A new method for texture mapping point-based models
Bai, Linbo

ProQuest Dissertations and Theses; 2007; ProQuest
pg. na

A New Method for Texture Mapping Point-Based Models

Linbo Bai

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

December 2006

© Linbo Bai, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-28949-5
Our file Notre référence
ISBN: 978-0-494-28949-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

A New Method for Texture Mapping Point-Based Models

Linbo Bai

In recent years, point-sampled geometry is becoming ubiquitous in graphics and
geometric information processing. From a computer graphics point of view, the first
major challenge in point-based geometry is to render high quality realistic images. A
commonly used technique in realistic rendering is texture mapping, which essentially
adds surface and/or material property detail in the final stages of rendering the image.
The primary focus of the research reported in this thesis is to find suitable solutions to
directly map one or more textures onto the surface of geometry represented by points
without explicitly converting the surface to polygon mesh or to another geometric surface
representation.

Parameterization is the most important step required for adding texture onto the
surfaces of objects. In this thesis, a global parameterization method is developed by using
level set methods to evolve the concerned surface to a surface with implied
parameterization, say a sphere. By tracking the point samples to their final destinations
on the sphere, a polar coordinate is assigned to every point in the original model. The
user then chooses a few anchor points that map into one or more texture images to yield a
simple and flexible procedure to map texture images onto the surface of a point-based
model. The method has been implemented using MATLAB and C++ and tested on a

number of point-based models.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

My sincere thanks to my supervisor Professor S. P. Mudur. His advice and
guidance have been invaluable and, his enthusiasm and scientific knowledge both
motivating and inspiring. I believe there would have been no possibility of me finishing
this thesis without his stimulating suggestions and encouragement.

Very special thanks to Mr. Sushil Bhakar, a doctoral student of my supervisor. It
has been a great experience to work with him and share his knowledge in many
interesting discussions.

Many thanks to the people in the 3D graphics team. It is a very nice experience to
work with them.

Thanks to the computer graphics laboratory of ETH Zurich for sharing their
wonderful software: Pointshop3D, it provided me a flexible analysis tool. Thanks to Ian
M.Mitchell, who shared the wondetful toolbox of level set methods which provided me
with a lot of inspiration.

Finally I want to express my special thanks to my wife Ping and my two sons. It is

just because of their love and encouragement that I could finish this work.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

LEST Of FIGUILES covvevviieeeeiniiisie it sscncas et amecseenssens s ssss e saas s saen e e sasesaesss e il
LISt Of TADIES......ooiet ettt i sa st esse st xi
Chapter 1: INTOAUCHONoucvvviviiiiirieiie e cesesasesssessesasesseessessesssssssctsesaneoes 1
1.1 Computer graphics rendering PIPEHNEcceeeemrurreemrieersenrsenseceseessernseesesssseseeens 2
1.2 Modeling mMethods.......oiirirniciicniir s ssssssiessssriosnes 4
1.3 Traditional teXtULe MAPPING ...ocvvuerrrrieersrirerrisnsssisss s ssssssssssssssssissssssssesssssnees 5
1.4 Point-based GraphiCs........cccoriicmiiiieiniicimecececese s ssessssssseseseaes 6
1.5 Texture mapping on point-based graphics........cocervcrrmceucrcinienieniiniinieiecisan. 8
1.6 Research objectives and methods ..., 9
1.7 Thesis OULHNE ..ot et sae i 10

Chapter 2: A comprehensive review of surface parameterization for point models..... 12

2.1 Sutface parameteriZationocieieeienieisensnsie st s b e 12
2.2 Related surface parameterization methods.......co.oeeeeciomicninininicncee, 14
221 Direction fields over point-sampled geOmMEtLy ..ooeeimvvrreruerecucieinieinnen, 14
222 PoINtShOP3D ...ttt st 16
223 Fast hybrid approach for texturing point models............oureermrrernerennnes 18
224 Global Conformal Parameterizationvwerecvececeeesieieieienncineeciensesenns 19
225 COMPALISON c.eureievnririnciseiiire st sse st sss s s ss st s ssntes 20

23 Motivation of our parameterization Method ... 20
Chapter 3: Background on surface representation teChniques «....ccvecvssersececcrsscnnsecnns 23
31 Explicit and implicit function fOrmS . 23

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

311 EXplcit fUNCHOM coourverivirenisnsssssissssecisseisesssers e crstssssssss s s snas 24

312 ImPHCIt FUNCHON coouucveererteneiie s ssisssss st s 25
3.2 Discrete forms for interface representationomrcrnreresesesmmssussissicsssees 26
3.3 Geomettic properties from implicit fePrESENtAON ..uovcvevusereresseremssereissiussasnes 29
3.4 Signed distance function (SDF).....cccoiinmeniiicrencnniss 32
3.5 SFL file fOrMAL....rcuuereercceeccasisssnsisnnnissnsisssssssssssssssssssssssssssssssssssssesssssesssessssessssss 34
3.6 Conversion from SFL to SDF ... ecssesisssssensns 35

Chapter 4: Global parametetization of point based models by evolving the interface. 37

41 MOHON Of MUEIFACE wovvevereeeeeieeeeccieteeseeeereeecesisss s s s enestene s s e bas e sssaseass 37
42 Methods to eVOlve the INTErfACE.....ccccceeeiiririiiricitisn st 40
4.2.1 Explicit techniques: parameterize the moving iNterfaceouuveeervusennene. 40
4.2.2 Implicit techniques: level set Methods ... 42
43 The procedure to do texture mapping on point-based model......ccoooovvvvvvnneee. 48
4.3.1 The input and data SEUCTULErvrveeevesierrrceinseesmssissnsss e 48
4.3.2 FUNCHOMS ..o vecveeereiereerssrssessessessetsseesenscssassesssssssss st saesssessssssssossasanssssssnsenssssases 51
4.3.3 OULPUL coovreeevensecreeamasesissssnssisassssssssssss sssss s ssssssessssssssss s sssssssassssssssssssassssssssssssss 53
44 'The use of level set methods in texture MAPPING c..cvvrvversreureesrisemeeserinssssissness 55
441 Evolving the INtErface ...oiimrreeeeciiiecenmsssicsin i 55
4.4.2 The fitst BVOIIHONounreeereeeeeereceesssnnisns s s sssssssssssissessssssasssssnsssns 56
4.4.3 The secoNd eVOIIHON......ccorrircrirecrrecesriissisessmerss e ssssssss s ssssessascssiasasssnaes 59
4.4.4 First evolution plus second eVOIIHON ..c..vvweniimiinniiisssssisesisscesceninns 61
4.4.5 Tracking the movement of interface POINLScounrrivvrnssiiicssinsiissssssnnecsee 63
45 TexXture Mappifg...oocercusersssresssessisecssesssscasassins s 66
4.5.1 Indicate texture coordinates using anchor VErtiCES. ... ruerunerrissrinscinens 66
vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.2 Calculate teXture COOTAINALES . ..ovicvivrirreererererecreereereissessessrsresseseeseessesnesessseonens 66

4.5.3 MaPPING COLOLoumrririrriisiesiiesiissssssssri sttt ssssssenes 68

4.6 Texture mapping results and eXaAMPIES.....rveerrceermmerninnccrmserionisisississiniinns 69

Chapter 5: Numetic IMpleMentationmermememisssesissemimisssmssssesmsesisssssssssisnes 71

Bl GII ettt ees e bt s aR bbb 71

5.2 Partial deriVAtIVE....occveeceeecrieseeeeeeererrsestsesrcseeecsssesssecstsessssssssssssrsssssesessssesassessssssas 73

521 Temporal apPrOXIMAtON ceuirmmrressessrissssessssissccrsmiessssssasssssssssmssssisssssssisass 73

5.2.2 Spatial Partial eriVAtivec....svveerremsnrcessesvseesinnnsssisssesssssissesssssssssenssnsinenns 74

523 CFL CONAION covereriiecercreirereetrestsmesecesssmsstsssssssssssnssas st sssesassssssassssssssssssacs 77

5.3 CUfvature COMPULAtION. ..uuruvuriisrrssirssssssssessssesesssesissesss st isses e ssssssssssssssssssassines 78

54 Accelerating the COMPULAtIONSvuuvvveseeissesseisseesisseccamiessiscinsesssiasssssnseesisss 78

5.5 Redmtalzation. ...ttt ssses s ssenses 82

5.6 SOLIWALE USAZE ..oureereercirreriersnssses i sssssssssss st sasssessse s ssssessssssssnsssssasnsas 83

5.6.1 TiHaliZation. . .ocomeeviereereesceneieieeseeoenaecineuessesmcsssesessassessssssss s s s e ssss s ssssens 83

5.0.2 EVOLVE ettt ettt ers s s s e st sa s 84

5.6.3 MAPPING LEXLULE 1ovvvevsreesneeereeimeesssecssscssssiassssssss s siss s sssssss st ssssssssssenie s 85

5.6.4 OULPUL.coourriteienriisnsisssess s sssenss st s 85

5.6.5 EXAMPIES w..oorirmnrirmririniinesrins s ssesisseesssenis s ssssssssssis s 86

Chapter 6: Conclusion and futiire WOtK.......cecu e 88

6.1 Principal CONTADUHONSc.crrueiirrrmrrrannrae st ssssncsssesssss e ssssessecnassas s ansnanes 88

6.2 TFULULE WOLK couiveiitctiieteerescseiceserenesstsssssss s s s s st sssssss st eseasasasstassssseasaens 89

R CIENICES cereeeeeeereeeesteese st s eb sttt sas s ant e s st bbb bR eb st s st E s st b b s 91

APPEIAIX A ooooerrsarmneenreesssssssssssss s esesssasssse R 96
vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1.1: Computer graphics rendefing PIPElNe.......covvvvvvvvvcevvcirsimrissvnrrinsessemmssssnssssnssss 2
Figure 1.2: Texture mapping €Xample ... s 3
Figure 1.3: 2D DHCK LEXIULE wovcccereermmmnneerrrmmissmsmssssisssmsssssssssssssss s ssssssisss s 5
Figure 1.4: The pipeline to render textured SULFACEovovrvvrrererivmmiriienisninnemmsissssnssnsssssnsnes 6
Figure 2.1: Illustration of bijectiVe MAPPINGccuvwrermsrrsssssssssssssssssmsmniniisssensssssssss s 13
Figure 2.2: Interpolation of texture coordinates of P within the triangle ABC....n. 14
Figure 2.3: Direction fields computation proCedure. ... 15
Figure 2.4: Texture mapping in Pointshop3D ... 16
Figure 2.5: Texture mapping results in Pointshop3D with few of feature points 17
Figure 2.6: The hybrid method procedute for texture OAPPING ovvoeresrresrssseesssersseninenenss 18
Figure 2.7: The global conformal parameterization of the bunny model...ierinrennee 20
Figure 3.1: 2D INLEIFACE . corsrveerereeemsesmssssssrnnmssssssssss st s s 24
Figure 3.2: Explicit and implicit diSCrEtZAtON. ooivorisssrmsssssestimirsvseenssessssssssssssssssssssssssssess 27
Figure 3.3: The mean CUrvature fEatUreorireermsvisesssseessisissssissimmmss s 31
Figure 3.4: The SFL format and SDF format of Igea model....cmersssiimnsssnnessssseen 36
Figure 4.1: The interface convection without change in shape of interfacecco.c.... 38
Figure 4.2: The motion in NOrmMal difeCHOM ciiinisssscssccnisisssisssssiss s 39
Figure 4.3: The motion in normal direction based On CULVALUIE .ovwcwereesrnseniseessssssneses 39
Figure 4.4: The discrete explicit representation of curve and with velocity F 40
Figure 4.5: The evolution of two separate burning FlANES covereeenrerscsirrnienrsanissssssiececs 42

Figure 4.6: Curve is defined as the zero level set and embedded in

tWO-HMENSIONAL SPACE wuvrrrrvrisrsrsssssseensimssisssnsesssasssssssssesss s sssenes 43

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.7: Velocity V(T) = BN oo ssses s s 46

Figure 4.8: The movement under curvature of a wound spiralc.ccccemernrerenerennnens 47
Figure 4.9: The texture mapping ProCEAULEcuwmmcmmimimimsisenisssississnisisssssonsssmmessnien: 50
Figure 4.10: The grid for circle model.........coo.iicciciscinersciscscereceeeeenae 52
Figure 4.11: Cartesian coordinates to polar COOLAINAESvuurrrerererrserissrrsrerresieesiserienrenan. 52
Figure 4-12: M X N 2D teXtUre INagecvuuemvuererismcmmiesiiseressesssneessessesssssssecssecssssinsessenss 53
Figure 4.13: The texture mapping result for a 2D Star......cocueererererecnssesrinecsensisniesnnn. 53
Figure 4.14: The 3D star surface rendered in Pointshop3D........evieciniiinnicinnnee. 54
Figure 4.15: 2D Star €VOIVE PLOCESSuvuivreurrireisinisrssisscsscssisssse s ssssssssssssssssssssesassasssnes 55
Figure 4.16: 3D Star €VOIVE PLOCESS ..uvvunrvurivrrirnscrseisisisiesrsesssin st s sssesasss s sss s essaeas 56
Figure 4.17: The dumbbell is evolved under mean curvature......co.oecuveveriensinnisnsrciennnnn, 58

Figure 4.18: The dumbbell evolution under mean curvature is stopped
when all mean curvature is not negative everywherecoeevueerccrnerinn. 59

Figure 4.19: To cast a ray from the interface point in the normal direction

to intersect With the CIECle.....cirrcrevcnrcirsrecie s 60
Figure 4.20: Using only second eVOIItON....c..vvverrerereririnriicieisiriscisssissiseisece i 61
Figure 4.21: The normal at A and B INtersect ... 61
Figute 4.22: The texture mapped wrongly only using second evolutionccoeveeeenen. 62
Figure 4.23: The evolution of star under the first and second evolutioncccccvvunecc. 63
Figure 4.24: The deformation of objects With teXtUIE....ovvvrrumrrreiireresseriserisirisseresseriasnnes 64
Figure 4.25: The interface point P in grid Cell....iciericiriieccieniciniesiecneene 65
Figure 4.26: Using anchor points to Map tEXTULE........cwwueruumeruerimrssermasemierisssissssissssisssons 67

Figure 4.27: Illustration for bi-linear interpolation using the cross product method.... 68

Figure 4.28: Different point based models with Drick tEXTULE .eovvreeirerenrirecerneesrevenaeenes 70

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.29: 3D star with earth teXtULe. ..ot sasseesees 70

Figure 5.1: Two-dimensional and three-dimensional grid ..., 72
Figure 5.2: Using tube or bounding box to limit the computational range 79
Figure 5.3: Accelerating evolution computations using bounding box.........cccccreeerveencen. 81
Figure 5.4: Gradient distribution COMPALISON.......ccvurvrrreirerseitisssrssesssessesenssessesssassseens 83
Figure 5.5: The texture mapping procedure with Igea model.......corrvciinrnin, 87
Figure 6.1: Different textures mapped onto the star model.........ccccovvrrervirercnciccrinnnnns 89
Figure 6.2: Tllustration for texture diStOrtion GEOMELLY......ovurverruirrrsnssissirssnrsssssesssnsansanes 90
X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 2.1: The compatison of different parameterization methods.......ccocvevvenrrvecnnnnee.

