I ntegrated audio-video synchronization system for use in multimedia applications

El-Helaly, Mohamed
ProQuest Dissertations and Theses; 2007; ProQuest
pg. na

Integrated Audio-Video Synchronization System

for use in Multimedia Applications

Mohamed El-Helaly

A Thesis
in
The Department,
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Electrical and Computer Engineering) at
Concordia University

Montréal, Québec, Canada

November, 2006
(© Mohamed El-Helaly, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-28913-6
Our file Notre référence
ISBN: 978-0-494-28913-6
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iii
Abstract
Integrated Audio-Video Synchronization System
for use in Multimedia Applications

Mohamed El-Helaly

The use of multimedia system have moved beyond the studio barriers and into
the homes. As computers become more powerful, multimedia systems become more
realizable on the PC. As these multimedia systems become more complicated, the
need to provide complex integration systems and synchronization arises.

To develop a multimedia system, one must ensure that a synchronization approach
is in place to solve the timing issues related to the media types involved. Temporal
information in multimedia systems must be maintained such that no loss of coherency
is endured. The system must ensure that no matter how much processing is performed
on the signals, the output has to maintain the temporal integrity of the signals as
they were when they were inputted.

This thesis develops a multimedia system that processes two media streams. Audio
and video streams are fed to the system. The system produces an object segmented
output, (silhouettes of the object) along with the recognized speech from the audio.
The speech that is to be recognized by the system is spoken by the objects/speakers.
The challenge lies in maintaining the synchronization and integrating the video and
the recognized speech at the output. Note that the system is a stream based system
by that the video and audio are continuously captured and processed.

This thesis presents a solution to the problem of synchronization in the temporal
domain and the overall integration of the multimedia system. The thesis presents a
time-stamp approach to solve the synchronization problem between audio and video
signals. This approach is adaptive to the cases where the video processing delay

is larger or smaller than the audio processing delay. The contributions include the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv
. verification of using time-stamps in the synchronization process and that it is possible
to synchronize heavily delayed signals. The system requires an integration process

such that the audio and video signals are integrated with one another at the output.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

[am truly thankful to my family for their continued support towards my education.
Thank you Dad, Dr. Ahmed El-Helaly, and thank you Mom, Dr. Siham Sharawy. 1
am forever grateful to your support and love.

My special thanks to my colleagues in the ECE department, to Rabih Mahzoub ‘
supervised by Dr. O’Shaughnessy from the INRS in developing the speech recognition
system, and to the 490 group in helping gathering the results.

Finally I would like to thank the VidPro group at Concordia University for their help,

and Dr. Aishy Amer for her guidance in completing this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

List of Figures
List of Tables
List of Abbreviations and Notations

1 Introduction
1.1 Objectives and Problem Statement
1.2 Overview of the Proposed System
1.2.1 System Module: Speech Recognition
1.2.2 System Module: Audio Processing.
1.2.3 System Module: Video Processing
1.2.4 System Module: Media Synchronization
1.3 Contributions

1.4 Thesis Outline.

2 Review: Audio-Video Synchronization
2.1 Industrial Contributions
2.2 Academic Research

2.3 Summary ...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

ix

xi

xii

CONTENTS

3 Review: Speech Recognition
3.1 Speech Recognition Review: HMM
3.2 Speech Recognition Theory
3.2.1 Statistical Background on Speech Recognition
3.3 Components of a Speech Recognition System
3.4 Hidden Markov Models (HMM)
3.4.1 Markov Chains oo
342 HMMeconcept
3.4.3 HMM Limitations
3.5 Feature Extraction oo
351 MFCCProcessing

3.6 Summary . ..o .. e e e e

4 Proposed Audio-Video Synchronization
4,1 Motivation
4.2 Discussion on the Effectiveness of the Synchronization Approaches . .
4.2.1 Processing Delays
4.2.2 Synchronization using Frame Dropping
4.3 Proposed Approach: Time Stamping
43.1 Video Time-Stamps
4.3.2 Audio Time-Stamps
4.4 System Adaptability oL

4.5 SUMMATY . . . v o o e e e e e e e e e

5 Proposed System Integration
51 System Set-up e

5.2 Audio Processing Module oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii
27
28
29
29
31
32
32
34
37
37
38
40

42
42
44
45
46
47
48
30
51
52

53

CONTENTS viii

5.3 Video Processing Module 61
54 Synchronization Module 65
5.5 Summary e e e 68
6 Results 69
6.1 Speech recognition Results 69
6.2 Performance Evaluation in Related Work Papers 73
6.3 Performance Evaluation: Synchronization. 76
6.4 Analysisof Results 82
7 Conclusion 90
71 Conclusion 90
7.2 Summary of contributions 0 L. 91
7.3 Possibleextensions oo L 93
7.3.1 Speech Subsystem 93
7.3.2 Video Subsystem, 93
7.3.3 Synchronization Subsystem 94
Bibliography 96
A Hidden Markov Model Toolkit (HTK) 99
A.1 Data Preparation 100
A1l Transcription 100

A.1.2 Feature Extractionin HTK 101
A2 Tralning e 103
A21 Creating Initial HMMs 103
A.2.2 Remodeling Silence 104
A3 Testing 105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

A.4 Voice Adaptation

A5 Mixture Incrementing oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1

3.1
3.2

4.1

5.1
5.2
5.3
54

5.5

6.1

6.2
6.3
6.4
6.5
6.6
6.7

Overall System Diagram. 4
3-State HMM. e 33
Block Diagram of MFCC Processing. 39
Time Stamping Model for Video Processing. 49
Block Diagram of System Integration. 55
Time-Stamps between Output Speech Files. 57
Audio Thread Flow Diagram. 60
Video Thread Flow Diagram. 63
Buffer system and Communication. 66
Graph of Gaussian Mixture effect on Recognition Accuracy in Per-

cent(%). 72
Graph from [1] showing delay times vs dataload 75
Graph of Incremental Synchronization Error. 81
System output using One Object. 84
System output using Two Objects. 85
System output using Three Objects.. 85
System output using Two Objects with First Text Output. 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES xi

6.8 System output using Two Objects with Both Text Output. 86
6.9 System output using Two Objects with First Text Output. 87
6.10 System output using Two Objects with Both Text Output. 87
6.11 System output using Two Objects with First Text Output. 88
6.12 System output using Two Objects with Both Text Output. 88
6.13 Contour output using Two Objects with Both Text Output. 89
A.1 Block Diagram of Transcription Process. 101
A.2 Block Diagram for HCopy Process. 102
A.3 Remodeling SIL HMM 105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xii

List of Tables

6.1
6.2
6.3
6.4
6.5
6.6

Number of Gaussian Mixture Recognition Accuracy in % 71
Timing Parameters Classification. 77
Resultsof Trial 1, 78
Resultsof Trial 2 79
Results of Buffer Trial 80
Synchronization System Actions based on Difference Frame (DF) . . 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Abbreviations and Notations

Notation Meaning

A Speech Information (acoustic data) to be recognized

a; Sequence of acoustic symbols that make up A

w String of words

5% Recognized Word String

V Vocabulary of words

S; Markov Chain States

d(v) Phonetic pronunciation of the word v

z[n] Discrete Speech Signal

fs Sampling Frequency

Tframe Processing Time for One frame

FrameCount | Number of Frames Processed

Tframes Processing times which are accumulated to represent the total
time of processing FrameCount frames

Ttrame, Time-Stamp for Frame j

Fr Frame Rate in frames per second

AA(1) True time of speech up to utterance i, not including delay times

SIL Silence time and recognizer delay

Ts(s) System time-stamp of file i

Tu(i) Time Of Utterance

SyncFrame | Number of Synchronization Frames

SF Number of Synchronization Frames

Ph(1) Phonemes of utterance i

SF(i) SyncFrame i

DF Difference Frames between the actual frame to insert
and the synchronization frame

Th Error Threshold

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abbreviation

Meaning

A/D

Analog to Digital

ASR Automatic Speech Recognizer

DCT Discrete Cosine Transform

DEFSM Dynamic Extended Finite State Machines

DFT Discrete Fourier Transform

DSs Description schemes

DTS Decoding Time-Stamp

DTSM Dynamic Timed Synchronization Model

Eq Equation

FFT Fast Fourier Transform

FSM Finite State Machine

HMM Hidden Markov Model

HTK Hidden Markov Model Toolkit

IDFT Inverse Discrete Fourier Transform

IPL Image Processing Library

ITU International Telecommunication Union
LVCSR Large Vocabulary Continuous Speech Recognition
MDS Multimedia Descriptor schemes

MFCC Mel Frequency Cepstral Coefficients

mlf Master Label File

MU Media Unit

NIST National Institute of Standards and Technology
PDA Personal Digital Assistant

PTS Presentation Time-Stamp

QoS Quality of Service

RF Radio Frequency

TBC Time Base Corrector

TDOA Time delay of Arrival

TPT Target Play Time

Sec Section

VIDAS Video Assisted Audio Coding and Representation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xiv

Chapter 1

Introduction

Multimedia applications have become very popular in our world today. Applications
involving audio and video as a data medium are present in industries such as televi-
sion, film and even visual arts. It follows that there is always a need to improve the
methods and technology that makes these applications possible.

This thesis is focused on developing the methods of one such application. The
application involves synchronizing two media streams: audio and video. The system
is meant to operate as an on-line system, where one would be able to observe his/her
silhouette while observing the recognized speech him/her uttered. The objective is to
focus on the video objects and the relative speech and relate one media stream to the
other. The work is useful in synchronizing media streams in the ever growing world

of connectivity and to provide solutions to interactive multimedia applications.

1.1 Objectives and Problem Statement

This thesis is focused on synchronization methods of processed audio and video
streams using the timing information of each one. The timing information provides a

temporal relationship between the streams as long as it is obtained accurately. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

audio and video streams are processed before the synchronization which incurs a de-
lay which is not uniform. The processing involves detecting the objects in the video
and recognizing the speech uttered by the objects.

The thesis has two main objectives:

1. To develop a real-time multimedia system using two media streams. These me-
dia streams used are audio and video streams. The streams are to be processed
in parallel and integrated. This involves developing a communication system

such that the streams are controlled.

2. To synchronize the streams and relate them to one another. The streams are
separated at capture time and so an algorithm is proposed to achieve media
synchronization. Synchronization is achieved by using the timing information

from the media streams.

The first challenge of the system lies in the integration of the streams. The media
streams are separated and processed before any output takes place. A system must be
developed to integrate both streams to one another. The need of integration comes
from the fact that the media streams are separated at capture. The streams are
decoupled so that separate processing on them can take place. If the integration of
the streams is not performed, the output would be incoherent. The system’s media
streams have to be stored and controlled such that their integration is possible. The
problem of integration is closely related to the synchronization problem. If there is
no need for synchronization then the integration of the streams would not be needed
as well.

Another challenge of the system is the synchronization of the media streams.
Synchronization between audio and video signals is an essential aspect of multime-

dia applications. Applications that involve the use of audio and video streams have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction 3

very strict timing requirements. Therefore, multimedia applications require a syn-
chronization scheme to be able to transmit and receive them in a coherent manner.
The synchronization scheme is responsible in ensuring that the audio and video are
synchronized in the same way as they were when leaving the real-life object. The
synchronization problem becomes more complicated when the media streams incur
processing. The processing modules add their delay during runtime and so there must
exist a proposal to synchronize these delayed signals if they are to be represented in

a comprehensible form.

The challenge in developing such a system lies in the synchronization process.
Both audio and video streams are independent from one another and they are one
object in the real world. As soon as the processing of each medium is performed,
they are separated. This causes the media to be desynchronized due to the variation

in processing times.

Engineers have used video information such as lip movements to synchronize the
audio associated with those lips. The use of lip movements to synchronize audio and
video streams is not useful for the proposed system as one of the objectives is not to
use any video object information, including lip movements for the synchronization.
This is because further processing of the video slows the system down and that needs
to be avoided. The proposed system in this thesis is intended to provide new methods
in synchronization of audio and video. The methods involving synchronization using
video information have been researched extensively in literature. One main objective
of the proposed system is to develop a fast synchronization system and therefore,
the decision was to develop a system that did not use video information for the

synchronization process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Raw Video Video Processing | Contour Frames and Timing Data
(Module ‘

Camera Synchronization
Module
Audio Processing T
Module Recognized Text and Timing Data

-,

Recognized Text

Speech Recognition

Raw Audio Module

Microphone

Figure 1.1: Overall System Diagram.
1.2 Overview of the Proposed System

Figure 1.1 illustrates the main components of the proposed system. The video is
captured using a USB camera while the audio is captured using a microphone. The
video processing modules are responsible for the object segmentation, i.e., drawing
the silhouettes of the objects, while the speech recognition module is responsible for
extracting the speech in the form of text. The synchronization module is responsible
for integrating and synchronizing the processed video and audio streams. It is im-
portant to note that the system is a stream based system. This means that the video
and audio are continuously captured and processed.

As seen in Fig. 1.1 the proposed system has two starting points in the sensors,
the microphone and the video camera. The microphone’s raw audio is captured by
the speech recognition module and the video camera’s frames are captured by the
video processing module. The video processing module produces the object contour
frame and the relative timing information (Sec. 4.3.1 and 5.3). The speech recognition
module produces the recognized text (Ch. 3) from the raw audio frames and relays
that information to the audio processing module (Sec. 5.2). The audio processing

module, produces the timing information (Sec. 4.3.2) needed for synchronization. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction 5

main module is the synchronization process and this is where the challenge and the
contributions of this thesis lie. The synchronization module (Sec. 5.4) is responsible
for using the timing information of the audio and video modules and their relative
data to produce a synchronized sequence of contour video and recognized text, i.e.,
the synchronization and integration of the media streams.

The synchronization approach proposed in this thesis involves using the timing
information of the audio and video streams, in the form of time-stamps. The time-
stamps give the system the required temporal information needed to synchronize the
signals. For the synchronization process to be successful, a system of buffers must be
developed such that the audio and video streams are stored before being displayed in
a synchronized fashion.

The system is integrated using a buffer system and communication is achieved
between the streams using a flag system. The buffer system would store the media
streams, and the flag system would determine which buffers would be flushed or not

for the output of the system.

1.2.1 System Module: Speech Recognition

The speech recognition module is responsible for the audio capture from the micro-
phone and to translate the raw audio into text. This is accomplished by the Hidden
Markov Model tool available to researchers and developed by the University of Cam-
bridge. To develop a speech recognizer from these tools, the resources must be created
and recognizer must be trained. The resources include generating grammars, word
networks, and dictionaries. The recognizer is then trained using these resources then
adapted to the speaker’s voice. This is all verified during the testing process to en-
sure that word recognition accuracy is up to par with the requirements of the system.

The objective in this thesis is not to achieve a robust real-time recognizer, but one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

which accomplishes recognition with a low processing overhead (minimum delay) and
that produces comprehensible output. The recognizer produces the text from the raw
audio. This is the text that is outputted onto the video sequence. The process of de-
veloping the recognizer as well as speech recognition theory is explained in Appendix

A and Ch. 3 respectively.

1.2.2 System Module: Audio Processing

The audio processing module is responsible for extracting timing information from
the recognizer and the subsequent output text that is useful in the synchronization
process. This is accomplished by the aid of time-stamps, that provide the necessary
information to determine when the audio was uttered and therefore, relate it to the
video frames. The process of extracting this information is explained (amongst other

concepts) in Ch. 4.

1.2.3 System Module: Video Processing

This module captures the raw video from the camera and processes each frame to
produce a contour frame. Since this is real-time processing, each frame is processed as
it is captured. The background image is isolated and processed independently. This
is because the following frames’ processing is dependent on the background frame.
This means that every time the capture module captures the current frame, the frame
is processed immediately, i.e., no buffering is implemented between the capture and
the processing. The final output of this module is the contour image of the video. It
is possible to output other versions of the video, such as the difference image or the
edge image, but it is not needed as far as the graphical representation of the system is
concerned. The theory behind the edge detection and the contour tracing is described

below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction 7

The timing information of the video frames (e.g., frame rate) is also extracted in
this module. This timing information is to be used in the synchronization module.
The implementation of this module is explained in Ch. 4.

In this section of the thesis, the background on the video processing is explained.
More specifically, the object segmentation (edge detection) algorithm is analyzed and
explained. Object segmentation is the process by which the objects in the frame are
separated from the background. The contour image is also required for this system.

Since there are several tasks that must be accomplished in order to achieve seg-
mentation, the algorithm used can be divided up into sub-blocks. These sub-blocks
consist of motion detection, thresholding for motion detection and binary edge detec-

tion [2].
Motion Detection

The approach for motion detection is to take the difference between the current image
and a pre-stored background image called a reference image. This method leads to
good object detection because any object is detected regardless of whether or not it
is moving. Also, uncovered areas of the background are not detected. However, this
method may have a tendency to detect object shadows or object reflections that may

cause enough of an illumination change on the background to be picked up [2].

Thresholding

The thresholding algorithm uses the difference image which is first divided up into K
blocks, with each block having dimensions of W x H pixels. Each block is then looked
at individually and a gray-level histogram is tabulated. This gray-level histogram
represents the frequency of appearance of each of the possible pixel gray-level values.
The histogram is then divided up into L equal intervals. In each interval, the most

frequent gray level, gy, is determined. The average gray-level value, p, of the whole

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

block is also taken. The values g, and p are averaged out for all blocks and the

threshold value T, is determined [2].

Binary Edge Detection

Binary edge detection consists of performing a sequence of logical operations to de-
termine the edges of the object. The method from [2] consists of using a 2 x 2 square
pixel kernel to scan through the image and a 3 x 3 expanded kernel to determine
what operation on the pixels is required. The 2 x 2 square pixel kernel begins at the
top left corner of the image and scans its way across the rows. If there are any black
pixels within the kernel, the kernel either sits on top of an area where no object is
present (all 4 pixels are black) or it sits on top of an object edge (1, 2 or 3 pixels
are white). In either case, none of the pixel values should be changed since the black
background should remain black and any pixels that represent the edge of an object
should remain white. If however, the 2 x 2 kernel covers an area where all 4 pixels
are white (all 1’s), scanning must temporarily stop and the kernel must be expanded

to 3 X 3 to determine where the real edges lie.

1.2.4 System Module: Media Synchronization

This module involves implementing methods in synchronizing audio and video signals
after they have been processed. Audio and video signals in the system are processed
separately and their processing time do vary. The challenge is to synchronize the
audio and video signals after processing with knowledge of the processing time of the
two signals. The input to this module are the audio and video processed outputs from
their respective modules as well their timing information. The obstacle as mentioned
in Sec. 1.1 is that the processing modules add their delay and so there must exist

an approach to synchronize these delayed signals, if they are to be outputted in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction 9

comprehensible form.

