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Abstract

High Performance Absorption Algorithms for Terminological Reasoning in

Description Logics

Ming Zuo

When reasoning with description logic (DL) knowledge bases (KBs) which contain
a large number of axioms, performance is the key concern in real applications. To
improve the performance, axiom absorption has been a central research issue in DL
KBs. Well-known algorithms for axiom absorption, however, still heavily depend on
the order and the format of the axioms occurring in the target KB. In addition, in
many cases, there exist some restrictions in these algorithms which prevent axioms
from being absorbed. Both the characteristics and the design of absorption algorithms
for optimal reasoning are still open problems.

In this thesis, we first seek to improve our theoretical understanding about the
axiom absorption techniques including some related techniques such as simplification
and normalization. Then we propose a criterion for the “best” absorption against
experimental experience. Based on this criterion, we develop some new algorithms to
absorb axioms in a KB to ameliorate the reasoning performance.

The experimental tests we conducted are mostly based on synthetic benchmarks
derived from common cases will occur in real KBs. The experimental evaluation

demonstrates a significant runtime improvement.
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Chapter 1

Introduction

When reasoning with description logic (DL) knowledge bases (KBs) which contain a
large number of axioms, performance is the key concern in real applications. To im-
prove the reasoning performance, many optimization algorithms and techniques are
employed by most modern reasoners such as RACER, FaCT++, and Pellet. Among
the optimization algorithms, lazy unfolding is proven to be one of the most effec-
tive [8]. However, lazy unfolding does not work well for KBs containing a significant
number of unabsorbable General Concept Inclusions (GCIs). A GCI is called unab-
sorbable if it can not be rewritten into a rule aziom. We use the term rule aziom to
represent the axioms of the form (A = C) where A € NC! and C is an arbitrary
concept, while the form (C T D) represents a GCI where C and D are arbitrary
concepts. The difference between (A4 = C) and (A C C) is that (A = C) only rep-
resents one-way reasoning “if A then C”, while (A C C) represents both “if A then
C” and “if =C then —A”. To convert a GCI axiom into a rule axiom, a technique
called absorption is employed. Although preliminary absorption algorithms have been
introduced and discussed by Horrocks & Tobies [7] and Haarslev & Moller [5], the
result of these algorithms tightly depends on the axiom order and axiom format of the

input KB. There was little concern about how to find the “best” absorption among

In this thesis, we use NC to represent the set of concept names.



many absorption choices. In addition, some restrictions in these algorithms prevent
many axioms from being absorbed. The demand of absorption algorithms for optimal
reasoning becomes critical when the KB based systems with large number of axioms
are widely developed in the fields of the Semantic Web, medical, and bio-information
applications.

In this thesis, we first study the our theoretical issues about absorption and its
related optimization techniques such as normalization and simplification. Then we
define a criterion for “best” absorption. Based on this criterion, we develop some
new absorption formula and absorption algorithms by extending the current well-
known algorithms. To evaluate the effectiveness of these newly developed absorption
techniques, we developed a prototype system and conducted some experiments. The
experimental tests we mostly used synthetic benchmarks derived from common cases
found in real KBs. At last, we identify several interesting research directions for
future work.

Before we discuss the absorption algorithms in more detail, we first present an

introduction to description logics and other preliminaries of our work.

1.1 Preliminaries

1.1.1 Knowledge Bases and Description Logics

Compared to a database system, one of the significant characteristics of a knowledge-
based system is that it has the ability to find implicit knowledge from its explicitly
represented knowledge. This ability in computer science is often called reasoning.
Consequently, there are two main topics for knowledge-based system research —
knowledge representation, i.e., the approaches to represent knowledge, and reasoning,
i.e., the approaches to derive implicit knowledge.

The approaches of representing knowledge have been developed since the 1970’s,



and are sometimes divided into two categories: logic based formalisms and non-logic
based representations. First-order logic is the typical example of a logic-based repre-
sentation. For the latter, semantic networks and frames are specialized representa-
tions. Accordingly, we use the term network-based representation structures to refer
to non-logic based approaches [1].