Table 5.1: The accelerating result using bounding BOXesovoveuierrerrreiseiscinsiinscnniieniaes

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction

A major challenge in the field of computer graphics is to produce a computer-
generated realistic image of a digitally represented complex object. Photorealistic '
rendering is the general name for computational techniques that address this challenge.
Traditionally, the surfaces of objects are represented geometrically, typically using
suitable algebraic equations. Complex objects however require a piecewise surface
representation. The most common representation used is the piecewise linear form, which
essentially amounts to approximating a curved object’s surface by a polygonal mesh.
Given a digital model’s information consisting of a geometric representation of the
objects, material properties for the objects’ surfaces, details of lighting the objects and a
camera like view specification, rendering then becomes the computational process of
converting this data into an image for a display surface, usually the monitor screen.
Rendering of complex models to generate highly realistic images can be computation
intensive. Hence various shading techniques have been developed as short cuts to obtain
suitable approximations of the realistic image. Another commonly used technique in
realistic rendering is texture mapping, which essentially adds surface and/or material
property detail in the final stages of rendering the image. With rapid developments in 3D
scannets, it has become relatively easy to obtain detailed geometric and color information
of the surface of an object in the form of dense point samples. An emerging approach,
known by the name of point based graphics, is to handle the surface geometry of a

complex object directly as point samples, without explicitly converting the surface into a

! Photorealism refers to a style of painting that resembles photography in its meticulous attention to
realistic detail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

polygonal mesh or any other piecewise surface form. Clearly one can represent almost all
kinds of complex objects, limited only by density of sampling and data sizes due to the
large number of samples. While a slew of new techniques have been developed for
efficient rendering of point-based models as continuous surfaces, realistic rendering
techniques have yet to evolve. In particular, as we shall show in this thesis, it is difficult
to map texture onto such discrete representations. Hence the primary objective of the
research reported in this thesis is to investigate techniques for mapping one or more
textures (provided in the form of digital images) onto the surface of an object represented

by point clouds.

1.1 Computer graphics rendering pipeline

Rendering of three-dimensional objects primarily involves the conversion of objects
in a three-dimensional scene into a two-dimensional image on the display. In the most
popular approach used to date, the computations required to carry out this conversion are

best described in the form of a pipeline, as shown in Figure 1.1.

Modeling transformation Per-vertex Lighting Y Viewing transformation Projection transformation

Display S Texturing, fragment shading Rasterization k| Clipping

Figure 1.1: Computer graphics rendering pipeline
The first step is to model the scene made up of different 3D objects, composed using
modeling primitives. Modeling transformations, such as translation and rotation, convert
the different modeling primitives from their local coordinate space to the scene space.

Then light source based computations are carried out. The viewing and projection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transformations convert the 3D scene space geometry into 2D image space. The
geometric primitives that fall outside of the viewing volume, as specified by the view
parameters, will be not visible and are discarded. Rasterization is the process by which
the 2D image-space representation of the scene is converted into raster format and the
initial pixel values are determined. At the texturing and fragment shading stage, color
computation using texture, illumination, shading etc. are performed. Finally, the pixels
are displayed on the monitor screen.

If there is no texture mapping, every object can be drawn either in a solid color, or
smoothly shaded between the colors at its vertices. Then if we want to draw a large brick
wall, each brick must be drawn as a separate rectangle, and even then the bricks may

appear too smooth and regular to be realistic.

Figure 1.2: Texture mapping exan%lé
(Figure source: http://www.sli.unimelb.edu.au/envis/texture.html)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to generate realistic image, texture mapping is essential. Texture can
represent any variation in the surface attributes like color, surface normal, transparency,
surface displacement, etc. If the computer generated images are able to capture these
complex details they would look more realistic. See, for example, the background as well
as the textured spheres in Figure 1.2.

Texture mapping an image on to a 3D object is like gift-wrapping the 3D object with
the “texture image sheet”. Texture mapping is a kind of shading technique for image
synthesis[1] and it also can be defined as the mapping of a function onto a surface in 3D
[2]. Mathematically, it is the process of transforming a texture onto a surface. For

different modeling methods, texture mapping methods are different.

1.2 Modeling methods

In 3D computer graphics, polygonal modeling is the most used approach for
modeling objects by representing or approximating their surfaces using polygons. The
most popular kind of polygon used is a triangle.

Triangle meshes are thus the most common surface representation in many computer
graphics applications. Triangle meshes are very flexible, since surfaces of any shape and
topology can be represented by a single mesh without the need to satisfy complicated
inter-patch smoothness conditions. The simplicity of triangle primitive (simplex) allows
for easier and more efficient geometry generation and geometry processing algorithms.
This is very evident in modern day interactive graphics, where the highly optimized
graphics hardware is able to process and render several millions of triangles per second.

NURBSJ3], short for non-uniform, rational B-spline, is also a mathematical model

used in computer graphics for generating and representing curves and surfaces. This form

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is popular in computer aided design and engineering applications, wherein geometric

precision and continuity are mandatory properties.

1.3 Traditional texture mapping

In this section, we shall use the triangle mesh as the modeling method to introduce
texture mapping.

A 2D texture map is simply a rectangular array of data, for example, data, which
defines the variations in color, reflectance of the surface, or a function representing the
variations of surface normal[4]. Let us consider the image shown in Figure 1.3, to be used
as a texture. If we sample this image into a 128 x 256 color array, then we can assign each

array element a texture coordinate (u,v), where 0 <=u,v <=1.

0.,0)

(u,v)

Figure 1.3: 2D brick texture

When rendering a surface with a texture, there are two mappings and three spaces
concerned: the mapping from texture space to the 3D object space and from 3D object
space to 2D screen space, as shown in Figure 1-4. The first mapping is the
parameterization of the object surface to build the correspondence between texture space
and 3D object space that is to assign a unique texture coordinate to a specific physical
point on the object’s surface. This is a bijective mapping. Another mapping is called
projection, which is determined by the modeling and viewing transformation and is used

by the other stages shown in Figure 1.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Because triangle meshes maintain topology information, it is straightforward to do
parameterization. Texture coordinates are assigned to each vertex. Given the texture
coordinates for the vertices of a triangle, the texture coordinates for any point of the
surface inside the triangle can be obtained using linear interpolation. The same method
applies to a polygon mesh. More complex piecewise surface representations, like

NURBS, have their inherent parameterization that can be used as texture coordinates.

Parameterization Projection
2D Texture 3D Object 2D Screen
Space Space Space

Figure 1.4: The pipeline to render textured surface
It is well established that texture mapping adds much detail to a scene to make it look

realistic, while requiring only a modest increase in rendering time.[1]
1.4 Point-based graphics

Even though the triangle mesh is the most popular modeling method, it has
limitations and disadvantages in some special applications, particularly for deformable
shapes and when complex shapes have to be represented accurately leading to an
explosion in the number of triangles needed. Most algorithms working on triangle meshes
require maintaining consistency of topological information. As a consequence, manifold-
extraction or topology cleanup steps are necessary for mesh generation methods.
Maintaining the topological consistency throughout the mesh-processing pipeline makes
these algorithms sometimes significantly more complicated. Dynamic mesh connectivity
is one example where frequent topology changes occur because the mesh is locally

restructured in order to avoid too much stretching after extreme deformations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The overhead of managing, processing, and manipulating large triangle-mesh
connectivity information has led many researchers to question the future utility of the
triangle as the fundamental graphics primitive [5].

In recent years point-based geometry has gained increasing attention as an alternative
surface representation, wherein the object’s surface is simply represented using an

appropriate sample of surface points. There are mainly three kinds of topics in this field:
* Acquisition
This is the process to generate the cloud of points. 3D photography [6] and 3D

scanning are widely used techniques to obtain a digital representation of physical

models.
¢ Processing and modeling

In order to do further processing, it is needed to reconstruct the object’s
surface from the cloud of points. Approximating a cloud of points by a surface is
a well-researched area [7]. Similarly, fitting a point cloud with a triangle mesh,
piecewise NURBS or quadric mesh has also been extensively researched [8].
However, the main objective of point-based graphics is to be able to carry out all
required processing and rendering directly with sampled points, without explicitly
pre-processing the point cloud into a surface representation. There are a number
ways proposed to dynamically reconstruct in a localized manner, the object’s

surface from sample points by looking only at a neighboring set of samples [9].

¢ Rendering

This stage is to display a geometric model on a screen or printing device.
Most modern day 3D digital photography and 3D scanning systems acquire both the

geometry and appearance of complex, real-world objects. These techniques generate huge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

volumes of point samples [6]. Levoy and Whitted[10] were the first to propose the use of
point as a display primitive and a universal meta-primitive for object representation.
Subsequently various researchers have presented rendering methods using point
primitives [11,12,13,14]. Pfister and Zwicker proposed using surface elements (surfels)
as the rendering primitives in [15]. Surfels are point primitives without explicit
connectivity and have position, texture color, normal, and other attributes. An interactive
system for point-based editing — Pointshop3D — was introduced by M.Zwicker et al. [16].

Because point-based representation neither has to store nor maintain globally
consistent topological information, it is more flexible compared to triangle meshes when
it comes to handling highly complex or dynamically changing shapes.

1.5 Texture mapping on point-based graphics

Because point-based representation does not maintain global topological information,
the traditional parameterization method cannot be used and new mapping methods,
especially new parameterization methods, need to be designed.

Zwicker et al. in [16] have proposed the technique of minimum distortion
parameterization of surface patches by defining a discrete version of the objective
function. In Pointshop3D, users can display and edit the point-based models, and they are
allowed to select a surface patch to do texture mapping. The texture mapping quality
depends on the correspondence of feature points and the parameterization is not
guaranteed to be bijective. Other methods have also been proposed. These include the
methods by Haitao Zhang using point parameterization and point neighborhood
matching methods[17], and by Alexa et al. [18] using direction fields. Another popular

way to map texture onto point based geometry is to generate triangular mesh and apply

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

existing methods for the meshes. Martin Wicke introduces an algorithm to convert point-
sampled objects to textured meshes in [19]. They use Cocone and Tight Cocone
algorithms [20] [21] to generate triangles, and simplify the triangulation by merging
closed triangular regions. Then EWA splatting algorithm [11] is used to do patch texture
mapping. In [22], Guo XiaoHu etc. use Global Conformal Parameterization method under
the assumption that the point clouds are uniformly and well sampled, but as we will see
later their global parameterization is not well suited for texture mapping. All the above
methods are reviewed in detail in the next chapter covering both advantages and
disadvantages of individual methods.
1.6 Research objectives and methods

This thesis is primarily concerned with texture mapping 2D images onto 3D closed
objects represented by point samples. So the objective of this thesis is as follows:

‘. To find a solution to globally parameterize the surface without explicitly
converting the point cloud into a triangle mesh or any other surface
representation such as NURBS.

e To explore the suitability of this global parameterization method to texture
map 2D image on to 3D object’s surface

e To set up a test environment using public domain point based rendering
software, PointShop3D, for carrying out experiments with texture mapping of
point based models.

e To design and develop graphics software programs implementing the
proposed global parameterization solution and to handle texture mapping of

point-based model represented in SFL format, which is used in Pointshop3D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Traditionally in order to do global parameterization, we need to know the
connectivity and topology information of the object. As pointed out earlier, point-based
models do not have such information available. But if we know the object is a sphere, or
cube or other such well-studied surface, there is implied topology information that can be
used to provide us with a suitable parameterization. This could work if we can create a
correspondence between the surface of object and another such surface, say, sphere. That
means we need to build a mapping from the object’s surface to the sphere’s surface.
Level set methods [23] [24] provide us powerful tools to evolve the surface of any
complex object. The methodology we have followed is the following.

] Convert the SFL format to implicit function, for example, signed distance

function to represent the surface of object

e Using level set methods, evolving the surface to surface of sphere, tracking

the movement of surface points and keeping consistent neighborhood for
each point.

e Use spherical parameterization and linear interpolation method for the

final texture mapping

e Create texture mapped point based model in SFL format for Pointshop3D

software to render the texture-mapped surface.

1.7 Thesis outline

The rest of this thesis is organized as follows:
e Chapter 2 : A Comprehensive Review of Surface Parameterization for Point

Models

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this chapter, the parameterization methods for texture mapping point-based
models currently in use are introduced, and their advantages and disadvantages
are discussed. Then the motivation for our proposed method is presented.

e Chapter 3: Background on Surface Representation Techniques

In this chapter, different methods of surface representation, implicit function,
explicit function and signed distance function (SDF), to represent the curve or
surface are described, and some basic geometry variables are introduced. The SFL
file format is described and finally, a method for converting SFL model to SDF is
presented.

e Chapter 4: Global Parameterization of Point Based Models by Evolving the
Interface

In this chapter, the motion of interface (points on the object surface separating
interior and exterior) is first defined and two common solutions for evolving the
interface: explicit technique and implicit technique are introduced. Following this,

the application of level set in our method is introduced.

o Chapter 5: Numerical Implementation

In this chapter, the grid creation, the approximation method to partial
derivative and curvature, speeding, and re-initialization are introduced. Finally,
we briefly describe significant aspects of the software we have developed.

e Chapter 6: Conclusion and Future Work

In this chapter, the conclusion is drawn and some aspects that could be further
improved are listed.

o Appendix A:

Basic data structure used in our software in code format is appended.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: A Comprehensive Review of Surface
Parameterization for Point Models

With the development of point-based graphics, and especially with the introduction of
point as the universal geometric display primitive, many researchers have started to
devise new techniques for mapping texture on to the point-based objects. As we have
seen in the previous chapter, a key issue in texture mapping an image onto a 3D object’s
surface is that of deriving a suitable surface parameterization that provides a bijective
map between the texture coordinates in 2D and the surface in 3D. In this chapter, surface
parameterization methods, particularly, methods for point-based models are introduced in

detail and the main motivation for the method proposed in our research is also presented.

2.1 Surface parameterization

Let us recall that surface parameterization is needed to define a correspondence

between texture space in 2D, say with coordinates u and v, and 3D object space, say with
coordinates x, y, z. In short, we need the mapping (u,v) — (x, ¥, z).

A naive method to build such mapping is to indicate for every point on the object’s
surface a unique texture coordinate pair. However, for a continuous surface this is not
practical. The most common approach is to indicate several surface points with texture
coordinates such that both the surface points and the texture points form closed
(polygonal) regions in their respective spaces, and other texture coordinates are computed
based on the given information. For example, if we did this specification for 3 points,
then we would have a triangular patch on the surface of the object, and a corresponding
triangle in texture space, thus providing a one-to-one mapping between surface points

within the triangular patch and the color values within the texture space triangle.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The ideal parameterization is the bijective mapping and conformal mapping used in
texture mapping [29]. Bijective mapping means the map is one to one and inversive, like
the mapping X in Figure 2.1. For any point in set A there is only one corresponding point
in the set B; inversely, for every point in set B, we can find one and only one

corresponding point in set A.