The synchronization logic is meant to compensate for the delay in the video and
audio processing modules and to realign the signals in time using their temporal
information. The output is displayed and consists of the contour image and the
recognized text flowing from one object to the other. This module is explained in

more detail in Ch. 4.

1.3 Contributions

The main contribution of this thesis is the development of a synchronization method

for a multimedia application?

. The application itself involves three main modules:
audio processing module (includes the recognizer), video processing module (to pro-
duce the silhouettes of the objects) and the synchronization module. The interaction
of these modules is complex so an intricate communication system between them had
to be developed which adds to the contribution of this thesis.

Note that the development of a speech recognition system is not trivial and a fast

system was developed. Even though the recognizer does not operate in real-time, the

significance of its development cannot be ignored.

1.4 Thesis Outline

The thesis begins with Ch. 2 which provides the literature review which describes
other work in the field of media synchronization and integration. The speech recog-
nition module is described in Ch. 3 and Appendix A. This module and appendix

highlight the process of building a recognizer, from training the system to testing

' A paper based on the proposed system was published at the Canadian Conference on Electrical
and Computer Engineering 2006 (CCECE06). Two more papers are also submitted to the IEEE
journal of Transactions on Multimedia and the International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2007).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

it. Chapter 4 describes the synchronization approach and explains the methodology
behind it, while Ch. 5 explains the integration of the system. The results of the
system which explain the limits of the system and the fact that synchronization was
successful are displayed in Ch. 6. Finally the conclusion is presented in Ch. 7 and it
summarizes the main contributions and the future work that could be added to the

system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Review: Audio-Video

Synchronization

This chapter provides a summary of the research that already exists in the field of

audio - video synchronization and integration.

Synchronization between audio and video is needed in multimedia applications
which involve processing audio and video signals separately. An example is a audio
and video recording studio where the audio and video tracks are recorded separately

and therefore, a synchronization system is needed.

Synchronization research and development is being carried out on both the indus-
trial and academic levels. Industry research is focused on maintaining synchronization
within acceptable boundaries. The research provides the limits to the acceptable er-
rors allowed in synchronization. Academic research is focused on developing methods
for synchronization, without employing limits on timing errors. Academic research
stated that the synchronization error limits were application dependent and not stan-

dardized as opposed to the industry standards.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

2.1 Industrial Contributions

At Front Port Digital Jay Yogeshwar[3] discusses the various causes of loss of synchro-
nization and prevention methods. Yogeshwar[3] claims that the first cause of timing
error is at the video capture level. In order to synchronize multiple video sources,
hardware solutions such as external sync, generator locks and frame-sync are used
to integrate the synchronization pulses contained in the video signals. Time Base
Correctors (TBCs) are used to synchronize the tape machine with the other signals
in the studio by creating a stable video timing signal[3]. All video sources are syn-
chronized to a master sync generator. This method is applied to tape recordings. In
[3] hardware is used to align the signals according to the master sync generator.
Yogeshwar[3] explains that a second cause of timing error occurs at the processing
and packeting level. Delays in the video can be due to the need to store sufficient
video information in memory prior to filtering (noise reduction or otherwise). Delay
compensation of the audio can be built into the TBCs, the frame synchronizers, and
the noise reduction filters [3]. Multiplexing or packeting can also introduce timing

€ITors.

The conclusion in [3] is that once the audio and video are divided into time-
stamped packets, synchronizing of the two is simple provided the data is recorded to
some storage device. Difficulty arises in the cases where transmission systems that
are prone to delays are used. The last cause of timing error is at the presentation
level or the output of the signals. In [3], it is also concluded that software playback
is not as precise as hardware playback in terms of lip synchronization. This is due to
the fact that software players depend on two hardware elements, the sound and VGA
processors. Faster processors and tightly integrated graphic and audio processing
within a workstation are key to resolving the issues of software playback precision.

Linear Acoustic Inc.[4] presents some standards of audio-video synchronization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Review: Audio-Video Synchronization 13

in industry. The International Telecommunications Union (ITU) recommends that
the tolerance from the point of capture to the listener should be no more that 90
milliseconds leading video to 185 milliseconds audio lagging behind video. While
the video frames are being processed, it causes a delay with respect to the audio
processing. This delay is recommended to be compensated into the audio path.
Another recommendation from the ITU is that processing time should be indicated
on both audio and video signals (in milliseconds) with its range indicated. In the case
of a variable delay, there should be a signal that controls the audio delay according
to the processing time calculated. Linear Acoustic Inc.[4] also explain audio-video
synchronization in MPEG-2. Each audio and video signal has a Presentation Time
Stamp (PTS) that enables the decoder to reconstruct the synchronized sound and
video frames. After the decoder receives the audio and video data ahead of the PTS

values, it properly uses these values to correctly present audio and video streams.

It is recommended in [4] to use the timestamps to synchronize audio and video
signals. However, the paper lacks synchronization schemes of processed signals and

only recommends that the signals be synchronized before passing it to the next stage.

The white paper prepared by Stradis Inc.[5] is another example of the industrial
solutions to the synchronization problem. They present a synchronization windows
application that integrates MPEG-2 decoders into the video system. They employ
a buffer system to store audio and video packets and frames. They use timestamps
to correctly align the packets and frames together. The application uses the presen-
tation time stamp (PTS) from MPEG-2 as their main reference. The application
which comes with a hardware box also synchronizes the audio with the video using a
hardware system clock to synchronize the signals. The white paper restates the use-
fullness of timestamps but use hardware with software to accomplish synchronization.

The system does not provide solutions about the synchronization problems associated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

with processed signals.

2.2 Academic Research

The Audio Synchronization Concept by Michael Robin[6] gives an overview of the
audio synchronization requirements in a tele-production studio. The work presented
in [6] provides an explanation of the hardware requirements for synchronizing au-
dio and video samples. The approach and methodology involve using a hardware
approach using universal clock to synchronize the different signals. For synchroniza-
tion, Robin|6] necessitates a central synchronizing generator to feed each audio signal
with a reference sampling rate. For this to take effect, there would be a separate
synchronization socket with every piece of equipment, either audio or video. The
main idea is to keep the audio samples in phase with the reference with a tolerance of
5% of the audio packet at the transmitter output and a tolerance of 25% of the audio
frame at the receiver input. Consider the sampling frequency of the audio fs and
the duration of an audio frame TF = 1/fs, therefore, we can calculate the number

of audio samples per video frame which is given by:

Video frame duration

Audio Samples per video frame = 72 Frame duration "

This phase relationship between audio and video signal has to be maintained
to an integer value so that it is possible to synchronize the audio packets to the
relevant video frame. Robin explains that the video samples are synchronized with
the universal clock using the vertical blanks in the video as well as the colour black
in the signal. Robin also explains that there is a need to re-synchronize the samples
from the audio and video when switching of the signals occurs.

Robin’s discussion of the synchronization problem is from a hardware point of

view. Robin explains the need of a universal clock which is the general solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Review: Audio-Video Synchronization 15

in solving the synchronization problem. However, the processing of the signals are
only limited to sampling, and no per frame video processing is performed, e.g., edge
detection, or further processing on the audio, e.g., speech recognition. The technical
report in [6] is also is focused on hardware solutions and not on a software based

system which is the case in this proposed project.

Lienhart et al.[7] describe a universal method for distributed audio-video captl;re
on certain devices such as laptops, PDAs, cellular phones, audio recorders and cam-
corders. The method presented is implemented through a setup and an algorithm that
provide synchronization between audio and video for a network that is distributed
on multi-channel audio sensors. The objective in [7] is to synchronize the sampling
of video and audio without using direct signaling. The sensors are connected to a
general purpose computing platform. Lienhart et al.[7] explain that the universal so-
lution provided can also be used to synchronize video streams when respective audio

streams are recorded synchronously.

The universal synchronization scheme Lienhart[7] presented is to insert system
time-stamps into the audio data at A/D conversion time and process the audio data
along with the time-stamp information. This is done by using a dedicated audio
channel for distributing the global synchronization information (time-stamps). The
synchronized signals are formed in an external master unit with its own clock to
modulate an audio carrier signal. These signals are delivered to the platform using
dedicated links with little latency (such as a wireless analog FM radio transmitter).
The requirement for this solution is an external RF modem and an additional audio
input dedicated to the audio sync (time-stamp) signal. RF is used to reduce propaga-
tion time and reduce delays. The sync signals are processed in dedicated circuits and
delivered by electromagnetic waves. The timing information would then be used by

the processing system to convert the sampling rates such that they are synchronized

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

with the video sampling rates.

The method used by Lienhart[7] is useful in developing systems that use time-
stamp information. It presents the idea of using the timing information to edit the
sampling period. The system set-up in [7] is vastly different from the one proposed
in this thesis. It uses multiple audio channels and computer platforms for capture
while in the case presented in this thesis uses only one computer and one microphone.
Also the processing of audio and video are more complicated. The only processing in

question in {7] is sampling and sampling rate conversion.

VIDAS[8| stands for Video Assisted Audio Coding and Representation. The aim
of the VIDASI8] project is to develop facial animation using information from both
audio and video signals. The main components of the project are: facial feature
extraction, speech analysis for automatic association of lip movements to phonemes,
conversion of video and speech information into MPEG-4 facial parameters, develop-
ment of 3D head models using MPEG-4, calibration tools for MPEG-4 and animation
tools. This system can be used in generating synthetic video with animated voices.
The audio is synchronized with the video using information extracted from the lip
movements of the original video. This is an example of how some engineers use the
video information such as lip movements to synchronize the audio associated with
those lips. This is just one example of such work. This work is not useful for the pro-
posed system as one of the objectives is not to use any video object information in the
synchronization process. The methods involving synchronization using video informa-
tion have been researched in literature and therefore, a new method using temporal
information is proposed in this thesis. Apart from the clear drawback of occlusion in
the synchronization methods involving lip movements, extra video processing would
slow the system down. One objective of the proposed system is to develop a fast

system and so the decision was not to include any further video processing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Review: Audio-Video Synchronization 17

A synchronization method using facial information is presented by Malcolm Slaney
and Michele Covell Slaney et al. [9]. The method measures the level of audio-video
synchronization by utilizing the facial information from the video. Slaney et al.
present an algorithm (FaceSync) which is similar to a Weiner filter by that it combines
information from all the pixels to measure the degree of audio-video synchronization.
The algorithm uses a face recognition algorithm and canonical correlation to measure
the level of synchronization between the audio and video signals. Canonical correla-
tion is a procedure for assessing the relationship between two sets of variables. Slaney
et al. [9] describe two steps of the algorithm: the first step is training or building the
canonical correlation model and the second step is evaluating or testing the model
on the data. A neural network is used to build and test the models. In the training
stage the algorithm maximizes the cross correlation between the aligned face image
and the corresponding audio signal, while in testing the correlation between the new
audio and aligned face (face localization performed on the video) is evaluated. The
goal of the FaceSync algorithm is to achieve a measure of correlation between the face
of the video object and the corresponding audio and in turn use that information to
evaluate the degree of synchronization between audio and video signals. Again this
method shows an example of a synchronization approach using the facial features
present in the video and correlating it with the audio that is to be synchronized. The
approach relates the audio and video to achieve synchronization but uses the video

object information to do so.

Chen et al.[10] present the synchronization problem in multimedia applications
and categorize two types of synchronization techniques: intra-media and inter-media.
Intra-media involves the playback of the medium involved in continuous time. Inter-
media synchronization involves determining the scheduling of playback of the medium.

These two types of synchronization are usually labeled continuous and discrete. Chen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

et al. claim that a synchronization scheme is successful if it performs the inter and
intra media synchronization within the precision limits which are dependent on the
media application. They propose a synchronization system that performs intra-media
synchronization on the media types separately and inter-media on the overall system,
which include governing the system clock and communication between the media
streams (integration of the signals). Chen et al.[10] use different threads to control
different processes in a video-audio multimedia application. One thread (the control
thread) is responsible for obtaining the timing information of the video stream as
well as controlling the playback. The child thread would control the intra synchro-
nization duties, which involve synchronizing the audio with itself, and the video with
itself (e.g., ordering and buffering the video frames). Chen et al.[10] use a time-axis
approach which involves synchronizing the media streams to one clock to achieve ab-
solute synchronization. They also use a priority scheme to determine which stream
is more critical in the synchronization process, for example, dropping video frames
if necessary. The approach was analyzed according to CPU usage and the nurnber
of frames to be dropped to achieve synchronization. The buffer system of the media
and the synchronization thread allow the integration of separate signals. This system,

however, does not include processing models and their relative synchronization.

Huang et al.[11] present another approach to solve the inter and intra synchro-
nization problem. The application discussed uses presentation slides, audio and video
frames. They use Dynamic Extended Finite State Machines (DEFSM) to govern their
integration process. The DEFSM contains the delays of the processes, the priorities
and the decisions based on the states of the DEFSM. Two DEFSM'’s are used in the
synchronization approach, one for the synchronizer, and the other for the actor. The
actor is responsible for obtaining the data (capture) and therefore, intra-media syn-

chronization. The synchronizer is responsible for inter synchronization, and, therefore,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Review: Audio-Video Synchronization 19

the communication between the different actors. The system described runs over a
distributed network and therefore, communication between the synchronizer and the
actors are done over a communication channel. The synchronizer uses different states
to describe different actions and synchronization points in the presentation. It must
be noted that the states of the actor DEFSM must be known prior to launching this
application. The system presented by Huang et al.[11] provide a synchronization so-
lution to an interactive presentation application however, some details of the media
scenario must be known. The use of FSMs in general facilitate the integration of the

application, even though the FSMs may be complicated in their state structure.

Kim et al.[12] explore the problem of intra-stream synchronization across com-
puting platforms. The problem arises when the clocks of different platforms are not
synchronized. The communication between the streams is delayed due to increased
processing of the video stream. Kim et al.[12] use a Time-triggered Message-triggered
Object programming platform to control the different threads involved. The object
contains methods to control events based on timing criteria. The objective in this
paper is to minimize video play back jitter when transmitted and played across com-
puter platforms. Kim et al. describe a target play time (TPT) which is the time of
capture plus the streaming delay. In their approach, if the current time is greater
than the TPT of the transmitted video frame then that frame is played immedi-
ately. If the TPT is greater than the current time, the video frame is buffered and
played when the times are equal. The approach is intended to keep the same delay
between the captured video in the transmitting platform and playing the video in
the receiving platform. This approach uses a global time stamp method to achieve
intra-synchronization, but does not give a solution for relating different media types

and inter-synchronization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Qian et al.[13] present a system to enable developing multimedia services over
a wide range of telecommunication networks. One objective of the overall architec-
ture is to encompass the problem of inter-media synchronization (between audio and
video). The authors present an architecture called TOMA for embedding open dis-
tributed multimedia applications. The architecture includes authoring, presentation
and operating system functionality. The authors describe the general architecture of
their system and describe its objectives without explaining the details of operation.
The paper does show, however, the importance of developing a multimedia system

with an inter-media synchronization capability.

Splawski[14] explores the mechanisms involved in inter and intra media synchro-
nization. The main methods involve using time-stamps and signalling according to
these time stamps, which Splawski calls synchronization instants. Examples of syn-
chronization instants are when the multimedia object begins to be processed, or when
a certain duration of time of that object has passed. Splwaski presents different crite-
ria for inter and intra stream synchronization relative to the defined synchronization
instants. The solution provided is viable but the synchronization instants are ap-
plication dependent. Even though the system used is outdated, the work shows the

importance of the temporal information of the media stream.

Tasaka et al.[1] tackle the problem of varied network speed to the synchronization
problem. Multimedia broadcasted over the internet can suffer from fluctuating net-
work speed which affects the synchronization of the media stream. Tasaka et al.[1]
propose solutions to different network problems, and one of them being media syn-
chronization which is the problem of preserving the media’s temporal information.
Taska et al. use a multi-stream approach. A multi-stream approach means that sev-
eral media streams are used in the system. This is a similar case to this thesis as

video and audio streams are used. In [1], the output time from the source of the first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Review: Audio-Video Synchronization 21

media unit (MU) is determined and the destination waits for the arrival of the first
MU of each stream (in this case video MU and audio MU). The system then chooses
the arrival time of the latest stream and uses that time-stamp as the ideal target
output time. The ideal target output time is changed into the target output time by
adding a maximum allowable delay (caused by network delays). If the delay is within
predefined limits then a new output time is derived. The objective here is to keep the
delay constant across the MUs transmitted across the network. The solution in [1]
uses temporal information to synchronize the media streams, however, the solution
is across a telecommunication network and does not account for processing delays of

the actual MUs.

Boukerche et al.[15] propose a synchronization system for multimedia streamed
over a wireless cellular network. Even though the scope of this thesis does not encom-
pass wireless networks, it is important to highlight that Boukerche et al. use timing
information to achieve synchronization. This is by time-stamping the media as it
leaves one area of coverage and enters the next and by monitoring the delay times of

each MU.

Benslimane[16] explores multimedia synchronization issues across telecommuni-
cation networks. Benslimane proposes two strategies for synchronization, one for a
network with little or no jitter and the other with unbound jitter. The method ex-
plored here from Bensilimane’s paper was the model that included the network delay
as that would model the processing delay involved in the system proposed in this the-
sis. Benslimane uses a buffer to store the delayed MUs and the receiver informs the
transmitter of the new delay in the network. The buffer size is dependent on the av-
erage delay of the network. Benslimane propose a variable buffer size to overcome the
varied jitter problem. The buffer size is varied using the new delay that the receiver

feeds this information back to the transmitter. With this information the transmitter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

decides whether to flush or not flush the buffer and by how much. Benslimane pro-
vides a good approach by using a buffer system for integration and synchronization
that is dependent on the delays of the network. The system described in [16] provides
synchronization solutions across telecommunication networks and does not account
for delays involving the processing of the MUs. The MUs in [16] are not processed
and so processing delays of the signals are not accounted for. Only network delays
are accounted for and , therefore, there is room for improving the system provided in

[16].

