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ABSTRACT

Pricing and Hedging Equity-Linked

Products Under Stochastic Volatility Models

Anne MacKay

Equity-indexed annuities (EIAs) are becoming increasingly interesting for investors

as market volatility increases. Simultaneously, they represent a higher risk for insurers,

which amplifies the need for hedging strategies that perform well when index returns

present unexpected changes in their volatility. In this thesis, we introduce hedging

strategies that aim at reducing the risk of the financial guarantees embedded in EIAs.

We first derive closed-form expressions for the price and the Greeks of a point-to-

point EIA under the Heston model, which assumes stochastic volatility. To do so, we

rely on the similarity between the payoff of a European call option and that of the

EIA. We use the Greeks to develop dynamic hedging strategies that aim at reducing

equity and volatility risk. Using Monte Carlo simulations to derive the distribution of

the resulting hedging errors, we compare the performance of hedging strategies that

use the Greeks derived under the Heston model to other strategies based on Greeks

developed under Black-Scholes.

We show that, when the market is Hestonian, the performance of hedging strategies

developed in a Black-Scholes framework are significantly affected by the calibration of

the model and the volatility risk premium. We further show that the performance of a

simple delta hedging strategy using Heston Greeks is also reduced by the presence of a
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volatility risk premium, and that this performance can be improved by incorporating

gamma or vega hedging to the strategy. We conclude by recommending the use of a

delta-vega hedging strategy to reduce model calibration and volatility risk.
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Introduction

In times of financial turmoil, equity-linked investments offering a minimum return are

very attractive to conservative investors who want to benefit from market growth while

protecting their initial capital. This explains why equity-indexed annuities (EIAs),

which have gained in popularity since their introduction in 1995, have seen their sales

increase by 50%, from $20 to $30 billion, between 2004 and 20091. By offering a guar-

anteed minimum payoff, equity-linked products, which include variable annuities (VAs)

and EIAs, represent a risk for insurance companies, typical sellers of these products. In

this thesis, we explore different strategies to hedge this risk. In particular, we analyze

the efficiency of dynamic hedging strategies developed under different market models.

Although EIAs are insurance products, it makes sense to value and hedge them using

mathematical finance theory since their payoff, usually dependent on the performance

of a stock index, is similar to a financial option. Brennan & Schwartz (1976) and Boyle

& Schwartz (1977) were the first to use the Black-Scholes model to value such guar-

antees. Hardy (2003) discusses product design and pricing techniques, while Tiong

(2000) and Lee (2003) presents closed-form expression for the price of the financial

guarantees embedded in EIAs. EIAs have also been studied under more general finan-

1See www.indexannuity.org
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cial models. For example, Lin & Tan (2003) incorporate stochastic interest rates.

All the models cited above assume that the volatility of stock and index prices is con-

stant. However, it is unexpected fluctuations in those prices that represent the biggest

financial risk for insurance companies selling EIAs. In that mind set, Lin et al. (2009)

use regime-switching models to value EIAs. Kurpiel & Roncalli (1998) compare the

efficiency of call option hedging strategies that assume stochastic volatility to others

that do not. In this thesis, we make use of models that incorporate stochastic volatility

to price and hedge point-to-point EIA contracts.

Stochastic volatility models are among the solutions suggested to address some of

the flaws of the Black-Scholes model, namely the thick tails of the stock log-return

distribution and the varying implied volatilities across option strikes and maturities.

The first stochastic volatility model was introduced by Hull & White (1987). Heston

(1993) presented an improved version of it by using a square root process to model the

dynamics of the volatility, which allowed for a semi-closed form expression for the price

of a European call option.

In this thesis, we present hedging strategies and assess their efficiency at reducing the

risks inherent to the sale of equity-linked products. In fact, financial derivatives such

as equity-linked products can be priced using a replicating portfolio of assets traded

on the market. In this thesis, we introduce the pricing of derivatives through such

techniques which, under certain models, yield closed and semi-closed form expressions

for their prices. These expressions can in turn be differentiated to give the sensitivities

2



of the prices to different parameters. The sensitivities can be used to develop different

hedging strategies, which we present and adapt to fit the particularities of equity-linked

products. It is those hedging strategies which we shall analyze to identify the ones that

are the most efficient at reducing the risks faced by insurers selling EIAs.

In the first chapter, we introduce the Black-Scholes and Heston models, which will

be used throughout the thesis. We present a closed-form expression for the price of a

European call option under each model. This option will be used to price and hedge

point-to-point EIAs, as the payoff of this contract is very similar to the payoff of the call

option. For each model, we also describe the hedging strategy underlying the pricing

of any derivative. The last part of each section of the first chapter is dedicated to the

calibration of the market model to recent market data. The parameters resulting from

this calibration will be used in Chapter 4 to perform a numerical example.

In Chapter 2, we present a discrete-time version of the hedging strategies explained

in Chapter 1. In doing so, we introduce the Greeks, sensitivities of a financial derivative

to different parameters, and use the closed-form expressions for the price of a European

call to derive the Greeks for that type of option. In later chapters, those Greeks will be

part of the hedging strategy for EIAs. We also introduce the concept of hedging error,

which is a consequence of the discretization of the hedging process. Hedging errors play

an important role in the analysis of the performance of hedging strategies. In the last

section of Chapter 2, we expose discretization schemes for the dynamics of index prices

under both the Black-Scholes and Heston models. In the numerical example, those

schemes will be necessary to simulate index prices.
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Chapter 3 offers an overview of equity-linked products. We describe the different

types of contracts, from EIAs to variable annuities, and their particularities. We present

a closed-form expression for the price of the point-to-point EIA and show how it can

be extended to the pricing and hedging of any equity-linked contract that has a point-

to-point design.

In Chapter 4, using previously introduced concepts, we develop hedging strategies

specifically adapted to EIAs. Through a numerical example, we assess the performance

of each strategy by analyzing the distribution of the resulting hedging errors. More

specifically, we apply hedging strategies developed under both Black-Scholes and He-

ston assumptions to a Hestonian market and assess the performance of each strategy.

We also observe the effect of adding call options to a hedge. By doing so, we aim at

identifying the hedging strategies that will best protect insurance companies against

the risk brought on by the non-constant volatility of stock index returns.
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Chapter 1

Financial Models

1.1 The Black-Scholes Model

1.1.1 Motivation

When Black and Scholes first introduced their model, in 1973 ( Black & Scholes (1973)),

it revolutionized the world of quantitative finance. For many years after, it was exten-

sively used to model stock price fluctuations and to value different types of financial

derivatives. Throughout the years and with the evolution of financial markets, the

Black-Scholes model has proven to be too simplistic to fit market fluctuations, as will

be discussed later in this thesis. As its flaws and limitations were pointed out (see

e.g. Rubinstein (1985)), various models were developed to address those problems.

Nonetheless, to this day, the Black-Scholes model is still widely used in the industry.
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1.1.2 Description

The Black-Scholes model relies on a number of assumptions about financial markets. It

assumes that there are no transaction costs or taxes, that securities are infinitely divis-

ible, that anyone can borrow or lend at a constant risk-free rate r and that there are no

restriction on short selling. In addition, a very important premise is that the markets

are free of arbitrage, which means that any two securities or portfolios of securities that

result in the same payoff are assumed to have the same market price.

In this thesis, we also make the assumption that stock indexes pay no dividends. This

assumption could however be relaxed without much complication.

The central assumption of the Black-Scholes model is that stock prices follow a geo-

metric Brownian motion with drift. Hence, the dynamics of St, the stock price at time

t, are given by the following stochastic differential equation:
dSt = µBSStdt+ σBSStdZt t > 0,

S0 = s,

(1.1)

where dZt is the derivative of a standard Brownian motion, µBS, a constant drift term

representing the mean rate of return, and σBS, the constant volatility of the stock prices.

The dynamics of the stock price can also be described by the distribution of its returns.

Under the Black-Scholes model, over a period of time t, the log of the return of the

stock prices follow a normal distribution with mean (µBS −
σ2
BS

2
)t and variance σ2

BSt,

such that

log
St
S0

∼ N((µBS −
σ2
BS

2
)t, σ2

BSt), (1.2)

where St and S0 are the prices of the stock at time t and 0, respectively, and N denotes

a normal distribution. Expressing the dynamics of the stock prices in terms of the dis-
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tribution of their log-returns can be useful in many ways, in particular when simulating

stock prices.

One of the reasons why the Black-Scholes model is so popular is that its simplicity

allows for the derivation of a closed-form expression for the price of many financial

derivatives, in particular that of European call and put options. In turn, those can be

used to calibrate the model to the market and to price more exotic financial derivatives.

In the next section, we show how the formula for the price of a European call option

can be obtained.

1.1.3 Price of a European call option

A European call option is a financial derivative which pays, at maturity T , the difference

between the price of the stock ST and the fixed, pre-determined strike price K. Hence,

its payoff at maturity, BC(K,T ) is given by

BC(K,T ) = max(ST −K, 0). (1.3)

There are different ways to obtain the price of this derivative. Black & Scholes (1973)

construct a risk-free portfolio in which the randomness in the price of the call option is

hedged away by short selling the underlying. According to the no-arbitrage principle,

this portfolio should yield the risk-free rate. This is used to solve the partial differential

equation describing the dynamics of the call. A closed-form expression for the price of

the European call is thus obtained.

The same solution can also be obtained through risk-neutral valuation, as presented

Harrison & Pliska (1981). The price of the European call option is obtained by taking

7



the expectation of its discounted payoff at maturity. This second technique involves a

change of measure. Under the new probability measure, the drift term in the equation

of the stock price is r, the risk-free rate, and the discounted price of any asset is a

martingale.

Whichever approach is used to obtain the price of the call option, it yields the same

result, which is as follows. Under the Black-Scholes framework, the price CBS(St, K, τ)

of a European option with time to maturity τ = (T − t) and payoff as in (1.3) is given

by

CBS(St, K, τ) = StΦ(d1)−Ke−r(τ)Φ(d2), (1.4)

where Φ is the standard normal cumulative distribution function, St is the price of the

underlying at time t, K is the strike price, r is the risk-free rate and

d1 =
log St

K
+
(
r +

σ2
BS

2

)
(T − t)

σBS
√
τ

d2 = d1 − σBS
√
τ ,

where σBS is as described in (1.1).

In this thesis, we will use (1.4) to derive the price of insurance contracts whose value

depends on the price of an underlying asset.

1.1.4 Hedging under the Black-Scholes model

In finance, hedging consists in buying or selling financial securities with the objective of

reducing the exposure to risks brought on by another position, which we call the initial

position. For example, an investor who takes a short position in a call option (sells the

call) will have to pay the difference between the price of the underlying and the strike

price at maturity of the contract if the former is greater than the latter. Since the
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price of the underlying fluctuates randomly, the payoff at maturity is random, which

represents a risk for the investor. However, the relation between the payoff and the

asset price makes it possible for the investor to reduce his or her exposure to that risk

by buying or selling the underlying asset.

As explained in Section 1.1.3, the Black-Scholes option pricing formula can be obtained

by constructing a risk-free portfolio in which the position in the derivative is hedged by

an opposite position in the underlying. This portfolio, as well as the pricing formula, is

the basis of the hedging strategy presented here. This strategy aims at eliminating the

risk inherent to taking the position in the call option. Here, for simplicity, we hedge a

short position in the call. It can easily be extended to the case where the investor has

a long position in the call.

The hedging strategy relies on the construction a portfolio replicating the call option

payoff. Since the market is assumed to be free of arbitrage, the value of this portfolio

at any time t, 0 ≤ t ≤ T , must be the same as that of the option. The investor who

sells a call option will take a long position in the replicating portfolio, so that at any

time between the inception and the expiration of the option, the two positions offset

each other. Thus, when the option expires, the value of the replicating portfolio will be

exactly the same as the payout of the option, so that by liquidating the portfolio, the

investor will have sufficient funds to pay the buyer of the option, if necessary.

It is the option pricing formula that gives us the structure of the replicating portfolio.

In fact, by investing Φ(d1)St in the underlying asset and Ke−r(τ)Φ(d2) in the risk-free

asset, with St, K, Φ, d1, d2 defined as in (1.4), the value of the replicating portfolio

will always be equal to that of the call option. The amount invested in the money

market represents the difference between the value of the option and the stock part of
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the hedge. If the latter is greater than the former, the money market part of the hedge

becomes negative, representing a loan taken by the investor at the risk-free rate. This

ensures that the strategy remains self-financing; the investor does not need to inject

additional funds in the replicating portfolio.

Denote Ht the value of the replicating portfolio at t. Then,

Ht = StΦ(d1)−Ke−r(τ)Φ(d2),

= CBS(St, K, τ),

(1.5)

Note that both Φ(d1) and e−r(τ)Φ(d2) depend on t and St, so they vary continuously

through time.

This hedging strategy can be used to protect investors against the risk inherent to buy-

ing or selling call options. It can also be extended to other types of options. However,

the performance of this strategy relies on the assumption that the underlying price

follows the Black-Scholes model. In the next section, we present a different model and

the resulting strategy.

1.1.5 Calibrating the Black-Scholes model

In order to price non-traded derivatives and to assess the performance of hedging strate-

gies, one needs to calibrate the Black-Scholes model to market data. This section ex-

plains the method used to obtain the parameters that will be used to perform the

numerical example presented in Chapter 4.

The procedure is performed using the maximum likelihood estimators. The mean

10



and the variance of weekly log-returns of the S&P 500 index is calculated using data1

ranging from May 20, 1996 to May 16, 2011. We assume the contract is sold on May

20, 2011. We chose to calculate the moments of the log-returns over 15 years.

Using the maximum likelihood estimator for the mean and the variance of the weekly

log-returns yields a drift coefficient µBS of 0.0637 and a volatility term σBS of 0.19. The

value of µBS that we obtain is somewhat lower than what is usually used in the liter-

ature. This is due to the negative returns observed on the markets between 2007 and

2009. We believe that our drift coefficient may be more realistic for the years to come.

To price and hedge the point-to-point EIA, we also need to estimate the risk-free

rate r. For short term investments, it is usually approximated by the interest rate on a

risk-free investment, typically a 3-month US treasury bill. Here, since we are pricing a

long-term investment, we need to look at longer treasury bonds to determine our risk-

free rate. In our numerical example, we will focus on an EIA with 10 years to expiration

and calculate its price at different times between the inception of the contract and its

expiration. Thus, we observe the yield rates for bonds ranging from 1 to 10 years. On

May 20, 2011, the yield rates for 1-year, 5-year and 10-year bonds were 0.18%, 1.82%

and 3.15%, respectively2. To replicate those rates, it would be possible to construct a

yield curve and use different rates depending on the horizon of the investment product.

However, in this thesis, we use a fixed risk-free rate, which we set at 2.00%. As it falls

between the 5-year and the 10-year yield rate, we believe it is a good approximation of

1Data from finance.yahoo.com
2Data from www.treasury.gov
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the average risk-free rate over the next 10 years.

1.2 The Heston Model

1.2.1 Motivation

For many years, the Black-Scholes model has been the academic and industry standard

to describe the fluctuations of the price of a stock. As seen in the previous section, it

can be used to price various types of financial derivatives. However, it is also known

that it presents biases which can significantly impair its performance. One of its main

problems is that it assumes a Gaussian distribution for the log-returns while empirical

studies show that, in fact, log-returns present higher peaks and heavier tails, which

was noted as early as 1963 by Mandelbrot (1963) and Fama (1963). More recently,

Haug & Taleb (2008) explain the flaws of the model. Many models that aim at better

describing the distribution of the log-returns have been developed over the years, using

different methods to reach their goal.

