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ABSTRACT

On the First Range Time of Diffusion Processes

Zhaoxia Ren

First range time is the first time when the range of a stochastic process
reaches a certain level. The first range time for Brownian motion has
already been studied in several papers. In this thesis we will use a
different approach to derive a joint Laplace transform on the first range
time for a general diffusion process. This derivation is more intuitive than
that presented in previous papers. From this main result we will see that
the problems on the first range time could be transferred to the problem

of solving an ordinary differential equation.
We will also apply the result to some well-known diffusions, such as

Brownian motion, geometric Brownian motion, Ornstein-Uhlenbeck

processes and squared Bessel processes.
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1. INTRODUCTION

1.1. Definitions. The range process of a stochastic process X is defined by
R, =8,-1, t>0,

where S; = supy.,, Xs and I; = infoc,<, X;. It is an increasing process which
vanishes at 0. Its left-continuous inverse, called the first range time for range r,

is defined by

6, =inf{t >0:R, > r}, r=>0.

Sometimes it is also called the cover time. Intuitively, 6, is the first time when
the range of the process X reaches r. Suppose Xy = x. We define another time

related to the first range time as

n=inf{t 20 : X, = (Xg, — N1z, >x + KXo, + Nlix, <x}.

Ficure 1. First range time.



We can see that 17, < 6, holds for any r > 0. Since 6, is the first time when the
range of the process reaches r, the process should be necessarily at an extremum
at time 6,. Correspondingly, 7, is the first time when the process is at the other
extremum up to time 6,, i.e. if X, is at the minimum, then X, _is at the maximum,
and conversely, if Xy, is at the maximum then X, is at the minimum. Thus the
two endpoints of the coverage interval with length r are visited at times 7, and
6,. Note that 6, is a stopping time, but 7, is not a stopping time.

Define the first hitting time at level b as
Ty, = inf{t : X, = b}

with the convention that inf{Q} = oco. Throughout the paper the notation 6, and
T, will be reserved for the first range time for range r and the first hitting time

at level b respectively.

1.2. Previous Results on Range Time. Previous results on the range process
and the first range time could be found in Feller (1951), Imhof (1985), Vallois
(1993), Vallois (1995), Vallois (1996), Borodin (1999), Chong, Cowan and Holst
(2000), Salminen and Vallois (2005), Tanré and Vallois (2006) and so on.

In Feller (1951), the density function f(t; r) of the range R, for standard Brow-

nian motion B, was given by

f@6r)=8 i(—l)"'lkzqs (Fer/ )
k=1



where ¢(x) is the density function of the standard normal distribution. Note
that in this form it is not even obvious that the function is positive. To derive
this density, the author first found P{B; € dx,S,; < v,I;, > —u}, and then the
density function g(t; u,v) of (S,, I;). The result was finally obtained by f(¢;r) =
Lr gt,u,r — udu.

In Imhof (1985), the process of the first range time 6, for standard Brownian
motion B, starting at O (or a three-dimensional Bessel process) was considered.
It is a pure jump process with independent and non-stationary increments. The

density function of 6, was given by
Pol{6, € dt} = 2(0/0r)Q(r/2,r[2,r)dt, t>0

where the explicit expression of Qy(x,y,z)dy = Py{B; € dy,To AT, > t},0 <

x,y < z, could be found. It was derived by using
Gi(x,r)dt :=Po{Ty €dt,Rr, <r} =Po{Ty €dt, T, >t}, O<x<r

of which the right side was already known (for example, see Chung 1976) and
then using

Po{0, € dt, Xy, € dx} = (0/0r)G(x, r)dtdx.

Furthermore, the Laplace transform of 6, could be obtained by direct computa-

tion on its density function, and we have

E[e %] = cosh™2[r y2/2].



Since the process 6, for Brownian motion has independent increments, the

Laplace transform of 6,, — 6,, for0 < r; < rp is

E[e™*%2702)] = cosh®[r; 1/A/2] cosh™2[r, \[2/2].
The density of 6,, — 6,, was given by
P{6,, — 6,, € dt}

=08/0r{Q(r2 — r1)/2,(r2 — r1)/2,r2) + Q((r2 — 11)/2,(r2 + 11)/2, r2)}dt.

It was also proved that {|B,, .,—B,,|;0 < t < 6,—mn,} is a three-dimensional Bessel
process stopped at its first hitting time of level r.

In Vallois (1993), the first range time with randomized range level was consid-
ered. It was derived that, when U is uniformly distributed on (0, a), the Brownian
motion stopped when R, exceeds U for the first time is identical in law with the
Brownian motion stopped when it first exits the interval (U, a — U).

In Vallois (1995), the Brownian motion were further considered. Note that in
this paper the first range time was defined as the right-continuous inverse of the
range R,, which is slightly different from the previous definition. Given C > 0
fixed, a family {fj_,; n > 0} of positive random times was defined by induction

as
ﬁO = nc, ﬁ—n—l =MNR,,» N > 0.