A Set B Set

Figure 2.1: lllustration of bijective mapping

Conformal mapping is also called angle-preserving mapping. If the mapping is from
surface S to S, the mapping is conformal if the angle of intersection of every pair of
intersecting arcs on S is the same as that of the corresponding pre-images on S at the
corresponding point. In this way, we say there is no distortion caused by parameterization.
Many techniques have been developed to compute conformal parameterizations [26] [27].
But, most parameterization methods are unable to avoid some distortion [25].

In general, parameterizing an arbitrary 3-D shape to map into a 2D texture space is
very complex. The most popular method is to create a triangle mesh to approximate the
shape. Because the geometric connectivity information in a triangle mesh is completely
known, the parameterization is easy and can be done using piecewise linear interpolation

functions. In Figure 2.2, we are given a 2D object space triangle with vertices A, B, and

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C, and corresponding texture coordinates as (u,,v,) (u,,v,)and (5,v5). Then our goal is

to get (u,v) of any point P in the object space. In Cartesian coordinates system, we have

following equation:

P=ad+bB+(1-a-b)C (2-1)
It is easy to solve this equation to get the coefficients aand b . Then using the

following equation we can get u and v:

u =au, +bu, +(1-a—bu,

v=av, +bv, +(1-a-b)v, (2-2)
(ul’vl} (3‘2""2)
A C

B {33 =V3)

Figure 2.2: Interpolation of texture coordinates of P within the triangle ABC

However, for point-based models, lack of continuity of surface makes it difficult to do
parameterization, because we have no topological information to use. In the following
sections, we discuss a number of parameterization methods proposed for point-based
models and described in the literature.
2.2 Related surface parameterization methods
2.2.1 Direction Fields over Point-Sampled Geometry

In [18] Alexa et al. present an algorithm to use direction fields over point-sampled

geometry to do parameterization.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this method the first step is to specify initial directions. This specification of initial
direction can be done by user so as to position an appropriate number of discontinuities in
the direction field, like sources and sinks, explicitly with the point set. The initial
directions can be also assigned by computing surface features such as principal curvature
(Figure 2.3 a).

After this initialization, a number of iterations will be performed in which a point is
selected and its direction is modified based on its neighborhood until the expected
smoothness of direction fields is found. The new direction is calculated as the sum of the
directions of all neighborhood points weighted using the Gaussian coefficients.

The calculated directions can be used to generate texture information for the point set
surface. First one initial point is assigned a random color from the texture. Then a point
with the shortest distance to the initial point is selected. The color for this new point is
calculated by generating a texture neighborhood of the colors already generated and by
finding the point in the original texture that has the smallest color difference compared to

the neighborhood. This step is repeated for all other points.

S " s

(a) Initial direction fields (b) after several iterations (c) Final direction fields
Figure 2.3: Direction fields computation procedure (Figure source [18])

In this method, initial direction fields completely influence the parameterization
quality. Incorrectly specified initial directions result in poor texture mapping. Thus,
considerable user skill and intervention are required to properly position the sources and

sinks so that a desired quality of textured image can be obtained.
15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 Pointshop3D

Zwicker et al. have introduced the public domain Pointshop3D software in [16].
Pointshop3D is a software system for interactive shape and appearance editing of 3D
point-sampled geometry. Similar to 2D pixel editors, say, like Photoshop®, it provides
conventional editing tools and functions, such as patch selection, eraser, patch
parameterization, paint brushes etc.

The algorithm which Pointshop3D uses for texture mapping is known as minimum
distortion parameterization. Before parameterization, using a dedicated selection tool the
user has to select a patch on the surface and specify several feature points (Figure 2.4).

Then the user also has to specify corresponding feature points on the texture.

(a) (b) (©)
(a) Patch selection and feature points.(b) Texture with corresponding feature points.
(¢) texture mapping result
Figure 2.4: Texture mapping in Pointshop3D (Figure source [16])

The algorithm is based on an objective function derived from [28] and is briefly
described below.

Suppose a continuous parameterized surface patch X is defined by a one-to-one
mapping: X :[0,1]x[0,1] > X e IR . Each point u = (u,v)" in [0,1]x[0,1] represents a
point x = (x,y,2)" on the surface:

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x(u)
u €[0,1]x[0,]]= X(u) =| y(u) |=x € X (2-3)

z(u)

The minimum distortion means that the parameterization optimally adapts to the
geometry of the surface. Additionally, the user is able to specify a set M of point

correspondences between the surface points x, and texture points p,, to control the

mapping. Then the objective function is:

cx)=Y{xp,)-x,| +& [rudu -4)
Where r(u) = I(izf X, (O,r)j do (2-5)
H or
And X,(0,r) =X(u+r{c?s(9)D (2-6)
sin(8)

By computing the minimum of function (2-4) the parameterization can be approximated

by a function.

Figure 2.5: Texture mapping results in Pointshop3D with few of feature points
If all points lie in a plane, and at least three or more points obeying an affine mapping
are given as fitting constraints, the resulting parameterization will be an affine mapping.

However, this algorithm does not guarantee a bijective mapping. This algorithm can not

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deal with patches of high curvature as it will generate large distortion. And the quality of
texture mapping is very dependant on rather careful subdivision of surface into patches
by the user, and also specification of appropriate point correspondences between surface
points and texture. For example in Figure 2.5, if only a few constraint points are indicated,

the quality of texture mapped image is considerably poorer.

2.2.3 Fast Hybrid Approach for Texturing Point Models

Haitao Zhang et al. present a hybrid technique based on point parameterization
method and neighborhood matching method to map texture onto point models [17].

The point parameterization method uses the basic idea of flattening the point model’s
surface into one or more 2D patches under a certain distortion criteria; and the image
texture is then mapped onto these patches. Lastly, alpha blending is used to minimize the
discontinuity in the gaps between the patches.

The second method is based on neighborhood matching where a color is assigned to
each point by searching the best match within an irregular neighborhood. It uses the k-
neighborhood[29] method, that is, it chooses k number of closest points to make up the

neighborhood.

| (a) After patch mappig (b) Coloring the gap points

Figure 2.6: The hybrid method procedure for texture mapping (Figure source [17])

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The hybrid technique applies the point parameterization method first to texture the
patch points, followed by the point neighborhood matching method for coloring the
uncolored gap points (Cf Figure 2.6).

For this method, when doing the first step, the quality of the resulting textured image
is decided mainly by how well the distortion criteria are defined. If the criteria are loose,
the distortion will be bigger; otherwise, more patches will be created and the
discontinuity will be increased. Thus guaranteeing a good texture map again requires

considerable skill and experimentation.

2.2.4 Global Conformal Parameterization

In [22] Guo et al. present a global conformal parameterization method to do meshless
thin-shell simulation. This method is derived from the corresponding methods used on
mesh surface which can deal with objects of any genus [30]. The basic idea is to find

holomorphic 1-form of the surface: (wl,w2). w,and w, are zero curl and zero divergence;
in addition, w,and w, are conjugate to each other. After getting the holomorphic 1-form, the

surface can be mapped to the parametric plane by integration.

As can be seen in Figure 2.7, the bunny model is of genus 0. Three points, two at the
ear tips and one at the bottom, are selected as points on the opened boundary. The fair
Morse function is used to analyze the topology information of the point-based model, and
the holomorphic 1-form can be obtained based on the boundary and topology information.

Then many little surface patches are created and represented by (wl,wz) as shown in

Figure 2.7 (c) shows.

As the patches represented by (w,,w,) are automatically created, it is difficult to create

the correspondence between texture points and the surface points. In addition, different

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

boundaries will generate different parameterization. Further, it assumes the point surface is
sufficiently and regularly sampled. However, as is well known and also discussed by the

authors in their paper, the sampling issue is far from trivial.

(@) (b) (c)

Figure 2.7: The global conformal parameterization of the bunny model (Figure source [22])

2.2.5 Comparison

A comparative analysis of the above four methods is provided in Table 2.1.

Methods Advantages Disadvantages
Direction Fields Smoothness in Very dependent on the initialization and the
parameterization positions of sinks/sources;
Pointshop3D Easy to use; high Bigger patches lead to larger distortion; the
quality in a small mapping quality is dependent on the
patch; fast number of feature points; discontinuities
exist between patches
Hybrid method No discontinuity Very dependent on the distortion criteria;
between patches
Global conformal Global Needs well sampled model and difficult to
parameterization parameterization of create the correspondence between 2D
surface texture and 3D surface

Table 2.1: The comparison of different parameterization methods

2.3 Motivation of our parameterization method
In summary, when we consider the above methods, the main issue with the first three

parameterization methods discussed above is that the parameterization is performed

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

locally with user defined patches or user defined discontinuities in the case of direction
fields. Delineating patches is entirely the responsibility of the user. Similarly defining
sources and sinks, and giving the initial direction field are entirely the responsibility of
users. All these require considerable manual skill, care and intervention, in order for the
texture mapped rendering to produce acceptable results. The main problem is that the
correspondence map between a patch and texture space are independent of other patch-
texture maps. Unless adequate care is taken, discontinuities in texture at shared/disjoint
boundaries of patches can be very disconcerting. While global parameterization can help
avoid these kinds of problems, Guo’s conformal global parameterization is unsuitable for
texture mapping purposes, as it breaks up the planar parametric domain into small
patches based on flatness and assigning suitable texture coordinates to each of these small
automatically created patches would be a nightmare.

However Guo’s method inspires us to find a global parameterization method which is
more suited to texture mapping.

There is no explicit geometric connectivity information in point-based representations.
However, if the object is a well known surface for which the parameterization of any
point on the surface is implied, like, say a sphere in 3D or a circle in 2D, and the center
position and radius are known, then even if the model is represented just by sample points
we have enough geometric information to do global parameterization. In this case, a
global bijective mapping can be created. This suggests to us that evolving the given
object’s surface and converging its surface to the surface of a sphere will enable us to
easily use this geometric property. Of course, the evolution should keep the geometric

distribution of points within acceptable distortion.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Level set theory provides us powerful tools to evolve an object into a desirable target
surface. Level Set Methods [31][32] use a numerical technique which can track the
evolution of interfaces. This technique has a wide range of applications, including
problems in fluid mechanics, combustion, and manufacturing of computer chips,
computer animation, image processing, etc. For detailed description of the level set
method that we have used, please refer to Chapter 4.

Therefore, in our method for global parameterization, we try to evolve the target
object’s surface to another surface of a well known object. Then, using the implied
geometric information we do global parameterization and use it for texture mapping an

image onto the surface of a point based model.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Background on Surface Representation
Techniques

In order to be able to correctly deal with point based models, say to process and
render the object, a suitable representation for the object’s bounding surface is essential,
even if this surface is not explicitly computed and stored as part of the object’s data
structure. There are two common approaches used to represent the bounding surface:
explicit and implicit functions. In this chapter we will introduce and compare these two
approaches from the point of view of their suitability for various processing and
rendering operations on point-based models. In particular, signed distance function as a
kind of implicit function is the one that we have used in our work as it has many desirable
properties. This will also be discussed in detail, including an algorithm for computing a
discrete representation for point-based models.

We would like to recall that in our system, we use the Pointshop3D software to render
3D surface represented by points. Pointshop3D uses a file format known as SFL format
to store the point-based models. We too have chosen the point model in SFL format as
the input of our implementation. Hence, towards the end of this chapter we introduce the
SFL format and the process for transformation of SFL to discrete signed distance

function.
3.1 Explicit and implicit function forms

In this thesis we shall concern ourselves only with closed objects. The bounding
curve or surface of every closed object divides the 2D space or 3D volume into two parts:
an interior portion and an exterior portion. The surface separating the interior from the

exterior can also be called an interface. For example, in Figure 3.1, we use a 2D interface,

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a curve, to describe this; and this holds for a surface in 3D space. The circle divides the

2D space into two portions Q" and Q™.

<

o Q

QF ‘
Q

Figure 3.1: 2D interface

In order to numerically represent the two portions, a function ¢ needs to be defined.
Normally we can have following definition:

If ¢(x, y) <0, then point (x, y) belongs to interior potion Q™ ;
If ¢(x,y)>0, then point(x, y) belongs to exterior potion Q"
For ¢(x, y) =(, the point (x, y) belongs to the interface 2.

There are two ways to define the interface: explicit function and implicit function.
3.1.1 Explicit function

To represent an interface with explicit function, it is need to specify all the points on
the interface. The common way is to use parametric functions for each of the coordinates.

For the circle in Figure 3.1, the curve’s explicit function is given by the two

equations:

x =r*cos(0)
y =r*sin(0) (3-1)
Where, @1is the polar coordinate within the real number range given by (O,27r), andr

is the radius of the circle.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly, for a sphere surface, an interface in 3D, the explicit function can be defined:

x =r*cos(a) * cos(6)

y = r*cos(a) *sin(H) (3-2)

z =r*sin(a) ‘
Where, @ and @ are the polar coordinates with ranges given by (0,7)and (0,27)

respectively, and r is the radius of the sphere.
3.1.2 Implicit function

Alternatively, the interface can also be represented in the implicit function form. For

the circle in Figure 3.1, we define one such function as:

(15(55) =x 4y’ —r? (3-3)
Where, ¥can be any positive number.

We define the zero isocontour as the interface, which means each X denoting a point
in the space that satisfies ¢(¥)= 0 belongs to the interface. For unit circle’s interface, r is
equal to 1.

Similarly, for a sphere surface, the implicit function can be defined as:

#(%)= x> +y* +z7 —r? (3-4)
And the interface can be defined as the zero isocontour.

Here, there is no loss of generality defining zero isocontour as the interface. The

reason is as follows. If we wish to choose ¢ isocontour as the interface:

oi)=a (3-5)
Then a new function can be defined: ¢ (%)= ¢(¥)- (3-6)

So the zero isocontour of 5 (X)is identical to the @ isocontour of ¢(X).
From the implicit function, the interior and exterior portion can also be defined. The

interior points consist of X which satisfy

#x)<0 (3-7)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The exterior portion is composed of points X which satisfy
#(%)> 0 (3-8)

Based on above introduction, we can say that the explicit function is of one-
dimension less than the space represented. For example, the explicit function of curve
depends only on one parameter, and the explicit function of 3D surface depends on two
parameters. On the other hand, the implicit function used to represent the interface has
the same dimension as the space concerned. In a later chapter, we will see that by implicit
function we have more global geometric information available than the explicit function,

and this is very important in the evolution of the object’s surface using level set method.
3.2 Discrete Forms for Interface Representation

Usually it is difficult to give an implicit function or explicit function for any general
curve or surface of complicated shape. Hence, where acceptable, it is more convenient to
approximate the interface using discrete representations.

First let us consider the interface discretization for an explicit function. Consider
equation (3-1); the continuous parameter € in this equation can be discretized into a finite
number, say, # points:

0,<6,.0_,<06 <6,

i+l <..< en

Then the interface (3-1) is approximated by X,..x,..X,,..X,..X,,,..X, , where
X; = (x,y) = (r*cos(8,),r *sin(6,))
As the number of discrete points in the parameter space is increased, so is the

accuracy of approximation of the two dimensional curve. The explicit discretization of a

circle is shown in Figure 3.2 (a).

