Verification and validation in systems engineering: Application to UML 2.0 activity and classdia...
Alawneh, Lu'ay

ProQuest Dissertations and Theses; 2007; ProQuest
pg. na

VERIFICATION AND VALIDATION IN SYSTEMS
ENGINEERING: APPLICATION TO UML 2.0 ACTIVITY AND
CLASS DIAGRAMS

LU AY ALAWNEH

A THESIS
IN
THE DEPARTMENT
OF
ELECTRICAL AND COMPUTER ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF APPLIED SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

NOVEMBER 2006
© LU’AY ALAWNEH, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliotheque et
Archives Canada

Library and
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-28910-5
Our file Notre référence
ISBN: 978-0-494-28910-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Verification and Validation in Systems Engineering: Application to UML 2.0

Activity and Class Diagrams

Lu’ay Alawneh

The increasing complexity of industrial systems requires more efforts to be invested in the process
of system verification and validation. The quality of such systems depends on the the different
types of techniques that are used to verify and ensure their correct functionality.

The cost of maintaining systems in the latter phases of development is usually very high and
may lead in most of the cases to inefficient solutions. Therefore, checking the correctness and
validity of systems early in the design phase is greatly desirable. Different verification and val-
idation techniques such as those involving testing and simulation are helpful and useful but may
lack in many cases the desired level of rigor and completeness. Moreover, these conventional tech-
niques are generally costly, laborious an time consuming. Convérsely, using formal techniques,
such as model-checking and program analysis along with design metrics complementary to the
conventional verification techniques provides an elevated level of confidence since they are based
on theoretical foundations.

Systems Engineering is an interdisciplinary approach that aims to enable the successful realiza-
tion and deployment of complex systems. Many modeling languages emerged in the systems engi-
neering arena in order to provide the means for capturing and modeling of system’s specifications
and requirements. The most prominent languages are Unified Modeling Language (UML) 2.0 and
Systems Modeling Languages (SysML). Formal verification and software engineering techniques
can be applied in order to assess the correctness of different diagrams belonging to the aforemen-
tioned modeling languages.

This research work presents a unified paradigm for the verification and validation of software
and systems engineering design models expressed in UML 2.0 or SysML. The proposed paradigm
relies on an established synergy between three salient approaches, which are model-checking,

program analysis, and software engineering techniques.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to express my sincere gratitude to my thesis supervisors professor Mourad Debbabi
and professor Chadi Assi at Concordia Institute for Information Systems Engineering. Their con-
structive scientific and technical advice, financial support, hi-tech laboratories and constant guid-
ance had a major influence on the success of the thesis.

I would like also to express my sincere gratitude to my colleagues namely Andrei Soeanu and
Yosr Jarraya for the assistance and participation in the research work and experimentation.

Last but certainly not least, I would like to dedicate my thesis to my beloved parents and the rest
of my family members for their constant moral support and encouragement which were invaluable
in completing‘ this thesis. My thesis is especially dedicated to my precious wife Yasmin for her

love and support.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

List of Figures
List of Tables

1 Motivations and Background
1.1 Approach e
1.1.1 V&V Framework
112 System ASpects e
1.2 Structureofthe Thesis

2 Related Work
2.1 Software Engineering Techniques
2.1.1 Chidamber and Kemerer Metrics Suite
212 MOODMetrics Suite e
2.1.3 Liand Henry’s Metrics Suite
2.14 Lorenz and Kidd’s Metrics Suite
2.1.5 Robert Martin Metrics Suite o L
2.1.6 Bansiyaetal. MetricsSuite o 0000
2.1.7 Briandetal. Metrics Suite L L o o
2.2 Formal Verification Methods using Model-checking
2.2.1 Tool Support for Verifying UML Activity Diagrams
2.2.2 Framework for the Verificationof UML Models
2.2.3 Tool for Verifying UML Models: VUML
2.2.4 Towards a Formal Operational Semantics of UML State-chart Diagrams . .
2.2.5 Model-Based Verification and Validation of Properties

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

ix

10
10
11
12
13
14
14
15
15
16
17
17
17
18

23

226 Hugo/RT e

Summary e

3 Systems Engineering Modeling Languages

3.1
32

3.3

3.4

35

Introduction L e
Systems Engineering Standardization
3.2.1 Object ManagementGroupo
3.2.2 INternational COuncil on Systems Engineering
3.2.3 International Organization for Standardization
Unified Modeling Language
33,1 UMLHIStory oo e e e
332 UML2ODiagrams e
Systems Modeling Language
341 SysMLHistory e
3.42 SysMLdiagrams e
Summary

4 V&V of UML 2.0 Activity Diagrams

4.1
42
43
4.4

4.5

4.6

4.7
4.8

Introduction L e
UML 2.0 Activity Diagrams Syntax
System Properties e
Model-checking of Activity Diagrams
441 NuSMVModelChecker
442 Computational TreeLogic

443 Configuration Transition System

4.4.4 Generation of Configuration Transition System
Architecture L e
45.1 Userlnterface
452 JavaEngineDesign.
Case Study and Analysis L
Model-Checking Feasibility

Summary e e e e e e e

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Software Engineering Metrics in Systems Engineering

5.1
5.2
5.3
54

5.5
5.6
5.7
5.8

Introduction L. e e e
Relevance to Systems Engineering
Quality Attributes e
Metrics Suite e e
54.1 Abstractness e
542 Instability e
5.43 Distance fromthe MainSequence
544 ClassResponsibility
5.4.5 Class Category Relational Cohesion
54.6 DepthoflInheritanceTree
547 Numberof Children
5.4.8 Coupling Between ObjectClasses
549 NumberOfMethods
5.4.10 Number Of Attributes

5.4.11 Number of Methods Added

5.4.12 Number of Methods Overridden

5.4.13 Number of Methods Inherited

. .

......................

5.4.14 SpecializationIndexo oL
5.4.15 PublicMethodsRatio.
Proposed Metrics e
Object Oriented Metrics Tool
CaseStudy e

Summary e e

6 Conclusion

Bibliography

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Synoptic Overview of the Toolkit. 4
1.2 Architectureof the Framework 7
3.1 UML2.0Diagrams Taxonomy v v v v v 27
3.2 SysML Diagrams Taxonomy 31
4.1 UML Activity DiagramElements. P 36
4.2 Architecture of the Activity Diagram Verification Tool 47
4.3 Snapshot from the GUI Tool (Specification of Properties) 48
4.4 Snapshot from the GUI Tool (Assessment) 49
4.5 Snapshot for a Counterexample from Da VinciTool 50
4.6 Class Diagram of the Java Engine Architecture 51
4.7 Activity Diagram Example o o000 52
4.8 Corresponding CTS for the Flawed Activity Diagram 53
4.9 Corresponding CTS for the Corrected Diagram 56
5.1 Snapshotof the MetricsTool 79
5.2 Class and Package Diagrams Example 81
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

5.1 Package DiagramMetrics o e
5.2 Class Diagram Inheritance Related Metrics

5.3 Class Diagram General Metrics

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Motivations and Background

Modern modeling languages for software and systems, including the most prominent ones, namely
UML 2.0 [48] and SysML 1.0a [23, 52] emerged in order to cope with the continuous advance-
ment in software and systems design. The aforementioned modeling languages are playing an
increasingly important role in software and systems engineering. Software engineering {30] can
be defined as the application of a systematic approach to the development, operation, and main-
tenance of software, while systems engineering [16] can be said to represent an interdisciplinary
approach that enables the realization of successful systems focusing on the system as a whole.
Ubiquitous systems such as hi-tech portable electronics, mobile devices, ATMs as well as many
other advanced technologies like aero-space, defense or telecommunication platforms represent
important application fields of systems engineering. However, nowadays the critical aspect of
software and systems design is not represented by conceptual difficulties or technical shortcomings
but it is rather represented by the increased difficulty of assuring bug-free designs. To that effect,

the process of design and development mandates a strong, sound, and cost-effective verification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and validation (V&YV) phase.

Verification is the process of evaluating a system to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that phase [30]. Conversely,
validation is defined as the process of evaluating a system to determine whetﬁer it satisfies the
specified requirements [30]. The V&V phase can be a major bottleneck in the development life
cycle of any complex software or systems engineering product since it can represent about 50%
to 80% of the total design effort [5]. Additionally, many engineering solutions are required to
meet a very high-level of reliability, security, and performance especially in safety-critical areas.
Therefore, ensuring that their predefined requirements are met and that they perform as expected
are challenging issues. However, in many modern engineering disciplines, conventional V&V
methods such as those involving testing and simulation have become less useful and are not always
applicable. Conversely, using formal techniques complementary to simulation provides a certain
level of confidence since they are rigorous and complete.

This thesis is part of the research initiative! that is supported by the Collaborative Capability
Definition, Engineering and Management (CapDEM) project which is an R&D initiative within
the Canadian Department of National Defence. The latter aims to the development of a Systems-
of-Systems engineering process and relies heavily on modeling and simulation. The aim of this
project is to implement a unified approach for V&V in the software and systems engineering fields.

Our approach for V&V in software and systems engineering is based on an established synergy

between three major techniques: Formal verification, program analysis and software engineering

!This research is the result of a fruitful collaboration between the Computer Security Laboratory (CSL) at Concor-
dia University and Defence Research and Development Canada (DRDC) at Ottawa. The research is supported by the
CapDEM (Collaborative Capability Definition, Engineering and Management) project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

techniques. By formal verification, we imply model-checking. By program analysis, we mean data
and control flow analysis. By software engineering techniques, we mean metrics which are used
to measure quality attributes of object-oriented design.

The benefits of the proposed approach are manifold. Our approach inherits rigor and sound-
ness from the use of formal techniques. Moreover, it is cost-effective since it is applied in the early
stages of the development process. In fact, early and efficient identification of flaws in the design
can have economical advantages if compared to the same task done in the maintenance phase [9].
Furthermore, it can be entirely automatic thus requiring no related background for systems engi-
neers. In addition, different qualitative and quantitative attributes can be measured using software
engineering metrics in order to assess the overall design quality. Also, to the best of our knowl-
edge, this is a pioneering endeavor in using these three techniques together. Moreover, the results
of our research initiative have been published in several international conferences [2—4].

This thesis focuses on the software engineering techniques applied to UML 2.0 class and pack-
age diagrams and formal verification methods applied to UML 2.0 activity diagrams.

In the following section, we describe our approach and the underlying techniques that are

utilized.

1.1 Approach

As previously stated, the foundation of our approach lies in the harmonious synergy between three
well established techniques that are: Formal analysis (model-checking), software engineering tech-

niques (metrics), and program analysis (static analysis). Figure 1.1 depicts the synoptic overview

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of our approach. In the following paragraphs, we describe the three distinctive layers sustaining our
approach. First, we explain the motivation of our choice. Then, we present how we intend to use

them in the context of V&V of design models and finally we give a description of our framework.

. Architecture "'

" Software .
Engineering
. Metrics .-

Semcntic
Model

Design Assessment

Figure 1.1: Synoptic Overview of the V&V Process

First, model-checking is a model-based verification technique. It is fully automated and it has
been used for the verification of real applications, both software and hardware systems, including
digital circuits, controllers, and communication protocols. SPIN [27] and SMV [32] are examples
of model checkers. We chose to work with NuSMV [15], a modified version of the SMV, since it
supports fairness constraints along with branching-time logic for property specification, namely the
Computation Tree Logic (CTL). The latter has an interesting expressiveness that allows to specify
many useful properties such as those related to deadlock, reachability and state sequencing to name

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

just a few. Model-checking is meant to achieve the dynamic assessment of the model. Thus, it is
used to check whether the dynamic aspect of a model satisfies the specified properties (e.g. safety
or liveness). Accordingly, in order to use it, one has to extract the semantics model from the
behavioral diagram to be veﬁﬁed (e.g. activity diagram). Model-checking has been successfully
used in medium-sized complex designs. Even though this technique was generally coupled with
severe scalability issues, numerous efforts tackle this problem in various ways, such as on-the-fly
model-checking [53], symbolic model-checking [31], and distributed on-the-fly symbolic model-
checking [8].

The second layer is represented by program analysis techniques such as flow analysis. We
advocate their use in verifying important model properties such as data dependencies, control
dependencies, invariants, anomalous behavior, reliability, and compliance to certain specifications.

Finally, the third layer consists of a set of fifteen metrics that we have adopted from software
engineering field [1,2, 14,37]. We advocate their use to assess quality attributes of various models
independently of their underlying discipline (software or systems engineering). More precisely,
this feature enables us to assess the structural aspects of the systems model. We found in the
literature some support about the use of metrics in systems engineering. For instance, Tugwell et
al. [60] outline the importance of metrics in systems engineering especially related to complexity
measurement.

In addition to applying metrics on the structural diagrams such as class diagram, they can
also be applied on the semantics model derived from different behavioral diagrams. For example,

cyclomatic complexity and Iength of critical path could be applied on the semantics model. Thus,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the quality assessment of a given design can combine both the static and dynamic perspectives. The
aim is to be able to compare the structural and the behavioral views qualitatively and quantitatively.
For example, comparing the complexity of the activity diagram and the one of its corresponding
semantics model can contrast how close is the diagram structure refiecting the behavior. If the
complexity of the semantics model is less than the one for the original diagram, this can imply that

some parts of the structure are not used or redundant or meaningless.

1.1.1 V&V Framework

Our V&V framework requires an underlying modeling tool wherefrom various models can be
fetched and assessed. Our choice is ARTiSAN Real-time Studio which is a modeling tool that sup-
ports UML and SysML designs. Additionally, it provides component-based development specifi-
cally for real-time systems [58, 59].

The current version of our framework is composed of three core components, as shown in Fig-
ure 1.2. First, we have the semantic compilation component responsible for deriving the semantic
model of a specific diagram. It communicates with the model checker by providing the semantic
model along with the properties to be verified. Second, we have the metric computation compo-
nent that is used for applying metric algorithms. We have provided an interface that accesses the
object repository of the modeling tool and retrieves the needed information about the diagrams. Fi-
nally, the assessment results component is devoted to the presentation of interpreted results. With
respect to the dynamic assessment, whenever a specified property fails, the trace provided by the

model-checker is analyzed and the relevant information is provided as feed-back.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—| V &V Tool

Modeling Tool! (Artisan)

", - Semantio ...+: Model
[+, Compilation -~ Checker
- Computation .

Interface

OLE Access | ° °

Assessment
Results ..

Figure 1.2: Architecture of the Framework

Our approach targets a number of important system aspects that can be captured using differ-
ent UML diagrams such as state machine, activity, sequence, class and package diagrams. Subse-

quently, we briefly present some related definitions for the selected set of system aspects.