By this way the Brownian motion path up to time 7n¢ was split into countable

parts. Then an intrinsic decomposition of the Brownian motion followed. It was



also pointed out that for 0 < r; < ry,
6,, — 6y, 2 inf{t > 0; -1, + max(ry,S;) > ra}.

Another result was deduced from the scaling property of Brownian motion that
{6x;t > O} has the same law as {126;;¢ > 0} for any A > 0. Moreover, a square-

integrable martingale was constructed by
M,= 2By, t>0.

M was connected to the parabolic martingale (see Emery 1989) and after that it
was proved that M had the chaotic property representation (see Emery 1989).
In Vallois (1996), a simple random walk on Z was considered. The generating
function of the first range time 6, for the non-symmetric cases with P{X,,,1—X,, =
1} = pand P{X,,;1 — X,, = =1} = g (p + g = 1) was obtained, and it was also
proved that it is a rational function. This allowed us to invert the generating
function to find the explicit distributions of 6, and R,,. The asymptotic behavior
of 6, for non-symmetric cases was also investigated. Two results were given as
follows. The first result looks like the law of large number and the second one

is similar to the central limit theorem. More precisely,
P
On/n — l/lp - qla

6 — n/lp — ab) / Vi > N(©,4pg/lp — qP).



In Borodin (1999), methods for computation on distributions of two classes of
functionals of Brownian motion stopped at the first range time were developed.
Both classes involved the Brownian local time. The basic idea was to transfer
the problems on the first range time to the problems on the first exit time. This
idea is very important when we prove some results on the distributions of func-
tionals stopped at the first range time. We will also use this idea in the following
sections.

In Chong, Cowan and Holst (2000), the joint Laplace transform of (6,,7,, Xs,)
was derived for Brownian motion cases. In their paper they first derived such a
joint Laplace transform for simple random walks, and then applied the property
that Brownian motion is a scaling limit of random walks to find the desired

result. It was given as the following Theorem.

Theorem 1.1. [Chong, Cowan and Holst (2000)] For a Brownian motion X,

with drift u, variance o and Xy = 0 we have
E [e_m]r_ﬂ(er“ﬂr)'vxﬂr]

_ 2«(B) sinh?[1(k(@) +p)]  sink?[i@)-p] D
T Smhik@Ismhk@)] | k@ +p | k@) —p

forany a,8 2 0 and v with p = ru/o? — rv and k(x) = r/o /o2 + 2x.

The method in Chong, Cowan and Holst (2000) works only when the process
is spacially homogenous. In this thesis we will consider a general diffusion

which is not necessarily spacially homogenous.



There are also some recent papers on the first range time. In Salminen and
Vallois (2005), the first range time (with randomized range level) of a linear
diffusion on R was considered. Inspired by the observation that the exponen-
tially randomized first range time has the same law as a similarly random-
ized first exit time from an interval (see Vallois 1993), they studied a large
family of non-negative two-dimensional random variables (X, X’) instead of
(U,a — U) (see Vallois 1993) with this property. The feature of this family is
Fé(x,y) = F°(x +y,0),Yx,y > 0, where F¢(x,y) := P{X > x,X’ > y}. In
particular, X and X’ could be taken to be i.i.d. exponential distributed random
variables.

In Tanré€ and Vallois (2006), the Brownian motion with drift u staring at 0 was
considered. The law of R; and 6, was obtained. The asymptotic behavior of 6,
was also investigated as r — oo and the results as follows were similar to those

for the simple random walks in Vallois (1996):
6,/r = 1/p,

VPO, /7 = 1/1) = N(O, 1/45).

So far we have seen that most results on the first range time were derived for
some specific process(es) only, such as Brownian motion or random walks. In
this paper we will use a different and simple approach to derive a general result
of a joint Laplace transform on the first range time for diffusion processes. The

above Theorem 1.1 will be given as an example in Corollary 4.1.



In section 2, some basic settings and an important lemma will be first stated.
The lemma gives the Laplace transform of the exit time from a finite interval for
diffusion processes. Then two propositions will follow.

In section 3, the main result will be presented in Theorem 3.1. It gives the joint
Laplace transform of (6,, Xy , 77,) for general diffusion processes. The derivation
is more intuitive than that presented in previous papers. From this main result
we will see that the problems on the first range time can be transferred to the
problem of solving an ordinary differential equation in which the infinitesimal
generator is involved. After that some corollaries will be discussed.

In section 4, we will apply the main result to some well-known diffusion
processes, such as Brownian motion, geometric Brownian motion, Ornstein-

Uhlenbeck processes and squared Bessel processes.



2. Basic SETTINGS AND PRELIMINARY RESULTS

2.1. Basic Settings. Let {X;;¢ > 0} be a one-dimensional stochastic process

satisfying the time homogeneous It6 stochastic differential equation
dX; = a(Xpdt + o(X)dw,, t20 2.1

with Xo = x a.s., {Wy;¢ > 0} a standard Wiener process, and o(x) > 0. It is
further assumed that a(x) and o(x) are measurable and defined in (—o0, +00)
and satisfy the conditions of the existence and uniqueness theorem for stochas-
tic differential equations, i.e. there exists a constant K such that for all x,y in
(—00, +00),
(%) = a(y)| + lo(x) — )| < Klx - yl,
@*(x) + 0*(x) < K*(1 + %) 22)

(see Gihman and Skorohod, page 40). Then solutions to (2.1) are strong solu-
tions.