One way to modify the distribution of the log-returns is to relax the assumption that

the volatility of the returns is constant. In fact, market data shows that stock returns

do not always fluctuate with the same intensity, which has lead to the assumption that

their volatility changes in an unpredictable manner through time. Furthermore, under

the Black-Scholes model, all options depending on the same underlying stock are priced

using the same implied volatility σBS, regardless of their strikes. Empirical observations

prove otherwise: implied volatilities vary with strikes and maturities (see e.g. Rubin-

stein (1985)), graphing a shape called volatility smile. Hence, instead of describing the
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volatility of the stock price as a constant, it makes more sense to refer to it as a variable

evolving randomly through time.

Different stochastic volatility models were suggested, such as those Scott (1987),

Hull & White (1987), and Wiggins (1987). Nonetheless, the model presented by He-

ston (1993) has the advantage of allowing a semi-closed form expression for the price

of European options. With an appropriate set of parameters, the model can reproduce

the volatility smile relatively well. For those reasons, it has become very popular in the

industry.

1.2.2 Description of the model

In this section we present the Heston model. All assumptions about the financial market

are as in Section 1.1.2. However, in the Heston model, the price of the stock has two

sources of randomness. One is related to the stock price itself, as in the Black-Scholes

model, and the other one comes from the fact that the volatility term follows a stochastic

process. Hence, to describe the dynamics of the stock price, two stochastic differential

equations are used:

dSt = µStdt+
√
vtStdZ

(1)
t , (1.6)

dvt = κ′(θ′ − vt)dt+ σ
√
vtdZ

(2)
t , (1.7)

with

d〈Z(1)
· Z

(2)
· 〉t = ρ dt.

13



Here, µ is the mean rate of return, as in the Black-Scholes model, κ′ is the speed of

reversion to the mean, θ′ is the long-term mean of the volatility, σ is the volatility of

volatility and ρ is the correlation between the standard Brownian motions Z
(1)
t and

Z
(2)
t .

Note that (1.7) describing the dynamics of vt has the same form as the square-root

process described by Cox et al. (1985) (CIR). However, in the CIR model, this process

is used to model interest rates.

1.2.3 Price of a European call option

This section explains the derivation of the semi-closed form expression for the price of

a European call option under the Heston model. The technique presented here uses a

valuation equation similar to the one that was presented by Black & Scholes (1973) and

Merton (1973), which is based on the no-arbitrage assumption. This equation is also

known as the Kolmogorov forward equation (see Kloeden & Platen (1992) for more

details). This technique can be used to evaluate the price of any derivative security

whose value depends on the price of the underlying. The derivation of the formula

presented in this section follows Wilmott (2006) and Gatheral (2006).

We first consider a portfolio which is composed of the derivative to hedge, with value

Vt at time t, the underlying, and a third asset whose value at time t, V 1
t , depends

on volatility. At any time t between 0 and T , where T is the expiration date of the

derivative, the stock and the third asset are held in quantities α∗2,t and α∗1,t, respectively.

Here, since the stock also depends on stochastic volatility, it is impossible to hedge the

derivative perfectly using only the underlying asset. For this reason, the inclusion of

14



the third asset becomes necessary to hedge volatility risk. Hence, the original portfolio

is slightly modified since, for Black and Scholes, the stock price had only one source of

randomness. Denote by Πt the value of this modified portfolio, composed of the short

position in the derivative and the long position in the stock and the third asset. Then

Πt is given by

Πt = Vt − α∗1,tV 1
t − α∗2,tSt, (1.8)

where Vt and V 1
t denote the price of the derivative and the price of the third asset,

respectively, at time t, 0 ≤ t ≤ T . In order to get the dynamics for this portfolio, we

need to differentiate each component using the Itô-Doeblin formula (for more details

on the Itô-Doeblin formula, see Shreve (2004)). The dynamics of St are given by (1.7).

For dVt and dV 1
t , we have

dVt =

(
∂Vt
∂t

+
1

2
vtS

2
t

∂2Vt
∂S2

t

+ ρσvtSt
∂2Vt
∂vt∂St

+
1

2
σ2vt

∂2Vt
∂v2

t

)
dt

+
∂Vt
∂St

dSt +
∂Vt
∂vt

dvt (1.9)

and

dV 1
t =

(
∂V 1

t

∂t
+

1

2
vtS

2
t

∂2V 1
t

∂S2
t

+ ρσvtSt
∂2V 1

t

∂vt∂St
+

1

2
σ2vt

∂2V 1
t

∂v2
t

)
dt

+
∂V 1

t

∂St
dSt +

∂V 1
t

∂vt
dvt. (1.10)

Putting (1.9), (1.10) and the definition of dSt together, we get

dΠt =

(
∂Vt
∂t

+
1

2
vtS

2
t

∂2Vt
∂S2

t

+ ρσvtSt
∂2Vt
∂vt∂St

+
1

2
σ2vt

∂2Vt
∂v2

t

)
dt

− α∗1,t
(
∂V 1

t

∂t
+

1

2
vtS

2
t

∂2V 1
t

∂S2
t

+ ρσvtSt
∂2V 1

t

∂vt∂St
+

1

2
σ2vt

∂2V 1
t

∂v2
t

)
dt

+

(
∂Vt
∂St
− α∗1,t

∂V 1
t

∂St
− α∗2,t

)
dSt +

(
∂Vt
∂vt
− α∗1,t

∂V 1
t

∂vt

)
dvt. (1.11)

Our assumption is that the portfolio is perfectly hedged so that its return is the risk-free

rate. Hence, the equation describing its dynamics must reflect this return and contain
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no random terms, which represent risk. Thus, the coefficients of dSt and dvt must be

eliminated by finding the quantities α∗1,t and α∗2,t such that

∂Vt
∂St
− α∗1,t

∂V 1
t

∂St
− α∗2,t = 0 (1.12)

and

∂Vt
∂vt
− α∗1,t

∂V 1
t

∂vt
= 0. (1.13)

From (1.12) and (1.13), we obtain

α∗1,t =
∂Vt
∂vt
∂V 1

t

∂vt

(1.14)

and

α∗2,t =
∂Vt
∂St

+
∂Vt
∂vt
∂V 1

t

∂vt

∂V 1
t

∂St
. (1.15)

The quantities α∗1,t and α∗2,t represent the proportion of the portfolio which must be

invested in the stock and the third asset, respectively, to make the portfolio risk-free.

This is the main idea behind the hedging strategies presented in Chapter 2. Replacing

α∗1,t and α∗2,t in (1.11) by (1.14) and (1.15), the dynamics of Πt become

dΠt = (
∂Vt
∂t

+
1

2
vtS

2
t

∂2Vt
∂S2

t

+ ρσvtSt
∂2Vt
∂vt∂St

+
1

2
σ2vt

∂2Vt
∂v2

t

)dt

− α∗1,t(
∂V 1

t

∂t
+

1

2
vtS

2
t

∂2V 1
t

∂S2
t

+ ρσvtSt
∂2V 1

t

∂vt∂St
+

1

2
σ2vt

∂2V 1
t

∂v2
t

)dt. (1.16)

Since the portfolio is now risk-free, under the no-arbitrage assumption, investing in this

portfolio must yield the same return rate as investing in the risk-free asset. One of the

model’s assumptions is that it is possible to invest in a risk-free asset which returns the

risk-free rate r. Hence, since the hedged portfolio is risk-free, it is assumed to yield the

risk-free rate r. Thus, we must have

dΠt = rΠt dt. (1.17)
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Replacing Πt by (1.8) in (1.17) leads to

dΠt = r(Vt − α∗2,tSt − α∗1,tV 1
t )dt. (1.18)

Equating (1.16) and (1.18) and putting all terms in Vt on one side and all terms in V 1
t

on the other, we have

∂Vt
∂t

+ 1
2
vtS

2
t
∂2Vt
∂S2

t
+ ρσvtSt

∂2V
∂vt∂St

+ 1
2
σ2vt

∂2Vt
∂v2t
− rVt + rSt

∂Vt
∂St

∂Vt
∂vt

=

∂V 1
t

∂t
+ 1

2
vtS

2
t
∂2V 1

t

∂S2
t

+ ρσvtSt
∂2V 1

t

∂vt∂St
+ 1

2
σ2vt

∂2V 1
t

∂v2t
− rV 1

t + rSt
∂V 1

t

∂St

∂V 1
t

∂vt

. (1.19)

For this equality to be true, both sides have to be equal to another function of the

independent variables St, t and vt. It could not be otherwise since Vt and V 1
t are two

different assets whose dynamics are determined by their respective contracts, which

differ by their maturities, strikes and payoffs. Hence, to satisfy the equality in (1.19),

both sides must be equal to a function of St, t and vt independent of Vt and V 1
t . We

write (1.19) as:

∂Vt
∂t

+
1

2
vtS

2
t

∂2Vt
∂S2

t

+ρσvtSt
∂2Vt
∂vt∂St

+
1

2
σ2vt

∂2Vt
∂v2

t

+ rSt
∂Vt
∂St
− rVt = (κ′(vt − θ′)− λvt)

∂Vt
∂vt

.

(1.20)

In the above, λ denotes the price of volatility risk. In fact, it has been shown by

Lamoureux & Lastrapes (1993) that option prices include a premium for risk caused

by stock price volatility. The right-hand side of (1.20) is chosen so that the equation

of the dynamics of St and vt can be written in the same form under both the objective

and the risk-neutral measure. Following Heston (1993), it is possible to re-write the

left-hand side of (1.20) as

κ(vt − θ)
∂Vt
∂vt

,
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by letting

κ = κ′ + λ

θ =
κ′θ′

κ′ + λ
. (1.21)

Thus, κ′ (θ′ − vt)− λvt = κ(θ− vt) is the risk-neutral drift rate of volatility. From now

on, we will use κ and θ to price the European call option and other derivatives. Hence,

(1.20) becomes

∂Vt
∂t

+
1

2
vtS

2
t

∂2Vt
∂S2

t

+ ρσvtSt
∂2Vt
∂vt∂St

+
1

2
σ2vt

∂2Vt
∂v2

t

+ rSt
∂Vt
∂St
− rVt = κ(vt − θ)

∂Vt
∂vt

(1.22)

This equation is similar to the one used by Black and Scholes to retrieve the price of a

European call, except that it is applied to the Heston model. The equation can be used

to price any financial derivative, since they all share these dynamics. It is the terminal

condition, representing the payoff, which specifies the derivative to be price. Here, we

use (1.20) to derive the price of a European call option of expiration T , at any time t

between 0 and T .

First, following Gatheral (2006), we set

xt = log(
Ft,T
K

),

where K is the option strike price and Ft,T is the T forward price of the underlying

observed at time t. It is obtained by accumulating the stock price at time t, St, to time

T using the risk-free rate r. Since r is assumed to be constant, Ft,T is given by

Ft,T = er(T−t)St

where St is, as usual, the price of the underlying. To simplify the notation, we let

τ = T − t.

We then let C ′(xt, vt, τ) denote the future price at expiration of a European call option
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of moneyness xt and time to maturity τ , when the instantaneous volatility is vt, and

write Vt = CH(xt, vt, τ) = e−rτC ′(xt, vt, τ), with CH(xt, vt, τ) the price at time t of the

European call option. Thus, we have that

CH(xT , vT , 0) = C ′(xT , vT , 0) = (ST −K)+. (1.23)

Solving (1.22) subject to (1.23) yields a semi-closed form expression for the future price

of the European call option.

In order to solve (1.22), we must first calculate the partial derivatives of Vt = e−rτC ′(xt, vt, τ)

with respect to St, vt and t. Below, to simplify the notation, we write C ′ for C ′(xt, vt, τ).

Thus, we have

∂Vt
∂t

= e−rτ
(
rC ′ − r∂C

′

∂xt
− ∂C ′

∂τ

)

∂Vt
∂St

= e−rτ
1

St

∂C ′

∂xt

∂2Vt
∂S2

t

= e−rτ
1

S2
t

(
∂2C ′

∂x2
t

− ∂C ′

∂xt

)

∂Vt
∂vt

= e−rτ
∂C ′

∂vt

∂2Vt
∂v2

t

= e−rτ
∂2C ′

∂v2
t

∂2Vt
∂vt∂St

= e−rτ
1

St

∂C ′

∂vt∂xt
.

Using these results, (1.22) becomes

−∂C
′

∂τ
+

1

2
vt
∂2C ′

∂x2
t

− 1

2
vt
∂C ′

∂xt
+

1

2
σ2vt

∂2C ′

∂v2
t

+ ρσvt
∂C ′

∂xt∂vt
− κ(vt − θ)

∂C ′

∂vt
= 0. (1.24)
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Then, we rely on Heston (1993), who suggests that the equation for the price of the

European option under the Heston model has a similar form than the one obtained

under Black-Scholes. Gatheral (2006) presents the following version of this equation:

C ′(xt, vt, τ) = K(extP1(xt, vt, τ)− P0(xt, vt, τ)), (1.25)

which represents the future value to expiration of the call option. The valuation equa-

tion (1.24) also applies to (1.25). As noted by Heston (1993), the first part of his

equation, or KextP1(xt, vt, τ) in (1.25), is the pseudo expectation of the present value

of the stock price give that the option is exercised while the second part, orKP0(xt, vt, τ)

in (1.25), is the present value of the strike payment. Thus, P1(xt, vt, τ) and P0(xt, vt, τ)

loosely represent probabilities of exercise.

To this end, we take the partial derivatives of (1.25) with respect to τ , xt and vt to

be able to replace Vt by C ′ in (1.24). Here again, to simplify the notation, we write

P1 and P0 for P1(xt, vt, τ) and P0(xt, vt, τ), respectively. We get the following partial

derivatives:

∂C ′

∂τ
= K(ext

∂P1

∂τ
− ∂P0

∂τ
) (1.26)

∂C ′

∂xt
= K(ext(P1 +

∂P1

∂xt
)− ∂P0

∂xt
) (1.27)

∂2C ′

∂x2
t

= K(ext(P1 + 2
∂P1

∂xt
+
∂21

∂x2
t

)− ∂P0

∂x2
t

) (1.28)

∂C ′

∂vt
= K(ext

∂P1

∂vt
− ∂P0

∂vt
) (1.29)

∂2C ′

∂v2
t

= K(ext
∂2P1

∂v2
t

− ∂2P0

∂v2
t

) (1.30)
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∂2C ′

∂vt∂xt
= K(ext

∂P1

∂vt
+ ext

∂2P1

∂xt∂vt
− ∂2P0

∂xt∂vt
). (1.31)

The next step is to express (1.24) in terms of P0 and P1. First, putting all the terms

together, we get

−K
(
ext

∂P1

∂τ
− ∂P0

∂τ

)
+

1

2
vtK

(
ext
(
P1 + 2

∂P1

∂xt
+
∂2P1

∂x2
t

)
− ∂2P0

∂x2
t

)
− 1

2
vtK

(
ext
(
P1 +

∂P1

∂xt

)
− ∂P0

∂xt

)
+

1

2
σ2vtK

(
ext

∂2P1

∂v2
t

− ∂2P0

∂v2
t

)
+

ρσvtK

(
ext

∂P1

∂vt
+ ext

∂2P1

∂xt∂vt
− ∂2P0

∂xt∂vt

)
− κ(vt − θ)K

(
ext

∂P1

∂vt
− ∂P0

∂vt

)
= 0.