1.1.2 System Aspects

There are many systems engineering aspects including requirements, structure, concurrency, and

performance. In the sequel, we briefly present those that we target in this work:

® Requirements: They are a description of what a system should do and are captured by re-

quirement diagrams in SysML or using sequence and use case diagrams in UML 2.0.

e Time: It is captured by timing diagrams, which provide a visual representation of objects

changing state and interacting over time.

e Concurrency: It identifies how activities, events, and processes are composed (sequence,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

branching, alternative, parallel, etc.). Concurrency could be specified using sequence, activ-

ity, and timing diagrams.

e Performance: It is the total effectiveness of the system. It makes reference to the timeliness
aspects of how systems behave. This includes different types of quality of service charac-
teristics such as latency and throughput. Timing and sequence diagrams depict performance

aspects.

e Structure: It is shown in class and composite structure diagrams. The class diagram shows
the relationships between different classes of the system. The composite structure diagram
shows the internal structure of the building blocks of the system and how these blocks are

interfacing with other components of the system.

o Interface: It identifies the shared boundaries of the different components of the system
whereby the information is passed. This aspect is shown using class diagrams in UML 2.0

and SysML, composite structure diagrams in UML 2.0, and assembly diagrams in SysML.

e Control: It identifies the order in which actions, states, events, and/or processes are arranged.

It is captured using state machine, activity, and sequence diagrams in UML 2.0 and SysML.

Though there are other system aspects, the most relevant ones to the verification process of

UML diagrams have been enumerated in this section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Structure of the Thesis

The remaining of this thesis is structured as follows: in Chapter 2, we present the state-of-the-
art in the verification and validation research initiatives targeting UML structural and behavioral
diagrams.

Chapter 3 outlines the historical context and background that led to the emergence of the UML
2.0 and SysML modeling languages. Moreover, it gives a brief description of the several diagrams
in the targeted modeling languages.

In Chapter 4, we introduce the UML 2.0 activity diagram along with the model checker used
for its verification and validation. Furthermore, we explain our algorithm that is used to generate
the required transition system for the verification process. The verification and validation tool
architecture is explained along with an example that illustrates our methodology when applied to
the verification of workflow systems modeled using activity diagrams. We conclude this chapter
with a discussion about the model-checking feasibility and the related open problems.

Chapter 5 enumerates system quality attributes that can be assessed when applying software
techniques on UML class and package diagrams. Thereafter, a set of fifteen software metrics is
presented along with the explanation thereof. Each metric is presented separately with the formula
for its calculation and its corresponding nominal range. Moreover, a set of three proposed metrics
for assessing the functionality of class diagrams are explained. The chapter concludes with a class

and package diagram example along with the analysis results.

Finally, conclusions and future work are presented in Chapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Related Work

This chapter surveys the state of the art in terms of V&V of software and systems engineering
design models. Particularly, we focus on the verification of UML 2.0 and SysML design models. In
the following, we present V&V of the most prominent UML diagrams namely class and package,

state machine, activity, and sequence diagrams.

2.1 Software Engineering Techniques

Complexity of software systems is increasing dramatically which encourages the need for some
techniques to assure better system quality. System quality should be controlled in the early stages
of design. A good software system offers components that are more robust, more maintainable,

more reusable, etc. In the literature, many object oriented metrics have appeared to bring up
highly reliable software systems. Software metrics are efficient methods for assessing the quality

of UML class and package diagrams since they give an insight about the complexity and structure

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of software systems. In the following, we present a list of contributions in the field of software
engineering techniques and proposals for several metrics suites for UML class and package dia-

grams.

2.1.1 Chidamber and Kemerer Metrics Suite

Chidamber and Kemerer [14] proposed a set of six metrics for object oriented designs. This met-
rics suite aims to measure the diagram’s complexity by applying the metrics on different quality
attributes such as maintainability, reusability, etc. From these six metrics, only three can be applied
on UML class diagrams. In the following, we present these metrics that are related to UML class

diagrams:

¢ Coupling Between Object Classes (CBO). This metric measures the level of coupling among
the classes in the diagram. A class that is excessively coupled to other classes in the diagram

is disadvantageous to modular design and prohibits reuse and maintainability.

e Depth of Inheritance Tree (DIT). This metric represents the length of inheritance tree from
a class to its root class. A deep class in the tree inherits a relatively high number of methods

which in turn increases its complexity.

e Weighted Methods per Class (WMC). It is the summation of the complexity of all methods
in the class. A simpler case for WMC is when the complexity of each method is considered
as unity. In this case, WMC is considered as the number of methods in the class. A high

WMC value is a sign of high complexity and less reusability.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.2 MOOD Metrics Suite

Abreu et al. [13] proposed a set of metrics to assess the structural mechanisms of the object-
oriented paradigm such as enacapsulation, inheritance, polymorphism. The MOOD (Metrics for
Object-Oriented Design) metrics suite can be applied on UML class diagrams. In the following,

we present these metrics that are relevant to our field of study:

e Method Hiding Factor (MHF). This metric is a measure of the encapsulation in the class.
It is the ratio of the sum of hidden methods (private and protected) to the total number of
methods defined in each class (public, private and protected). If all the methods in the class
are hidden then the value of MHF is high and indicates that this class is not accessible and
thus not reusable. If the value of MHF is 0O, this assumes that all the methods of the class are

public which hinders encapsulation.

e Attribute Hiding Factor (AHF). This metric is likewise the average of the invisibility of
attributes in the class diagram. It is the ratio of the sum of hidden attributes (private and pro-
tected) for all the classes to the sum of all defined attributes (public, private and protected).

A high AHF value indicates appropriate data hiding.

e Method Inheritance Factor (MIF) and Attribute Inheritance Factor (AIF). These two metrics
are a measure of the class inheritance degree. MIF is calculated as the ratio of all inherited

methods in the class diagram to total number of methods (defined and inherited) in the di-
agram. AIF is calculated as the ratio of all inherited attributes in the class diagram to the

total number attributes (defined and inherited) in the diagram. A zero value indicates no

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inheritance usage which may be a flaw unless the class is a base class in the hierarchy.

e Polymorphism Factor (POF). This metric is a measure of methods overriding in a class dia-
gram. It is the ratio between the number of overridden methods in a class and the maximum

number of methods that can be overridden in the class.

e Coupling Factor (COF). COF measures the coupling level in the class diagram. It is the
ratio between the actual couplings among all classes and the maximum number of possible
couplings among all the classes in the diagram. A class is coupled to another class if methods
of the former access members of the latter. High values of COF indicate tight coupling which

increases the complexity and hinders its maintainability and reusability.

2.1.3 Liand Henry’s Metrics Suite

Li and Henry [38] proposed a metrics suite to measure several class diagram internal quality at-
tributes such as coupling, complexity and size. In the following, we present the main two metrics

proposed by Li and Henry that can be applied on UML class diagrams:

e Data Abstraction Coupling (DAC). This metric calculates the number of attributes in a class
that represent other class types (composition). This metric measures the coupling complexity
due to the existence of abstract data types (ADT). The complexity due to coupling increases

if more ADTs are defined within a class.

e SIZE2. This metric is defined as the number of attributes and the number of local methods

defined in a class. This metric is a measure of the class diagram size.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.4 Lorenz and Kidd’s Metrics Suite

Lorenz and Kidd [40] proposed a set of ﬁetﬂcs that measures the static characteristics of software
design such as size, inheritance and the internal attributes of the class. The first size metric is the
public instance methods (PIM). This metric is the count of public methods in a class. The second
metric is the number of instance methods (NIM) and is the count of all methods (public, protected
and private) in a class. The last metric, number of instance variables (NIV) counts the total number
of variables in a class.

Furthermore, they proposed another set of metrics that measures the class inheritance usage
degree. Herein, we give a glimpse of these metrics and in Chapter 5 we explain them in detail.
The NMO metric gives a measure of the number of methods overridden by a subclass. The NMI is
the total number of methods inherited by a subclass. Additionally, the NMA metric is the count of
the methods added in a subclass. Finally, the NMO and DIT [14] metrics are used to calculate the

specialization index (SIX) of a class, which gives an indication of the class inheritance utilization.

2.1.5 Robert Martin Metrics Suite

Robert Martin [42] proposed a set of three metrics that is applicable for UML package diagrams.
This set of metrics measures the interdependencies among packages. Packages that are highly in-
terdependent tend to be not flexible which accordingly states that those packages or subsystems
are hardly reusable and maintainable. Therefore, interdependency among packages in a system
should be taken into consideration. The three metrics defined by Robert Martin are Instability, Ab-

stractness and Distance from Main Sequence (DMS) respectively. The Instability metric measures

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the level of instability of a package. A package is unstable if it depends more on other packages
than they depend on it. The Abstractness metric is a measure of the package’s abstraction level
which depends on its stability level. Finally, the DMS metric measures the balance between the
abstraction and instability of a package. In Chapter 5, we discuss these three metrics and explain

their usefulness in detail.

2.1.6 Bansiya et al. Metrics Suite

Bansiya et al. [6] defined a set of five metrics to measure several object oriented design properties
such as data hiding, coupling, cohesion, composition and inheritance. In the following, we present
only those metrics that can be applied to UML class diagrams. The data access metric (DAM)
measures the level of data hiding in the class. DAM is the ratio of the private and protected
(hidden) attributes to the total number of defined attributes in the class. The direct class coupling
metric (DCC) is the count of the total number of classes that a class is coupled. The measure of
aggregation (MOA) computes the number of attributes defined in a class whose types represent
other classes (composition) in the model. In their work, Bensiya et al. applied their metrics suite

to some case studies and defined nominal ranges for their metrics based on their observations.

2.1.7 Briand et al. Metrics Suite

Briand et al. [12] proposed a metrics suite to measure the coupling among classes in the class
diagram. These metrics determine each type of coupling and the impact of each type of relation-

ship on the class diagram quality. In their work, Briand et al covered almost all types of coupling

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

occurrences in a class diagram. These types of relationships include coupling to ancestor and
desceﬁdent classes, composition, class-method interactions, and import and export coupling. Con-
sequently, as a result of their work, they applied their metrics suite on two real case studies and
observed that coupling is an important structural aspect to be considered when building quality
models of object-oriented design. Moreover, they also concluded that import coupling has mére

impact on fault-proneness than export coupling.

2.2 Formal Verification Methods using Model-checking

Formal verification refers to various scientific and engineering techniques for verifying and validat-
ing the correctness of systems. These techniques are often based on mathematical logic and can be
used to perform verification and validation on a number of UML and SysML diagrams. There are
two major formal verification techniques: theorem-proving [34] and model-checking [55]. These
methods can reveal inconsistencies, ambiguities, incompleteness as well as several other short-
comings in a system. On the other hand, previous verification methods such as simulation [44] and
testing [61] cover only a subset of system properties. In contrast, model-checking provides precise
and exhaustive verification for the targeted properties that the system must satisfy. In the following,
we present a number of approaches for the verification and validation of UML behavioral diagrams

that use several model-checking techniques.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1 Tool Support for Verifying UML Activity Diagrams

Rik Eshuis and Roel Wieringa [21] developed a tool for the verification of workflow models spec-
ified in UML activity diagrams. The tool reads the UML activity diagram and converts it to its
corresponding activity hypergraph. In the latter, all the pseudo states (Branch, Merge, Fork, and
Join) are replaced with their equivalent hyperedges which are edges with multiple source and/or
target states. This hypergraph is then applied to a specific algorithm that will generate a transi-
tion system that covers all the configurations that a system might abide in. These properties to
be checked on this transition system are expressed as CTL formulas and verified by the NuSMV

model checker.

2.2.2 Framework for the Verification of UML Models

Esther Guerra and Juan de Lara [25] proposed a framework for the verification of UML models
by building meta-models for UML diagrams and then translating them into formalisms that en-
able to check their properties. They describe the translation (denotational semantics) as well as
the formalisms operational semantics by means of graph grammars. They also implemented the
AToM3 multi-paradigm tool that translates UML diagrams into petri-nets notation for subsequent

verification using model-checking.

2.2.3 Tool for Verifying UML Models: vUML

Johan Lilius et al. [39] developed the vUML for automatic verification of UML state-chart di-

agrams. The main purpose of vVUML is to verify concurrent and distributed models containing

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

active objects. Furthermore, vVUML can be used to verify sequential designs since it supports syn-
chronous cvovmmunication. The tool uses SPIN model checker to perform the verification on the
corresponding PROMELA code for state-chart diagrams. If an error is found during the verifi-
cation, the tool creates a UML sequence diagram that shows how to reproduce the error in the

model.

2.2.4 Towards a Formal Operational Semantics of UML State-chart Dia-
grams

In their work, D. Latella et al. [36] presented a formal semantics for UML state-chart diagrams
based on Kripke structure. The first step in the verification process is to map the state-chart to
the intermediate format of Extended Hierarchical Automata (EHA). Finally, the EHA structure is

specified using PROMELA code. The latter is input to the SPIN model checker for verification.

2.2.5 Model-Based Verification and Validation of Properties

In [20], the authors show how model-based property analysis can be made applicable within a
UML-based development process. Examples for such properties include deadlock freedom, timing
consistency, and limited memory resources. The approach is to design a partial formalization of
UML models such that existing verification techniques can be reused. The method employed is
based on graph transformation techniques to automate the translation of UML models into CSP

[26] which is a formal language accepted by the FDR [41] model checker.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.6 Hugo/RT

Hugo/RT [29] is a UML model translator for model-checking and theorem proving. The main fo-
cus of the model-checking component of Hugo is to verify the consistency of UML state machines
against specifications expressed as collaboration or sequence diagrams [33]. Hugo/RT translates a
subset of UML models, namely state machines, collaborations, interactions, and OCL constraints
to timed automata. Moreover, it implements two toolkits that translate the timed automata to a
suitable input to the UPPAAL [18] real-time model checker and to the SPIN [27] on-the-fly model
checker respectively. Additionally, it can translate the UML models into the system language used

by the KIV theorem prover [33].