The special case that @(x) = u and o(x) = o gives the Brownian motion.

2.2. A Lemma. We first state a lemma which could be found in Breiman
(1968). It gave a Laplace transform of the first exit time for a diffusion pro-
cess from a finite interval. This lemma will be used in the derivation of the

succeeding results. We present a proof in Lehoczky (1977) for completeness.



Lemma 2.1. Under the above settings, for a < x < b, we have

_ pp(x,b)
B, |e®T; T, < Tp| = 2.3
| = ) 23)
and
_ ps(a, x)
E,|e P, T, < T,| = 2.4
[T < T = 255 24
where

pp(x,y) := ga(0)hs(y) — gg(y)hs(x)

and gg and hg are any two independent solutions of the ordinary differential

equation

1
EOJ ") + () f'(x) = BF(x). (2.5)
Proof. Since X, satisfies (2.1) and (2.2), we integrate (2.1) to find
X, =x+ f a(X)ds + ft o(X)dW;.
0 0

Let f(x) be any solution of (2.5) and consider the transformation Y, =

e P f(X;). Using Itd’s formula (see Karatzas and Shreve, pagel53), ¥, satisfies
4 1
Y= f(x) + f —Be™ f(X,)ds + f e f'(X)a(X,)ds
0 0

+ f t e P f’(Xs)O'(Xs)dWs+% f e (X)X, )ds.
0 0

It follows that

dy,=e* (%0'2 X f" (X)) + X)) f'(Xy) - Bf (Xr)) dt +eP'o X f' (X)dW;.

10



However, f(x) satisfies (2.5), which means that the expression inside the

parentheses is equal to zero almost surely. So we have
dy, = eFo Xof "(XpdW,
with Yy = f(x) a.s. or equivalently,

Y, - f(x) = ft e_ﬂsa-(Xs)f’(Xs)dWs-
0

Truncate T, A Tp, forming 7, = T, A T A u, replace t by 1, and take the

expectation of both sides,

E,[Y.] - f() = E, [ f A e‘ﬂ%r(xof'(xs)dws]
0

where the right side is equal to zero by applying the optional sampling theorem
(see Karatzas and Shreve, page19) and the fact that j; “ePSo(Xs) f'(X;)dWs is a
martingale, and furthermore, the integrand is bounded for s < T, A T.

Let u — oo to find
f(x) = BulY1,a7,]
= Bu[e T f(Xr,a7,)1dt
= B.[e T f(a); T < Tp] + Bole P f(b); Ty < T

= f(@)B[eP*; T, < Tyl + f(B)Bs[e™PT4; Ty < Tl

11



Let gg and hg be two independent solutions of (2.5). Then we have two linear

equations

8p(x) = gp(@)Bx[e "%, T, < Tp] + gp(B)Ble P4, Ty, < T,
and

hg(x) = hg(@)B.[e T T, < Tp] + hg(D)B.[ePT?; T), < T,

from which we can easily find

gp(x)hp(b) — ga(b)hp(x)
ga(@hg(b) — ga(bdhg(a)’

E, [e"”“; T, < Tb] =

and
_ 8p(a)hg(x) — gp(x)hs(a)

E, —,BT,,; T T,| = .
[e b< ] gp(a@)hg(b) — gp(b)hs(a)

Remark 2.2. It is not difficult to see that pg(x,y) # 0 for any x # y because gg
and hg are independent. Given gg and hg, then the sign of pg(x, y) is fixed if the
magnitude of x and y is fixed. Moreover, if pg(x,y) > 0, then dpg(x,y)/dx < 0
and dpg(x,y)/dy > 0.

Remark 2.3. From the proof we can see that even if the conditions (2.2) are
not satisfied, we may still find the Laplace transform of the first exit times, be-
cause we may find two independent solutions g and 4 to the ordinary differential

equation (2.5). So the conditions (2.2) are sufficient but not necessary.

12



2.3. Other Preliminary Results. In the following we will use Lemma 2.1 to
derive two propositions related to the exit time.
In the first proposition, we consider a process that will never go across the

starting level before it reaches another given level.

Proposition 2.4. Under the above settings, for a < x < b and dx > 0,

B[ T, < Touss] = 2 g (2.6)
pp(a, x)
and
_ qp(x)
E,|e P, T, < Tyu| = d 2.7
X [e b <1y dx] Pﬁ(x, b) X ( )
where

gp(x) := gp(x)hp(x) — ga(x)hp(x).

Proof. The left side of (2.6) indicates that starting at x the process should never
go above level x before it reaches level a, while the left side of (2.7) indicates
that starting at x the process should never go below level x before it reaches level
b.

