioinformatics Research

and Development, BIRD'07, pp464-479, March 2007

[Halachev, 2009] Halachev, M., Management of Biological Sequences Using Suffix

http://en.wikipedia.org/wiki/GenBank

 90

Trees. A Thesis In the Department of Engineering and Computer Science (ENCS),

Concordia, May 2009

[HGP, 2011] Human Genome Project, http://en.wikipedia.org/

wiki/Human_Genome_Projec, last accessed, Jan., 2011

[Hunt et al., 2002] Hunt, E., Atkinson, M.P., and Irving, R.W., Database indexing for

large DNA and protein sequence collections. VLDB Journal, 11, pp256-271, 2002

[Irving and Love, 2003] Irving, R.W. and Love, L., The Suffix Binary Search Tree a

Suffix AVL Tree, In Journal of Discrete Algorithms, 1 (2003) pp387–408, 2003.

[Larsson and Sdakane, 1999] Larsson N. J., Sadakane K. Faster Suffix Sorting, Tech.

Rep. LUCS-TR: 99-214, Computer Science Department, Lund University, Sweden,

1999

[Dayhoff, 1965] Dayhoff, M., O., Atlas of Protein Sequence and Structure, National

Biomedical Research Foundation, 1965

[McCreight, 1976] McCreight, E.M., A Space-economical Suffix Tree Construction

Algorithm, Journal of ACM, 23 (2), pp262-272, 1976

[Michael and Simon, 2008] Michael A. M., Simon J. P., An Efficient, Versatile

Approach to Suffix Sorting, Journal of Experimental Algorithmics (JEA), Vol 12, June

2008

[Msufsort, 2011] The Msufsort Algorithm, http://www.michael-maniscalco.com

/msufsort.htm, Jan. Last accessed, 2011

[NCBI, 2011] NCBI Genomic Biology, Human Genome Resources,

http://en.wikipedia.org/
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Margaret%20O.%20Dayhoff
http://portal.acm.org/citation.cfm?id=1278374&CFID=6294782&CFTOKEN=98395387
http://portal.acm.org/citation.cfm?id=1278374&CFID=6294782&CFTOKEN=98395387
http://portal.acm.org/citation.cfm?id=1278374&CFID=6294782&CFTOKEN=98395387

 91

http://www.ncbi.nlm.nih.gov/genome/gui-de/human/index.shtml, last accessed, 2011

[Phoophakdee and Zaki, 2007] Phoophakdee B., and Zaki, M. J., Genome-scale

Disk-based Suffix Tree Indexing, ACM International Conference on Management of

Data, 2007.

[Phoophakdee and Zaki, 2008] Phoophakdee B., and Zaki M. J., TRELLIS+: An

Effective Approach for Indexing Massive Sequence, Pacific Symposium on

Biocomputing, 2008.

[SACA_Benchmarks, 2011] The benchmark results of implementations of various,

latest suffix array construction algorithms, http://code.google.com/p/libdivsufsort/

wiki/SACA_Benchmarks, last accessed, 2011

[Seward, 2011] Seward, J., The bzip2 and libbzip2 homepage, http://sources.red-

hat.com/bzip2/, Mar., 2011

[Simon, 2005] Simon J. Puglisi, Exposition and Analysis of a Suffix Sorting Algorithm,

Technical Report Number CAS-05-02-WS, Dept of Computing and Software,

McMaster University, May, 2005

[Sinha et al., 2008] Sinha, R., Puglisi, S., Moffat, A., and Turpin, A., Improving Suffix

Array Locality for Fast Pattern Matching on Disk. Proc. 28th ACM SIGMOD Intl.

Conf., pp. 661-671, 2008

[Thamildurai, 2007] Thamildurai, A., Efficient and Scalable Indexing Techniques for

Sequence Data Management. A Thesis In the Department of Engineering and

Computer Science (ENCS), Concordia, April 2007

[Tian et al., 2005] Tian, Y., Tata, H., Hankins, R., Patel, J., Practical methods for

http://code.google.com/p/libdivsufsort/%20wiki/SACA_Benchmarks
http://code.google.com/p/libdivsufsort/%20wiki/SACA_Benchmarks

 92

constructing suffix trees. The VLDB Journal, 14(3), pp281–299, 2005.

[Ukkonen, 1995] Ukkonen, E., On-line Construction of Suffix Trees. Algorithmica, 14

(3), 1995

[USCS, 2011] USCS Genome Browser, hgdownload.cse.ucsc.edu /downloads.html,

last accessed 2011

[Vmatch, 2011] The Vmatch large scale sequence analysis software,

http://www.vmatch.de/, last accessed, Jan. 2011

[Weiner, 1973] Weiner, P., Linear pattern matching algorithms. Proc. 14
th

 Annual

Symposium on Switching and Automata Theory, 1973

[Wikipedia, 2011] Suffix tree, http://en.wikipedia.org/wiki/Suffix_tree, last accessed

July, 2011

http://www.vmatch.de/
http://en.wikipedia.org/wiki/Suffix_tree