2.3 Summary

This chapter presented the state-of-the-art in the verification and validation of UML software and
systems engineering design models. Our approach targets a set of software metrics that were
presented in this chapter. Moreover, our approach is inspired from the work of Rik Eshuis et
al. [21] for using the NuSMV model-checker in the verification and validation of UML 2.0 activity

diagrams.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Systems Engineering Modeling Languages

3.1 Introduction

A system can be viewed as a set of interrelated components that interact with one another in an
organized fashion towards a common purpose. The components of a system may be quite diverse,
consisting of persons, organizations, procedures, software, equipment, etc. In order to behave
correctly, a system must satisfy its design requirements. Thus, the need for an interdisciplinary
approach and means to enable the realization of successful systems stimulated the establishment
of the systems engineering discipline. Systems engineering [16] is a promising discipline that
aims to check if the system is designed, built, and operated in the most cost-effective way, taking
into consideration its performance, maintainability, safety, etc. It is an interdisciplinary approach
encompassing the entire technical effort to evolve and verify system quality through its develop-
ment, manufacturing, verification and deployment. This chapter outlines the historical context and

background that led to the emergence of UML 2.0 and SysML.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Systems Engineering Standardization

Systems engineering should be internationally standardized to facilitate the collaboration among
systems engineers. Moreover, it will lead to compatible systems engineering technologies. There-
fore, many organizations have been working on providing standard frameworks and modeling
languages for systems engineering. In the following sections, we present some of the main orga-
nizations that are dedicated to standardize the systems engineering discipline such as the Object
Management Group (OMG) [22], INternational Council On System Engineering (INCOSE) [16],
and the International Standard Organisation (ISO) [S1]. Also, we present some initiatives and

modeling languages related to systems engineering developed by these organizations.

3.2.1 Object Management Group

The Object Management Group (OMG) [22] is an international association founded in 1989 that
aims to provide standards for object-oriented systems to help in reducing the complexity and costs
and hastening the introduction of new software technologies. OMG has introduced a new suite of
specifications that will accomplish the aforementioned goals. This suite of specifications will lead
to interoperable, reusable, and portable software systems components as well as data models based
on standardized models. Many standards were established and developed by OMG that became
widely used in the industry. Subsequently, we present those standards that are related to systems

engineering.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Model Driven Architecture

The Model Driven Architecture (MDA) [46] is based on the idea of separating the specifications of
a system from its implementation in a designated platform. Therefore, MDA focuses on modeling
software systems in a way that allows their functionality and behavior to be separated from their
implementation details. The created model which is called the platform independent model (PIM)
enables thereafter the application to be easily ported from one environment to another. This PIM is
then translated into one or more platform specific models (PSM). Thus, the separation of the model
from the implementation allows to cover a broad range of systems development projects such as
electronic commerce, financial services, healthcare, aerospace and transportation. The three major
goals of MDA are portability, interoperability, and reusability through architectural separation of

concerns.

Unified Modeling Language

UML [35] is a modeling language adopted by OMG in 1997 that enables systems developers to
specify, visualize, and document software models. These models are abstract representations of the
implementation details of systems. The advantage of using an abstract model is to enable designers

to prepare the proper mold for the system implementation. UML is described in detail in Section
3.3.
Meta-Object Facility

MOF [47] defines an abstract language and framework for specifying, constructing, and manag-
ing technology neutral metamodels. The MOF specification is intended to provide information on

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modeling capabilities. It is the standard of OMG for defining modeling languages and their inter-
operability. In this context, the MOF model is referred to as a meta-metamodel since it is being
used to define metamodels such as UML. The MOF provides a formal and clear semantics for each

element of the UML metamodel.

XML Metadata Interchange

XMI [49] is an OMG standard for exchanging metadata information via Extensible Markup Lan-
guage (XML). It can be used for any metadata whose metamodel can be expressed in Meta-Object
Facility (MOF). The most common use of XMI is as an interchange format for UML models,

although it can also be used for serialization of models described in other languages (metamodels).

3.2.2 INternational COuncil on Systems Engineering

INCOSE [16] is an international professional society for systems engineers whose mission is to
foster the definition, understanding, and practice of systems engineering in industry, academia, and
government. INCOSE was formed in 1992 to develop and enhance the interdisciplinary approach
to enable the realization of successful systems. Furthermore, INCOSE was a major player in the

adoption of the new modeling language for systems engineering, namely SysML.

Systems Modeling Language

SysML [52] defines a general-purpose modeling language for systems engineering applications. It
supports the specification, analysis, design, verification, and validation of a broad range of complex

systems that may include hardware, software, data, personnel, procedures, and facilities. SysML

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inherits and extends the features and characteristics of UML focusing on the systems engineering

aspects. Section 3.4 explains SysML in more detail.

3.2.3 International Organization for Standardization

ISO [51] is the well-known world’s largest developer of standards. Those standards are useful
to industrial and business organizations, governments and other regulatory bodies. ISO 10303 is
one of the standards related to product data representation and exchange, which is implemented in

XML. Also, ISO 10303 is introduced as STEP (STandard for the Exchange of Product).

Standard for the Exchange of Product

STEP is an ISO project meant to develop mechanisms for the representation and exchange of
digital product data in a neutral form. The term product data denotes the totality of data elements
that completely define a product for all applications over its expected life cycle. The goal of the
project is to enable a product representation to be exchanged without any loss of completeness or

integrity.

AP233

AP233 is a data exchange protocol for systems engineering data, based on ISO 10303 and repre-
sents a neutral data exchange schema for systems engineering data. AP233 is used to support the
whole system development life cycle ranging from requirements definition to system verification

and validation.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Unified Modeling Language

The Unified Modeling Language (UML) [22, 54, 56] enables system developers to specify, visu-
alize, construct, and document the artifacts of software systems. These models are used to define
an abstract module for the implementation details of software system and systems in general. The
abstract overview of the system helps developers obtain an accurate system design before actual
implementation. The latest UML version is UML 2.0, it was developed to overcome the shortcom-
ings of the earlier UML 1.x versions. UML 2.0 has an increased level of precision in describing
the basic modeling concepts and their semantics. Moreover, it has an improved capability to model
large-scale software systems. This includes the ability to model entire system architectures to use
UML as an architectural description language. Therefore, UML 2.0 is a suitable modeling lan-
guage for systems engineers to model their systems and apply verification and validation on their
models. In the following, we describe the evolution of UML and give a brief description of the

existing UML 2.0 diagrams.

3.3.1 UML History

In the early 1990s, several object-oriented modeling languages were developed in the software
engineering community. Nevertheless, these modeling languages were not satisfactory for the
software community. Therefore, the need for a united solution was crucial. The idea behind UML
emerged in late 1994 by Grady Booch [10] from Rational Software Corporation to bring up a
rich modeling language. This modeling language was designed specifically to represent object-

oriented systems based on Booch’s methodology and the Object Modeling Technique (OMT) by

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rumbaugh [50]. The merge of the aforementioned methods in the fall of 1995 emerged with the
birth of the Unified Modeling Language (UML 0.8). In June 1996, UML 0.9 was released with
the merge of Ivar Jacobson’s Object-Oriented Software Engineering (OOSE) [56] method. The
standard has since progressed through versions 1.1 and 1.3 on to version 1.4. Although UML
1.x was widely accepted in the community, it had some shortcomings such as the lack of support
for diagram interchange. Also, it is considered as being too complex and having an inadequate
semantics definition. Moreover, UML 1.x is not fully aligned with MOF and MDA. Thus, a major
revision was required to address these problems [19]. Consequently, UML 2.0 is the new adopted

official version by OMG.

3.3.2 UML 2.0 Diagrams

UML 2.0 diagrams are classified into two categories: structural, and behavioral diagrams. The
latter includes a subset known as interaction diagrams. Figure 3.1 depicts the UML 2.0 diagrams

taxonomy. In the following, we present each category with its corresponding diagrams.

Structural Diagrams

Structural diagrams depict the static features of a model and the relationships and dependencies
among the model elements.
The class diagram addresses the static design view of a system. It shows the classes that con-

struct the system and the relationships among them. Classes relate to each other through different

relationships such as association, aggregation, composition, dependency, and inheritance relation-
ships.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UML 2.0
Diagrams
| 1
Structural Behavioral
Diagrams Diagrams
1 1 | 1 i 1 1
Class Component Object Activity Interaction Use Case Miz::; e
Diagram Diagram Diagram Diagram Diagrams Diagrams Diagram
1 1 | 1 1 I 1
csc;:r;z ;):r::e Deployment Package Sequence Communication I'g:::f;:x' Timing
Diagram Diagram Diagram Diagram Diagram Diagram Diagram

Figure 3.1: UML 2.0 Diagrams Taxonomy

The component diagram addresses the static implementation view of a system. It is used to show
the organization and dependencies among system’s components through well defined interfaces.
A component diagram has a higher level of abstraction than a class diagram, usually a component
is implemented by one or more classes (or objects) at runtime.

The composite structure diagram depicts the internal structure of a classifier, such as a class, a
component or a collaboration, including the interaction points (ports) of the classifier to the system.
Moreover, a composite structure diagram shows the configuration and relationship of parts that
together perform the behavior of the containing classifier.

The object diagram shows how specific instances of a class are related to each other at run-time.
The object diagram consists of the same elements as its corresponding class diagram. However,
the class diagram defines the classes with attributes and methods. Whereas, in the object diagram

the class attributes and method parameters are assigned values. Object diagrams aim to support

the study of requirements by modeling examples from the problem domain (object diagrams may

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be used as test cases later). Moreover, they are used to validate class diagrams by modeling test
cases.

The package diagram organizes and groups the elements and shows dependencies among them.
The deployment diagram depicts the hardware architecture of a system and the components that
run on each piece of hardware. A deployment diagram is needed for applications that run on
several devices since it shows the hardware, the software, and the middleware used to connect the
devices of the system. Moreover, deployment diagrams can be used to represent the architecture

of embedded systems to show how hardware and software components interact in the system.

Behavioral Diagrams

Behavioral diagrams capture the varieties of interactions and instantaneous states within a model
as it executes over time.

The use case diagram describes a set of scenarios that show the interaction between the users and
a system. A user can be either a person or another system. A use case refers to the sequence of
actions that the system can perform by interacting with its actors. Use cases are used in the initial
phase of the project. They are useful in defining the requirements of the project and to identify the
expectations of a system.

The activity diagram depicts the flow of activities within a system. It addresses the dynamic view
of a system to describe the procedural logic, business process and workflow. An activity diagram
may contain many processing paths that contain decision making and parallel processing. Thus, it
is helpful to describe behavior that involves several objects collaborating across several use cases.

The state machine diagram captures the dynamic behavior of a system. It describes the significant

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

states that an entity can be during its life-cycle. The state of an entity changes in response to
environmental stimuli or events. Therefore, state machine diagrams are useful for modeling of
real-time systems and reactive systems.

The protocol state machine diagram is a diagram introduced in UML 2.0. It is based on the state
machine diagram but focuses on expressing the protocol of operations that shows the pre and post

conditions without showing the object behavior.

Interaction Diagrams

Interaction diagrams represent a subset of behavioral diagrams and are used to emphasize the flow
of control and data among the blocks in the system being modeled.

The sequence diagram shows object interactions arranged in a time sequence. Sequence diagrams
identify the communication required to fulfill an interaction. Moreover, they show the objects that
participate in an interaction and the messages used to trigger the interactions among the objects.
The interaction overview diagram provides a high-level view of the logical progression of the
execution of the system through a set of interactions. The interaction overview diagram uses the
syntax and semantics of an activity diagram to model the flow of logic in a series of interactions
expressed as sequence diagrams.

The communication diagram, known as the collaboration diagram in UML 1.x versions, focuses
on the structure and the sequence of messages among objects at run-time during a collaboration
instance. Generally, it shows instances of classes, their interrelationships, and the message flow
among them.

The timing diagram is a different way to present a sequence diagram. It explicitly shows changes in

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the system on a time line. It is a new diagram in UML 2.0. Timing diagrams are used to document
the timing requirements that control the changes in the state of the system. Moreover, they can
be used with the state machine diagram when the timing of events is more critical for a proper

operation of the system.

3.4 Systems Modeling Language

Systems Modeling Language (SysML) [52] is a general purpose modeling language for systems
engineering applications. SysML supports the specification, analysis, design, verification and val-
idation of a broad range of complex systems. These systems may include hardware, software,

information, processes, personnel, and facilities.

3.4.1 SysML History

The birth of the SysML initiative can be traced to a strategic decision by INCOSE’s [16] Model
Driven Systems Design workgroup in January 2001 to customize the Unified Modeling Language
(UML) for systems engineering applications. As a result, a collaborative effort between INCOSE
and OMG [22] arose to jointly charter the OMG Systems Engineering Domain Special Interest
Group (SE DSIG) ! in July 2001. The SE DSIG, with support from INCOSE and the ISO AP
233 workgroup, developed the requirements for the modeling language, which were subsequently
issued by the OMG as part of the UML for Systems Engineering Request for Proposal in March

2003. In January 2004, the first SysML draft was submitted to OMG and was also reviewed by

ISystems Engineering Domain Special Interest Group, http://syseng.omg.org/

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INCOSE. In November 2004, INCOSE submitted its review of the first draft to OMG. Later on, in
the first quarter of 2005, SysML was adopted by OMG. Currently, SysML 1.0 specifications was

issued by OMG.

3.4.2 SysML diagrams

SysML is developed to customize UML for systems engineering purposes. Therefore, SysML
adopts a subset of UML 2.0 specifications and adds new constructs for systems engineering. Figure
3.2 depicts the SysML diagrams taxonomy. This section presents the new diagrams in SysML
that do not exist in UML 2.0. Moreover, it explains the main new features and modifications
to UML 2.0 customized diagrams. Moreover, few diagrams from UML 2.0 were not considered
in the SysML specifications. These diagrams are the object, component, deployment, package,

communication, timing, and interaction overview diagrams.

SysML
Diagrams
1 J 1
Behavioral Requirement Structural
Diagrams Diagram Diagrams
[| 1 1 [| 1
Activity Sequence Use Case Mfzvtl:e Deaf;zii:(on I’gfo':: / Package
Diagram Diagram Diagrams Diagram Diagram Diagram Diagram
E] Same as UML 2.0 4
Parametric
Modified from UML 2.0 Diagram
é ! New diagram type

Figure 3.2: SysML Diagrams Taxonomy

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

New SysML Diagrams

The requirements diagram explicitly captures requirements and their relationships. It is intended
to assist in integrating SysML models with requirements management tools. This diagram uses
dependencies (satisfy, trace, derive, decompose, verify) with stereotypes to detail a relationship.
Moreover, it is possible to show traceability between model elements and requirements.

The parametric diagram is commonly used to model properties and their relationships. They are
used to represent complex mathematical and logical expressions or constraints. The parameter (i.e.,
temperature or pressure) is a measurable factor that varies in experiments that define a system and
determine its behavior. The parametric diagram aims to bring more compliance with other system
modeling tools by defining a set of quantifiable characteristics and relationships between them.
Moreover, the parametric diagram shows how changing a value of a property impacts the other
properties in the system. Therefore, this diagram can be used to perform simulations on models
by modifying parameter values and observing the impact on the whole system. Additionally, the
parametric diagram is useful in analyzing the performance and reliability of a system by identifying

the conditions that could make the system unreliable or malfunctioning.