To prove (2.6), we directly apply Lemma 2.1 to get

E, [e_ﬂTa; T, < Tx+dx] [dx = Ell’lg!'_ E, [e_ﬁTa; T, < Tx+e] /€

. pe(x,x+¢€)fe
= lim ———.
=0+ pg(a,x + €)

13



The numerator has a limit of
lim , X+
o0+ pp(x, x + €)/€

= lim [gg(x)hg(x + €) — gg(x + Vs(x)] /€

e—0+

= lim [ga()(ha(x + €) — h(x)) — hp(0)(gp(x + €) — g (x))] /€

e—0+

= lim Lgﬁ(x)h;g(x) - € — hp(x)gp(x) - e] /€
= gp(x)hy(x) — gp(x)hp(x)
= qp(x).

Therefore,

qp(x) Iy

E |e?T:T,<T = .
X [e a x+dx] pﬂ (a, x)

Then we follow the same procedure to prove (2.7). By Lemma 2.1,

E, [e'ﬁT”; T, < Tx_dx] /dx = lim B, |e?To; T, < T x_e] /€

=0+

pe(x—€,x)/€
e—0+ pﬁ(x -6b)

14



The numerator has a limit of
lim pglx — € x)/e
= lim [ga(x — s(x) ~ gp(D)hg(x — ©)] /e

= lim [gg(x — €)(hg(x) — hg(x - €)) — hs(x — €)(gp(x) — go(x — €))] /e

e—0+

= lim :gﬁ(x - e)h'g(x —€)-€—hg(x— e)g;g(x -€)- e] /€

e—0+
= gp()hy(x) — gp(x)hp(x)
= gp(x).

Therefore,

qp(x)

dx.
pp(x,b)

E, [e_ﬂTb; T, < Tx—dx] =

In the following proposition we will consider a process that will not exit an
interval, one endpoint of which is the starting point, before time T. We choose T

exponentially distributed because of its nice property.

Proposition 2.5. Given a random variable T which is independent of X and

follows an exponential distribution with parameter A, we have fory < z, dy > 0

and dz > 0,

0pa(y,2)/0z — qa(2) dz

P, {St <z+dz,Ir >y} =
AST < z+dz, It 2y} 220,

(2.8)

15



and

—0pa(y,2)/0y — qa(y) dy.

PAS; <zIr>y—dy} =
YOTSoir 2y =4y 220%2)

(2.9)

Proof. Notice that for an exponential random variable 7 with parameter 1 and

an independent random variable Y, we have
P(Y < T} =E[e™"].

For the event on the left side of (2.8) to occure, the process starting at z cannot

exit the interval between y and z + dz before time 7. Then

PAST < z+dz, It 2 y}/dz

= lim P,{T, A Tpie > T)/e€

e—0+

= lim (1 - B, [e ")) /e

e—0+

= lim (1-E[e™: Ty < Toue| — B [ Tore < Ty ) /.

-0+

By Proposition 2.4, we have

lim B[ T, < T,,./e = 228
lim Ble™™ T, < Tewdlfe = —EES

16



and by Lemma 2.1,

lim (1- B [T T,ie < T)]) €

e—0+
. P/l(y, Z)
=1 - ——
fi’%l*( pa(y,z + 6)) fe
= lim P/l(y,z + 6) - P/I(y, Z)
-0+ P,l()’,z + 6) 3
_ 0pa0y,2)/0z
pa®,2)

Therefore,

opa(y,2)/0z — qa(z) dz.

PAST <z+dz,Ir 2y} =
AST T2y} 2200

For the event on the left side of (2.9) to occure, the process starting at y cannot

exit the interval between y — dy and z before time T'.

PASt <z,Ir > y—dy}/dy

= lim BTy A T, > T}/e

-0+

= lim (1 -E, [e ™)) /¢

e—0+

= lim (1 -Ble™ Ty < TI- Bl T, < Ty_]) Je.

e—0+

By Proposition 2.4, we have

lim e‘"z; T,<Ty_l/e= q/l—@),
e—>0+]Ey[ z Y ]/ pl(y, Z)

17



and by Lemma 2.1,

lim (1 - Byl Ty < T¢]) /€

-0+
T _ p/l(y7 Z)
- fll’%i(l pa(y — €, Z)) /e
_ . P = €2)— pa(y,2)
- 6111(1)1 Py — €,2)€
_ Z0pa0,2)/0y

0,2

Note that the last expression above is positive due to Remark 2.2. Finally we

have

—0pa(y,2)/0y — qa(y)
dy.
p/l(y9 Z) Y

P{St <z,Ir>2y-dy}=

18



3. Mam REesurrs

The joint Laplace transform of (7,,6,, X5,) for general diffusion processes is

given in the following Theorem.

Theorem 3.1. Under the settings in Section 2, for any y such that |y — x| < r and

a,B = 0, we have

Po(X,y)q(y — 1) )

Py = 1, Y)Ps —1,y)
Po(y, x)qp(y + 1)

P,y + Nps(y,y + 1

E, [e‘“”"ﬂ(""”’);Xgr € dy] = dy

3.1)

) 1{y<x}dy.

Proof. We have to consider the following two cases separately as we did in the
previous section. In the first case, the range of the diffusion process reaches r
from below, i.e. X, first reaches the minimum and then at time 6, it is at the
maximum, so Xy > x. In the second case, the range reaches r from above, i.e.
X, first reaches the maximum and then at time 6, it is at the minimum, so Xy, < x.