Lee et al.[17] present a multimedia synchronization scheme that is related to the
Quality of Service (QoS) of an application. Lee et al. describe previous methods of
multimedia synchronization. These methods include the use of petri-nets to model
the concurrent multimedia systems. A petri net is a mathematical and graphical
modelling tool that describe the transitions and states of a system. They are mainly
used to model networks carrying packets which is the case in Lee et al.’s paper, where
they try to improve synchronization over a network. Lee et al.’s method involves using
a DTSM model. A dynamic timed synchronization model (DTSM) is used to describe
the time medium and the QoS requirements flexibly and scalable. The DTSM models
synchronization events such as priority scheduling and timing events, and so Lee et
al. expanded the methodology to develop a new algorithm. The new algorithm uses
DTSM to extract the timing parameters and base decisions on these properties. The
paper in [17] illustrates that the synchronization problem can be solved using different
models and can be used to measure the QoS of a network. This comes to show the

importance of synchronization in multimedia across telecommunication networks.

Stocia et al.[18] present a synchronization algorithm that uses the audio time to
synchronize with the video. Stocia et al. state that using the information from the

audio time provide a simpler solution to the synchronization problem than the use of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Review: Audio-Video Synchronization : 23

Petri Nets as used by Lee et al.[17]. Stocia et al.’s algorithm determines the time of
audio plus its delay and determines if the video frame to be displayed has the same
timing parameter. Basically, the algorithm synchronizes the audio and the video
streams using the timing information of the audio playback as it is assumed to be
continuous. Stocia el al. iterate the importance of using the timing information to
solve the synchronization problem but do not use any processing on either stream

and the delay of the system is just due to playback.

Wang et al.[19] present a timing model for an HDTV encoder. They explain that
the time stamps encoded in MPEG-2 are retrieved by the decoder to synchronize the
output. They highlight the importance of correct extraction of the time-stamps to
ensure correct decoding of the stream. The time-stamps are also used to order the
different frames. These time stamps are called Presentation Time Stamps (PTS) and
Decoding Time Stamps (DTS). These time stamps specify when the frames are to be
decoded and presented at the decoder. The PTS and DTS times are also augmented
with a delay which represents the buffer delay to accurately represent the timing
information of the data. This is another example of the importance of time-stamps

in the synchronization of multimedia.

D.Lee et al.[20] present a scheme for synchronization of video frames encoded in
the MPEG-4 standard. The synchronization method only uses DTS (no PTS) and
applies an adaptive mechanism to minimize the QoS problem{20]. The DTS is used
in both the decoded video and audio and is stamped every 100ms. The displayed
time is the DTS plus the delay of the decoder. The operating system ensures that
the DTS of the video and audio are synchronized such that the presentation is also
synchronized. D.Lee et al. illustrate the need to accommodate the delay time of the
decoder to establish synchronization, even in a high speed presentation, but again fail

to mention any further processing on the decoded audio and video.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Lopes et al.[21] explain the use of MPEG-7 and synchronization in solving the data
retrieval and management problem. Lopes at el. look at personalized TV services
and video-based surveillance as examples in MPEG-7 because of the multiple stream
management that is involved. The MPEG-7 standard has Multimedia Descriptor
schemes (MDS) which provide a wide range of description schemes (DSs) for a wide
range of applications making MPEG-7 useful in developing surveillance applications.
It is also possible to design an application-specific DSs. In [21], Lopes et al. describe
a project named RETRIEVE, that is a video surveillance CCTV system that uses
MPEG-7. RETRIEVE uses a variety of networked cameras and the challenge lies
in retrieving the useful information from them and relating them to one another.
They use MPEG-7 descriptors and process the information from the scenes captured.
Instead on relying solely on the time-stamps of the video, which is available in MPEG-
7, they use the descriptors which provide a summary of the video contents. With this,
they claim that more flexibility is achieved when communication with other devices
because time is already embedded in the descriptor. One drawback for using the
descriptors is that they have to be designed. If the system is meant to be operated
as an on-line system, then the number of events to be programmed can be very large.
Therefore, it is impractical to program every single event. This means that the success
of system in [21] depends on the descriptor. The system in [21] is, therefore, context
dependent. Also, in [21], there is no method for synchronization between audio and
video MPEG-7. Even though it is possible to describe the audio using MDS, a DSs
must be designed to relate the video to the audio. The design of the DSs to relate the
audio and video media streams puts a limitation on the adaptability of an MPEG-
7 based synchronization approach. Even though MPEG-7 does have time-stamping
capability, there is no assurance that their integrity is kept intact after processing

of the respective media streams. This does not take away from the usefullness of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Review: Audio-Video Synchronization 25

MPEG-7 in data retrieval and media stream management.

2.3 Summary

This chapter provided a summary of the important work relevant to this thesis and
mainly the synchronization concept. Robin[6] display the importance of using a cen-
tral clock and maintaining a constant delay and synchronization threshold. Lienhart
et al.[7] uses timestamps to coordinate the multiple audio sensors connected to the
system. Chen et al.[10] define the synchronization problem of inter and intra media
synchronization, while Huang et al.[11] uses finite state machine to solve it. Kim et
al.[12] uses threads in a programming environment to solve the synchronization prob-
lem by controlling the different media streams along with the use of time stamps.
Stradis et al.[5] explain the use of buffers and time-stamps to achieve their objective
while Benslimane[16] uses a buffer, time stamps and the delay times to ensure correct
synchronization at the output.

The main ideas presented in the related work highlight the use of the timing
information of the media streams and to use a buffer, if necessary, to compensate
for the delay in processing. One main aspect of this thesis that was not present
in the reviewed work, is the accommodation of complex processing on the media
and its integration in the whole system. There was no work found on synchronizing
and integrating media that involved speech recognition on the audio or object based
processing on the video. The only form of processing was present in [21] where MPEG-
7 descriptors were extracted to be used in the RETRIEVE project. Furthermore,
there was no clear indication that the descriptors would keep their integrity after
processing the media streams. Using MPEG-7 as a base tool for synchronization is
complicated as descriptors have to be designed to accommodate the processing as

well as the synchronization. MPEG-7 is not meant for synchronization of audio and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

video streams but rather solves data management problems.
The work presented in the remainder of the thesis establishes a method to syn-
chronize media streams that involve large amounts of processing, using time-stamps,

a buffer system to integrate the streams and using the processing delay information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

Chapter 3

Review: Speech Recognition

The system proposed in this thesis requires a method to extract the speech from
the speaker. The speech is extracted using a speech recognizer. The part of the
system proposed in this chapter describes a speech recognition module. The speech
recognition module is responsible for capturing the audio from the speakers, and
recognizing the speakers’ speech. The recognition would result in the recognized text

which in turn is synchronously displayed along with the processed video.

Research on speech recognition has been present since the early 70’s [22] or even
earlier. The theory has been developed over the years and now with fast computers
the results can be realized. However, since it is a large research area, free recognizers
are not available. This is due to the amount of work that is carried out in order to
develop a recognizer. This work involves preparing vocabularies, grammars, dictio-
naries, training data and so on. There are commercial recognizers, however, they are

not open source and hence not useful for this thesis.

This chapter outlines the motivation and main principles behind speech recogni-
tion, as well as the different approaches used. The description of the method used in

the system and a description of the implementation is provided in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28
3.1 Speech Recognition Review: HMM

Hidden Markov Models (HMM) are used to develop the speech recognition module.
There are other ways to develop a recognizer such as using artificial neural networks,
but it has been discussed in literature that HMMs are the most favored approach.

Burchard et al.[23] propose a phoneme based recognition system using HMMs.
Burchard et al.[23] use HMMs because the model can be easily adapted to represent
different dialects in speech and hence provide a more robust system. The recognition
system is trained by extracting the features of the speech and comparing it to a
codebook or dictionary of phonemes. The HMM parameters are then estimated using
this information.

Takiguchi et al.[24] use HMMs to adapt the recognition system to distant mov-
ing speakers. This is another example of where HMMs are adaptable to be used to
develop different purpose recognition systems. The HMM is used to model the acous-
tic transfer function of the speech captured at different distances. The states of the
HMM are uniquely estimated and identify whether or not the sound source is from
a noisy environment or not. The adaptability of the HMM to be able to estimate
parameters for a noisy environment is the reason behind the choice for using HMMs
in [24].

Luo et al.{25] use HMMs to develop a large vocabulary continuous speech recogni-
tion (LVCSR) system . The authors develop an algorithm based on HMM to develop
state-tying in HMMs such that LVCSR system can be achieved.

Yoshizawa et al.[26] propose an HMM system for word recognition. Word recog-
nition is hard to develop due to the high computational costs associated with it. It is
discussed later that word recognition was not suitable for this project. However, it is
the work presented by Yoshizawa et al. show that HMMs can be used to develop word

recognition systems as well as phoneme recognition systems. The system proposed is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Review: Speech Recognition 29

a hardware implementation and therefore, the system is faster to accommodate the
word recognition.

It is clear that HMMs are a popular choice for developing speech recognition
systems. The details of the actual theory of HMMs are presented in the remainder of

this chapter.

3.2 Speech Recognition Theory

Speech recognition is the process of transcribing speech into text. A speech recognizer
is used to perform this task. The speech recognizer usually contains a vocabulary or
grammer to refer to when transcribing the speech. In most speech recognition systems,
the recognizer would split up the speech into phonemes. Phonemes are pronunciation
or linguistic units [27). The recognizer would then match the phonemes from the

actual speech to the phonemes in the grammer and produce the transcribed word.

To develop a speech recognition system a mathematical formulation of the problem

should be developed. This is discussed in the following section.

3.2.1 Statistical Background on Speech Recognition

This section describes the basic mathematical concepts behind the speech recognition
problem. By understanding the mathematical principals behind speech recognition,
the process of implementing the system becomes clearer.

First, lets denote the acoustic or speech information to be recognized as A. The
set of A is a set of digital symbols, since the raw acoustic information is digitized to
perform the recognition. Therefore, A can be considered as a set of symbols taken

from a larger set A[27],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

A=ay,a9,..,0m a;€ A (3.1)

The sequence of symbols a; are generated with respect to time in accordance with

1[27). Let W represent a string of n words that are defined in a vocabulary V,

W =w,wq, ..., w, w; €V. (32)

P(W | A) is the probability that the sequence of words W was spoken in A.
The recognizer is expected then to choose the most likely word string in A which is

represented as W, as in the following:

W =arg max P(W | A). (3.3)

From Bayes rule, P(W | A) can be rewritten as [27],

PW)P(A|W)
P4y

P(W | A) = (3.4)

where P(W) is the probability that the string of words W is uttered and P(A | W)
is the probability that when W is uttered, the acoustic information A is available.

P(A) is the average probability of the acoustic information being observed.

Now since P(A) is fixed, the speech recognizer goal is to find the word string W
that maximizes the product of the probabilities. The following equation [27] describes

the main requirements of a speech recognition system,

~

W =arg max P(W)P(A | W). (3.5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Review: Speech Recognition 31

3.3 Components of a Speech Recognition System

The main components of a speech recognition system can be described using Eq. 3.5.
The first task is to extract the information needed from the acoustic data A. That
means a method must be developed to extract the symbols a; from A as in Eq. 3.1.
Therefore, the task is to capture the audio using a microphone, which the hardware
transforms it into an electrical signal, then sampling that signal and then processing
the samples to extract the useful information.

Speech signal processing is the preparation of the raw speech signal in a form
that can be used in speech applications. The information from speech can only be
obtained in the form of a speech waveform|[28]. The speech waveform is digitized in
two fundamental steps. The first step is to sample the signal which is the process of
converting a continuous signal (in this case the raw acoustic speech waveform) into
a discrete signal. The second step is to quantize the discrete signal, which means
assigning a value from a code set to the variable discrete value.

After quantization, the symbols generated are clustered in groups, called vectors[27).
This process is called vector quantization. The general idea of clustering the symbols
gathered by quantization is that speech can be represented in groups of phonemes.
Phonemes is the pronunciation specification of words [27]. Since phonemes can be
grouped to form words, the symbols generated by quantization can be grouped to
form clusters. These clusters which represent a N dimensional characteristic space
for the phones have a center (center of gravity). The center of the space can be
used as a good approximation of the actual symbol. Vector quantization is a method
to determine the center of the aforementioned clusters and therefore, provide the
framework to describe the phonemes.

Equation 3.5 also requires the probability of when the speaker uttered the word

sequence W from the acquired speech A. Specifically, P(A|W) needs to be deter-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

mined. Since the number of probabilities of all possible combinations of A and W is
too large for a lookup implementation, a statistical acoustic model of the utterance
is required.

The most common statistical model used is the Hidden Markov Model (HMM).
Other methods do exist, like methods based on artificial neural networks and dynamic

time warping. The speech recognition method employed in this project, uses HMMs.

3.4 Hidden Markov Models (HMM)

Markov chains are used to model real-time statistical events using the probability of
occurrence, which is based on the near past [29]. From this definition, real events can
be modeled by first order Markov process. A first order Markov process is when the

probability of an event is based only on the preceding state of the model.

3.4.1 Markov Chains

HMMs are applied in several analysis tasks such as deciphering cryptograms, to solv-
ing problems relating to the field of bioinformatics. Similarly, the HMM model is
used to solve the speech recognition problem.

To describe Markov chains, consider a sequence of random variables Sy, S5, ...Sk...
which take their values from a finite set, S = 1,2,...,c. With Baye’s rule it follows

that:

n
P(S1, 8, ..., Sk) = [[P(SilS1, Sa, ..., Si1). (3.6)
i=0
The random variables in Eq. 3.6 form a Markov Chain [29]. A Markov chain
is a discrte-time stochastic process that follow the Markov property[29]. A Markov

chain is used to describe the states of the system and their transitions. The Markov

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Review: Speech Recognition 33

Figure 3.1: 3-State HMM.

property implies that the system is memoryless, which means that the transition of
the next state solely depend on the current state and not on any previous state. By

this Eq. 3.6 becomes

n

P(S1, 52, Sx) = [[P(SilSiz1)- (3.7)

i=0
Therefore, the random process described in Eq. 3.7 [29] means that the variables
at time 7 depend only on the previous time i — 1 and not on any other time prior to
that. This means that the system is time-invariant which is a property of Markov
chains.
The states of the random process, which is modeled using a Markov chain, are

represented by 5;. The following equation represents the state transition as a function:

P(S; =z |S;_,=z)=p(z'|z) VY z,z € X. (3.8)

Equation 3.8 [29] evaluates the transition function p(z'|z). If the set of z,z’
is finite, the random process can be represented as a sequence of states with their

transition probabilities defined.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Figure 3.1 illustrates a finite set of states with their transition probabilities defined.
The figure shows a three state Markov Process [27], and the probabilities p(- | -) are

the transition probabilities.

3.4.2 HMM concept

The Markov model discussed so far defines each state in the chain with an observable
event. This model is proven to be too restrictive to use in modelling actual events.
The Markov model concept needs to be extended to include observational data that
is a probabilistic function of the state of the model. This model is a double stochastic
process, where one stochastic process is hidden and can only be observed through the
other stochastic process that produces the sequence of observations [30]. This model
is dubbed as the Hidden Markov Model (HMM).
An HMM is defined by the following[30]:

e The number of states in the model, N. As explained earlier, the states are
hidden, however, there is a physical definition to each state. For example, if the
urn and coloured ball problem is to be modeled using HMMSs, the states would

represent the urns. Each state is denoted as S = {51, Ss, ..., Sy }.

o The number of observation symbols M per state. Observation symbols is the
output of the system that is being modeled. For example, in the urn and ball
model, the colour of the ball picked from the urn is the observed symbol, with
the state defined as the urn it was picked from. The actual observed symbols

are written as V = {v1,vg, ..., U }.

e The state transition probability. This probability determines how the states in
the model are changed or how the model can move from one state to another.

The state transition probability is denoted as A = {a;;} where 7, j are the source

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Review: Speech Recognition 35

and destination states. In the urn and coloured ball problem the transitions are

the probabilities of any other ball to be picked.

e The probability distribution of the symbol observed in j.

e The initial state distribution.

To build an HMM and to deem it usefull a model has to be developed to predict
future events based on the already available data. The available data is dubbed
the training data. The first task is to train the HMM. This means to optimize the
HMM parameters (transition and output production probabilities) to best fit the
given observation data (training data) on which the HMM is based on. The second
task is to uncover the hidden model which means to estimate the most accurate state
transition sequence in terms of the observed data. An optimality criterion is used to
solve this problem. The last task is to test the HMM and its capability to determine
the output of unknown data (testing).

If the speech recognizer is to be designed for isolated word recognition (simple
recognizer), the first task would be to build individual word models. The word models
that would be used to train the HMM, would be based on the spectral vectors obtained
from a spectral code book. The spectral vectors, which make up the word, is the
training data used to build the HMM. The first task in this case would be to estimate
the word models from the acoustic information and the initial parameters of the
HMM. The second task would be to assign the states of the HMM to the word
models and its sequence. The third task is to test the recognition capability of the

HMM designed [30].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Phonetic Acoustic Model

As an example, the construction of an HMM to model a phonetic based recognizer is
described. The recognizer that is used in the system is a phoneme recognizer. The
main objective, as discussed earlier and from [27], is to maximize the probability that

the word W is uttered in the A, to obtain W. The objective was defined in Eq. 3.5.

To model a word string W (Eq. 3.2), and its corresponding individual words w;,
it is clear that they are made up from smaller blocks. The aim is to model the
smaller building blocks in HMMs and to concatenate them to define the word string
W. Separating the model into smaller building blocks is useful in speech recognition
since vocabularies can be in the range of tens of thousands, and in turn very difficult

and almost impossible to model.

The phonetic acoustic model is based on an intuitive linguistic concept [27] and
there is a method to split up vocabularies into smaller building blocks. The HMMs

for words, described using phonemes is constructed as follows:
1. A phonetic dictionary is created for the required vocabulary. In symbols, a rela-

tionship between each word v and a sequence of phonemes ®(v) = ¢1, @2, ..., Yy
is created. ®(v) is the phonetic pronunciation of the word v.

2. For every different phoneme used to define the vocabulary, an elementary HMM
is used to model it, with starting and ending states.

3. The HMM for a word v is just a concatenation of the HMMs of the phonemes.

4. As for a string of words, W, the HMM is defined as another concatenation, but
of the HMMs of the words v that make up the string. HMMs for silence symbols
are inserted if required.

5. To estimate the parameters, the Baum-Welch algorithm is used [27]. This is
the training process that was mentioned previously.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Review: Speech Recognition 37
3.4.3 HMM Limitations

From the definition of first-order Markov chains in Sec. 3.4, HMM states depend
only on the previous state, and this may limit HMMs in speech applications. The
observation output is dependent on the state that generated them and not on any
neighboring output. In speech, the current phoneme is highly dependent on the
context. This means that the recognized phoneme may depend on the previous stat;es,
and not just the preceding one. It is possible to develop higher order HMMs so that
dependence is not only on the previous state. However, this makes the development
of the HMM more complex, both in implementation and estimation of its parameters.

