Implementing supervisory control maps with PLC

Mohammad Moniruzzaman

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science
in Electrical and Computer Engineering at
Concordia University

Montréal, Québec, Canada

August 2006

(©Mohammad Moniruzzaman, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-20753-6
Our file Notre référence
ISBN: 978-0-494-20753-6
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Implementing supervisory control maps with PLC
Mohammad Moniruzzaman

The supervisory control theory of Discrete-Event Systems (DES) can be used to
construct a supervisor for any event-driven system in which the state space is discrete.
To implement supervisors we propose to use Programmable Logic Controllers (PLC),
which are widely used in industrial applications. In our work, we develop a new
conversion algorithm which directly transforms a supervisor represented by a finite
automaton to a Ladder Logic Diagram (LLD). To demonstrate the correctness of our
proposed approach and discuss the issues that may arise in modeling and development
of DES supervisors, we design supervisors for a boiler control system using supervisory
control theory of Ramadge and Wonham, convert DES supervisors to PLC controllers
using our conversion technique, and verify by setting a virtual plant setup using a
PLC simulation software that the converted LLD can be executed by the PLC and
that the original behavior of the DES supervisors under PLC implementation can be

achieved.

il

Acknowledgments

In the first aspect 1 would like to express my sincere gratitude and thanks to my
supervisor Dr. Peyman Gohari for his valuable suggestions, guidance and patience
throughout the thesis period. Without his precious privilege and teaching, I would
never have acquainted with the realm of the research. Much of this work has been
established by his insightful knowledge as an exceptional researcher.

Many thanks to Mr. Liang Du and other members of the group for their friendly
co-operation and information. Thanks to Famic Technologies, Canada for their tech-
nical suppoft and information about the Automation Studio software. I would like to
thank the members of my defense committee Dr. Rabin Raut, Dr. Shahin Hashtrudi
Zad and Dr. Ali Dolatabadi for their valuable comments and evaluation.

My roommate M.M.A. Hayder, a Ph.D. student, is the only friend with whom I
shared my research experiences and feelings; I do appreciate his friendliness and would
like to thank him. Special thanks to my well-wisher Junaid Mohaimin. I would also
like to thank those who co-operated and helped me in many ways during my study
period.

Finally, I would like to convey my heartiest appreciations and thanks to my family
members, especially my parents Mohammad Muklesur Rahman and Kazi Momtaz
Begum, and my wife Afsana Siddique, for their continuous support, patience and

inspiration, and of course for their long cherished dream about me.

Mohammad Moniruzzaman

August 2006.

iv

To my loving parents, wife and son Ridwan Zaman Roddur

Contents

List of Figures

List of Tables

Chapter 1 Introduction

1.1
1.2
1.3
1.4

Overview of thethesis
Review of related works o
Implementation procedures and tools

Qutlineof the thesis

Chapter 2 Preliminaries

2.1

2.2

Supervisory control of DES oL
2.1.1 DES plant, specification and supervisory control
212 OperationsonDES
213 DESSupervisor e e
2.14 TCT: DES supervisor design software
2.1.5 Design of DES supervisor using TCT
Programmable Logic Controller (PLC)
2.2.1 Ladder Logic Diagrams (LLDs)
2.2.2 Automation Studio: A PLC simulation software

Chapter 3 Conversion Algorithm

3.1
3.2
3.3
3.4

Event generation and supervisory control

Event interpretation: DESto LLD

Motivating example L L
Conversionmethod

3.4.1 Assumptions and key observations.

vi

viii

S O N = e

[0 4]

10
12
12
14
15
17
22

3.4.2 First step: Event partition
3.4.3 Second step: I/O selection

Chapter 4 Case study: boiler control system

41 Introduction
4.1.1 A brief description of boiler
4.2 A typical boiler control system o000

4.2.1 Design objectives oo

4.3 Modeling boiler control devicesas DES
4.3.1 Modeling input devices oL
4.3.2 Modeling output devices,

4.4 Supervisor construction L o
4.4.1 General considerations
442 Pilot lame controller o L.

443 Mainflamecontroller

4.4.4 Complete boiler controller

4.5 PLC-based implementation of the controllers

Chapter 5 Conclusions and future research

5.1 Conclusions . .

5.2 Future research
Bibliography
Appendix 1
Appendix n

Appendix 1

..............................

vii

35
35
35
37
39
39
40
41
43
43
44
48
51
53

71
71
73

75

76

84

926

11

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

List of Figures

Implementation sequence.o 7
Layout of PLC. o 15
PLCscancycle. e 16
Asimple PLCI/Oview. 17
Some LLD components. 18
TIMER ON-DELAY and TIMER OFF-DELAY in LLD. 19
Contact placement in LLD., 20
Contact placement in LLD. 21
Contact placement in LLD. 22
Representation of oo, and aopp by Tagy- o o v v v v o oo 25
Representation of By;, B, and By by xg,, and zg,. 26
An example of a supervisor represented by an automaton. 27
Motivating Example in LLD. 30
PLC-based supervisory control. 32
A(n+1)stateswitch. 33
Water bath boiler. 36
PLC-based boiler controller. 38
Some input devices. 40
Some output devices. Lo o 41
Alternative model for air damper and main fuel valve. 42
Pilot controller I/O devices. 44
Operation sequence of Pilot controller. 45
Specification for pilot flame supervisor (TCT: PILOTSPEC). 47
Pilot flame supervisor (TCT: PILOTSUPERVISOR). 55

viii

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

4.21

4.22

4.23
4.24
4.25
4.26

5.1

Main flame controller I/O devices. 56
Operation sequence of main flame controller. 57
Specification for main flame supervisor: Low path (TCT: MAINSPEC1). 58
Specification for main flame supervisor: High path (TCT: MAINSPEC1). 59

Specification for main flame supervisor (TCT: MAINSPEC2). &9
Supervisor for main flame: Low path. 60
Supervisor for main flame: Highpath. 61
Complete boiler controller I/O devices. 62
Complete boiler controller architecture. 63
Typical operation sequence of boiler controller. 63

Specification for complete boiler supervisor: Pilot path (TCT: COM-

SPEC). . . . e 64
Specification for complete boiler supervisor: Low path (TCT: COM-

SPEC). . . . e 65
Specification for complete boiler supervisor: High path (TCT: COM-

SPEC). . . e 66
Complete boiler supervisor: Pilot path. 67
Complete boiler supervisor: Lowpath. 68
Complete boiler supervisor: Highpath. 69
A sample LLD of Pilot flame controller. 70
A typical operation of PLCand DCS. 74

X

List of Tables

3.1 List of rungs in LLD defining latch/unlatch function
3.2 List of rungs in LLD defining operator input signals

..........

Chapter 1

Introduction

1.1 Overview of the thesis

The present thesis follows two objectives. The main objective is to develop a general
conversion algorithm which can be used to implement theoretical Discrete-Event Sys-
tem (DES) supervisors using physical devices called Programmable Logic Controllers
(PLC). To verify the conversion technique and discuss the issues that may arise in
modeling and development of DES supervisors, the real-field application to a boiler
control system is investigated.

The Supervisory Control Theory (SCT) of discrete-event systems, introduced by
Ramadge and Wonham (RW) [1] is a general theory to design supervisors for a wide
range of discrete-event systems found in real-life applications. A (often minimally
restrictive) supervisor, modeled by a finite automaton, is designed so that the system
under supervision satisfies the specification of some desired behaviors. The supervisor
can be implemented using PLC or other specialized hardware.

A PLC is a microprocessor-based specialized computer that performs many types
of complex logic-based control functions [2], [3], [4]. PLC programs can be written by
LLDs (Ladder Logic Diagrams) or Sequential Function Charts (SFCs) or other PLC
programming languages [2], [3], [4]. In our work we choose LLD to program PLC.

The conversion of supervisor’s automaton to LLD has already been addressed
by many researchers [5], [6], [7], [8]. We observe that the implementation of RW
supervisor using PLC lies intuitively on the theory itself, i.e. how controllable and
uncontrollable events are translated by the designer, and mapped the actual event

interpretations to the real systems using associated devices. We introduce a simple

conversion technique which directly converts supervisor’s automaton to LLD. We
assume that controllable events can only appear in the form of (n+ 1)-state switches,
which are then easily mapped to PLC output signals. A supervisor is described by
a state machine which consists of a set of events and states. Supervisor moves from
one state to the next in response to the occurrence of events, and specifies which
controllable events should be disabled in the new state [9], [10]. PLC’s operation
can be seen from an input-output perspective [11] where the values of output signals
are updated in response to input signals. In contrast to SCT, the PLC plays an
“active” role by generating those controllable events that in SCT are generated by
the plant and are enabled by the supervisor, and thus the notion of disabling events
by a supervisor is replaced with generating enabled controllable events by the PLC
controller.

We propose to partition states and events of the supervisor as PLC’s input and
output signals. As PLC handles signals only, we have to interpret supervisor’s states
and events as PLC signals. Generally, events occur instantaneously and causing
transition from one state to another. We represent the plant events with the rising
and falling edges of the input/output signals. By comparing signals between two
ladder scan cycles {2], (3], [4], rising or falling edges can be easily detected. Our
method clearly portrays how a user can define controllable and uncontrollable events
as LLD signals. To test our approach, we design petrochemical boiler controllers using
supervisory control theory, convert DES supervisors to LLD using our conversion
technique, and finally test our design by setting a virtual plant setup using a PLC

simulation software Automation Studio 5.2 [12].

1.2 Review of related works

The subject of conversion of RW supervisors to ladder logic diagrams has been well
studied and already been addressed by many researchers [5], {6], [7], [8]. The im-
plementation issue of supervisor using PLC has been first investigated by Brandin
[5]. Brandin considers that supervisory control consists of three tasks and suggests
how these tasks can be implemented by the PLC. These are: 1) Monitoring of the
plant behavior: during every program scan, the status of the PLC inputs representing

plant behaviors is evaluated. 2) Control evaluation: every state of the supervisor is

represented by an internal label. One such internal label is energized at any time and
the supervisor’s current state is represented by this internal label. Upon occurrence
of events (where the corresponding PLC inputs are energized), these internals are
latched and unlatched. Whenever supervisor reaches a state, outputs corresponding
to the supervisory control map are energized. 3) Control enforcement: the enforce-
ment of control commands can be carried out by the PLC output modules to energize
the given outputs, which in turn enforces the corresponding events and thus their
corresponding output devices.

Fabian and Hellgren [6] point out that physical implementation of a supervisor
is not straightforward. They identify few problems that immediately arise when
implementing the event-based asynchronous automata by the synchronous signal-

based PLC. Few problems and the associated solutions they offered are listed below.

Events and signals. When associating events with rising and falling edges of sig-
nals, there might be a risk to introduce avalanche effect because of the sequential
evaluation of the PLC program, which could be problematic when several states
are sequentially stepped through by the occurrence of a single event. Due to
this effect, PLC program might skip over a number of states during the same
scan cycle. They suggests the problem may be solved by placing of rungs in an

‘intelligent’ order.

Causality. The SCT states that the plant generates all events, and the supervi-
sor dynamically disables events if plant generates undesirable events. In other
words, supervisor controls the plant to stay within the specifications. However,
in PLC implementation the signals in the plant change in response to the signal
changes generated by the PLC. Thus, the events that are not naturally gener-
ated by the plant can be generated by the PLC, and not more than one event
should be generated by the PLC at the same time.

Choice. A supervisor is generally nondeterministic: in every state it offers the plant
alternative events to choose from. However because of its deterministic nature
PLC can only generate one event in every state—any subsequent events will be
ignored as the system state may already be left as a result of the occurrence of
the first event. If the choice is not explicitly made by the programmer, PLC

will make the choice according to the rung order.

Inexact synchronization. When PLC executes its program it does not observe
the plant. In general, program scan time is shorter than the plant response
time. However, there is no guarantee that the PLC scan cycle time and plant
response time are in phase; therefore, there might be a possibility that plant can
change its state while the program is being executed. The changed state of the
plant may invalidate the command issued by the program. This problem can
be solved by the introduction of delay insensitive languages. The supervisor
is delay insensitive if its choice is not invalidated by a plant event that can
occur while the program is executed by the supervisor. The supervisor can
always control the plant if it generates the command, and then wait for the

plant response. Indeed, this is natural in PLC implementation.

Most of the suggestions described above are incorporated in our conversion method.

The first generalized conversion method for converting supervisors to LLDs (in
the work termed as Relay Ladder Logic (RLL)) was addressed by Leduc and Wonham
[8]. The method introduced by Leduc and Wonham first translates RW supervisors to
equivalent Clocked Moore Synchronous State Machines (CMSSM), then expresses the
boolean logic defining a CMSSM in Relay Ladder Logic (RLL), and finally RLL is run
on PLCs. To facilitate the conversion method, a PLC-based testbed [13] is designed
to simulate a manufacturing workcell and emphasize the problems of routing and
collision. The method illustrates how CMSSM can be used to implement control
functions in digital hardware. A CMSSM is represented by a 7-tuple, where all
components are encoded by binary numbers implemented using boolean variables:
inputs to the state machine, outputs from the state machine, state vector, next state
function, output map, the initial or reset state, and period of the clock pulse that
drives the state machine. The method introduces few functions to define each of the
components of CMSSM. The inputs to the state machine are the DES events (X) and
the outputs from the state machine are the DES controllable events (£.). The next
state vector is determined by a number of boolean functions in input variables and
current state variables; outputs from the state machine are also determined using
boolean functions. In both cases, there is no general formula to define next state
vectors and outputs.

A method closely related to our work is carried out in 7] by Liu and Darabi. By

viewing a manufacturing system as a set of activities and their required resources,

a new event classification is used to formulate the conversion problem. In order to
perform a set of activities, at least one resource is required by the manufacturing sys-
tem. During each activity, a starting event happens as soon as all required resources
are obtained by the activity; conversely, when the activity is complete, an activity
ending event occurs. When a resource is allotted to an activity, a resource-activity
latch event occurs while a resource-activity unlatch event occurs when a resource is
freed from an activity. Other than resource latch/unlatch or activity starting/ending
events, the events that change manufacturing system’s state can be classified as sys-
tem events i.e a machine breakdown event. The method proposes an overview of
the implementation process in three steps. First, by identifying the activities and re-
sources, RW supervisor event set is partitioned into activity and system events. Next,
for each activity, missing events are added to complete the activity execution cycle
(assigning resources - starting activity - ending activity - freeing resources) resulting
in an extended model of RW supervisor. In extended supervisor, activity-resource
and state-resource vectors are defined, where activity-resource vector is used to show
the utilization of resources by activities, and state-resource vector is used to show
the resource utilization status in each state. Finally, a conversion rule is addressed
to convert the extended RW supervisor model to an equivalent LLD, where resource
latch and unlatch events are identified as outputs, while ending and system events
are inputs.

We develop a new conversion method taking our clue from [7]. We identify
a given RW supervisor event set with the corresponding PLC Input/Output (I/0)
signal sets, and introduce a simpler conversion technique which directly converts

supervisor’s automaton to LLD.

1.3 Implementation procedures and tools

There are different discrete-event controller construction techniques available in acad-
emia based on formalisms such as Petri nets and finite automata [7]. We choose fi-
nite automata-based controller construction technique, introduced by Ramadge and
Wonham (RW) [1], to design our controllers. The constructed controllers are math-
ematically guaranteed to be controllable and maximally permissive for a given DES

plant and specification. Before the synthesis of a PLC-based solution in the DES

framework, we first need to identify the control problem wherein a controller is to be
designed so that the controlled system satisfies some desired specifications.
Discrete-event systems cover a wide variety of physical systems such as man-
ufacturing systems, traflic systems, communication protocols, logistic management
systems and data communication networks. We design boiler control systems which
are used in petrochemical industries to demonstrate our PL.C-based implementation.
Once plants and legal specifications are specified, one can use XPTCT software (we
use version 114 for Windows 95/98/XP) [14] to design DES supervisors. The DES
supervisor is then converted into LLD using our conversion technique. Finally the
translated LLD is uploaded and simulated using PLC simulation software Automa-
tion Studio [12]. Necessary adjustments in the design procedures are carried out
until the simulation results meet the specification requirements. If the simulation
results satisfy user’s requirements, PLC-based solution of the control problem can be
developed using required hardware. The step-by-step guide for implementing DES

supervisor using PLC is shown in Figure 1.1.

1.4 Outline of the thesis

The rest of this thesis is organized as follows. An overview of supervisory control
theory of discrete-event systems and programmable logic controllers is presented in
Chapter 2. After elaborately discussing a motivating example, and making some key
observations and assumptions, the conversion technique is proposed in Chapter 3.
Chapter 4 studies the real-field application of boiler control systems in DES frame-
work. It also includes details of the boiler control plants, discussions of modeling I/O
devices as DES, specifications of boiler controllers, construction of the boiler control
supervisors using XPTCT software and implementation of the boiler controllers us-
ing PLC. Finally, Chapter 5 concludes the thesis and points out directions for future

research.

(Identify control problem >

Model related plants and legal specifications
using RW theoritical concept

Design DES supervisor
using XPTCT software

Transform DES supervisor into LLD

using our conversion technique

l

Write and simulate the converted LLD
using PLC simulation software Automation Studio 5.2

Satisfy user requirements?

Download and run the converted LLD

using any PLC

@ontrol solution (controlled syste@

Figure 1.1: Implementation sequence.