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The implicit representation given in equation (3-3) can be stored with a discretization
as well, except now, one need to discretize all of R”, which is impractical, since it is
unbounded. Instead, we discretize a bounded subdomain D < R*. Within this domain,
we choose a finite set of points (x,,y,) fori =1..N to discretely approximate the implicit
function. The set of points is called a grid.

There are many ways of choosing the points in a grid, and these lead to a number of

different types of grids, for example, unstructured, adaptive, curvilinear grids. The most
popular grids are Cartesian grids defined as {(xi, y j)| 1<i<ml<j< n}. In our system,

in order to be able to use a simple data structure to store the grid point’s value, we use

uniform Cartesian grid. This is shown in Figure 3-2 (b).

(X(0,.,),Y(0,.,)
JEaERRRXY
4 ™~
A}
(X (8,), e, > /
LY ,/
. A
i+ i
(X (9i+l)’ Y (9i+1))
(a) Explicit discretization (b) Implicit discretization
To approximate the circle using the finite The grid nodes inside the circle have negative level value;
number of values computed based on discrete € grid nodes outside have positive value; a grid node is on

the interface if its level value equals 0
Figure 3.2: Explicit and implicit discretization
Similarly, for equations (3-2) and (3-4), the discretization can be done, except that the
explicit function is discretized in two-dimensional parameter space and the implicit

function is discretized in three dimensions.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In both explicit and implicit discretization, we do not have the complete and exact
location of the interface in the domain space. Instead, they both only give information at
some sample points. All other points on the interface have to be computed from the given
sample points. Usually this is done by using a suitable combination of searching and
interpolation.

Even though implicit representation requires one-higher dimension space, we will see
that for our purposes, it is easier to work with than explicit representation. This is because
when using explicit discretization the connectivity of all the sample points needs to be
explicitly recorded and maintained. This is easy for the two-spatial dimensional explicit
discretization, because the connectivity is implied by the order of the parameter values.
However, it is not at all straightforward to record and maintain the connectivity in three
spatial dimensions. We need to choose an optimal number of points on the two-
dimensional surface and record their connectivity. When the exact surface and its
connectivity are known, it is simple to tile the surface with triangles whose vertices lie on
the interface and whose edges indicate connectivity. On the other hand, if the
connectivity is not known, it can be quite difficult to determine. In fact, even some of the
most popular algorithms for this purpose can produce surprisingly inaccurate surface
representations, for example, inconsistent orientation, incorrect topology or surfaces with

holes.

However, for the implicit function’s discretization, with adequate resolution, the
connectivity does not need to be considered, because the grid implies the connectivity

information in the whole space.

Especially, for dynamic objects, for example, like splashing water, the surface moves

around. The connectivity is not a “one-time” issue like that of explicit discretization.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Instead, it needs to be resolved over and over again every time pieces. Furthermore, when
dealing with the evolution of interface with a sharp corner, merging the explicit
representation makes the evolution process very complex, and can result in unacceptable
errors. Therefore, in our specific case, implicit representation and discretization has been

preferred over explicit function.
3.3 Geometric properties from implicit representation

Given an implicit function there are a number of powerful geometric tools that are
useful in our application.

Firstly, let us recall that we have designated the zero isocontour as the interface.
Hence we can easily determine which side of the interface a point is on just by looking
for the local sign of ¢ . That is, X is inside the interface if ¢(55) < 0, otherwise it is outside
the interface.

Secondly, implicit function makes both simple Boolean operations and more
advanced constructive solid geometry operations easy to apply. If ¢, and ¢, are different
implicit functions, then ¢(X) = min(¢, (X),4,(x))is the implicit function representing the
union of the interior regions of ¢, and ¢, . Similarly, #(x)=max(g,(x),d,(x)) is the
implicit function representing the intersection of the interior regions of ¢ ,and ¢, .

Thirdly, the gradient and surface normal at any point of the interface given by

implicit function have the following definition.

Gradient Vg:

_[2¢ o¢ o¢ i
V¢_[6x’6y’6z) (3-9)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

That is the gradient consists of the directional derivative in each dimension. For the
gradient under two dimensions, its definition is easily obtained by just removing the z
direction derivative.

The gradient Vgis perpendicular to the isocontours of ¢ and points in the direction of
increasing ¢ . Therefore, if a gradient is computed at a point on the interface, it has the

same direction with local unit outward normal at that point. Then we can induce the

definition of local unit normal N for interface points:

- V¢
N=— 3-10
Z (3-10)

For discrete implicit function, the approximation to the gradient and normal can be
given easily. On our Cartesian grid, the derivatives in equation (3-9) need to be

approximated. There are the following three basic ways:

e First-order accurate forward difference

+ 0 il ¥i
(#) =2 -ttt (-11)
e First-order accurate backward difference
- 0 — @,
(b:) =222 (3-12)
e Second-order accurate central difference
o =0
(¢;)) = a_f - ¢1+12Afr—1 (3_13)

For the directional derivative in other two directions, the equations have same format.
Using such approximations can cause some errors in the computation of new location of
the interface surface. But if the implicit function is smooth enough, these approximations

are within acceptable errors and the surface position has just a small perturbation [33].

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another important geometric property for the interface surface is the mean curvature,

which means the divergence of the normal N = (n1 Ny, n3) ,

On, 0On, On,
ox 0Oy Oz

k=V-N = (3-14)

)«:
7

So that £ > 0 for convex region, k < 0 for concave region, k£ = 0 for a plane (Figure 3.3).

Substituting equation (3-10) into equation (3-14) gives:

Figure 3.3: the mean curvature feature

Using directional derivative we can write equation (3-15) as follows:
In two dimensions: & = (¢xx¢y2 -2¢,6.4., +96,,0;)/’V(é}s (3-16)
And in three dimensions:

k=020, ~20.0,8, + 020+ 020, 20,00, + 20+ 10~ 20,0.0,.+ 89,) IVH
(3-17)

Where, the first order partial derivative can be computed using equation (3-11) — (3-13).

The second partial derivative of ¢ in the x direction is given by

2 —
0’ =20+ (3-18)
ox Ax

The second partial derivative ¢,,is computed based on ¢,andg,, and here we give the

equation using central difference

J+ _ 2 J + J-1
g, =P T2t 4 (3-19)
2Ay

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Other second-order derivatives have the similar format as in equation (3-18) and (3-19).

3.4 Signed distance function (SDF)

Because of the advantages of using implicit functions, discussed above, it is an
appropriate representation method for a dynamic object’s surface. Furthermore, the
smoothness of the implicit function is a desirable property in sampling the function and
using numerical approximations. By choosing a suitable implicit function, it not only
simplifies the equation but also reduces the computation cost. In addition, it can increase

the accuracy of computation. The signed distance function is one good choice.

A distance function d(¥)is defined as
d(%) = min(% - %, |) forall , €Q (3-20)
Geometrically, the distance can be constructed as follows. If X € Q, thend (¥)=0.
Otherwise, for a given point ¥, find the point on the interface closest tox, and label this
pointX.. Thend(x) = I?c - 5c’c| .
For a given point X, if the closest interface point is X.., the line segment from % to ¥, is

the shortest path from ¥ to the interface. Any local deviation from this line segment

increases the distance from the interface. In other words, the path from % to X, is the path
of steepest descent for the function d. Furthermore, since d is the Euclidean distance, we
get

Vd|=1 (3-21)
This is intuitive in the sense that moving twice as close to the interface gives a value of d

that is half as big.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A signed distance function is an implicit function ¢ as follows

!¢(5Z) =d(¥) forall x
And ¢(%)=-d(¥) for % in interior portions (3-22)
#(%)=d(%) for % in exterior portions
Similarly, we have
V=1 (3-23)

However, equations (3-21) and (3-23) are only true for any 3 as long as there is a

unique closest point X, . That is (3-21) and (3-23) are true except at points that are

equidistant from (at least) two distinct points on the interface. Unfortunately, such
equidistant points can exist, making (3-21) and (3-23) only true only in a general sense.

Equations that are true in a general sense can be used in numerical approximations
as long as they fail in a graceful way that does not cause an overall deterioration of the
numerical method [31]. This is a general and powerful guideline for any numerical
approach. More important, if the failure of an equation that is true in a general sense
causes overall degradation of the numerical method, then many times a special-case
approach can be devised to fix the problem.

As mentioned in previous chapters, in order to improve the accuracy of the
computation of some geometry variables, the smoothness of the implicit function is
important. It turns out that signed distance functions have a good smoothness except at
some kinks which can be numerically smeared. So, signed distance function is still a
good choice to represent the interface.

By using equation (3-23) we can simplify many of the formulae. For example,
equation (3-10) simplifies to

-

N=V¢ (3-24)

Equation (3-16) simplifies to
k=Ap=¢.+¢,+9¢. (3-25)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Representing the interface via signed distance function also simplifies the level set

evolution, as we shall see in the next chapter.

3.5

SFL file format [33]

The SFL file format has been introduced to provide a versatile file format to import

and export point based objects and scenes into Pointshop3D.

SFL file is a binary format file. An SFL file is a container for scenes containing

multiple surfel objects, each with its own transformation matrix. The SFL format is

extensible. Each object can have different surfel attributes, and the associated attributes

can be arbitrarily extended.

Following is a short description of the structure of an SFL file:

An SFL file consists of a header, containing general information about the scene.
In this part, the author, application and it’s title, time etc. can be defined.

Next is the surfel set lists, which contain surfel sets of the scene in a sequential
list.

A surfel set corresponds to a surfel object in Pointshop3D. Each surfel set can
have its own set of surfel attributes.

The SFL library allows storing multiple resolutions per surfel set. This feature is
not yet used by Pointshop3D. Presently one only stores the *“*default resolution”
for each surfel set.

Each resolution holds an array of surfels.

Because SFL file is a binary file, it cannot be read or written using normal text editing

software. Pointshop3D provides APIs to read or write SFL file. For the detailed

commands please refer the Pointshop3D website. [33]

The attributes for each surfel include the following:

Position: 3D coordinates for each point sample

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Normal: the Normal vector for each point sample

e Radius: the radius for the surfel disk, center is at the position of the point sample
¢ Diffuse color

e Texture Coordinates

e ... and others which we do not list as they are not at present relevant to our work
3.6 Conversion from SFL to SDF

As discussed, it is a good choice to use signed distance function to represent the
interface. We need to find a solution to convert the interface sample points in an SFL file
which forms the input into the corresponding SDF.

In our solution, there are two steps to generate SDF for corresponding SFL

e Read SFL and generate two data files including position and normal information

separately

e Compute a uniformly divided bounded range (rectangular box) for the entire point

set.; compute the signed distance to the sampled interface contained in the above
data for each grid node.

SFL file is a binary format file and it only can be read by the API provided by
Pointshop3D library [34]. So, a specific function sfl2text is written to achieve this. The
SFL file is first opened to enable browsing of all the surfel lists; then for each surfel the
position information and normal information are extracted; next the position and normal
information are saved into separate data files. A portion of sfl2text function is shown

below:

for (i=0; i<numSurfels; i++) - numSurfels is the total number of surfels in current
file

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in->beginSurfel()
TempSplat splat;
in->readSurfelPosition3(splat.x, splat.y, splat.z);
in->readSurfelNormal3(splat.nx, splat.ny, splat.nz);
in->endSurfel(),
data_file << splat.x <<" " << gplaty << " " <<gplat.z << "\n";
normal_file << splat.nx <<" " << splat.ny << " " <<splat.nz << "\n";

}

In order to use signed distance function to represent the interface, we first need to
create a grid whose size is decided by the object’s size. The maximum width in X, Y and
Z dimension will be computed and used to decide the grid range. Then the grid will be
uniformly divided. The last, also the most important, step is to find the closest interface
point got from the position data file for each grid node and compute the distance. To find
the closest interface point is a time-consuming task, and as can be seen from the literature,
there has been a lot of research carried out on this [35][36][37]. Here I use the Matlab
program developed in our group to do the conversion.

Figure 3.4, (a) shows the rendering of Igea model represented using SFL in
Pointshop3D software, and Figure 3.4 (b) shows the same model represented using SDF

in Matlab.

Flo Edt View Insert Tooks Desktop Window Hob) -.

DEEEG h QNP ¥ AE e

B

Q%ﬂ T T T
100 ¢) “100
I

(a) The Igea model in SFL format and (b) The Igea model in SDF format and
displayed in Pointshop3D displayed in Matlab
Figure 3.4: the SFL format and SDF format of Igea model

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Global Parameterization of Point Based
Models by Evolving the Interface

Introduction

In order to do global parameterization for texture mapping on point-based model, as
was discussed in Chapter 2, we will first evolve the interface of the object to the interface
of another specific target object, such as a sphere. The 2D polar coordinate of every point
on the sphere surface is distinct and easy to compute. Thus every point on the interface of
the given point based object can now be assigned a 2D parametric coordinate values.

Level set methods provide us powerful tools to evolve the interface. The level set
technique was devised by Osher and Sethian in [38] as a simple and versatile method for
computing and analyzing the motion of an interface in two or three dimensions, such as
closed curve in 2D or surface in 3D that bounds a region. The goal is to compute
subsequent motions of interface under a velocity that can depend on position, time, the
geometry of the interface or external physics.

In the first section of this chapter we shall introduce the motion of an object’s
interface. Next, level set methods are introduced. The use of level set method in the task
of texture mapping is then described. This is followed by description of two solutions to

track the movement of the interface.

4.1 Motion of interface
The processes of evolving and tracking the interface of an object are part of many
problems in science and physical engineering. We are mainly concerned with closed

interfaces: curves in two dimensions and surfaces in three dimensions. Usually a closed

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interface divides the space into two portions: interior and exterior. The evolution of
interface means the changes in these two portions; the changes may be in position, size,
shape etc. The motion of the interface usually is driven by giving each interface point a
velocity in time dimension.

There are many kinds of motion of the interface. For example, the convection of
interface, which maintains the interior shape and size, (Cf Figure 4.1); the expanding of

interface in which only the velocity in normal direction is considered, (c¢f Figure 4.2).

it evel et Method Simulution

(a) The original position t=0 (b) The new position at t=0.25(c) The new position at t=0. 5

ERLevel set Method Simulation

(d) The new position at t=0.75 (e) The new position at t=1.0

Figure 4.1: The interface convection without change in shape of the
interface; (a) and (e) are at the same position.

In a variety of physical phenomena, one wants to track the motion of the interface
with speed dependant on some geometric property, such as the curvature. Two well-
known examples are crystal growth [39] [40][41] and flame propagation[42][43]. This

kind of motion is very popular and it is also helpful in our method. This will be discussed

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in detail in subsequent sections. Figure 4.3 shows the motion of a star shaped interface in
2D, based on curvature.
In our method, we will combine constant velocity motion in normal direction with

curvature dependant velocity motion in normal direction.