Furthermore, HMMs are only well defined for processes that are a function of a
single independent variable such as time or a one dimensional position. It is practically
impossible to define HMMs for more than a single independent variable. Therefore, it
would be hard to combine the HMM model for speech recognition with that of another
model [30]. However, HMMs still remain to be the best statistical method in solving

the speech recognition problem due to the modelling structure of the phonemes.

3.5 Feature Extraction

Feature extraction is the process of obtaining the important information to uniquely
identify the characteristics of the speech waveform. Basically, the raw speech signals,
for example, X, are processed to extract significant data for recognition, ¥ = g(X)
[31].

The most widely used analysis method in automatic speech recognition uses the
Mel-scale cepstrum. The cepstrum, comes from cepstral analysis, and it is the process
of modelling speech production. The cepstrum is a different way of modelling the

spectrum of the speech signal such that it is proven to more accurately represent the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

human hearing and vocal tract system. The cepstrum is taken by the inverse Fourier

transform of the complex logarithm of the discrete speech signal z[n], as in

Z[n] = F~ {logX (e’)}. (3.10)

The logarithm of the speech spectrum is a characteristic of the human hearing
system and it also reduces the amplitude component at every frequency in it [31].
Futhermore, for practical applications, the real part of the cepstrum is only needed

as in

7,[n) = 7~ {log| X (™)]}. (3.11)

Now to make it the cepstrum applicable in digital algorithms as is the case in
speech recognition, Eq. 3.11 is used with the discrete Fourier transform, (DFT), in
place of the Fourier transform.

To use the cepstrum, the Mel-scale is used to represent the coefficients. This
is called the Mel Frequency Cepstral Coefficients (MFCC). The Mel is a scale of
pitches, and is usually represented versus a range of frequencies. The reference is set

by equating a 1000Hz tone to 1000 Mel’s on the scale.

3.5.1 MFCC Processing

The Mel Frequency Cepstral Coefficients (MFCC) is the most widely used feature
extraction parameter in speech recognition. This is because MFCC's provide good
differentiation and are very flexible in terms of modifications [22]. In brief, to extract
the MFCC of the speech signal, the signal is first divided into frames with the aid
of a windowing technique. After that, for every frame, the amplitude spectrum is

obtained and its logarithm is calculated. The logarithm is then converted to the Mel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Review: Speech Recognition 39

Cepstrum Analysis Blocks

Speech Signal

\ 4

IDFT |—— MFCC

A 4

Premphasis DFT

Mel Filters Banks — - log

Window

Figure 3.2: Block Diagram of MFCC Processing.

spectrum, and the cosine transform applied. A general technique of extracting the
MFCC, and in turn the feature vectors of the speech data, is illustrated in Fig. 3.2
[31].

The Premphasis blocks’ purpose is to increase the amplitudes of the high frequency
components which usually have much lower amplitude levels than the lower frequency
ones. The frequency components of the speech signal form the characteristic of the
uttered phoneme and therefore, it is important to represent all the frequencies with
similar amplitudes. This process is usually done using a first order FIR. filter. Noise

cancelling and silence detection is also performed in this step of feature extraction.

Following the premphasis block, a Window is applied to the signal. Windowing
a signal is used to split the signal up into frames. In this case, the speech signal is
windowed to form frames, where the statistical characteristics within the frames are
invariant with respect to time. If the speech signal was already invariant there would

have been no need to window the signal.

The next processing step is to take the DFT of the windowed signal. Since the
standard spectral analysis depends on the frequency components of the signal and in
turn the Fourier transform, the DFT acts to reduce the complexity of the analysis.

The reason is that evaluations are only performed at discrete values of the frequency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

To further reduce the complexity, the Fast Fourier Transform (FFT) is used. It is
important to note that the phase information of the DFT is discarded as the phase
information does not provide any useful information in the analysis.

The Mel Filter banks is then applied to the output of the DFT (or the FFT in
implementation). The filter banks are used to extract the frequency components from
the whole spectrum, Usually a set of 24 filter banks are used because it conforms with
the human ear processing system. The filters, used to extract the components, are
spread out non-uniformly along the frequency spectrum. The filter banks are more
concentrated below the 1kHz [31] mark because the frequency components contained
within this range have more information on the vocal tract[31]. The most widely used
filter banks in speech recognition are Mel-filter banks. Mel filter banks use the Mel
scale, and are uniformly spaced below the 1kHz mark, and are on a logarithmic scale
after 1kHz [31].

The logl| is then taken to follow the human ear model as well as cepstral analysis
(Eq. 3.11). The magnitude discards the phase information contained after the filtering
process.

The IDFT block is the inverse discrete Fourier transform. This block computes
the final Mel Frequency cepstrum computation (MFCC). The inverse reduces to a
discrete cosine transform because the log power spectrum output from the previous
block has the property of being real and symmetric. The DCT produces highly
uncorrelated features [31] which is needed to reduce the number of parameters to be

estimated in the HMM and therefore, reduces the complexity in recognition.

3.6 Summary

This chapter provided the background of the concepts behind developing a speech

recognizer. The chapter explained the definition and motivation of using HMMs as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Review: Speech Recognition 41

the statistical model for speech recognition. The recognizer was implemented using
the Hidden Markov Model Toolkit (HTK). The process of setting up the resources,
training the HMMs and testing them is also explained in Appendix A. Furthermore,

details on how to improve the recognizer is provided in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Chapter 4

Proposed Audio-Video

Synchronization

4.1 Motivation

Synchronization between audio and video signals is needed in multimedia applications
which involve some form of signal processing. For example, this processing may
include recording audio and video signals separately, sound enhancement, and video
enhancement. For example, in a recording studio, audio tracks are recorded separately
as well as the video recordings and so a method must be developed to re-synchronize
them in order to play them back. Without the synchronization the recorded data
may be irrelevant to one another in terms of timing and incoherent to the observer.

Multimedia synchronization is defined as maintaining intra-media and inter-media
timing relationships so that multimedia data can be processed synchronously within
an acceptable range compared to the original timing at the source [17]. Recall from
Ch. 2, intra-media involves the playback of the medium involved in continuous time
[10]. Inter-media synchronization involves determining the scheduling of playback

of the medium. These two types of synchronization are usually labeled continuous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Audio-Video Synchronization and Integration 43

and discrete. The system proposed here performs mainly inter-media synchroniza-
tion, even though some aspects of intra-media are involved. This is because the
synchronization problem lies between the audio and video stream, causing it to be
an inter-media synchronization problem. The audio and video streams need to be

synchronized at the output.

The synchronization of signals is their alignment with respect to a specified ele-
ment. In this system, synchronization of audio and video signals is performed with
respect to time. The synchronization problem is present whenever there is processing
on separate signals. This means that the signals are separated prior to their process-
ing. In a digital video camera, the video and audio are captured at the same time
and are coupled and recorded. In fact, the amount of raw processing on either of
those signals is minimal and so the signals are synchronized when recorded and in

playback.

The integration of an audio-video system is needed when the media streams come
from different sources and are processed separately. As soon as the signals are sep-
arated, there must be a method to re-synchronize the signals. The streams need to
be captured, processed and outputted according to the synchronization information.
The integration part of the system is needed to communicate between the different

system modules.

If the system was setup such that the capture of audio and video signals was
performed using the same device (e.g., a camera with an embedded microphone), the
signals would have to be separated to carry out the processing (speech recognition and
edge detection). The delay added from both processes are not equal and therefore, a

synchronization method is needed to realign the signals with one another.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

4.2 Discussion on the Effectiveness of the Synchro-

nization Approaches

In the system proposed in this thesis the audio and video signals are captured using
separate sensors. The audio is captured through a microphone which is connected to
the sound card of the machine, while the video frames are captured using a web cam
which is connected to the USB port of the same machine. The audio cabtured is used
by the speech recognition module while the video frames captured is processed using

video processing libraries (VidPro libraries) [32)].

A synchronization process may not be needed if there is no incurred delay in the
signal processing and that the capture of the signals were at exactly the same rate.
This is not the case in the system discussed here. Even if the system was changed such
that the capture of audio and video signals was performed using the same device (e.g.,
a camera with an embedded microphone), the signals would have to be de-coupled
and then processed separately. Since the delay incurred from both processes is not

uniform, a synchronization method is needed to realign the signal.

There are audio-video synchronization methods in literature that involve the lip
movements of the objects in the video frame. Lip movements are tracked on the
objects in the frame and related to the audio, and in turn develop a synchronization
method. The obstacles in this method include multiple speakers and incoherent lip
movements (including occlusion of the lips). If the synchronization method did not
depend on the video information then the problem of occlusion can be eliminated.
The objective of the proposed system is not to use any video information and solely
base the synchronization approach on timing information obtained from the video and
audio signals. Furthermore, using extra video processing to determine synchronization

will slow the system down. The system is already loaded with complex operations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Audio-Video Synchronization and Integration 45

from the speech recognition to the edge detection. One way to achieve synchronization
without adding significant overhead is to use timing information. Timing information
is precise and does not involve complex operations to extract.

The proposed method in this thesis supports multiple speakers. The system
uses the timing information and therefore, is independent of the number of speakers
present. This is one main advantage of using the timing information for synchroniia—
tion and not any video information. Also note that the system is stream based, i.e.,

the video and audio are continuously captured and processed.

4.2.1 Processing Delays

The processing delay is incurred from the time the raw signal is available to the time
the processed signal and the information obtained from it is available. In terms of the
audio, the audio processing delay is incurred from the time the audio is captured to
the time the recognized speech (transcribed text) is available. The video processing
delay is the time between when the raw frame is captured to the time the contour
image (after the binary edge detection) is available. These delays are not uniform
and varies according to the amount of data to be processed. In the audio processing,
the delay is directly proportional to the length of the utterance, while in terms of the
video processing, the delay is directly proportional to the number of objects in the
frame.

The delay in the speech recognition is a result of the various processing steps
discussed in Ch. 3. These steps are involved in the recognition process. In the online
recognition, the recognizer must extract the features, look up the closest matching
phonemes and output the results. It is clear that the larger the dictionary of phonemes
the longer the time of recognition. In fact, the recognizer was originally built using

the HTK tools (Appendix A) to perform word recognition and not phonemes. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

set of resources for word recognition was abandoned because the delay incurred was
very large during online recognition. The large delay times is due to the word lookup
after the phoneme recognition. The delay times are also large because of the ambient
noise present in the room, that cause the recognizer to try to fit the noise to the
phonemes and then the words in the dictionary. The large delay times would cause
the synchronization approach based on the timing information more difficult or even
impractical to achieve. For this reason, the recognizer was set up to perform phoneme
recognition, and eliminate word matching. This resulted in faster recognition times
and in turn facilitated the realization of the synchronization approach.

The video processing delays were on a per frame basis as opposed to a per utterance
basis in the audio delay case. The video frame is captured and passed through a filter
sequence until the contour image is obtained from the binary edge detection. The
video processing delay is increased with increased movement in the video as well as
the number of objects present in the frame. In the implementation, the delay of
the speech recognition is larger than that of the video and therefore, the system is
implemented to accommodate that. However, the proposed time-stamping approach
is also suitable for the circumstance where the video delay is larger than the speech
recognition’s delay, since all that is used to synchronize the system is the timing

information.

4.2.2 Synchronization using Frame Dropping

A frame dropping approach was first discussed as a proposed method for synchroniza-
tion of this system. Frame dropping is a technique in video playback that increases
the video frame rate to improve video and audio quality and maintain an overall rate
of playback. In this sense the frame dropping technique is a method for synchroniza-

tion. Chen et al.[10] proposed a frame dropping technique to synchronize the media

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Audio-Video Synchronization and Integration 47

stream.

To increase the frame rate to a specific level, a number of frames can be dropped.
The lower the number of frames to be processed the higher the frame rate. Therefore,
it is possible to adjust the frame rate such that the video is synchronized with the
audio.

The question is what if the audio processing is delaying the video? This means
that the audio is what is incurring the delay in the whole playback. It is not possible
to drop audio packets as information will be lost since audio is continuous. The
human ear is more sensitive to discrepancies in missing speech than the human eye
is susceptible to missing frames. It is not useful to drop frames in the case where
the audio delay is larger than the video. In fact, in this case you need to slow down
the video processing by inserting more frames or repeating the frame, which is more
practical.

Another approach must be developed since the audio delay incurred from the
speech recognition is much larger than the video delay incurred by the video process-
ing. A frame dropping technique would not be effective.

The proposed approach in this thesis accompanies for the delays incurred in the
video and audio processing. The system proposed is designed to eliminate occlusion

errors and synchronize the delayed audio with the video frames.

4.3 Proposed Approach: Time Stamping

Time stamping is a method of obtaining the actual time at a specified point in a
process. The objective is to be able to extract useful time-stamps from the audio and
video processes respectively to be used in the synchronization approach. Chapter 2
discussed the various methods, including time-stamp methods, to solve the synchro-

nization problem. If the time of processing of each video frame is calculated as well as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

extracting their time of arrival to the processing module, the actual time of the frame
can be established. These times can be thought of PTS (presentation time-stamp)
and DTS (decoding time-stamp) respectively, as used in the MPEG decoder. The
same reasoning follows for the audio frames/packets. If the actual time of the audio
is known via the time-stamps, then the time to insert the audio information (i.e., the
recognized text in the case of this system) onto the video is known. If the approach
developed is to be able to insert the recognized text information onto the right frame
in terms of time, then the system is able to synchronize both processes to within
one frame. This approach is described in the following subsections. This proposed
approach is valid for both cases, either the video processing delay is larger than the
speech recognition delay, or if the speech recognition delay is larger than the video

processing delay.

4.3.1 Video Time-Stamps

The video processing on the captured video frames is performed via a C++ program
with the aid of C++ libraries, that was developed by the VidPro Research Group at
Concordia University [2].

To obtain the real time of video captured, the time of processing each frame is
obtained using time-stamps. For each frame, a time-stamp is taken at the moment
the raw frame is available from capture, and subsequently another time stamp is
taken after all the processing is done. With this information, the delay of the video
processing is obtained and the actual frame rate can be calculated. This frame rate
reflects the amount of time it takes for one frame to be processed. This frame rate
differs than the frame rate if the processing was bypassed. Fig. 4.1 shows the video
processing and its respective time-tamps.

The initial time-stamp, " Time-Stamp i”, is taken as soon as the frame is captured.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Audio-Video Synchronization and Integration 49

Video Processing Filters

Processed
Framei

. Motion - Edge Contour Draw
Frame i Thresholdi Bi
Detection resholding | Binarization Detection | Tracing | Contours

A)
I

Time-Stamp i Time -Stamp j

Figure 4.1: Time Stamping Mode! for Video Processing.

The frames are then processed through the various filters until the contour image is
obtained. The second time-stamp, ” Time-Stamp j”, is taken as soon as the contour
image is ready. Simply, the difference between the two time-stamps results in the

processing time for one frame as in

Tframe = Tframej e Tframe,- (41)

The frame rate, Fp, is calculated by using the number of frames being processed.
This is the Fr of the output and not of the capture Fg. If the number of frames
is known, the frame rate can be calculated using the total time of processing. In
fact, the system keeps track of the number of frames processed, Fgoun:, and uses it
as an index to some of the buffers and arrays discussed later in this chapter. The

calculation is

FO’UJI
Fp = —S2nt (4.2)

T frames

The total time of processing 7rqmes is the accumulated times from Eq. 4.1. This is

the processing times which are accumulated to represent the total time of processing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Feount frames. The Fpg is a sliding frame rate by that it is calculated using a temporal
window (fixed number) of frames. Therefore, the frame rate would represent the
recent processing times of the video frames. This is to ensure the frame rate is
representative of the most recent timing specification of the video sequence. In turn,
Foount, is a constant number that is used to calculate the sliding Fr over the past
Fooun: frames.

With obtaining the times from Eq. 4.1 and Eq. 4.2, the timing information for the

video to be used in synchronization is obtained.

4.3.2 Audio Time-Stamps

Obtaining the audio time-stamps involves extracting the time of the utterance and
the delay of the recognizer. For the timing information of the audio to be useful in
synchronization, it must include the times of the utterances, the silence times between
the utterances, and the total time of audio captured. If all the timing information is
known about the signals, then no other raw information is needed to synchronize the
signals. The challenge lies in extracting and processing the timing information from
the audio and speech recognition system in place.

One audio time-stamp is the time of the start and end of the spoken utterance.
Another timing parameter is the silence time between the utterances. Silence times
is the time where no speech is present. If the time from the audio processing is going
to be compared to that of the video processing, the total time of acoustic processing
must be considered, including the processing of the silence time. Silence intervals are
not processed in this system and are just suppressed. Therefore, a method must be
implemented to detect and calculate the silence times. This is explained in Sec. 5.1.

As for the time-stamp of the explicit utterance, this is obtained from the output

file of the online recognition. When the recognizer is run online, the output is stored

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Audio-Video Synchronization and Integration 51

in a text file. This text file contains the recognized phonemes as well as the times of

their utterance. An example is shown below:

0 300000 !'ENTER -2937.495605
300000 2100000 sil -1417.729736
2100000 2900000 t -680.301270
2900000 3300000 ah -377.549255
3300000 4500000 ch -10563.523682
4500000 6200000 ao -1562.439331
6200000 6800000 el -444.782562
6800000 7600000 s -691.934998

The first term is the time it takes for the recognizer to start. This time does
not vary between different utterances. The remainder of the entries have their start
and end times of the recognized phoneme. For example, the phoneme ”ah” which
is the fourth entry in the list, has the start time of 290000000ns and an end time
of 330000000ns. Note that the time is represented in the file are in units of 100ns.
With this information the length of the spoken utterance is known after recognition.
It is important to note that this information is not available in true real-time and
is obtained after the process of recognition. This output file from recognition, only
contains the timing of the utterance and does not include the silence times between

utterances and the delay time of the recognizer.

4.4 System Adaptability

The timing information of both media streams extracted from the speech recognition
and the video processing enables the scheduling of the output. This section discusses
the robustness of the system in terms of variable delays. The implemented system
is designed knowing that the speech recognition delay is higher than the video pro-
cessing delay. This means in the implementation that the video processing thread

is waiting for the speech recognition thread to complete processing. In Ch. 5, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

system communication is designed knowing the fact the delay of the recognizer is
larger than the video processing. The use of the time-stamps in the synchronization
process is explained in Ch. 5.

However, in terms of the theory of the approach, the time-stamping method is
independent of which process has the longer delay. The timing information provides
everything needed for synchronization, for both cases. If the timing information is
gathered and both processes outputs are buffered to some degree (which they are,
Sec. 5.4), then the synchronization is successful.