Chapter 2

Preliminaries

2.1 Supervisory control of DES

2.1.1 DES plant, specification and supervisory control

The supervisory control theory provides an optimal solution to control a wide variety
of physical systems that are discrete in time and state space, asynchronous, and
nondeterministic. In Ramadge and Wonham (RW) theory [1], a plant can be thought
of as the generator of a formal language and can be modeled as an automaton, which
can be graphically represented by a transition graph. Let G = (Q, %, 6, go, @) be
an automaton representing a DES plant where @) is the set of states, X is the events
set, 0 : @ X & — @ is the partial state transition function, ¢, € @ is the initial state
and @, C @ is the subset of marker states commonly used to “mark” some states
where a certain task is complete. The disjoint subsets ¥, and %, where & = L .U%,,
consist of controllable and uncontrollable events, respectively. A language L over ¥
is any subset of £*, where ¥* denotes the set of all finite strings over X, including
the empty string e. The behaviors of G are distinguished as closed and marked. The
closed behavior of DES G is the set of all possible event sequences which the plant

may generate and is formally defined as
L(G) = {s € £ | 6(q0,9)'}

The marked behavior of DES G is comprised of those sequences in the closed behavior

which reach some marker states and is formally defined as

Li(G) = {s € £" | 6(¢0, 5) € @m}

The DES G is said to be nonblocking if every reachable state is coreachable (reachable

and coreachable states are defined below). When G is nonblocking we have:

A language K C X* is controllable with respect to G iff
KL, NLG)C K

When K is controllable the prefix closure K is invariant under the occurrence of
uncontrollable events in L(G). By specifying a subset of ¥,, a particular subset of
events to be enabled can be selected. Since uncontrollable events are always enabled,
all T, events are adjoined to this set. Each such subset of events is called a control
pattern, and the set of all control patterns is denoted by I' = {y C Z|y 2 £,}. A
supervisory control for G is any map V : L(G) — I". The pair (G, V') will be denoted
as V/G, to suggest ‘G under the supervision of V’. The closed behavior of V/G is
defined to be the language L(V/G) C L(G) defined below:

i. e € L(V/@G),
ii. fse L(V/G)ANo € V(s)Aso € L(G) = so € L(V/G),
iii. No other strings belong to L(V/G).

The map V is nonblocking for G if

L,(V/G) = L(V/G)

If K C L,,(G) is controllable with respect to G and L,,(G)-closed, then there exists
a non-blocking supervisory control map V for G such that L(V/G) = K [1].

Let S be any automaton such that L(V/G) = L(S) N L(G). Then S is said
to implement V. If L(S) is controllable with respect to G and L, (S) N Ly, (G) =
L(S) N L(G), we say S is a supervisor for G.

Let E C X* be the specification of some desired behaviors. Then the supervisory
control theory articulates how a supervisor S can be designed to control the plant so
that the plant under supervision can enjoy maximum freedom while behaving within
the specification £. When F is not controllable with respect to G it is shown that
a supremal controllable and L,,(G)-closed sublanguage of E, denoted by K exists.

It follows from the main theorem in supervisory control theory [1] that a minimally

9

restrictive (thus optimal) nonblocking supervisory control V can be designed such
that L, (V/G) = K.

Consider two automata Gy = (Q1, X1, 01, q10, Q1m) and Gz = (Q2, L, b2, ¢20, Qam)-
The synchronous product of G; and G, is the reachable (denoted by ‘Rch’; defined

below) part of the automaton

G1 || G2 := Rch(Q1 x Q2, %1 U 2,9, (q10, ¢20); @1m X Q2m)

where for (q1,¢2) € Q1 X Q2 and 0 € X,

4

(01(q1,0),02(q2,0)) if 01(q1,0)! and &2(ge,0)!
(01(q1,0),g2) if 01(q1,0)! and o & Ty
§((q1,92),0) = .
(q1,02(g2,0)) if d2(ge,0)! and o € %4
\ undefined otherwise

2.1.2 Operations on DES

To design a supervisor using RW supervisory control theory, the following operations
on languages are carried out.

Trim

DES G is trim if it is both reachable and coreachable, that is, all states can be reached

from the initial state, and some marker states can be reached from every state. The

set of reachable states is formally defined as

Qr={q€Q|(3Fs€X")(q,s) =g}

G is reachable if @, = Q. The set of coreachable states is formally defined as

Qo ={7€ Q| (@s € X)é(g,5) € Qm};

G is coreachable if Q. = Q.

Synchronous product

Synchronous product specifies how several plant components can function jointly, and

is denoted by ||. If Ly = L,,(G1) and Ly = L, (G3), then G; and G, can generate

10

Ly || Ly only when common events are eligible to occur synchronously in both plants,
while individual plant events are allowed to occur whenever they are eligible in their
corresponding components. Let L; C X}, Ly C ¥}, where ¥ = X; U Xy, Define

natural projection

according to

€ it o¢%;
o if gEY;

P(s0) = P(s)P(0) s€T',0€X

The action of natural projection P; on a string s is to eliminate all occurrences of
o in s such that o ¢ X;. The synchronous product L; || Ly C £* of two languages
L; C X7 and Ly C 33 is defined according to

Ll || L2 = Pl—lLl ﬂP{le

That is, s € Ly || Ly iff P(s) € Ly and Py(s) € Lo. Thus synchronous product of two
DES G; and G,, denoted by G = G || G2, was previously defined. We have:

Lin(G) = Lin(G1) || Lim(G2), L(G) = L(G1) || L(G2)

Meet

Meet is the special case of synchronous product corresponding to £; = ,; specifically
all events are considered shared and synchronization is total. The meet operation
blocks any transition which cannot occur in both G and G,. Consider two automata
G1 = (@1, 21, 61, q10, Q1) and Go = (Q2, X2, 02, G20, Qom). The meet of G; and G is

the reachable part of the automaton

G1 A Gy i= Rch(@Q1 x Q2,1 N 9,8, (¢10,920), Qim X Q2m)

where for (¢1,¢2) € @1 X Q2 and 0 € X,

(61(q1,0),02(g2, 7)) if d1(q1,0)! and d2(ge,0)!

undefined otherwise

6((q1,q2),0) = {

11

Given two DES G, and G,, the meet operation produces a reachable DES G =
G1 A G5 such that

Lm(G) = Lm(Gl) M Lm(Gg), L(G) = L(Gl) ﬂ L(Gz)

2.1.3 DES Supervisor

A supervisor is an external agent responsible for controlling the system. It monitors
and controls the behavior of the system (a set of plants) so that it complies with
some specifications; if supervisor observes any possible exit to the illegal behavior,
it will restrict the plant’s behavior by disabling a subset of controllable events to
achieve a maximally permissive control solution. A supervisor can be represented by

an automaton:
S = (Xa Za 6; Zo, Xm)

The control action of S on G can be visualized as follows: upon arriving at a state
x € X, an event 0 € ¥ is enabled if £(z,0)!; otherwise it is disabled. Note that the
uncontrollable events cannot be controlled and thus their occurrence should not be
disabled by the supervisor. The closed-loop behavior of the plant G under the super-
vision of S, denoted by S/G (also called the supervised system), can be formalized
by the meet of S and G.

Consider a supervisor S for G which can be represented by an automaton S =
(X,%,€,20, X,n). The closed-loop behavior of the plant G under the supervision of
S, denoted by S/G can be formalized by the meet of S and G, that is S/G =GA S,
and therefore:

L(S/G) = L(S) N L(G)

Lim(S/G) = Lm(S) N Lin(G)

2.1.4 TCT: DES supervisor design software

TCT! is a design software developed by W. M. Wonham’s research team at Univer-
sity of Toronto [14]. TCT is used for the synthesis of supervisory control for untimed
discrete-event systems. The descriptions thereafter about TCT procedures are re-

produced from [9]. An automaton is represented by a 5-tuple [Size, Init, Mark, Voc,

'Where XPTCT refers to Windows version of the DES supervisor design software TCT.

12

Tran], where Size is the number of states and the state set is {0, - - - ,Size — 1}, Init
is the initial state (always taken to be 0), Mark lists the marker states, Voc is a list
of vocal states, and Tran is the transition table. The automata models in this thesis
do not have output and thus Voc is always taken to be empty. A transition is a triple
[I, E, J] representing a transition from the exit state I to the entrance state J and
having event label F. F is an odd or even nonnegative integer, depending on whether

the corresponding event is controllable or uncontrollable, respectively.

exit] Or---mmmmmmmm e =0 J entrance

In this work we use deterministic automata to model DES: distinct transitions
from the same exit state must carry distinct labels.

The following is a list of procedures we use in system design. A complete list can

be found in [9)].

create prompts the user to define a new discrete-event system.

selfloop augments an existing DES by adjoining selfloops at each state with event

labels in a list provided by the user.

trim applied to DESI constructs the trim (reachable and coreachable) automaton

DES2.
sync forms the reachable synchronous product of DES1 and DES2 to create DESS3.

meet forms the meet (reachable cartesian product) of DES1 and DES2 to create
DES3. Note that DES3 need not be coreachable.

supcon for a controlled generator DES1 and specification DES2 forms a trim recog-
nizer for the supremal controllable sublanguage of the marked language gener-
ated by DES2 to create DES3. The resulting DES3 is a proper supervisor for
DESI.

minstate reduces DES1 to a minimal state transition structure DES2 that generates
the same closed and marked languages. DES?2 is reachable but not necessarily

conreachable.

13

isomorph tests whether DES1 and DES2 are identical up to renumbering of states;

if so, their state correspondence is displayed.
The following is a list of utilities we use in system design:

edit allows the user to modify an existing DES.

show SE displays an existing DES, SA a data (condat) table, SX a TXT (text) file.
Tables can be browsed with page keys. MAKEIT.TXT keeps a record of user

files as they are generated.

file FE (resp. FA) converts a DES (resp. DAT) file to an ASCII PDS text file
(resp. PDT) or Postscript PSS file (resp. PST) for printing. Some printers
may only recognize a Postscript file with suffix .PS; in that case, rename the

.PSS/.PST files with due care to avoid duplication.

user file directory lists the current user subdirectory.

2.1.5 Design of DES supervisor using TCT

Let the controlled DES G representing the plant be given together with an upper
bound £ C ¥* on admissible marked behavior. Assume that EDES is the spec-
ification automaton such that £ = L,(EDES). Our objective is to design an
optimal supervisor KDES for G. To compute a trim recognizer for the language
K := supC(E N L,,(G)), the TCT procedure supcon computes a trim representation
KDES of K according to

KDES = supcon(G, EDES)

The set of controllable events that must be disabled by KDES can be found using
TCT procedure condat. Specifically, the condat operation returns the control pattern

at each state of X DES according to
KDAT = condat(G, KDES)

If there are n plant components and m specifications, G is the sync of all plant
components while EDES is the meet of all specifications. The supervisor is then

computed following the above procedures.

14

2.2 Programmable Logic Controller (PLC)

A Programmable Logic Controller (PLC) is a microprocessor-based specialized com-
puter that performs many types of complex logic-based control functions {2}, [3], [4].
The main purpose of PLC is to continuously monitor process control parameters and
manipulate plant operations by means of stored program set by the user. A PLC
is designed to operate in a wide range of industrial environments such as high heat,
humidity and vibrations. Their flexibility, reliability, maintainability, affordability
and user friendliness make them immensely popular, and thus widely used in many
industrial applications. The overall system layout of PLC and interconnection of each

part are shown in Figure 2.1.

Programmer device,
Monitor

1 Microprocessor
C Q Input module T
Input device !

—_—ANAT

)
H Output module ||

H Output device
)

Memory

Power supply

Chassis

Figure 2.1: Layout of PLC.

The input module has terminals where plant electrical signals responded by input
field devices are received. There are various types of input devices available to be
connected to the input module which are mainly on/off switches. The common types
of switches are toggle-type switches and pushbutton switches. When a pushbutton
switch is pressed, the corresponding input contact becomes TRUE momentarily, while
when the toggle-switch is pressed, the corresponding input contact becomes TRUE
and remains TRUE until the switch is depressed. Other types of switches have either
Normally? Open (NO) or Normally Close (NC) configuration. The most commonly
used device in this category is the limit switch. When the limit switch is actuated,

its electrical contact changes from NO to NC (action can be taken as on/off), or NC

?Normally means device is in unactuated state.

15

to NO (action can be taken as off/on). Some other types of input on/off devices are
pressure switch, level switch, float switch, magnetic-sensitive switch and inductive-
sensitive switch. Other types of input devices, such as potentiometer and transducer,
can be used to produce a varying input electrical signal to PLC input module.

Similarly, the output module has terminals from where output signals are sent to
activate output field devices. The most common output device is electrical solenoid
which is used for on/off control of flow valves such as gas and liquid control valve.
Other on/off output devices are relays, motors and various solid-state switching de-
vices. A special type of output devices which can be controlled by PLC are analog
output devices such as stepper motors, servomotors and servo valves.

The logic operations are carried out by microprocessor while data, user program
and system software are stored and retrieved from memory.

PLC programs can be written by LLDs (Ladder Logic Diagrams) or Sequential
Function Charts (SFCs) or other PLC programming languages [2], [3], [4]. A PLC
program, often consisting of a set of boolean statements and linking inputs to outputs
via their corresponding internal table, is evaluated sequentially from top to bottom

and from left to right.

Input terminals| .. | Inputinternal | __, | User Program| . |Outputinternall __, |Output terminals
data table data table

t } } t }

Input scan (plant response)

Program scan (control decision) Qutput scan (command to plant)

Figure 2.2: PLC scan cycle.

Each PLC operational cycle, called scan cycle, is made up of three parts, as
shown in Figure 2.2: 1) Reading inputs (whether an input device is energized or
de-energized) and updating the input status table. 2) Executing the control logic set
by the user program, and updating the output status table. 3) Finally transferring
the data associated with the output status table to the outputs (energize/de-energize
output devices). Consequently, a PLC’s operation can be seen from an input-output
perspective where output signals update their states in response to the input signals,
as shown in Figure 2.3 .

In the PLC, the input scan, program scan and output scan are separate functions.

16

> Sensor "N

Plant PLC

- Actuator - OuUT

Figure 2.3: A simple PLC I/O view.

Thus, any changes in the input device status during the program scan or output
scan are not accepted by the PLC until the next input scan. Moreover, during the
input and program scans, data changes in the output table are not forwarded to the
output terminals. The new data which may change the states of the output devices
is forwarded only during the output scan. The total response delay for one complete
scan cycle, termed as scan time, is a function of the processor speed and length of
the user program; typically, scan time may vary from 1 ms to 100 ms [5].

One of the main assumptions about DES is that events occur asynchronously.
Due to scan time and the sequential operation of the PLC, the occurrence of events
must be interpreted synchronously (one event before the other with at least some
time gap) by the PLC. For the purpose of implementation of DES supervisor using
PLC, the deviation of implementing the event-based asynchronous automata by the
synchronous signal-based PLC could cause timing problems (the time gap between
the occurrence of one event to another in PLC implementation, and the time gap
between the PLC and plant response since PLCs are faster than plants), and we
may refer to this timing problem as transmission delay or response delay. It is quite
natural in any PLC implementation that once output data (command) is transferred
to output devices by the PLC, PLC is needed to wait for plant response (input) to
re-evaluate its output data. This necessity is because nominally PLCs are faster than

plants, and therefore, plants response delay can be ignored.

2.2.1 Ladder Logic Diagrams (LLDs)

A ladder logic is made up of many rungs, each consisting of logical checkers (input
contacts) which become true or false in response to plant outputs communicated via
sensors, and output coils which drive some actuators or hold an internal storage bit

that can be used in other parts of the ladder. If the logic statement is true, the contact

17

can “make” the circuit to energize output coils. If the logic statement is false, the
contact can “break” the circuit to de-energize output coils. There are many types of
contact and coil functions available for PLC programming. See [2], [3], [4], [5], [6]
and [15] for details. In our work, we use normally open contacts and both latch and

unlatch functions for output coils, as shown in Figure 2.4.

Component Function

Y
-—| }— Examine if boolean variable Y is TRUE.
Normally open contact

Y
_‘N" Examine if boolean variable Y is FALSE.
Normally close contact

X
—(L)— If logic statement on the left of the rung is TRUE, boolean variable X becomes TRUE
Latch and remains TRUE until it is unlatched.
X
—~U)— If logic statement on the left of the rung is TRUE, boolean variable X becomes FALSE
Unlatch and remains FALSE until it is latched.

Figure 2.4: Some LLD components.

A normally open (NO) contact is used to examine if the boolean variable Y is
TRUE. If the left state (TRUE/FALSE) of the contact of the boolean variable Y is
TRUE, NO contact can “make” the circuit to energize output coils; otherwise, the
right state of the contact is FALSE. Conversely, a normally close (NC) contact is used
to examine if the boolean variable Y is FALSE. If the left state (TRUE/FALSE) of
the contact of the boolean variable Y is TRUE, NC contact can “break” the circuit to
de-energize output coils; otherwise, the right state of the contact is TRUE. After the
evaluation of a logic statement, output of a rung is assigned by various kinds of coils
such as latch and unlatch coil. These coils can be connected to physical output devices
to be operated, or can be used to hold internal storage bits that can be referred to
in other parts of the program for logic statements. When the logic statement on the
left of the rung is TRUE, boolean variable X of the latch coil becomes TRUE (the
associated output device is energized) and remains TRUE until it is unlatched. On
the other hand, if the logic statement on the left of the rung is TRUE, boolean variable
X of the unlatch coil becomes FALSE (the associated output device is de-energized)
and remains FALSE until it is latched.

Other than contacts and coils, the most commonly used control device in the

18

PLC is the timer. Although industrial and digital electronic timers are available to
use with PLC, all these timers can be replaced by using various kinds of PLC timer
functions such as TIMER ON-DELAY and TIMER OFF-DELAY. An example of
TIMER ON-DELAY function in the LLD, which we used in our implementations, is
explained in Figure 2.5. TIMER-OFF DELAY is also included in the same figure for

completeness.

When X; is TRUE, timer on.

—TON
X1
TIMER ON-DELAY (BN)
Timer T4:0
Time base 1:0 second CD©
Preset 15
Accum 0
1
T4:0 When timer is timing, output Yy is energized. O
Coil,
l
T
Yy
T4:0 When the timer expires, output Y, is energized.
I ed—
DN

When X, is FALSE, timer on.

— TOF
X1
| b———— TIMER OFF-DELAY | (N)—
Timer T4:1
Time base 1:0 second CD]D
Preset 15
Accum [
Y,
T4:1 wwhen timer is timing, output Y is energized.
i Coil,
TT
Yz
T4:1 When the timer expires, output Yz is de-energized. o\
I S
DN

Figure 2.5: TIMER ON-DELAY and TIMER OFF-DELAY in LLD.

TIMER ON-DELAY works as follows: when X; is TRUE, the PLC starts the
timer (addressed as T4:0) and the accumulated value of the timer is incremented in
1 second intervals. While the timer is accumulating time, T4:0 TT (timer internal
contact) becomes TRUE as well as the output coil Y; is energized. When the timer
expires, T4:0 TT becomes FALSE as well as the output coil Y; is de-energized and
T4:0 DN becomes TRUE by which the output coil Y5 is energized. If the accumulated
value reaches 15 seconds (user can preset this value as desired) or X; becomes FALSE,

the timer will be reset.