Modified Diagrams from UML 2.0

The block definition diagram defines features of a block and relationships between blocks such
as associations, generalizations, and dependencies. It captures the definition of blocks in terms
of properties, operations, and relationships such as a system hierarchy or a system classification

tree. Moreover, it allows to develop a number of conceptual architectures which can be used as

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a starting point for trade-off analysis. The block definition diagram is based on the UML class
diagram with some restrictions and extensions to its features. Some capabilities available for UML
classes, such as more specialized forms of associations, have been excluded from SysML blocks
to simplify the language. Furthermore, notational and metamodel support for n-ary associations
and qualified associations has been excluded from SysML.

The internal block diagram captures the internal structure of a block in terms of properties and
connectors between properties. It is based upon the UML composite structure diagram but also ex-
cluded many elements. A block can include properties to specify its values, parts, and references
to other blocks. Ports are a special class of property used to specify allowable types of interac-
tions between blocks. Constraint Properties are a special class of property used to constrain other
properties of blocks.

The activity diagram is used to depict control and data flow throughout the system. SysML added
new features to UML activity diagram such as continuous flow semantics, activity parameters, ac-
tion pins. Moreover, it extends edges and output parameters with expression evaluating to constant

probabilities. It also provides a model library for Enhanced Functional Flow Block Diagram.

3.5 Summary

This chapter explained the importance of the systems engineering domain and the reasons that led

to the emergence of the modeling languages for better systems designs focusing on the two main

modeling languages adopted in the software and systems engineering communities.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

V&YV of UML 2.0 Activity Diagrams

4.1 Introduction

UML activity diagrams [56] depict system behavior using a control flow and data flow model and
can be typically applied for process modeling in a wide variety of domains such as computational,
business, and real-time systems. A proper functionality of such systems can be achieved by veri-
fying their designs and validating them according to their requirements.

In this chapter, we apply formal verification on UML activity diagram models using model-
checking [45] due to the robust verification results provided. Model-checking is widely used in
verification of software and hardware systems. It is an automated technique used to verify the
functional requirements of behavioral models.

In this work, we were initially inspired by Eshuis et al. [21], but conceived a different algorithm that

has some interesting implementation advantages from an object oriented perspective. As a result

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of our work, we developed an automated tool that retrieves the activity diagram from Artisan Real-
time Studio. The diagram is converted to a configuration transition system that can be graphically
visualized using an external graph drawing tool such as daVinci [11]. The latter can be used to
provide a visual appraisal of the diagram complexity with respect to the number of nodes and edges.
It can also be used as a quick feedback when applying corrective measures giving some insights
about the resulting increasing or decreasing with respect to the diagram complexity. Furthermore,
the NuSMV [15] model checker is invoked automatically. Finally, the tool displays the interpreted
model-checking results providing the identified counterexamples if any.

In the following, we outline the informal syntax and semantics of UML activity diagrams.
Also, we enumerate the system properties that we target in our model-checking procedure and give
a brief overview of the used model checker and explain its temporal logic notation. Thereafter, we
present the process for the verification and validation of the functional requirements captured using
activity diagrams. Subsequently, we detail the algorithm that is used in order to achieve a model
that is verifiable using model-checking techniques. Moreover, we present an example that covers
concurrency, cross-synchronization, branching and merging points and give the analysis for the
model-checking results. The chapter concludes by a general discussion of the effectiveness of the

model-checking procedure.

4.2 UML 2.0 Activity Diagrams Syntax

UML activity diagrams [35] are used to depict the sequence of activities in a system. Activity

diagrams are useful to show the workflow in a process from the start to the termination points. An

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activity diagram may contain many processing paths that consist of decision making and parallel
processing. Moreover, the activity diagram shows the behavior of an entity from the perspective of
activities or action states. Activity diagrams include elements that show the behavior of a system
using control and dataflow models. In our work, we target the activity diagram artifacts that govern
the control flow in the diagram. These artifacts are shown in Figure 4.1. An activity diagram

consists of the following control flow elements:

* O 9
__.__»
initial Node Activity Final Flow Final Action Transition
Branch Merge Fork Join

Figure 4.1: UML Activity Diagram Elements

e [nitial node indicates the beginning of execution of a specific activity diagram.

e Activity final node terminates the execution in the whole activity diagram.

e Flow final node stops the execution of actions in the specified branch only.

e Action node comprises the process. Actions can be executed in chronological order or con-
currently by the existence of forks. Furthermore, The action is where the execution is shown

and it cannot be decomposed into smaller actions.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Branch node is used to direct the control flow in the diagram into a specific execution path

depending on the value of a guard.
e Merge node is used to merge the several paths selected by one or more branching nodes.
e Fork node is used to enable concurrent processing in parallel execution paths.

e Join node is used to synchronize different concurrent execution paths into one execution

path.

e Transition is used to enable the flow of control in the diagram from an activity node to

another. A transition can have a guard value that controls its control flow transfer.

An activity diagram may also contain object nodes for capturing object flows in the system. In

this work, we covered the control flow aspects of the activity diagram.

4.3 System Properties

Verification and validation contribute to the design assessment by detecting the unsatisfied prop-
erties. Hence, system developers will know if the design is flawed and apply corrective measures.
The following properties fall in the scope of our V&V approach for the model-checking of UML

activity diagrams:

e Latency: It is the measure of the temporal delay between the request for the execution of an
operation and the reply to this request. Detecting latency contributes to V&V by analyzing

the efficiency of the system.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Liveness: It asserts that under certain conditions, a given event will occur. It is known as
“something good will always happen”. Liveness analysis consists of checking whether some

important or crucial events may or may not eventually happen in the system.

e Safety: It means that nothing bad can occur with respect to the design of the system. In other
words, it is a judgment of the acceptability of risk, which implies that no harm will occur

under the specified conditions.

e Deadlock: It describes a state wherein a process is waiting for some event that will never
happen. It could be waiting for a resource to be available before continuing its execution
while another process is holding indefinitely this resource. In this situation, the system

would not progress.

e Livelock: 1t is a situation where two or more processes continually change their states in
response to changes in the other process (or processes) without performing useful services.

It is different from deadlock since the processes are progressing.

e Precedence: It specifies the order between events in the system with respect to time. Namely,
events must not occur unless a specific event or a sequence of events were finished. If the
ordering of events is not respected then V&V will help the developers review the ordering

between events in their design.

e Reachability: 1t consists of checking whether a particular state is reachable in a design,
starting from an entry point of the system. Unreachable states negatively impact the quality

design since they denote dead entities in the system.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The aforementioned properties are supported by our selected model-checker. In the following,

we give a glimpse of the NuSMV [15] model checker and the motivations to select it.

4.4 Model-checking of Activity Diagrams

This section presents the model-checking procedure when applied to UML 2.0 activity diagrams.
Herein, the proposed model-checker is introduced and is followed by a brief presentation of the
temporal logic that it is using. Subsequently, the notion of configuration transition system is in-
troduced along with an algorithm that converts a given activity diagram into its corresponding
configuration transition system. The latter along with various properties expressed in temporal

logic can represent an input to the model-checker.

4.4.1 NuSMYV Model Checker

The NuSMV [15] is a new symbolic model-checker developed as a joint project between Carnegie
Mellon University! (CMU) and Istituto per la Ricerca Scientifica e Tecnolgica (IRST)2. NuSMV
is designed to be a well structured, open, flexible and documented platform for model-checking.
NuSMYV is an enhanced version of the original SMV [28] model checker. NuSMYV provides the
desired functionalities for checking reachability, deadlocks, CTL [17] (Computation Tree Logic)
fairness constraints, invariants, and computation of quantitative characteristics. Additionally, it
supports the functionality for the generation and inspection of counterexamples. Moreover, LTL

(Linear Temporal Logic) is also supported via reduction to CTL model checking.

!Carnegie Mellon University, http://www.cmu.edu/
2Istituto per la Ricerca Scientifica e Tecnolgica, http://irst.itc.it/

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this work, we use the NuSMV feature that targets finite state systems that are checked
against properties specified in the CTL temporal logic. The input language of the NuSMV is used
to describe the transition relations of a finite Kripke structure. Given that NuSMYV is intended
to describe finite state machines, the data types in the language are restricted to finite ones, i.e.

boolean, scalar and fixed arrays of basic data types.

4.4.2 Computational Tree Logic

CTL [17] is a temporal logic that can be used to express properties of a system in the context of
formal verification or model-checking. It uses atomic propositions and boolean connectives as its
building blocks to make statements about the states of a system. It also uses temporal operators
and path quantifiers.

CTL notation uses logical operators such as — (negation), V (or), A(and), — (implies), < (equiv-
alence) and uses the boolean constants true and false. The temporal operators that are used in the

CTL notation are:

Next (N ¢) or known as (X 0) : ¢ has to hold at the next state.

Globally (G ¢): ¢ has to hold on the entire subsequent path.

Finally (F ¢): ¢ eventually has to hold (somewhere on the subsequent path).

Until (¢ U v): ¢ has to hold until at some position where ¥ holds. This implies that ¥ will

be verified in the future.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Weak until (0 W): 0 has to hold until ¥ holds. The difference with U is that there is no

guarantee that \ will ever be verified.

Along with the aforementioned temporal operators, we have the universal and respectively the

existential path quantifiers:

o All (A 0): ¢ has to hold on all paths starting from the current state.

e Exists (E 0): there exists at least one path starting from the current state where ¢ holds.

Furthermore, the temporal operators are always combined with a path quantifier as this is a re-

quirement of the CTL model checking procedure.

4.4.3 Configuration Transition System

Any system that exhibits a dynamic of some kind can be abstracted to one that evolves within a
discrete state space. Such a system is able to evolve through its state space assuming different
configurations. A configuration c is a particular snapshot in the evolution of a set of elements of a

system at a particular point in time and from a particular view.

Definition 1. (Configuration) A configuration c is a specific binding of a set of values to the set
of variables in the dynamic domain of a particular diagram.

Informally, a configuration is specific to a particular type of UML behavioral diagram. For
instance, a configuration for an activity diagram is the set of running actions at a given moment. In
this case, we have a binding of boolean values to the set of actions in the diagram. That is, running
actions are assigned true values, while inactive ones are assigned false values. The dynamic of

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the activity diagram can be captured by specifying all the possible configurations of the system
and the transitions among them. Therefore, a UML activity diagram can be characterized by a set
of configurations and a transition relation. Thus, we define a kind of a transition system that we

called a Configuration Transition System (CTS).

Definition 2. (Configuration Transition System) A CTS is a tuple (C,A,—), where C is a set
of configurations taken from the same view, A is a set of labels, and — C C x A x C is a ternary
relation, called a transition relation. If ¢y, c2 € C and | € A, the common representation of the
transition relation is: ¢y -L ca.

Since the dynamics of activity diagrams can be captured by the corresponding CTS, we can
consider it as the diagram semantics model. Thus, the CTS can be used to systematically generate

the model-checker input.

4.4.4 Generation of Configuration Transition System

Given an instance of an activity diagram, we can find the corresponding configuration system
provided that the elements of the diagram are understood and there exists (and is defined) a step
relation that enables one to compute the next configuration(s) of a diagram from the current one.
Furthermore, in order to achieve tractability, the configuration space should be bounded.

In order to efficiently generate the CTS for a given activity diagram, each of the configurations
enclosed within a configuration system represents a set of states that are active simultaneously, a
set of guard values and a set of joint patterns. The latter is understood as a list of action nodes

that finished their execution and are waiting to join at a synchronization point which represents the

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jjoin node in activity diagrams.
In the sequel, we explain Algorithm 1 that is used to generate the CTS for activity diagrams.

In order to generate the CTS, we need the following data structures:

confList: the list of found configurations.

crtConf: the list of active actions in the diagram.

transList; the list of found transitions.

e container: contains all the activity diagram nodes, the current guard values and the current

join pattern list.

e actConfList: the list of newly identified configurations.

The CTS is obtained by a Breadth-first search iterative procedure that explores new configu-
rations from a current configuration crtConf. Each configuration is understood as a list of three
elements which are in order, the list of active states in this configuration (first element), the list of
guard values (second element) and the list of join patterns (third element) respectively. In a con-
figuration transition system, each transition is a list of two elements which are in order the source
configuration and the target configuration.

Initially, confList and transList are empty. The container is initialized with the diagram state
list, the initial guard value list, and an empty join pattern list. Whenever the values of a guard are

not fixed they will be assigned the generic “any” value, meaning that the guard can be either true or
false. actConfList is initialized with the result of the getCon f procedure, presented in Algorithm

2, applied to the container. The getConf procedure returns the configuration corresponding to the

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 1 Generation of Configuration Transition System

ActConfList confList = {}

ActTransList transList = {}

ActConfiguration container = { DiagramStateList,guardValueList,{ } }
ActConfList actConfList = getConf(container)

while actConfList is not empty do
ActConfiguration crtConf = pop(actConfList)
ActStateList crtStateList = get(crtConf,0)
GuardList crtGList = get(crtConf,1)
ActJoinPatList crtJoinPatList = get(crtConf,2)

if crtGList contains “any” then
splitindex = getPosition(crtGList, “any”)
crtGList[splitIndex] = true
actConfList = actConfList U { crtStateList, crtGList, crtJoinPatList }
crtGList[splitIndex] = false .
actConfList = actConfList U { crtStateList, crtGList, crtJoinPatList }
continue

end if

if confList not contains crtConf then
confList = confList U crtConf
end if

for each state s in crtStateList do
setConf(container, crtConf)
execute(s)
nextConf = getConf(container)

if nextConf not equals crtConf then
actConfList = actConfList U nextConf
crtTrans = {crtConf, nextConf}

if transList not contains crtTrans then
transList = transList U {crtTrans}
end if

end if
end for

end while

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 2 getConf(container)

ActStateList stateConf = {}
for each state s in container do
if s is active then
stateConf = stateConf U {s}
end if
end for :
return { stateConf, get(container,1), get(container,2) }

Algorithm 3 setConf(container, crtConf)

crtConfStateList = get(crtConf,0)
containerStateList = get(container,0)
for each state s in containerStateList do
if crtConfStateList contains s then
setActivate(s)
else
setInactivate(s)
end if
end for
container = {containerStateList , get(crtConf, 1), get(crtConf,2)}

current state of the container. Subsequently, actConfList is iterated in a while loop until it becomes
empty. In every iteration, the first element of actConfList is popped and becomes the current
configuration crtConf, containing a current state list crtStateList, a current guard list, crtGList
and a current join pattern list, crtJoinPatList. If crtGList contains an “any” value, then two new
configurations are created and added to actConfList, for each of the possible guard values, and
thereafter, the next iteration immediately begins. Otherwise, confList is updated with crtConf if
it does not already contain it, followed by a “for” loop that iterates the states of crtStateList. In
every “for” loop, the iterated state is executed after the container state is set to the one of crtCon f
by calling the setConf procedure, presented in Algorithm 3. Thereafter, nextConf is assigned the

result of getConf procedure applied to the container. If nextConf is not equal to crtConf, then

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nextConf is added to actConfList and likewise, a transition from crtConf to nextConf is added
to transList.