The system proposed is also adaptable to multiple speaking objects. The system
is not dependent on the number of objects present. The time-stamp information does
not rely on the number of detected objects or the number of speakers in the frame.
The only limitation is that the current speech recognition system is only trained for

the author’s voice, but that can be changed, if required.

4.5 Summary

This chapter explained the synchronization methodology of the proposed system.
The approach uses time-stamps to determine the timing information of the video and
audio streams. This chapter explained concepts that can be used in multi-stream
synchronization as well as inter-stream synchronization. The whole system serves as
a synchronized integrated audio-video multimedia system, which is the objective.
The system is also not confined to the audio delay being larger than the video
processing delay. Since the system uses the time-stamp information of both media
streams, the system is adaptable to accommodate synchronization in both cases where
the audio delay is larger than the video delay and the video delay larger than the

audio.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Chapter 5

Proposed System Integration

This chapter contains the discussion on the methodology of using the time-stamp
information, explained in Sec. 4.3. It starts by discussing the system set-up, followed
by the main implementation details of integrating the main system modules described
using the aid of flow graphs and block diagrams. Note that the communication
between the system is implemented knowing the fact that the speech recognition
delay is larger than the video processing delay. However, the general aspects of the
system are adaptable to when the video processing delay is larger than the speech

recognition delay.

5.1 System Set-up

The full implementation is setup on a Linux Fedora Core 3 machine, using C++ as
the programming platform. In the software implementation there are three major
modules: the video processing module, the audio processing module and the syn-
chronization module. Each of these modules are run using C++ thread which was
implemented using the ZThread C++ library.

Threads in C++ programs enable multiple processes to be run concurrently re-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

gardless of their position. A thread is a sequence of instructions that is executed
within a program. This means that a thread is just a regular program and each in-
struction is executed sequentially, and is controlled by the main () part of the program.
A regular program that does not use threads only has one process (and therefore, one
thread). To achieve parallelism in these programs semaphores and different system
calls can be used, such as fork() and exec(). The disadvantage of using system
calls to achieve parallelism is that they involve kernel intervention and in turn, incur

a significant amount of overhead time during run-time.

In a program that uses threads, different parts of the code are executed using
different threads simultaneously. The different threads share variables and structures
and can access and alter their contents (unless specifically locked). The disadvan-
tage of using threads is that the programming is more difficult and takes longer
than programming a non-threaded application. This is because of the presence of
dependencies between the threads. The advantage of using threads is the speed of
communication between the threads. In the case of the proposed system, speed is of
upt most importance as no extra overhead is desired over that of the video and audio
processing delays. Another advantage is if one thread is blocked due to I/O operations
in a different thread, the thread simply pauses and the rest of the program continues
running. Also threads are highly portable across different Linux platforms. Single

processor machines use threads with unnoticeable effect in the speed of processing.

In the system proposed, there are three main modules that are run under one
program using three threads. One thread contains the video processing module, a
second thread contains the audio processing module which is indirectly linked to the
speech recognizer, and the third thread is the synchronization module, which makes
use of the timing information from the other two threads to synchronize the output.

The audio - video integration is performed by communication between three threads.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Proposed System Integration 55

Main Runnable Thread

' Video E Svnchronizati Audio |
E Processing ¢ =-===" > yncﬂ:omza on 54- ----- » Processing x\.‘ I Recognizor |
' Thread E red ' « Thread E ' !
: : : : : e e
‘ ' ' ' Leeccpaneas '
N S !
''''' = D .
. [Key: . . ;
A L * & - - - -pp Flag Communication
| '| ,

! ' «— - Variable Exchange
I Shared Variables I) o R
i (auido timing, video timing, ...etc.) , <4— Thread Structure -

¢— - -p Module Access

Figure 5.1: Block Diagram of System Integration.

In Fig. 5.1, the audio processing module is split into two parts. The first part
is the speech recognizer module which is run using the HTK tools described in Ap-
pendix. A. The speech recognizer performs the speech recognition and produces the
output file which contains the results of the recognition as well as its respective tim-
ing information. The second part is the audio processing thread which processes the
output of the recognition by reading in the output text and determines time-stamps
that are useful in the synchronization module.

The video processing module is run using the video processing thread and is
responsible for capturing the video from a USB camera, performing the necessary
format conversions, face detection and then finally the object edge detection. This
module also processes the time-stamps and calculates the frame-rate of the processed

video.

The synchronization of the system is implemented in the synchronization thread.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

This module makes use of the timing information (explained in Ch. 4), from the other
threads to implement the synchronization algorithm.

To communicate between the modules and to integrate their respective processes, a
flag signalling system is used. A flag system is similar to a finite state machine system
as the value of the flag describes the state of the system. In general, the system is
implemented using threads and flags and can be thought of as a combination of the
system presented in [11] and [12]. The flag system is described in the upcoming
sections.

The following sections explain the modules’ specifics and describe the flow of data.

5.2 Audio Processing Module

After the resources for speech recognition are developed (i.e., the training process and
the adaptation of the speakers voice), the recognizer is ready to be integrated in the
full system. The audio processing thread of the system is responsible for making use
of the output file from the recognition process.

The first task is to read the phonemes and the relevant time stamps from the
recognizers’ output file. As seen from Sec. 4.3.2, the output file is in standard format
and so reading the file is the same for every output. The challenge lies in extracting
the timing information from those files and the recognized phonemes. The output file
contains the time-stamps of the phonemes as well as the phonemes themselves. The
total time of the utterance is represented by the end time of the last phoneme. The
objective in processing the output file is to extract these times (i.e., the first phoneme
time, the last phoneme time and all the phonemes themselves).

However, these times are not representative of the times between the recognition
of different utterances and silence times (i.e., the recognition delay). If the time-

stamp from the output recognition file is the only timing information to be used in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Proposed System Integration 37

Recognition Delay

Utterance Time Y.....] jaaees,

- ~Initialization
| (noise level measurement)

L} £
bewew bewwsw
Initilization Complete T T

iti)¢ '
Recogiion Started SOUNDOOOLrec ready SOUNDODOZ.rec ready SOUNDOOON.rec ready

Take Timep-Stamp 0001 Take Timep-Stamp 0002 Take Timep-Stamp 000N

L}

L}

o

, . : N
Utterance 1 S Utterance 2 st} .. | UtteranceN !SiL:
: ' R

)

Figure 5.2: Time-Stamps between Output Speech Files.

determining the synchronization with the video frames, then the time between the
utterances will be unaccounted for, and the synchronization will be unsuccessful. A
method must be implemented to automate the measurement of the time between the
utterances as well as the silence times. It must be noted here that the silence times
that are represented in the output file at the start and end of the output file, are the
recognizers times until the silence is detected. As soon as the silence is detected, the
recognizer starts to recognize a new utterance. Therefore, it is important to detect
these silence times and eliminate their timing information from the synchronization
process, such that it does not affect the time the recognized phonemes are entered

onto the frame.

The method implemented in obtaining the times between the utterances, uses
time-stamps to record the start and end of the recognition relative to a system clock.
These are system time-stamps. The time-stamps are taken once the output file is
available to access, which represents a recognized utterance. The number of output
files has to be monitored and the time-stamp for each file is recorded. The times
between the system time-stamps and the utterance time represents the recognizer’s

delay in recognizing the first utterance. This approach is illustarted in Fig. 5.2,

The time of the utterance is known from the output file itself. The time between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

the utterances (the recognizer delay) is calculated by the difference between the time
of the utterance (obtained from the output file) and the time-stamp of the file (system
time-stampOON). With this approach, the time of the utterance is known, the delay
of the recognizer is known as well as the time between the utterances.

The string of instructions in the audio processing thread is summarized as follows:

1. Speaker initializes the recognition module. Recognition module measures silence
and ambient noise levels of the environment
2. Speaker utters sentence
3. Recognizer recognizes sentence and saves the phonemes and their time-stamps
in a file: SOUNDOOO1.rec
4. The audio thread detects new output file, SOUNDOOO1.rec. The system takes
the time-stamp of the file
5. Speaker (same or different person) utters a new sentence and a new output file
is produced, SOUNDOQOO2.rec
6. The audio thread detects a new output file, SOUNDO002.rec, takes a new time-
stamp and saves it
7. The difference in the time-stamps of the files is calculated and stored for syn-
chronization
8. The process is continued from step 2
A flow graph of the process, in Fig. 5.3, makes it easier to follow. The flow
chart does not include every single process in the thread in detail but only shows
the sequence of important processes. To explain briefly, the audio thread starts by
initializing the buffers, arrays and timing variables to be used. The timing variables
are initialized to synchronize the clocks. The arrays and buffers are cleared to store the
new timing information as well as the extracted phonemes from the output recognition

file. The audio thread then checks for the file name that is generated to match the file

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Proposed System Integration 59

name generated by the HTK tools (SOUNDXXXX.rec). The file name is incremented
by numbers in place of the "XXXX”. Therefore, everytime the thread is run, it checks
for whether a new file is ready to process. As soon as a new output file is ready, a
time-stamp i (74(;) is taken and stored in an array with the file number as the index.
Next the information contained within the output file is processed. The phonemes
are extracted and stored in an array as well as the required timing information (i'e.,
the time of the utterance, 7,4)). With the time-stamps, the total time between the
files is calculated as well as the time of the utterance. The silence time is removed
from the time calculation as it was explained that the SIL time is the additional delay

time for the recognizer as well as any noise the recognizer picked up. The final time

used in the synchronization process is calculated using the variables in Eq. 5.4.

SIL = Tos) = To(i=1)=rus)- (5.1)
Tu(i) = Ts(i) — Ts(i-1) — SIL. (5.2)
AA(G) = AA(L = 1) + Tup). (5.3)
FromEq. 5.3 :
AA() = DA — 1) + Tyy — To—1) — STL. (5.4)

Where AA(7) is the total time of the utterances minus the delay time of the
processing, i.e., the amount of time needed to compensate for the audio delay in
synchronization. AA(Z) is the time the utterance was spoken and is calculated by
accumulating the previous utterance times,AA(i — 1), and adding the current dura-
tion of the utterance, 7,(;). The time, 7., is equal to the difference in the system
time-stamps, 7Ty(;) — Ts(i—1), minus the silence, STL which represents the delay of the

recognizer for obtaining the current output (Eq. 5.3). Note that the delay of the rec-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Com

A4

Initialization Process
(Audio Buffer, timers, ...etc.)

v

Generate output file name
(SOUNDXXXX.rec)

<+ WAIT for 2.5s
y

A

Qutput File
available?

Take File Time-Stamp
and store in array

A4

Calculate Time between files
usingTime stamps
(elapsed_timeA)

v

Extract phonemes from output file
Extract Timing Information

y

Calculate final timing information (SyncTime)
Store in Buffer, file counter as index

A4

Pass SyncTime to Synchronization Thread

pemmmmnee Mo .
. Start Synchronization %
s, Thread %

Figure 5.3: Audio Thread Flow Diagram.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Proposed System Integration 61

ognizer, SIL, to recognize utterance 7 is represented by the time between the system

time-stamps minus the time of the actual utterance (Eq. 5.2).

5.3 Video Processing Module

The video processing thread is responsible for capturing the raw video, applying
the video processing filters, superimposing the recognized text onto the video, face
localization and obtaining the timing information to calculate the video delay and in
turn the frame rate that is useful in the synchronization process.

The video processing filters are applied to obtain the object edge image and also
to add video processing to the system and simulate the delay associated with it. The
face localization is needed to have coordinates for the text movement. Recall that
the text is required to move from one speaker’s face to the other speaker. The timing
information is needed to evaluate the delay of the video processing and compare it
to the audio processing delay and to determine the synchronization criteria which is
the objective of the project.

The video is captured using a Logitech 4000 USB web camera. It is captured at a
resolution of 320 by 240 pixels and using the OpenCV libraries developed at Intel for
computer vision research. The video processing as mentioned in Sec. 4.3 is a series
of video processing filters developed at the VidPro labs at Concordia University and
the end product is the contour image. The face localization is performed using the
OpenCV libraries[33].

One aspect of the system that was implemented due to the trials during imple-
mentation was the introduction of a video buffer system. From the explanation of
the audio thread and the speech recognition tools in Appendix. A, it is clear that the
recognized phonemes are available after the utterance is spoken and not during the

speech. This means that it is impossible to synchronize the output speech with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

current video frame. For example, by the time the output recognized speech is ready
to be included into the related video frame, the video frame would have been already
captured and processed and is now at the frame which relates to the next speaker’s
speech. Therefore, a buffer system must be developed to allow the recognizer to pro-
duce an output file before the related video frame is displayed. The buffer size would
be equal to the average delay of the recognizer. If the recognizer has a delay of 2
seconds then the buffer would hold 2 seconds worth of video frames before outputting
the result of the video processing with the recognized text. This approach is similar
to that of Benslimane{16] where he realates the buffer size to the delay between the

transmitter and receiver.

A flow graph of the main processes in the video thread is illustarted in Fig. 5.4.
The video thread illustarted in Fig. 5.4 starts by capturing the video frames from the
camera. This is done by accessing the USB port of the machine using the OpenCV
libraries[33]. The format of the capture is based on the Intel Image Processing Library
(IPL) from OpenCV. The format IPL has the same structure as RGB images. The
RGB images had to be converted into YUV images so that the video processing to
obtain the contour image can be applied on the Y component of the image. The

conversion matrix is shown in Eq. 5.5.

Y 0.299 0.587 0.114 R
U |=1] -0147 -0.289 0.437 G |- (5.5)
1% 0.615 —0.515 —0.100 B

The next step is to check whether the background frame was captured. If the
background frame (i.e., frame 0) was not captured then the current frame is the
background and the processing of the background image is applied. The background

image is needed for the remainder of the video processing (Sec. 1.2.3). The next

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Proposed System Integration 63

Initialization
(Video Filters, Camera, etc.)

v

Capture Real
Video Frame

Covert frame from Process
RGB to YUV "| Background Frame

FlagStart =17

YES

FrameCount
mod5=0

-~

\ 4

Convert frame:
RGB to YUV

YES '

Process Frames

\4
(Contour Image)

Face Localization
v

Convert frame:
YUV to RGB

Y

v
Draw squares
Face Coordinates around faces on
real and contour frames

Y

Buffer Contour Frames
Buffer Real Frames

Figure 5.4: Video Thread Flow Diagram.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

step is determine whether the audio thread has been initialized or not. This step is
necessary to synchronize the initialization steps of both processes. The audio thread
sets a flag FlagStart to indicate that the initialization of the recognizer is complete.
The initialization of the audio thread includes noise and silence level measurements.
If the flag is not set, the video thread waits until it is. After the flag is set and
detected, the system continues by processing the captured frames. A frame counter
monitors the number of frames processed and is stored in FrameCount. The face
localization is performed every 5 frames as indicated in Fig. 5.4. The output of
this process is the coordinates of the object’s faces. Furthermore, the video thread
converts the remainder of the frames to the YUV standard and continues to apply the
video processing to obtain the contour image. These frames are then converted back
to the RGB standard so that the OpenCV libraries can display them. The formuls,

for conversion is given by Eq. 5.6

R 1.0 00 1.140 Y
G |=] 10 —0394 -0.581 U . (5.6)
B 1.0 2028 0.0 14

The next step in the video thread is to draw squares around the faces using the
coordinates obtained from the face localization process. All the frames, real and edge

frames, are buffered to be used by the synchronization process.

Finally the thread provides the video frames that are ready to Be displayed but
are not synchronized with the audio thread. The only synchronization in the Videé
thread was the initialization with the audio thread. The re‘al frames are buffered as é.
reference sequence to determine objectively whether the synchronization is successful

or not.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Proposed System Integration 65

5.4 Synchronization Module

The synchronization thread is responsible for using the timing information obtained
from the video and audio threads and their respective sequence of processing. As
discussed in Sec. 4.3, the objective is to calculate the frame number that the text
relates to according to the audio time-stamps. The video time-stamps are used to
calculate the frame rate which is needed to calculate the frame number. By using the
total time of the utterance, the frame number at which to insert the information is
calculated by using the frame rate as explained in Eq. 4.1. Therefore, the synchronized
frame, SyncFrame which is the frame at which at the recognized text is to be inserted,

is calculated using

SyncFrames = AA(i) - Fr. (5.7)

AA(t) in Eq. 5.7 is the accumulated time of the utterances up to utterance i and is

calculated using Eq. 5.4. The Fp is calculated using the video time stamps in Eq. 4.2.

The synchronization thread uses the information from Eq. 5.7 to synchronize the
audio and video threads. The idea is to continuously check for the frame number
and as soon as it has been detected output the relative recognized text. Since it was
discussed that the video is buffered to accommodate the non-real-time characteristic
of the speech recognition, each recognized utterance is also buffered along with the
SyncFrames associated with it. The synchronization thread controls the reading of
the buffers. The synchronization thread maintains the indexing of the buffers as well

as the associated output.

In the implementation there are 6 main buffers/arrays to be noted: the real frame
buffer, the contour frame buffer, the phoneme (recognized text) buffer, the audio

time-stamp buffer, the video-time stamp buffer, and the SyncFrames buffer. All

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

FlagStart

FlagA AA(O)EAAU)lAA<2{AA(4AA<4{AA(5)1AA<6)1AA(7)§ ----- / -l '

FlagSync ; FRO! FRI! FR2 - ERG
A, NP Loceclavennas
S X S ouTPUT
v ' 1 H ' .
> LR+ | AR Y L R4 ———pl R | R2Z| RH | RO
H S | NI S
R O Tty
—> . i.c«(xn) Lotyr .1 Cla ——p| cajcrz] cn | co
' + 1 : '
----------- PR TR)

Figure 5.5: Buffer system and Communication.

the buffers are fixed in size. Since all these buffers are filled by different threads, a
signalling system between the threads must be established such that incorrect access
of the buffer entries are avoided. This is accomplished by using a flag system between
the threads that indicate whether or not a new entry has been added and needs to
be processed. The flag system integrates the different threads with each other. The
flag system is illustrated in Fig. 5.5.

The audio thread is the first thread to be run as it sends the initialization signal to
all the other threads FlagStart. This flag is set when the initialization of the recognizer
is complete and the first output file is ready. The audio thread then sets FlagStart
and the video thread starts capturing the frames and filling its respective buffer and
the synchronization thread (sync thread) is ready to perform its first synchronization.

The process of synchronization is started by the audio thread once again. Once the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Proposed System Integration 67

audio thread has processed an output file, 4, and extracted the timing information,
AA(1), and the phoneme information, Ph(i), another flag is triggered by the audio
thread, and it is called FlagA.