19

TIMER OFF-DELAY works as follows: when X, is FALSE, the PLC starts the
timer (T4:1). The accumulated value of the timer is incremented in 1 second intervals.
While the timer is accumulating time, T4:1 T'T becomes TRUE as well as the output
coil Y; is energized. When the timer expires, T4:1 TT becomes FALSE as well as
the output coil Y; is de-energized and T4:1 DN becomes FALSE by which the output
coil Y; is de-energized. If the accumulated value reaches 15 seconds (user can preset
this value as desired) or the X; becomes TRUE, the timer will be stopped. When X,
becomes FALSE again, the timer is reset and restarted.

When PLC is programmed using LLDs, the following ladder construction limi-
tations must be taken into account. If incorrectly formatted LLDs are uploaded in
the PLC, it will not accept the LLDs and report an error message. These limitations
may vary depending on individual PLC manufacturers. It is recommended to con-
sult with the individual operation manuals for proper programming information of a
given PLC system. For proper construction of LLDs, we generally follow the guide-
lines mentioned in [2], [3] for LLD-based programming of Allen-Bradley and Siemens
PLCs using PLC simulation software Automation Studio [12]. Since Automation
Studio [12] supports only ladder libraries for Allen-Bradley and Siemens PLCs, we
use both types of PLCs in our work. The common instructions are given below. The

essence of the figures for the LLD instructions is taken from [3].

Contact placement.

1. A contact must always be placed in the upper left of the rung, as shown

in all of the following figures.

X 1 Xz Y Xl X2 Y

| | (o 1 i | (o)

11 11 Coil 1 i Coil
Contact N N

- Xs
3 X4 3 X4
|| | I)
11 | 1 1
a) All contacts are placed horizontally (correct). b) X5 is placed vertically (incorrect).

Figure 2.6: Contact placement in LLD.

20

2. All contacts must be placed horizontally; contacts are not allowed to be
placed vertically. In Figure 2.6 (part b), contact X5 is placed incorrectly,

whereas in the same figure (part a) all contact are positioned correctly.

3. The number of contacts per matrix (per logic statement) must be within

11 across by 7 down, as shown in Figure 2.7 (part c).

X1 X3 Xa X1 X4
¥ i —)— — (o)
X2 Xs X2 X3 Xs

a) Correct straight across orientation of contacts. b) Incorrect straight across orientation of contacts.

11 across v

: _ X5 Xs
L TETTRTTT | illegal b
| Mg

c) Contact number per matrix. d) Improper current flow orientation.
Figure 2.7: Contact placement in LLD.

4. Contacts must be nested (a branch circuit is placed within a branch circuit)

properly, as described in Figure 2.8 (part a and b).

5. Contacts must be placed in straight across, as described in Figure 2.7 (part

a and b).

6. Contacts must be inserted in the rung such that the current conduction
through contacts is considered to flow from left to right. This is shown in
Figure 2.7 (part d), Figure 2.8 (part c), and described as follows. When
(refer Figure 2.7 (part d)) output for Y is considered as Y = X; - X5 - X3+
X1 X X5 Xe+ X4 X5- X3+ X, Xg, in this case current can flow from
right to left through contact number 5 via 4 and 3; therefore this type of
contacts placement is not legal. While, in Figure 2.8 (part ¢) the proper
current flow for output Y is considered as ¥ = X7 - Xo- X5+ X1 - Xo- X5 -
Xe+ X4+ X5 - X3+ X4 - X, in this case current can always flow from left

to right; therefore this type of contacts placement is legal.

21

X
X2 X3 X2 X3
I 1l |1 11
il 10 L 1T
X4 Xs X4 X
] | — 1 I
a) Correct nested program orientation. b) Incorrect nested program orientation,
Y
X1 X X
[2 3 N
T [[@
X1 X2 X5 X6
1 1] 1L I
[1T] 11
X4 Xs X3
] 1 1t '
v [N T
X4 Xe
1 g

c) Proper current flow orientation.
Figure 2.8: Contact placement in LLD.

Coil placement.

1. A coil must always be placed at the end of a rung, as is the case in all of
the figures above.

2. One output coil can be assigned to a group of contacts.

3. Coil can be used either to drive an output device or hold an internal storage

bit that can be referred to in other parts of the rung for logic statements.

2.2.2 Automation Studio: A PLC simulation software

Automation Studio [12] is an ISO standard integrated software that can be used
to design, simulate, document and animate circuits comprising of various automa-

tion technologies such as PLCs, pneumatics, hydraulics, sequential function charts

22

and electrical controls. Automation Studio allows users to design circuits or sim-
ulation platforms using its various libraries and modules such as PLC ladder logic
and electrical controls. The PLC (Allen-Bradley and Siemens) ladder logic library
includes all ladder logic functions such as contacts, coils and timers. The electrical
controls library which comes complete with switches, relays, solenoids, push buttons
and power supplies may be required to construct an experimental platform of any
complex systems. The libraries of Automation Studio are listed in various groups of
component category. The components’ list can be searched easily, then the required
component can be selected, and dragged and dropped onto the schematics or the pro-
gram. It is allowed to name components following a suggested guideline. Users can
simulate, experiment and implement possibly any virtual plants or control systems
using Automation Studio ladder logic library and other appropriate libraries. During
simulation, plant components become animated and electrical lines are color-coded
according to their states from which the user can observe the simulation results.
Users can further manipulate the simulation pace using available functions such as
normal/slow motion and step-by-step. By using I/0 interface hardware (with a lim-
ited number of I/0), users can directly connect Automation Studio to a real PLC I/O
or to real equipments such as relays, valves and sensors. Automation Studio can then
be used as a replacement of PLC to control the targeted equipments. More software

details and sample videos can be found in [12].

23

Chapter 3

Conversion Algorithm

3.1 Event generation and supervisory control

In supervisory control of DES a supervisor plays a “passive” role in that it observes
discrete evolution of the system and at any point it can disable a subset of controllable
events. Thus plant plays the role of generating controllable and uncontrollable events
alike, and controllable events can only be disabled by the supervisor. In contrast, in
our proposed PL.C implementation of supervisory control map represented by the su-
pervisor’s automaton, the PLC plays an “active” role by generating those controllable
events that in SCT are generated by the plant and enabled by the supervisor, and
that the notion of disabling events by a supervisor is replaced with generating enabled
events by the PLC controller. This is similar to the idea addressed by Balemi [11] to
indicate the fact that for most real systems plant events are not generated sponta-
neously, but only as the responses to given commands generated by the supervisor. In
our method, this idea of identifying the sources of events (which events are generated
by the plant, and which events are generated by the supervisor) is implemented.

We observe that this assumption is not restrictive at all: it is quite logical to
envisage that a motor cannot be turned on arbitrarily, and something or someone
(which is PLC or human operator) must generate such a relevant event according to

control specifications to activate/de-activate a motor.

24

3.2 Event interpretation: DES to LLD

The SCT describes that plant events can have symbolic values and occur asynchro-
nously at quasi-random time instants, while PLC deals with Boolean signals and
updates their values synchronously. This deviation could cause timing problems. As
considered in [16], it is quite realistic for two events to occur between consecutive
clock cycles and for implementation purposes, supervisor must interpret these events
as simultaneous. Generally, events occur instantaneously and cause transition from
one state to another. We represent the plant events with the rising and falling edges
of the input/output signals supplied by their corresponding devices. By comparing
signals between two ladder scan cycles [2], [3], [4], rising or falling edges can be easily
detected.

As usual we write & = . UZ,. Further we write &, = Z,,UZ, ,, where ,;
is the set of input events supplied by the operator, ¥, , is the set of plant response
events generated by the plant, and X, is the set of external events representing DES
controllable event (X.) generated by the supervisor. In the boiler control system

example of chapter 4, we encounter two types of external controllable events.

1. Some controllable events have a binary status; for example, corresponding to a
binary switch o we identify two events: the event of turning the switch on ()
and the event of turning the switch off (aor¢). We implement both events by
a single boolean signal z,,,: o, occurs on the rising edge of z,,, while oy

occurs on the falling edge of z,,. This is shown in Figure 3.1.

zaon

Qlon Qoff

- -=(0)

Figure 3.1: Representation of a,, and a,¢¢ by zq,,.

25

2. The other type of controllable events that we encounter have a ternary status;
for example, a fuel valve 3 can be either set to high, low or closed, corresponding
to controllable events Gy;, 61, and 3, respectively. We implement these events
by two boolean signals x5, and z,,: B, and By; occur on the rising edge of zg,,
and zg,,, respectively, while 3, occurs on the falling edge of zg,, V zg,. This is

shown in Figure 3.2.

TBhs

Bhi

x@lo

ﬂlo ,Bcl

,Bcl

Figure 3.2: Representation of Sy, B, and By by zs,, and zg,.

The occurrence of an event v in the set X, ; U %, , determines the set of actions
to be followed: for example, if the temperature drops below a certain threshold (an
uncontrollable event) the heater must be turned on. Thus, for such an event we
introduce a boolean signal xz., which needs to be 1 only for the duration of a scan
cycle, and should drop back to 0 before the start of the next scan cycle to prevent

what is called the avalanche effect in [6).

26

3.3 Motivating example

The following example takes the above considerations into account to implement a

supervisor.

Example: Consider the supervisor of Figure 3.3 which we would like to implement

using PLC. We have X, = {chi, Cio, Cet; dons doff }, Tui = {a} and Xy, = {be, f}.

doff

Figure 3.3: An example of a supervisor represented by an automaton.

Corresponding to external (controllable) events .. we define
X = {xdon’ mchi’ mclo}

The interpretation is that when x4, rises from 0 to 1 d,, occurs, while when z,4,, falls
from 1 to 0 doss occurs. Similarly, when z,, (z.,) rises from 0 to 1 cu; (cio) occurs,
while when z.,, V z.,, falls from 1 to 0 cq occurs.

For input and plant response events we define
Y= {mO, Loy Ly, Te, CL'f}

where z° is set by the operator to 1 to start the PLC controller.
Table 3.1 lists the rungs in LLD as a function
Q:(QU{D}) x YU{0}) — @ x (X U{D}) x Pwr(X)
g y) = (¢ 2, X")
The function Q prescribes that at the current state q (¢ = @ when no state is arrived

yet) if the event corresponding to y € Y occurs (y = @ when the move to the next

state is unconditional) then move to state ¢/, latch the variable z and unlatch all

27

Table 3.1: List of rungs in LLD defining latch/unlatch function

Rung # | Current state | Event Next state | Latch Unlatch
QU {0} Yu{oy | e (XU {0}) | Pur(X)

1 0 0

2 0 Tq 1 0 0

3 1 Tp 2 0 0

4 2 0 3 Tep,s 0

5 2 3 Tep, 0

6 3 Te R 9 0 0

7 3 0 4 Td,, 0

8 4 Tp 5] 0

9 4 Tf 8] 0

10 5 zy 6) 0

11 6 0 7] {Zeps Ty }

12 7 0 0] {Zdon }

13 8 0 9 0 {z4,,}

14 9 0 0 P {Zen;» T}

variables in X’ (z or X' are set to §) when no signal needs to be latched or unlatched,

respectively).

In the LLD implementation of the given example, shown in Figure 3.4}, rung 1 is
devoted to initialize the initial state of the supervisor; in other words, the operator sets
the variable z° to 1 when he wants to start the PLC controller. After initialization,
the supervisor moves from state 0 to state 1 in response to the occurrence of the

operator-supplied event a, which is why we place the corresponding variable z, in

rung 2 as input.

At state 2, two controllable events, namely ¢, and cy;, can be generated by
the supervisor; therefore the operator needs to tell the PLC which variable z,, or
%, must be latched. If the user does not pick one, the PLC will deterministically

choose the one whose rung appears first in the ladder. If it is desired to give user the

!The devices in the input/output card are used for test purposes only.

28

Table 3.2: List of rungs in LLD defining operator input signals

Rung # | Current state | Event Next state | Latch Unlatch
Quir o e (X U{0}) | Pur(X)

& 2 e 3 Zey, 0

5 2 g 3 Tep, 0

freedom to choose the event to be generated, as shown in Table 3.2 we can add two
new operator input signals z:¢ and z° in rungs 4 and 5 respectively in order to let
the user decide which event cy; or ¢, is to be generated, respectively. In this case we
say the PLC controller is in the manual mode. If there is only one outgoing external
controllable event, PLC can automatically generate the event as in the case of rung
7.

Note that since PLC scan time is faster than the plant response time, the rungs
corresponding to plant’s (uncontrollable) response events are placed above the rungs
corresponding to PLC generated (controllable) events. Thus, at state 3 the occur-
rence of the uncontrollable event e is checked before the controllable event d,, is
generated (rungs 6 and 7). If we alter this arrangement, plant events may never get
the opportunity to occur.

Rungs 8 and 9, corresponding to uncontrollable events b and f, can be arranged
in any order. Here we assume that uncontrollable events do not occur simultaneously;
if they do, the event whose rung appears first is selected deterministically by the PLC
controller.

To execute LLD on PLC, all input contacts must receive their corresponding
signals either from external devices or internal sources, and latch/unlatch coils must
send their corresponding signals either to external devices or internal sources. It is
evident from Figure 3.4 that all I/O signals have their own sources. We validated the
given example by the PLC simulation software Automation Studio 5.2 [12] and verified

by running a few test cases that the behavior of the DES supervisor is preserved.

29

3.4 Conversion method

lnpul RUNGH Output
%0 gc1ouT @
1-11C1 B E — 110C1
o= 1-1061.0UT1 = swe0
xr0 No 1-1061.0UTe xla pp ¥
e *E —3E - ——
xub — L...A
= Mo rogrour | [oy T Blato_1
R - ~ l—®—
xue b = [P
. IN2 1-40C1.0UTE FTE) +1061.0UT2 ouT2 @
s = s E 1E O = AN
A INS 11061fouts outs R
xj:m = —00 ouTa = B
IN4
b 1-10C1.0UT2 Xthi +10C1,0UTd K
e = NS +3E 16 Oz ouTs = sws5
f—— o— 5
, octfoutiz w
I =
= - =Y
A ING ~C ouTe Q
|| odiour2 ||
= = swm7
nNw —(| ourr &
e 1-1061.0UT2 :ﬁ‘ 1-10G1.0UTS L s
] IN8 |s £ (L) | outs ®
== 1-1001.9UT18 = San.9
g1 me |- | oum Py
&
= s-10c1jour2 =
4 | MO e outio| |_
e +10C10UTS xus Hoetoum (o] |
=1 IE) | |
[z |.1:!+_.02m ourra| | "5
| U] L]
[IN%3)- OuT13] Evanic o
- 1-10C1.0UT3 1+10G1.0UT4
= r - (L0 =
N4 ourts[| Brdo
. 1-10CTjouTI4 —&—
= 3 =
7w alre |
+HogrouTs
com = com
H00I0UTE xub +1061.0UTs
' [O
t-tocijours
-]
{EnoH—

3.4.1 Assumptions and key observations

RUNG2
HOCIOUTE xwJ

1-10C1.0UT8

I-3E JE

140C1.0UTS xuf

3

o
"100‘[2("‘
-

1-10C1.0UTe

1-10C1.0UT8

—E

i
|-1DG||2-’(T§
W

1-10C1.0UT7

1-10C1.OUT?

O
1-10C1jouTI2
-G
1-10C1[OUT3
-G
1-10G1.0uTE
SO

1-10C1.0UT0

—E

1-40C1,0UT8
[

W
1100 OUTI4
-
1100 |OUT?
L
1-10C1.0UTR

O

E

1+10G1.0UT)
E

140C1 OUT4
-G
1-10C1jouTe
Nos

1-1061.0UTe

t

G
140C1|OUTI2
o
1-10CHCUT4s
-G
1-10CH/OUTh

R&S

Figure 3.4: Motivating Example in LLD.

[Eno—

We make the following assumptions and key observations about our conversion algo-

rithm.

1. For our conversion method, we assume that all supervisors are modeled by

deterministic automata [7], [8].

2. We ignore the effect of transmission delay in the PLC model. Thus we as-

sume that our I/O devices respond/activate-deactivate instantly and they are

completely error-free.

. The self-looped (£, U X, ,) events in the supervisor are omitted in the PLC

implementation as they do not change the supervisor’s state and thus the set

30

of enabled events at that state.

4. The supervisor must require that an unlatching event be generated before the
next corresponding latching event can be generated. This necessitates, for ex-
ample, resetting all binary-state switches before returning to the initial state of

the supervisor.

5. PLC can implement a supervisor in two modes: in automatic mode once the
PLC starts, it will automatically perform its logic to drive the output devices.
In manual mode, when the PLC starts, it executes its logic in response to the

user input to drive the output devices.

6. We generally follow a specific rung order in our implementations. In manual
mode, rung order does not matter as the user input determines the rung to be
executed. In automatic mode, we place rungs corresponding to uncontrollable
events first and then we place rungs corresponding to controllable events in
arbitrary order. In either case, the rung order evolves according to supervisor

states.

Assumption 4 mainly describes why it is important to add all necessary events
in the supervisor. This assumption is also essential to directly convert DES super-
visor into LLDs. If any event is missing in the DES supervisor, the user may need
to construct an extended supervisor by attaching the missing events to the original
supervisor as addressed by [7]. To avoid such complications we assume that all nec-
essary events are already included in the supervisor. We now present our conversion
algorithm in two steps. First, we partition supervisor event set into three alphabets:
plant response alphabet, PLC command alphabet and input alphabet. Second, we
convert supervisor’s automaton into a ladder logic diagram. In our implementation
we clearly define sets of boolean signals corresponding to PLC input contacts (signals)
and output variables driving the output coils; we also define rung latch/unlatch func-

tion which describes how one can create LLD using the 1/O variables. The resulting

LLD can then be readily executed by the PLC.

3.4.2 First step: Event partition

The general architecture of the system is shown in Figure 3.5.

31

2(Q)

Other input Yy ;(2y,4), Yr
s |

. PLC

Plant response PLC command

Yuwp(zuyp) X(Ec,e)

Plant

Figure 3.5: PLC-based supervisory control.

Let ¥ = X ,UX, be the alphabet of events. We partition the set of uncontrollable
events (X,) into two alphabets I, = £, ,U%, .