After dividing this equation by K, we can put all the terms in P0 and all those in P1

together. To make the equation equal to 0, we need to have the part in P0 and the part

in P1 be both equal to zero. That is because the case where they cancel each other

would make the equation of the price be equal to 0, which we do not want. Hence, we

have

−∂Pj
∂τ

+
1

2
vt
∂2Pj
∂x2

t

− v(
1

2
− j)∂Pj

∂xt
+

1

2
σ2vt

∂2Pj
∂v2

t

+ ρσvt
∂2Pj
∂xt

∂vt + (a− bjvt)
∂Pj
∂vt

= 0, (1.32)

with a = κθ and bj = κ− jρσ for j = 0, 1.

Since P0 and P1 are probabilities of exercise of the option, (1.32) is subject to the

following terminal conditions

lim
τ→0

Pj(xt, vt, τ) =


1 if xt > 0,

0 if xt ≤ 0, j = 0, 1.

(1.33)
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In fact, the call option will only be exercised at time T if the price of the stock at that

time is above the strike price K, or if xT = log(
FT,T

K
) > 0.

To solve (1.32) under the conditions given by (1.33), we use a Fourier transform tech-

nique. Let P̃j(u, vt, τ) be the Fourier transform of Pj(xt, vt, τ), defined as

P̃j(u, vt, τ) =

∫ ∞
−∞

e−iuxPj(xt, vt, τ)dxt. (1.34)

Taking the inverse of the Fourier transform gives

Pj(xt, vt, τ) =

∫ ∞
−∞

1

2π
eiuxtP̃j(u, vt, τ)du. (1.35)

For further information about Fourier transforms, see Cherubini et al. (2010). Since

the integral is with respect to u, we can take the partial derivatives of Pj(xt, vt, τ) with

respect to τ , xt and vt and obtain

∂Pj
∂τ

=

∫ ∞
−∞

1

2π
eiuxt

∂P̃j
∂τ

du

∂Pj
∂xt

=

∫ ∞
−∞

1

2π
eiuxtiuP̃jdu

∂2Pj
∂x2

t

=

∫ ∞
−∞

1

2π
eiuxt(−u2)P̃jdu

∂Pj
∂vt

=

∫ ∞
−∞

1

2π
eiuxt

∂P̃j
∂vt

du

∂2Pj
∂v2

t

=

∫ ∞
−∞

1

2π
eiuxt

∂2P̃j
∂v2

t

du

∂2Pj
∂vt∂xt

=

∫ ∞
−∞

1

2π
eiuxtiu

∂P̃j
∂vt

du, j = 0, 1.
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Putting those partial derivatives back in (1.32) and rearranging it so that all the terms

are inside the same integral, we obtain

∫ ∞
−∞

1

2π
eiuxt

(
−∂P̃j
∂τ
− 1

2
vtu

2P̃j − vt
(

1

2
− j
)
iuP̃j +

1

2
σ2vt

∂2P̃j
∂v2

t

+

ρσvtiu
∂P̃j
∂vt

+ (a− bjvt)
∂P̃j
∂vt

)
du = 0, j = 0, 1. (1.36)

The only way to make (1.36) true is to have(
−∂P̃j
∂τ
− 1

2
vtu

2P̃j − vt
(

1

2
− j
)
iuP̃j +

1

2
σ2vt

∂2P̃j
∂v2

t

+ ρσvtiu
∂P̃j
∂vt

+ (a− bjvt)
∂P̃j
∂vt

)
= 0. (1.37)

Then, define

aj = −u
2

2
− iu

2
+ iju

βj = κ− ρσj − ρσiu

γ =
σ2

2
, j = 0, 1,

so that (1.37) can be written as

vt

(
ajP̃j − βj

∂P̃j
∂vt

+ γ
∂2P̃j
∂v2

t

)
+ aj

∂P̃j
∂u
− ∂P̃j

∂τ
= 0. (1.38)

for j = 0, 1. Next, following Heston (1993) and using (1.33), we write P̃j as

P̃j(u, vt, τ) = eCj(u,τ)θ+Dj(u,τ)vtP̃j(u, vt, 0)

= eCj(u,τ)θ+Dj(u,τ)vt

∫ ∞
−∞

e−iuxtPj(xt, vt, 0)dxt

= eCj(u,τ)θ+Dj(u,τ)vt

∫ ∞
0

e−iuxtdxt

= eCj(u,τ)θ+Dj(u,τ)vt
1

iu
. (1.39)
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Since the terms Cj(u, τ) and Dj(u, τ) are not functions of vt, it makes P̃j(u, v, 0) easier

to differentiate with respect to vt:

∂P̃j
∂τ

=

(
θ
∂Cj
∂τ

+ vt
∂Dj

∂τ

)
P̃j

∂P̃j
∂vt

= DjP̃j

∂2P̃j
∂v2

t

= D2
j P̃j,

where we write Cj and Dj for Cj(u, τ) and Dj(u, τ), respectively. Thus, (1.38) can be

re-written as

vt

(
aP̃j − βjDjP̃j + γD2

j P̃j

)
+ ajDjP̃j −

(
θ
∂Cj
∂τ

+ vt
∂Dj

∂τ

)
= 0, j = 0, 1.

Dividing by P̃j and rearranging the terms, keeping in mind that a = κθ we get

vt

(
aj − βj + γD2

j −
∂Dj

∂τ

)
+ θ

(
κDj −

∂Cj
∂τ

)
= 0, j = 0, 1. (1.40)

In order for (1.40) to be true without having P̃j(u, vt, τ) = P̃j(u, vt, 0), we need both

parts of the equation to be equal to 0. Hence, we obtain

∂Dj

∂τ
= aj − βjDj + γD2

j

∂Cj
∂τ

= κDj. (1.41)

For simplification purposes, we write

∂Dj

∂τ
= γ(Dj − rj,+)(Dj − rj,−)

where

rj,± =
βj ±

√
β2
j − 4ajγ

2γ
=
βj ± dj
σ2

, j = 0, 1.
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Next, we need to integrate (1.41) subject to the terminal conditions Cj(u, 0) = 0 and

Dj(u, 0) = 0, so that

P̃j(u, vt, 0) = eCj(u,0)θ+Dj(u,0)vtP̃j(u, vt, 0)

= 1× P̃j(u, vt, 0). (1.42)

Integrating (1.41) gives

Dj(u, τ) = r−
1− e−djτ

1− ωje−djτ

Cj(u, τ) = κ

(
r−τ −

2

σ2
log

[
1− ωje−djτ

1− ωj

])
, (1.43)

where

ωj =
rj,+
rj,−

, j = 0, 1.

Putting (1.43) back in (1.35), we obtain

Pj(x, vt, τ) =

∫ ∞
−∞

1

2π
eiuxt

(
eCj(u,τ)θ+Dj(u,τ)vt

iu

)
du

=

∫ ∞
−∞

1

2iuπ
exp(iuxt + Cj(u, τ)θ +Dj(u, τ)vt)du. (1.44)

According to Gatheral (2006), it is possible to perform the integral in (1.44) to obtain

a nicer, real-valued integral of the form

Pj(xt, vt, τ) =
1

2
+

1

π

∫ ∞
0

Re

(
exp(iuxt + Cj(u, τ)θ +Dj(u, τ)vt)

iu

)
du, (1.45)

for j = 0, 1, which is numerically integrable. Hence, the future price to expiration of a

European call option under the Heston model can be expressed by

C ′(xt, vt, τ) = K(extP1(xt, vt, τ)− P0(xt, vt, τ)) (1.46)

25



with Pj(xt, vt, τ), j = 0, 1, as in (1.45). To obtain CH
t (xt, vt, τ) the price of the call at

time t under the Heston model, 0 < t < T , it suffices to discount C ′(xt, vt, τ) using the

risk-free rate r, such that

CH(xt, vt, τ) = Ke−rτ (extP1(xt, vt, τ)− P0(xt, vt, τ)). (1.47)

1.2.4 Hedging under the Heston model

As explained in the previous subsection, hedging an option under the Heston model

requires the addition of a third asset to the hedging portfolio. This results from the

presence of two sources of randomness influencing the price of the option, namely the

price of the underlying and the stochastic volatility. As in Section 1.1.4, the hedging

strategy relies on a replicating portfolio whose value is the same as that of the call at

any time t, 0 ≤ t ≤ T . For the hedge to be efficient, holding this portfolio and the

call option simultaneously must be risk-free. In other words, the total hedged position

must be insensitive to variations of both the price of the underlying and the volatility

of its returns.

We show here that the replicating portfolio that hedges a derivative under the Heston

model, is based on the hedging ratios α′1,t and α′2,t obtained in Section 1.2.3 when pricing

the call option. Thus, Ht, the replicating portfolio at time t, is given by:

Ht = α2,tSt + α1,tV
1
t + ξt, (1.48)

where St and V 1
t are the prices of the underlying and the third asset, respectively, α1,t

and α2,t are defined as in (1.14) and (1.15) and

ξt = CH(xt, vt, τ)− α2,tSt + α1,tV
1
t . (1.49)
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That is, at any time t, amounts of α2,tSt and α1,tV
1
t are invested in the underlying

and in the third asset, respectively. Similarly the strategy presented in Section 1.1.4,

the strategy presented here is self-financing. The difference between the sum of these

amounts and the price of the option is invested in the risk-free asset. This amount may

become negative, which signifies that the investor needs to borrow to finance the hedge

and ensure that the replicating portfolio and the option keep the same value at any

time.

To demonstrate that simultaneously taking a short position in the call and a long one

in the replicating portfolio results in a risk-free position, we show that the derivatives

of the resulting position with respect to St and vt, the instantaneous volatility, are both

equal to 0. In other words, the portfolio is insensitive to both sources of risk.

First, note that ξt, the amount invested in the risk-free asset, grows at the risk free rate

regardless of the price of the underlying and the volatility of its returns. Hence,

∂ξt
∂St

= 0

∂ξt
∂vt

= 0. (1.50)

Let Π∗t = Ht − CH(st, vt, τ) denote the value of the overall position at time t. Thus,

using the definition of α∗1,t and α∗2,t given by (1.14) and (1.15), we have that

∂Π∗t
∂St

= α∗2,t + α∗1,t
∂V 1

t

∂St
− ∂CH

t

∂St
= 0

(1.51)

and

∂Π∗t
∂vt

= α∗1,t
∂V 1

t

∂vt
− ∂CH

t

∂vt
= 0.

(1.52)
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It follows that the expressions α∗1,t and α∗2,t, used to eliminate risk from the valuation

portfolio given by (1.8) in Section 1.2.3, are also used to derive the hedging strategy

implied by the pricing method. In fact, the overall risk-free position Π∗t is simply the

sum of the hedged portfolio defined by (1.8) in Section 1.2.3 and a risk-free investment.

Thus, the hedging strategy introduced in this section underlies the pricing approach

presented in the previous one.

1.2.5 Calibrating the Heston model

To calibrate the Heston model, one must take many issues into consideration. Stochas-

tic volatility models contain a latent variable, vt, which is not directly observable in

market prices, thus calling for sophisticated filtering techniques. A second issue is that,

in addition to estimating the parameters κ′, θ′, σ, ρ and v0, which could be obtained

from historical prices, one must estimate λ, the volatility risk premium. This last task

usually requires the observation of the price of at least one derivative.

When the Heston model is calibrated with the sole purpose of pricing non-traded

derivatives, it suffices to estimate the risk-neutral parameter set ϕ = (κ, θ, σ, v0, ρ).

This can be done by minimizing the sum of the squares of the difference between ob-

served market prices of call options and model-calculated ones, as explained in Moodley

(2005). However, this method fails to estimate the volatility risk premium λ.

To calibrate the full Heston model, including λ, Aı̈t-Sahalia & Kimmel (2007),

amongst others, uses maximum likelihood while Garcia et al. (2011) proposes a proce-

dure based on the method of moments. Both methods require extensive intraday quotes
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and historical option prices to estimate volatility and the price of risk. Their implemen-

tation is time consuming and their results are not always guaranteed, as they rely on

complex system of equations that may not have an solution. The use of such methods,

although beyond the scope of this work, might be considered for future research.

In this thesis, the calibration of the model will be done in two steps. We will first es-

timate the risk-neutral parameter set ϕ using observed option prices and optimization

techniques. The estimation of the volatility risk premium will be performed subse-

quently.

To estimate the risk-neutral parameter set ϕ, we follow Chapter III of Moodley

(2005) closely. The objective is to find the parameter set ϕ̂ which minimizes the function

M(ϕ) = ΣN
i=1wi

(
Cϕ
i (Ki, τi)− Cmkt

i (Ki, τi)
)2
, (1.53)

where Cmkt(Ki, τi) is the price of a call option of strike Ki and time to maturity τi

observed on the market, and Cϕ(Ki, τi) is the price of the same option under the He-

ston model, calculated using (1.47) and parameter set ϕ. N is the number of options

used to calibrate the model and wi are the weights, which will be discussed later. We

choose Cmkt(Ki, τi) to be the mid-point between the ask and the bid price of the option.

Since we want to calibrate the model to price 10-year maturity contracts, we use

options with the longest maturities possible, from 6 months to over 2 years. However,

some of the longer maturity, far-from-the-money options may be less liquid, which will

be reflected by a larger bid-ask spread. This may pose a problem, since we assume that
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market prices of traded securities contain information about the market. The more an

option is traded, the more information is contained in its price. Large bid-ask spread

signify that the option is less traded and thus, that it contains less information. This

is why we let the weights wi give more importance to the options with smaller bid-ask

spreads, defining

wi =
1

|bidi − aski|
,

where bidi and aski are the bid and the ask price, respectively, of the ith call option.

The function defined by (1.53) is highly non-linear and contains numeric integrals.

It may present numerous local minima, which makes it complicated to minimize. Var-

ious optimization methods can be used to solve it, some more efficiently than others.

Moodley (2005) points out that the MATLAB function lsqnonlin performs relatively

well and has the advantage of being fast. This function is based on an interior-reflective

Newton method, with the disadvantage of returning only a local minimum. This makes

the solution highly dependent on the initial parameters. Our solution to this inconve-

nient was to perform the minimization with different sets of initial parameters and to

analyze the results using two criteria. First, any parameter set that does not satisfy

ΣN
i=1(bidi − aski)2 ≥ ΣN

i=1

(
Cϕ
i (Ki, τi)− Cmkt

i (Ki, τi)
)2

(1.54)

is rejected. The calibration uses the mid-point of the bid-ask spread, but we accept a

parameter set that lets the option prices be, on average, between the bid and ask prices.

The optimal parameter set, ϕ̂, is the one that returns the lowest value of M(ϕ).

We performed the optimization using the prices of 67 European call options on the

30



S&P 500 index as of May 20, 20111. We chose options with 0.57 to 2.59 years to ma-

turity, with moneyness ranging from 78.7% to 127.4%. We discarded any option with

a trading volume below 10. Using the optimization procedure described above and

the a slightly modified version of the code provided by Moodley (2005), we obtained

ϕ̂ = (5.1793, 0.0178, 0.1309, 0.0286,−0.7025). These results are mostly in line with the

parameters found by other authors such as Aı̈t-Sahalia & Kimmel (2007), Gatheral

(2006) and Bakshi et al. (1997). However, the use of r = 0.02, justified by the long

horizon of the EIA to price, may have lead to a higher κ and a lower σ than expected.

Our choice of options with longer maturity may have also contributed to those results.

Nonetheless, this parameter set meets (1.54) and yields M(ϕ̂) = 171.646. Furthermore,

it satisfies 4κθ
σ2 > 1, which, as will be seen in Section 2.5.2, facilitates the discretization

of the process.

The volatility risk premium, represented by λ, is then chosen so that the variance

of simulated weekly log-returns 2 matches the values observed in the historical data.

Remember that although λ does not appear explicitly in the volatility process, it is

reflected in κ′ and θ′ through the relation expressed in (1.21).