* % %

(a) t =0 (b) t=3 (©) t=6

» % ®

@t=9 (e)t=12 Ht=15
Figure 4.2: The motion in normal direction

(a) The original star interface (b) The interface at time= 0.3 (c) The interface at time= 0.7

(d) The interface at time= 1.0 (e) The interface at time= 2.0 (f) The interface at time= 4.0

Figure 4.3: The motion in normal direction based on curvature

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Methods to evolve the interface

As discussed in last chapter, there are two popular approaches to represent the closed
interface: explicit and implicit. Correspondingly, there are two types of numerical

algorithms employed in the solution of evolving and tracking the interface.

4.2.1 Explicit techniques: parameterize the moving interface

Suppose we use the parameterized representation of an interface as the backbone of a
numerical algorithm. We choose finite number of buoys and the line between buoys
represents the curve in two dimensions, (Cf Figure 4.4). Similarly, we can choose finite
number of buoys in 3D and combine triangles by choosing three buoys as vertices to
represent the surface. This method is also known as the marker particles [44].

4 s / F
ha /4 I -

e

Figure 4.4: The discrete explicit representation of curve and with velocity F

Suppose the velocity of each buoy is given asv(%,), ¥, for i =1..N are points on the

interface curve. Then we want to track the interface points’ new positions at a later time
under the given velocity. The simplest way is to solve the ordinary differential equation

(ODE) given by:

..
Z—v(x) 4-1)

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This is the Lagrangian formulation of the interface evolution. The evolution of
interface can be approximated by moving of these buoys and the maintaining the
connectivity (line segment or the triangle). This is not so hard to accomplish if the
connectivity des not change and the surface elements are not distorted too much.

However, there are the following known problems when using explicit technique to

evolve the interface [33][46][45]:

e The discreterization parameterization has to been done repeatedly.

When evolving the interface, any trivial change in velocity field values can cause
large distortion of boundary elements, and the accuracy of the method can deteriorate
quickly if we continue to use the current buoys and their current connectivity. A
remedy is to stop the advancement periodically, re-walk along the curve or surface to
drop new buoys and determine their connectivity. However, doing this for a
propagating interface, especially a surface in three dimensions, is not at all an easy
task.

e For the most physically popular motion under curvature, it is difficult.

Many physics phenomena, such as burning flame and the moving wave front, can
be simulated by the motion of interface dependent on curvature. As the interface is
represented explicitly, there is not enough geometric information to compute
curvature because only the geometric information of the buoys is available.

e Topological changes, such as merging curves, require special treatment.

A more serious problem comes when an evolving boundary attempts to change its
topology. In the Figure 4.5, there are two separate circular flames, each burning

outwards at a constant speed.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Before merging, the independent evolution of each of the two flames can be
predicted easily. As the two separate flames burn together, the evolving interfaces
merge into a single propagating front. However, the evolution procedure will run into
a real trouble: the two sets of buoys located inside the burned region must somehow
be removed if we want to track the true edge of the expanding flame. Trying to

systematically determine which buoys to remove is a complex task.

(a) Original flames (b) The merging of two
flames

(¢) The two pairs of bouys inside the burning range should be removed
Figure 4.5: The evolution of two separate burning flames

4.2.2 Implicit techniques: level set methods

The explicit representation represents the N dimensional interface in N dimensions. In
contrast, implicit representation embeds the N dimensional interface in N+1 dimensions.
That is, a curve is represented as the interface of two 2D space portions, and a surface is

represented as the interface of two 3D space portions. As mentioned earlier, in this case,

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we can get all the global geometric information that we need and it is also easy to
compute gradient, curvature and other geometric quantities.

The most popular numerical technique for evolution of implicit representation is level
set method, which adds dynamics to implicit interfaces. The first idea that started off the
level set popularity was the Hamilton-Jacobi approach to numerical solutions of a time-
dependent equation for a moving implicit surface. It was first done in the seminal work of
Osher and Sethian.[38]

In the level set method, the interface is represented implicitly by the zero level set of
a function, ¢(¥) = 0 . Note that ¢ is defined for all X, and it is not just for the points on the
boundary. When we consider the evolution of interface, we designate the level set
function as time-dependent, so we add one time variable into the function ¢(x,#) . Figure

4.6 shows, for timet = 0, the interface as ¢(0) = #(¥,0) = z = 0. If the interface evolves

with given velocity, at time t the interface isg(t) = #(x,1) =z =0.

+2Z 4

-Z
Figure 4.6: Curve is defined as the zero level set and embedded in two-dimensional
space
43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Next, we give the mathematical definition of level set method and of the equations

that can be used for different motions.

Common Convection Equation
Level set methods are a collection of numerical algorithms for solving a particular

class of partial differential equations (PDE) [47]. Assume we have level set function ¢(X),

and the interface is the set with ¢(¥,0) = 0. And suppose for each point in the space, not

only on the interface, we have velocity vector I7(J?,t) =(u,v,w,t), tis the time factor.
Then, we can get the following simple convection equation.

6 +V-Vg=0 (4-2)
where the subscript denotes a temporal partial derivative of level set function and Vis
the gradient operator. Substituting equation (3-9) into equation (4-2) , we get

g, +up +ve, +wgp, =0 4-3)

Equation (4-2) is a partial differential equation (PDE) which defines the motion of the
interface given by ¢(x,#) =0. By solving this equation, we can get the new level set
function at time Az, and the interface can be extracted out by restricting ¢(X,Ar) =0.
Equation (4-2) is an Eulerian formulation of the interface evolution, since the interface is
captured by the implicit function#(X), as opposed to being traced by interface elements

as was done in the equation (4-1). Equation (4-2) is referred to as the level set equation.

As shown by the convection in Figure 4.1, equation (4-2) is used and the velocity is
given asV (%) = (- 2mx,27) .

To represent ¢ in a finite form and to solve the above equation numerically, we can

use a grid within a fixed range to discretize the space. A common choice is a simple

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

uniform Cartesian grid; quadtree and octree representations can be used for higher

efficiency [48]. The numeric implementation is described in the next section.

Motion in the Normal Direction Equation
In this part we give the level set equation for the motion under an externally
generated constant velocity field in the normal direction. The velocity is defined
by V(%,f) = aN , where ais a constant. Putting this velocity into equation (4-2), we get
¢ +aN-Vg=0 (4-4)
Then substituting equation (3-10) into equation (4-4), give us:
¢, +alVegl=0 (4-3)
The constant @ can be of either sign. When a > 0 the interface moves in the normal
direction, and when « < 0 the interface moves opposite to the normal direction. For
example, see Figure 4.2, wherea = 0.02.
Motion based on Mean Curvature Equation
As we discussed before, there are many physics phenomena, such as the burning
flame, in which the interface’s movement is dependent on the local curvature.
Generally we consider the interface motion in the normal direction and the velocity is
proportional to the mean curvature. For example, V' (¥,f) = —bkN , where b is a positive

constant and the minus sign is chosen so that convex parts move in and concave parts
move out. See Figure 4.7 (a). Let us recall that in Figure 4.3 we have already seen motion
of star interface dependent on curvature.

If the original interface is itself a circle (in 2D) or sphere (in 3D) and it is evolved

depending on the curvature in normal direction, then the interface will remain as circle or

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sphere respectively, as can be seen in Figure 4.7 (b). This is quite intuitive, as we know
that the circle and sphere have a constant curvature everywhere on the interface.

In [49], Grayson proved that every simple closed curve collapses smoothly to a single
point, without crossing over itself, and there is the remarkable theorem: no matter how
complicated or convoluted a curve might be, it quickly relaxes itself into a circular object
and shrinks down to a point under the motion based on curvature (¢f Figures 4.3 and 4.8).
This theorem has been the primary inspiration for our research on texture mapping on
two counts:

1) The target is a circular object, and

2) During evolving there is no intersection between the interface points. But this is

more complicated in three dimensions, and we will discuss it in next section.

K<0
k>0 2
K<0
k>0
k=0
(a) The sign of k decides the direction (b) The circle remains as circle with
of velocity the motion based on curvature

Figure 4.7: Velocity V' (¥,1) = —bkN , b is a positive number
Here we continue our discussion of the level set motion dependent on curvature. The
velocity field for motion by mean curvature contains a component in the normal direction
only, that is the tangential component is identically zero. Inserting the new velocity into

equation (4-2), we get:

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¢, +(~bkN)-Vg =0 (4-6)

Vo

v
¢, +(=bk)|Vg|=0 (4-7)

Equation (4-7) is the level set function for the evolution dependent on curvature in the

And based on equation (3-10), we have N= ; and inserting this into (4-6) yields:

normal direction.

Figure 4.8: The movement under curvature of a wound spiral

Corresponding Level Set Equation Using SDF
As discussed earlier in Chapter 3, signed distance function (SDF) is an implicit
representation with many good geometric properties. The level set method does not

mandate ¢ to be the signed distance function. However, the numerical approximations are
inaccurate if ¢has large variations in the gradient. Signed distance function has a very
good property in this regard:| Vg |=1 everywhere. Therefore, if possible it is a good idea

to use SDF to represent the interface, because SDF not only improves the computation

accuracy, but also simplifies the level set equation.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If ¢1s a signed distance function, then equation (4-5) will reduce to
4 =-a (4-8)
The value of ¢ either increases or decreases depending on the sign of a. Equation (4-8) is

much easier than (4-5). In addition, by initially using signed distance function as the

implicit function, after each evolution step it has to continue to be a signed distance

=1.

=1, then V4™

function, that means if 1V¢”

By using signed distance function, equation (4-7) becomes

¢r = bk (4'9)
However, after each evolution step, ¢ will not remain as SDF.

For general evolution, after each step the original implicit function can not be kept as
SDF, so we need to do frequent initialization to keep ¢ close to signed distance function,

which is called reinitialization procedure and will be introduced in a later section..

4.3 The procedure to do texture mapping on point-
based model

In order to apply the level set methods in our method, first let us review our planned
procedure to do texture mapping on point-based model. (Cf Figure 4.9)
4.3.1 The input and data structure

As discussed in Chapter 1 and Chapter 3, the main input of our system is the point

based model represented by SFL file. That means the input is only a set of discrete

interface points with different geometric quantities, such as position, normal, the surfel’s

radius, etc.

In order to use level set methods to move the interface of model, first we have to

create the implicit representation of the model. As mentioned before, we use signed

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distance function to represent the interface. Numerically we only need to compute the
signed distance of grid node to the interface, without the need to construct a function [38].
In order to generate the signed distance representation from the SFL file, we use the

uniform grid to embed the interface; two-dimensional grid for curve as shown in Figure

4.10 and similarly a three-dimensional grid for surface. In Figure 4.10, suppose (x',y")is

a point of the model from the SFL file, and (x,,y,)is the (7, j) grid node. Here, we

assume that the computational range D of grid is big enough to cover all the interface

points, and further that we have Ax = x, —x, | = x,,, — x,, the same as Ay .

As we know, the level set method for implicit function representation does not

directly track the movement of interface point(x’,y'); instead it updates the level set of

each grid node ¢(x), wherex = (x,,y,). So we need a separate data structure to store the

interface points and the grid array.

In our method, the interface is stored as a vector and the basic element is the interface
point. Each interface point has not only positional information, but also other information
such as the corresponding position on circle or sphere, the texture ID, texture coordinates.
See the appendix A for more detailed information on this aspect.

For the grid, in the C++ implementation, a class is created because it not only stores
the grid node distance value but also needs to do other computations. See appendix A for
details.

Other inputs are the textures that will be mapped onto the surface. Again, we simply
use a two-dimensional array to store the 2D image texture, and up to 8 texture image

arrays identified by their ID are organized in a vector structure.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SFL File

Extract interface points; create
uniform grid; compute the SDF

Grid and SDF, interface
points(x’, y', z')array

U

SDF of circle or sphere,
The new position of interface
points (x",y",z”

Evolve the interface using
level set method, at the
same time tracking the
movement of interface
points

and texture coordinates

Corresponding texture ID Sphere or circle
parameterization

for the control points

The corresponding polar coordinates of each
interface point, Texture U and V coordinates

Texture
ID=0..7

Mapping color

Interface points with color from texture.
For 3D objects, new SFL file with color
information are created

Pointshop3D

Rendering of object with texture

Figure 4.9: The texture mapping procedure

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Functions
In the flow chart (Cf Figure 4.9) there are in total 4 functions to accomplish the
texture mapping.
1. Extract interface points; create uniform grid; compute the SDF
The input for this procedure is the SFL file and output is the vector of interface
points with different properties, the grid object with the signed distance array for total
grid nodes. As already explained earlier, the SFL file is first read and the point related
data transferred into two files: position file and normal file; at the same time the
interface vector is also created. Then, to create the signed distances for each grid node,
we run the Matlab program which accepts the position and normal file as the input.
2. Evolve the interface and track the movement of interface points
This is the most important part and will be presented in detail in next section.
3. Sphere or circle parameterization
In this procedure the Cartesian coordinates of interface point are converted to
corresponding polar coordinates.

In Figure 4.11, suppose (x',)',z") is a point on a sphere surface, and its

corresponding polar coordinate is (0,¢). Then, there are following equations:

z'=r*cos(@)+z,
And x' = r*sin(@) * cos(¢) + x, (4-10)
And y' = r*sin(0) *sin(g) + y,

Where r is the radius of the sphere, (x_,y,,z,) is the center of the sphere. 8 is the
angle between vector (x',y’,z") and Z axis, and 6 € [0, 7z]. (x",y",2z'") is the projected

point on X-Y plane, and ¢ is the angle between the vector (x",y",z") and X axis,

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and ¢ €[0,27]. Both® and ¢ are continuous. For two-dimensional texture these polar

coordinates can be used to compute the texture coordinates (u, v) = (g,%) .
4. Mapping color

In this procedure, for each interface point we can get the corresponding color in
the texture by computing its texture coordinate.

Here we use a two dimensional image as a sample to describe this procedure.
(Figure 4.12) The image size is M x N, and the coordinate of pixel in the image
is (u,v) where u € [0,l]andv e [o.1].

In the last procedure we get the unique polar coordinates (0,¢) for every interface

point. Easily we can create the relation between the polar coordinate and texture

coordinate using following equation:

u=0/n
And v=¢/27 @-11)
Z
F 3
(=20
i;"l ' (x, "2
- ‘ /< ¢
7 r i >
/ r
(x5 (xi,yj}

Figure 4.10: The grid for circle model ~ Figure 4.11: Cartesian coordinates to polar
coordinates

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H Bl B BN 3B M W I N B I E R RN B AAEE EmEwmWED N
M Nu.v)

4.3.3 Output

Figure 4-12:

M x N 2D texture image

The output of our system is different for 2D and 3D interfaces. For the 2D interface,

curve, we just store the interface points with mapped color information in an array, and

this is displayed directly by drawing the separate points. See the example in Figure 4.13;

the left picture is the curve with mapped color, and the right is the texture.

B EALevel Set Method Simulation

Figure 4.13: The texture mapping result for a 2D star

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For 3D interface, we use the Pointshop3D software to render the surface. Before
rendering we need to create new corresponding SFL files. In our program a dedicated
data structure is used to store the interface points and their evolving information, so that it

is easy to transfer the interface points to SFL file with the computed texture coordinates

and mapped color. Figure 4.14 is a texture mapping result rendered in Pointshop3D.