The alphabet of external events, denoted by X, is the collection of controllable
events (X.) that PLC must generate by latching/unlatching output coils which drive
their corresponding output devices. The alphabet of input events, denoted by X, ;,
is the collection of uncontrollable events that are generated by other agents, e.g. an
operator. The alphabet of plant response events, denoted by X, ,, is the collection of

uncontrollable events that are generated by the plant.

3.4.3 Second step: 1/0 selection

We represent a ladder logic diagram by a quadruple:

G, = (X,Y,Q,2)

Description of each component as follows.

PLC commands/outputs. We assume that all external controllable events are
to be generated by the PLC. Recall from the example that switch events with binary
status are implemented with one boolean variable, and switch events with a ternary
status are implemented using two boolean variables. Some events (such as a,, and
Ori) are triggered on the rising edges of their corresponding variables while other

events (such as a,fs and G,) are triggered on the falling edge of the logical OR of

32

Figure 3.6: A (n + 1)-state switch.

their corresponding variables. In general we model an output device as a (n+1)-state
switch shown in Figure 3.6. The switch is deactivated when it is in state 0, while
when it is activated it can be in any of the states {1,2,...,n}. When the switch is
in state 0 <7 < n, it moves to state j, 0 < j # 4 < n, upon the occurrence of o;.

For a (n 4 1)-state switch s define:
Y, :={00,01,00,...,0,}
Define the corresponding boolean variables as:
X, = {a,] 0 € T, Ao # a0}

where

xUT ;06{01,02,...,Un}
0 occurs <
VO”G{GI,G‘g,...‘an} Lol l 10 =00

The set of PLC-generated external events is:
Zc,e = U Ea
s€S
where S is the set of all switches. Finally, define the set of boolean signals representing

the external events as:

X:=LJXs

€S
PLC inputs. Corresponding to each o € X,,; UX, , define a signal z, that becomes

momentarily true when o € X, is generated by the plant, or ¢ € X, ; is generated

33

by the operator. Define:
Yup :=A{xs| 0 € Bup}, Yo = {2, 0 € 5y}

Also define
Y, = {xo} U {.’L‘a! oc Ec,e}

The user sets ¥ to 1 to initialize the PLC in the beginning of the program. When in
the manual mode, or in the automatic mode when two or more external controllable
events are possible in a state, an enabled event o € .. is generated by the PLC if
x7 is set to 1 by the user. Finally, let Y :=Y,,UY,,UY,.

PLC states. We define a set of boolean signals to represent the PLC states.
Let

Z = {z4lg € Q}

The interpretation is that the supervisor is in state ¢ iff z; = 1. Thus at any

point in time we require that
dgeQ. zy=1

When the PLC is initialized by the user, x4, is latched. When a transition from
q to ¢’ takes place, =y is latched while z, is unlatched.

Rung latch/unlatch function. We define a function € to model a LLD. It
describes how events in 3. are to be generated by latching/unlatching the variables
in X. When the function prescribes a state change from ¢; to g;, latching of ¢; and

unlatching of ¢; are implied.

Q:(QU{d}) x (YU{D}) — Q x (X U{0}) x Pwr(X)

(g, y) = (¢, X')

The function §2 prescribes that at the current state ¢ (¢ = @ when no state is arrived
yet) if the event corresponding to y € Y occurs (y = () when the move to the next state
is unconditional) then move to state ¢’, latch the variable z and unlatch all variables
in X' (z and X’ are set to § when no signal needs to be latched and unlatched,

respectively).

34

Chapter 4

Case study: boiler control system

4.1 Introduction

Discrete-event systems encompass a wide variety of physical systems such as man-
ufacturing systems, traffic systems, communication protocols, logistic management
systems and data communication networks. Due to its discrete-event nature, a petro-
chemical boiler control system can be characterized as a discrete-event system. Al-
though boiler controller is commercially available in marketplace, the existing boiler
controllers are not constructed within a formal framework. Since there are lots of
safety issues and complexities involved in the design of a boiler control system, it
is quite appropriate and necessary to synthesize a boiler controller based on formal
methodologies such as Petri nets and Ramadge-Wonham Supervisory Control Theory
(SCT).

The controllers, which can be synthesized automatically utilizing SCT [1] for
a given DES plant and a specification’s automaton representing control objectives,
are mathematically guaranteed to be safe within the behavioral constraints; and are
nonblocking. Therefore, for our test example we choose water bath boiler controller
which is widely used in the petrochemical industry. It is now appropriate to provide

a brief review of boiler and its control procedures.

4.1.1 A brief description of boiler

A boiler is a confined vessel and/or tubes where water or other high efficient heat
transfer chemicals are heated at desired temperature and pressure by injected mixture

of air and fuel to produce steam or hot chemical. This steam or the heat extracted

35

from the hot chemical (by heat exchanging method) is then transferred out of the
combustion chamber for applying in a variety of heating applications such as indus-
trial process heating, residential heating, space heating, etc. There are many types
of boilers available in the market according to pressure range, temperature range,
working fluid, fuel type, and other characteristics: fire-tube and water-tube boilers
are very common types of boilers. We choose fire-tube boiler for our work, in which
water or a mixture of water and glycol to be converted to steam is filled in a vessel
(referred to as bath), and a fire tube and process coil are submerged in the bath,
which transfers heat to the process stream in the coil as shown in Figure 4.1 (figure

not in scale).

an
Safety pressure relief valve [%

Chimoey / stack | Expansion chamber |

Flue gas
———
-

T —

""""" (?{asoutd

Flue gas temperature sensor = ':j,l. Process coil > (Regerated)
sensor) .

-
Air blower pump /

Air damper
D- ;:,‘ Pilot fuel gas ?

T3

Ignition transformer to electrode

.........

------ Water (or glycot or other chemicalg) « -+ - -+ -+ -« Gas in

; Fire tube / Furnace) . (Raw)
ﬁa lA]Pnlot flame sensor ll] Main flame sensor)

Main fuel gas

Water bath Insulation

Figure 4.1: Water bath boiler.

As a combustion fuel, a boiler can use natural gas, oil, coal, etc. We use natural

gas as a source of fuel. Generally, all boilers contain the following four components:

Burner: A mechanical arrangement allows injecting proper mixture of fuel and air

into the boiler’s combustion chamber. It also holds firing and sensor devices.

Tubes: In a fire-tube boiler, a steel conduit tube is submerged in water or other
chemicals where fuel is burnt, and generated heat is transferred to the water or

other chemicals. Water passes through the tubes in a water-tube boiler.

36

Stack: The stack is a route through which the combustion gases are exhausted to
the outside atmosphere. The gases in the stack are called stack gases or flue

gases.

Safety valve: To prevent pressurization and possible explosion, a safety valve is
essentially adoptbed in a boiler which automatically open and release the pressure

when the boiler vessel pressure exceeds a safe limit.

4.2 A typical boiler control system

Other than basic components, boilers have a set of combustion and safety control de-
vices which together are called boiler controller. The main objectives of the controller

are:

e To operate the boiler to maintain efficient and continuous supply of steam at

the specified temperature and pressure.

o To allow safe start up, shut down, detect emergency conditions and take appro-

priate action for safe operation at all times.

Many control procedures are necessary for automatically ignited boilers to ensure safe,
consistent, and efficient operation. Control procedures are categorized according to

the functions they perform for a boiler. General control procedures are:

e Operating controls: These are the devices that control the operation of boiler
to start, stop, and modulate the burner, maintain required water level, and

maintain proper water pressure.

e Limit control: When operating limits of the boiler are reached (i.e. hot water
temperature too high, water level too low, high stack temperature, no fuel, etc.),

these control devices are responsible for shutting down the boiler.

o Safety control: These devices interrupt fuel flow to the burner and close the
equipment when unsafe operation conditions such as ignition failure and main

flame failure are detected.

o Programming controls: When all necessary conditions for a proper burner op-
eration are met (i.e. pre-purge and post-purge cycles) these control procedures

ensure proper sequencing of all of the above control systems.

37

A boiler control system can be implemented using relay logic controller, PID con-
troller, and presently using PLC. A typical PLC-based boiler controller is shown in
Figure 4.2.

PLC input PLC output

Operator input

Main flame sensor

Timer (Purging / Ignition trial timer)

Pilot flame sensor

Pilot gas valve

Water bath water level sensor PLC

Ignition transformer

Water bath temp. sensor Air blower pump

Air damper actuator

Flue gas temp./oxygen sensor

Main fuel valve

Stack

Water bath

Combustion
Chamber

PLANT

Figure 4.2: PLC-based boiler controller.

There are many kinds of sensors and switches available, which are employed to
achieve boiler control objectives when implementing using PLCs.

Typical Input Devices: Operator selector switch (high stage, low stage, off),
flame sensor, fuel-gas flow sensor, water bath temperature sensor, water bath water
level sensor, flue gas oxygen sensor.

Typical Output Devices: Pilot gas valve (solenoid), ignition transformer, air
blower pump, air damper actuator, main burner gas valve (solenoid), variable speed
drive (optional). Here, air damper actuator is used to provide on/off control for air
dampers, and act as VAV (Variable Air Volume) unit.

Details of the systems, objectives and I/O devices can be found in [15], [17], [18],
[19], [20], [21].

38

4.2.1 Design objectives

We design basic integrated PLC-based controllers of the above control systems men-
tioned in section 4.2. We design two controllers to achieve the aforesaid control

objectives. These are:

e Pilot flame controller is for controlling the pilot flame which must be formed
within two ignition trials or within the time allowed by the user setting in

ignition trial timer.

e Main flame controller is for controlling the main flame which starts its operation

when it receives the appropriate signal from the pilot controller.

We design a complete boiler controller integrating both pilot and main flame con-
trollers which can solely be used to achieve both pilot and main flame controllers

objectives.

4.3 Modeling boiler control devices as DES

A plant can be modeled at different levels of abstraction. There is no definite rule
to aid a designer to accurately model a plant. It depends only on the designer’s
discretion how to show all possible behaviors of the plant in an automaton model.
Ryan Leduc mentions this problem in his thesis [22] by posing the question, “what
conditions does a model need to meet to make it valid for a given plant?” He explained
that it is important to include the events required to properly observe and control the
plant. Further, with respect to these events, the plant model is valid if it correctly
generates the sequence of events (strings) that the plant would generate. It is quite
natural that events only occur in the plant when the plant model allows that event
to be generated.

We adopt Balemi’s [11], [23] notion about input/output perspective on control
of discrete-event systems. Balemi mentioned that the controller commands can be
seen as controllable events, while the plant responses can be seen as uncontrollable
events. He pointed out that supervisor should be such that it cannot prevent the
generation of plant responses, similarly the plant cannot prevent the generation of
controller commands. As a plausible solution, the supervisor never generates any

command which the plant cannot follow.

39

Our main approach of modeling plants is closely related to Balemi’s concept;
indeed, we observe that a plant model is required to include all of its relevant events
(i.e. response and command events) regardless of whether they are to be generated
by the plant or supervisor. Once PLC’s input/output devices are identified they can

be modeled in the DES framework as described in the next section.

4.3.1 Modeling input devices

These are mainly the various kinds of sensors (on/off switching devices) which com-
municate the current status of the output devices to PLC. Output devices can talk
to PLC only through these devices. In other words, PLC observes the response of the
output devices through the input devices. Since input devices are monitoring devices,
PLC just listens to them but does not necessarily control them; therefore, we model
input devices as shown in Figure 4.3 where for the ease of implementation, we include
a sensor initialization event which is controllable because PLC initializes the sensor
using this event to let the sensor communicate its status, while for obvious reasons,

response events (yes-flame, no-flame, etc.) are uncontrollable.

No flame, Yes flame Temp. high, Temp. low

| |
Sensor Initialization Sensor Initialization
Pilot flame sensor Flue gas temperature sensor
High, Low, Off Temp. high, Temp. low

- -

Sensor Initialization
Operator switch

Water bath temperature sensor

No flame, Yes flame

Sensor Initialization

Main flame sensor

Figure 4.3: Some input devices.

40

The PLC receives another type of input signals that are generated by operator
selector switch, thermostat call switch, user input signal switch, etc. An operator
feeds such events to PLC, and consequently they are uncontrollable to the PLC, as

shown in Figure 4.3.

4.3.2 Modeling output devices

Output modules of PLC are connected to different kinds of on/off electrical devices.
Typical output devices are motor and electrical solenoid. All events associated with
the output devices must be controllable. It is perceptible to assume that a motor
cannot be turned on automatically, something (which is PLC) should generate on
event so that the motor can run. Further, PLC should always control the output
devices by generating relevant events in order to acquire them to behave within some

specifications. Figure 4.4 shows the suggested output device models.

Fuel high, Fuel low, Fuel close Air high, Air low, Air close
- -
Main fuel valve Air damper actuator
Expire
/\l> PV open, PV close Ignite
; Start >
- -
Reset Pilot fuel valve Ignition transformer
Timer
SD1 SD2 BMS
e | -
Shut down event during pilot loop Shut down event during main loop Burner management system event

Figure 4.4: Some output devices.

The model shown in Figure 4.4 for air damper actuator and main fuel valve is an
abstract model with some problems. First, this model suggests that any of its events

can occur unlimited number of times without the occurrence of the closing event. In

41

such a case, even when the specification does not require it explicitly, the closing event
must be generated by PLC when needed to start a new cycle. Second, since the model
has only one state which is marked, if the specification requires to activate a high/low
event, the switch will be activated to high/low, but the problem is that the switch can
stay in high/low state forever because the state it is in is marked. It is not acceptable
to have a switch on forever, and we would like the switch to eventually return to the
close/off state. Again, in this case the device must be deactivated (closed) by PLC
even when it is not required by the specification. Therefore, alternative models for

/
an air damper actuator and main fuel valve adopted as shown in Figure 4.5.

Air close Fuel close

Air high Fuel high

Air close Fuel low

Air high Fuel close Fuel high

Air damper actuator
Main fuel valve

Figure 4.5: Alternative model for air damper and main fuel valve,

The new models do not pose any of the previous problems. We use both old and
new models in our design work and demonstrate how they differ from each other,
and finally we adopt the alternative model as a general representation for air damper
actuator and main fuel valve.

Much attention is required when modeling a timer. Typical ignition trial timer
model is shown in Figure 4.4. PLC can only turn the timer on and has to wait until
it expires in order to allow a specified time for the flame to be formed. Therefore the
timer on event is controllable while the timer expiry event is uncontrollable. In the
operation specifications, we allow two ignition trials or a 15 seconds time window to
ignite the flame. If the flame is formed within two trial periods, PLC needs to reset
the ignition trial timer so that this timer is ready for the next cycle operation, hence
we label timer reset event as controllable. Same arguments are applied to model other
timers.

When modeling other output devices, we can follow all of the above observations.

42

The other notable device BMS describes the Burner Management System (BMS)
event, which is controllable. The purpose of the BMS is to automatically, or after
maintenance work starts, to place burners and igniters in service, to monitor flame
conditions, to provide alarm in any abnormal conditions, and to remove burners and
igniters from service when necessary. Since we design two controllers (pilot and main
flame), we define two shut down events: one is for using in pilot operation period and
the other is for main flame operation period. The purpose is the same: shut down
the plant if any emergency conditions arise, and for obvious reasons these events are

controllable.

4.4 Supervisor construction

4.4.1 General considerations

The following general considerations are important to our design work:
e Boiler can be controlled to supply two stage (high/low) output temperatures.

o Controller is intended to control a single burner unit (it is possible to design a

controller which can control many burner units together).

e We consider few critical emergency conditions of the boiler in our controller
design, while there are many other emergency conditions (water level low, no
fuel flow, etc.) and many other design criteria (including variable motor speed
drive with pump, flue gas oxygen analyzer with stack, etc.) can be included in

the design.

e The controller is used to control the water bath boiler (sometimes called Re-
generation Heater) in the petrochemical industry. Our example is adopted from

the boiler used by [24].

e When any of the controllers move to a state called Burner Management System
(BMS), we assume that BMS work can be done by one event as shown in
Figure 4.4. In practice, BMS work is done by interfacing another controller

which we leave for future works.

43

4.4.2 Pilot flame controller

A pilot flame controller is used to fire the pilot flame before the main burner ignition.
Typical pilot ignition sequence is that a pilot flame is ignited within specified design
criteria and is lit, a flame is detected by a flame sensor, and the main flame is then
ignited. Pilot can be classified depending on the life time of a pilot with respect to the
main burner. A pilot can be continuous, intermittent and interrupted. We choose to
design continuous pilots which stays lit all the time during the system operation, and
we use natural gas as a pilot fuel source. Overall, the objectives of pilot controller is
to control the pilot flame which must be formed within two ignition trials or within

the time allowed by the user.

DES model of pilot controller plants

A typical pilot flame controller is composed of the following sensors and switches:
operator selector switch (high, low, off), flame sensor, pilot gas valve (solenoid),
ignition transformer and timer. The corresponding DES model of the devices which

we use to design pilot controller is shown in Figure 4.6.

Expire PV_close
Ignite
Start PV_open
Reset Pilot fuef valve Ignition transformer
Timer
SD1 Op_hi, Op_lo, Op_off BMS
Shut down event during pilot loop Operator selector switch Burner management system event

PE_Y,PF.N

Pilot flame sensor

Figure 4.6: Pilot controller I/O devices.

44

Pilot flame control specification

The operation sequence of the pilot flame controller is shown in Figure 4.7.

(Sen

Operator preference (hi/lo)]

Pre—purging period

Maintenance work (BMS)

Yes (hiflo)
Operatar console (HVLa/OM)?

No (off}

"Max. # of trals atiempted
o timer time expired?

Pilot flame formed?

De-energized everything i.e.
Ignition trial timer reset,
ilot valv

Yes
Ignition trial timer reset
T

Figure 4.7: Operation sequence of Pilot controller.

The operation of pilot flame controller without operator’s role is mainly defined

as follows:

¢ Allow two ignition trials or allow the time set by the user (we use 15 seconds)

to ignite the flame.

e Shut down the plant if the number of ignition trials exceeds 2, or ignition timer

expires, whichever happens first.

e Ignition transformer is ignited only when pre-purging timer is expired, pilot

valve is open and there is no flame, otherwise the transformer will not be ignited.

e We check in sequence. First pre-purging timer status, then pilot valve status

and finally flame sensor status, before the ignition transformer is ignited.
o If pilot flame is formed, pilot valve will be stayed open and timer will be reset.

e After the occurrence of shut down event, plant will move to a state of burner

management system, and it is re-initialized.