FlagA indicates to the sync thread that a new output file is ready to be synchro-
nized. The timing information from the file is also passed to the sync thread such
that it can calculate the SyncFrames as indicated in Eq. 5.7. This process prom};ts
the sync thread to read the frame rate buffer that is created by the video thread.

When the new SyncFrames, SF(i) is created, a new flag is set called FlagSync.

FlagSync indicates to the video thread that the data for synchronization, i.e., SF(3)
and Ph(i) are ready to be used. The video thread in turn reads the frame number,
SF(i), the frame at which to insert the text, and the text, Ph(7). If the frame number
has not been outputted yet, it waits until it reaches the frame number. If the frame
count is larger than SF(%), then video thread outputs the text immediately onto the
current frame, similar to the approach in {12]. Note that the latter scenario where the
frame number is larger than the SyncFrames indicates an error in synchronization.
It is impossible to exactly catch the correct frame to superimpose the text. As soon
as one de-synchronized error occurs the remainder of the synchronization is relatively
incorrect because the error is accumulated. However, if the error is small then it
might not be noticeable. The synchronization error has to be defined according to
the application. If the error present does not affect the system, then there is no need

to correct it, as explained in the work by Chen et al.[10].

However, there are approaches to correct the synchronization errors. One ap-
proach is to skip an audio output file to re-synchronize. This option is not favorable
as it is obvious to the user there is a missing audio output. The second way is to
repeat the last frame for the number of frames that the system is de-synchronized

for. This condition is clearer when the results are explained in Sec. 6.3. This solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

is to be carried out after a certain threshold which is determined by the number of
frames the audio and video are de-synchronized by. Another approach is to eliminate
the accumulated synchronization error by flushing the buffers and to basically restart

the system.

5.5 Summary

This chapter explained the integration methodology of the proposed system. The
streams (or signals) are controlled by a thread structure. The thread structure also
acts as a communication medium between the streams which governs the integration
of the system. The communication allows for the synchronization thread to control
the data flow in the video and audio threads and in turn have control over their
synchronization. With the aid of a buffer system, the synchronization thread acts as
a control center for the media streams and governs the contents of the buffer. The
whole system serves as a synchronized integrated audio - video multimedia system,
which is the objective.

The communication system is is set-up to work for when the audio processing delay
is larger than the video delay. This is because, with the current speech recognizer,
it is never going to be the case when the video processing delay is larger than the
recognizer’'s delay. However, only a minor change in the communication and flag
system is needed to accommodate the case for when the video processing delay is

larger than the audio processing delay.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Chapter 6

Results

The results section discusses and displays the main results obtained first from the
speech recognition and then the overall integrated system. The integrated systems
results are an indication of the level of accuracy of the synchronization process. The
results illustrate the effectiveness of the synchronization approach on the processed

audio and video streams.

6.1 Speech recognition Results

The speech recognition results contain the accuracy of recognition from the training
data, the accuracy of recognition from the voice adaptation, and the accuracy of
recognition after the addition of Gaussian mixtures. The results obtained are in the
form shown in Appendix A.3.

After the first output of the recognizers’ training, i.e., when the 9th HMM was
created, as discussed in Appendix A, the system was tested for accuracy. This test is
carried out using the test directory of the TIMIT database. Testing is carried out by
making the recognizer recognize the test files. The test files were not used in training

the system. The HTK tool then compares the transcribed output of the recognition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

to the transcription of the test files. A percentage score of recognition is obtained and
is the main criteria on determining the accuracy of the recognition. The first useful

output result is shown below.

HTK Results Analysis == ===
Date: Tue Jan 24 17:28:14 2006

Ref : reference.mlf

Rec : recoutb.mlf

------------------------ Overall Results -------—-—-——--—---
SENT: %Correct=0.00 [H=0, S=1680, N=1680]

WORD: %Corr=58.58, Acc=54.90 [H=35753, D=8424, S=16851, I=2250,
N=61028]

This shows that there was a 58.58% word accuracy in the recognition of the test
data. The Acc term indicates the percentage in accuracy including the insertion
errors [22]. Even though the focus of this thesis is not the accuracy of recognition,
the accuracy level here was not sufficient. The recognized data must be somewhat
coherent such that the delay is correctly simulated. In contrast, it is possible to create
a really fast recognizor close to real-time if the accuracy score is neglected, but that
will not yield any practical results. As mentioned in Appendix A, the recognizor’s
accuracy can be increased by modifying the number of Gaussian mixtures of the

HMM (Appendix A.5).

After the incrementing the Gaussian mixtures in the process described in Ap-
pendix A.5 is performed, a new set of HMMs is obtained and the test is run again to

calculate the accuracy. The results after incrementing the mixture by 2 are presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Results 71

| Gaussian Mixture | % Accuracy |

5 58.58
7 61.53
9 65.35
11 67.60
13 69.16
15 69.81
17 70.35
19 70.84
21 70.96

Table 6.1: Number of Gaussian Mixture Recognition Accuracy in %

————————————— HTK Results Analysis ==

Date: Tue Jan 24 17:43:12 2006

Ref : reference.mlf

Rec : recout7.mlf

———————————————————————— Overall Results -—————-————————————mwn
SENT: %Correct=0.00 [H=0, S=1680, N=1680]

WORD: %Corr=61.53, Acc=58.76 [H=37551, D=8397, S=15080, I=1693,
N=61028]

This result show an increase in accuracy by 2.95%. This shows that incerementing
the number of gaussian mixtures improves recognition. The objectives here then
becomes to continue incremeting the number of mixtures until the improvment in

recognition between one set of HMMs and the other is negligible.

Table 6.1 states the recognition accuracy over the trials of increasing the number of
Gaussian mixtures in the HMM. The last entry in the table shows a very small increase
in recognition accuracy. Therefore, the trials of increasing the mixture components
were halted. A 70% accuracy is sufficient for this project since the focus of this thesis

is on building the whole system.

Figure 6.1 shows the graph of the results in Table 6.1. Note how the curve flattens
when the number of Gaussian mixtures is above 17. This indicates that the rate of

increase is very small and therefore, there is no added accuracy in increasing the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

Gassian Mixture Effect on Recognition Accuracy

Recognition Accuracy %
o D
> [«]
v T

(=]
N
T

23
o
T

58 . L i i i . i L
4 [8 10 12 14 16 18 20 22
Number of Gaussian Mixtures

Figure 6.1: Graph of Gaussian Mixture effect on Recognition Accuracy in Percent(%).

number of mixtures beyond this point.

The next step is to adapt the HMMs to the voice of the speakers. The system
was only adapted to one voice (i.e., the voice of the author) to test functionality of

the recognizer. The system can be easily adapted to other voices.

The problem of the adaptation of the voice was the preparation of the sound files.
The TIMIT database was prepared in speech labs where the ambient noise is minimal
and the quality of recording is of industry standard. The sound files to adapt the
system to the author’s voice was recorded on a PC, using a standard sound card and a
standard computer microphone. The adaptation process was not going to be efficient

but was concrete enough for the system.

Initially, recordings of the author’s were made using the HTK tool, HS1ab. These
contents of the recordings were transcribed and used in the adaptation process. With-
out any alteration of the sound files, the adaptation failed. The energy level, F of a

signal, s is computed by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Results 73

E = longi. (6.1)

Equation 6.1 is a measure of the amplitude of the signal. This energy from the
speech signal is then normalized to be used in the MFCC feature extraction[31] dis-
cussed in Sec. 3.5.1. The reason the initial recordings of the author’s voice failed in
the adaptation process, is because they were not normalized at the same level as t.he
rest of the TIMIT database. The energy levels in the recordings of the author’s voice
were much higher than that of the TIMIT database, which caused the recognizer to
treat the samples from TIMIT as background noise. This meant that the TIMIT data
was not used to train the recognizer and therefore, caused a really low recognition
accuracy.

Therefore, the recorded speech signal energies of the author’s voice were normal-
ized the to the same approximate level in the TIMIT database. The adaptation was

then successful and the testing results matched that of the last HMM in the Table 6.1.

6.2 Performance Evaluation in Related Work Pa-
pers

The performance evaluation of the speech recognition was based on the HTK tools
used. The recognition accuracy used by the HTK tool, HResult (Appendix A), was
a sufficient indication of the performance of the recognizer. This is because the focus
of this thesis is the overall system and its synchronization and integration.

The performance of the system is based on how well the synchronization and
integration was between the audioc and video. Initially the synchronization was tested
subjectively as described in Sec. 6.3. This was followed by the verification of timing

parameters of the system and the errors within it. As mentioned in [10], the success

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74
of the synchronization and integration is application dependent.

In {16], the performance of the synchronization and integration of the system is
based on the timing parameters. A scenario is put forward and the system timings
during synchronization and integration is compared to the scenario. The system in
[16] measures the performance of synchronization under different network congestion
conditions. The synchronization is evaluated between three media clients, each having
their different delay times. Th final results show that the system can synchronize three
different media clients with one another under moderate network congestion of 250

packets per second, up to a delay of 100ms between the clients.

In [1], the performance of the synchronization is based on the scheduled times.
Tasaka et al. [1] state that there is no quantitative measure on measuring the synchro-
nization quality[l]. The times of the synchronization are compared with predefined
times. For example, the ideal output time, which is the predetermined correct time
for the output of the media stream, is compared to the synchronized output time. In
[1], the synchronization system run over a telecommunication network and therefore,
the performance evaluators are based on the effect of the data load on the synchro-
nization errors. For example, Fig. 6.2 show the effect of data loads on the delay of the

system of different synchronization algorithms. The algorithm in , is labelled RVTR.

The work done by [1] shows the importance of measuring the media delay of the
system in evaluating the performance of the synchronization. Figure 6.2 shows the

delay is proportional to the data load of the network and it is at a maximum of 250ms.

In [20], the evaluation is based on the presentation time stamp (PTS) accuracy
in MPEG-4 and the memory load used during synchronization. The memory load
is important in [20], because the application is used to synchronize streaming video.
Their results show that their adaptive mechanism provides a more accurate PTS of

the media stream.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Results 75

400
Additional delay = Oms
350) I_J'"" = 100ms ye i
— ——f-= RVTR
300 —O— RSync Oz
--O—- VTR 5'
= e Sgbc P
g 250 = N /
= ;
2 200 X
S o
=
®, 150
s B
:.' 100 /
50 1
o {Head view)
. — T I .
8.0 8.5 7.0 7.5 8.0

Data load {(Mbps)

Figure 6.2: Graph from [1] showing delay times vs data load

In [12], the performance of the time-based approach for streaming video is evalu-
ated using the timing parameters of the stream. This means that the time-stamps of
capture and of playback are compared and the delay between them is evaluated. A
delay threshold is set and is dependent on the experiment setup of {12]. The results
compare the system’s performance across an RTP network. The regular RTP network
with no synchronization has a playback jitter of 246ms while the proposed approach

from [12] shows a reduced playback jitter of 21ms.

The performance evaluation of synchronization systems are dependent on the tim-
ing parameters which are in turn dependent on the application. The timing param-
eters of the system can be defined to range within a certain threshold according the
to requirements of the application. The thresholds of the timing parameters govern

the degree of synchronization of the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

6.3 Performance Evaluation: Synchronization

The synchronization of the system was tested subjectively first. This is by observing
the video sequence, (real and contour), and checking whether the recognized speech
was superimposed onto the frames at the time the speakers seemed to utter them in

the video frame. However, this type of analysis could not be reproduced on paper.

Therefore, quantitative measures (similar to [1]) had to be produced to prove
that the system achieved synchronization of the audio and video signals. There was
an experimental set up to gather the information and results needed to prove that
the synchronization approach was successful. The general system set up is simple:
the USB camera captures the video as mentioned previously and the speakers utter
predetermined sentences. The sentences are written up before hand such that the
length is controlled. The length of the recognized utterance is important because
the longer the sentence, the longer the recognition delay. Also note that the video
buffer system depends on the delay of the recognizer, and therefore, a high delay in

recognition causes the system to fail.

The objective of experimental trials are to test the systems’ limit in terms of
synchronization and buffer capacity. Note here that the system is tested knowing the
fact that the speech recognizers delay is larger than the video processing delay. The
first measurement in the trials is the time length of each utterance and the total time
of speech. This is done by the aid of a stopwatch, independent from the processing
of the system. The time of each utterance from the stop watch is compared to the
time the recognized text that is inserted onto the frame. From the system itself, the
frame rate is measured, the SyncFrames, from Eq. 5.7, and the difference in frames
between the SyncFrames, (SF) and the actual frame number at which the text
was inserted. This difference measure is called Dif f Frames, (DF). Table 6.2 show

the classification of the timing parameters, whether they are fixed, or dynamically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Results 77

| Timing Parameter | Classification |

SyncFrames (SF) Dynamic
Frame Rate (Fg) Dynamic
DiffFrames (DF) Dynamic
Utterance Time Fixed
Buffer Size Fixed

Table 6.2: Timing Parameters Classification.

measured.
There were 8 sentences used in the experiment in various order and frequency:
The chicken crossed the street.

My name is Mo.
The chicken crossed the road to get to the other side.

e

However, there was positive news when Wayne Rooney also ran out with the
squad following his successful scan.

5. Game 3 is Saturday night in Edmonton, and the oilers will need the break to
figure out some way to win a game in the series.

6. If there's a lock on the Stanley Cup, the Carolina Hurricanes hold the key.

7. Germany plays host to the world’s biggest sporting event as 32 teams vie for
the World Cup.

8. I got a knock on my hip and it’s just made my back go into spasm a bit.

Note that the sentences vary in length such that varying recognition delay can be
tested on the system. Table 6.3 shows the results of the first trial. The first 4
sentences from the list above was used in this trial. The Time column indicates the
stop watch time at the end of each uttered sentence. The SF column indicates the
frame number at which the text is to be inserted. The fourth column is the frame
rate, F'R, in frames/second. The fourth column is the incremental difference between
the frame at which the text the was superimposed onto and the SF' calculated from
the synchronization thread, labelled DF.

The first two rows of the table show that the text was inserted at exactly the frame
number, SF calculated by the synchronization thread. This indicates that there was

no synchronization error. The time of the entry according to the frame rate and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

| Sentence | Time(sec) | SF | Fr | DF |

1 3.72 39 | 100} O
2 6.63 64 | 100 O
3 11.35 106 | 9.99 | -6
4 19.25 1721 9.89 | -7

Table 6.3: Results of Trial 1

SF is 3.9sec, which is comparable to 3.72sec. The difference is less than 5% and
could be due to human error in the timing of the sentences. The second row also
shows that the there was no synchronization error in the process of inserting (and
synchronizing) the second utterance. The time is also comparable, 6.4sec in playback
to 6.63sec in reality.

The third row shows the trial using the third sentence. There is a synchronization
error of 6 frames. This means that the text was inserted 6 frames later than calculated.
This is because by the time the video thread received the SF information, the frame
count outputted was greater than SF by 6 frames. At this point the system still
outputs the text. The error here of 6 frames, is at a rate of 10 frames per second,

producing an error 0.6sec. This is a percentage error of:
(DF/FR)/Time % 100 = (6/9.99)/11.35 * 100 = 5.2%

This remains to be a very low error and the system is still successfull in the
synchronization process. The fourth sentence produced an accumulated error of 13
frames. This number is the accumulation of the error of the previous sentence and
so the real error is actually 7 frames, which converts to a time of 0.7sec, at an error
rate of 7%.

The next trial was intended to test the limit of the text and video buffers and
the consequence of long sentences. If the video buffer size is not adequate for the
recognizers delay, the DF will increase at a higher rate, where as if the text buffer

is overflowing the system will crash. Sentence number 7 was repeated and the mea-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Results 79

| Sentence | Time(sec) | SF | FR | DF |
7 5.38 45 | 721 0
12.06 8 | 7.1 0
18.52 126 | 7.1 0
25.18 171 70| 0
32.05 211|171 | -6
38.61 2541 7.1 | -7
45.33 2041 7.2 -7
52.13 339 7.1 | -5

RS ESTIEST BN IEN{ N

Table 6.4: Results of Trial 2

surements were taken. Table 6.4 displays the results.

The results from this trial show that the synchronization approach deals appro-
priately with long utterances however, the system runs at a lower frame rate from the
processing of the large sentences. The actual synchronization is successful in most

attempts and the maximum error is at{from the 6th row):
(DF/FR)/Time x 100 = ((7/7.1) — 38.61)/38.61 % 100 = 2.5%

This error remains low even with long utterances which cause an increased delay from
the recognizer. This error should be thought of in concurrence with the amount of
processing the system is performing, which includes edge detection, speech recogni-
tion, and synchronization.

The next trial to be discussed evaluates the performance enhancement caused by
increasing the video buffer from 20 frames to 40 frames. Recall from Ch. 4 that the
buffer was implemented to compensate for the recognizer’s delay. The actual size of
the buffer also depends on the average delay of the recognizer. If the frame buffer
is increased, then it allows the system more time to evaluate the SF and decrease
the synchronization error, however, increase the overall output delay of the system.
Table 6.5 compares two trials, the first with 20 frames as a video buffer, the second
with 40 frame buffer.

Note that The first percentage errors were not given because the error calculated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

p——

Buffer = 20 frames Buffer = 40 frames
Sentence | Time(sec) | SF | FR | DF | %error | Time(sec) | SF' | FR | DF | %error
1 1.71 22 176 0 - 1.59 31 1971 0 -
1 5.53 43 | 74 0 5.0 5.61 61 |93 O 16
1 9.36 66 | 7.3 0 3.4 9.67 90 | 9.1 0 23
1 13.29 89 1 73| -1 8.3 13.76 119190 | 0 3.9
1 16.86 1171 73 | -6 4.9 17.68 149190 | O 6.4
1 21.37 140 | 7.3 | -7 10.3 21.66 175 9.0 | -1 10.2
1 25.56 162 | 7.3 | -5 13.2 25.71 201 90| -9 13.0
1 29.02 180 | 7.3 | -10 15.0 29.76 230 | 89 | -6 13.0
-29 -16

Table 6.5: Results of Buffer Trial

with the data available was not reflective of the actual events, as the time is very
small and a one frame error would result in large percentage error.

Table 6.5 shows the results of the two trials involving different sized buffers, 20
frames and 40 frames. The %error is the differnece between the measured time and
the calculated time from the SF and the FFR. The maximum error in both cases is
not over 15%. These numbers are measured in very short time periods and so are
prone to large human error. The objective to test the system over short time periods,
is to test the speed of the system and it’s accuracy when large amounts of processing
is required over a short period of time.