We first prove (3.1) for y > x. Note that if Xy € dy, then X, € dy —r.
Therefore, the process must first reach level y — r before it reaches level y, and
since then it should never go below level y — r before it reaches level y. Apply

the strong Markov property, we have
Ex [e_anr_ﬂ(gr_nr); XB, € dy] /dy
=E, [e'“""ﬁ(g""’); Xy €dy—rXg € dy] /dy

=B, [ Ty, < T)| - By [e 75 Ty < Ty roay| /dy.

19



By Lemma 2.1 and Proposition 2.4, it follows that

_ Da(X,y)
E,|e DT, , < T,| = =222
T < Bl = 0T
and
—BT,. _ ggly—r)
e T, < Tyopey| Jdy = ——2.
Byr [T < Tora| = L 05

Therefore, for y > x,

Pa(x,¥)qp(y — 1) y
pa‘(y_r’y)pﬁ(y_r’y) .

Ey [P0 X, € dy| =

Then we prove (3.1) for y < x. Note that if Xy, € dy, then X, € dy + r. This
means that the process must first reach level y + r before it reaches level y, and
then it should never go above level y + r before it reaches level y. Similarly, we

apply the strong Markov property to get
E, [e-an,-ﬂ(e,—nr); X, € dy] /dy
= B, [e7 PO X, e dy + 1, X, € dy| /dy
= By [T Tyir < Ty| - Byur [6 775 Ty < Tyiraay| /dy.

By Lemma 2.1 and Proposition 2.4, we have

Pe(y, X)

B |e T Tysr < Ty| = ,
X [e y+r y] a0,y +7)
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and

gy +1)

—ﬁTy;T <T. dy = ——8.
]Ey+r [e y y+r+dy] /dy pﬁ(y,y 7

Therefore, for y < x,

Pa(y, X)qp(y + 1) .
P,y + Npg,y+1)

E, [e—anr—ﬁ(&—nr); X, € dy] _

Putting both parts together, we obtain the result (3.1).

Remark 3.2. From Theorem 3.1 we can see that the problem on the first range
time is transferred to the problem of solving an ordinary differential equation

(2.5).

Remark 3.3. If the diffusion process X; is a circular diffusion on a circle with
perimeter r, then the first range time 6, is actually the first time when the process

finishes visiting every point on the circle.

Remark 3.4. Usually 6, does not have independent increments. However, in the
Brownian motion cases, it does have because a Brownian motion is spacially

homogenous.

Given x and Xy, € dy, the factorization of the joint Laplace transform (3.1) into
factors depending solely on a and on 8 shows that 7, and 6, -1, are conditionally

independent. Then for fixed x, the Laplace transform of 7, given X, € dy and

21



the Laplace transform of 6, — 5, given X, € dy could be obtained directly from

(3.1).

Corollary 3.5. For a,8,y 20,

_ DPo(x,Y) Doy, X)
Ey[e™™; X, € dy] = LY g o ody+ LoD gy, 32
<L 6 C D=y D et ® G2)
Ao —7) qe(y + 1)
B[P, x, cdy] = O gy HOXD o dy (33
d "€ D)= o Yt gy ey el G
_ Py(xs }’)Qy(y —r) py()’, x)Qy(y +7)
E,|e "% X, € dy| = 1sndy + Liyendy.
«| 0. € 4y B, —-ryE YT TG Gy v v
(3.4)

Remark 3.6. Comparing (3.2) with the results in Lemma 2.1, we can see that
given X, € dy, n, is just the exit time from the interval between X, and X,

when exiting occurs at X, .

Remark 3.7. If we integrate (3.4) with respect to y, we will obtain the Laplace
transform of the first range time 6,. It also implies a result on the distribution of

the range R, since we know that P{R, < r} = P{6, > t}.

If we further investigate (3.3), we would see that 6, —1), is actually the duration
from the time at which the process is at the maximum (or minimum) to the

time at which the process is at the minimum (or maximum). In the following
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corollary, we discuss a related result. A time interval [0, T}] is given in advance
with T exponentially distributed. The process starting at x cannot exit a given

interval before time 7.

Proposition 3.8. Given a random variable T which is independent of X and

Jollows an exponential distribution with parameter A, define T and T, as
Ty =inf{t > 0: X; = It} and =inf{t>0: X, =Sr}.

Then we have fory < x < z,

E, [e—af‘n-ﬁ(Tz-Tl); X‘n € dy, X‘r; €dz,T1 <13 < T]

_Peni5) | 4 9pi0,0/02= 01Dy (33)
Pa+,l(.)’a Z) P/3’+/l(y, Z) pl(ya Z)
and
E, [e“"z"g(“'”);XTl €dy,X., €dz, 7, <11 < T]
(3.6)

_ Pe+2(y, X) ) qp+a(2) . -0p.(y,2)/8y — ()
pa+l(y’ Z) pﬁ+/l(y, Z) p/l(y’ Z)

dydz.