Denote by λ̂ the value which, when used in the simulations, yields the smallest

difference between the observed and the simulated moments. Testing different values

for λ ranging from −3 to 3 by performing 100,000 Monte Carlo simulations for each,

we obtain λ̂ = 2.62. The volatility risk premium is generally agreed to be negative and

1Data from cboe.com.
2The data was simulated using the method described in Section 2.5.2.
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Bakshi & Kapadia (2003), amongst others, shows evidence of this. However, in our

case, the fact that historical volatility is higher due to the recent financial crisis and

the use of r = 0.02, which affects our Heston calibration, may explain our positive risk

premium. Nonetheless, in our numerical example, we will also test other values of λ to

account for cases where the premium is negative.
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Chapter 2

Hedging in Discrete Time

2.1 Introduction

In Chapter 1, hedging strategies underlying the valuation of the call price under the

Black-Scholes and the Heston model were introduced. Those strategies involve buy-

ing the underlying, and a third asset in the Heston case, in certain quantities. Those

quantities, being dependent on time, underlying price and volatility, vary continuously

in the same manner as the parameters do. In real life, this means that an investor

wanting to hedge his position in the derivative would need to adjust his investment

in the underlying and the third asset, when necessary, in a continuous manner, which

is impossible. In fact, even if he did adjust his position every minute a discretization

effect, albeit very slight, would be perceptible in the performance of the strategy. This

effect translates into additional costs, and it follows that the strategy applied in a dis-

crete manner is no longer self-financing.

Furthermore, applying such hedging strategies in real life entails certain restrictions.
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In fact, while the models assume no transaction costs, they are a reality for investors.

In this thesis, we do not account for them explicitly. However, we acknowledge the

fact that they limit the frequency with which the investor can rebalance his portfolio.

For example, he might decide to adjust his position daily, weekly or even bi-monthly.

Such a discretization of a strategy developed under a continuous model gives rise to

additional costs, which are described in more details in Section 2.2. To reduce them,

investors try to match the sensitivity of the replicating portfolio with those of the call

option price, so that they vary in a similar way. Those sensitivities, called the Greeks

of the option, are introduced in Section 2.3. Hedging strategies using the Greeks are

presented in Section 2.4. Section 2.5 explains how to discretize the dynamics of stock

prices to simulate them and thus analyze the performance of the different strategies.

2.2 Hedging Errors

Hedging errors are inevitable when a hedging strategy developed in continuous time is

applied at discrete time intervals. The proportions of the replicating portfolio invested

in each asset depend on parameters that change continuously and thus, those propor-

tions should also be adjusted in a continuous manner. In reality, adjustments occur

periodically, causing the value of the replicating portfolio to move away from that of

the derivative between adjustments. Thus, hedging errors arise at rebalancing, when

the replicating portfolio is adjusted so that its value is the same as that of the position

to be hedged. Hedging errors are defined as the difference between the value of the

position to be hedged and the actual accumulated value in the replicating portfolio.

34



The hedging error at time t is defined by

HEt = Vt −Ht− , (2.1)

where Ht− is the value of the replicating portfolio at time t before rebalancing occurs.

Notice that hedging errors can be negative, forcing the investor to re-invest in the repli-

cating portfolio, or positive, allowing him to withdraw the surplus.

The total discounted hedging error, denoted PV (HE), represents the cost of the strat-

egy at inception of the contract. Assume rebalancing occurs m times a year at equal

time intervals. Then, the total discounted hedging error is given by

PV (HE) =
mT∑
i−1

e
−ir
m HEt. (2.2)

The distribution of the total discounted hedging errors will later be used to assess the

performance of different hedging strategies.

2.3 The Greeks

In finance, the Greeks represent the sensitivities of the price a derivative, or a portfolio

of derivatives, to different parameters. The name “Greeks” comes from the fact that

most of those sensitivities are denoted by Greek letters. They are central elements of

the hedging strategies presented in this chapter.

In this thesis, we will focus on three Greeks in particular: the delta, the gamma and the

vega. There exists many other Greeks and they can also be used for hedging, depending

on the risk the investor aims at removing (see Wilmott (2006) for more details).

Definition 2.1. Let Vt and St be the price of a derivative of maturity T and the price
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of its underlying,respectively, at time t, 0 ≤ t ≤ T . Then the delta of the investor’s

position in the derivative is denoted ∆V,t and is defined as

∆V,t =
∂Vt
∂St

. (2.3)

The delta measures the sensitivity of the investor’s position in the derivative to

changes in the price of the underlying. It is a very important element of dynamic hedg-

ing strategies, which will be presented in the next section.

Definition 2.2. The gamma of a position Vt is denoted ΓV,t and is given by

ΓV,t =
∂2Vt
∂S2

t

. (2.4)

Thus, the second derivative of the value of the position with respect to the price of

the underlying is called the gamma. It measures the sensitivity of the delta of a position

to variations in the price of the underlying. Since it is the derivative of the delta with

respect to the underlying price, it can be used to improve hedging strategies using the

delta.

In the Black-Scholes model, the volatility of the return of the underlying is assumed

to be constant. However, other models, such as the Heston model presented in Chapter

1, represent the changes in volatility by a stochastic process, so the parameter varies

through time.

Definition 2.3. Let vt be the instantaneous volatility of the price of the underlying at

time t. Let also VV,t be the vega of the position Vt, then

VV,t =
∂Vt
∂vt

, (2.5)
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The vega of a position measures the sensitivity of its price to the variation in the

volatility of the underlying. In practice, it is incorporated to hedging strategies in an

attempt to eliminate volatility risk.

Closed and semi-closed form expressions for the delta, gamma and vega of a European

call option under the Black-Scholes model and the Heston model are presented in the

examples that follow. These expressions are very important, not only to hedge positions

taken in call options; they can be part of strategies that aim at hedging more exotic

derivatives, some of which will be discussed in Chapter 3.

Example 2.1 (Greeks of a European call option under Black-Scholes). To obtain the

Greeks of a European call option in a Black-Scholes setting, it suffices to take the ap-

propriate derivatives of the price of the option, which is given by (1.4). Let ∆BS
C,t , ΓBSC,t

and VBSC,t be the delta, the gamma and the vega of the call option at time t, respectively,

under the Black-Scholes model. Then the Greeks of the call option are given by

∆BS
C,t = Φ(d1)

ΓBSC,t =
φ(d1)

StσBS
√
T − t

VBSC,t = Stφ(d1)
√

(T − t), (2.6)

where Φ and φ are the distribution and the density functions of a standard normal

variable, respectively, and

d1 =
log St

K
+
(
r +

σ2
BS

2

)
(T − t)

σBS
√
T − t

.

Example 2.2 (Greeks of a European call option under Heston). One of the advantages

of the Heston model is that it allows for a semi-closed expression for the price of the
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European call option. This expression, presented in Chapter 1, contains an integral

which can be solved numerically. To obtain the Greeks of the call option in a Heston

environment, one must differentiate the expression with respect to the appropriate pa-

rameters. Those derivatives are easily obtained since Cj(u, τ) and Dj(u, τ), j = 0, 1,

are not functions of St and vt.

Let Pj(xt, vt, τ) be as defined in (1.45). Let also ∆H
C,t, ΓHC,t and VHC,t be the delta, the

gamma and the vega of the call option at time t, respectively, under the Heston model.

Then the Greeks of the call option are given by

∆H
C,t = P1 +

∂P1

∂xt
− e−xt ∂P0

∂xt

ΓHC,t =
1

St

[
∂P1

∂xt
− ∂2P1

∂x2
t

− e−xt
(
∂2P0

∂x2
t

− ∂P0

∂xt

)]
VHC,t = Ke−rτ

(
ext

∂P1

∂vt
− ∂P0

∂vt

)
, (2.7)

where Pj,j = 0, 1 are short notation for Pj(xt, vt, τ), which are defined in (1.45), and

∂Pj
∂xt

=
1

π

∫ ∞
0

Re (exp(iuxt + Cj(u, τ)θ +Dj(u, τ)vt)) du

∂2Pj
∂x2

t

=
1

π

∫ ∞
0

Re (iu exp(iuxt + Cj(u, τ)θ +Dj(u, τ)vt)) du

∂Pj
∂vt

=
1

π

∫ ∞
0

Re

(
Dj(u, τ) exp(iuxt + Cj(u, τ)θ +Dj(u, τ)vt)

iu

)
du,

(2.8)

for j = 0, 1.

The sensitivities of financial derivatives to the different parameters can be used to

hedge risky positions. Some hedging strategies using the Greeks are presented in the

next section.
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2.4 Dynamic Hedging Strategies

As explained in Chapter 1, the models considered in this thesis assume that the markets

are free of arbitrage. This assumption, common to many financial models, leads to the

construction of a portfolio replicating the position to be hedged. That portfolio should

offset the initial position at any given time and for any underlying price, so that taking

the initial position and holding the replicating portfolio simultaneously becomes risk

free. Thus, by the no-arbitrage assumption, the return on the overall position is the

risk-free rate r.

This replicating portfolio allows us to price and hedge any derivative whose payoff

depends on the price of the underlying. This technique was used in Chapter 1 to derive

the price of the European call option and to hedge it under both Black-Scholes and

Heston models. In this chapter, we use similar replicating portfolios to develop more

general hedging strategies. We assume that the position to be hedged is one taken in

any financial derivative denoted Vt. For the overall position to be risk-free, or, in other

words, to hedge the risks involved in the initial position, the other securities need to be

bought or sold in the right quantities. In this section, we assume that the investor takes

a short position in the derivative and identify the quantities which make the portfolio

risk-free. This can be extended to a long position case by simply inverting the sign of

the derivative.

2.4.1 Delta Hedging

The main risk associated with taking a short position in a financial derivative lies in the

randomness of the price of the underlying. One way to hedge this risk is to construct a
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replicating portfolio containing the underlying and the risk-free asset, as presented in

Section 1.1.4. To ensure that the replicating portfolio and the price of the derivative

vary similarly as the underlying price changes, their first derivatives with respect to the

underlying price should be matched. As the strategy is applied in discrete time, this

helps to keep the value of the replicating portfolio close to the price of the derivative

between portfolio adjustments.

Denote ∆∗t and ξt the position taken in the underlying and the amount invested in

the risk-free asset, respectively, at time t, 0 ≤ t ≤ T , where T is the maturity of the

derivative. Then, the value of the resulting portfolio at time t, denoted H∆
t , is given

by

H∆
t = ∆∗tSt + ξt. (2.9)

Thus, the overall position is given by

Π∆
t = H∆

t − Vt. (2.10)

For the overall position to be protected against changes in the underlying price, its

derivative with respect to St must be 0. Hence, we need to choose the hedging ratio ∆∗t

so that

∂Π∆
t

∂St
= 0. (2.11)

As explained in Section 1.2.4, the amount invested in the risk-free asset is insensitive

to change in the underlying price. Thus,

∂Π∆
t

∂St
= ∆∗t −

∂Vt
∂St

, (2.12)

so ∆∗t = ∂Vt
∂St

satisfies (2.11). Note that ∂Vt
∂St

is the delta of the position Vt, denoted ∆V,t.

As stated before, this strategy is a generalization of the call option hedging strategy
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presented in Section 1.1.4, in which the amount invested in the underlying at any time

t was given by Φ(d1)St, with Φ(d1) defined as in (1.4). This quantity is in fact the delta

of the call option, as seen in (2.6).

It is important to realize that ∆V,t is generally not a constant. It is a function of the

underlying price St and of the time to expiration of the contract, T − t. It can also

depend on other parameters according to the model chosen. Hence, the discretization

of this strategy will cause additional costs, which arise from the discrepancies between

the evolution of the portfolio predicted by the model and the actual changes in the

price of the securities. In fact, at time t = 0 and after each adjustment, the value of Ht

must be equal to Vt. Hence, H∆
t is adjusted periodically so that the proportion of the

replicating portfolio invested in the underlying index remains ∆V,t. Thus, we have that

ξt, the amount invested in the risk-free account at time t, is given by

ξt = Vt −∆V,tSt. (2.13)

2.4.2 Gamma Hedging

Since the hedging portfolio cannot be rebalanced continuously, hedging errors occur

when adjusting the replicating portfolio. A way to reduce those errors without changing

the rebalancing frequency is to neutralize both first and second derivatives of the overall

position with respect to the underlying price. In other words, we want the first derivative

of the delta of the position to be equal to 0. Hence, as the price of the underlying

changes slightly, the delta of the position remains constant instead of varying with the

fluctuations of the underlying, as it is the case with delta hedging. This contributes to

reducing hedging errors.

As seen in the previous section, the second derivative of the position Vt with respect to
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the price of the underlying is called the gamma of the position and is denoted ΓV,t. Since

the gamma of the underlying is 0, we need to add another security to the replicating

portfolio to neutralize the gamma of the initial position. This security must be another

derivative of the same underlying and have a gamma different than 0. We assume that

this security is always available on the market. In this thesis, without loss of generality,

we also assume that this security is an option and we denote V 1
t its price at time t.

Hence, the value of the replicating portfolio at time t is given by:

HΓ
t = α∗1,tV

1
t + α∗2,tSt + ξt, (2.14)

where α∗1,t and α∗2,t are the proportions of the portfolio invested in the third asset and in

the underlying, respectively, and ξt is the amount invested in the risk-free asset. Since

the value of the replicating portfolio must be equal to that of the derivative, we have

that

ξt = Vt − α∗1,tV 1
t + α∗2,tSt, (2.15)

for any t, 0 ≤ t ≤ T .

Let ΠΓ
t be the value of the overall position, with value at time t given by

ΠΓ
t = HΓ

t − Vt. (2.16)

To neutralize the delta and the gamma of the overall position, we choose α∗1,t and α∗2,t

such that

∂ΠΓ
t

∂St
= 0,

and

∂2ΠΓ
t

∂S2
t

= 0.

Since

∂ΠΓ
t

∂St
= α∗1,t

∂V 1
t

∂St
+ α∗2,t −

∂Vt
∂St

,
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and

∂2ΠΓ
t

∂S2
t

= α∗1,t
∂2V 1

t

∂S2
t

− ∂2Vt
∂S2

t

,

we need to choose α∗1,t = αΓ
1,t and α∗2,t = αΓ

2,t, where

αΓ
1,t =

ΓV,t
ΓV 1,t

, (2.17)

αΓ
2,t = ∆V,t − αG1,t∆V 1,t, (2.18)

and ∆V,t, ∆V 1,t, ΓV,t and ΓV 1,t are the delta and the gamma of the derivative and the

option, respectively.

2.4.3 Hedging Volatility: Vega Hedging

In the Black-Scholes model the volatility of stock returns is assumed to be constant.

However, as explained in Section 1.2.1, empirical evidence suggests that it is not the

case. Many models, such as the Heston model, assume that the volatility of stock

returns follows a stochastic process. Under this assumption, two different sources of

randomness influence the value of the initial position in the derivative. Thus, hedging

it by neutralizing its delta only is not sufficient, since it does not protect the investor

against changes in the volatility of the underlying returns. Incorporating the derivative

of the overall position with respect to the instantaneous volatility, the vega, allows for

a better performing strategy.