In contrast to the approach of Eshuis et al. [21] the foregoing algorithm does not require the
presence of wait states in order to synchronize activity nodes. Furthermore, it does not require the
conversion of the activity diagram to the intermediary form of activity hypergraph.

Additionally, the approach proposed here is compliant with the UML 2.0 activity diagram
execution semantics even though it does not make explicit use of tokens. However, in an equivalent
manner, the action states can transfer control. Moreover, they can synchronize if required, by

recording a join pattern list in every configuration of the configuration transition system.

4.5 Architecture

The UML 2.0 activity diagram assessment tool is comprised from several components arranged in
three layers. At the front-end layer, w.e have the modeling téol, the GUI application and the graph
viewing component for displaying the configuration transition system (CTS). At the middleware
layer, we have the ActiveX component that communicates with the modeling tool datastore in order
. to retrieve the diagram information? the NuSMV model checker gnd the Java engine responsible
for the CTS and the NuSMYV code generation. Finally, the Back-end layer consists of the modeling
tool datas.tbre and the file system. Figure 4.2 depicts the three layers and the interactions among
them.
The tool has a plug-in in the modeling tool to enable the user to apply the assessment on the

current activity diagram. The user interface layer calls the ActiveX to retrieve the activity diagram

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the datastore. After the model is fetched, the java engine is executed to generate the Con-
figuration Transition System (CTS) and the NuSMV code for the model-checker. Thereafter, the
NuSMYV model checker is run by clicking the check properties button to perform the assessment
operation. After the operation is complete, the NuSMV model checker results are placed in the file
system. In addition to the manually specified properties, the deadlock and reachability properties
are checked automatically by the model-checker without any user intervention. Finally, the verifi-
cation tool reads the model-checking results and interprets them in order to be understood by the

user.

Da Vinci
Graph Tool
Tool Interface
(Visual Basic)
3 Artisan RT
2 Studio
(]
g ; E : T AT TN T T Y T r
- a
[} =2
3 Z -4
=] 8
o =
o
. , 3
(ActiveX DLL) i
®
]
-
0
e
3
“Modeling Tool
(Artisan Realtime
Studio Datastore)

Figure 4.2: Architecture of the Activity Diagram Verification Tool

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.1 User Interface

Figure 4.3 presents the user interface panel that is used to specify properties and run the model-
checker on the current activity diagram. This interface is designed in a flexible manner to enable a
user that is not familiar with model-checking commands to specify and customize some properties

to be verified against the system requirements.

£
- Assessment [_Properly Specificafion]

- P L

NECESSITY | POSSIBILITY ‘n\evmam MAYREACH

) '—kFy‘,ro';‘:erly Specification—

Ol ®|

ALWAYS EXISTS

K L - State Name =~

! ‘|ReviewOrder .

|CheckStock
CheckCustomer |
MakeProductionPlan :
SendBill |
] Produce !

, S l l : ' ' I o ’ FillOrder [
Add Property| Clear AND | R] NoT |) jmeuEs| | |HandlePayment .
- ShipOrder !

~Manually Specified Properties List - - - i

. |Property
| |EFs
AG (s-» EF Is)
|1 |AG filOrder -> custOK
" 1AG custOK -> AF shipOrder
AG isufStock -> AF MakeProdPtan
AG (custOK & insufStock) -> AF Produce

o] 5|

Figure 4.3: Snapshot from the GUI Tool (Specification of Properties)

Figure 4.4 depicts the second user interface panel that shows the assessment results for the
model-checking process. The assessment results are listed along the counterexample for each

failed property in the details for the assessment box. The tool also provides a visual assessment

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

checking using a graph drawing tool namely Da Vinci.

Assessment | Property Specification

' 11 ShipOrder is unreachable
Deadiock at FillOrder
Deadlock at HandlePayment

Deadiock at Produce)

AG fillOrder -> custOK failed

AG custOK -> AF ShipOrder failed

AG (custOK & insufStock) -> AF Produce failed

 Details for the Assessment ———— -
1. ReceiveOrder
2. (CheckCustomer, CheckStock)

3. CheckCustomer
1 |4. FillOrder

" Show Path | BER

" Retiesh I s l

Figure 4.4: Snapshot from the GUI Tool (Assessment)

This tool covers most of the logical and temporal operators found in CTL. The user should
understand the meaning of these operators in order to be able to specify properties. These specified
properties represent the system’s requirements that should be verified in the design.

The user has the option to view the the counterexample for the selected failed property by

-~ click the show path button. Figure 4.5 shows an example of a failed property in Figure 4.4. The
visual verification enables the user to identify the problem in the CTS which enriches his/her

understanding of the problem. The diagram in Figure 4.5 represents a CTS with a deadlock that is

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

represented in a deadlock which helps the user to locate the deadlock occurrence in the transition
system. Moreover, the counterexample has a different color in order to track its path easily in the

generated CTS.

| chkStock,sendBill | [chkCustomer,maleProdPlan]

I handPay,makeProdPlan | sendBill

makeProdPlan

'

Figure 4.5: Snapshot for a Counterexample from Da Vinci Tool

' 4.5.2 Java Engine Design

Figure 4.6 shows the class diagram of the Java Engine presented in Figure 4.2. The main class is
ActState which is used as the building block when representing the activity diagram. It has a num-

ber of subtypes corresponding to the various pseudo states such as branch, merge, fork, join and

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flow end. Each configuration is composed of a list of ActState objects, a stack of guard values that
are read from the singleton instance of the ActGStack class, and an ActJoinPatList object which in
turn is composed of activity join pattern objects, ActJoinPat. The singleton instance of the Act-
DeadLock class is used to replace any ActJoinPat object in an ActJoinPatList that is never matched.
The activity configuration system is contained in an ActConfSys object. The latter is composed of
a list of activity configuration objects, ActConfiguration, and an activity transition list object, Act-
TransList. Algorithm 1 makes use of the functionality presented within the implementation of the

class methods.

o YT T
ActGStack : ™ AciConfiguration ||
BigNames : Stack . ActState g | EigetAct Configuration()
WAgvalues : Stack ;%";‘T::: x::: ERActConfiguration() ! tConfiNames () o] K
HPAcIGStack() {ﬂﬂame:Stﬁng iAciCorfiguration) Emm:}\C?gsyso AclConSys(i
{@addcuarc) | @BprortyList - Stack = new Stack 0 | |MicetAciStatelist) | [WupdateActConl) | |§ipeckp ’
iligetinstance() ; fﬂtuge!GrdList : Stack = new Stack () | WBgetGList() gontainer | T].getCTSGraph()
WoetNameListForval() i {@canduist : Stack = new Stack () contal g OLSt) [IgetNuSMV Code()
E®getNamesForval() * [instanceindex : int 7 WReheckGuardval() !
" ! {@BingtanceCounter : int | BgetActoinPatList() L .
WmaskOr() L lﬂsetJolnPalList() 7\[transiist
SACtGSfAckinstance | 'gmactstate() | RigetNames() “ P ActTransList
o A CtState() | lisetConf() AN ttrom utl)
7 Bicloneact) MlgetCorf) 0 ligetTrans()
3ngetNams() ; Bl¥stack() | /‘M____m;‘get'fraleamas() :
e ‘jﬂaddTarget() \$deadLock [Spush) < 'agetTransLlstmeTo();
| faddTarget() ¥ o ‘WupdateActTrans() |
addTargel() " Bpock() . @mergelrans) |
glmam() i O MWempty() V. ::w
gzxzctfe(()) ! | ActDeadLock | _{Wsearch(l
‘BE®activate S e N
o Lo A N AcTans
h : | B ey v sir-sivuins T, . ! .
! ! ActJoinPatList | ' WRACtTrans() |
AC'AH;, Wrctonpatg| t::ct;ra-;s() :
e med Ctioini | ; ; etSro(;
; : - ~ | EigetActioin() »EMEddAchanal() ;ﬂgetDst 0]
TERACIFIOWENG()| | miaciperge()) |HBACIOIND | ERAGtFork() i @bgetoinPat() i%"acm"zat" RbgetGList) |
Boxecutel) :%":C”:"(‘)) Hexecutel) | gj;oinmm(y Rexecute() goino L Rpepentsi). | gerGLIstvalg)
i i @acthete) | Esactiate() | |Bexecute) | Gfactivate(), |AMfisComplete(). . i [WRgetEw(|
{@actiate)) | Ractiatel)_| Mactivate() Wactiatel), RoetNames() ‘WgotNames() | | @getName(|

Figure 4.6: Class Diagram of the Java Engine Architecture

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Case Study and Analysis

This section presents an activity diagram example that depicts a business workflow process. The
activity diagram is depicted in Figure 4.7 and basically represents a purchase request order pro-

cessing.

Make
Production
Plan

{insufficient stock]

[customer ok]

Check
Customer

[customer ok]

t .
SongBil [payment received] Handle
Payment

Figure 4.7: Activity Diagram Example

In order to assess the diagram, it is ¢converted to its corresponding configuration transition sys-
tem using Algorithm 1 presented is Section 4.4.4. The configuration transition system is then input
to the NuSMV model checker along with the properties to be verified expressed as CTL formulas.
The diagram intentionally contains a subtle flaw that will be detected in the assessment procedure.
Figure 4.8 depicts the generated transition system for the flawed activity diagram presented in
Figure 4.7.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We are interested in two kinds of properties. On one hand, we have automatic specifications
that check for reachability and absence of the deadlock in the diagram. Thus, for every state s of

the diagram we automatically generate the following CTL properties:

e s should be reachable. The reachability property is expressed in CTL as follows:

EF s

e s should be deadlock free. The deadlock free property is expressed in CTL as follows:

AG (s — EF !ls)

Receive OrthechCustomer, CheckStock
fcustOk,

PayRcvd]

{eustOK]

[lcustOK]
checkStock, CheckStock,
SendBill HandelPayment
[custoK [custOK,
custOK, i *
insufStock} linsufStock] MakeProdPlan, .rfgﬂfémk insufStock,
SendBill payRovd] P2YRovdl

[custOK,
HandlePayment,
MakeProdPlan

insufStock]
{custOK,

[linsufStock]

4
{insufStock]

[insufStock] [custOK,

insufStock]

CheckCustomer,
MakeProductionPlan

CheckCustomer

['custOK,
insufStock]

[tcustOK,
insufStock}

[custOK,
linsufStock,
payRevd]

CheckStock

SendBilt

[custOK,
insufStock)

[insufStock]

fousox. insufStock,
MakeProductionPlan pawad]' payRcvd)

[tcustOK,
tingufStock]

{custOK,
[custOK, payRevd]
insufStock, \/

payRevd] [custOK,

payRevd)
deadlock

{lcustOK,
insufStock}

{custOK,
tinsufStock,
payRevd]

HandlePayment

[teustOK,
linsutStock]

{lcustOK,
linsufStock]

FillOrder

Figure 4.8: Corresponding CTS for the Flawed Activity Diagram

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On the other hand, we have the manually specified properties that are intended to validate the
behavior of the diagram. While the deadlock and reachability properties are specified for every
state of the diagram, the manual specifications rﬁay involve only some of the states of the diagram
as they target the fulfiliment of the design requirements.

Thus, for the presented activity diagram we give an example of some interesting safety and
liveness properties. A safety property basically states that nothing bad can happen, whereas the

liveness property states that something good will eventually happen.
e The requirements state that it is always the case that the customer is trusted when fillOrder
action is reached. Below is the CTL notation for this safety property:
AG fillOrder — custOK
e Whenever the customer is trusted there should be a ship order activity state reached. Below
is the CTL notation for this liveness property:
AG custOK — AF shipOrder
e Whenever there is insufficient stock a production plan activity should be eventually reached.
Below is the CTL notation for this liveness property:
AG insufStock — AF MakeProdPlan

e If the customer is trusted and there is insufficient stock the Produce activity should eventually

be reached. Below is the CTL notation for this liveness property:

AG (custOK & insufStock) — AF Produce

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After generating the CTS, we compile the corresponding NuSMV code and add the aforemen-
tioned automatic and manual property specifications in the form of CTL formulas. For the flawed

activity diagram the following properties failed:

e The ShipOrder node was unreachable.

e A deadlock was identified in the diagram because the node J1 was unable to proceed as it was
waiting indefinitely for an incoming joining transition. Below is a counterexample generated

by the model-checker:
ReceiveOrder — (CheckCustomer, CheckStock)—
CheckCustomer — FillOrder

e The CTL property AG £illOrder — custOK failed due to the wrong value of the

guard in the branching point B1.

e The CTL property AG custOK — AF shipOrder failed as ShipOrder was unreach-

able in the diagram.

e The CTL property AG (custOK & insufStock) — AF Produce failed due to the

wrong value of the guard that is tested in the branching point B1.

The CTS diagram in Figure 4.8 shows a deadlock state that is reached on all the execution

paths of the CTS. This is caused by the fact that the value that is checked against the guard of
the transition going from the branching node B1 to the branching node B2 has the wrong value.

After fixing this issue and rerunning the model-checker on the corrected model all the properties

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

both automatic and manually specified passed. The CTS graph for the corrected activity diagram

is shown in Figure 4.9. As can be seen from the figure, the deadlock state that was in the flawed

version has disappeared.

[tcustOK]

ChechCustomer, CheckStoD

{linsufStock]

[custOK]
linsufStock [custOk,
PayReceivedL?

[insufStock) CheckCustgmer, checkStock,
MakeProductionPlan SendBill
CheckCustomer [oustOK,

CheckStock,

[insufStock]

[custOK,

tinsufStock,
[CustOR payRevd] CheckStock
insufStock lins ufStoc':k] {lcustOK,
/ insufStock] [custoK, [oustOK,
tinsufStock] '";‘;fgm-
{oustOR. HandlePayment,
insufStock] [custOR; Fillord
v[custOK, MakeProdPlan ‘ insufStock, i
insufStock] payRcvd] {custoK,

[custOK, [custOk, payRovd]
insufStock, linsufStock,

{custOK, SendsBill (custoK FillOrder,
j . St i ‘ linsufStock
insufStock linsufStock| SendBill / MakeProductionPlan ins

[custOK,

insufStock, ayRevd
[custoR iy payRevd] Wyl e
[oustOK, insufStock ayRo)
Produce, insufStock] ' payRovd]
SendBill payRevdl __ fcusiok,
insufStock, —~ {lcustOK,
{custOK, payRevd] insufStock] HandiePayment,
insufStock, / MakeProdPlan
payRevd)

SendBill

[custOK,

FillOrder
payRevd)

[custOK,

[custOK, HandlePayment [custOK,
insufStock, [custOk, tinsufStock,
HandiePayment, {oustok, PayRevd) insufStock, payRevd]
Produce payRevd) [tcustOK,

tinsufStack}

[teustOK]

N

insufStock,
payRevd] ShipOrder

Produce

Figure 4.9: Corresponding CTS for the Corrected Diagram

4.7 Model-Checking Feasibility

In order to assess the model-checking procedure feasibility, several experiments were performed

during the ongoing research efforts that were concretized with the publication of the results in

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[2-4]. We briefly present some results obtained from different experiments with respect to the
model-checking procedure. The time required to obtain the model-checking results for different
activity diagrams was related to the complexity of their CTS as expected. The experiments were
conducted on a 2.6 GHz P4 workstation with 1G of RAM. In the cases where the number of states
of the CTS was around one hundred or less, the model-checker computed the results pretty fast
ranging from less than a second to less than a minute. However, when the number of states was
very large, the results were computed in intervals peeking to several hours while the memory usage
was measured in hundreds of megabytes.