45

The initial time delay between operator call and trial for ignition is referred to as pre-
purging period. It is required to allow purging time to clear out any incombustible
gas from combustion chamber.

In the pilot operation sequence, operator can only turn the system on or off.

Operator’s role in pilot operation can be described as follows:

e Operator can select either high/low/off at any time (state). Initially (at state
0), when operator selects high/low, plant will follow pilot operation sequence.
During the whole sequence, supervisor just carries operator’s high/low signal to

the main flame loop.

e At any state, when operator selects off, controller brings the plant to an initial

state (state 0) by closing or resetting pilot valve and timer when they are on.

The resulting specification for the pilot flame controller is shown in Figure 4.8

and named as PILOTSPEC for TCT design procedure.

Pilot flame supervisor

! using supervisory control theory of

We now synthesize the pilot flame supervisor
Ramadge and Wonham [1] and XPTCT software [14]. We particularly follow the steps
mentioned in [9] to design DES supervisors. For pilot flame supervisor, we first list
the devices that are interacting with each other. These are flame sensor, pre-purging
timer, trial for ignition loop timer, pilot valve, ignition transformer, shutdown event

during pilot loop and burner management event. We then take synchronous product

of the model of these devices.

e PLANT A = sync (Flame sensor, Pre-purging timer)
e PLANT B = sync (PLANT A, Trial for ignition timer)
¢ PLANT C = sync (PLANT B, Pilot valve)

e PLANT D = sync (PLANT C, Ignition transformer)

We use controller to refer to PLC implementation, while we use supervisor to refer to DES

design.

46

\\\
e

Figure 4.8: Specification for pilot lame supervisor (TCT: PILOTSPEC).
¢ PLANT E = sync (PLANT D, SD1)
e PLANT F = sync (PLANT E, BMS)

e PLANT G = sync (PLANT F, Operator)

Now we construct the pilot flame supervisor by taking the supcon of the pilot
control specification (PILOTSPEC) with respect to all plant components involved in
the pilot stage (PLANT G):

e PILOTSUPERVISOR = supcon (PLANT G, PILOTSPEC) (States: 21, Tran-
sitions: 75)

47

We use minstate to minimize the size of a supervisor whenever possible.
The resulting pilot supervisor’s automaton is shown in Figure 4.9. It is clear
from Figure 4.9 that the controlled behavior of the pilot supervisor is quite expected

as described in the specification, and it is controllable.

4.4.3 Main flame controller

Upon receiving the appropriate signal from the pilot controller, main flame controller
will start its operation. In this loop, controller mainly controls the devices to ignite
the main flame and to control the main flame according to operator’s preference. If
any emergency conditions arise, controller will also take appropriate actions to achieve

safe boiler operation. We use natural gas as a main burner fuel source.

DES model of Main controller plant components

A typical main flame controller is comprised of operator selector switch (high, low,
off), flame sensor, main gas valve (solenoid), flue gas temperature sensor, water bath
temperature sensor, air blower pump, air damper actuator and timer. The corre-
sponding DES models of the devices for designing main flame controller is shown in

Figure 4.10.

Main flame control specification

The overall operation sequence of the main flame controller is shown in Figure 4.11.
We describe the operation of main flame supervisor step-by-step. First consider

the normal operation (no emergency conditions), which can be described as follows:

e Main flame loop should start if and only if pilot flame is formed

o Devices operate in sequence: First air damper actuator is energized, then air
blower pump is turned on in order to avoid pump motor being overloaded.
After that, main gas valve is energized which allows good combustion and less

pollution [17], [18].

o Operator can select either high/low at any time (state). Initially, when operator
chooses high/low, plant will follow main burner high/low path, respectively, as

shown in the specification of Figure 4.12 and Figure 4.13.

48

e When the plant is running (main valve open, pump on, damper on) in a par-
ticular mode (high/low), if the operator changes his (low/high) selection, the
controller will wait until the main flame is formed, then it will change only
the opening volume of air and gas of air damper actuator and main gas valve

accordingly.

e If the operator selects off at any state, the controller will move the plant to
an initial state by closing main valve, pump and air damper, whichever other

device which is on.

o If shut down occurs, plant will move to a state of burner management system,

and 1t is re-initialized.

During normal operation, controller will continuously monitor safe operation of
the main burner. At any stage, if emergency conditions (temperature too high, flame
not detected, etc.) arise, controller will shut down the boiler and move the system
to a repair state for maintenance work, and prepare it for a new operation cycle. We

now include the emergency issues, listed below, in the main flame specification.
o Water bath temperature exceeds set limit.
o Flue gas temperature exceeds set limit.
e Main flame fails to form.

It is required that water bath temperature be maintained at a desired temperature
level. To ensure complete combustion of fuel, proper mixture of air and fuel is re-
quired. But if the amount of excess air increases, flame temperature decreases and
the boiler heat transfer rate goes down. As a result, flue gas temperature goes up;
therefore regular monitoring of flue gas temperature can ensure proper proportion of
excess air which greatly improves combustion efficiency [17], [18].

The proposed specification for the main flame controller is shown in Figures 4.12

and 4.13, and named MAINSPEC1 for TCT design procedure.

49

We introduce another specification MAINSPEC2 shown in Figure 4.14. This
specification ensures that when BMS event occurs, air damper and fuel valve are
closed, and plant is moved to the initial state to prepare for the next cycle. Also, it

ensures that all devices are closed/off when plant is in initial state.

Main flame supervisor

For main burner control supervisor, first we list all devices that are interacting with
each other. These are air damper actuator, main fuel valve, pilot flame sensor, main
flame sensor, air blower pump, operator switch, shut down event during the main
cycle and burner management event. We take the synchronous product of the above

devices.

e PLANT H = sync (Air damper actuator, Main fuel valve)

e PLANT I = sync (PLANT H, Air blower pump)

e PLANT J = sync (PLANT I, Pilot flame sensor)

e PLANT K = sync (PLANT J, Main flame sensor)

e PLANT L = sync (PLANT K, SD2)

o PLANT M = sync (PLANT L, BMS)

e PLANT N = sync (PLANT M, Operator)

o PLANT O = sync (PLANT N, Flue gas temperature sensor)

e PLANT P = sync (PLANT O, Water bath temperature sensor)

We have two specifications for main flame supervisor; we can combine them using

meet to obtain the design specification.

SELF1 = create (SELF1, [mark 0])

SELF1 = selfloop (SELF1, [list of all plants events in the main flame super-

visor))

MAINSPEC1 = sync (MAINSPEC1, SELF1)

MAINSPEC2 = sync (MAINSPEC2, SELF1)

50

o MAINSPEC = meet (MAINSPEC1, MAINSPEC2)

Now we construct the main flame supervisor by taking the supcon of the main
flame specification (MAINSPEC) with respect to all plants involved in the main flame
supervisor (PLANT P):

¢ MAINFLAMESUPERVISOR = supcon (PLANT P, MAINSPEC) (States: 57,
Transitions: 156)

o MMAINSUPERVISOR = minstate (MAINSUPERVISOR) (States: 42, Tran-
sitions: 136)

The resulting main flame supervisor is shown in Figure 4.15 and Figure 4.16. It
is evident from the figures that the controlled behavior of the main flame supervisor

is quite satisfactory and controllable.

4.4.4 Complete boiler controller

Now we reach a point to build the complete controller which alone can control the
boiler. The purpose of this controller is to achieve the same control objectives as the
pilot flame and main flame controllers individually do. For both pilot and main flame

stages, we use natural gas as a fuel source.

DES model of plants

A typical boiler controller is composed of the following sensors and switches: opera-
tor selector switch (high, low, off), flame sensor, pilot gas valve (solenoid), ignition
transformer, timer, main gas valve (solenoid), flue gas temperature sensor, water bath
temperature sensor, air blower pump and air damper actuator. The corresponding
DES model of the devices which we use to design the complete boiler controller is

shown in Figure 4.17.

51

Boiler control specification: serial specifications

The purpose of the complete boiler controller is to integrate the operations of pilot
flame and main flame controllers. We integrate both supervisors by taking their serial
(as opposed to parallel) behavior as in the modular operation of DES. The architecture
of the complete controller is shown in Figure 4.18. The modular approach to the
synthesis of supervisors for DES describes that the overall supervisory task is divided
into two or more subtasks and the resulting individual supervisors are run, in our
case, sequentially to implement a solution for the original problem. The disjunction
of two modular supervisors can achieve the same control objective as a centralized
supervisor. Details of the theory will be developed in future work. The overall
operation sequence of the complete boiler controller is shown in Figure 4.19, which
combines both the pilot and main flame operation sequences.

Pilot and main flame loops are connected as follows: during the pilot execution,
whenever pilot flame is formed, the controller will reset the ignition trial timer, usher
the plant to the main flame loop (high or low sequence as required by the operator),
and follow the main flame operation requirements.

The suggested specification automaton for the complete boiler controller is shown
in Figure 4.20, Figure 4.21 and Figure 4.22, and named COMSPEC in TCT design
procedure. It is easy to visualize from Figure 4.20, Figure 4.21 and Figure 4.22 that
the complete boiler specification is simply the integration between pilot and main

flame specifications.

Boiler control supervisor

As usual, we first list the devices that are interacting with each other. Operator
selector switch (high, low, off), flame sensor, pilot gas valve (solenoid), ignition trans-
former, timer, main gas valve (solenoid), flue gas temperature sensor, water bath
temperature sensor, air blower pump and air damper actuator. We then take the

synchronous product of these devices. We use the same device models both in the

52

pilot (PLANT G) and main flame stage (PLANT P) as before, which are shown
in Figure 4.6 and Figure 4.10, respectively. As a result, plant interactions for the

complete boiler supervisor can be computed as:
e PLANT Q = sync (PLANT G, PLANT P)
Now we construct the complete boiler supervisor:

¢ COMSUPERVISOR = supcon (PLANT Q, COMSPEC) (States: 57, Transi-
tions: 196)

The resulting complete boiler supervisor is shown in Figure 4.23, Figure 4.24 and
Figure 4.25. The controlled behavior of the complete supervisor is quite satisfactory,

and it is controllable.

4.5 PLC-based implementation of the controllers

We convert pilot flame, main flame and complete boiler supervisors to LLD using
our conversion technique, and finally test our design by setting a virtual plant setup
using a PLC simulation software Automation Studio 5.2 [12]. All of the resulting
LLDs of the PLC-based implementation of the pilot flame, main flame and complete
boiler controllers are given in the appendix sections. Here in Figure 4.262, we provide
a part of LLDs of the pilot flame controller as an example view,

The PLC simulation software does not provide a ‘runtime’ simulated LLD as a
simulation result. To verify the correctness of LLDs, after running a simulation one
must verify the status of the output devices in response to the input signals supplied
by the user. If all the output devices are activated/de-activated according to logic
functions set by the user and in relation with the signals supplied by the input de-
vices, then one can conclude that LLDs are functional; and hence, control objectives

are achieved. Therefore, as an example a part of LLD of the pilot flame controller

2The devices in the input/output card are used for test purposes only.

53

is provided here so that one can compare this LLD with the pilot supervisor’s au-
tomaton to examine whether the same sequence of events is generated by the given
LLD as suggested by the supervisor’s automaton. If the given LLD generates the
same sequence of events, it can be claimed that the converted LLDs are functional.
Moreover, it is required in any PLC implementation that all of its input contacts must
receive their corresponding signals from some kinds of sources (external or internal)
and latch/unlatch coils must send their corresponding signals either to external de-
vices or internal sources. It can easily be verified from the virtual plant setup of
boiler control system in the Automation Studio 5.2 that all I/O signals have their
own sources, and therefore, all controllers can be executed by the PLC. By running
a few test cases we observed that the boiler controllers function as outlined in the

specifications.

54

o740 d0

91

8T

144

Fu

OR&
L :I
a

T
113
N \] \) \) \UA Tsad \ <
oo sTlom o o4 aow'to iow s
D070 20740 BT
oo

Aaawia

10 90

(7

U

Figure 4.9: Pilot flame supervisor (TCT: PILOTSUPERVISOR).

55

FGT_Ok, FGT_Hi

MF_Y, MF.N
q q
FGT_I
MFS_I
Main flame sensor Flue gas temperature sensor
O-i. Op-Lo. 0p-OF Pump off WBT_Ok, WBT_Hi
q q
Pump on WBT_I
Operator switch Air blower pump Water bath temperature sensor

Air damper actuator
Main fuel valve

T_E
q o i
b
2 TS >
TR
Timer (loop) Shut down event during main loop Burner management system event

Figure 4.10: Main flame controller I/O devices.

56

(st D

Pilot flame sensor initialization

|

Pilot flame sensed?

Energized air damper (hi/lo)

!

Turn on pump

l

Yes (hiflo) ! Yes (hiflo) No (off)

Operator console (Hi/Lo/OF)?

Operator console (HiLo/OQff)?

| Energized main fuel valve (hilo) ’
No (off) No
Yes "
Main flame formed? y condition?
Yes
f

|

Figure 4.11: Operation sequence of main flame controller.

o7

SE 20780
@ @123
Bo i -~
iy L E Y 108
143
Ve
[14 £ 1 LT ST
0TI \ Tlia \ 07154 \ [E=] \
Cldodaind *TdoW o now Y o w d0
noio Lnd oo oo
060
Boip
s0¢0 THT L6 N0 A W19 407108 N i A 84

FEHL

Figure 4.12: Specification for main flame supervisor: Low path (TCT: MAINSPEC1).
58

\\\

MDY, NP 0, 3T O, PCT_E3, WEY_OK WET_E1

19

0p.0K AC.TEC.P ORPRLITN

Figure 4.13: Specification for main flame supervisor: High path (TCT: MAINSPEC1).

A_C, P_Off, FF_C, PFS_1, Op_Off

Figure 4.14: Specification for main flame supervisor (TCT: MAINSPEC2).

59

(ped y3rg0L)
\lmw o
=
HY

SE

BOTIY LYY D040

\S

Figure 4.15: Supervisor for main flame: Low path.

60

Figure 4.16: Supervisor for main flame: High path.

61

PE_Y,PE.N MF_Y,MF_N FGT_Ok, FGT_Hi

e

PRSI FGTI
Pilot flame sensor Main flame sensor Flue gas temperature sensor
00,1100 Lo. 00 Of Pump off WBT_Ok, WBT_Hi
p-Hi, Op_Lo, Op. Ignite
W Oha© ©
R — Pump on WBT_I
Operator switch Ignition transformer Air blower pump Water bath temperature sensor
PV_close SD1 SD2 BMS

-
© O - -—

PV_open
Pilot fuel valve Shut down event during pilot loop Shut down event during main loop Bumer management system event

PT_E IT E

_ TE
| | ——|
PT.S TS Ts
PT_R ITR TR
Pre—purging timer Ignition trial timer Timer (Loop)

Air damper actuator
Main fuel valve

Figure 4.17: Complete boiler controller I/O devices.

62

Z1 (1) Z3(Q2)

Plant response PLC command
Yu,p(Tu,p) X(Ze,e)

Plant

Figure 4.18: Complete boiler controller architecture.

C@D

Pre—purging period
Pilot valve energize

Pilot flame formed?

[P TINY 3 T N
amper (hiflo)

© Pilot Aame controller loop

Muintenance work (BMS) :

"M, & of trals attempicd
or timer time cxpired?

Energized air d;

} Main flame controller loop

© No(eff)

Figure 4.19: Typical operation sequence of boiler controller.

63

\\\\

P
H
g
£
o
[
:‘ o)
, - 3 -
& s >5
L ’l
E| E] &
]
&
3

'I
£
3 v .
= i :, 4
-4
" Lot
£ F
<5V
M 5
q § -
t & -
g
g :
& 8
: H
&
&S oo

d

Op ORIV, A C,0F.C,P OF.IT-R,FT_%

Figure 4.20: Specification for complete boiler supervisor: Pilot path (TCT: COM-
SPEC).

64

d yopd o,
(wred w35y 01) Gedomd o1)
1z
= =0
o)
L &
(used yopd moay)
vE [o€ 8 9 p | P74 4 14 9% b
\ 0718 \ Tiem \ W 153 \ 194 \ A \ e \UAV or AL \\X NOT¢ \\VA.P oV *17dp O
o1 do Towi o1 dp ‘T do e L o140 W0 o1 do ‘'m0 *1Tg w0
o740 50”4 BO 4O B0~ do 20740 no~do Bodo
(wredjond ox)
(]
/ o IR0 18 T T E08 O T L0 N TN AR
- 5o
no o

ALEL

Figure 4.21: Specification for complete boiler supervisor: Low path (TCT: COM-

SPEC).

65

LS &1

(wedjond o1)
€1

Sp

L4

13 62 L

=0

01 \ JEETS \ 20 154 \

Howo o7 do ‘W 40 o W0

a0 #0740

8o do

5o d0

a4

HTIEM 0T I8M T T ID8 S0 T 103N TN K

(qyed jopd moug)

Figure 4.22: Specification for complete boiler supervisor: High path (TCT: COM-
66

SPEC).

(pedmegor) :mN

oo
({ wed @@y oL) Q~OA L1 ~ 31
o V »0 D [ad
an
7~ s v
wriowa

au

u

Kae'Nas

N~

T L Ly
6 9
[£7] \ E3 \ oAl \ EE
T do «Ydp w0 1o W0

DO A TVIMIDOO

Figure 4.23: Complete boiler supervisor: Pilot path.

67

(wedopd oy)
8

>0

{ ped joyrd moay)
91

o1 do O

114

(pedyopd oy,)
81

Figure 4.24: Complete boiler supervisor: Low path.

68

\5-..!..:.5

(predyopdol)

(1%
1 a8
\lmww
Ty

8y

>0

(ped jopd mozg)
9L

144 61

o O

(pedopd of)
81

Figure 4.25: Complete boiler supervisor: High path.

69

npet

1-1IC4

1+1OL1.OUTe

—(L0

1-10C1.0UT0

1-10p1.OUTH

—3E

1-1GG1 OUTO

+1G61.0UT0
e

(-
+105404To
nOn

0B 1.DUTH

O
1-10£1.0UT0
Lo

1-10£1.0UT0

C

1.40QC1 OUTH

%4 0p Of

o

1-1CE1L.0UT2?
O
1-10L1,0UT0

L]

14001 .0UTQ

=1

1-10C1.OUT1

—3E

40

LA

-
1-1OP1OUTH
L

1-10L1.0UT!