Proof. Notice that for an exponential random variable 7 with parameter A and
an independent random variable Y, we have P(Y < T} = E [e"‘Y] .
Apply the strong Markov property and the memoryless property of the expo-

nential distribution to get
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E, [e—aﬂ—ﬂ(‘rz—fl);Xn €dy,X;,€dz, 11 <12 < T]

= By [ Lr, <y Lix, et - €7 ™ Lrystrpmry<) Liey=ri0) 1%, syl

= ]Ex :e-aT”l{Ty<T}; Ty < Tz] . ]Ey [e_ﬂTzl{Tz<T}; Tz < Ty—dy] . PZ{ST <z+ dZ, IT > y}

=E, 'e-(a+,l)Ty; Ty < Tz] . Ey [e—(ﬂ+/l)Tz; T, < Ty-dy] PAST < z+dz,Ir > y).

By Lemma 2.1, we have

Pa+a(%,2)

]Ex [e_(a’+/l)Ty; Ty < TZ] = .
Pe+a(y,2)

By Proposition 2.4 and Proposition 2.5, we have for dy,dz > 0,

—~(B+A)T,. _ qﬂ+,l(y)
e 3Ty < Ty_gy| = ————=dy,
BT < Tow = L o0 ®
and
0pi(y,2)/0z — q(z)
P,{St <z+dz,Ir >y} = dz.
ST T2Y} 2100
Therefore,

E, [ g~oTI=AlT=T), X, €dy, X, €dz,T1 <12 < T]

_ Para(%:2)  qpra00)  0pa(y,2)/02 — a(2) dydz
Po+a(y:2)  Pp+a(ys2) pa(y,2) '

Then we prove the second part, i.e. T, < Ty, by a similar approach.
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E, [ e BN X e dr, X, €dy,Ta < Ty < T]

=E, _e'“”l{fzd}l{x,zedz} ) e_ﬂ(ﬁ_m1(rz+(n—rz)<T}l{n-rz>0}1{X12+(11-72>€dy}]

=E, :e_aTzl{Tz<T}; T, < Ty] -E, [e_ﬂ Dg,<ry; Ty < Tz+dz] ‘Py{St <z,Ir 2 y-dy)

=B, [e" VT, < T| - B [ Ty < Torae| - BAST < 2, Ir 2y - dy).

By Lemma 2.1, we have

E e—(ar+/1)Tz; T. <T.| = Pa+a(y, x).
* [ ‘ y] pa'+/l(y’ Z)

By Proposition 2.4 and Proposition 2.5, we have for dy,dz > 0,

- ‘Iﬂ+/l(z)
E,|e Y T < T,,40,| = ——"dg,
74 [ y z+dz] Dpea (y, Z)
and
—0pa(y,2)/0y — qa(y)
PAST <z, Ir >2y-dy} = dy.
ST T2y -—dy} 2100 y
Therefore,

E, [e—ar‘rz—ﬂ(‘rl—fz); X, € dz, X € dy, T <11 < T]

_ Para(:%)  4pra(@)  —0pa(,2)/0y — 02()
Pe+a(¥,2)  Pp+a(,2) pA(¥,2)

dydz.
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4. SOME EXAMPLES

In this section we will show some examples by applying Theorem 3.1 to some
well-known diffusion processes. We first consider Brownian motion for which
the result has already been obtained by Chong, Cowan and Holst (2000), and
then we consider geometric Brownian motion, Ornstein-Uhlenbeck processes

and squared Bessel processes.

4.1. Brownian motion with drift. For Brownian motion X; with drift such that
dXt = I.ldt + O-th N (4.1)

we have a(x) = p and o(x) = o. The ordinary differential equation (2.5) be-

comes
1
50" + 1f'(x) = B,

It has two independent solutions given by
ge(x) =€ W% and  hg(x) = e X,

where y = u/o? and 8g = /y* + 2B/02.
In the following we will first apply the result in Theorem 3.1, and then take an

integral to obtain the result in Theorem 1.1 [Chong, Cowan and Holst (2000)].

Corollary 4.1. For Brownian motion X; with drift u and variance o* > 0, we

have
8pe” "™ sinh[|x — yl6,]
sinh[rd,] sinh[rdg]

E, [ e~ =BE-1,), X, € dy] - dy (4.2)

26



withy = p/a? and 6g = \[y* + 2B8/0?, and

E, [e—an,—ﬂ(or—n,)—vxe,]

2(B)e* Sinh’[((@) +p)] _ sinh’[}(x(a) = p) “.3)

" sinh[x(@)]sinh[k(B®)] | (@) +p (@) —p

for any a,B > 0 and v with p = ru/o? — rv and k(x) = r/o \Ju2/o? + 2x.