(a) The star with texture

(b) Texture Image
Figure 4.14: The 3D star surface rendered in Pointshop3D

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 The use of level set methods in texture mapping

Level set methods have proven to be successful in tracking, modeling and simulating
the motion of dynamic surfaces in various fields including graphics, image processing,
computational fluid dynamics and many others. However, in order to use this method in
our texture mapping, some changes have to be done; specifically some restraints have to

be added.

4.4.1 Evolving the interface

In our method the key step is to evolve the interface of any shape to a circle or sphere.
We divide this process into two steps: evolve the interface dependent on local curvature
in the normal direction until the curvature at each interface point is not negative, which is
called the first evolution; evolve the interface in the normal direction to a bounding circle
or sphere, which is called the second evolution. Please see Figure 4.15 and Figure 4. 16.

In what follows, these two evolutions will be discussed separately.

(a) Original star (b) The interface (¢) The interface
with non negative curvature of bounding circle

Figure 4.15: 2D star evolve process

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c) The surface after the second evolution

Figure 4.16: 3D star evolve process

4.4.2 The first evolution

From Figure 4.3 and Figure 4.8, we know that even if the curve is very complicated,
when we evolve the interface dependent on curvature using level set method, and under a
certain condition — CFL condition, which is used to control how fast the interface moves
at each time step and is discussed in detail later — there will be no self intersection and the
curve tends to become a circle or collapse to a point. This in turn gives rise to another
question: can we only evolve the interface dependent on curvature to reach a circle or

sphere?

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the curve in two dimensions, this is possible. As we know the curvature of each
point on the circle remains constant when evolving dependent on curvature. So if we
want to only use the first evolution to reach our goal, the stop condition should be that the
curvature of every interface point is the same. However, there are problems with this
termination condition:

e The curve may collapse and disappear as a point before the stop condition is
satisfied. For example, as can be seen in Figure 4.8, the spiral is still not a circle at
time=1, but it disappears as a point at time=1.2.

e It needs a long time and the radius will be very small. For example in Figure 4.3, at
time=1, each point on the interface has nonnegative curvature, but only at time=3.6
it fulfils the constant curvature condition. It usually has a very small radius

compared with the bounding circle.

For the surfaces in three dimensions, the evolution is more complicated. First let us
look at the definition of curvature. Standing at a point on a surface, the curvature of any
path depends on the direction we travel. For example, standing in the center of a horse’s
saddle, one curvature is positive since it bends up, while another one bends down and
hence is negative. Usually, we are concerned with motion under the mean curvature,
which is the average of the biggest and smallest curvature. Figure 4.17, shows the
evolution of the surface of dumbbell under mean curvature, and the middle handle has the
same property with the saddle in curvature.

In Figure 4.17, because the handle is rather narrow, the dumbbell surface will break
into two separate parts at some time with the evolution dependent on curvature. This is

because, the mean curvature at the middle becomes positive, and it shrinks quickly until it

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

becomes a point. Eventually, each part will evolve to a sphere surface and finally shrink
to a point. However, in order to do texture mapping, especially when we want to build the
global parameterization, this kind of breaking should be avoided.

Hence only using the first evolution based on curvature has the following problems.
Usually it takes a lot of computational time to evolve up to the expected circle or sphere,
and secondly, the worst result is that the closed surface may break into several separate
parts. In order to address the above problems, we set a new stop condition to the first
evolution. When the mean curvature of each interface point is not negative, we stop the
first evolution. This way we can avoid the break into separate parts as shown for the

dumbbell in Figure 4.18.

Figure 4.17: The dumbbell is evolved under mean curvature; with increasing time the
dumbbell breaks into two separate parts.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.18: The dumbbell evolution under mean curvature is stopped when mean
curvature is not negative everywhere.

4.4.3 The Second Evolution

There are two ways to do the second evolution. First method is to evolve the interface
in the normal direction using level set method as described in Section 4.2.2, that is to
evolve the interface with a constant velocity in the normal direction. Another way is to
cast a ray from the interface point and the ray has the same direction with the normal at
that point; then to compute the intersection point of the ray with the bounding circle or
sphere, cf Figure 4.19. The bounding circle is decided by the maximum and minimum
value of x and y coordinates of the interface points.

It may appear that we can track the new position on the bounding circle or sphere by
directly using the second evolution without the first evolution. Unfortunately, it 1s not

practicable. Below we will use the level set method to describe the problem.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.19: To cast a ray from the interface point in the normal direction
to intersect with the circle

As described in Section 4.2.2, if we move the interface with constant velocity in
normal direction, even without using the first evolution method, the interface can directly
reach a circle or sphere. In some cases this is ok. For example, in the cases where the
original interface is convex everywhere. However, not every interface has this good
feature, for example the star. If we only take the second evolution, some interface points
will intersect each other. For example Figure 4.20 shows an example where the interface
tracking process used only second evolution.

We can see that the interface points in the red rectangle will merge or will be lost.
This is not correct. Figure 4-21 gives the reason. When evolving in the normal direction
A and B points must intersect at some time; this intersection will cause a major problem

in tracking the interface and subsequently in texture mapping. Even if we choose a
special method to track the movements of A and B, get their new position A’ and B’,

there remains the unacceptable error, which is that the order of A’ and B’ is different

from the order of A and B.
If we use the new position of these points to parameterize the curve or surface, the

texture will be mapped wrongly, ¢f Figure 4.22 (a).

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

Figure 4.20: Using only second evolution the interface points in the red boxes cannot be
evolved and tracked correctly for texture mapping.

a)t=0 b)t=6 ¢)t=15

Figure 4.21: The normal at A and B intersect

4.4.4 First evolution plus second evolution

As described in Section 4.3.1, our goal is to evolve the interface to a circle or sphere,
and from the discussion in the previous two sections, it is clear that we can not reach this
goal only using either first or second evolution. So in order to avoid the problems
discussed above we divide the evolution process into two steps: use the first evolution to
get the approximation to circle or sphere, for example, Figure 4.13(b) and Figure 4.14(b).
Then we expand the interface to the bounding circle or sphere using the second evolution.

The geometric meaning of curvature is the divergence of normal. If all the curvatures

of points on the interface are not negative, it means that for 2D interface, curve, there is

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no concave potion, and for the 3D interface, surface, the rays in the normal direction of
each surface point will not intersect outside the interface. With this condition, using the
second evolution to reach the bounding interface, will not cause the parameter reversal

problem described in section 4.4.3, ¢f Figure 4.23.

(c) Texture
Figure 4.22: The texture mapped wrongly only using second evolution

For the second evolution, we have two choices: directly casting a ray in the normal
direction to compute the intersection point with bounding interface or evolving in the
normal direction with constant velocity using level set method. These two methods have

almost the same results. Ray casting is a one step computation and hence takes less time.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, there are situations in which evolving the interface has advantages. In the case

of dynamic objects, we can track movement of interface points so that it is possible to get

the deformation information of objects with texture, cf Figure 4.24.
N

oY — C/kw
C/h\\ j C,\ j" s

(a) Original star b)T=0.6 (c)T=1.2

(d) T =1.5, when K>=0 (e) The target circle
Figure 4.23: The evolution of star under the first and second evolution

4.4.5 Tracking the movement of interface points

Level set methods don’t explicitly track the movement of interface points. However,
in order to accomplish texture mapping, we have to assign a texture coordinate for which
we must know where the original interface point is on the sphere. So we need to track the
movement of every point sample of the point based model. For this we compute the new
position of the interface points separately at each time step. The velocity of the interface
point is decided by the velocities of the grid nodes surrounding it.

First, we calculate the velocities of the grid nodes surrounding the interface point. In the

data structure of interface point, there is one important field (grid _X,grid Y, grid_Z)

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which stores the grid index to identify the grid cell within which the interface is located, cf

Figure 4.25.

(a) The oginal star

@T =30 e) et Sphere with texture

Figure 4.24: The deformation of objects with texture
(grid _X,grid _Y,grid Z) decides which grid cell the interface point P belongs to.
For example, in Figure 4.25 (a), the velocity of P can be interpolated by the four vertices
of the green gird cell. On the other hand, in three dimensions, the velocity of P is decided
by the eight vertices of the green box cell, c¢f Figure 4-25 (b).
Based on the level set equation, we know that there is a velocity for each grid node.

For example, if we evolve the interface in the normal direction dependent on the

(¢x ’¢y ’¢z)
Ve

curvature, the velocity is: V = ~bkN = —bk (4-12)

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(grid_X, grid_Y, grid_Z)

(grid_X, gird_Y, grid_Z)

N
1

(a) 2D grid cell and interface point P (b) 3D grid cell and interface point P
Figure 4.25: The interface point P in grid cell

Then for the velocity in X dimension we get:

V. =-bk ‘g; | (4-13)

For the Y and Z dimension, there are similar equations.
Thus the velocity of each grid node can be calculated by computing the curvature,
normal and gradient.

After getting the velocities of the vertices of the grid cell, we can use the bi-linear
interpolation (in 2D) and tri-linear interpolation (in 3D) to calculate the velocityV[. Bi-

linear interpolation and tri-linear interpolation are the extension of linear interpolation for
interpolating functions of two or three variables. [50] Then the new position of interface

point can be computed using the following equation:

Px+ IZ(x)*At
P ={Py+V.(y)*At (4-14)
Pz+V.(2)*At

Where At is the change of time of each evolution step.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Texture mapping

After evolving the interface to the circle or sphere, we can easily parameterize the
circle or sphere interface using functions described in 4.3.2. Then, the correspondence
between some physical points on the interface and the texture coordinates can be given to
finish the texture mapping.

In this part we will use the three dimensional interface and two dimensional texture to

describe our method for texture mapping point sampled surfaces.

4.5.1 Indicate texture coordinates using anchor vertices

We use three or more anchor vertices on the surface to indicate the correspondence
between the surface points and texture coordinates. For example, in Figure 4.26, we can
just indicate the texture coordinates of four points on the eye. Then the texture is mapped
as shown in Figure 4.26 (c).
4.5.2 Calculating texture coordinates

After creating the correspondence, we need to calculate the texture coordinates of all
the surface points. For this we have adopted a simple technique of tessellating the texture
region using triangulation, so that we can use simple bi-linear interpolation in texture
coordinate space, ¢f Figure 4.26 (b). Other interpolation techniques, say for example,

radial basis functions could also be used.

As we know after evolving the interface to sphere, there is a corresponding sphere

point (xo ' Voo zo) — (xs Vo zs) for each surface point, and for each sphere point there is a
unique polar coordinate: (xs i 2 zs) - (6’, ¢). By combining these two mappings, we can

have a map from the surface points to polar coordinates: X: (xo Voo zo) - (0, ¢).

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(b) The texture

i

(c) h surface with exe apped
Figure 4.26: Using anchor points to map texture
Using the above X map we can transfer the issue to check whether a point is in the
texture triangle in two dimensions. We use the cross products method [51] to do the
check and the procedure is as follows.
In Figure 4.27, we have a triangle with three vertices A, B, and C. Lines AB, BC and

CA are three edges. And each edge splits the space in half and one of those halves is

entirely outside the triangle. For example, if a point is inside the triangle ABC it must be

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

below AB and left of BC and right of AC. If any one of these tests fails we can return
false.

Suppose there is a point P outside the triangle, if we take the cross product of [B-A]
and [P-A], you'll get a vector pointing out of the screen. On the other hand, if you take
the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. From
Figure 4.27 we can see that [B-A] cross [p'-A] points in the same direction as [B-A] cross
[C-Al, so we say p' may be inside the triangle. Then we need to test p' with the other lines
as well. If the point was on the same side of AB as C and is also on the same side of BC
as A and on the same side of CA as B, then it is in the triangle.

If we found the point p' is inside the triangle, we can use bi-linear interpolation to

interpolate the texture coordinate (#,v) of the point.

Figure 4.27: lllustration for bi-linear interpolation using the cross product method

4.5.3 Mapping color
When indicating the texture coordinates for the anchor vertices, the texture ID is also
assigned. In our system, the texture ID can be from 0 to 7, that is totally 8 textures can be

imported at the same time.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Based on the texture ID and the computed texture coordinates (u,v), we can easily

extract the color and write the color information into the interface point structure.

4.6 Texture Mapping results and examples

In this part we show some texture mapping results.

| b) ere with brick texture | (c) 3D star with brick texture

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(d) Balljoint with brick texture (e) Igea model with brick texture

Figure 4.28: Different point based models with brick texture

-

Figure 4.29: 3D star with earth texture

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Numeric Implementation

In the previous chapter we introduced the basic theory and algorithms used in our
method to do texture mapping on point-based geometry. In this chapter, significant issues

related to the software implementation of the method are discussed.

5.1 Grid

One key issue for evolving interface using level set methods is to represent the
interface with implicit function. Further to facilitate numerical implementation of level
set based interface evolution, the implicit function should be discretized. There are many
ways to discretize the implicit function. We have chosen uniform Cartesian grids to
discretize the implicit function. In this way we can use the simple array’ data structure to
store the grid information.

The uniform Cartesian grid is defined as:

2D grid {9 I1<i<M1< j< N}
Or 3D grid .72)1<i<MI<j<NI<k<P

where (xi 3V Zk)is the computational coordinates of the (i, Js k) grid node

and Ax=x,-x_ =X, X, Ayzyj—yj—l=yj+1_yj AZ:ZJ—Z]._1=ZJ.+‘—Z].

M , N and P indicate the number of grid nodes in X, Y and Z dimension respectively.
In our software, a basic grid class Target_grid and two sub classes, TwoD_Grid and
ThreeD_Grid, are created to store the 2D and 3D grid information. For the detailed

structure, please refer to Appendix A. It may be noted that 2D interfaces and grids have

' A hierarchical data structure such as octree could have been used to reduce memory requirements.
However, since the goal of this development was more to carry out the numerical implementation and
validate the applicability of our method than to create a memory efficient software implementation, we
decided to keep the design simple to debug and test.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

been implemented by us primarily to test out our method’s applicability and also to
produce explanatory illustrations as already seen in this thesis.

The key feature of grids is the range of the grid which is decided by the coordinates
of A and B points in Figure 5-1. Other grid quantities include the dimension of grid, the

gap Ax , Ay and Az information. The grid class also provides member functions to

calculate the coordinates of each grid node identified by the node index (i, J> k).

PO OO TOIT TN

Pt A

B o i ol
z’f/////////f//ﬂ 1

h
kY

(.?f~,y-)
v (xi:.}’jszx)

(a) Two-dimensional grid (b) Three-dimensional grid
Figure 5.1: Two-dimensional and three-dimensional grid

In Figure 5.1, given the coordinates of point A and the gaps Ax, Ay and Az, we can
compute the coordinate of any grid node (i, j,k) as follows:

(x,¥,) =(Ax+i*Ax, Ay + j*Ay)
(x,,¥,:2;) =(Ax+i*Ax,Ay+ j* Ay, Az +k* Az)

The grid size can be set manually or can be derived from the SFL file. When
converting the SFL file into point data file and surface normal file (refer section 3.6), the
maximum and minimum value in each dimension can be got. Then we can use these

values to decide A and B: A=(min_X,min_Y,min_Z) and

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B=(max_ X,max Y,max Z). The number of grid elements is chosen such that it is
smaller than the minimum radius for any surfel. Heuristically we have chosen it as 0.7
times the radius. Alternatively this number is also allowed to be set by the user
considering computer system’s memory.