1-10C1.OUT1

|

TS
1-10C1 QUTZS

=l

- L

2y PTS

(L
11001
aOn
=100 1.0UTY
O

1-10L1.0UT2

Ok

L

1-10G1.0UT2

1+1G61.0UT2

pT_E
TM.ON

Timar
Time Base
Preset

T~
'Fner ON-Delay

(0
1-109
G-

1-1001.0UT1

LG

uTR

G-
G-

-0C1.0UTY

(0

C

11001 .au

110G HOUT26
G-
1.10¢oUT2

L

-IE

o
-10G1.01
v
+10C1jouT2

D

{eng}-

Figure 4.26: A sample LLD of Pilot flame

70

11061
state_0 ED
ouTo
a1
ouTH
a0z
ouT2
Hale_
ouT3 ol
LX)
DUT4
statn_b
ouTs
stats 5
ouTse
walk 7
ouT?
L
ouTs ul
atD.
oute ot
siale10
ouTI0
ouUTH statel
ouT1Z sislo_12
wakw_13
ouT3 -
ouT14 state_14
ouTY5 slate_18
DUT16 vatn 16
ouTH? an17
ouT18 Yona
sae 19
ouTHe
san_20
ouTZe
[
ouT2t
PP
ouT22
801
ouT2s
ouTz4 BuS
PTS
ouT2s
s
ouTZs &
pee——— [T
ouT27 ®
outzs| |-
outee| |
ourso| |
[ourar |
coM |_
controller.

Chapter 5

Conclusions and future research

5.1 Conclusions

In this thesis we present an algorithm to implement DES supervisors using PLCs, and
we show how the user can implement converted LLDs either manually or automati-
cally. After presenting a motivating example, the conversion method is introduced,
and then we propose an overview of the implementation process in two steps.

First, we partition the event set into three event subsets: plant response event
set, external event set and input event set. For a given DES supervisor uncontrol-
lable event set is partitioned to plant response events, which are events that can be
generated by the plant, and input events which are events that can be generated by
other agents. DES supervisor controllable event set is considered as external events,
which are events that can be generated by the PLC to drive output devices.

Second, a conversion method is introduced to convert the DES supervisor to
an equivalent LLD by selecting PLC’s inputs and outputs from among the system
events. We assume that external controllable events can only appear in the form of
(n + 1)-state switches, which are then mapped to PLC output signals. We propose
that external controllable events can be represented as PLC outputs using latch or
unlatch coils, while plant response and input events can be represented as PLC inputs
using normally open contacts. Finally we model a DES state transition function by
a rung latch/unlatch function in LLD.

We distinguish PLC implementation of DES supervisor in manual and automatic
mode. When two or more external controllable events are eligible to occur in a

state of the plant, user needs to tell the PLC which events among them are to be

71

generated, otherwise PLC deterministically choose the one whose rung appears first
in the ladder. We call this implementation in manual mode. When there is only
one outgoing external controllable event, PLC can automatically generate the event,
provided the plant response and input events (if there is any eligible to occur in the
current state) are placed above the rung associated with the external controllable
event. We call this implementation in automatic mode.

We discuss several key observations and assumptions about our conversion algo-
rithm. The self-looped (£,; U X, ;) events in the supervisor are omitted in the PLC
implementation since they do not change the supervisor’s state, and thus the set of
enabled events at that state. The incorporation of this observation in the implemen-
tation has reduced the number of PLC inputs and outputs. We observe that it is
quite important to add all necessary events in the supervisor to directly transform
DES supervisors into LLDs.

Since PLC program is executed sequentially, several input and output events
might occur in one scan cycle and there might be a possibility to skip over a num-
ber of events when several controllable events are to be generated in a state of the
plant; we address this problem by suggesting that input variables can be set by the
user manually to tell the PLC which events must be generated first among several
controllable events.

To demonstrate the correctness of our approach, boiler control systems have been
designed using supervisory control theory. In the steps of supervisor design using
SCT, we tackle several issues that might arise in the real applications i.e modeling of
input and output devices as DES. We design three controllers to achieve the boiler
control objectives. Pilot flame controller is used for controlling the pilot flame which
must be formed within two ignition trials or within the time allowed by the user
setting in ignition trial timer. Main flame controller is responsible for controlling the
main flame which starts its operation when it receives the appropriate signal from
the pilot controller. By taking the serial composition of all controllers, we design a
complete boiler controller integrating both pilot and main flame controllers which can
be used to perform both pilot and main flame control objectives.

We then convert DES supervisors to LLDs using our conversion technique; the
converted LLDs have been copied and simulated using PLC simulation software Au-

tomation Studio 5.2 [12]. We observe from the simulation test that our conversion

72

method results in LLDs that generate the same sequences of events as the supervi-
sors, and thus they preserve the behavior of the DES supervisor. In another point of
view, our work demonstrates how SCT can be used to design controllers for real field

control problems and how these controllers can be implemented using PLCs.

5.2 Future research

There are few directions in which our work can be extended. For future research, the

following projects are significant and relevant to our work.

e It will be quite useful in industrial applications if a software can be developed
which integrates the functionality of TCT [14] with our conversion algorithm.
This integrated software can be used as a complete tool to design PLC con-

trollers directly from DES plant and specification models.

e We take the disjunction (serial) of two supervisors to develop a complete su-
pervisor which is used to achieve the same control objective as a centralized
supervisor. The development of a general theory for combining several super-
visors serially is an interesting problem to investigate in future. This method

can be used to implement several controllers using only one PLC.

e Nowadays Distributed Control Systems (DCS) [25], [26] are increasingly used
to control large and complex processes. A DCS is comprised of a supervisory
controller and one or more distributed (subordinate) controllers, which are used
to control their associated plant components in the same process unit. The su-
pervisory controller and distributed controllers are connected via a peer-to-peer
network. Necessary data from distributed controllers are requested by the su-
pervisor and based on the received data, control commands are generated and
sent by the supervisor to the distributed controllers. The associated plant com-
ponents (motor, valves, switches, etc.) are then controlled by their distributed
controllers based on the supervisor commands. If we assume that supervisor
and other distributed controllers in a DCS can be implemented by PLCs, it
might be possible to develop a methodology to investigate how DES supervi-
sors can be implemented in a DCS approach using PLCs. A view of PLC and

DCS implementation is shown in Figure 5.1, where in a DCS implementation

73

one PLC controller can be used for controlling each plant component, and a
supervisor can be used for coordinating all PLCs. A local PLC may not need
help from the coordinator for all its decisions; in other words, some control

decisions can be made locally and some by the help of coordinator.

Sensor

PLANT 1

Actuator

PLC

Actuator

PLANT n

Sensor

a) A PLC implementation.

Sensor

PLANT 1 PLC1

Actuator -—

Peer—to-peer network

Supervisor

-~ Actuator

PLANT n PLCn

|

b) A DCS implementation.

Sensor

Figure 5.1: A typical operation of PLC and DCS.

e It would be worthwhile to build a prototype boiler control system based on the
results of this work. This prototype model can include other design criteria
(adding variable motor speed drive with pump, flue gas oxygen analyzer with

stack, etc.) and emergency conditions (water level low, no fuel flow, etc.).

e In our implementation, we ignore the effect of plant response delay. To enhance
our algorithm it can be taken as a future work to develop a methodology where

such a response delay may be possible to handle.

74

Bibliography

[1] P. Ramadge and W. Wonham, “The control of discrete event systems,” Proceed-

ings of IEEE, vol. 77, no. 1, pp. 81-98, 1989,

[2] J. Stenerson, Fundamentals of programmable logic controllers, sensors, and com-

munications. Prentice Hall, 1993.

[3] J. W. Webb and R. A. Reis, Programmable logic controllers: principles and
applications, 5th ed. Prentice Hall, 2003.

[4] F. D. Petruzella, Programmable logic controllers, 2nd ed. McGraw-Hill, 1997.

[5] B. A. Brandin, “The real-time supervisory control of an experimental manu-
facturing cell,” IEEE Trans. Robotics and Automat, vol. 12, No. 1, pp. 1-14,
February 1996.

[6] M. Fabian and A. Hellgren, “PLC based implementation of supervisory control
for discrete event systems,” Proceedings of the 37th IEEE conference on Decision

and Control, Tampa, Florida, USA, vol. 3, pp. 3305 — 3310, Dec. 1998.

[7] J.Liu and H. Darabi, “Ladder logic implementation of Ramadge-Wonham super-
visory controller,” Proceedings of the Sizth International Workshop on Discrete-

event systems (WODES02), IEEE, 2002.

[8] R. Leduc and W. Wonham, “PLC implementation of a DES supervisor for a
manufacturing testbed,” Proc. of Thirty-third Annual Allerton Conference on

Communication, Control, and Computing, pp. 519-528, Oct. 1995.

[9] W. Wonham, Supervisory control of Discrete-Event Systems. Systems control
group, University of Toronto, 2006.

[10] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems.

Kluwer, 1999.

75

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

20
21

[22)

(23]

[24]
[25]

[26]

S. Balemi, “Control of discrete event systems: theory and application,” Ph.D

thesis, SUPSI-DTI, Switzerland, pp. 256-31, 1992.

“Automation studio 5.2, Educational edition,”

http://www.automationstudio.com/, 2006.

R. Leduc and W. Wonham, “Discrete-event systems modeling and control of a
manufacturing testbed,” Proc. of Canadian Conference on Electrical and Com-

puter Engineering, vol. II, pp. 793-796, Sep. 1995.

“Design software: XPTCT,” W. M. Wonham’s homepage,
http://www.control.utoronto.ca/~wonham/, updated July 2006.

“Programmable logic controller, boiler,” http://www.answers.com/, 2006.

M. Wood, “Application, implementation and integration of DES control theory,”
M.A.Sc. thesis, Queen’s University, Canada, pp. 26-29, 2005.

M. A. Malek, Power botler design, inspection, and repair. McGraw-Hill, 2005.

S. G. Dukelow, The Control of Boilers, 2nd ed. Instrument Society of America,
1991.

“G779 universal replacement intermittent pilot ignition control,”

http://www.johnsoncontrols.com/cg-heating/ignition.htm, 2006.
“Burner and boiler control,” http://europe.hbc.honeywell.com/products, 2006.
“Burner, BGN 50,” http://www.baltur.it/en/home.php, 2006.

R. Leduc, “PLC implementation of a DES supervisor for a manufacturing test-
bed: an implementation perspective,” M.A.Sc. thesis, University of Toronto,

Canada, pp. 13-19, 1996.

S. Balemi and U. Brunner, “Supervision of discrete event systems with commu-

nication,” Proc. of American Control Conference, pp. 2794-2798, June 1992.
“Water bath heater,” http://www.natcogroup.com/, 2006.
N. Mahalik, Fieldbus Technology. Springer, 2003,

“The foxboro A% automation system,” http://www.foxboro.com/, 2006.

76

Appendix 1

PLC-based implementation of the pilot flame con-

troller

77

Inpwt

111G

RUNG1
xro 1-10‘
2 ~—(H
11001.0UT0 xj_Op Lo 110
B JE— On
a0
Lo
11001 QUTD 2100 H 140
3 H
110}
—CH
110G OuTD r10f
B ()
1-104
SO
110
L
14061 OUT1 1 0p on 110}
FIE— JE nla
L(1104
o8
19061 OUTE Ve 110
FE— JE O
1-10G1 4
o4
1-10Y
LG
1-10G1.0UT1 P18 +19f
-3 <
11041

I~
1-10%
TR —Cu)

11051 OUT2S TN ———
[~3 F——smeee———meued Timer ON-Delay }—GD)—
Em’ann T‘;: @)

Preset]
PrE Accum)]

110C1 OUT2 T™ILON 1-10C1.0U8
—3 F~——F— O
1100
0%
11061
Lo
1AGG QU2 1-10C1.0U8
[O
41001.0
o4
11021
2O

{en]-

78

£1.0UT0

CLOUTY

L1.OVTO

£1.0UTY

C1.OUT0

frLouTo

£1.0UT2?

F1.0UT0

£1.0UT0

£1.0UTY

FL.OUTY

Tz

£1.0UTY

F1L.OuT2

F1.0UTY

A

our2s

oury

2

jout2

110Gt

stale_0 @
ouTo

wow_1
ouT1 ®

a2
ourz ®

== Y
ouTa 8-’

T a4
outq P

== Y
outs | |, @

= i
ouTe @

= a7
ouT? - -
outs Q-

o f
ouTe @

- walwl0
ouTie ®
ouTH siatat1
panpem sialo_12
ourns[L ""'e -9
ouTH slata_14
oUT'S wialo_16
oUT16 "'8 -
out1? il
outis|[| ”"‘8 -8

= sae 19
ouTte -

=H s
ouT20 =)

=]
oraf | o |

PP
ouT22

— am
oz 1o —

= BMS
ouT24

5 g
ourzs| | @

ns
ouTZe - ®—
== S]

outzr ®
outzs[|-
outze| |
ouTse| |-
aura1| |

coM |

RUNG2

1-10C1.0UT3 X_Op_Off 1-10¢4
-3 —3E Ou
1-100144
M
110G1.0UT3 10019
-3 E— O
Hroct.otr
o
141014
s —CH

1-10G1.0UT26 = TM ey
] E— Timer ON-Delay —(en)~{

Timer T4:2
Time Basa 18 —@u)-J

Presst 10
m

140C1.OUT4 TW2DN 110f
- B 3E o
110f
—CH
1440]
—(
1-10C1.0UT4 XJ.Op_Of 1410)
3 E— 1E— O
1410
-
140C1.QUT4 1410)
E ()
110y
O
119
O
11061.0UT5 1o
3 E— G
140
-
1440}
e —()
140CTOUTE TM2DN 1410]
r] E 1E (LD
1-10)
-
110§
0
140C1 OUTE xJ_0p_OF 149}
3 —3E -
110
-
1-10CL.OUT2E 1109
-3E- —~H

ouTO

uT3

uTa

uT3

[1.0UTS

£1.0UT126

£1.00T4

£1.0UT?

£1.0UT4

£1,0UTe

£1.0uT2?

1.0074

£1.0uT8

£1.0UT23

A.0UTE

£1.00T6

£A.0UT28

£1.0UT6

£1.0UT10

£1.0uTe

£1.00729

79

e}

RUNG3

1-10C1.0UT8

-3

1-10L1.0UT8

+10C1.0UT?

=1

r"lgl'::
2

O

1-10£1.0UT21
(>
1-1001.00T6
L

1-10R1.0UTS

1-10C1.0UT7

3t

S

O
1-1001.0UT26
-
140510077
Ly
1-10p1.0UTO

(L

1-10C1.0UT8

-3¢

1-10P1.0UT28
-
1+10L1.0UT7
-

1-10L1.0UTO

+10C1.0UTe

—IE-

TMZ.ON
e

O
1-10(1.0UT24
-
100 1.0UT8
o

1-10p1.0UTE

1-10C1.0UTY

=1

40

2
z
g
9

-

1-10£1.0UT28
SO
1-1001.0UT9
20

1-10L1.0UT10

1-10C1.0UTR

—E

(=)
T

(L
1-10£1.0UT8
O

1-10£4.0UT11

1-10G1.0UT10

—3E—

(L

1-10p1.0UT22
(O
1-1081.0UTo
—C)

1-1001.0UTS

80

—{ENaH-

(O

1-1001.0UT26
—C—
1-10£1.0UT10

o

RUNG4

1-10G1.0UT10

30

1-90)

1-1061.0UT1H

PF.Y
14IC1IN14

O

kale
G-
1-108
G-

110}

3E-

1-10C4.0UTH

=l

S f ol
JL

jav
r"-| -Ei

(-
119}

-

L5

1-10G1.0UT11
ol

Xx_LOp_on

O

SO

A

o8

[

1-1001.0UTH

a4

PF_N
111C1N1G

1410
LG

109

36

1-1001.0UT12

-

JE
40

o
110
208
1)
O
19

o

1-10G1.0UT1I2

—3E

TM2.DN
n |f

110y

Lo

1-10C1.0UT12

=R

{0
-G

2O

—3E

1-10C1.0UT1S

—3E

X 1 Op_Of

O

o

-

O

a0

o

81

[Ens}-

P out?

C1.0uT27

4.QUT10

£1.0UT12

F1.ouT22

£1.0UT11

1-10E1.0UT14

TOLIOUT28

1-10E1.0UT11

1+10L1.0UT 16

£1.0UT11

£1.0UT13

£1.0UT22

F1.0UT11

[1.0UTI0

[1.0UT12

1100 OUTS
1-4061.0UT26
1-10C1.0UT12
1-IOR1.OUT16
1-10.0UT26.
1-10L1.0UT12
110L1.0UT10

1-|on oums

RUNGS

1-10C1.0UT13

TM2.DN

1-104

(L

3¢

§-10C1.0UT13

s

1-10f
G-
110§

SO

110

el

1-10C1.0UT14

1-1DG1.0UTH4
E

PF_N
1-1IC1.N1S

Oy

110
Y
1-10]
L

1-10|

B3

PF_Y
1-1G1IN14

O

110
o
1419
L

1-10|

E

1.40C1.0UT16

JE
P

FFN

1-11C1INIS

(L.
1-10]
o
1-9Q)
SG

1-104

3

1-10C1.0UT5

3 E

e o
o0

PRY
1-1IC1.INI4

-

110§
(o~
1104
o

1-10}

1-10C1.00T18
-

JE
AN

o

1104
G
1-101
SO

1-10]

[

1.10C1.0UT18

—3E-

xJj_Op_Off

(L0~

110}
>~
1-10]
o

1-104

ol
A0

L
110

G

E1.0UTs
b1.0uT2e
£1.0UT13
E1.0UTI?
b1.0uT2t
£1.0UT13
b1.ouTs

’:wum
E1.0uT14
L1.0UTS

b1.0uT22
£1.00T14
£1.0UT10
L1.out22
£1.0UT15
p1.0UT10
r1.ouT22
[1.0UT15
[.ouTe
£1.0UT28
B1.0UT1S
L1.0UT18

L1.oUT18

82

{END}-

RUNGE

1+1001.0UT1?