To hedge both sources of randomness, a third asset is necessary. As in gamma hedging,

the price of this third asset needs to depend on the price of the underlying and its vega

has to be different that 0. Again, we assume that it always exists and, for this thesis,
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we consider that it is an option and denote its price at time t by V 1
t . Hence, the value

of the delta-vega replicating portfolio at time t is given by

HV
t = α∗1,tV

1
t + α∗2,tSt + ξt, (2.19)

where ξt, the difference between the value of the derivative and that of α∗1,tV
1
t + α∗2,tSt,

is the amount invested in the risk-free asset. Thus, ΠV
t , the value of the overall position

at time t, 0 ≤ t ≤ T , is defined as

ΠV
t = HV

t − Vt. (2.20)

This setting is very similar to (2.14). However, in this case, we need to choose different

α∗1,t and α∗2,t to obtain

∂ΠV
t

∂St
= 0

and

∂2ΠV
t

∂vt
= 0,

where vt is the volatility of the price of the underlying at time t. Taking the derivatives

of the overall position with respect to St and vt, we find

∂ΠV
t

∂St
= α∗1,t

∂V 1
t

∂St
+ α∗2,t

∂Vt
∂St

and

∂ΠV
t

∂vt
= α∗1,t

∂Vt
∂vt

+ α∗2,t
∂St
∂vt
− ∂Vt
∂vt
− .

To neutralize the delta and the vega of the portfolio, we need to choose α∗1,t = αV
1,t and

α∗2,t = αV
2,t, with

αV
1,t =

VV,t

VV 1,t

(2.21)

and

αV
2,t = ∆V,t − αV

1,t∆V 1,t, (2.22)
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where ∆Vt and ∆V 1
t

are as in (2.18).

Notice that, in the Heston model, when the derivative to hedge is a call option, the

hedging proportions αV
1,t = α1,t and αV

2,t = α2,t, with α1,t and α2,t defined as in (1.14)

and (1.15). Thus, the hedging strategy underlying the valuation of the call option in

the Heston model is a delta-vega hedging strategy.

2.5 Discretization

In this thesis, Monte Carlo simulations are used to analyze the distribution of the total

discounted hedging error under different hedging strategies. In order to perform those

simulations, sample paths of stock prices need to be generated. To do so, we need to

discretize the continuous processes that describe stock prices and volatilities of returns.

We present here the methods used to discretize those processes and to generate sample

paths.

2.5.1 Discretization under Black-Scholes

Stock price dynamics under the Black-Scholes model are given by (1.1). Using the

Itô-Doeblin formula, this can be re-written in the integral form:

St = S0 e
Xt , (2.23)

where 
Xt = X0 +

∫ t
0

(
µBS −

σ2
BS

2

)
dt+

∫ t
0
σBSdZt,

X0 = 1,

(2.24)

with µBS and σBS defined as in (1.1).

Suppose that we divide a year into m time periods and let δ = 1
m

. Suppose also that we
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observe the price of the stock at the beginning of each time period. Then the process

Xt can be discretized by

Xt+δ = Xt +

(
µBS −

σ2
BS

2

)
δ + σBS

√
δN(0, 1), (2.25)

where N(0, 1) is a standard normal random variable. This method performs better than

a simple Euler discretization of (1.1) because there are no higher order corrections in

the Itô-Taylor expansion of Xt. It is the equivalent of sampling directly from the normal

distribution of the log-returns.

2.5.2 Discretization under Heston

Under the Heston model, two processes need to be discretized. The stock price process

can be approached the same way as for the Black-Scholes model, such that
Xt+δ = Xt +

(
µ− vt

2

)
δ +
√
vtδN(0, 1), 0 ≤ t ≤ T,

X0 = 1,

(2.26)

and

St = S0 e
Xt , 0 ≤ t ≤ T. (2.27)

The discretization of the volatility process described by (1.7) requires more work. It is

possible to apply a simple Euler discretization and get

vt+h = vt + κ′ (θ′ − vt)ht+ σ
√
vthtN(0, 1). (2.28)

However, such a method may simulate negative variance, which is undesirable. To

address this problem, we go one order higher in the Itô-Taylor expansion of vt and use

the Milstein scheme. This scheme says that if a stochastic process Yt is described by

dYt = a(Yt, t)dt+ b(Yt, t)dZt,
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then Yt can be discretized as follows:

Yt+h = Yt+

(
a(Yt, t)−

1

2
b(Yt, t)

∂

∂Yt
b(Yt, t)

)
h+b(Yt, t)hN(0, 1)+

1

2
b(Yt, t)

∂

∂Yt
b(Yt, t)(hN(0, 1))2.

(2.29)

For more details on Itô-Taylor expansions and the Milstein scheme, see Kloeden &

Platen (1992).

Applying (2.29) to (1.7) gives the following discretization scheme for the volatility

process:

vt+δ = vt + (κ′(θ′ − vt)−
1

2
σ2)δ + σ

√
vtδN(0, 1) +

1

2
σ2δ(N(0, 1))2. (2.30)

According to Gatheral (2006), the frequency of negative variance is significantly reduced

when using the Milstein scheme, compared to a Euler discretization, especially when

4κθ
σ2 > 1. However, negative variance may still occur. Other schemes have been proposed

to solve this problem (see, for example, Glasserman & Kim (2009) and Alfonsi (2010)).

Nonetheless, in this thesis, we use the Milstein discretization scheme along with the

absorption assumption and let vt+δ = max(0, v′t+δ), where v′t+δ is the value obtained

using (2.30). Although this introduces a slight bias, it eliminates the possibility of

negative variance.
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Chapter 3

Equity-Linked Products

3.1 Introduction

Equity-linked products are investment vehicles offering a participation in financial mar-

ket growth while protecting the initial capital. Thus, investors can benefit from positive

market returns without facing downside risk. To buy an equity-linked product, the in-

vestor generally pays a single premium to the insurance company issuing the contract.

During the term of the contract, the premium grows as if it were invested in the fi-

nancial market. Hence, the sum paid out to the investor at maturity of the contract

depends on market performance. However, the insurance company guarantees that this

sum will not be less than a pre-determined amount, which is based on the initial in-

vestment. In addition to this guarantee, the insurer often offers a death benefit should

the investor die before the end of the contract. Other guarantees can be incorporated

to the equity-linked contract. For example, the investor may have the possibility to

convert the accumulated amount at maturity into an immediate annuity at a fixed rate.

Throughout the life of the contract, the investor may also be allowed to withdraw from
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his account, although this often triggers a financial penalty.

Equity-linked products can be divided into two general categories. Equity-indexed

annuities and equity-linked insurance, which have very similar designs, make up the

first category and will be introduced in Section 3.1.1. The second type of equity-linked

products contains variable annuities, products sold in the United States, segregated

funds, their Canadian counterparts and unit-linked insurance, which is available in the

UK. These contracts will be presented in Section 3.1.2.

3.1.1 Equity-Indexed Annuities

The first equity-indexed annuity (EIA) product was marketed in 1995 by Keyport Life.

Since their debut, EIAs have grown increasingly popular and their sales have broken

the $20 billion barrier ($23.1 billion) in 2004 and stayed above it since, reaching $26.8

billion in 2008 and $30.2 billion in 2009 (see www.indexannuity.org). EIAs are mainly

sold in the United States, although a very similar product called equity-linked insurance

is available in Germany.

When buying an EIA, the policy holder typically pays a single premium, an amount

which grows for the duration of the contract, usually between 5 and 15 years. The

contract guarantees a certain return on the initial investment. That return is typically

low, between 0% and 3%. The final payout is also based on the performance of an un-

derlying asset, typically a stock index: if it performs better than the guaranteed rate,

part of the index return is added to the guarantee. The way the additional return is
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capped depends on the contract. While some specify a maximum return, others offer a

rate of participation in it, or reduce it by a fixed spread. Limiting the maximum return

decreases the risk associated with the random payoff. EIAs also provide a death benefit

if the policy holder dies before the end of the contract.

The performance of an EIA depends on the return of a stock index. The way the

return of the EIA is calculated and applied to the investor’s account depends on the

type of contract. In some EIAs, called annual reset, the return on the index is calcu-

lated yearly and interest is credited and locked-in every year. The annual index return

is generally calculated using its beginning and end of year value, but it can also be

obtained by observing its maximum value during the period. Annual reset EIAs re-

duce the risk of low return caused by a drop in the index value towards the end of the

contract. Their payoff, similar to that of a cliquet option, is complex and sensitive to

changes in index return volatility. Although they have been gaining in popularity, we

do not analyze this type of EIA further in this thesis.

In other cases, such as the one that will be studied here, the payoff of the EIA is

based on the value of the underlying index at the beginning and at maturity of the con-

tract. The resulting interest, based on the index’s performance during the term, is then

applied to the account at maturity. This return is adjusted using different parameters,

such as described below.

The focus of this thesis is the point-to-point (PTP) EIA, which offers both a financial

guarantee and a death benefit. Assuming that the policyholder survives until maturity
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of the contract, the financial guarantee pays the highest of the guaranteed rate and the

return on the underlying asset, calculated using its price at inception and at maturity.

As before, we denote the price of the underlying by St, 0 ≤ t ≤ T , where T is the

maturity of the contract. Hence, BPTP (ST , T ), the PTP payoff at maturity, is given by

BPTP (ST , T ) = max

(
1 + α

(
ST
S0

− 1

)
, %(1 + g)T

)
, (3.1)

where α, 0 < α ≤ 1, is the participation rate in the index return and %, 0 < % ≤ 1, is

the proportion of the premium that earns the guaranteed return g. Here, to simplify

the expression, we assume that the premium paid, or the amount invested, is 1. This

assumption will remain throughout the thesis, without loss of generality. To apply the

results to different premium level, it suffices to multiply them by the premium amount.

For a fixed premium, the value of the PTP financial guarantee depends on the guar-

anteed return and the participation rates. A higher guaranteed return will increase the

value of the financial guarantee, while low participation rates will decrease it. Typically,

α is set in a way such that the insurance company makes money by selling those con-

tracts. Thus, participation rates in the index return can vary significantly, depending

on market performance.

To price the point-to-point EIA, we assume that mortality risk is diversifiable. Thus,

by selling a sufficient number of homogeneous contracts, we can hedge the mortality risk

away. Hence, the price of the contract becomes the value of the financial guarantee. To

price it, we use the no-arbitrage assumption, which states that two assets or portfolios

with the same payoff have the same market price. We first show that the payoff of a
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PTP contract is a linear function of a the payoff of a European call option. Since we

have closed or semi-closed form expressions for the price of the European call under the

Black-Scholes and Heston models, we are able to find similar expressions for the price

of the PTP contract under both models.

To simplify the notation, we let K =: %(1 + g)T and L =: S0

(
K−1+α

α

)
. Then, re-

arranging (3.1), the payoff of the PTP contract can be expressed by

BPTP (ST , T ) = K +
α

S0

BC(L, T ), (3.2)

where BC(L, T ) is the payoff of a European call option of strike L.

To obtain the price of the PTP guarantee at time t, 0 < t < T , we assume that mor-

tality risk is diversifiable and use risk-neutral valuation, which was briefly explained in

section 1.2 (for more details about risk-neutral pricing, see Harrison & Pliska (1981)).

Proposition 3.1. Let C(St, L, τ) denote the price at time t of a European call option

of strike L and maturity T and let τ = T − t. Let L and K be as in (3.2). Then,

Pt(St, τ), the price of the PTP contract at time t, is given by:

Pt(St, τ) = Ke−rτ +
α

S0

C(St, L, T ). (3.3)

Proof. Denote the risk-neutral expectation EQ[·]. Using risk-neutral pricing, the price

of the PTP contract at time t is given by the expectation of its discounted payoff, such
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that

Pt(St, τ) = EQ[e−rτBPTP
T (ST , T )]

= EQ

[
e−rτ

(
1 + α

(
1

S0

(
L+BC(L, T )

)
− 1

))]
= e−rτ

(
1 + α

(
1

S0

(
L+ EQ

[
BC(L, T )

])
− 1

))
. (3.4)

Since BC(L, T ) is the payoff of a European call option, then

EQ
[
BC(L, T )

]
= erτC(St, L, τ), (3.5)

where C(St, L, τ) is the price of the call option of strike L and time to maturity τ .

To obtain (3.3), it suffices to use (3.5) in (3.4) and re-arrange (3.4), remembering that

L = S0

(
K−1+α

α

)
.

One can obtain formulas for the price of the PTP financial guarantee under both the

Black-Scholes and Heston models, using (1.4) and (1.46) for the call price, respectively.

3.1.2 Variable Annuities

Variable annuities, segregated funds and unit-linked insurance are American, Canadian

and British products, respectively, which have very similar designs. From now on, the

term variable annuities will be used to designate the three types of contracts.

Variable annuities are similar to mutual funds, but they offer a guaranteed minimum

maturity benefit (GMMB) corresponding to 75 to 100% of the initial premium. The

investor pays a single premium, which is invested in a separate account similar to a mu-

tual fund, invested in a mix of stocks, bonds and short-term market securities, chosen
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by the policyholder. Small investors usually have the choice between portfolios built by

the insurer, usually designed to fit different risk profiles. Policyholders investing higher

amounts are generally able to compose their own portfolio. The funds are then managed

outside of the insurance company. At the beginning of each month, administration fees

are paid out of the account to the insurance company. These fees are used to cover the

cost of the guarantee. Variable annuities typically offer a guaranteed minimum death

benefit (GMDB) of 100% of the initial premium. Some offer additional benefits, such

as the possibility to renew the contract at maturity, for 100% of the initial premium or

75% of the accumulated amount.

The payoff of a variable annuity, BV A(ST , T ) is thus the maximum between G and

FT , where G is the guaranteed amount and FT is the value of the account at maturity

T . The value of the account is based on the fund performance in which it is invested.

We assume this value is based on an index and denote St the value of this index at t,

0 ≤ t ≤ T . Let ν, 0 ≤ ν ≤ 1, denote the percentage of the account which is paid out in

fees each month. Then the value of the account at maturity, FT is given by

FT = F0
ST (1− ν)12T

S0

. (3.6)

Without loss of generality, we assume that F0 = 1. It then is possible to re-write the

payoff BV A in terms of ST :

BV A(ST , T ) = G+
(1− ν)12T

S0

(ST − LV A)+, (3.7)

where LV A = G×S0

(1−ν)12T
and (ST −LV A)+ = max(ST −LV A, 0). This expression is used to

show that a variable annuity can be valued using (3.3), the pricing formula for a PTP
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contract.

In fact, variable annuities and point-to-point EIAs have very similar payoffs and results

obtained from analyzing PTP contracts can easily be applied to variable annuities. The

following proposition illustrates this similarity.

Proposition 3.2. Let G denote the guaranteed amount and ν, the fee rate. Then,

P V A
t (St, τ), the value of a variable annuity with time to expiry τ , is given by (3.3), with

K = G and α = (1− ν)12T .

Proof. This proof is similar to that of Proposition 3.1.

This similarity will allow us to concentrate on PTP contracts for the rest of the the-

sis, without dismissing variable annuities.

Proposition 3.2 relies on the assumption, made in Section 3.1.2, that the account’s

value is based on that of an index. However, in reality, this value depends on the

performance of a fund in which the initial premium is invested. While the composition

of this fund is chosen by the insurer, its management is done outside the company. In

certain cases, approximating the evolution of the fund using an index traded on the

market might be appropriate. However, it might not always be possible, which makes

it hard to apply Proposition 3.2. In those cases, since the composition of the fund is

known, the value of the fund could be estimated by a weighted sum of the N securities

composing the portfolio, denoted S∗t . Thus, we would have

S∗t =
N∑
i=1

w
(i)
t S

(i)
t , (3.8)

where S
(i)
t and w

(i)
t are the value of the securities and their weights in the portfolio,

respectively, at time t. Hence, pricing the variable annuity using (3.3) would still be
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possible. Nonetheless, some hedging strategies, such as gamma and vega hedging, in-

volve derivatives of the underlying. Since there are no options on the weighted sum

S∗t , these strategies will not be applicable to variable annuities. Thus, only delta hedg-

ing strategies will be available to insurers selling variable annuities, although another

alternative to explore would be to hedge the exposure to each component of the fund

separately.
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Chapter 4

Hedging Point-to-Point EIAs

4.1 Introduction

Insurance companies selling EIAs and variable annuities face a risk caused by the uncer-

tain payoff of these products. In this chapter, we present strategies that aim at reducing

that risk. More specifically, we introduce static hedging in Section 4.2 and combine it

with the concepts seen in Chapter 2 to build hedges designed for point-to-point (PTP)

EIAs. The resulting strategies are then analyzed with a numerical example in Chapter

5.