One of the situations that increased the computation time was represented by the transitions that
formed loops in the CTS. This fact resulted in a larger number of execution traces especially when
combined with extensive forking. In order to be more effective, the experiments were stopped
at the point were excessive memory space was required. It must be understood however that the
usage of forking was literally abused in order to push the model-checker in significantly consuming
computational resources in terms of processor cycles and memory space. This was only meant to
evaluate the limits that might be encountered for certain larger size systems where the number of
concurrent activities might be elevated. Nevertheless, even industry sized models would hardly
reach a critical limit that would preclude the model-checker from finishing in a reasonable amount
of time.

Even though the model-checking technique might be memory hungry and time consuming for

models with a very large number of states and intricate transitions, it has the advantage of ex-

haustively verifying the model against the desired properties. Moreover, the designers are usually

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interested in a moderate number of execution traces that reflect the design requirements. Hence,
we can safely say that a design exhibiting a wild complexity might be reconsidered as long as
the number of unimportant execution traces outweighs the number of the important ones. It fol-
lows that even a large model that entails a moderate number of execution traces can be subject to
model-checking with a significant degree of success.

In contrast, for the same model, traditional simulation might miss some subtle corner cases
that were not covered by the selected test vectors. Though it is conceivable that one may find all
the test vectors required to thoroughly complete the simulation of a particular model, the effort
required for achieving such an objective is typically unfeasible. Moreover, it is often the case that
even simulators require tremendous resources in terms of CPU cycles and memory space. It is not
uncommon, especially in the industry, to have impressive high end hardware that is used to run
very long regressions. It is obvious that formal methods like model-checking might also benefit
from such high end hardware. There are even model-checkers that are able to benefit from clusters

and distributed computing [57].

4.8 Summary

In this chapter, a new algorithm for the formal verification and validation of UML 2.0 activity
diagrams was presented. Moreover, an activity diagram example was assessed by the generation of

its corresponding CTS. The CTS is then translated to the SMV code which is input to the NuSMV
model checker. Finally, a discussion of the feasibility of model-checking was presented along with

supporting arguments inspired from our conducted experiments.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Software Engineering Metrics in Systems

Engineering

5.1 Introduction

The need for a reliable and a high performing software has led to the emergence of software en-
gineering. Since the birth of software engineering in 1968, new approaches and techniques were
developed to govern the quality of software systems. Software metrics are used to assess the quality
of software systems in terms of system attributes such as complexity, understandability, maintain-
ability, stability and others. Different software metrics were developed to measure the quality of
structural and objected—oriented programmihg techniques. Some of the metrics for the structural

programming are the Lines Of Code (1LOC) and Cyclomatic Complexity (CC) [43] metrics. When
the object-oriented paradigm emerged, many new metrics evolved to assess the quality of software

system design and to overcome the limitations of the legacy code metrics.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UML [35] has been standardized as a modeling language for object-oriented systems. In this
chapter, a set of object-oriented metrics were collected to measure the quality of UML class and
package diagrams. In the following sections, we argument the relativeness of software engineering
metrics to systems engineering and we present the quality attributes that are measured using the
targeted metrics. Thereafter, a set of fifteen metrics for package and class diagrams are detailed.
Finally, we present a snapshot of the developed tool and an analysis of a class and pacakge diagram

case study.

5.2 Relevance to Systems Engineering

In the systems engineering arena, there are a number of initiatives [7, 62] that employ the ob-
ject oriented design paradigm in the design of systems. These initiatives acknowledge and take
advantage of the benefits of the object oriented approach. Thus, the software engineering field
experience can be successfully imported in systems engineering design. Moreover, modern system
design currently employs modularity which invites the design engineers to think of the similarity
with software objects and components. Though there are many similarities in the structural and
architectural perspectives, there are also peculiarities that prohibit the use of the full range of fea-
tures present in software object oriented design. For example, commonly used techniques such as
object creation and destruction, thread spawning and other software specific constructs can hardly
be accommodated in the traditional systems design.

For this reason, the present draft [52] of the SysML specification confines the available features

to a restricted set that can be readily applied in systems engineering design.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Many software engineering techniques were developed to assess the object oriented designs.
In this context, the more a system design is object oriented, similar or even identical metrics can
be applied in order to assess various system quality attributes.

Modern modeling languages for systems engineering such as UML 2.0 and SysML are used
to capture the system requirements and to specify its components. Moreover, they can be used
to model the behavior of the system and its components. Since these modeling languages are
compatible with software systems, some existing software engineering techniques can be easily
inherited or adapted if necessary.

Furthermore, any system exhibits a degree of complexity with respect to the relationships
among its components. Thus it is important to evaluate the coupling among the components and
the cohesiveness degree for each component. Also, many complex systems include both hard-
ware and human resources. Therefore, the complexity of workflow within such a system requires
rigorous means for analysis and assessment.

The research presented hereby aims to show the usefulness and relativeness of software engi-

neering techniques and specifically software metrics to assess systems engineering designs.

5.3 Quality Attributes

There are many quality attributes that are captured using the set of object oriented metrics. In the

sequel, we briefly present those that we target in this work:

e Stability: indicates the risk level of the occurrence of unexpected effects, occasioned by
modifications on the software.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Understandability: measures the degree to which the system stakeholders are able to com-

prehend the system specifications.

e Maintainability: measures the easiness and rapidity with which a system design and/or im-

plementation can be changed for perfective, adaptive, corrective, and/or preventive reasons.

e Reusability: measures the easiness and rapidity with which a part (or more) of a system

design and/or implementation can be reused.

e Coupling: measures how strongly system parts depend on each other. Generally, a loose
coupling is sought in a high-quality design. Moreover, there is a strong correlation be-
tween coupling and other system quality attributes such as complexity, maintainability and

reusability.

e Cohesion: refers to the degree to which system components are functionally related (internal

“glue”). Generally, a strong cohesion is sought in a high-quality system design.

e Complexity: designates the quality of being intricate and compounded. It measures the

degree to which a system design is difficult to be understood and/or to be implemented.

The aforementioned quality attributes are the cornerstone in building quality software systems.
In the next section, we present the set of software engineering metrics that were used in our work

to assess system quality attributes mentioned in this section.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Metrics Suite

This section discusses the set of fifteen metrics for class and package diagrams. Subsequently, we

explain each metric separately and its formulas and the corresponding nominal range.

5.4.1 Abstractness

The Abstractness [42] metric measures the package abstraction rate. A package abstraction level
depends on its stability level. Calculations are performed on classes defined directly in the package
and those defined in sub-packages. In UML models, this metric is calculated on all the model
classes. The Abstraction metric provides a percentage between 0% and 100%, where the package
contains at least one class and at least one operation in an abstract class. The following formula is

used to measure the abstractness of the package diagram.

Abstraction = Nrma X Nea x 100 (1)

mca c

where:
® N, is the number of abstract methods in all the package’s classes.
® Npcq is the number of methods (abstract or not) in the package’s abstract classes.
e N, is the number of abstract classes.

e N, is the number of classes (abstract or not) of the package.

The Abstractness metric depends on how a package is subject to modification during the life
cycle of the application. A package should be more abstract in order to be extensible, which means

a more stable package. Abstract packages which are extensible provide greater model flexibility.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nominal values for this metric can not be measured since abstractness depends on the purpose of

the package.

5.4.2 Instability

The Instability [42] metric measures the level of instability in a package. A package is unstable if
it depends more on other packages than they depend on it. The instability of a package is the ratio
of its afferent coupling to the sum of its efferent and afferent coupling and is measured using the

following formula.

AC

[= oo 2
EC+AC (2)

Where:

o AfferentCoupling (AC) is the number of links (associations, dependencies and generaliza-
tions) towards classes defined in other packages.

o EfferentCoupling (EC) is the number of links (associations, dependencies and generaliza-
tions) coming from classes defined in other packages.

A package is more likely to be subject to change if the other packages, that it depends on,
change. The instability metric does not have a nominal value since some packages must be kept

unstable to enable them for extensibility.

5.4.3 Distance from the Main Sequence

The DMS [42] metric measures the appropriate balance between the abstraction and the instability

rates of the package. Packages should be quite general in order to be consistent with these two

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

orthogonal criteria. Packages should be unstable to be subject to modifications. However, pack-
ages should have some level of abstraction. Therefore, a balance should be achieved between the

package’s abstraction and instability and can be measured by the following formula.

 DMS = |Abstraction + Instability — 100] : (3)

A DMS of 100% has an optimal balance between abstraction and instability. Practically, a

value greater than 50% is considered to be within the nominal range of DMS.

5.4.4 Class Responsibility

The CR [24] ratio is an indication of responsibility level assigned for each class in order to correctly
execute an operation in response to a message. A method is considered to be responsible if it has
pre-conditions and/or post-conditions. A class method should be responsible to check whether a
message is appropriate before taking any action. On the other hand, a class method should take
responsibility to ensure the success of the method.

CR is a ratio of the number of methods which implement pre-condition and/or post-condition

contracts to the total number of methods. CR is calculated using the following formula.

_ PCC+POC

CR = X NOM x 100 4)

Where:
e PCC is the total number of methods which implement pre-condition contracts.
e POC is the total number of methods which implement post-condition contracts.

e NOM is the total number of methods.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The CR nominal range is between 20% and 75%. A value below 20% indicates irresponsible
class methods. Irresponsible methods indicate that the class will passively react to the sent and
received messages. Responsible methods are desired as they diminish the number of runtime

exceptions in a system. A CR value above 75% is preferable but seldom achieved.

5.4.5 Class Category Relational Cohesion

The CCRC [24] metric measures how cohesive are the classes in the diagram. The construction
of classes in the diagram must be justified by the links that exist between its classes. In the class
diagram, a scarce level of relations among the classes indicates a lack of cohesiveness. Relational
cohesion is the number of relationships among classes in the class diagram divided by the total

number of classes in the diagram. CCRC is calculated using the following formula.

Z?-l_fl NA; +Zf~21 NG; v

CCRC =
Ne

100 &)

Where:

e NA is the number of association relationships for a class.
e NG is the number of generalization relationships for a class.

e N, is the number of classes in the diagram.

A class is considered to be cohesively related to other classes in the class category when this

class collaborates with other classes to achieve its responsibilities. A CCRC value less than 1

indicates that some classes have no relationships with any other class in the model. A CCRC

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nominal range is between 150% and 350%. A value greater than 350% is not preferable due to

complexity considerations.

5.4.6 Depth of Inheritance Tree

Inheritance is an important concept in object oriented models, however it should be carefully used
to achieve the goals of a good software system design. Classes that are located deep in the inheri-
tance tree are more complex and difficult to develop, test and maintain. To achieve a good system
design, a trade-off should be considered in creating the class hierarchy. Thus, it was empirically
found that a DIT value between 1 and 4 fulfills this goal while a value greater than 4 would increase

the complexity of the model.

Algorithm 1 Measuring the Depth Of Inheritance (DIT) of a Class

global integer DITMax =0

for each class ¢ in CD do
call TraverseTree(c)

end for

function TraverseTree(class c)

{

static integer DIT =0

for each generalization relationship g from class ¢ do
get superclasses of ¢
for each superclass s of class ¢ do

DIT=DIT+1
TraverseTree (s)

end for

if DIT GT DITMax then
DITMax = DIT

end if

DIT=DIT -1

end for

}

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 1 is used to measure the depth of inheritance. The recursive method TraversTree

checks for the depth of inheritance for each class. The algorithm iterates all the classes in the

diagram and records the maximum inheritance depth in DIT Max.

5.4.7 Number of Children

The NOC [14] metric measures the average number of children for the classes in the class model.

NOC is important due to the following factors:

¢ A large number of children indicates that a larger degree of reuse is achieved.

¢ Too many children may indicate a misuse of subclassing which will increase the complexity.

NOC is calculated by summing the number of children for each class in the model. Then, this
number is divided by the total number of classes except for the child classes at the lowest level in
the model. NOC is calculated using the following formula.

YN NCC;
NOC ===l —~ 6

Where:

e NCC is the sum of children for a class.
® N, is the total number of classes in the diagram.

e LLC is the number of classes in the lowest level of inheritance in the diagram.

An NOC value of 0 shows that this is a non object-oriented model. A nominal range for NOC
is between 1 and 4. A value in this range indicates that the goals of reuse are compliant with the
goals of managing complexity and promoting encapsulation. A number greater than 4 may indicate

improper abstraction.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.8 Coupling Between Object Classes

CBO [14] is a measure of the average degree of connectivity and interdependency between objects
in a model. It is directly proportional to coupling and complexity, and inversely proportional to
modularity. Therefore, it is desired to have a lower CBO value. This value is important due to the

following reasons:
¢ Strong coupling inhibits the possibilities of reuse.

e Strong coupling makes a class difficult to understand, correct, or change without related

changes to other classes in the model.

e Tight coupling increases the model complexity.

CBO is calculated using the following formula.

Yo AR;+XN. DR
N

CBO = (N

Where;:

e AR s the total number of association relationships for each class in the diagram.

e DR is the total number of dependency relationships for each class in the diagram.

e N, is the number of classes in the diagram.

A CBO value of 0 indicates that a class is not related to any other classes in the model and
therefore should not be part of the system. The nominal range for CBO falls between 1 and 4
indicating that the class is loosely coupled. A CBO value above 4 may indicate that the class is
tightly coupled to other classes in the model therefore complicating the testing and modification

operations and limiting the possibilities of reuse.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.9 Number Of Methods

NOM [38] metric is the average count of methods per class. The number of methods in a class
should not be high but not at the expense of missing or incomplete functionality. This metric
is useful in identifying classes with little or no functionality thus serving mainly as data types.
Moreover, a subclass that does not implement methods has little or no potential for reuse.