Proof. We start with the first part of (3.1) in Theorem 3.1. For y > x,

Pa(x,¥)qp(y — 1)
Py —r,Y)ps(y —1.y)
2D = 8a(ha(x) 8y — Nhy(y — 1) — gp(y — Nhg(y — 1)
" 8= Dha() = 8y = 1) gy — Nhs(y) — ggs(y = 1)

e_(‘y_‘sa)xe_(‘)""‘sa)y _— e—(7—5a)ye—(7+5a)x

T e~ (r=0)0-1) o= (y+62)y — o=(r=62)y g—(Y+0a)y-1)
e~ =980 g=(r+55)0-n [ —(y + 6p)] — e~ =980 g=(r+0)0-1[—(y — 65)]

e~ (r=0p)0-1) o=(y+0p)y _ o—(y—=04)y o—(v+3p)y-71)
€™ ") . 2 sinh[(x — y)d,] —264e7270°N
e~ Y@ . 2sinh[(-r)6,] e Y®" - 2sinh[(-r)dg]
"0 . 2sinh[(y - x)d.] g
2 sinh[ré,] sinh[rdg]
_ 8pe "0 sinh[(y — x)é.]
sinh[ré,] sinh[r&g]

For the second part, we can use the same procedure as we did in the first part.
However, we can also choose a shortcut by the interplay of the dual processes.
Let X} = =X, then X starts at —x with drift 4* = —u. But the corresponding 6,

and n, will stay the same because a dual process has the same range process R;.
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Then we have
E, [e-dﬂr—ﬂ(er-m); X, € dy] ey = B, [e—mlr—ﬁ(Gr—ﬂr); X, € d(—y)] 1ioy>ms)-

Taking use of the result in the first part, replacing u with —u, x with —x and y

with —y, we obtain

6pe” " sinh[(x — y)S,]
sinh[ré,] sinh[rc‘)‘,;] )

E, [e"”’"ﬂ“’""’); Xy, € dy] Ly<n =

Hence (4.2) follows.
To prove (4.3), we integrate (4.2) with respect to y . First add the term X, to

the exponent. For the first part,we integrate y over the interval [x, x + r].

E, [e-anr-ﬁ(er-nr)-vXa,; Xy > x]

_ f Y P%Y)ao-1)
x pa(y—r,)’)pﬁ(y_r,)’)

6ﬁe—'yx X+r (7 )y 2 d
- . = (2 sinh[(y - X)6,
Zsinhlro,lsimhlres] J, ¢ Simhlo-xdDdy
_ S ‘ x+r LW (e(y_x)aa _ e—(y—x)tfa) dy
2 sinh[ré,]sinh[rdg] J,
(5ﬂ€_yx xer (Saty—V)y %) (=ba+y—Vv)y )
= . atY=V)Y | 5,7 X0e _ H\T0atY—V ,xad
2 sinh[r6,] sinhirdz] J, (¢ ¢ e ")y
(5ﬂ evx e Caty-v) _ 1 or(aty—v) _ 1
= . +
2 sinh[rd,] sinh[rdg) [ O +y =V Op—y+V ]

For the second part, we can also use the dual process. We only need to replace

u by —u, x by —x and v by —v. The last replacement is because that the sign of
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Xy, changes. Thus

E, [e-aﬂr—ﬂ(er-nr)-vXo,; X,, < x]

6[; e v* e OatyV) 1 pmrGaty-v) _ |
= . + .
2 sinh[ré,] sinh[rdg] l ba—v+V) Gety-V) l

Then we add the two parts to obtain

E, [e'aﬂr—ﬂ(er—nr)—vx,,,]

_ S~ " Caty=V) 4 p=r(aty—v) _ 9 N £T(—OatT-V) 4. gr(=baty-v) _ 2]
2 sinh[r6,] sinh[rdg] (6 +y—V) (6 —v+V)

_ rége™"* {2 cosh[r(6, +vy —v)] -2 N 2cosh[r(6, —y + V)] — 2]
2 sinh[ré,] sinh[rdg] r(6a+vy—-v) r(0a—y+v)

_ 2rege™ [sinhz[%r(éa +y=v)] sinh?[3r(6, — ¥ + V)]
sinh[ré,] sinh[rég] r(6g +v—v) r(6e—v+v)

Finally the result (4.3) follows after denoting

pi=r(y—v)=ru/o?—rv,

k(x) =16, = r/cr,/p2/0'2 + 2x.

Remark 4.2. There are two results (4.2) and (4.3) in the above corollary. (4.3)
is the same as Theorem 1.1 except that Xy = x instead of Xo = 0. Then the
term e~"* appears, which indicates that it is actually only a shift from the case
Xo = 0 to the case Xy = x. The reason is that a Brownian motion is a spacially

homogenous Lévy process. We can see this from the SDE (4.1) that a(x) = u
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and o(x) = o, both of which do not depend on x. It follows that , and 6, — 1,
do not depend on x either. Therefore, it can be treated as a shift if we change the

starting point.

4.2. Geometric Brownian motion. Consider geometric Brownian motion X,
with
dXt = /.lXtdt + O-Xtth ’ (4.4)

or equivalently,

X, = Xpexp ((;1 - %ol)t + O'W,). 4.5)

Then we know that a(x) = ux and o(x) = ox. The ordinary differential equation
(2.5) becomes

1
-2-olx2f"(x) + puxf'(x) = Bf(%).