4.2 Static Hedging

A static hedge is a hedging strategy that does not need rebalancing after it is set

up. Since the price of the point-to-point EIA is a deterministic function of the price

of a European call, it would be possible to statically hedge the EIA under certain

assumptions. In fact, assuming that options of any maturities and strikes are available
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on the market, the insurance company issuing the EIA could protect itself against the

randomness in the payout of the contract by buying the European call option of which

the price of the EIA is a function. More specifically, the insurance company would

need to build a replicating portfolio that reproduces the payoff of the EIA by using

the initial premium to buy α
S0

of the European call option and by investing the rest,

P0(S0, τ) − α
S0
C(S0, T ) in the risk-free asset. Let Πs

t denote the value of the statically

hedged portfolio at any time t, 0 ≤ t ≤ T , where T is the maturity date of the EIA

contract. Then the value of the hedged portfolio at time t is given by

Πs
t =

α

S0

C(St, τ) + (P0(S0, τ)− α

S0

C(S0, T ))ert − Pt(St, τ). (4.1)

Replacing P0(S0, τ) and Pt(St, τ) by the expression given in (3.3) and re-arranging, we

get that the value of the hedged portfolio at any time t is 0. This means that the value

of the replicating portfolio is equal to the value of the contract at any time. Specifically,

at time T , the payoff of the hedge is equal to that of the EIA contract. Hence, the static

hedge allows the insurer to eliminate all the risk embedded in the sale of the EIA.

This strategy would be ideal if it were possible to buy call options of maturities similar

to the ones of EIA contracts. However, EIAs usually have 7 to 15 years maturities,

while the longest call option sold on a stock index has only τ̃ years to expiration, with

1 ≤ τ̃ ≤ 3, depending on the index. Thus, the static hedging strategy presented here

can only be applied by insurance companies during the last τ̃ years of the EIA contract.

4.3 Dynamic Hedging

In this section, we develop strategies that take into account the fact that call options

on stock indexes with maturities longer than τ̃ years are not available on the market.
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Since it is no longer possible to hedge EIAs statically, except during the last τ̃ years of

contract, we make use of the dynamic hedging strategies described in Section 2.4.

4.3.1 Delta Hedging

As explained in Chapter 2, the aim of the delta hedging strategy is to neutralize the

delta of the overall position containing the initial position and the replicating portfolio.

This strategy underlies the valuation equation in the Black-Scholes model. Thus, it is

the most appropriate when the returns of the underlying has a Gaussian distribution,

as in Black-Scholes. However, delta hedging fails to eliminate the risk brought on by

varying volatility of the underlying returns. It follow that this hedging strategy is not

sufficient under all market models.

Delta hedging is explained in details in Section 2.4.1. To apply this strategy to PTP

contracts, it suffices to use the delta of the EIA to determine the proportion of the

replicating portfolio to invest in the underlying index. Since this strategy is applied in

a discrete manner, it yields hedging errors, which are presented in Chapter 2 and given

by (2.1).

Let Pt(St, τ) and ∆P,t be the value of the EIA and its delta at time t, 0 ≤ t ≤ T as

defined in Chapter 3. Let also H∆
P,t denote the value of the replicating portfolio, or the

hedge, at time t. Thus, adapting (2.9) gives us that after each readjustment, H∆
P,t is

given by:

H∆
P,t = ∆P,t St + ξ∆

P,t, (4.2)
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where ξ∆
P,t = Pt(St, τ)−∆H

P,t St is the amount invested in the risk-free asset.

Assume the portfolio is rebalanced m times a year. Then, the hedging error occurring

at time t is given by (2.1) with Vt = Pt(St, τ) and Ht− = H∆
P,t− . The total discounted

hedging error, whose distribution will be analyzed to assess the performance of this

delta hedging strategy, is given by (2.2).

4.3.2 Delta and Static Hedging

Since the value of the point-to-point EIA, given by (3.3), is a linear function of the

price of a European call option, it is possible to apply static hedging when the call of

the appropriate maturity is available on the market. We use this to improve the delta

hedging strategy presented in the previous section. We apply delta hedging until time

t∗ = T − τ̃ , τ̃ years before the end of the contract. At that point, we assume it is

possible to buy a call option of strike L, with L as defined in Proposition 3.1, and τ̃

years to expiration. Thus, the dynamic hedge is liquidated and a static hedge based on

the value of the EIA contract at time t∗:

Pt(S
∗
t , τ̃) = Ke−τ̃ r +

α

S0

C(S∗t , T − τ̃), (4.3)

where K and C(S∗t , T− τ̃) are as defined in (3.3). Hence, the static hedge is constructed

by purchasing α
S0

European call options of strike L and by investing the rest in the risk-

free asset. For this to be possible, we assume that all securities are infinitely divisible

and that calls of any strikes are available. It follows that, at time t∗, the value of the

static hedging portfolio is equal to that of the contract. At time T , the value of the

static hedge, denoted Hs
P,T , becomes:

Hs
P,T = K +

α

S0

BC(L, T ), (4.4)
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where BC(L, T ) is the payoff of the call option of strike L. Notice that Hs
P,T =

BPTP (ST , T ), where BPTP (ST , T ) is the payoff of the EIA contract as defined by (3.2).

Thus, the amount obtained by selling the replicating at contract maturity can be used

by the insurer to payout the EIA benefit to the policyholder. This way, no hedging

errors occur after the set up of the static hedge, which yields a lower total discounted

hedging error than a pure delta-hedging strategy.

4.3.3 Gamma and Static Hedging

In order to reduced hedging errors due to discretization, the gamma of the derivative

to hedge can be incorporated to a dynamic hedging strategy, as explained in Section

2.4.2. In this section, we attempt to improve the performance of the dynamic hedging

strategy applied for the first T − 3 years by using the gamma to reduce hedging errors.

The new strategy calls for the use of a third asset, which depends on the same index as

the EIA and has a gamma other than 0. The payoff of the third asset should be similar

to the one to hedge, making the call option of strike L, with L defined as in Proposition

3.1, an appropriate choice for the third asset. This selection makes the Greeks of the

EIA and those of the hedge more similar, which should improve the efficiency of the

strategy.

Since we assume that call options of maturities longer than τ̃ years are not sold on

the market, we use the longest ones available to build our replicating portfolio. The

use of longer maturities is justified by the desire to match the payoff of the EIA and

those of the option as much as possible, so that their Greeks are similar. Each year,

at policy anniversary, the hedge is refreshed by selling the call option held and buying
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a longer one. This is done at rebalancing times t∗∗ = 1, 2, ..., T . Since call options

of long maturity (1 to 3 years) are only emitted once a year, it is only possible to

refresh the hedge annually. Nonetheless, it should still be adjusted regularly during the

year. Assuming that the EIA and the call option are issued simultaneously, the hedge

thus incorporate call options whose maturities vary from 2 to 3 years, representing the

longest maturity available on the market at the moment.

Let St, Pt(St, τ) and ∆H
P,t be as in Section 4.3.1. Let also ΓHP,t be the gamma of the EIA

and HΓ
P,t denote the value of the replicating portfolio at time t. Define τ̄ = 3−(pτq−τ),

where p·q returns the smallest integer greater than τ . Then, following (2.14), the value

of the replicating portfolio after each readjustment is given by:

HΓ
P,t = αΓ

1,tC(St, L, τ̄) + αΓ
2,tSt + ξΓ

P,t, (4.5)

with

ξΓ
P,t = Pt(St, τ)− αH1,tC(St, L, τ̄) + αH2,tSt, (4.6)

where C(St, L, τ̄) is the call option of strike L and maturity τ̄ and

αΓ
1,t =

ΓHP,t
ΓHC,t

αΓ
2,t = ∆H

P,t − αH1,t∆H
C,t. (4.7)

In the above, ∆H
C,t and ΓHC,t denote the delta and the gamma, respectively, of the call

option C(St, L, τ̄).

As for the other strategies, hedging errors arising from discretization are defined by

(2.1) and are denoted HEΓ
t . Note that since a static hedge is applied after time T − τ̃ ,

we have that

HEΓ
t = 0 for t = T − τ̃ , T − τ̃ + δ, ..., T. (4.8)
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A gamma hedging strategy improves the insurer’s protection against unpredictable

variations in the price of the underlying. However, it does leave the company exposed

to changes in index return volatility, which should induce hedging errors and thus lower

the performance of the hedge.

4.3.4 Vega and Static Hedging

As seen in section 1.2.4, the vega hedging strategy underlies the pricing of derivative

products in the Heston model. In this section, we suggest to enhance the delta and

static hedging strategy by neutralizing the delta and vega of the overall position taken

by the insurer. Under the same assumptions and considerations as in the last section,

we select call options of strike L and longest maturity possible to complete the hedging

portfolio. The hedge adjustment and refreshing times are the same as for the gamma

and static hedging strategy.

Let VHP,t be the vega of the EIA and let St, Pt(St, τ), ∆H
P,t, C(St, L, τ̄) and τ̄ be defined

as in the previous section. Then, following (2.19), HV
P,t the value of the replicating

portfolio after each readjustment is obtained by

HV
P,t = αV

1,tC(St, L, τ̄) + αV
2,tSt + ξVP,t, (4.9)

with

ξVP,t = Pt(St, τ)− αV
1,tC(St, L, τ̄) + αV

2,tSt. (4.10)

In the above, αV
1,t and αV

2,t are given by

αV
1,t =

VHP,t

VHC,t

αV
2,t = ∆H

P,t − αH1,t∆H
C,t. (4.11)
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By neutralizing the delta and the vega of its overall position, the insurer reduces the

risks caused by unexpected changes in the underlying price and the volatility of its

returns. The distribution of total hedging errors, obtained by (2.1) and (2.2), will be

used to analyze the performance of this strategy.

4.4 Numerical Example

In this section, we consider a 10-year point-to-point EIA on the S&P 500. The contract

guarantees a non-negative return (g = 0%) and full participation in that return (% = 1).

The rate of participation in the index return, α, is set such that the price of the con-

tract calculated using (3.3) is 1. To assess the performance of the hedging strategies

presented in the previous sections, we perform Monte Carlo simulations and analyze

the distribution of the total discounted hedging error resulting from the application of

each strategy. It is important to keep in mind that a positive hedging error results in

a loss for the insurer. Thus, we want to avoid hedging strategies that yield a hedging

error distribution presenting a heavy right tail. The 95% value-at-risk (V aR95%) will

be one of the risk measures used to assess the heaviness of the tail. The best strategies

are those that yield hedging errors that are close to the mean. This signifies that the

costs associated with the hedge do not vary too much and so, are more predictable.

This translates in a low standard deviation and a small difference between the expected

value and the 95% conditional tail expectation (CTE95%).

Throughout the numerical example, the Black-Scholes and Heston models are cali-

brated using the methods introduced in Chapter 1. Section 4.4.1 presents the results
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obtained when assuming that the market follows the Black-Scholes model. Section

4.4.2 focuses on the distributions obtained under the assumption of the Heston market

model. A sample of the code used to produce the graphs displayed in this section can

be found in the Appendix.

4.4.1 Black-Scholes hedging strategies in a Black-Scholes mar-

ket

Here, we consider that the dynamics of the price of the index are given by (1.1). We

assume that r = 0.02 and let µBS = 0.0637 and σBS = 0.19, such as obtained in Section

1.1.5. Under these assumptions, we set α = 0.572255, so that the price of the EIA

is 1. We simulate 50,000 sample paths of index prices using the discretization scheme

introduced in Section 2.5.1 and we apply the hedging strategies presented in Section

4.3, with the Greeks derived under the Black-Scholes framework. We assume that the

insurance company rebalances the hedge weekly, so that δ = 1
52

. Since the Black-Scholes

framework assumes constant volatility, it does not make sense to hedge the portfolio

volatility through vega hedging. However, we do assess the performance of delta, delta

and static and gamma and static hedging.

Figures 4.1 to 4.3 below illustrate the distributions of the discounted total hedging

errors, calculated using (2.2). This hedging error is reported as a percentage of the

premium. Figure 4.1 shows the distribution of the hedging errors resulting from the

discretization of a pure delta hedging strategy. One can note that the mean of the

distribution is 0.005%. In the Black-Scholes model, the total discounted hedging error

resulting from the delta hedging strategy is a martingale under the risk-neutral mea-
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sure. Thus, the empirical distribution should be centered at 0% so that, on average,

the hedge is self-financing. The standard deviation, value-at-risk (V aR95%) and condi-

tional tail expectation (CTE95%) at 0.4008%, 0.6502% and 0.9244%, respectively, are

relatively low. Thus, in a Black-Scholes market, the delta hedging strategy performs

relatively well, which makes sense since it is the strategy that underlies the pricing of

the European call option.

It is however possible to improve the performance of the delta hedging strategy by

incorporating static hedging during the last 3 years, as presented in Section 4.3.2. The

distribution of the hedging errors resulting from the application of this strategy to

50,000 sample paths of index prices is illustrated by Figure 4.2. One can notice an im-

provement when comparing the performance of this strategy to that of the pure delta

hedging. The standard deviation, V aR95% and CTE95% of the hedging errors decrease,

to 0.2938%, 0.4921% and 0.6416%, respectively, which signifies that the errors resulting

from the hedging strategy will tend to be closer to the mean, thus reducing the risk

inherent to the sale of the contract.

The most significant way to improve our hedging strategy is to incorporate a third

asset, a European call option in our case, and to use it to neutralize the gamma of the

portfolio, as seen in Section 4.3.3. The distribution of the hedging errors obtained by

using this strategy in 50,000 Monte Carlo simulations is presented in Figure 4.3. With

a mean centered at 0% and a standard deviation, V aR95% and CTE95% all under to

0.015%, this strategy ensures that the cost of the hedge will almost always be very close

to 0%. Applying this strategy in a Black-Scholes world reduces the risk born by the
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insurance company selling point-to-point EIAs.
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Figure 4.1: Present values of hedging errors resulting from a delta hedging strategy in

a Black-Scholes framework
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Figure 4.2: Present values of hedging errors resulting from a delta and static hedging

strategy in a Black-Scholes framework
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Figure 4.3: Present values of hedging errors resulting from a gamma and static hedging

strategy in a Black-Scholes framework

4.4.2 Black-Scholes hedging strategies in a Heston market

The previous section shows that the hedging strategies developed in the Black-Scholes

framework perform well when the market is assumed to follow that same model. These

results can hardly be applied on the markets since it is well known that the Black-

Scholes model fails to capture some very important characteristics of the distribution
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of index log-returns. In this section, we will show that Black-Scholes hedging strategies

do not yield such good results when they are applied to index prices simulated by the

Heston model. It is important to remember that the Heston model replicates index

returns better than the Black-Scholes model, mainly because it allows for stochastic

volatility. Thus, strategies that fail in a Hestonian market are also likely to fail when

applied by insurers. Similarly, strategies that perform well in a Heston framework have

a better chance at reducing the risks faced by EIA-selling insurers in real life.