The trial involving the 20 frame buffer shows that the first synchronization error
was present at the 4th iteration of the first sentence. The maximum error at the
last iteration, was at a 15% error. In the trial involving the 40 frame buffer, the
synchrnoization error was present at the 6th iteration. Therefore, it is eveident that
the 40 frame buffer is less prone to error and proves that the size of the buffer affects
the synchrnoization success rate. Also if the total frames of synchroniuzation error is
noted (the last row in Table 6.5), notice the change in percentage error of the DF.
The calculation is as follows:

20 Frame:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Results 81

Incremental Synchronization Error for Buffer = 20 Frames Incremental Synchronization Error for Buffer = 40 Frames

2 T

Incremantal Differnce Frame (DF)
incremental Ditfernce Frame (DF)

12 i i . -12 L —
0

50 100 150 200 [¢] 50 100 150 200 250
Sync Frames (SF) Sync Frames (SF)
(a) 20 frame Buffer (b) 40 frame Buffer

Figure 6.3: Graph of Incremental Synchronization Error.
Total DF = —29
Total SF =180
%error in SF = 29/(180 + 29) = 13.9%
40 Frame:
Total DF = —16
Total SF = 230
%error in SF = 16/(230 + 16) = 6.5%

There is a significant reduction in error caused by the increase of the buffer size,
from 20 frames to 40 frames. The frame rate, F'R, is also increased in the system with
the larger buffer. This is due to the fact that more time is dedicated to processing
rather than outputting the frames because of the buffer size. Note that in both trials
the objects in the frames were identical and motion was kept at a minimum. The
system as a whole performed well in this trial because of the short sentence used.
Even though the succession of sentences were at close proximity in terms of time, the

recognizer had a lower delay.

The graphs in Figs. 6.3(a) and 6.3(b) show that the system with a 40 buffer gives

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

a better performance. Both system errors fluctuates depending on the utterance and
their respective time. The graph is intended to show that there is overall a lower
error in the system with a larger buffer. These results can be viewed in relation with
that from [1], in Fig. 6.2. Figure 6.2 showed that the larger the data, the larger the
delay. The results form Figs. 6.3(a) and 6.3(b) show that a larger buffer reduces the
data load on the synchronization process and in turn reduces the errors. However,
these errors cannot be compared because of the differences in system characteristics.

In summary, the system has a better performance when the utterances are kept
short which causes the recognizer delay to decrease. There is also a tradeoff where
an increase in buffer size reduces the synchronization error, but increases the output
delay.

The synchronization error is because the synchronization data, SF, is not available
in time. One thing to note here is the synchronization thread depends on the audio
thread and the recognizer, as explained in Fig. 5.5. If the audio thread is slow in
providing the necessary flags for the synchronization operation then the probability

of error in the synchronization process is higher.

6.4 Analysis of Results

The speech recognition results were satisfactory at an accuracy of 70%. This result
was obtained using a large dictionary and grammer. The adaptation of the author’s
to the recognition was also successfull. The accuracy of the recognition was also
increased by incrementing the number of gaussian mixtures in the training and testing
process.

The synchronization system performed as expected and utilized the time-stamps
to produce a synchronized output. The system Vmay suffer from large delays but if the

delays are controlled using an appropriate buffer size, then defects can be avoided.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Results 83

DF <0 Do Nothing

DF =0 ~ Insert Text

0 < DF < (0.2 Total Frames) Insert Text
DF > (0.2-TotalFrames) Restart System

Table 6.6: Synchronization System Actions based on Difference Frame (DF')

It was shown that the synchronization error was not significant. From subjective
evaluation of the system output, it is determined that the system could tolerate an .
error of 20% because the frame rate (avg. 10 frames/second) is low. This tolerance
defines the threshold Th of the system. The threshold is defined to be 20% which

translates to:

Th =0.2--Total Frames

An error above this threshold indicates the system has to be restarted or re-synchronized.

Recall that this can accomplished by flushing the buffers.

Table 6.6 summarizes the actions of the synchronization system relative to the
difference frames. If DF is less than zero then the system waits until the frame
number to be displayed reaches the value indicated by SyncFrames. If DF is zero,
then the text is superimposed onto the frame immediately and indicates successfull
synchronization. If DF is greater than zero, but less than the synchronization error
threshold Th, then the text is outputted immediately. If DF is greater than the
threshold, the system has to be restarted to maintain the synchronization error to

acceptable level.

If the synchronization results of the system are compared to that of Fig. 6.2, it is
evident that synchronization error increases with processing load. In the case of this
system, the synchronization error is increased if the utterance is long, while in [1],
the delay of the media units (synchronization error) is increased with an increased

data load. The overall delay differs in both systems, as there is no processing of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

(a) Real Image (b) Contour Image

Figure 6.4: System output using One Object.

video and audio before transmission in [1], and therefore a comparison of systems is
not useful.

A sample screenshot of the system output is shown in Figs. 6.4(a), 6.4(b), 6.5(a),
6.5(b), 6.6(a) and 6.6(b). The phonemes are superimposed onto the image, under

the faces boxes.

Figures 6.7(a) and 6.7(b) show the initial exchange of speech. There is only one
output text from one of the speakers. The text is:”f ao r”. This represents ”four”
in phonetics. The output text is situated next to the face box of the related speaker
and travels to the next speakers face box. The Figs. 6.8(a) and 6.8(b) display the
second exchange of speech. This is: ” f t r iy m” which reprents "five” in phonetics.
Of course the recognition is not exact and is only at 70%. The second speech text
also travels to the face of the other object. The remainder of the figures show other
outputs of the propsed system

The system integration was successfull and the only criteria to manage is the
size of the buffers. The flag signalling set-up was sufficient to realize the systems

objectives. The limitations of the system lie within the speed of the recognizer and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Results 85

(a) Real Image (b) Contour Image

Figure 6.5: System output using Two Objects.

(a) Real Image (b) Contour Image

Figure 6.6: System output using Three Objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

(a) Real Image (b) Contour Image

Figure 6.7: System output using Two Objects with First Text Qutput.

(a) Real Image (b) Contour Image

Figure 6.8: System output using Two Objects with Both Text Output.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Results 87

thvah brwvaeoor

(a) Real Image {b) Contour Image

Figure 6.9: System output using Two Objects with First Text Output.

whwak by veoer imwm1Mwmmﬂ

/
!

J

(a) Real Image (b) Contour Image

Figure 6.10: System output using Two Objects with Both Text Output.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

(a) Real Image (b) Contour Image

Figure 6.11: System output using Two Objects with First Text Output.

(a) Real Image (b) Contour Image

Figure 6.12: System output using Two Objects with Both Text Qutput.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Results 89

(a) Contour Image (first exchange of speech) (b) Contour Image (second exchange of
speech)

Figure 6.13: Contour output using Two Objects with Both Text Output.

the size of the buffers.

Furthermore, the system proposed was not dependent on the number of speak-
ers (video objects) captured. The synchronization worked equally well for multiple
speakers as it did for one speaker. The only drawback is that the speech recognizer
was trained for the author’s voice only, and was not adapted to other speakers. This

means that the speech recognizer is speaker dependent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

Chapter 7

Conclusion

7.1 Conclusion

This thesis proposed a new approach in solving the audio - video synchronization and
integration problem. The work reviewed in the Literature Review in Ch. 2 provided
synchronization algorithms that used the notion of time-stamps but did not involve
any processing on the raw media streams. In [21], MPEG-7 descriptors were used
to solve the data retrieval problem as well synchronize the audio and video streams.
Therefore, there is processing of MPEG-7 descriptors to extract the required infor-
mation but there is no processing on the raw audio and video streams. Furthermore,
the descriptors were dependent on the environment, and have to be designed specifi-
cally for a synchronization application. Even though it is possible to design MPEG-7
descriptors (DSs) for synchronization, it would be complicated to achieve in such a
system as proposed here. This is because, the audio and video have to be separated
for them to be processed, and the DSs have to be valid before and after this processing
for the synchronization to be successfull. In the system proposed in this thesis, the
audio stream was processed via a speech recognizer, while the video stream was pro-

cessed by a video object detector. The system proposed synchronizes the audio and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Conclusion 91

video streams after processing, in any environment because the synchronization ap-
proach is dependent on the timing information. Further processing on time sensitive
signals causes the synchronization of the signals to be even more challenging.

The work reviewed used the timing information of the media streams and used
buffer systems to accommodate for the delay in the signals processing. Even though
the work reviewed was mostly concerned with media systems that operate over a
communication network, the work is still relative to what has been presented in this
thesis.

The notion of using time-stamps was taken from the reviewed work ([12], [16],
[21]) to establish a common reference point to the media streams. The other notion
developed was that of the buffer system to store the media streams before output.
The system in this thesis added the principle of processing media streams before the
synchronization process and presentation. Note that several of the work reviewed
use a communication system, that be an internet protocol or a control architecture
to control the flow of data. These systems reviewed did not provide control systems
that did not involve communication networks. The system proposed in this thesis

was integrated by the use of a flag signalling system between the threads.

7.2 Summary of contributions

This thesis proposed a complex multimedia system that developed new concepts in
media synchronization. The proposed system synchronized processed audio and video
streams. The results show that the synchronization was successful in terms of the
application. It was stated that the synchronization tolerance is application dependent
and that had to be justified using objective results. It is impossible to illustrate the
subjective results obtained. The results chapter (Ch. 6) provides the numbers involved

in the system and displays the errors that may be present.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

The system was implemented for the case of the audio processing delay being
always larger than the video processing. However, because the synchronization was
dependent only on the timing information, the system can adapt to both cases. Only
a minor change in the integration and communication system is needed. Also it was
shown (Sec. 6.4), that the system is not dependent on the number of speakers. The
synchronization works equally well with multiple speakers, and only the accuracy of
the speech recognition is affected, because the speakers voices were not adapted to
the recognizer.

1

The proposed system * is aimed at establishing a multimedia system that uses

raw media streams and produces a different output through their processing. The

system achieved in developing the following:

¢ Speech recognition: developed a speech recognizer using HTK. The resources
of the recognizer were developed and used to train the recognizer. A 70%
recognition accuracy was established for the author’s voice.

o Audio Time-Stamps: Extracted the timing information from the recognition.
The delay of the recognizer was measured as well as the silence and utterance
times.

¢ Video Time-Stamps: The delay of the video processing was measured to
establish the time-stamps of the video frames.

¢ Buffer: Stored and indexed the audio data (recognized speech) and the pro-
cessed video frames (contour images). The size of the buffer was dependent on
delay of the particular media stream.

¢ Synchronization: Synchronization was made possible and was developed to
relate the time-stamps of each stream to one another and use the buffer to
output the correct data (frames and text). The general idea was to establish
a common clock from the time-stamps obtained from two separate clocks (the
clocks of the recognizer and the video processing).

o Integration: To use the synchronization framework, a signalling system was
developed to be able to control the flow of data. Each of the media streams’

L A paper based on the proposed system was published at the Canadian Conference on Electrical
and Computer Engineering 2006 (CCECEO06). Two more papers are also submitted to the IEEE
journal of Transactions on Multimedia and the International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2007).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Conclusion 93

processing and synchronization was performed on a separate thread. A flag
system was established to communicate between the threads. The flag system
was used to control the flow of data and the states of each of the threads.

7.3 Possible extensions

There are a number of issues to consider in order to enhance the performance of the

proposed system.

7.3.1 Speech Subsystem

The speech recognizer can be improved by adapting the system to more voices. The
system will then be more robust in variations in speech. Another improvement is
to speed up the recognition time as that is the bottle neck of the system. If this is
accomplished, then word recognition can be implemented. Recall that word recogni-
tion (instead of phoneme recognition) was not implemented because the recognition
delays were too large to be practical for the proposed system. The speech recognizer
can also be improved to identify the speakers. This is by training the system and
allowing the system to indicate the identity of the speaker. Again this improvement

is aimed at adding more interactivity to the system.

7.3.2 Video Subsystem

As for the video processing system, it could be developed to process larger resolutions
in real time. The current system is not able to process large resolutions with a small
delay. The face localization can be improved to detect profile faces. At the moment
the face detection is performed on a square on the face. The face localization is

needed for the movement of the text.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

7.3.3 Synchronization Subsystem

A number of improvements can be added to the synchronization subsystem. First, a
dynamic buffer system can be implemented. The buffer sizes of the audio thread and
the video thread will depend on the average processing delays of the media streams.
By this the system will be even more adaptable on the implementation levels. For
example, if the video delay is larger than the audio delay, then the size of the video
buffer should accommodate this delay. A dynamic buffer will accommodate its size

according to the average processing delays.

Then a microphone array can be used to detect the location of the speakers. The
microphone array can provide the data needed to develop a Time delay of Arrival
(TDOA) system that can be used to detect the location of where the speech is coming
from. A microphone array system will also indicate the location of multiple speakers.
By this the text can move form the speaker to the intended speaker. This would add
more interaction in the system which is the objective. The microphone array will
also aid in the synchronization process. The synchronization algorithm can be cross
checked with the microphone array information, to locate and determine whether the
speaker actually spoke or if the speech was noise. The system proposed synchronizes
adequately with multiple speakers. The proposed synchronization approach is only

time dependent and does not depend on the speech.

Another improvement is to correct the synchronization errors. One method is to
skip an audio output file to re-synchronize the system. This option is not favorable as
it will be obvious to the user there is a missing audio output. The second method is to
repeat the last frame. The number of repeated frames would be equal to the number
of frames that the system is desynchronized for. Another approach is to distribute the
repeated frames, which will cause less obvious repetition. For example, if the error is

10 frames, then one option is to repeat every 5th frame twice. This means that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Conclusion 95

system will be synchronized once again after the 25th outputted frame. The solution
to fix the synchronization errors has to be carried out after a certain threshold which
is determined by the number of frames the audio and video are desynchronized by.
An example of such thresholds is given in Table 6.6. Another approach to eliminate
the synchronization errors at runtime is flushing the buffers and to basically restart
the system. This can be accomplished detecting a period of inactivity in the systém
(e.g., long periods of silence, or very little motion), and therefore flushing the buffers
and restarting the system.

Furthermore, the system can be expanded to run over telecommunication networks
using protocols such as RTP. Also, by ifnplementing the proposed system using RTP,
multiple sessions of the system can also be implemented. This is achieved by the syn-

chronization algorithm proposed in this thesis to synchronize multiple media streams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Bibliography

(1] S. Tasaka, T. Nunome, and Y. Ishibashi, “Live media synchronization quality of a
retransmission-based error recovery scheme,” in IEEFE International Conference
on Communications, ICC, June 2000, vol. 3, pp. 1535 — 1541.

(2] A. Amer, “Memory-based spatio-temporal real-time object segmentation,” in
Proc. SPIE Int. Symposium on Electronic Imaging, Conf. on Real-Time Imaging
(RTI), Santa Carla, USA, 2003, vol. 5012, pp. 10-21.

[3] J. Yogeshwar, “Audio/video synchronization issues,” Tech. Rep., FrontPorch
Digital, August 2001.

[4] Linear Acoustic Inc., “Audio and video synchronization: Defining the problem
and implementing solutions, comprehensive report,” Tech. Rep., Linear Acoustic
Inc., 2003.

[5] Stradis Inc., “Application program interface (api) for windows,” Tech. Rep.,
Stradis Inc., 2003.

[6] M. Robin, “The audio synchronization concept,” White Paper, Miranda Inc.,
1999.

[7] R. Lienhart, I. Kozintsev, and S. Wehr, “Universal synchronization scheme for
distributed audio-video capture on heterogeneous computing platforms,” Berke-
ley, CA, USA, Nov 2003, ACM Annual Conference on Multimedia, pp. 263 —
266.

[8] Advanced Communication Technologies and Services, “Vidas: Video assisted
audio coding and representation,” Tech. Rep., InfoWin: MPEG4 in Europe,
1999.

[9] M. Slaney and M. Covell, “Facesync a linear operator for measuring synchroniza-
tion of video facial images and audio tracks,” in Neural Information Processing
Systems Conference, Denver, CO, USA., 2000, vol. 13, pp. 814-820, MIT Press.

[10] H.-Y. Chen and J.-L. Wu, “Multisync: a synchronization model for multimedia
systems,” [IEEFE Journal on Selected Areas in Communications, vol. 14, no. 1,
pp. 238-248, Jan 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 97

[11] C.-M.Huang, C.Wang, and C.-H.Lin, “Interactive multimedia synchronisation
in the distributed environment using the formal approach,” in IEEE Proceedings
Software, Aug 2000, vol. 147, pp. 131-143.

[12] K.H. Kim, S. Liu, M.H. Kim, , and D.H. Kim, “A global-time-based approach for
high-quality real-time video streaming services,” in Seventh IEEE International
Symposium on Multimedia, 2005, p. 9pp.

[13] T. Qian, S. Tan, and R. Campbell, “An integrated architecture for open dis-
tributed multimedia computing,” in International Workshop on Multimedia Soft-
ware Development, Proceedings.,, 1996, pp. 24 — 30.

[14] Z. Splawski, “Synchronization mechanisms for multimedia streams and their
specification in timed lotos,” in Proceedings of the 23rd EUROMICRO Confer-
ence: New Frontiers of Information Technology, 1997, pp. 456 — 463.

[15] A. Boukerche, S. Hong, and T. Jacob, “A soft-handoff management scheme for
wireless multimedia systems using quasi-receivers,” in International Mobility and
Wireless Access Workshop, MobiWac, October 2002, pp. 26 — 29,

[16] A. Benslimane, “A multimedia synchronization protocol for multicast groups,”
in Proceedings of the 26th Furomicro Conference, Sept 2000, vol. 1, pp. 456 —
463.

[17] K.W. Lee, D.Y. Oh, K.H. Lee, GS. Lee, T.S. Kim, and H.S. Oh, “A multimedia
synchronization model for efficient service of quality,” in Proceedings of the IEEE
Region 10 Conference TENCON, Sept 1999, pp. 325 — 328.

(18] E. Stoica, H. Abdel-Wahab, and K. Maly, “Synchronization of multimedia
streams in distributed environments,” in Proceedings of the IEEE International
Conference on Multimedia Computing and Systems, 1997, pp. 395 — 402.

[19] F. Wang, W. Zhang, and S. Yu, “Design and implementation of timing model in
hdtv encoder,” IEEE Transactions on Consumer Electronics, vol. 4, no. 4, pp.
908 - 912, Nov 2002.