Logic-based approaches are more generally applicable from the very start, and they
provide a powerful and general machinery. Since first-order logic or other logic-based
representations are introduced by most computer science introductory text-books,
in the following discussion, we will mainly concentrate on introducing network-based
representation structures and its combination with logic-based knowledge representa-
tions. After that, we will introduce the origin and basic features of description logics.
In the meantime, we will also introduce some basic terminologies which are widely
used in DL and KB systems.

In network-based representation structures, the basic elements are nodes and links.
Nodes are used to represent concepts. In KB systems, a concept represents é set of
individual objects. In accordance with that, an individual of a concept is called an
instance of that concept. Links are used to represent relationships between concepts.
In addition, a concept have properties — also called attributes in some systems —
which are simply attached to the corresponding mnodes. There is a typical example
of network-based representation structures as shown in Figure 1 [11]. The entire
structure is also referred to as a terminology which indeed represents the generality
of the concepts involved. Between concepts, the link (=) is called IS-A relationship.
For example, the relationship between Mother and Female means that mothers are
females. An IS-A relationship defines a hierarchy over the concepts and provides the
basis for the inheritance of properties — i.e., when a concept is more specific than
some other concepts, it inherits the properties of the more general one. For example,

if a parent has a hasChild property and the number of its children is (> 1), then



Female

( Mother\)

Figure 1: An example of network-based representation structures

a mother should also have the hasChild property and the number of her children is
also (> 1), because Mother is more specific than Parent. A property of a concept
is also called role. A role might have what is called value restriction, denoted by the
label v/r in Figure 1 which expresses a limitation on the range of objects that can
fill that role. The value 1 in number restriction (1, NIL) denotes the lower bound
on the number of children, and the second value denotes the upper bound, and NIL
denotes infinity. In this case, the representation of Parent can be read as a parent
is a person who has at least one child, and everyone of his/her children is a Person.

A characteristic feature of network-based representation structures is the ability to
infer implicit relationships. For example, from Figure 1, if we define Woman as the
concept of Female Person, then we can infer that a mother is also a woman because
Mother is both a Female and a Person.

From a practical point of view, network-based representation structures were of-
ten considered more appealing and more effective than logic-based systems because
of their human-centered origins. However, the more complicated the relationships
established among concepts, the more difficult it becomes to give a precise charac-

terization of the kind of relationships can be computed, and how this can be done



correctly without failing to recognize some of the relationships.

In fact, network-based representation structures are not fully satisfactory because
of their lack of precise semantics [1]. In many cases, for even virtually identically
looking components, one system might behave very differently from others. As a
result, the need emerged for providing semantics to representation structures and
gaining both simple representation and efficient reasoning.

The semantics of network-based representation structures can be given by defining
a language for the elements of the structure and by providing an interpretation for
the strings that language. This motivation ultimately led to the development of

description logics and description languages.

1.1.2 The Description Language

The basic step to construct this language is to provide two disjoint alphabets of
symbols that are used to denote atomic concepts and atomic roles. Atomic concepts
are unary predicate symbols, denoting sets of individuals; and atomic roles are binary
predicate symbols, used to express relationship between concepts. To distinguish the
function of each concept in the role relationship, the concept that corresponds to the
second argument of the role is called role filler. For example, in Figure 1, Person,
Mother, Parent, Female, and Woman are atomic concepts, and hasChild is an
atomic role.

Complex descriptions can be built inductively by using set operators such as in-
tersection, union, and complement of concepts. Thus, we can describe the concept of
Person who is not a Woman as Person—-Woman, and the concept of individuals
who are Male or Female as Female Ll Male.

To emphasize the relationship to logic, intersection, union, and complement of
concepts are also referred to as concept conjunction, concept disjunction, and concept

negation, respectively.



Now let us turn our attention to the expression of role restrictions in Figure 1. Most
description languages provide (full) existential qualifications and value restrictions for
role restrictions. Based on these restrictions, we can describe the kind of concept,
such as, “persons having child” as JhasChild.Person and “individuals all of whose
children are Persons” as YhasChild.Person. Therefore, in addition to Figure 1 in
which the concept Parent is expressed by using nodes and links, we can also describe

this concept by using logic expressions. This is shown in Figure 2.