This metric is measured by counting the total number of methods (defined and inherited from
all parents) for all the classes in the model. Then, this number is divided by the total number of

classes in the model. Thus, NOM is calculated using the following formula.

YN NM;+ XN NIM;

NOM =
Ne

8)

Where:
e NM is the number of methods for a class.
e NIM is the total number of inherited methods by a class.

e N is the number of classes in the diagram.

The NOM nominal range lies between 3 and 7 and indicates that the class has a reasonable
number of methods. An NOM value greater than 7 indicates the need for decomposing the class
into smaller classes. Alternatively, a value greater than 7 may indicate that the class does not have
a coherent purpose. A value less than 3 indicates that a class is merely a data construct rather than

a true class.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.10 Number Of Attributes

The NOA [40] metric measures the average number of attributes for a class in the model. This

metric is useful in identifying the following important issues:

e A relatively large number of attributes in a class may indicate the presence of coincidental
cohesion. Therefore, the class needs to be decomposed into smaller parts in order to manage

the complexity of the model.

o A class with no attributes means that a thorough analysis must be done on the semantics of

the class or may indicate that it is a utility class rather than a regular class.

NOA is the ratio of counting the total number of attributes (defined and inherited from all
ancestors) for each class in the model to the total number of classes in the model. NOA is calculated

using the following formula.

X NA;+ TN NIA;
Nc

NOA

)

Where:
e NA is the total number of attributes for a class in the diagram.
e NIA is the total number of inherited attributes for a class in the diagram.

e N, is the number of classes in the diagram.

A nominal range for NOA falls between 2 and 5. A value within the nominal range indicates
that a class has a reasonable number of attributes whereas a value greater than 5 may indicate that
the class does not have a coherent purpose and requires further object-oriented decomposition. A

value of O for a particular class may designate it as a utility class.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.11 Number of Methods Added

The NMA [40] metric plays a significant role in the assessment of the class specialization. A class
with too many added methods indicate an overspecialization when compared to the functional-
ity of its ancestors. Consequently, inheritance would be rendered less effective due to the major
differences between the subclass and its ancestors. NMA is the ratio of all the added methods in
the diagram to the total number of classes in the diagram. NMA is computed using the following

formula.

— nglAMi

NMA
Ne

(10)

Where:

e MA is the total number of added methods for a class.

e N, is the number of classes in the diagram.

This metric has a nominal range between 0 and 4. A value greater than 4 indicates that a class
has major changes from its ancestors. A class with an NMA value above 4 inhibits the use of

inheritance.

5.4.12 Number of Methods Overridden

NMO [40] metric plays a significant role in the assessment of the class specialization. A class with
too many redefined methods implies that little or no functionality is reused which may indicate
misuse of inheritance. NMO is the count of the number of redefined methods in the class and is

calculated as follows.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N,]
NMO=M (11)

Where:

e RM is the total number of redefined methods in a class.

e N, is the number of classes in the diagram.

A class that inherits methods must use them with the minimum of modifications. A class with
a high number of redefined methods yields to a loss in the meaning of inheritance. This metric has

a nominal range between 0 and 5.

5.4.13 Number of Methods Inherited

To maintain the usefulness of inheritance in a class, the number of inherited methods that are not
redefined (overridden) should be relatively greater than the redefined ones.
The NMI [40] metric is the ratio of the total number of non-redefined methods to the total

number of inherited methods in a class. The following formula measures the value of NMI.

NOHO

NMI =
HOP

x 100 (12)

Where:

o NOHO is the number of non-redefined methods in a class.

e HOP is the number of inherited methods in a class.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The ratio of inherited methods should be high. This metric is the opposite of the previously
presented NMO metric. A low number of inherited methods indicates a lack of specialization. An
ideal value of 100% is hardly achievable due to the fact that some behaviors need to be modified

in order to satisfy some new requirements.

5.4.14 Specialization Index

Excessive method overriding is undesirable due to the increase in the model complexity and main-
tenance and hinders reusability. Additionally, an overridden method is presented in a deeper level
in the inheritance hierarchy. To that effeét, the NMO metric is multiplied by the DIT metric.

To measure the specialization index for a class in the model, the product of the NMO and DIT
metrics is divided by the total number of methods in the clgss. Thus, the SIX metric is computed

using the following formula.

NMO x DIT N

SIX =
NM

100 (13)

Where:
e NMOQ is the number of overloaded methods.
e DIT is the depth of inheritance value.

e NM is the total number of methods in a class.

The deeper in the inheritance hierarchy a class is, the more difficult it would be to efficiently
and meaningfully use method overriding. This is due to the fact that it would be more difficult to
understand the relationship between the class and its ancestors. In this manner, overridden methods

in lower levels of the hierarchy are more easily developed and maintained. A value falling between

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0% and 120% is considered in the nominal range. For a root class, the specialization indicator is

ZEr0.

5.4.15 Public Methods Ratio

The PMR [24] metric measures the access control restrictiveness of a class and indicates how many
methods in a class are accessible from other classes. The usefulness of this metric is based on the

following considerations.

e Too many public methods defeat the goal of encapsulation which is a desired property of an

object oriented design.

e The absence of public methods indicates an isolated entity in the design.

This metric is the ratio of public methods (defined and inherited) to the total number of methods

(defined and inherited) in the class. PMR is calculated using the following formula.

_ PM+PIM

PMR =
DM +IM

(14)

Where;:

PM is the total number of public defined methods in a class.

PIM is the total number of public inherited methods in a class.

DM is the total number of defined methods in a class.

IM is the total number of inherited methods in a class.

A PMR nominal range falls between 5% and 50% and indicates that the class has a reasonable
number of public methods. A value below 5% is acceptable only for abstract classes otherwise

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the class functionality will be concealed. Conversely, a value above 50% indicates a lack of en-

capsulation. Generally, only methods that export some functionality should be visible to other

classes.

5.5 Proposed Metrics

In this section, we propose three new metrics for the class diagram that can be used to measure sev-
eral quality attributes related to complexity, maintainability, accessibility and functionality. This is
a continuaﬁon of our previous efforts [2] where we investigated the usefulness of several metrics
related to class and package diagrams.

The first metric relates to the number of defined attributes in a class and the number of public
methods defined. This metric, called the Defined Attributes to Public Method Ratio (DAPMR), is

calculated using the following formula:

NDA
DAPMR = ——
PDM (15)

Where:

e NDA: Number of defined attributes in a class.

e PDM: Number of public defined methods in a class.

Smaller values for this metric indicate an appropriate complexity level of the class methods.
This is due to the fact that in general, we need accessor methods for many of the defined (not
inherited) attributes, especially when dealing with component-based development. High DAPMR
values indicate that some methods might be decomposed into smaller methods in order to provide

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

better maintainability and accessibility. Additionally, we assume that the methods of the derived
class are not meant to use the attributes of the base class directly as this would indicate a misplace-
ment of the methods. This assumption is required due to the fact that the related information is not
captured in the class diagram notation.

Whereas the first metric can be applied on both specialized and non-specialized classes, our
second metric is targeting specialized classes that benefit from inheritance. To that effect, we are
interested in what way and to which degree is the subclass specializing the functionality. Thus, we
call this metric the Functionality Specialization Degree (FSD). The formula for this metric is as

follows:

NDM +NIM NDA+NIA

FSD =
2 NIM NIA

(16)

Where:

o NDM: Number of defined methods in a class.
o NIM: Number of inherited methods in a class.
o NDA: Number of defined attributes in a class.

o NJA: Number of inherited attributes in a class.

The FSD metric should be understood as the accompanying added functionality (defined meth-
ods) when compared to the added number of attributes. In other words, we can view it as measuring
the functionality degree with respect to the added complexity level. A positive value for this metric
indicates an appropriate specialization degree. The reason behind it is that an increased number

of attributes with little or no functionality added can hardly be beneficial and does not justify the

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

creation of the specialized class. It must be noted that this metric cannot be defined when there is
no method or attribute to be inherited.

Finally, we present the Class Exposure Ratio (CXR) metric. CXR consists of the ratio between
the number of defined private attributes and the number of defined public methods. While for
various components it is useful to have get/set accessor methods, on the average the exposure
degree of the system attributes should be minimal. This is known to be a good practice since it
restricts the user from inadvertently altering certain system parameters that might have an adverse
side effect. This metric is measured on each single class and averaged for the whole system at the
end. For each of the defined private attributes, each method has that attribute as its single parameter

can be considered as an accessor method. This metric is measured using the following formula:

DPrA
CXR= ——— S¥))
YacppraM(a)

Where:

e DPrA: Defined Private Attributes in a class.

e M(a): Any defined public method that has a as its only argument.

A class that has a CXR value of 1 is highly exposed. If on the average the exposure is high
then the design might be reconsidered in order to limit the exposure degree. On the other hand, it
is sometimes useful to have an effect (e.g. keeping track of the change, debugging, etc.) based on
setting a certain system parameter through an accessor method instead of allowing that particular

attribute to be defined as publicly accessible.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ Metrics - Example - Realtime Heart Monitor Mo

{ | MM Number of Defined Methods
| NIM: Numbes of A Inberied Methods

B e

Figure 5.1: Snapshot of the Metrics Tool

5.6 Object Oriented Metrics Tool

In this section, we give an overview of our software metrics tool. As mentioned in Chapter 1,
we used Artisan Real-time Studio [59], a modeling tool that supports both UML 2.0 and SysML
artifacts. The metémodel of Artisan Real-time Studio is based on an object oriented database
system. The metrics tool is developed using Microsoft Visual C++ 6.0 and accesses Artisan data-
store through a provided ActiveX component. A snapshot of the metrics tool is shown in Figure

5.1
The tool implements the aforementioned fifteen metrics. The toolkit is an automated applica-

tion with GUI frontend that enables the UML designer to directly measure the quality of class and

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

package diagrams. Moreover, the toolkit reflects the modified changes of the diagram into the ver-
ification tool automatically. Furthermore, for each targeted metric, the tool shows the ratio of the
classes that satisfy the nominal range in the diagram to the total number of classes in the diagram.
The toolkit provides as well a feedback to the designer on the assessed models and some hints that
may be used to enhance the design. The results of our metrics tool along with the accompanying

example were presented in [2,4].

5.7 Case Study

We selected an example depicting a real-time heart monitoring system. The diagram consists
of three packages. The first one contains the windows components that display the monitoring
results. The second package contains the platform specific heart monitoring tools, whereas, the
third package contains the heart monitoring components.

This diagram is a good example to be tested due to the different types of relationships among
the classes. Our tool implements a set of fifteen metrics [24] for class and package diagram. In the
following paragraphs we briefly present our assessment results. When applying these metrics on
the diagram in Figure 5.2, the analysis results indicate that some classes in the model are complex
thus having a weak reusability potential.

Table 5.1 shows the metrics related to package diagrams. The distance from the main sequence
metric (DMS) measures the balance between the abstraction and instability levels in the package.
As shown in the table, the three packages in the diagram fall within the nominal range of DMS.

Since the Abstraction and Instability metrics do not have nominal ranges due to the difference

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

theSubject

T
NSRS e g

Figure 5.2: Class and Package Diagrams Example

in the design perspectives, the DMS is a compromise between their values. Abstraction and In-
stability metrics do not have nominal ranges due to the fact that packages should depend on other
packages in order to employ compositionality. However, they should also be easily modifiable. In
the table above, the zero abstractness value for the three packages shows that these packages are
not easily extendable and modifiable. Also, the metric in the second column shows a relatively
high instability value indicating that the three packages are subject to change if other packages do

change.

8]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Package Name All DMS
Platform Specific HM | 0 | 49 51
HM 0149 51
Windows Components | 0 | 50 50
Average 0150 50
Nominal Range -1 - |50-100%

Table 5.1: Package Diagram Metrics

Table 5.2 presents the analysis results of the class diagram inheritance related metrics. The
(Depth of Inheritance Tree) DIT metric shows a proper use of inheritance. Moreover, the use of in-
heritance in this diagram does not have a negative impact on the its complexity level. Furthermore,
our tool results show that the diagram has a shallow inheritance tree which indicates a good level
of understandability and testability. With respect to the Number Of Children (NOC), the analysis
shows that only four classes in the diagram have a good NOC vélue. In a class diagram, the number
of children is an indication of how a class is being reused in the diagram.

The analysis results also show that five classes in the diagram have weak (Number Of Methods)
NOM value. On the other hand, the class diagram has an overall NOM that lies in the nominal
range. The problem of unsuitable NOM values may be solved by modifying the class diagram
by decomposing the existing classes to smaller new classes to share the number of methods that
exceed the nominal range. Consequently, classes in the class diagram will be more reusable.

Table 5.2 shows only one class in the Number Of Attributes (NOA) nominal range. This
allows for further enhancement by adding new attributes to the non-abstract classes in the diagram.
Moreover, a class with a high number of attributes increases its size.

The Number of Methods Added (NMA) measures the inheritance usefulness degree. Three

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Class Name DIT { NOC | NOM | NOA | NMA NMI NMO SIX
Cardio 1 0 10 1 6 0 4 40
Rate_HdIr 1 0 3 1 2 0 1 33
Gain_HdlIr 1 0 3 1 2 0 1 33
Power_Hdlr 1 0 3 1 2 0 1 33
TE_PlotTimer 1 0 5 2 2 67 3 43
Cardio_Proxy 1 0 11 0 5 33 4 0
Abstract_Cardio 0 2 4 0 4 0 0 0
WMutex 0 0 3 1 3 0 0 0
Event 0 3. 1 0 1 0 0 0
TimedEvent 0 1 3 0 3 0 0 0
Active_Object 0 1 2 0 2 0 0 0
Queue 0 0 3 0 3 0 0 0
Input_Handler 0 0 5 0 5 0 0 0
Average 0.46 | 0.88 | 431 | 0.54 | 3.08 25 1.08 18.38
Nominal Range { 1-4| 1-4 | 3-7 | 2-51 0-4 |50-100% | 0-5 | 0-120%

Table 5.2: Class Diagram Inheritance Related Metrics

classes have a high NMA value indicating a misuse of inheritance. Classes with high NMA may
be difficult to reuse, whereas, classes with no specialization and having large number of methods
may impede other classes from reusing their functionality requiring the decomposition into smaller
specialized classes in order to improve the design.

Table 5.2 shows a single class in the inheritance hierarchy satisfying the Number of Methods
Inherited (NMI) nominal range. Concerning the Number of Methods Overridden (NMO) metric,
our analysis shows that all the classes in the diagram fall in the nominal range.

The last metric in Table 5.2 shows that all the classes in the diagram comply to the nominal
range of the specialization index (SIX). The latter reflects the overall performance of the class
diagram from the perspective of inheritance in object oriented design.