To generate the results in this section, we again assume that r = 0.02 and we use the

parameters obtained in Section 1.2.5, such that κ = 5.1793, θ = 0.0178, σ = 0.1309,

v0 = 0.0286, ρ = −0.7025 and λ = 2.62, unless we indicate otherwise. The 50,000 sam-

ple paths of index prices are generated using the method described in Section 2.5.2 and

the real-world parameters κ′ and θ′ defined in (1.21). In order to assess the performance

of the strategies developed assuming a Black-Scholes framework, we let α = 0.572255,

as in the previous section. This value was calculated so that the price of the contract

under the Black-Scholes assumptions is 1. Note that, using the Heston parameters listed

above, we need to let α = 0.696091 for the price of the EIA to be 1. This indicates that

historical returns are more volatile than what the market predicts, through call option

prices, for the future. Thus, letting α = 0.572255 in our Hestonian market should

introduce a first bias. Also, as in the previous section, we use the Greeks calculated

under Black-Scholes assumptions, which should increase the hedging errors since they

are not designed for the dynamics of the Heston market model.

Again, we analyze the performance of the delta hedging strategy, with and without
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static hedging, and of the gamma hedging strategy. This time, since the volatility is

not constant, we also observe the distribution of the total discounted hedging error

resulting from the application of the vega hedging strategy presented in Section 2.4.3.

Since we assume that the index price follows the Heston model, the price of the

call option (in the case of gamma and vega hedging) is calculated using (1.47). The

numerical integral in (1.45) and its derivatives is performed in R using the function

integrate(), with 50 as the upper bound of the interval of integration. This is justi-

fied by the fact that the integrand converges to zero very quickly, even with the most

extreme parameters. In his work, Moodley (2005) uses 100 as the upper bound, but

we found that this bound still allows for some numerical instability. Thus, we use 50

as the upper bound for the integral.

4.4.2.1 Delta Hedging

We first test the performance of the delta hedging strategy, with and without static

hedging during the last 3 years. The resulting distributions of the total discounted

hedging errors are illustrated in Figure 4.4 and Figure 4.5. The application of the

Black-Scholes delta hedging strategy to a Hestonian market increases the mean of the

hedging errors from 0.005% to 0.0524% for the pure delta hedging strategy. Thus, the

average loss per contract sold is 10 times bigger. An increase can also be observed in

the standard deviation, the V aR95% and the CTE95%, making the Black-Scholes delta

hedging strategy less efficient in a Hestonian market.
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The application of a static hedging strategy during the last three years of the con-

tract gives rise to another type of hedging error, caused by the difference between the

funds available at maturity and the actual sum to be paid out. If the assumptions

made by the insurance company matched the market, then this error would be 0. How-

ever, in this case, we hedge assuming Black-Scholes, thus mispricing the future payoff

at time T − 3. This error causes the mean of the total discounted error to shift left

to −0.6472%. This negative shift is due to the fact that our Black-Scholes calibration

overprices the EIA by overestimating future volatility, when compared to our Heston

calibration. In this case, the resulting shift represents a reduction in hedging costs.

However, should the Heston calibration predict a more volatile market, the distribu-

tion of the total hedging error would be shifted positively, thus increasing hedging costs.

This highlights the sensitivity of the delta and static hedging strategy to the calibration

of the Black-Scholes model. One can also note that the difference between the mean

and the CTE95% of the distribution is decreased from 1.5685% to 1.2186% by adding

static hedging to the strategy, which indicates a lighter right tail for the second strategy.

Our calibration sets λ, the volatility risk premium, so that the mean and the vari-

ance of the log-returns simulated by the Heston model reproduce historical data. These

moments were also the ones used to calibrate the Black-Scholes model. Hence, it makes

sense that a delta hedging strategy using those Black-Scholes parameters perform rel-

atively well. However, changing the risk premium leads to different moments of the

log-return distribution, which affects the performance of the strategy. Figure 4.6 and

4.7 show the results assuming λ = 0 and λ = −1.
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Changing the risk-premium leads to errors that are no longer centered around 0%,

since λ = 2.62 was chosen so that the moments moments of the log-return distribution

resulting from the Heston calibration matched those of the Black-Scholes one. Thus, as

λ decreases from 2.62, the mean of the discounted hedging error moves away from 0%

and its standard deviation increases. This indicates a worse hedging performance. Al-

though the VaR and CTE decrease as the risk premium becomes negative, representing

lower costs, this decrease also signifies that the distribution of the discounted hedging

error is no longer centered around 0. In cases where historical data is less volatile

than what the Heston calibration predicts, systematic losses could occur. This analysis

demonstrates that the Black-Scholes delta hedging strategy is significantly affected by

variations of the volatility risk premium.
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Figure 4.4: Present values of hedging errors resulting from a Black-Scholes delta hedging

strategy in a Heston framework, λ = 2.62
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Figure 4.5: Present values of hedging errors resulting from a Black-Scholes delta and

static hedging strategy in a Heston framework, λ = 2.62
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Figure 4.6: Present values of hedging errors resulting from a Black-Scholes delta hedging

strategy in a Heston framework, λ = 0
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Figure 4.7: Present values of hedging errors resulting from a Black-Scholes delta hedging

strategy in a Heston framework, λ = −1

4.4.2.2 Gamma and Vega Hedging

The usual way to improve a delta hedging strategy is to neutralize the gamma or the

vega of the portfolio. In a Black-Scholes market, as seen in Section 4.4.1, neutralizing

the gamma tends to correct the errors caused by the discretization of a continuous

process. In a Heston market, such strategies are affected by the calibration of the
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models and by the presence of a volatility risk premium. The distribution of the total

discounted hedging error resulting from the application of the strategies introduced in

Sections 4.3.3 and 4.3.4 are presented in Figures 4.8 and 4.9, respectively.

While the delta-gamma and delta-vega hedging strategies should lead to better re-

sults, it is not the case here. The volatility risk premium causes an important difference

between the prices of the call options calculated using our Black-Scholes calibration,

reflected in the Greeks used to implement the strategy, and the actual market prices of

the options, which are based on the Heston model. For the delta-gamma strategy, this

results in a mean of the discounted hedging error of −2.8256%, a V aR95% of −2.1826%

and a CTE95% of −2.0656%. These results are worse than those obtained using a simple

delta-hedging strategy, since buying calls sold on the market introduces a systematic

bias. This bias stems from the gap between the call option prices used to calculated

the Greeks of the hedging strategy and the actual market prices. However, the addition

of the gamma of the portfolio to the hedge reduces the standard deviation to 0.3523%.

Thus, the distribution of the total hedging error is no longer centered, but it is less

dispersed. In our case, since our Heston calibration predicts a less volatile market than

the one reflected by historical data, the use of the Black-Scholes Greeks in the hedg-

ing strategy creates systematic profits. Nonetheless, if the predicted market was more

volatile, a systematic loss would occur. This reflects an additional risk caused by the

use of a hedging strategy based on the Black-Scholes model. Similar results can be

observed in Figure 4.9, which illustrates the distribution of the total discounted error

under a Black-Scholes delta-vega strategy. The mean of the distribution, at −6.5080%,

is even further away from 0%, which implies a significant amount of risk in the case
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where the market predicted by the Heston model is more volatile than the one implied

by the Black-Scholes calibration. Since, in this section, we assume that the insurer

calibrates the Black-Scholes model to historical data without taking Heston predictions

into account, applying a delta-gamma or delta-vega strategy adds risk. In fact, because

of the volatility risk premium, the distribution of the hedging errors may be negative

or positive, which, in the worst case, will result in a systematic loss. Thus, the presence

of a volatility risk premium significantly affects the performance of the Black-Scholes

delta-gamma and delta-vega hedging strategy.

To further illustrate this effect, the same analysis was conducted using different

volatility risk premiums, namely setting λ = 0 and λ = −1. The results are presented

in Figure (4.10) and Figure (4.11). Although Figure (4.10) assumes no risk premium,

the resulting distribution of hedging errors is not improved, with a mean of −2.9470%,

a standard deviation of 0.286%, a V aR95% of −2.4514% and a CTE95% of −2.3474%.

In fact, without the risk premium, the Black-Scholes and Heston calibrations yield

different moments of the stock returns. This mismatch leads to a bias which cancels

the effect of the absence of risk premium. Similar results are observed assuming λ = −1.

Furthermore, since the Black-Scholes vega is simply the Black-Scholes gamma multi-

plied by the coefficient S2
t σBSτ , changing the value of λ̂ should affect the performance

of the Black-Scholes vega hedging strategy in a similar manner.
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Figure 4.8: Present values of hedging errors resulting from a Black-Scholes delta-gamma

hedging strategy in a Heston framework, λ = 2.62
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Figure 4.9: Present values of hedging errors resulting from a Black-Scholes delta-vega

hedging strategy in a Heston framework, λ = 2.62
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Figure 4.10: Present values of hedging errors resulting from a Black-Scholes delta-

gamma hedging strategy in a Heston framework, λ = 0
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Figure 4.11: Present values of hedging errors resulting from a Black-Scholes delta-

gamma hedging strategy in a Heston framework, λ = −1

4.4.2.3 Comments on the results

Most hedging error distributions presented in this section have a negative expected

value. As explained earlier, this translates into a financial gain for the insurer. This is

mostly due to the fact that the calibration of the Heston model, based on the market

prices of options, predicts a less volatile market that the one reflected in historical data,
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from which the Black-Scholes parameters are obtained. In our case, this difference re-

sults in financial gains for the insurer. However, the opposite situation could occur, in

which case the insurance company would suffer systematic losses. In this section, we

assume that the company only considers historical data and the Black-Scholes model

when developing it hedging strategy. Thus, it may result in systematic gains or losses.

This uncertainty represents an additional risk.

It is important to remember that, in this section, we assume that the contract is

priced under Black-Scholes assumptions, which yields a participation rate in the guar-

anteed return of α = 0.572255. However, under the Heston parameters used to simulate

the sample paths of index prices, this rate goes up to 0.696091, which indicates that the

contract analyzed here is overpriced. This is the main reason why hedging errors tend

to be negative. Nonetheless, in real life, an insurer selling a contract with α = 0.572255

would most likely not be competitive when call option market prices indicate that this

rate could be significantly higher. Thus, the high probability of gain would probably

be offset by a decrease in sales.

4.4.3 Heston hedging strategies in a Heston market

In this section, we assess the performance of hedging strategies based on Greeks derived

using Heston assumptions, such as those defined in Example 2.2. Since our market is

assumed to follow the Heston model, those strategies are expected to perform better

than the Black-Scholes ones used in the previous section. We will show that, while a

simple delta hedging strategy can be greatly affected by the volatility risk premium,
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neutralizing the gamma or the vega of the portfolio reduces the risk faced by the insurer,

even in the presence of such a premium. Since the Heston model reproduces more char-

acteristics observed from empirical data than the Black-Scholes model does, we believe

that a strategy that performs well for index prices simulated using the Heston model is

more likely to yield satisfactory results when applied to real data.

In this section, we consider r = 0.02, as always, and the same Heston parameters

as in the previous one. However, since we are now pricing the EIA under Heston as-

sumptions, we set the participation rate α to 0.696091, which yields of a price of 1 for

the contract described at the beginning of this numerical example. As in the previous

section, we simulate 50, 000 sample paths of index prices to estimate the distribution

of the total discounted hedging error under each strategy. We use the same method as

before, which is described in Section 2.5.2.

We first analyze the delta hedging strategy, with and without static hedging during

the last 3 years. Although we are using Heston Greeks, this type of strategy does not

suffice to hedge volatility risk since we now allow for randomness in the volatility of

index returns. This type of risk can be reduced by using call options to neutralize the

gamma or the vega of the hedging portfolio. We assess the performance of gamma

hedging and vega hedging in the second part of this section.
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4.4.3.1 Delta Hedging

We analyze the distribution of the total hedging error resulting from the application of

a delta hedging strategy with and without static hedging during the last 3 years. These

distributions are illustrated in Figure 4.12 and Figure 4.13, respectively. One can easily

notice than the performance of the hedging strategy is pretty poor. The expected value

of the total hedging errors, at 3.1782%, indicates that an insurer would lose over 3%,

on average, on each contract. In the worst cases, he could face losses of almost 8% of

the value of the contract. Switching to a static hedge for the last 3 years would only

reduce this loss to 5.2968%. As we will see later, by repeating the simulations with

a different value for λ, the volatility risk premium greatly affects the performance of

the delta hedge. One can also observe a positive skew in the distributions illustrated

in Figure 4.12 and Figure 4.13. This skew is caused by the fact that the volatility is

not hedged in a simple delta strategy. This tends to create very high absolute values of

hedging errors, especially when no static hedging is applied.

In order to assess the effect of the risk premium on the distribution of the total

discounted hedging error, we have repeated the same analysis for the delta hedging

strategy, this time assuming λ = 0 and λ = −1. The resulting distributions are dis-

played in Figure 4.14 and Figure 4.15. Two main observations can be made from the

graphs. First, when there is no volatility risk premium (λ = 0), the distribution is

centered around 0, with an expected value of 0.0079%. However, when the premium

is negative (λ = 1), the expected value also becomes negative and reaches −0.5627%.

Thus, a smaller volatility risk premium ensures an expected value that is closer to 0.
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The second observation concerns the variance of the results. In fact, as the volatility

risk premium decreases, the variance of the distribution does so, too. The same trend

can be observed in the difference between the CTE95% and the expected value, which

goes from 4.7761% when λ = 2.62 to 1.1158% for λ = 0 and 0.9324% when λ = −1.

Although those results may seem surprising at first, the can be explained by the fact

that a decrease in the volatility risk premium, when the risk-neutral parameters κ and

θ remain the same translates into a decrease in the variance of the log-returns. This

decrease comes from the change in the objective parameters κ′ and θ′, which are linked

to the risk-neutral ones by the risk premium. One can however observe extreme values

in the distribution of the total hedging error, even when the variance of the log-returns

is smaller. That is an effect of the stochastic volatility.
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Figure 4.12: Present values of hedging errors resulting from a Heston delta hedging

strategy in a Heston framework, λ = 2.62
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Figure 4.13: Present values of hedging errors resulting from a Heston delta and static

hedging strategy in a Heston framework, λ = 2.62
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Figure 4.14: Present values of hedging errors resulting from a Heston delta hedging

strategy in a Heston framework, λ = 0
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Figure 4.15: Present values of hedging errors resulting from a Heston delta and static

hedging strategy in a Heston framework, λ = −1

4.4.3.2 Gamma Hedging

In the presence of stochastic volatility, neutralizing the Heston gamma of the portfolio

will not directly protect the insurer against volatility risk. However, it should reduce the

errors caused by the unexpected variations of the stock returns resulting from stochastic

volatility. In this section, we assess the performance of the gamma and static hedging
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presented in section 4.3.3. The Greeks are derived using the Heston model, as in Ex-

ample 2.2.

The distribution of the total discounted hedging error resulting from the gamma

hedging strategy is presented in Figure 4.16. Incorporating call options to the repli-

cating portfolio greatly improves the performance of the hedging strategy. In fact, the

distribution of the total error, even in the presence of a volatility risk premium, is much

more centered than in Figure 4.12. Both the standard deviation of the distribution

and the distance between the mean and the CTE95% are significantly reduced, from

2.0562% to 0.0851% in the first case and from 4.7761% to 0.2162% in the second. Al-

though the gamma hedging strategy greatly reduces the risk involved in the sale of the

point-to-point EIA, it is still possible to observe positive skewness in the distribution

of the total hedging error. This may be caused by the volatility premium and by the

fact that the volatility is not directly hedged.