+10C1.0UTIT

1-10C1.0UT1?

—IE-

3~ 3E

TM2.ON

118

x1.0p O

| S [

Oy

110)
-]
110
L

1104

O
1104
Le>-

110

1+-10C1 OUT18

)
110
ala

1-108

Lo

11

—E-

+1081.0UT10

+10C1.0UT10

1-10C1.0UT1B

—3E

PEN
1-1IC1INIS
—

o
10
SO

1100

SO

C

™2 DN

e

(L

-
118
2O

118

O

1904
(e
109
O
110f

+10C1.0UTHS

1-1IC1INt4

(L
1104
L]

110

—IE-

+10C1.0UT20
F-

e [
J T

TM2.DN

a2 On

-
1-10¢
2O

1108

C

a0

o
14104
oY

110

83

fengH

o

p1.ouT2s

(1.0UTT

b1.0UT10

£1.OUTYT

C1.OUTIS

L1.0UT22

£1.0UT17

£1.0UTe

L1.0uT27

£4.0UT18

1-10p1.

11014

$1.0UT19

C1.0UT14

L1.0UT8

.0UTIS

P1.0UT16

C1LOUTI9

f1.ouT2

110814

£1OUT19

[1.0UTe

£1.0UT26

(1.0UT20

Appendix 11

PLC-based implementation of the main flame con-

troller

84

[

—— o]

e e

[—————t o

[

———t

e I

o—tp

INS

INT

N9

IN10

INt1

IN12

IN13

IN14

T

IN1s

IN18

IN17

iN18

IN'9

B

N21

IN24

I

IN25

IN26

i

IN27

IN28

i

IN31

COM

RUNGH

1-1C1LIN

1-10C1.0UT0

_.3 E.__
1-1001 QUTe

3

$-40C2.0UT10

—

1AOC1.OUTD

1-1001.0UT

1-10C1.0UT0

110C10UTY

{L.
-0
Lo

—IE

14061 UTY

110CHQUTIS

+10CROUT14

1410G1.0LT0

1-40c1.0uTd

X
NS
-

&

1-1001 QUTe
| -

110030V

1+10G1.0UT0

+1CC1.0UT0

O

puTI2

R5S

L

11061.0UTY

1-10C1.OUTY

1-10CA0UTI0

140q8 ouT

e

14061 QUT

wle

1-1031.0UT Y

1-10C1.QUTY

-]

S8

11061 QUT1

—3E

‘-IOJ oum3

1-10CAOUT4

1I0G.0UTL

1+A0CILOUTY

o
-G
o8

e~

1-410CHOUTI1

|-|octog‘n)_

o8
-G

puT12

G-

fenc}

85

1-10C1
== siate 0 @
OUTO
- shate_1
Qurt __®___
stain 2
outz | | e
= I Y]
ouTs —-®—-1
= atnw_é
ouT4 _,_®_
|t 8
outs [] o
]
ouTs ot
statn 7
our [} ——f
= stk
ouTe ®
=] e
ouTe - ®—
== alalal0
OuTID ®
== elatelt
QU
siale_12
ouT2
== slata_13
ouT13 ®
=~ state_14
ouT14
— state_15
ouTia

slalo_t8

| @ ——
== aote_18
ouTiB
== slale_19
ouTI®
siei»_20
ouT20 —@—
= stete_21
out2H -2
== slele 22
ouT22 - —
=] sl 28
ouT2y - —
siane_24
out24[| 2
sinte_25
ouTes
iats_26
ouTtzs | o
ntate_27
ouTer ®
= e 2
ouUT28 ___@___
=1 s 2
ouT28
=] lsle 30
oUTI0 ___@___
flabe_31
ouUT3 ®
COM i

1-10C2
v
~ e @
ouTo -
= sah_33
oum o
W
="
ouT2
n_38
ouT3
sioio_36
ouT4 R
A d
= sy
ouT6 ®
= sisls,
ouTe & -»
satn_39
ouT? &\
&
= stal 40
ouTe I S
—=]
ouTs ®]
= PFS
ouT10 o
S
= AHI
ouT1H &
— Alo
QuT12 & |
FF_Hi
QuT13
FF Lo
ouT14 & |
B
OuTis ®
= WS
ouTe PN
— FGT1
ouTYy &
A4
= WeT.
ouT18 o
Y4
" Ts
ouT1e
== 8oz
ouTz0 @ g
=] Eus
outzt ®
out2e| |
outas| L
ourae] |
ouTzs j_
outzs| |
ourzr[L
ouTzs
outze| 1
ourso| |
outa1| |
COM

86

RUNG2
110C1.0UT X1 PN +10C1,0UT!
] ~—————3 O
1-10G30UT 14
G
1-1060.OUT!
o
110G1.0UT2 11ICHIND 1-1acr.ouTa
—IE- —3E— O8
110p10UT2
-
1110C1.0UT2 1+-11C1IN2 1-1001.0UT4
- 13— O
11ok1.0uT2
L
1-10C1.0UT2 1-HCHINY t-10p1.0uTa
H O
1-10f1.0uT2
L
1-10C1L.0UT3 11CHINY 10R1.0uT
B O
1110F1.0UT3
Bl
110C1.0UTs 1.1001.0UTs
E—)
1-10f2.00T11
o
1-1001.0UT3
@)~
110G1.0UT4 101G INY 1-1001.0UT0
B~ o
1-10£1.0UT4
-
110CLOUT4 10 1.OUTE
E— O
11052.0UT12
O
1110B1.0UT4
L
+10G1.0UTS 1-1IG1INY 11001.0uT8
—I1E— JE— O
1-1CELOUTS
a0
110C1.0UTE 110b1.0uT7
— F— (L
1-5082.0UT1A
SO
1-10£1.0UT5
SO
1-10C1.0UTS 1-1C1INY 1-10p1.0UTH
| (O
1-10E1.0UTS
-

RUNG3

1+10G1.0UTE

-10E4.0UTS

-

1-90G1.0UT? 1-1CLINY

O

1-10£2.0UT1S
oy
1-10L1.0UT8
L)

1-1081.0UT14

I3

1-10C1.0UT7
Fm

On
110L1.0UT?
Jo

1-10L1.0UT10

C

1-10C1.0UT8

O

1-1052.0UT13
o
11001.0UT7
G-

1106 1.0UTO

-

1-10GC1.OUTH -1IC1INY

L
1-1002.0UT11
]
1-1062.0uT12
ou
1-10p1.0UT8
-

1-10p1.0UT1

—3E 3E

1-10C1.0UTS

W
1-10C1.0UTe
-

1-1001.0UT12

[

1-10G1.0UT10 1-1IG1INY

O
HJVZOUT 14
SO
1-1001.0UTS
oY

1-10£1.0UT18

—3E- I

1-10C1,0UTI0

I E-

o
1-10C1.0UT10
G-

1-10L1.0UT14

1-10C1.0UTH

30

O
10200718

—CO
1-10B1.0UT10
Lo

1-1081.0UT8.

87

(L
+10L2.00T15
-

1-1081.0UT11

(-

RUNG4

1-10C1.0UT12

1-10G1.OUT12
.

1-HIC1INY

1-1001.0UT13

B3

(L

110k1.0uT12
-
1-1001,0UT18

-

c

1-10C1 OUT18

1-1002.0UT16
O
1-10£1.0UT12
RO

1-10k1.00T11

—E-

1-10C1.0UTH4

1+10C1.0UT4

1-10C1.0UT14

1-90G1.0UTY S

—3E

I-1ICHINt

O

11052.0UT19
-]
110E2.0UT14
>
11051.0UT13
L]

1-10L1.0UT18

HE——E

1-1IC1INE

| —— A

(L

110p1.0uT1s
e
110010010

O

1-41C1LINT

3 3~

11002 OUTIR
2O
1-10(1.0UT14
-

110L1.0UT1?

+AIC1INY

RN

(L

+1052.0uT16
]
1-10p1.0UT14
L

H1on1.0uTe

1-10C1 OUT1E

.ﬁ

1-10C1.0UTS

1-IC1.INB
F

O
1-10F1.0UT15
L

1-10£1.0UT19

C

1UCLINT

O
1-1052.0uT18
Qv

1-10k1.0uT1s

~(0H

1-1051.0UT17

=l:

n
oL

88

el

(-
1-10£2.0UT18
(Do

1-1001.0UTHS

o8

RUNG5

1+10C1.0UT16 1-11C1.INY

1-1001.0UT13

3

1-10C1.0UT18

-

On
1-10p1.0UTI6
L]

1-10p1.0UT20

O

1-10C1.0UTH7

1-10£2.0UT17
"—(L)'-
1-100:1,0UT18

e

1-10C1.0UT21

—3E

1-10C1.0UT18 1-1IC1.ING
_3 L —] L
L J L

A

1-10£°2.0UT20
-
1+-1001.0UT17
-

1-1011.0UT13

1-10C1.0UT18 1-1IC1.IN7

o

1-10£2,0UT18
G-
1-10£1.0UT18

G

1-10£1.0UT13

HE——3F

1-10C1.0UT19 1-11C1INT

| I | A

QO

1-10p2.0UT1S
)
1-1001.0UT18
G-

1+-1001.0UT13

(0

1-10C1.0UT19

1-10[1.0UT19
SO

1-10p1.0UT22

—3E

1-1081.0UT20 1-11C1.IN1

e

O
1-10£2.0UT17
o
1-10£1.0UTI
L
1-10£1.0UT24

O

1-10£1.0UT20

—C

89

{END}

RUNG8

1-10C1.0UT20

1-11C1.IN8

110p1.0UT23

e

1-10C1.0UT20

ar

1-11G1IN9

O
1-10L2.0UTIT
]
1-10p1.0UTZC
Loy

+10L1.0UTIT

—3E

1-10C1.0UT21

—E

qAE—
pan

W
F10L2.0um?
G
1-10p1.QUT20
LA

1+10L1.0UT25

1-10G1.0UT22

-

1-11C1.AN1

[
a0

H

1-10[F2.0UT21
SO
1-1001.0UTH
S0

1-10L1.00T24

(-

1-10C1.0UT22

1-1061.0uT22

1-1IC1,IN8

1-10p1.0UT22
noN

1-10£1.0UT26

33—

111G 1IN

O

1-10F2.0UT17
-
1-1001.0uT22

o

-1op1.0uTtY

—E-

1-10C1.0UT23

1 F—
.

11IC1INY

O
1-10R2.0UT17
mOn
1opouTze
=

1-10E1.0UT13

|

1-10C1.0UT23

—3E

o
40

W
1-10p1.0UT23
O

1-10£1.0UT27

.
(L
1-40F2.0UT18

(o

1-10£1.0UT23
L(u)—-

90

{END}-

RUNG?

1-10C1.0UT24
o

1-1C1LING

1-10)

|

s

1AIC1 NS

(L
1109

-G

Lo

1-10G1.0UT24
H =

1-10C1.0UTZ6
[«

40

O
208

L

C

1-10C1.0UTZE

1-1CT.NY

o
208
LG~
LG

=

1-10C4.0UT26
£

— [—
40

£

1-10C1.0UT2Y

1-11C1. N1

L

FE—

1-10C1.0UTY

1-10G4,0UT27
L.

—
a0

1-1C1INTO

B3

QL
L

(-

1-IG1LINMY
F—

-

—iE

1-1081.0UT28

dU

W
G

L

30—

alu

91

r.ouTi3

F2.0uUT7

1-1001.0UT24
1-1001.0UTI3
1-10L2.0UTI7?
I0E1.OUT24
110B1.0UT28
-1OL2.OUTIH
110E2.00TIZ
1-10B1.0UT28
110E1L.OUTI
(L
10L1.0UTZ6
v
10L1.0UT28
(
(-
1-1002.0UT18
(A
1-1961.0UT26
1-1001.0UT3
1I0ELOUTZ?
-10R1L0UTI
11082.0UTI8
4-10E1.0UT27
U
TIORLOUTI?
1-3002.0UT18
105 1.0UT?
1-1001.0UT0
+1OLZOUTIZ
G
1-1052.0UT14
B
+-10L1.0UT28

208
{eni-

RUNGS

1-10C1.0uT2D 141C1IN1
_a F— —~—]F—
C A0

1108

1-10G1.0UT20 1-11G1.IN10

o
1109
-

1104

E LT
E i

1.10C1.0UT2% 1-1IC1LINTY

o

110y
-
110y
L

1108

1 E— —3E

1+-1001.0UTD 1-11C4.IN2

o

119
-
110
L

1199

B3

1-10C1.0UTS0 1=41G1.IN1
[

(0
110
RO

110

AE
19 S L

1-10CT.OUTSD

O

SOy

3

1-10C2.0UT18
Frm

C

1-1001.0UTH 1-1IG1INTD

O

2oy

L6
o

—E —3E

1-10C1.0UTH 1-1IC1INTY
F—

o
SO
SO

C

1-10C2.0UT0 1-1CH.iNt

\L)—1

SO¥
qON

—1E 1E

1-10C2.,0UTD 1-11C1.IN3
E

o

—(

L

O

L

£1.0UTH

L1.0uT28

p2.ouTo

£2.0UT13

£1.ouT28

£1.OUTHT

pa.ouTis

C1L.OUT29

2.0uUT!

alelif]

GLOUT1y

+10E1.0UTR
110p2.0UT2

gj:mum
—(L

1-10£1.0UTH

1-40R1.0UT13
1-10p2.0UT18
140B1.0UT3
+10E1.0UT13
1-4002.0UT18
1-1001.0UTH
1-1q L1.ouTia
1-10p2.0UTD

1-40p2.0uTs

11002,

92

{eno}-

RUNGS
1-40C2.0UT0 110£2,00T4
— E O
1-10£2.0UT19
—(L 0
1-10f2.0uT0
O
1.10C2.0UT18 ™
E Timer ON-Delay —(EN)—
Timer T4:2
Time Base 18 —(on)—
Praset 20
1-10G2.0UT1 1-1ICLINY 1-10£1.0UT13
—3E —E -
1-10£2.0UT1
)~
1-1062.0UTY 1-10£2.0UT5
—3E— o
110f2.0UT12
-
1-10f2.0UT11
)
1-10{52.0UT1
O
1-10C2.0UT2 T™M1.ON +101.0UT10
— (L
1-10[2.0UT19
)
1-10f2.0UT2
@~
110C2.0UT2 1-4IC1INY 1-10£2.0UT6
— F——————3F— O
110f2.0UT2
208
110020072 1-1ICLINZ 1-10f2.0UT7
L -
1-10f2.0UT2
)~
140G2.0UT3 1-11C1.IN1 1+10£1.0UT13
E— 1E On
1-10£2.0UT3
)

93

[Eno}—

RUNG1¢

1-10C2.0UTY

30

1410

1-1CC2.0UT4

1-10C2.0UT4

-

[MR [N e

1-10C2.0UT19

(L
-
140
-
110}

o

L2.0UT8

£2.0UT11

F2.0UT12

2.0UTY

TM2.ON 1-10p1.0UT12

o8
1-10
2O

1 NC1,IN3 1-10

1-10C2.0UT4
F—

JE— W
1-10]
()

1-1IG1INT 1408

C

1-10C2.0UTs

e

IE oS
1101
-

1-1C1.INY 1-19]

1-10C2.0UTS

JE— (L
1-10
e

1-10)

B

1-10C2.0UTe
F—

(L

1-10
o
1-101
-
140
L

1104

T2
K

L

1-10C2.QUTE

3 E—

i

W

110)
-
1-10]
o

110

(L
110
.

1-104

nos

£2.0UT4

£2.0uTe

L2074

22.0UT6

£2.0UT4

C1.0UT13

£2.0076

£1.OUT12

L2.0UT14

C2.0UT13

[2.0UTH

£1.0UT13

£2.0UT18

p2.0UTe

£1.0UT13

£2.0UT19

£2.0UTo

—Eno}H

94

RUNG11

1-10G2.0UT7

T-1IC1LINT

1-10L2.0UT6

—1E

1-10C2.0UT?

JLE
dE

TM1DN

O

-

1108

—3E

1+10G2.0UT7

—3E

JL

—(

110

L

(L

1-10C2.0UT8

—3E

H1IC1INY

1-10

-

110
L5

1-10C2.0UT8

JLE
e

G
1-101
20

110

-

1-10C2.0UT9
ol

tﬁg

D

D

110

o

140C2.0UTY

11IG1ING
JE—
J L

—(0

SO
110
S0

110

1-10C2.0UT8

{1
1410|

a0

3

O

SO
1-10]

()

{END]

95

SO

+-10L2.0UT3

1-10£2.0U77

12.GUT1

1-10p2.0UT19

2.0UT?

1-10£2.0UT1

£2.0UT19

1-10£1.0UT13

L20UT8

C1.0UT10

1-1002.0UT13
—(L)-—

1-10£2.0UT14

£2.0U78

1-10062.0UT10

£2.0UTH

[2.0UTS

£2.0UTe

1-1002.0UT3

+10[2.0UT19

p2.ouTe

Appendix m

PLC-based implementation of the complete boiler

controller

96

i

e

b

b

¥

B

b

LRI EI LIRS

5

b

| -3 4]

i

&

§ %!

i®

z

9
s

E QD‘E ®

L]

‘E of®

4

Iole

b

8

[JX-I1¥S

*
H

auTe

e

GD'! “'2 19£ 493 !D£ ®

ouTs

58§

U0

97

ourst

o1 +u10ft ok
JE <
0
1161 o Og 11061 11062
TOGIUT® WIGen 1001 Uy @
Ic Ik 0 suie 0
Ei3 Ak N oum 'y auma
~ ®
L 1101080 -t
N O oun Y ot
110C1.0UTY (R0 +CP1LOUTY vl 2 ouTa
L IE 0 a2 &
-_1
B s & auty
[- %
-t
14000 00T aepon somomn [oume @ o
™ [ek, W -
..
outs 2 ouTts
wa HOGouTY ®
ala -t
e ouTs
L 314081 UTD bl
= aut? Py oumr
N 110C1.0uT0 AE 10p1.00TD i
- - N e
v E 3E D outs 2 ouTe
140E.0UT1 ey
pe WHui o r aum
P ik ouT0 it ouTI0
w0 LG i @
statett
sioproum [ourn 2 ouTtt
it Lo 2
” wae 12 "
12 11oe100T KLFFC voprosm | OUT & ouTt
E O 1
pevn o 2 oute
110ROUTIS ;m M
e ouTH 7 ouT
[2
sagcaoumyr
sine_15
0 5 - ol
w1e e oum & alid
11081.00T0 w_1h
o LG ouTte Py ouTIe
-1
14001 00T e ropam [T o v
wr 3 O @
Qurie o Gurte
e _(::')"_“W" ®
L 2L
auTe 2 auTre
[11061 o ®
Ogl -
0 ouTe 2 vt
L 11081 UTY G 11001 UTe I
E JE— (L o2 sote_24 a2t
w2t 1-1081. 00T e
Lid
v ourz ouTzz
w2 2 ®
1-10C1.04T1 1-HC1LINGR 1-100AQUT1 wnbe_2%
e O] ouray ® ouT2s
+-10p1.0uT2 wate_24
auTes 2 outa
iN2e L a4
w30
woproun | ouTs . oUTH
N2 L) —
preey aoasoun e iz e onm
3k ada a3t
4 outzr 2 ouTr
w27 -G hd
-
ouTa o oute
28 19061 UTY T 10b1.00my ——
IE 0+ oz & ouTz
W2 ®
L 10800t wo %
s -G T 2 ouT
vofsouny | ouray bl T
Wyt LGod- o
coM ? com
com
| P |
L i |

GD.E

>

=
'm

2% o8 *F ©

.