As we know, using implicit function to represent interface, in most cases the interface
point will be located somewhere within a grid cell. But using level set, we have only the
computed information at the grid nodes, for example, the velocity, normal etc. Hence, to
get the velocity or normal of the interface point, we will need to do interpolation using
the values at vertices of the corresponding grid cell. Bilinear or trilinear interpolation

methods are commonly used.

5.2 Partial derivative

The computation of partial derivative plays a key role in the level set methods. Below

the approximation methods to the spatial and temporal partial derivatives are discussed.

5.2.1 Temporal approximation
In equation (4-2), ¢, is the derivative of function ¢ in time direction. Practical

experience suggests that level set methods are more sensitive to spatial accuracy than to
temporal approximation. So we approximate the temporal derivative using the first-order

accurate forward Fuler method as follows:

=ﬂ__¢_n -1
9, Al (5-1)

Where ¢" is the function value at? = n, Atis a time step.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The forward Euler method is of first-order accuracy, and if we want higher order
accuracy for the temporal approximation to the derivative, we can use the total variation
diminishing (TVD) Runge-Kutta (RK) methods proposed by Shu and Osher in [52].

In our system, two functions have been created to yield the temporal derivative:

e odecfll(...)

This function is used to approximate the temporal derivative using equation (5-1)
with first-order accuracy.

o odecfl2(...)

This function approximates the temporal derivative in second-order accuracy, and

uses following equations:

¢n+l _¢n - .,
T ¥ 47".vg" =0 5-2
A ¢ (5-2)
¢n+2 — ¢n+1 7 n+l n+l
V"V =0 5-3
Ar ¢ (5-3)
Then average of the above two results is taken to get:
n+l 1 n 1 n+2
=—¢" +— 5-4
¢ 5 ¢ 5 ¢ (3-4)

5.2.2 Spatial partial derivative

When computing equations (4-2) and (4-3), we need the partial derivative in each
direction. Equations (3-11), (3-12) and (3-13) give three ways to compute the derivative.
Naively, one might evaluate the spatial derivatives in a straightforward manner using
those equations. Unfortunately, randomly choosing an equation will fail. Instead upwind
differencing method will be used to choose the correct equation to get accurate and stable
computation of partial derivative.

For simplicity, we use the one-dimensional version of equation (4-2) as an example to

describe upwind differencing method.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¢ +u"g =0 (5-5)
Where the sign of #” indicates whether the values of¢ are moving to the right or to the

left. Given a grid point x,, then equation (5-5) can be rewritten as:
()7 +u;(4,)] =0 (5-6)
Where (¢,):’ denotes the temporal derivative of ¢ at the point x, at time » and (g,)]

denotes the spatial derivative of ¢ at the pointx,at timen. If 4 >0, the values of ¢ are

moving from the left to right, and the method of characteristics tells us to look to the left

of x,to determine what value of ¢ will land on the pointx,at the end of a time step,
leading us to use equation (3-12) (¢x‘),. to approximate the derivative. Similarly, ifu <0,

equation (3-11) (¢:),. should be used to approximate the derivative. This method of

choosing an approximation to the spatial derivatives based on the sign ofu is known as
upwind differencing.

In the above discussion we use equation (3-11) or (3-12) to approximate the
derivative, which is of first-order accuracy. The higher order accurate approximation to
the spatial derivative can be realized by using the Hamilton-Jacobi of essentially non-
oscillatory (ENO) and weighted ENO (WENO) methods, discussed below.

The idea ENO polynomial interpolation of data for the numerical solution of

conservation laws was first introduced by Harten etc. in [53]. Then it was improved

further by Shu and Osher in [52]. The HJ ENO method allows one to extend first-order
accurate upwind differencing to higher-order spatial accuracy.

In [54] Liu et al proposed a WENO that takes a convex combination of the three ENO

approximations.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In our system, we realized the first-order and second-order accurate ENO method to
approximate the spatial derivative: UpwindFirstFirst and UpwindFirstENO2. For the
second-order accurate approximation, it uses the Newton polynomial interpolation to

find ¢ and then differentiates it to get ¢, . The zeroth divided difference of ¢ is defined by

D10¢ = ¢i (5-7)
The first divided difference is defined midway between grid nodes as
Dl ¢ _ Di(:—l¢—Di0¢ (5 8)
i+1/2¥ — Ax

Di1+1/2¢ - D,'1—1/2¢

The second divided difference is defined as: D’¢ =
' 2Ax

(3-9)

The divided differences are used to reconstruct a polynomial of the form

¢(x) = 0y (x) + O, (x) + O, (x) (5-10)
Where 0, (x) = cis a constant

0,(x) = (D, 28)(x ~ x,) (5-11)

Oy (x)=clx—x,)x—x,,,) (5-12)

Equation (5-10) can be differentiated to compute the spatial derivative (¢x+)i and (¢;)I. as
follows:

6.(5)=0, (5)+ 0, (x,) (5-13)
Qll(xi) = Dllc+1/2¢

To define (¢;),. , we use equation (5-10) starting withk =71, and to define (¢:),. , we start
with k=1i.

Equation (5-12) is a little complex. If ’D,f¢’ < ’leﬂ , we setc = D} ¢ otherwise we set

¢ =D}, ¢. Then we get

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0;(x)=c2(i - k) - DAx (5-14)

This gives us the second order approximation to the spatial derivative.

5.2.3 CFL condition

The combination of the forward Euler time discretization with the upwind difference
scheme is a consistent finite difference approximation to the partial differential equation
(4-2), since the approximation error converges to zero as At — 0 and Ax — 0. However,
this approximation is convergent if and only if it is both consistent and stable. Stability
guarantees that small errors in the approximation are not amplified as the solution is
marched forward in time.

In our system we use the Courant-Friedreichs-Lewy condition (CFL condition) to
enforce the stability. This condition asserts that the numerical waves should propagate at
least as fast as the physical waves. This means that the numerical wave speed, Ax/ At,

must be faster than the physical wave speed|u|. This leads to the CFL time step

restriction as: At < _ A (5-13)
max{|u |}

Where, max{|« |} is the largest value of| « | over the entire Cartesian grid. In reality
we only need to choose the largest value of | u | at the interface. Usually we give a CFL

number @ and 0 < @ <1. Then from equation (5-13) we get

At_fﬁx_{lﬂ_}_ pe (5-14)
Ax

If « is close to 0, then each time step will be very small resulting in slow evolution; on
the other hand if « is close to 1, there is high risk of it not being stable. So in our

software we set « = 0.5to restrict the time step Af .

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Curvature computation

In this part we will discuss the approximation to the curvature which is important
when evolving the interface dependent on curvature.

From the definitions in equations (3-16) and (3-17) of curvature, we know that the
level set equation (4-7) of motion dependent on curvature is a parabolic equation. The
derivative can not be approximated by the upwind difference method, because the value
of ¢ at next time step is not decided by the previous value in a direction; instead it
depends on the previous values in every direction. So the central differencing method,
given for example, in equation (3-13), has to be used.

For the second order derivative, equations (3-18) and (3-19) are used. We can then
substitute all the first order and second derivative values into equation (3-16) or (3-17) to
compute the curvature. And the computed curvature will be of second order accuracy.

In our software, curvature_second function is used to compute curvature, and
compute_first Second_de function is used to compute the first and second order

derivatives.

5.4 Accelerating the computations

Using level set methods to evolve the interface, the time cost can be a bottleneck for
texture mapping, because at each time step, we have to compute the partial derivatives for

each grid node of the whole grid and then modify the level value ¢ at each grid node.

For example, for the three dimensional grid with the size of 101x 101x101, at each

time step, we need to compute the three partial derivatives in three dimensions. That is,

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we have to call the function to compute derivatives 3x101x101x101 times. After that we
have to change the level values at each of the 101x101x101grid nodes.

However, in reality we are only concerned with the movement of the interface or a
narrow band around the interface, and we do not need the evolution of level value of the
points far off the interface. So if we can limit the computation to a band range which is
close to the interface, we can save time and speed up the evolution. There has been quite
a lot of research on speeding up the level set method.[S5][56][57]. The common idea is to
localize the computational range. In [55] and [56] they both use a tube to localize the
range as shown in Figure 5.2 (a) and the main difference is only in the actual method
used to create the tube. The width of tube usually is about five to six grid distances on the

each side of the interface.

(a) The tube close to the interface (b) The external box (Red line) and
is used to speed Internal box (green line) is used to speed

Figure 5.2: Using tube or bounding box to limit the computational range
By using the tube the computation cost can be reduced greatly to speed the evolution.
In order to use the tube a special algorithm and data structure needs to be used to generate

the tube, after each evolution.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In our case, we demonstrate that our method can also be speeded up by using two
bounding boxes, external and internal bounding boxes as shown in Figure 5.2 (b). The
external box is decided by the minimum and maximum value of the interface points’
coordinates, and the coordinates of the left-bottom vertex is(min(x) — 5Ax, min(y) — 5Ay),
the coordinates of the right-top vertex is(max(x)+5Ax,max(y)+5Ay). Similarly, the
three dimensional external bounding box can be generated.

The internal bounding box is defined as the box within which there are no points up
to five grid distances off the interface in the inward direction.

Then, for the grid points enclosed between these two bounding boxes we can easily
use two-dimensional or three-dimensional array to store all the level values.

In order to keep the interface always between the two bounding boxes, the bounding
boxes need to be updated as the interface evolves. There are several options we can
choose to update the bounding boxes. First, update each box after each time step; this
solution is easy to program and safe; however, it adds more computational cost towards
update of the bounding boxes. Second, a bounding box can be updated whenever we find
that the interface is close to the edge of a box. This solution also needs to spend some
time to estimate the position of the interface. Third we can update the bounding box after
fixed number of time steps. In our system we choose the third solution and update the

box after five time steps. Because each time step is limited by the CFL condition and we

have chosen the CFL number as 0.5 we can be sure that after five steps the interface will

still lie between the two bounding boxes.
Figure 5.3 shows the evolution time of the 2D star. Figure 5.3 (a) shows that it takes

1962 seconds to complete the evolution without bounding box. Figure 5.3 (b) shows it

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that takes 1036 seconds with only the external box and Figure 5.3 (c) shows that it

accelerates further to take only 976 seconds to complete evolution with two boxes. Table

5-1 shows that this technique accelerates computation for different models.

Model Without bounding | External bounding | External and internal
box box bounding box
2D star 1962s 1036s 976s
3D star 6846s 3287s 3011s
3D Igea model 13063s 8341s 7853s
3D balljoint model 18178s 10451s 9983s

Table 5-1: The accelerating result using bounding boxes

totally Lhe preogran pun foe 1962 sevonds

(a)Evolution of 2D star without bounding box

(b) With only external box

totally vhe piroge

v Foe 970 secin

(c) With external and internal box

Figure 5.3: Accelerating evolution computations using bounding box

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Re-initialization
In this part we will discuss the method use to ensure that the implicit function

remains as the signed distance function during the evolution process.

As discussed in Chapter 4, if the interface is represented by a signed distance
function, the accuracy of calculation of partial derivative and curvature can be improved.
So in our software we have chosen the implicit function as being the signed distance
function.

For every kind of evolution, if we use SDF, we can use the simplified equations,
such as equation (4-8) or (4-9). However, after each time step, the implicit function may
not remain as SDF. So if we still want to use the simplified equation through out the
evolution process then, we must re-initialize the function as SDF. This is a time-
consuming procedure.

If we use the standard equations, such as equations (4-3), (4-5) or (4-7), we do not
need to keep the implicit function as SDF. However, the accuracy of calculating partial
derivative or curvature can not be guaranteed.

As a compromise we can choose SDF to represent the geometry, but use the common
equations to evolve the interface. In this way, we do not need to initialize the implicit
function in each step. Instead we re-initialize the function after every fixed number of
steps.

Given the initial function ¢, we can use the crossing time method [31] to convert it to
SDF. Based on the feature |[Vg|=1o0f SDF, there is the following re-initialization

equation:

¢, +S#,)(Ve|-D=0 (3-15)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

() = —2
V8 + V[(Axy

Level value of ¢ will be changed at each step, and when the value of ¢ is stable, the re-

where S

initialization can stop.

(a) The gradient distribution before (b) The gradient distribution after
re-initialization re-initialization

Figure 5.4: Gradient distribution comparison
We choose the 2D star model to show the effect of re-initialization. Figure 5.4
displays the gradient distribution of the original function and the SDF. From Figure 5.4 (a)
we can see that in the center the gradient changes very quickly. On the other hand, Figure
5.4 (b) shows that, except for the edge of the grid, the gradients of all the grid nodes are

around 1.0.

5.6 Software usage

In this part, the steps to use our software are briefly described.

5.6.1 Initialization:

The first step is to initialize the startup environment, for example, to create the
interface points array, the grid, and the level value array. There are three ways to do the

initialization.
83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e From SFL file and the initial signed distance function

The SFL file is used to create the interface points array. Some features of the
points, such as position, initial normal, surfel’s radius, can be got from the SFL file.
The converted SDF is analyzed to create the grid and level value array for each grid
node.

e From the SFL file and the evolved signed distance function

To evolve the interface using level set methods is a time-consuming procedure, so
in order save time, the evolved signed distance function and the grid information can
be saved as a text file, in a preprocessing phase.

Next time if we want to restart mapping texture on the interface, we can directly
read the evolved SDF to initialize the software. By this way, we don’t need to evolve
the interface again.

e User-defined interface and signed distance function

Sometimes we can create interface by ourselves. What we need to do is just save

the interface points in one text file and provides other required information. The

corresponding SDF also needs to be created.

5.6.2 Evolve

Our software also provides other kinds of evolution procedures, for example, the
convection with external velocity and the motion in normal direction with given
velocity. So the first step is to choose the evolution type. The evolution type can be
CONVECTION, NORMAL, CURVATURE, and TEXTUREMAP.

As we described before, there are many different ways to approximate the partial
derivative and curvature, and the different ways have different order accuracy. The

accuracy can be identified as: LOW, MIDDLE, HIGH, and VERY HIGH.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the accuracy is LOW, we use the first-order accuracy in temporal and spatial
derivatives’ computation.

If the accuracy is MIDDLE, we use the first-order accuracy in temporal
approximation, and the second-order accuracy in spatial derivatives’ computation.

If the accuracy is HIGH or VERY HIGH, the temporal approximation will be of
second-order accuracy, the spatial derivative’s approximation is of third or fifth order
accuracy.