[20] D. Lee, N. Kim, and S. Kim, “The mpeg-4 streaming player using adaptive decod-
ing time stamp synchronization,” in Proceedings. Ninth International Conference
on Parallel and Distributed Systems, Dec. 2002, pp. 398 — 403.

[21] R.J. Lopes, A.T. Lindsay, and D. Hutchison, “The utility of MPEG-7 systems in
audio-visual applications with multiple streams,” IEFE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 1, pp. 16-25, Jan 2003.

[22] S. Young, G. Evermann, T. Hain, D. Kershaw, Gand Moore, J. Odell, D. Ollason,
D. Povey, V. Valtchev, and P. Woodland, The HTK Book, Cambridge University
Engineering Department,Microsoft Corporation, 3.2.1 edition, 2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 98

[23] B. Burchard, R. Romer, and O. Fox, “A single chip phoneme based hmm speech
recognition system for consumer applications,” IEEE Transactions on Consumer
Electronics, vol. 46, no. 3, pp. 914 — 919, Aug 2000.

[24] T. Takiguchi, S. Nakamura, and K. Shikano, “Hmm-separation-based speech
recognition for a distant moving speaker,” IEEE Transactions on Speech and
Audio Processing, vol. 9, no. 2, pp. 127 — 140, Feb 2001.

(25] X. Luo and F. Jelinek, “Probabilistic classification of hmm states for large
vocabulary continuous speech recognition,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing, ICASSP. IEEE, 1999, vol. 1, pp.
353 — 356.

[26] S. Yoshiwaza, N. Wada, N. Hayasaka, and Y.Miyanaga, “Scalable architecture for
word hmm-based speech recognition,” in Proceedings of the 2004 International
Symposium on Circuits and Systems, ISCAS. IEEE, May 2004, vol. 3, pp. 417 -
420.

[27] F. Jelinek, Statistical Methods for Speech Recognition, The MIT Press, 1997.

[28] S. Saito and K. Nakata, Fundamentals of Speech Signal Processing, Academic
Press, 1985.

[29] M. R. Schroeder, Computer Speech: Recognition, Compression, Synthesis,
Springer, 1999.

[30] L.R. Rabiner, “A tutorial on hidden markov models and selected applications in
speech recognition,” in Proceedings of the IEEFE. February 1989, vol. 77, IEEE.

[31] C. Beccgetti and L.P. Ricotti, Speech Recognition: Theory and C++ Implemen-
tation, Wiley, 1999.

(32] A. Amer and C. Vazquez, “Event detection for video surveillance,” Tech. Rep.,
vidpro-TR-03-06, Software-Copyright Report Submitted to Valeo Management
L.P., Montreal, Canada, March 2006.

(33] Intel, “Open source computer vision library,”
http://sourceforge.net/projects/opencvlibrary/, August 2005.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Appendix A

Hidden Markov Model Toolkit
(HTK)

HTK is a set of tools and applications that assist in building Hidden Markov Models
(HMM). At its core, HTK can be used for the general use of HMMs. However,
the extensive utilities are primarily tailored for HMM-based speech processing tools,
such as continuous speech recognition applications. Other applications that can be
developed using HTK include character recognition and DNA sequencing.

HTK is an open source project that is managed mainly by members of the Cam-
bridge University Engineering Department (CUED). The Microsoft Corporation owns
the license and the original code to HTK, however, Microsoft licensed the development
of HTK back to CUED.

The toolkit consists of a number of library modules and tools associated with
them, and are all written in the C programming language. The tools included with
the kit provide processing tools for raw speech, HMM training (parameter estimation),
testing and result analysis [22].

This appendix explains the main properties of the HTK toolkit. It also discuss
how HTK was used to train and test the speech recognition of the system.

The HTK tools are used via the command line interface. As per any command
line program, there are arguments and parameters that must be prepared in order
for the program to operate correctly. In HTK. some parameters can be specified in a
configuration file that can be prepared off-line. The HTK authors prefer to keep the
command line interface, as opposed to a graphical one because it has the advantage
of writing shell scripts which automates and facilitates the building of large-scale
systems [22].

To build a system using HTK, there are four main processing steps involved.
These are: data preparation, training, testing and analysis. These steps are typical
for building any speech recognition system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
A.1 Data Preparation

Data needs to be prepared in order to train the system. This involves preparing sound
files and their transcriptions. These files are usually obtained from database archives.
HTK has a recording tool, HSLab, which along with recording the sound file, can be
used to add the transcription.

The TIMIT database was used to train the speech recognition module discussed
here. The TIMIT database is designed to provide speech data for the development
of automatic speech recognition systems. TIMIT was recorded at Texas Instruments
(TI), and transcribed at at the Massachusetts Institute of Technology (MIT), and
prepared on CD-ROM by the National Institute of Standards and Technology (NIST).
TIMIT contains a total of 6300 sentences uttered by 630 speakers from 8 major
dialects of the United States.

The TIMIT database eliminates the need to record the data and their relative
transcriptions. Two more steps are needed to tailor the database in the form needed
for training. The first of these steps is to alter the transcriptions such that they are
uniform with the grammar and dictionary to be used in the recognizer.

A.1.1 Transcription

HLed is a tool in HTK that is used in the data preparation. HLed allows for the
modification of the transcriptions of the sound files. HLed modifies the transcriptions
such that only the phones defined are present in the transcription.

All the recorded data that is used for the training process, must have the associated
transcriptions defined. Even though the TIMIT database provides the transcriptions,
they must be altered to accommodates the phones used. First, the transcriptions
must be converted such that each word is on a separate line. All the transcriptions
too are in one file, called the Master Label File (mlf).

After the mlf file is created, the phonemes are assigned to each word in the tran-
scription. This transforms the transeriptions from a word based transcription to a
phoneme based transcription. Figure A.l summarizes the process of transforming
the transcription files.

The typical command for the transformation is as follows:

HLEd -1 ’*’ -d dict ~i phonesO.mlf mkphonesO.led words.mlf

In the command above, dict contains the phoneme translation to the words used.
A Typical entry in the dictionary is represented as follows:
ABBREVIATE ih b r iy v iy ey dx sp

It is basically a words-phonemes dictionary. The command looks up the tran-
scription of the words contained in words.mlf, and transforms them according to the
dictionary as well as any other rules which may be in mkphonesO.led. The -1 and
7%’ are used to generate the paths of the transcriptions. The mkphones.led contains
the following rule:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. Hidden Markov Model Toolkit (HTK) 101

Edit rules
(mkphones.led)

\d

Phoneme
Transcription
(phones0.mlf)

Word Transcription

(words.mif) HLEd command

J

Dictionary
(dict)

Figure A.1: Block Diagram of Transcription Process.

EX
IS sil sil
DE sp

The EX is a command to replace each word in the word.mlf by its corresponding
phoneme translation in the dictionary dict. The IS command inserts silence (sil)
models at the beginning and end of every recorded transcribed utterance. The delete
command DE, deletes all short-pause, sp, labels which are not needed.

A.1.2 Feature Extraction in HTK

The HCopy tool , is important and must be used in preparing the raw data. Even if the
sound database is obtained (as it is from TIMIT'), the sound files must be converted
into an appropriate format such that training can take place. Training in this sense
means estimating the parameters of the HMMs according to the sound files used.
Basically, HCopy is used to convert the source sound file into an appropriate format
such that all the important information is extracted. Namely it performs feature
extraction, whose theoretical process was explained in Sec. 3.5.

This stage of data preparation involves extracting the feature vectors from the raw
waveforms. The method used here is Mel Frequency Cepstral Coefficients (MFCCs),
which are derived from FFT-based log spectra. The HCopy command performs this
coding. A configuration file is associated with the command which indicates which
parameters are to be used. Here is the configuration file. '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Configuration file

(config)
¥
File Paths) S1.mfc
{(wavmfc.ixt) HCopy command S2.mfc
(eg: /root/S1.wav -> froot/S1.mfc)
v
Slwav
S2.wav

Figure A.2: Block Diagram for HCopy Process.

Configuration file
TARGETKIND = MFCC
TARGETRATE = 100000.0
SAVECOMPRESSED = T
SAVEWITHCRC = T
SOURCEFORMAT = WAV
WINDOWSIZE = 250000.0
USEHAMMING = T
PREEMCOEF = 0.97
NUMCHANS = 26
CEPLIFTER = 22
NUMCEPS = 12
ENORMALISE = T

The TARGETKIND is the target coding format, and in this case is MFCC. The frame
period is 10ns. The units in HTK are 100’s of ns. The output is saved in a compressed
format with crc checksum added. The format is in .WAV. The FFT is indicated to
use a Hamming window. The filterbank is also indicated to have 26 channels and
12 MFCC filter banks. The ENORMALISE option indicates to the the tool to perform
energy normalization on the files to be coded.

The tool HCopy takes in a wavmfc.txt file, which is a script file to indicate the
path of the raw audio file and the path of the subsequent extracted feature file. An
example of the command is as follows:

HCopy -C config -S wavmfc.txt

A diagram showing the structure of the Hcopy command is shown in Fig. A.2 to
summarize the process[22].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. Hidden Markov Model Toolkit (HTK) 103
A.2 Training

The training process is where the HMMSs of the system are set up, and their parameters
estimated according to the data provided. In HTK, HMMs are defined using text files
to facilitate their editing. The initial values of the HMM are given by HTK. HTK
provides a prototype for the HMM construction. The values are changed later during
the training process.

A.2.1 Creating Initial HMMs

The first step is to create the prototype HMM definition. The actual values in this
stage are not important but the actually topology of the HMM is defined here. The
prototype is taken from the HTK manual [22], as it was the main guideline in building
the HMMs. The HMM prototype used was a 3 state left to right. This is a good
prototype [22] for a phone-based system, which is the objective. An example of what
the prototype and the subsequent HMMs look like is given.

o <VecSize> 39 <MFCC>
h "proto"

<BeginHMM>

<NumStates> b

<State> 2

<Mean> 39
0.0 0.0 0.0 .
<Variance> 39
1.01.01.0 ...

<TransP> 5

O O O O o
coooo
O O O O
coooo
OO O OO
coow o
O O O O O
oNmsOO
O O O O O
owooo

<EndHMM>

The "proto" is where the phoneme is defined. In place of proto, the phonemes
defined in the dictionary and the grammer is explicitly added. Between the tabs of
BeginHMM and EndHMM is where the HMM of the phoneme is defined. The NumStates
is defined as 3, including one entry and one exit state, That is why the HMM starts
with defining the parameters of state 2. It defines the <Mean> and <Variance> of the
state. The definition continues with remaining states. It finally defines the transition
probability <TransP> of the states in a matrix format.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

HCompV is a tool that reestimate’s the global means and variances and set all the
Gaussian mixtures in the HMMs to have the same values. The reestimating is based
on the training data. The command is as follows:

HCompV -C config -f 0.01 -m -S train.txt -M hmmO proto

config is the configuration file, train.txt is the script files containing the relative
paths in the system to the training data, hmmO is the folder to save the new HMM
prototype proto. The -f option creates a variance floor measure along with the
prototype. To create HMMs for each of the phonemes defined, the HMM prototype is
copied and relabeled to the relevant phoneme, and stored in an hmmdefs file. This is
a Master Macro File (mlf). By the end of this process, the HMMs for each phoneme
is initialized.

The next step is to re-estimate the HMM parameters, now stored in hmmO, using
the training data, obtained from the TIMIT database. The tool HRest is used to
re-estimate the HMM parameters. The tool is used as follows:

HERest -C config -I phonesC.mlf -t 250.0 150.0 1000.0 S train.txt
-H hmmO/macros -H hmmO/hmmdefs -M hmml monophonesO

The new estimated values are stored in hmml. The macros contain the global
options and the variance floor values discussed earlier. This process is repeated three
times, and in turn the final set of initialized monophone HMMs are present in hmm3.

A.2.2 Remodeling Silence

The previous step has generated the three state left-tot-right HMM for each phoneme
and initialized their parameters. Now that the initial HMMs are defined the next step
was to make sure that the HMMs are robust to noise interference. This is done by re
modellling the silence representation in the HMM of sil. A state is added between
the second and fourth states as shown in Fig. A.3 to represent the short pause in
speech. Note this is performed in accordance with the guidelines presented in the
HTK Book[22].

This is done by copying the center state of the sil model and make it the sp
model. Then the tool HHEd is run to add the necessary transitions to link the sp to
the sil model. The command is invoked as follows:

HHEd -H hmm4/macros ~H hmm4/hmmdefs -M hmm5 sil.hed monophonesl

hmm4 contains the new new set of HMMs with the sp model added. sil.hed
contains the commands to tie the sp model to state 3 as indicated in Fig. A.3.

Now the HMMS are re-estimated with the new silence model. The steps discussed
in the subsection of initialization are repeated after remodelling the silence. At the
end of this process the HMMs are re-estimated, for a total 7 times, to be finally stored
in hmm?7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. Hidden Markov Model Toolkit (HTK) 105

SIL Model
4

\ 4

Shared
Observation State
SP Model

Figure A.3: Remodeling SIL HMM

Realignment

In this step, the words in the transcriptions of the training data are transformed, or
realigned, to their phoneme equivalent. This is done by looking up the phonemes
associated with each word in the transcription file word.mlf in the dictionary dict,
and saving it in aligned.mlf. This is done by running the recognition, HVite com-
mand of HTK and is invoked as follows:

HVite -1 ’*’ -o SWT -b silence -C config -a -H hmm7/macros

-H hmm7/hmmdefs -i aligned.mlf -m -t 250.0 -y lab -I words.mlf

-S train.txt dict monophonesl

The difference between this step and the HLEQ step discussed earlier, is that the
recognizer, HVite considers all pronunciations of each word and outputs the most
suited pronunciation according to the present acoustic training data[22].

After the realignment is completed, three more re-estimations are carried out, and
the final trained HMMs would be contained in hmm9.

A.3 Testing

The next step in the process is the evaluation of the trained HMMs. In the TIMIT
database that has been used thus far, there exists a testing set of acoustic data, as
opposed to the training set. This set is used to evaluate the recognizers’ performance.
It contains the same sets of voices used to train the HMM. The same procedure fol-
lows for the testing set of acoustic data, where as the features must be extracted using
the HCopy tool. To evaluate the recognizers’ ability on these features the following
command is invoked:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

HVite ~H hmm9/macros -H hmm9/hmmdefs -S test.txt -1 7%’
-i recout.mlf -w wdnet -p 0.0 -s 5.0 dict tiedlist

The HMMs used for recognition are stored in hmm9. The paths of the extracted
features of the test data are in dictated by the script file test.txt. wdnet is the
word network. The HTK recognizer requires a word network to be defined using a
predefined format. The word network lists each word instance and the word to word
transition [22]. It is created from the defined grammer and the HTK tool HParse.
The recout.mlf file contains the output of the recognizer. The output file saves the
phonemes recognized, as well as the time frames it observed them in.

Now that the output has been saved, it is compared with the original transcrip-
tions of the test data and the score of the recognizer is obtained. The HResults
tool is used to perform the comparison between the recognized phonemes and the
transcriptions. HResults is invoked as follows:

HResults -1 testref.mlf monophonesl recout.mlf

The results are in the form of;

HTK Results Analysis
Date: Sun May 7 16:14:45 2006

Ref : testrefs.mlf

Rec : recout.mlf

me e Overall Results -—--—-—--==——~—==
SENT: %Correct=98.50 [H=197, S=3, N=200]

The percentage value is the percentage of correct estimations between the recognized
phonemes and the transcriptions. The results for the system in discussion is presented
in Ch. 6.

A.4 Voice Adaptation

The system discussed up to this point has been trained from the data contained in the
TIMIT database. This did not prove to be sufficient to the system. When the current
HMMs trained using the TIMIT database were tested using my voice, the recognizer
score was less than 20 percent. With this score the recognizer would not be able to
run live, and even if it was able to produce a live output, the output delay would be
very large. The large delay was unacceptable due to synchronization reasons that is
explained in Ch. 4.

To increase the recognizers’ ability to recognize ones voice, ideally the recognizer
should be trained using that voice. However, it is unconceivable to record a set of
acoustic data of ones’ voice that is similar in size and quality as that of the TIMIT
database. The solution is to adapt the recognizer, that is trained using the TIMIT
database acoustic data, with that of sample data using the voice that is being used.

To adapt a new voice, the new acoustic data must be prepared. This is done

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. Hidden Markov Model Toolkit (HTK) 107

by generating test prompts from the dictionary being used. The training utterances
must contain words that are predefined in the dictionary of the system. The tool
HEAdapt is used to adapt the new voice and create the new HMM. The command is
as follows:

HEAdapt -C config -g -S adapt.scp -I adaptPhones.mlf
-H hmmi6/macros -H hmm16/hmmdefs -K global.tmf tiedlist
HEAdapt -C config -S adapt.scp -I adaptPhones.mlf
-H hmmi16/macros -H hmm16/hmmdefs -J global.tmf -K rc.tmf tiedlist:

Following the adaptation the system must again be tested. This is done using
a prerecorded set of test data of the adapted voice. The testing and the results
methodology is the same as explained in the previous sections.

A.5 Mixture Incrementing

Another method that was used to increase the recognizers’ accuracy, was to increase
the number of Gaussian mixtures in the HMM of each phoneme.

The probability distribution of the acoustic data can be modeled using a Gaussian
pdf. Gaussian mixture models can be used to model the features of the acoustic
data. The mixtures of pdfs is needed to model the different ways of pronouncing the
phonemes, as one Gaussian pdf is insufficient.

As a method to increase the robustness of the recognizer to different pronuncia-
tions and speakers, the number of Gaussian mixtures is increased and the recognizers
is re-tested and the accuracy is noted. The recognizer is re-tested to note the increase
in the accuracy of recognition. This determines whether or not to continue increasing
the numbers of mixtures until the required accuracy level is reached.

The tool used in HTK to increase the number of Gaussian mixtures is HHed. A file
is created that states the rule on how many mixtures are added to the HMM. The tool
is invoked as follows: HHEd -H hmm1/MMF -M hmm2 increment.hed monophonesi

The HMM is contained in the folder hmm9 and increment .hed includes the rule for
added the mixture to each of the HMMs of the phonemes contained in monophones1.

After the mixtures have been added, the HMMs are re-estimated twice, as men-
tioned in the training section, then the HMMs are realigned and tested. If the results
are desirable, then no more refinement of the system is needed. If the system is still
not optimal to the needs, the HHed tool is used to add more mixtures and the process
is repeated. The usual result is an increase in accuracy with the increase in mixture.
However, the refinement reaches a point where adding extra mixtures results in a
small increase in recognition accuracy, and further refinement will not deem usefull.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