To assess the effect of the volatility risk premium on the performance of the gamma

hedging strategy, we performed a similar analysis as in Figure 4.16, but this time using

λ = 0. The resulting distribution is illustrated in Figure 4.17 and shows that the risk

premium does affect the performance of the gamma hedging strategy. In its absence,

the mean of the hedging error is very close to 0 and the standard deviation of the dis-

tribution is reduced to 0.0179%. The presence of a volatility risk premium also thickens

the right tail of the distribution. In fact, with λ = 2.62, the CTE95% is 0.2202% while it

drops to 0.0369% for λ = 0. Thus, although the gamma hedging strategy significantly

reduces the risk involved in the sale of the EIA, the presence of a volatility risk premium
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moderates its efficiency.
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Figure 4.16: Present values of hedging errors resulting from a Heston gamma and static

hedging strategy in a Heston framework, λ = 2.62
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Figure 4.17: Present values of hedging errors resulting from a Heston gamma and static

hedging strategy in a Heston framework, λ = 0

4.4.3.3 Vega Hedging

As it is the strategy that underlies the pricing of the European call option, and thus the

point-to-point EIA, the vega hedging strategy should be the most efficient at reducing

the total discounted hedging error. In this section, we assess the performance of the

vega and static hedging strategy, presented in Section 4.3.4. We use the Heston Greeks

94



such as in Example 2.2.

In order to smooth the values of αV
1,t and αV

2,t, which may explode when St and vt

take extreme values, we make some adjustments in their calculation. First of all, we

replace VHC,t and ∆H
C,t by 0.001 if their actual value is lower. In the determination of

VHC,t, we let St = 40 if its actual value is lower. The bias introduced by these modifica-

tions is insignificant in comparison to the important errors caused by the extreme values.

Figure 4.18 presents the distribution of the total hedging error resulting from the

application of the vega and static hedging strategy to 50, 000 sample paths of index

prices, simulated as described in at the beginning of this section. As expected, this

strategy performs better than the gamma hedging one. It is more centered around

0, with a mean of −0.0014%, compared to 0.004% for gamma hedging. However, the

greatest improvement resides in the significant decrease in the standard deviation of

the distribution and the difference between its CTE95% and its mean. In fact, for the

gamma hedging strategy, these figures were 0.0851% and 0.2162%, respectively. Apply-

ing vega hedging instead reduces them to 0.0246% and 0.053%. This signifies that the

distribution is less dispersed around its mean and results in more predictable costs for

the insurer. It reduces the probability of incurring important costs on the sale of an

EIA contract.

The same analysis was performed, this time assuming λ = 0, to observe the effect

of the volatility risk premium on the performance of the vega hedging strategy. The

resulting distribution of the total discounted hedging error is presented in Figure 4.19.
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One can notice that the performance of the vega hedging strategy in the absence of a

volatility risk premium is improved. The mean of the distribution is brought back to 0%

and the standard deviation is reduced to 0.0163%. Similarly, the CTE95% is reduced by

half, to 0.0234%. Thus, the vega hedging strategy is also affected by the volatility risk

premium. However, even in the presence of such a risk premium, it performs fairly well

and represents an important improvement over the other hedging strategy analyzed in

this thesis. This leads us to believe that, under the assumptions made in this thesis,

insurers would greatly benefit from the implementation of the Heston vega hedging

strategy.
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Figure 4.18: Present values of hedging errors resulting from a Heston vega and static

hedging strategy in a Heston framework, λ = 2.62
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Figure 4.19: Present values of hedging errors resulting from a Heston vega and static

hedging strategy in a Heston framework, λ = 0

Even when we relax some of the assumptions underlying our results, we believe that

the use of Heston gamma and vega hedging strategies should be explored by insurers.

In fact, we show here that these strategies perform very well in a Heston framework.

Although this model may fail to capture some characteristics of the distribution of

index returns, it does replicate it better than the Black-Scholes model does. For this
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reason, and since Heston gamma and vega hedging strategies perform better in a Heston

framework, it makes sense to use Heston Greeks to hedge the sale of point-to-point EIAs.
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Conclusion

Equity-linked products have grown in popularity in the past 15 years and they are

still very attractive, especially for conservative investors who want to take advantage of

market growth without facing downside risk. The sale of investment products with a

payoff depending on the equity market represents a risk for insurance companies. This

is particularly true in a market where the volatility of stock returns are not constant.

Varying stock return volatility causing important changes in stock prices is likely to

cause significant financial losses if the insurer is not protected against them. In order

for the company to have sufficient funds to pay the policyholder at maturity of the

contract, hedging strategies need to be implemented.

In this thesis, we analyzed the performance of strategies based on the Black-Scholes

model and we presented alternatives using the Heston model. The choice of the Heston

model is motivated by the fact that it is able to better reproduce the higher peaks and

heavier tails observed in the empirical distribution of stock returns. Moreover, it allows

for a semi-closed form expression for the price of a European call option. In turn, this

allows for a similar expression for the price of a point-to-point EIA and its Greeks.

We showed that the hedging strategies based on Black-Scholes assumptions are effi-
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cient at reducing the risk inherent to the sale of a point-to-point EIA in a Black-Scholes

framework. However, these results cannot be used to recommend hedging strategies for

the real markets, as the Black-Scholes model fails to replicate the characteristics that

make those markets risky. To demonstrate this, we applied the hedging strategies to

index prices simulated by the Heston model. Since this model is better able to capture

some of the risky characteristics of the market, strategies that fail when used with He-

ston data are likely to fail when applied to empirical data. Our results show that the

differences between the Black-Scholes and Heston calibration methods reduce the effi-

ciency of the hedge. In addition, it may lead the insurer who prices the EIA using the

Black-Scholes model to over- or underprice the contract. This will affect the hedging

strategy by creating systematic losses or gains. It can also decrease the competitiveness

of the company. We have also demonstrated that Black-Scholes hedging strategies are

affected by the volatility risk premium. Since it has been shown that such a premium

exists and that it varies through time (see Bollerslev et al. (2011)), strategies that are

very sensitive to it are less efficient at reducing risks.

We also demonstrated that the performance of hedging strategies can be improved

by using Heston Greeks. Since the Heston model assumes stochastic volatility, a simple

delta hedging strategy does not suffice to hedge all the risk. This strategy is signifi-

cantly affected by the volatility risk premium and fails to hedge the volatility risk. Our

results show that incorporating call options to the replicating portfolio, either through

gamma or vega hedging, improves the performance of the strategy. In fact, even in the

presence of an important volatility risk premium, the distributions of the total hedging

error resulting from the gamma and the vega hedging strategy remain centered around
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0. In both cases, low variances, V aR95% and CTE95% signify that the cost of the hedge

will remain low. Thus, the use of Heston Greeks and the addition of call options to the

replicating portfolio significantly reduces the risk inherent to the sale of the point-to-

point EIA in a Heston market.

It is interesting to see the extent to which the addition of stochastic volatility to

the market model affects the hedging of the point-to-point EIA. In fact, this design

should be less sensitive to stochastic volatility than other types of designs, such as the

annual reset. Further research could focus on this very popular design. The inclusion of

jumps, transaction costs and a varying volatility risk premium should also be explored

to extend this work.
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Appendix

This appendix contains a sample of the code used to produce the graphs in Section 4.4.

The code displayed below contains the functions to calculate the price and the Greeks

of a point-to-point EIA and a European call option. The function PTP.dv.HE() use the

Heston model to simulate a sample path of index prices and calculates the discounted

hedging error resulting from the application of the Heston vega hedging strategy. The

histogram representing the distribution of that hedging error is obtained by running

this function 50, 000 times and producing a graph with the output.

PTP.price.H<-function(S0,St,t.rem,n,r,kap,theta,sigma,v,rho,g,alpha,rhoptp){

K<-rhoptp*(1+g)^n;L<-S0*((K-1+alpha)/alpha)

K*exp(-r*t.rem)+(alpha/S0)*hes.call.price(St,L,r,t.rem,kap,theta,sigma,v,rho)}

PTP.del.H<-function(S0,St,t.rem,n,r,kap,theta,sigma,v,rho,g,alpha,rhoptp){

K<-rhoptp*(1+g)^n;L<-S0*((K-1+alpha)/alpha)

x<-log(St*exp(r*t.rem)/L);i<-complex(real=0,imaginary=1)

(alpha/S0)*(Pj(1,x,kap,theta,sigma,v,rho,t.rem)+

Pj.dx(1,x,kap,theta,sigma,v,rho,t.rem)-
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(exp(-x))*Pj.dx(0,x,kap,theta,sigma,v,rho,t.rem))}

PTP.gamma.H<-function(S0,St,t.rem,n,r,kap,theta,sigma,v,rho,g,alpha,rhoptp){

K<-rhoptp*(1+g)^n;L<-S0*((K-1+alpha)/alpha)

x<-log(St*exp(r*t.rem)/L);i<-complex(real=0,imaginary=1)

(alpha/(S0*St))*(Pj.dx(1,x,kap,theta,sigma,v,rho,t.rem)+

Pj.dx2(1,x,kap,theta,sigma,v,rho,t.rem)+

(L*exp(-r*t.rem)/St)*(Pj.dx(0,x,kap,theta,sigma,v,rho,t.rem)-

Pj.dx2(0,x,kap,theta,sigma,v,rho,t.rem)))}

PTP.vega.H<-function(S0,St,t.rem,n,r,kap,theta,sigma,v,rho,g,alpha,rhoptp){

K<-rhoptp*(1+g)^n;L<-S0*((K-1+alpha)/alpha)

x<-log(St*exp(r*t.rem)/L);i<-complex(real=0,imaginary=1)

(alpha/S0)*(St*Pj.dv(1,x,kap,theta,sigma,v,rho,t.rem)-

L*exp(-r*t.rem)*Pj.dv(0,x,kap,theta,sigma,v,rho,t.rem))}

C.price<-function(S,K,r,n,kappa,theta,sigma,v,rho){

x<-log(S*exp(r*n)/K)

S*Pj(1,x,kappa,theta,sigma,v,rho,n)-

K*exp(-r*n)*Pj(0,x,kappa,theta,sigma,v,rho,n)}

C.delta<-function(S,K,r,n,kappa,theta,sigma,v,rho){

x<-log(S*exp(r*n)/K)

(Pj(1,x,kappa,theta,sigma,v,rho,n)+
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Pj.dx(1,x,kappa,theta,sigma,v,rho,n)-

(exp(-x))*Pj.dx(0,x,kappa,theta,sigma,v,rho,n))}

C.gamma<-function(S,K,r,n,kappa,theta,sigma,v,rho){

x<-log(S*exp(r*n)/K)

(1/S)*(Pj.dx(1,x,kappa,theta,sigma,v,rho,n)+

Pj.dx2(1,x,kappa,theta,sigma,v,rho,n)-

exp(-x)*(Pj.dx2(0,x,kappa,theta,sigma,v,rho,n)-

Pj.dx(0,x,kappa,theta,sigma,v,rho,n)))}

C.vega<-function(S,K,r,n,kap,theta,sigma,v,rho){

x<-log(S*exp(r*n)/K)

K*exp(-r*n)*(exp(x)*Pj.dv(1,x,kap,theta,sigma,v,rho,n)-

Pj.dv(0,x,kap,theta,sigma,v,rho,n))}

PTP.dv.HE<-function(S0,kap,theta,sigma,v0,rho,mu,lambda,nstep,nrebal,

nyears,g,r,alpha,rhoptp,prem){

library(MASS)

kap.s<-kap-lambda;theta.s<-(theta*kap)/(kap-lambda)

nstep<-ceiling(nstep/nrebal)*nrebal;simx<-0;simS<-S0

ssize<-nstep/nrebal;v<-v0;;v.vec<-v

L<-S0*(rhoptp*(1+g)^nyears-1+alpha)/alpha

del.PTP<-PTP.del.H(S0,S0,nyears,nyears,r,kap,theta,sigma,v,rho,

g,alpha,rhoptp)
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del.C<-C.delta(S0,L,r,3,kap,theta,sigma,v,rho)

vega.PTP<-PTP.vega.H(S0,S0,nyears,nyears,r,kap,theta,sigma,v,rho,

g,alpha,rhoptp)

vega.C<-C.vega(S0,L,r,3,kap,theta,sigma,v,rho)

PTP.V<-PTP.price.H(S0,S0,nyears,nyears,r,kap,theta,sigma,v0,rho,

g,alpha,rhoptp)

call.price.old<-C.price(S0,L,r,3,kap,theta,sigma,v,rho)

call.price.new<-C.price(S0,L,r,3,kap,theta,sigma,v,rho)

HE<-PTP.V-prem

for (i in (1:(nstep*nyears))){

z<-t(mvrnorm(1,c(0,0),cbind(c(1,rho),c(rho,1))))

simx<-simx+(mu-max(0,v)*0.5)/nstep+sqrt(max(0,v)/nstep)*z[2]

v<-(sqrt(max(0,v))+(sigma/2)*sqrt(1/nstep)*z[1])^2-

kap.s*(max(0,v)-theta.s)*(1/nstep)-(sigma^2)/(4*nstep)

v.vec<-c(v.vec,max(10^-8,v))

simS<-c(simS,S0*exp(simx))}

year.vec<-c(1,(1:nyears)*nstep+1)

rebal.vec<-c(1,(1:(nrebal*(nyears-3)))*ssize+1)

simS.year<-simS[year.vec];simS.rebal<-simS[rebal.vec]

v.rebal<-v.vec[rebal.vec]

t.rem.new<-c(2,rep(seq(3-1/nrebal,2,by=-1/nrebal),nyears-3))

t.rem.old<-c(rep(seq(3,2+1/nrebal,by=-1/nrebal),nyears-3),3)

for (i in (2:length(simS.rebal))){

del.PTP<-c(del.PTP,PTP.del.H(S0,simS.rebal[i],nyears-(i-1)/nrebal,
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nyears,r,kap,theta,sigma,v.rebal[i],rho,g,alpha,rhoptp))

del.C<-c(del.C,C.delta(simS.rebal[i],L,r,t.rem.old[i],kap,theta,

sigma,v.rebal[i],rho))

vega.PTP<-c(vega.PTP,PTP.vega.H(S0,simS.rebal[i],nyears-(i-1)/nrebal,

nyears,r,kap,theta,sigma,v.rebal[i],rho,g,alpha,rhoptp))

vega.C<-c(vega.C,max(C.vega(max(simS.rebal[i],40),L,r,t.rem.old[i],

kap,theta,sigma,v.rebal[i],rho),10^-3))

PTP.V<-c(PTP.V,PTP.price.H(S0,simS.rebal[i],nyears-(i-1)/nrebal,

nyears,r,kap,theta,sigma,v.rebal[i],rho,g,alpha,rhoptp))

call.price.old<-c(call.price.old,C.price(simS.rebal[i],L,r,

t.rem.old[i],kap,theta,sigma,v.rebal[i],rho))

call.price.new<-c(call.price.new,C.price(simS.rebal[i],L,r,

t.rem.new[i],kap,theta,sigma,v.rebal[i],rho))}

alp.1<-vega.PTP[-length(vega.PTP)]/vega.C[-length(vega.C)]

alp.2<-del.PTP[-length(del.PTP)]-alp.1*del.C[-length(del.C)]

St<-simS.rebal[-length(simS.rebal)];St1<-simS.rebal[-1]

Vt<-PTP.V[-length(PTP.V)];Vt1<-PTP.V[-1]

Ct1<-call.price.new[-1];Ct<-call.price.old[-length(call.price.old)]

disc<-exp(-r*(1:(nrebal*(nyears-3)))/nrebal)

HE<-c(HE,disc*(Vt1-Vt*exp(r/nrebal)-

alp.1*(Ct1-Ct*exp(r/nrebal))-alp.2*(St1-St*exp(r/nrebal))))

sum(HE)}
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