5.6.3 Mapping texture

In order to map texture on to the interface, first the textures should be imported

into the memory to create texture array. The function is as:
model->import_image(Texture ID , "file name");

The texture ID can be any number between 0 and 7, and the file name is the name of a

BMP file.

Then we can identify the some anchor points and assign them with texture
coordinates to control the mapping of texture. If we don’t do this identification, the
zeroth texture with default texture coordinates will automatically be mapped onto the
interface.

5.6.4 Output

For the two dimensional interface, the result is displayed by our program directly
on the screen. On the other hand, for 3D data, a modified SFL file is created of the
point based model with mapped texture, and the SFL file can be rendered using

Pointshop3D software.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.5 Examples

In this part we will use the Igea model to describe the texture mapping procedure.

Input
The Igea model represented in SFL model(Cf. Figure 5.5 (a)). The
sfl2txt function and matlab program will be launched to generate the
signed distance function for Igea model.
Evolving interface
The signed distance function and SFL file are read into software
system, and the interface is evolved to a sphere’s surface.
Global Parameterization
By default there is a texture, whose texture ID is equal to 0, to create
the global parameterization automatically. The anchor points can be
indicated. (CF Figure 5.5 (¢)).
Different texture can be mapped on the model at the same time.
For example, we want use another eye texture (CF Figure 5.5(b)) to
map the eye patch.
The rendering of objects with mapped texture
Pointshop3D is used to render the objects. Figure 5.5(d) shows the
results of the parameterization in Figure 5.5 (c). Figure 5.5 (e) shows the

different eye texture.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(c) Define the anchor points on the texture and on'ginél model

(d) The result with texture in () (e) The result with different eye texture in (b)

Figure 5.5: The texture mapping procedure with Igea model

&7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Conclusion and Future Work

This chapter concludes the thesis with a summary of the main contributions, and

some ideas for future research.

6.1 Principal Contributions

The primary focus of the research reported in this thesis has been on techniques to
map image based texture onto surfaces of point-based models with reduced human
intervention. Based on an exhaustive research of available techniques and experience
based on experimentation, we came to the decision that a global parameterization method
is desirable. This is based on the observation that earlier techniques mandated break-up of
the original surface into patches. In this context, the following contributions have been
made in this thesis:

1. A solution has been proposed to globally parameterize the surface of point-based
geometry without explicitly converting the surface to triangle mesh or other
continuous surface representations. The proposed solution uses level set methods
to evolve the surface to another surface with implied 2D parameterization and
hence every point sample of the point based model can be assigned distinct 2D
coordinates using polar coordinates.

2. While the process of evolving the surface of a point based model is computationally
expensive, and difficult to carry out in real time except for small models, this
process can be carried out in a pre-processing phase. The global parameterization
obtained for the points are stored along with the model and used in every other
texture mapping operation. For example, in Figure 6.1, the 3D star model has been

mapped with different textures using the pre-processed global parameterization.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. A procedure to do the conversion between SFL file and SDF has been created.

4. For experimenting and testing the results of the proposed texture mapping
procedure, a software implementation was successfully completed. The software’s
input can be SFL, SDF or user-generated level set value. The output is SFL file

which can be displayed directly using Pointshop3D software. Results from this

software have been demonstrated in earlier chapters.

(c) Earth texture mapped

(d) Canadian flag as texture (e) Brik picture mapped

Figure 6.1: Different textures mapped onto the star model

6.2 Future work
In this research we have proposed a new solution based on level set techniques to
derive a global parameterization that is then used to map texture onto a closed point-

based object. However, there is still more work needed before this method can be widely

used in practice.

The slow speed of evolving the interface is a bottleneck. The speed depends on the

number of interface points which is determined by the object surface sampling rates, the

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

grid size and resolution, and the accuracy to which the global parameterization is required.
We have implemented a simple acceleration technique based on inner and outer bounding
boxes. This was done so as to keep the data structure and computer implementation
simple. However, a more complex inner/outer bounding shape closely matching the
interface may reduce the running time further. So in the future this method should be
incorporated in our software.

As described in Chapter 4, we can indicate the texture ID and assign texture
coordinates to a set of anchor points to control texture mapping. It is better to integrate
our system into Pointshop3D as a plug-in, so that anchor points and corresponding
texture image coordinates can be identified interactively using a mouse. In this way, the
3D textured surface also can be displayed as part of the process of interactively carrying
out texture mapping.

Another issue is about the analysis of the distortion when doing parameterization. In
our system, we can keep the persistence of the neighborhood of points, but can not
guarantee the distance ratio between points. For example, in Figure 6.2 (a) originally the
red point A has seven green points as its neighborhood. In Figure 6.2 (b) these seven
green points are still the neighbors of A, but the ratio of distance DC and BC is changed.
This causes distortion in the resulting texture on the surface and a good solution needs

further research.

b <o
- ® o0 ° - °)
- P °c ¢ _ PR :c o
b @ 1]
B ce °
a) Original neighborhood b) Evolved neighborhood

Figure 6.2: llustration for texture distortion geometry

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References
[1] P.S.Heckbert. Fundamentals of Texture Mapping and Image Wrapping. Master
thesis
[2] P.S. Heckbert. Survey of Texture Mapping. IEEE Computer Graphics and
Applications, pages 56-67, Nov. 1996.
[3] Les Piegl, On NURBS: a Survey. IEEE Computer graphics and Application, Vol. 11,
Pages: 55-71, 1991
[4] K.Perlin. An Image Synthesizer. Computer Graphics, (SIGGRAPH ’85 Proceedings),
Pages 287 — 296, July 1985
[5]1 M. Gross. Are points the better graphics primitives? Computer Graphics Forum, Vol.
20(3), 2001.
[6] Sainz, M. Pajarola, etc. A simple approach for point-based object capturing and
rendering. IEEE Computer Graphics & Applications, Vol. 24(4) Page24-33, 2004
[7] Holger Wendland, Scattered Data Approximation. Cambridge University Press,
2006
[8] C.Stoll, Z.Karni, etc., Template Deformation for Point Cloud Fitting. Point Based
Graphics 2006
[9] Leif Kobbelt and Mario Botsch, A Survey of Point-Based Techniques in Computer

Graphics. 2004

[10] Levoy M., Whitted T.: The use of Points as a display primitive. Tech. Rep. 85-022,
Computer Science Department, University of North Carolina, January, 1985
[11] M.Zwicker, H.Pfister, J.Van Baar, and M Gross. Surface Splatting. In SIGGRAPH

2001 Proceedings, Pages 371 — 378. August 2001

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12] J. P. Grossman and W. J. Dally. Point sample rendering. Rendering Techniques 98,
Eurographics, Pages 181-192. 1998.

[13] A. Kalaiah and A. Varshney. Differential Point Rendering. Rendering Techniques
‘01, Springer Verlag, Pages 139-150, 2001.

[14] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering system
Jor large meshes. Siggraph 2000, Computer Graphics Proceedings,pages 343-352. 2000.
[15] H.Pfister, M.Zwicker, J.van Baar, and M Gross. Surfels: Surface Elements as
Rendering Primitives. In Computer Graphics, SIGGRAPH 2000 Proceedings, Pages 335-
342. July 2000.

[16] M.Zwicker, M.Pauly, O. Knoll, and M Gross. Pointshop 3D: An Interactive System
Jor Point-Based Surface Editing. In SIGGRAPH Proceedings, pages 322-329, July 2002
[17] Zh.Haitao, Q.Feng, and K.Arie. Fast Hybrid Approach for Texturing Point
ModelsComputer Graphics Forum, Vol. 23, Pages 715 — 725, 2004

[18] M.Alexa, T.Klug etc. Direction Fields over Point-Sampled Geometry. In
SIGRAPH2001, pages417 — 424, Aug 2001

[19] W.Martin, O.Sandro and M.Gross. Conversion of Point-Sampled Models to
Textured Meshes. Proceedings of SIGGRAPHOS5, 2005

[20] N. Amenta, S.Choi etc. A Simple Algorithm for Homeomorphic Surface
Reconstruction. Intl. J. Comp. Geom and Appl. Vol. 12, Pages 125 — 141. 2002

[21] T. Dey, S.Goswami: Tight Cocone: A Water-tight Surface Reconstructor.
J.Computing. Inf. Sci. and Engin, Vol.3, pages 302 — 307, 2003

[22] Guo XiaoHu, etc. Meshless Thin-Shell Simulation Based on Global Conformal
Parameterization. IEEE Transactions on Visualization and Computer Graphics. Vol.12

No.3. Pages 375 — 385, May 2006

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[23] Stanley Osher and Ronald Fedkiw. Level set Methods and Dynamic Implicit
Surfaces. Springer Press, 2002.

[24] J.A. Sethian Level Set Methods and Fast Marching methods, Cambridge University
Press, 1999

[25] Floater, M.S., Hormann, K., Surface parameterization: a tutorial and survey. In:
Multiresolution in Geometric Modelling. Springer, Berlin. 2004

[26] B.Levy, S.Petitjean, N.Ray, and J.Maillot. Least squares conformal maps for
automatic texture atlas generation. In SIGGRAPHO02, Pages 362 — 371, 2002

[27] M.Eck, T.Derose, and T.Duchamp et al. Multiresolution Analysis of Arbitrary
Meshes. ACM Siggraph Conf.Proc., pages 173 — 182, 1995

[28] B.Levy. Constrained texture mapping for polygonal meshes. In SIGRAPH2001,
pages417 — 424, Aug 2001

[29] Mark Pauly, Point primitives for Interactive Modeling and Processing of 3D
Geometry. Doctoral thesis, Federal Institute of Technology of Zurich, 2003

[30] Gu, Xiangfeng, Yao. Global Conformal Surface Parameterization. Geometry
Processing. Pages 127 — 137, 2003

[31] Stanley Osher and Ronald Fedkiw. Level set Methods and Dynamic Implicit
Surfaces. Springer Press, 2002.

[32] J.A. Sethian Level Set Methods and Fast Marching methods, Cambridge University

Press, 1999

[33] SFL Format website: http://graphics.ethz.ch/pointshop3d/sfldoc/html/pages.html

[34] http://graphics.ethz.ch/pointshop3d/

[35] Yen-his Richard Tsai, Rapid and Accurate Computation of the Distance Function

Using Grids. Journal of Computational Physics 178, pages 175 — 195

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[36] David E. Breen, S.Mauch, R.T.Whitaker, 3D Scan Conversion of CSG Models into
Distance Volumes, Proceedings of the 1988 IEEE symposium on volume visualization,
pages 7 — 14, 1998

[37] Mauch, Sean. 2000 (September). A Fast Algorithm for Computing the Closest
Point and Distance Function. Tech. rept. CalTech. unpublished.

[38] Osher, S. and Sethian, J.A., Fronts propagating with curvature dependent speed:
Algorithms based on Hamilton-Jacobi Formulations. J. comput.phys, pages 12-49
(1988)

[39] J.S. Langer, Instabilities and pattern formation in crystal growth, Rev. mod Phys,
Vol. 52, Pages 1-28, 1980

[40] J.S. Langer & H.Muller-Krumbhaar, Mode selection in a dendritelike nonlinear
system, Phys Rev, A 27, pages 499 — 514, 1983

[41] Pamplin, B.R., Crystal Growth. New York, Pergammon Press, 1975

[42] Frankel, ML and Sivashinsky, The effect of viscosity on hydrodynamic stability of a
plane flame front. Comb. Sci. Tech., 29, pages. 207 - 224 (1982).

[43] Markstein, G.H., Non-Steady Flame Propagation. Pergammon Press, MacMillan
Company, New York, 1964

[44] Zabusky, N. & Overman, E. Tangential Regularization of contour dynamical

algorithms. J. Comput. Phys. Vol. 52, Page 351-374, 1983.

[45] Per-Olof Persson, the level set Method lecture notes. Massachusetts Institute of

Technology Cambridge.

[46] J.A. Sethian, Level Set Methods: An act of violence, American Scientific, 1997

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[47] Ian M.Mitchell, A toolbox of level set methods version 1.1. University of British
Columbia.

[48] J.Strain, Tree Methods for Moving Interfaces Journal of Computational Physics, vol.
151. Pages 616 — 648, May 1999

[49] Grayson, M., The heat equation shrinks embedded plane curves to round points.
J.Diff. Geom. Vol.29, Pages 285 - 314, 1987

[50] http://en.wikipedia.org/wiki/Bilinear_interpolation

[51] http://www.blackpawn.com/texts/pointinpoly/default.html

[52] Shu, C.W. and Osher, S., Efficient Implementation of Essentially Non-Oscillatory
Shock Capturing Schemes II J. Comput. Phys. Pages 32 — 78, 1989

[53] Harten, A. Egquist, B., Osher, S., and Chakravarthy, S., Uniformly High order
Accurate Essentially Non-Oscillatory Schemes. III,].Comput. Phys. Vol. 71, Pages
231 -303, 1987

[54] Liu, X.-D, Osher, S., and Chan, T., Weighted Essentially Non-Oscillatory Schemes.
J. Comput. Phys, Vol.115, Pages 202 — 212, 1994

[55] Danping Peng, Barry Merriman, etc. A PDE-Based Fast local level set method.
Journal of computational physics, Vol. 155, Pages 410-438, 1999

[56] David A. and James. A.Sethian, A fast level set method for propagating interfaces.
Journal of Computational Physics, Vol. 118, Pages 269-277, 1995

[57] Chohong Min, Local level set method in high dimension and codimension, Journal

of Computational Physics, Vol. 200, Pages 368-382, 2004

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A: Data Structure

In this appendix, we list the codes that define some basic data structure used in our
software.

1. Interface Point: this structure define the data structure for the interface points

struct Interface point

{
/' The original coordinates which will be decide first
floatori_X, ori_Y, ori_Z;
/1! the coordinates of the interface points after the evolve
float cur X, cur Y, cur Z;
/! the texture ID, ID can be from 0 to 7
int text_1D;
//! The texture coordinates
float text U, text_V;
/' The grid position corresponding to the interface points
int grid X, grid Y, grid Z;
//! The normal
float Normal X, Normal Y, Normal Z,;
//* The current Normal
float cur nor X, cur nor Y, cur nor Z;
/{1 The color of the interface point
float Color_r, Color_g, Color_b;
//! The radius used to render using Pointshop, which is decide by the grid size
float radius;
1

2. Grid: this is the base class for the grid
class Target_Grid

{
public:
/1t Default constructor
Target Grid()
{
}

/' Destructor
/* Here the destructor is defined as virtual function, because this class will work
as base class */

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

virtual ~Target Grid()
{
}

/! To set grid parameters
virtual void set_grid parameters(grid_coordinate left, grid coordinate right, float
x_step, float y_step, float z_step=0);

/I To return the grid coordinates based on the grid index
virtual grid_coordinate get coordinate(int X index, int Y_index, int
Z index=0)=0;

//! The two corner to define the size of grid array
grid coordinate left bottom_front, right top back;

/! To save the gap in each dimension
float dx, dy, dz;

/ sk k
* To save the grid points number in each dimension
*/
Int_node N;
35
class TwoD_Grid : public Target Grid
{
3
class ThreeD Grid : public Target Grid
{
35

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