To solve this differential equation, let x = ¢’ and we will obtain the following

two independent solutions

ga(x) = WY = =08 () = gTHRINE o O

where y = u/o? — 1/2 and 65 = y? + 2B/0>.
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Corollary 4.3. For geometric Brownian motion defined via (4.4) and x,y > 0,

we have

2655 Malx,y)

R W s o
2655 a3, %)

T O+ a0y + DLy + 1) foer

E, [ ¢~ r=B6=). X, € dy] —

(4.6)

ydy

for ttu > 0 with Yg(x,y) = /%)% - (/x)™%, y = plo? - % and 6 =

Proof. We can use Theorem 3.1 to derive this result. However, we choose an-
other way by using (4.5) which indicates that for fixed ¢ geometric Brownian
motion is a one-to-one mapping of Brownian motion. Let i = u — ¢2/2, then
¥ = ji/o? which is of the same form as that for the Brownian motion. dg also
has the same form.

After comparing the Brownian motion with the geometric Brownian motion,

we will see that we only need to replace x with 0, y with In(y/x), and r with

(n(y/x) = In((y = r)/x)) Lyzxy + (In(y + 1)/ x) = In(y/x))1{y<xy

in (4.2) to find the result for the geometric Brownian motion. Notice that r is

random w.r.t. y instead of being a constant, and

dr=(1/y=1/@ = mlgzndy + 1/ + 1) = 1/y)1iyendy.
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When we apply Theorem 3.1 we need to pay attention to the right side of (3.1)

which is actually

Py, X)qp(y + 1)
P,y + )pg(y,y + 1)

Pe(X,¥)qp(y — 1)
Py =1 Y)pg(y —1,y)

l{ny}d(y - r) +

1{y<x}d(y + r).

Hence in (4.2) we replace dy with

1/ = Nlpendy + 1/ + r)ly<dy.

After careful substitution we will obtain the result (4.6). It can also be checked

by direct computation from Theorem 3.1.

Remark 4.4. We will not consider the integral for the geometric Brownian mo-
tion case as we did in the Brownian motion case, because a geometric Brownian
motion is always positive, but x — r might be negative or zero. However, this

problem does not exist in the Brownian motion case.

4.3. Ornstein-Uhlenbeck processes. Consider an Ornstein-Uhlenbeck process
X, with
dX; = —AX,dt + cdW,. 4.7

To solve this stochastic differential equation, we apply the product rule to get

d(e¥X,) = e¥dX, + ¥ 21X, dt = e¥adW,.
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Then take an integral,
4
e¥X, - X, = f ae*Sdw,.
0
Thus an equivalent form to (4.7) is
!
X,=e*Xg+e™ f o dW,. (4.8)
0

From (4.7) we have a(x) = —Ax and o(x) = 0. Thus the ordinary differential

equation (2.5) becomes

1
Eoﬂf”(x) — Axf'(x) = Bf(x).

Then we solve this equation to obtain the following two independent solutions

(see Zauderer 1989)

g5(x) = €T D_s(~\Zyx),  ha(x) = €T D_s,(\27%)

where y = /a2, 0p = B/A and D_,(x) is the parabolic cylinder function (see
Zauderer 1989) defined as

o —2/dny[2 1 s viv+2)---(v+2k-2)
D-/x)i=e™ 72 ‘/’_’{r((wl)/z) (“; 25! 2

xV2 (1+ (v+1)(v+3)---(v+2k—l)xz,c]}.

Te)\ & 2k + 1)!

The joint Laplace transform for the Ornstein-Uhlenbeck processes could be

obtained, but the expression cannot be simplified further.
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4.4. Squared Bessel processes. Consider a squared Bessel process X, with
dX, = Qv + 2)dt + 2 \X,dW,. 4.9)

Now we have a(x) = 2v+2 and o(x) = 2 v/x. The ordinary differential equation
(2.5) becomes

2xf"(x) + 2v + 2)f'(x) = Bf (). (4.10)

To solve this equation, by Zauderer (1989) we would obtain the following two

independent solutions

ge(x) = xL(\2Bx),  ha(x) = xIK,(~/2B%)

where I,(x) and K,(x) are the modified Bessel functions (see Zauderer 1989)

defined as
a * ( X /2)v+2k
MD= 2aro vk
and
/4
Ky (x) := > sin() (I-(x) = L,(x)).

The joint Laplace transform for the squared Bessel processes could be ob-
tained, but the expression cannot be simplified further. However, we can still

obtain some simpler results.
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Corollary 4.5. For a squared Bessel process with (4.9), we have for v > 0,

Vo - x-
0 =0-n"Y
VT -y
G+ =y

Proof. Set @ = 8 = 01n (3.1), then we obtain the result after some computation.

Py {Xo, € dy} = ly>dy

(4.11)

1 {y<x} dy

O

Notice that for a squared Bessel process (4.9), @(x) and o(x) do not satisfy the
conditions (2.2) of the existence and uniqueness theorem, but we can still find
two independent solutions to (4.10), and then find the joint Laplace transform.
Therefore, the conditions (2.2) are sufficient but not necessary. From Remark
2.3 we can see that the joint Laplace transform can be obtained as long as we

can find two independent solutions to the ordinary differential equation (2.5).
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