The Coupling Between Object (CBO) classes metric measures the level of coupling between

classes, denoting an increase in the complexity for high coupling. Table 5.3 shows seven classes

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Class Name CR CCRC CBO | PMR
Cardio 0 200 1 100
Rate_HdIr 0 200 1 100
Gain_Hdlr 0 200 1 100
Power_HdIr 0 200 1 100
TE_PlotTimer 0 100 0 100
Cardio_Proxy 0 700 5 100
Abstract_Cardio 0 100 1 100
WMutex 0 0 0 100
Event 0 0 0 100
TimedEvent 0 0 0 100
Active_Object 0 0 0 100
Queue 0 0 0 100
Input_Handler 0 200 2 100
Average 0 146 0.92 100
Nominal Range | 20-75% | 150-350% | 1-4 | 5-50%

Table 5.3: Class Diagram General Metrics

outside the CBO nominal range while six classes are falling within it. This shows an increased
complexity and suggests further modification by reducing the number of relationships between the
classes.

The Class Category Relational Cohesion (CCRC) measures the cohesion of classes within the
diagram. This metric reflects the diagram’s architecture strength. Table 5.3 shows a good CCRC
level for only five classes, whereas the remaining eight classes have a weak CCRC level. We can
also see that the average CCRC is outside the nominal range indicating a lack of cohesion between
the classes.

The Class Responsibility (CR) results in Table 5.3 show that none of the classes in the diagram |

is implementing pre-conditions and/or post-conditions. CR is measured in the cases when a class

method should be responsible to check whether a message is correct before taking any action. In

the current example, the CR value can be enhanced by adding pre/post-conditions to the methods

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that need to check the validity of messages prior or after the execution of an action. In the design
of a class diagram, the use of pre/post-coﬁditions should be carefully considered. Therefore, this
metric is useful to check systems with real-time messaging.

Finally, for the PMR metric, Table 5.3 shows that all methods in the class diagram are acces-
sible which inhibits encapsulation in the diagram. This requires some adjustment of the access

control level for all the classes in the diagram.

5.8 Summary

In this chapter we explained our adopted set of metrics. We have demonstrated using a case study
the usefulness of these metrics in assessing the quality of software systems. Our case study shows
how applying different object oriented techniques can affect different quality attributes such as

reusability and complexity. Moreover, we provided an analysis for each metric in our tool.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

Increased complexity in emerging systems required the existence of a discipline that develops and
exploits structured, efficient approaches to analysis and design to solve complex engineering prob-
lems. Systems engineering is a discipline that aims to successful realization of complex systems.
The increased difficulties in coping with systems design and maintenance led to the emergence
of systems modeling languages such as UML 2.0 and SysML. INCOSE and OMG collaborated
in the development of the aforementioned modeling languages in order to capture all the systems
engineering aspects and properties.

In this work, we targeted some techniques aimed to automate verification and validation of
software and systems engineering designs. To that effect, software engineering techniques and
formal techniques like model-checking can be useful in building automatic tools that assist verifi-

cation and validation of systems design. The benefit of applying early verification and validation

at the design stages has the potential to eliminate a huge cost of correcting errors and maintaining

systems in the subsequent phases of the system development.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The outcome of this research work demonstrated a unified paradigm that can be used for the
automated assessment of software and systems engineering design models focusing on both struc-
tural and behavioral aspects captured by UML 2.0 class diagrams and UML 2.0 activity diagrams
respectively. The latter, captures important areas such business processes, workflow systems mod-
eling and real-time systems. In Chapter 2, we presented the state-of-the-art in the verification and
validation research initiatives targeting UML structural and behavioral diagrams. Moreover, Chap-
ter 3 outlined the historical context and background that led to the emergence of the UML 2.0 and
SysML modeling languages.

Furthermore, Chapter 4 presented the informal syntax and semantics of UML 2.0 activity di-
agram focusing on its control flow aspect. In the same chapter, the NuSMV model checker was
introduced along with its potential for verifying behavioral descriptions such as the activity dia-
grams. An illustrative business process case study assessment was elaborated detailing the phases
required for the verification and validation of activity diagrams. Also, a discussion about the model
checking feasibility and the related open problems concluded the chapter.

Moreover, Chapter 5 demonstrated the usefulness of software engineering metrics in the as-
sessment of structural aspects of a system captured by UML class diagrams. To that effect, a set
of fifteen was discussed in the context of a relevant example. A side benefit of this research was
the realization of a software package dedicated to the assessment of UML class diagrams quality
attributes.

The future work consists of developing new object oriented metrics that can be applied for the

assessment of class diagrams and extending the metrics concept to cover the behavioral diagram

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

semantic model in a synergetic way. Similarly, a future research direction consists in using program
analysis techniques such as data and control flow analysis in order to slice the transition system
corresponding to UML behavioral diagrams such as activity diagrams. This has the potential to
leverage the effectiveness of the model checking procedure.

Finally, the demonstrated empirical results related to the assessment of the activity diagram
might be augmented with a theoretical base that would strengthen the confidence in the proposed
method. This may consist in a formal syntax and operational semantics for expressing activity

diagrams structure and behavior.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] National Aeronautics and Space Administration (NASA). Software Quality Metrics for Ob-
ject Oriented System Environments. Technical Report SATC-TR-95-1001, National Aero-
nautics and Space Administration, Goddard Space Ilight Center, Greenbelt Maryland 20771,

JUNE 1995.

[2] L. Alawneh, M. Debbabi, Y. Jarraya, A. Soeanu, and F. Hassaine. A unified approach for
verification and validation of systems and software engineering models. In /3th Annual

IEEE International Symposium and Workshop on Engineering of Computer Based Systems

(ECBS’06), pages 409418, 2006.

[3] Luay Alawneh, Mourad Debbabi, Fawzi Hassaine, Yosr Jarraya, Payam Shahi, and Andrei
Soeanu. Towards a unified paradigm for verification and validation of systems engineering

design models. In IASTED Conf. on Software Engineering, pages 282-287, 2006.

[4] Luay Alawneh, Mourad Debbabi, Fawzi Hassaine, and Andrei Soeanu. On the verification

and validation of uml structural and behavioral diagrams. In IJASTED Conf. on Advances In

Computer Science and Technology - 2006, 2006.

&9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[5] Inc. Averant. Static Functional Verification with Solidify, a New Low-Risk Methodology for

Faster Debug of ASICs and Programmable Parts. Technical report, Averant, Inc.s, 2001.

[6] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-oriented design quality

assessment. IEEE Trans. Softw. Eng., 28(1):4-17, 2002.

[7]1 J. Paulo Barros and Jens B. Jorgensen. Model transformations for an elevator controller:
Coloured petri nets in object-oriented analysis and design. In Second International Workshop
on Model-Based Methodologies for Pervasive and Embedded Software (MOMPES 2005),

Renes, France., June, 2005.

[8] Shoham Ben-David, Tamir Heyman, Orma Grumberg, and Assaf Schuster. Scalable dis-
tributed on-the-fly symbolic model checking. In Formal Methods in Computer-Aided Design,

pages 390-404, 2000.

[9] Barry W. Boehm and Victor R. Basili. Software Defect Reduction Top 10 List. IEEE Com-

puter, 34(1):135-137, 2001.

[10] G. Booch. Object-Oriented Analysis and Design with Applications. Addison-Wesley, second

edition, 1997.

[11] Universitat Bremen. udraw(graph)tool. http://www.informatik.uni-bremen.

de/uDrawGraph/en/index.html.

[12] Lionel C. Briand, Premkumar T. Devanbu, and Walcelio L. Melo. An investigation into
coupling measures for c++. In International Conference on Software Engineering, pages
412-421, 1997.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[13] F. Brito, e Abreu, and W. Melo. Evaluating the impact of object-oriented design on software

quality, 1996.

[14] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object Oriented Design. IEEE

Trans. Softw. Eng., 20(6):476—493, 1994.

[15] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Rovert. Nusmv: A

New Symbolic Model Verifier. Iﬁ cav, 1999.

[16] Communications Committee. The International Council on Systems Engineering (incose).

http://www.incose.org/practice/whatissystemseng.aspx.

[17] Pallab Dasgupta, Arindam Chakrabarti, and P. P. Chakrabarti. Open computation tree logic
for formal verification of modules. In ASP-DAC ’02: Proceedings of the 2002 conference on
Asia South Pacific design automation/VLSI Design, page 735, Washington, DC, USA, 2002.

IEEE Computer Society.

[18] Alexandre David, Gerd Behrmann, Kim G. Larsen, and Wang Yi. A Tool Architecture for

the Next Generation of Uppaal. Technical report, 2002.
[19] Semantik der UML 2.0. http://www4.in.tum.de/lehre/seminare/hs/ws0405/uml/20040720.pdf.

[20] Gregor Engels, Jochen M. Kuster, Reiko Heckel, and Marc Lohmann. Model-Based Verifica-
tion and Validation of Properties. In Roswitha Bardohl and Hartmut Ehrig, editors, Electronic

Notes in Theoretical Computer Science, volume 82. Elsevier, 2003.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[21] Rik Eshuis and Roel Wieringa. Tool support for verifying uml activity diagrams. [EEE

Transactions on Software Engineering, 30(7):437-447, 2004.
[22] Object Management Group. http://www.omg.org.
[23] Object Management Group. Uml for Systems Engineering, 2003.

[24] USAF Research Group. Object Oriented Model Metrics. Technical re-
port, The United States Air Force Space and Warning Product-Line Systems,
http://www.cin.ufpe.br/ inspector/relacionados/Object-oriente Model Metrics Docu-

ment.htm, 1996.

[25] Esther Guerra and Juan de Lara. A framework for the verification of uml models. examples

using petri nets. In JISBD, pages 325-334, 2003.
[26] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[27] Gerard J. Holzmann. The Model Checker SPIN. Software Engineering, 23(5):279-295, 1997.

[28] Lin Hsin-Hung. A Research of Model Checking UML Statechart Diagrams. Master’s thesis,

Japan Advanced Institute of Science and Technology, 2003.
[29] Hugo/RT. http://www.pst.ifi.Imu.de/projekte/hugo/.
[30] IEEE. IEEE Std 610.12-1990, IEEE Standard for Software Verification and Validation, 1990.

[31] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dil], and L.J. Hwang. Symbolic Model Check-
ing: 10?0 States and Beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic
in Computer Science, pages 1-33, Washington, D.C., 1990. IEEE Computer Society Press.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[32] K.L. McMillan. The SMV system. Technical Report CMU-CS-92-131, 1992.

[33] Alexander Knapp, Stephan Merz, and Christopher Rauh. Model Checking Timed UML State
Machines and Collaborations. Technical report, Institut fur Informatik, Ludwig-Maximilians-

Universitat Munchen and Institut fur Informatik, Technische Universitat Munchen, 2002.
[34] D. Kroening. Application Specific Higher Order Logic Theorem Proving, 2002.
[35] Unified Modeling Language. http://www.uml.org/.

[36] Diego Latella, Istvan Majzik, and Mieke Massink. Towards a formal operational semantics
of uml statechart diagrams. In Proceedings of the IFIP TC6/WG®6.1 Third International Con-
ference on Formal Methods for Open Object-Based Distributed Systems (FMOODS), page

465, Deventer, The Netherlands, The Netherlands, 1999. Kluwer, B.V.

[37] W. Liand S. Henry. Maintenance metrics for the object oriented paradigm. In First Interna-

tional Software Metrics Symp., pages 52-60, 1993.

[38] Wei Li and Sallie Henry. Object-oriented metrics that predict maintainability. J. Syst. Softw.,

23(2):111-122, 1993.

[39] Johan Lilius and Ivan Porres Paltor. VUML: a tool for verifying UML models. Technical

Report TUCS-TR-272, 18, 1999.

[40] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics: a Practical Guide. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[41] Formal Systems Europe (Ltd). Failures-Divergence-Refinement: FDR2 User Manual. 1997.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[42] Robert C. Martin. OO Design Quality Metrics. 1994.

[43] McCabe. A complexity measure. IEEE Transactions on Software Engineering, 2:308-320,

1976.

[44] John McLeod. Advances in simulation. Advances in Computers, 9:23—49, 1968.

[45] Stephan Merz. Model Checking: A Tutorial Overview. In F. Cassez et al., editor, Modeling
and Verification of Parallel Processes, volume 2067 of Lecture Notes in Computer Science,

pages 3-38. Springer-Verlag, Heidelberg, 2001.

[46] J. Miller and J. (eds.) Mukerji. MDA Guide Version 1.0. OMG Document., May 2003.

omg/2003-05-01.

[47] Object Management Group (OMG). Meta-Object Facility (MOF) Specification, 2002.

[48] Object Management Group (OMG). UML 2.0 Superstructure Specification, 2003.

[49] Object Management Group (OMG). XML Metadata Interchange (XMI) Specification, 2003.

[50] WhatIs OMG-UML and Why Is It Important? http://www.omg.org/news/pr97/umlprimer.html.

[51] International Standard Organisation. http://www.iso.org.

[52] SysML Partners. System Modeling Language: SysML, 2004.

[53] Doron Peled. Combining partial order reductions with on-the-fly model-checking. In CAV
'94: Proceedings of the 6th International Conference on Computer Aided Verification, pages

377-390, London, UK, 1994. Springer-Verlag.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[54] Tom Pender. UML Bible. Wiley, 2003.

[55] Marco Roveri. PSL Sugar: Formal Specification Language. Lecture for Course Advanced

Model Checking, September 2004.

[56] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Refer-

ence Manual Second Edition. Addison-Wesley, 2005.

[57] Assaf Schuster. Scalable distributed model checking: Experiences, lessons, and expectations.

Electr. Notes Theor. Comput. Sci., 89(1), 2003.

[58] ARTiSAN Software. ARTiSAN Real-time Modeler. http://www.microprocess.

com/agls/documents/ARTISAN/FichesProduits/Model_4.pdf. Datasheet.

[59] ARTiSAN Software. ARTiSAN Real-time Studio. http://www.artisansw.com/

pdflibrary/Rts_5.0_datasheet.pdf. Datasheet.

[60] G.C. Tugwell, J.D. Holt, C.J. Neill, and C.P. Jobling. Metrics for Full Systems Engineering
Lifecycle Activities (MeFuSELA). In Proceedings of the Ninth International Symposium of

the International Council on Systems Engineering (INCOSE 99), Brighton, U.K., 1999.

[61] R. W. Whitty. Software testing techniques, by boris beizer, van nostrand reinhold, second
edition, 1990 and testing computer software, by c. kaner, j. falik and h. q. nguyen, van nos-
trand reinhold, second edition, 1993 (book review). Softw. Test., Verif. Reliab., 2(4):215-216,

1992.

[62] Lei Zhen and Guangzhen Shao. Analysis patterns for oil refineries.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