RUNG2

1-10C1 T2

TMLDN

1-10C1.04TY

O

1-10G1.uT2

-3~

3

HORIOUT
-G
+1001 . CuTe
208
w1001 QuUT2

-

1-10C1.0UTY
| v

UGN

1-1CEOUTIE

-
L(1-)12 br.ouTz

1-10B1.0UTD

|
E 3

1-30C1.0UTY
F—

r
£

On
HOfL.uT3

SO

1-10ca0ut

C

41-4003.0UT3

1-40C1.00T

HE—3

Timer
Time Base
Presal

m

TMZON

TM
Timer QN-Delay H
Ta2
18
A0

O
~10C1.0YT4
e

11051 ouTs

1400C1.0UT4
| wi

1-IC1LINY

E

1-40C1.0UT4

-

449QT10UTE

1~

1104

110E1.0VTS
()

+10E3AUT2S

4-10G1.0UTE
[b
el

TMZ.DN

(-

+10f11.QUTS
o
+1001GUTS
L

+1061.QUTE

r c

1-$0C1.0UTE

—

1-1IC1INE

>

+1OLJOUTS
208
+10p1L.ouTs
L]
+10R1.0UTI0
-

+10p1.OUTE

98

fEn—

99

[END}-

RUNG3
HIOTIOVTT oot
— ~GH
+10G1.04TB +ADBLOUT?
B~ Oy
1-1081.0UTY
L
1-1001.0UTS
L@+
+RCLOVTT TM2ON 1-1051.0UTS
= 1E Og
110830073
G0
1-1op1.0UT7
L
1001 0UTT 14081.0U™
— Sy
1-1081.0UT?
G-
1-10C3.0UTS
L
1+30C1.0UTE 1-10LL0UTX
E O
1-10e1.0Um
(L
1-10p1.0UT
L
+10C1OUTY TM2DN 1-1081.0UTS
E— IE O
1-10£3.0um
G-
1-10G1.0uTa
=)
+10C1.0UT8 1AGLINY 1-10£1.0UT10
B —3E (o
1-1001.0UTS
O
+10G1 0UTR 1-10E3.0UT9
[Oy
19061, 0UTIS
G
1-40EH.0UTy
Lo
HIOCIOUTIO TMDN 1-4051.0UTS
- JE O
110D3.0UT3
-G
1906 UTI
SO
+1O0G1.0UTI0 1-op1.0017
3 W
1-10£2.0Urs
-G
1-1021.0UT10
SO
105106 1111 s10br.auT2
- O
1-1081.0UT1
-
1-1083.0UT
LG

RUNGA

+10G1.0UT11 TM2.DN
I

1-10p1.0UTH4

—IE

+4QCH OUTH 11C1INY

o3

1-10L3.0UTY
SO
11021001
SOy

1-4001.0UT15

—E~———-F

FC.0uT1 1-1ICTING

|

O

1-4001.0UTH
=0
1-10E1.0u13

()

+10C1.0UTI2 14IGHINT
I E— IE
L Ea

110L1.0UTI
-

1-40L3.0UTS

1-10F1.0UTI0

+10¢1.0UT1Z T™MZDN
3 _IE
1 40

O
1op1.oUTIZ
()

1-1DF1.0UT5

+10C1,0UTI2

=

O

1-1003.0UTR
(-
1-10p1.0UT2
e

11001.0UT18

401 OUTIS UC1INT

I E———3E

o

1-1003.0UTd
20
1-1001.0UT12
SO

+10p1.0UT10

+10CH QUT1S TW2DN
— 8 -

~H
1-1084.0UT1Y
L

1.1061.0UTS

19 4L

+OoCc1.ouTIe

-

+10R30UTY
(-
1-10£1.0UT13
-

1-10R1.0UTI7

e

+1QG1.0UTI4 1-11G1ING

O

1oks.ouT
<
1110b1.00T13
L

1-1001.0UT6

3

O

110p8.0UT9
L
140010UTI

L

100

bl

RUNGS

1ADGTLQUT14 1.41C1.INS

-HI0L1 OUTS

—3F JE

1-10C1.QUT15 1-1IC1.IN¢
F—

-

+1083.0UTE
G-
-1081.00TH4
-

1-10L1.0UT10

|

1-10C1.0UT16 111C1.IN6

Og

190L3.0UTS
-
141081 0UT1S
Lo

1-1Q01.0UT10

HE—F

1-10C1.0UT16 11IC1LINY

(L

140§3.0UTe
G-
110k1.0uT1s
Lo

1-1011.0UT18

—3E— _31.

1-1DC1.QUT18 1ICINZ

W
1-40L1.0UT16
SO

1-1001.0UT20

33

TOCILOUTIE +ICLING

3 E———3E

()
1-10b1.0UT18
Loy-

1-1q31 OUT1e

110G1.QUT1? 1-1G1LINY

O
1-|(JP1 OUT16
o

1-1081.0UTID

—3E 3t

1-10C1.QUTH? T™MZDN
| i

o
+1001.0UTY
qox

1-10L1.0UTS

1=

110C1.0UTI?

=l

O

141008.0UTS
()
1101 .0UTI7
RO

1-1061.0uT2

110C1.0UT18
F

Oy

1-0bs.0uTe
So
r0f1 00Ty
G

1-1081.0UT0

C

O

140Fs.0UTs
_C\j)T
1-10p1.0UTI8

RO

101

{eno]-

RUNGG

1-10C1.0UT19 AICHING

1-10£1.0UT18

HE—3E-

1-10G1.QUT18

O

-1Op1.OUT1O

-

1-1001.0UT22

e

1-10C1.0UT20 11C1.INY

1-10f

1-10f

A3

1-10C1. QUT2D
| mi—

1-10f

L

1-10Ct.0UT21 1-1C1LIN
—

1-10f

i

1-10C1 . QUT21 TM2DN

1-10f

1-10

— JE

1-10C1.0UT21 1-1IGLINS

1-10f

1-10

3

1-10C1.0UT21 1-11C1.IN4

G-
1-10i

qox

SE———3E

1-10G1.0UT22 1-1C1INE
F

(0

1-10]

1-10|

JE
|5 €

O
110

o

102

(0

SO
1-10£1.0UT 19

G-
G

110p1.00T20
L
O
ey
110010020
>

1-10E1.0UT1E
(L
>
O
-

+-10pt.OUT2!

L

O

110£3.0UTe

L

[ens}-

L3 OUTH

C1.0oUT18

£1.0UT23

P3.OUT13

1.0UT21

C1.OUT 14

£3.0UT3

C1.0UT24

£1.0UT21

1-10p1.0UT12

1-10p3.0UTe

o

£1.0UT21

aReliy]

Er.outzz

RUNG7

1-10C1.0UT22
E

1-1JC|‘DUTZE

C

1.10C1.QUT23

1HGLINY

o

1-10F3.0UT19
-
1-10L1.0UT22
qox

10p1 OUT28

I

1-10C1.oUT23
—

- Fee
-0

(O

1-1001.0uT2Y
Lo
1-1081.0UT27

-

L

1-10C1.0uT24

—3IE

T

1-10£3.0UT19
< LH
110E1.0UT2

L

1-10E1.0UTE

1-10C1.0UT26

—

[RE)

HAIC1IN

o
1-10L3.0UT8
-G

1100 1.0UT24

qo¥

1-10£1.0UT29

1-10C1.0UT2S

AL

-
1IDE1.0UT26
o

1-10G1 OUT28

—3E

1-10C1.0UT26
In

(L
+-10£3.0UT1S
o
+-10£1.0UT258
—(u)—f

149081.0UTIE

L

+10G1.0uUT?

111G INt

o
1-10E3.0UTN"
G
1-10E3.0UT13
G
1+10£1.0UT28
LT

1-10L1.0UT20

=l

1-10C1.QUT2?

-1

40

Og
1-10£1.0UT27
—Cu

1-1081.0UT30

(0

1103 OUTY7
(0
-10k1.0uv2Y

O

EEND]—J

103

RUNGS

110C1.0UTz28 1-1ICt.N1

|-1&:1.0UTG1

—1E— JE-

110C1.0UT28

(0
1-10p1.0UT28
O

1+1002.0UTD

—3E

110C1.0UT29

(L0

1-10p8.0UT21
.y
1-1051.0UT28
LG

1-10£1.0UT28

—3IE

110C1.0UTS0 111G

O
1-10E3.0UTI9
O
1-1DB10UT29
208

1-10P1.0UT31

HE— 1

1-10C1.0UT30

—E

W
1-10P1.0UTI0
-

11 DE2.0UT

140¢1.0UT91

—3E-

W

1-10p3.0UT21
LT
1-10P1.0UTID
2O

1-10C1.0UT2e

1-10G2.0UTD 1-1IG1L.IN1

I F——3

(L

1-1OE3.0UTIS
R
1-1003.0UT17
]
1-1001.0UT34
L]
1-1062.0UT4

(Lo

1-10C2.0UT0 1-1IC1.INT

+1DE2.0UTC
()

1-10£2.0UT2

3B 1

1-10C2.0UT0 1-11C1.ING

(L
1= q'aomm

SO

1-10E2.0UTe

—(

1-40£:2.0UT3

3

(L
1-10P3.0UT21
(D
1-10L20UT0

L

104

[ens

RUNGY

1-10C2.0UT(+1CLINE
3 [JF
E EA™

+10

1-10Cc2.0UT1 1-1C1LINT

ip———1E-

1-10C2.0UT 1-1CLINE.

3~

1-10C2.0UT2 1-UCLINE

+10f

—E— 3k

1-1002.0UT2
[-~

410f

19

1-10C2.0UT3
F—

C

1-10C2.0UT4 1-1IC1.INE
E

SO

410

C 30

1-$0G2.0U74 1AIC1IN?

-3

=10

1-10C2.0UTS 1-IC1LNT

LN

1-10

410

1-10C2.0UT8
—

50

19

(O

+19|
-
10

O

105

fe}

(L
14002.0UT!
Lo
+1aba.ours
(L
+1ohaourz
-
110p20uTt
L
+ofz.ouTs
O
+abaouTzt

o
g

w0f1.00TS!
O
+10L2.0UT2

L

O
110f2
-
+1ok20ur2
Lo
H1op10uTs
O
+ORLOUTE

-

1-10p2.0UTS

O
1-10£3.0UT21
-G
L
+10L1.0UTH
o

+ofaour2t

SO
e
o
G

+Hop.ouTr

L2.0UT4

£2.qun

2. OUTS

E1.OuUTSH

£2.0UT4

£2.0UT4

L1.ouTH

£2.0UTS

p3.ourzs

L2.00UTh

RUNG10

1-10c2.0uTe

AICLINE

1+-10L2.0UTY

FE

1+10C2.0UTS$
—

A0

1-4IC4IN6
JE—
FAY

O
14020076

LG

{.10p2.0UTe

L

1-10C2.00UTE
F—.

(0
+1003.0UT28
-
10R2.0UTs
L]

1-10E2.0UTS

C

1-10C2.0UT7

1+0C2.0uT7

—IE-

-GN
—

(0

t-10ba.0UT28
-
t10h20UTe
Lo

1-1002.0UT8

C

141N
[

O
1-10p20uT7
-

1-fopaouTie

1+10C2.0UT7

=l

-
40

11C1INS
40

(L

1-10p3.0UT28
-
11002.00T7
L]

1-10E2.00T3

1-10C2.0uUTe

+10C2.0UTE

AHELINT
f -~

H

1100300723
2O
1-10R20UTT
(-

1-1001.0UT

(L

s

110520078
G

1I0E2.0UT11

—E

+10C2.0UT?

=13

14IC1ING

>

1A0£3.0UT25
-
110L2.0UTE
RO

110510031

1+10C2.0UTe

L0

1-1IC1.IN9

On

10f3.00728
>
t1ofzouTe
Lo

+-10p1.0UT3

T

<L

(LA
110f3.0uT28
o

1-10p2.0UTe

L

106

s

RUNG11

1-10C2.0UT10

1-1IC1.NY

1-10£1.0UTSt

6

1-10C2.0UTIH

ar

O
1-10f52.0UT10
LG~

1-10L2.0UT12

31—

1-10C2.0UT11

1-10C2.0LT11

1-11C1.NY

On

1-1003.00T25
—oH
1-10£2.0UT10
SOy

11 OF.OUTH

3

LGN

(L
11QB2OUT
o>

1.10p2.0UT13

-

1-10C2.0UT11

3L

1-11C1.IN11

Oy
1-1002.0UT26
-

1-10R2.0UT11

1-10C2.0UT3

-

1+10C2.0UT12

=l

3
ERN

t-11C1.IN1

O
1-10Ra.0UT28
G-
1-10fz.00T1
Jou

1-10p2.0UT14

110G2.0UT12

JE

1-11G1.IN1R

By

1-10£2.0UT12

1-102.0UT16

=

1-10C2.0UT12

nf el
s

1-11C1.N1Y

-
1-10£3.0UT26
-

1-1DL2.0UT12

11082.0UTS

£

1-10C2.0UT18

JE
aC

1-1iC1.INt

A
1-10L3.0UT25
(-
1-10L2.0UT12
G-

1-10£1.0UTS1

—3E

e

(L

1-10£2.0UT13

107

{Eno}—

RUNG12

F10K.0UTH3 1-HE1IN2

HOR20UTH

-
1™)

1+10Q2.0UT13

(L
L

-

t+1oc2.outu 1-HCLINTD
o —T

RO%
Timer 403 | o

£ AT

+1OC2.OUT 14 1-HC1INTY

HE——3E-

HOC2.0UTI6 1-HCLINY

o

L~

+10p2,0UT13

+Oop.QuUT1?
o
+1003.0UT27
-
+op2.0uT

Le-

+1051.0UT31
\L)"
HOpIoUT2S

-

L

+10k.00TS
L
O

HOE3OU 28

HICR20UTH

H10F2.0UTH

HOL1L.0U 31

I3

AI0C2.OUTS AG1ING

3

O

HOR2OUT 8

o

+10062.0UT8

1-10c2.0UTIS
—

E

H0G2.AUTIE 1IGLING

—IE 3k

+1OC2.0UTIE

3E-

108

W
+0L2.0U71
L
HopROUrN
W
h i =Ko Tpri)
2O
+OR2.0U™

L

o]
-G

HOELOUTH
(-
HOR2OUT
Lo
10p2.0u20
On
HOLAOU13
-
+ofa.0um
]
1of2.0um18

Lo
{EnH

RUNG13

1-40C2.0UTi7

110C2.0UT17
[

14I61INY
E

1-10p2.0uT21

L

1IG1IN2

E

110C2.0UTH7

1k
A0

TMIDN

—3E

1-10C2.QUT18

-~k

1-1ICTINY

—IE

1-10C2,0UT18

Ir
4K

—IE

1+10C2.0UT19

1-1IC1INT

—E

1-10C2.QUTI9

3

el
AE

+1IC1ING

1-10C2.QUT19

—3E

'
-k

TM3DN

1+10COVT20
full

A0

1-11CTINT

Oy
110520077
e
1-10L2.0uT2:
O
190EZ.0UTA?
e
1-1001.0UT28
O
1-10p3.0uT2?
-]
1-10L2.OUT
L
1-10B1.0uT8Y
O
1.10620UT48
Lo
1-10£20UT23
O
110L30UTH4
-]
1-10E3.0UT13
o
1-1052.0UT48
L
1-10L200T2
O
11082 0UT 19
LG
1105200124
O
If20uT e
L
11081 0TS0
-
1-10£3.0UT2?
G
+-1OR2.OUTH

-

1-1001.0UTsY

™

1+40C2.0uUT20

3

3
X

(L

On
11100200720

L

1=10C. 0730

-10C3.OfTI7
O

10C3.04715

109

Rou

-10C2.01yT20

>
feno

RUNG14

+10C2.0U129

1+0CZ.0UT21
[

TWI.ON
F—

110C1.0¢T31

o

(L.
1-1003.0U127
G-
oo

6>

+10C1.04T131

C

1+1002.0UTR

+10C2.0UT22

3 E——-3

+0C2.0UT22
.

TMI.ON
F—

L

o

6

1-10C2,04116

C

HICLINY
f ol

O

1-1o0.oury
SO¥
-10C2.04T22

Ee

1102042

€

O
10C2.01

H

1+10C2.00118

K

+0C20UT28

FICLINE

HE——3E—

\L)_

-10C).0prer

RO

10C2.0yr22

Lo

11001.04TH

1-10C2.0UT23
e

=

O
h-1oc2.00T2

S

110010yt

|

+10C2.0UT24

FE—3

110C2.0UT24

FICIINT
£

(L,

Ra%

-10C2.0YT23

R3%

1-1082.00721

19

(L,

100204124
Oy

t-1002.QuUT1a

—3JE 3

1-1062.0UT24
F.

T
.
C

2O
11ofaouTz
-]
110p2.0UT2
Lo

1-10R2.0UT18

K

O

110mourn
Lo
1-10R2.0UT24

-

110

{eno}