(i)Parent = Person 1 JhasChild.Person
(ii)Mother = Parent M Female
(iii)Woman = Female 1 Person

Figure 2: A DL terminology example

We call this kind of language Description Language, and the underlying logics De-
scription Logics. In description languages, the basic elements are atomic concepts
and atomic roles. Complex descriptions can be built from them inductively by using
concept constructors. To simplify our discussion, in the following part we will use the
letters A and B for atomic concepts, the letters R and S for atomic roles, and the
letters C' and D for general concept descriptions if there is no other specification.

Description languages are distinguished by the concept constructors they provide.
The most common description language is called AL (attribute language). Most of
other description languages can be seen as extensions of the AL language.

In AL, a concept is formed according to the following constructors [1]:



A (atomic concept)

T (universal/top concept)
1 (bottom concept)
-A (atomic negation)

CnD  (intersection)

VR.C (value restriction)

JR.T (limited existential quantification)
Note that in AL, negation can only be applied to atomic concepts, and the only
concept allowed in the role filler of existential quantifications is the top concept T.

More expressive languages can be obtained if we add more constructors to AL.

If the union connective is also used to construct concept such as (C U D), the AL
extension language is called ALU. If the full existential quantification is used, such
as (3R.C), then the AL extension language is called ALE. Number restrictions are
written as (> nR) (at-least restriction) and (< nR) (at-most restriction), where n
is a nonnegative integer. This extension is called the ACN language. The negation
of an arbitrary concept written as (—C), is called ALC (C for compliment). The full
extension of the AL language is called ALU][E]IN][C]. In the following discussion,
whenever we mention description language, we refer to the full extension of the AL
language. For ease of expression, we will use ALCN instead of ALUENC to represent

this description language.

1.1.3 Reasoning with Description Logics

Within a KB, the general knowledge of the problem domain is called intentional
knowledge such as the above mentioned terminology; the knowledge to the particular
problem is called extensional knowledge. For example, the restriction of “Parents
are individuals having child” is intentional knowledge. In contrast, the fact that

“Mary is a Mother” is extensional knowledge. For a system using DL language



in its KB, we also call the two parts as TBox and ABox respectively. The TBox
contains intentional knowledge in the form of a terminology (hence the term TBox,
abbreviated as 7 in the following discussions) which is built through declarations that
describe general properties of concepts. The ABox contains extensional knowledge
— also called assertional knowledge (hence the term ABox, abbreviated as A in the
following discussions) — knowledge that is specific to the domain of interest.

As we have already mentioned, reasoning is the basic feature of a knowledge-based
system. A knowledge representation system based on DL must have the capability
to perform reasoning, i.e., a knowledge representation system goes beyond expressing
concept definitions and assertions — it contains implicit knowledge that can be made
explicit through reasoning (inferences).

Before continuing our discussion, we give an example to demonstrate how inference
works for a DL KB system. Consider the example TBox 7 described in Figure 2,

and an ABox described as follows:

Mary:hasChild(Tom),
Mary:Female;
Mary:Person;

Tom:Person

Suppose we need to answer the question: Is Mary a Mother? Obviously, based
on both the TBox and ABox above, we are unable to answer this question by only
searching the explicit knowledge as we do in a database system (In a database system,
our answer is false if we fail to find an explicit answer directly). In a KB system,
however, the answer might not be correct if we do so. Please refer to Section 1.1.4.
In a knowledge-based system, we have to answer such kind of questions by inference.

First, suppose Mary is not a Mother, expressed as:

(1)Mary : ~-Mother



By considering axiom (ii) in 7, we have the following assertion by substituting

Mother with its definition:
(2)Mary : ~(Parent M Female)

The above expression can be rewritten as the following by moving negation in front

of concept names.
(3)Mary : —~Parent Ll -Female

Now, the above expression has two parts connected by a disjunction, and its semantics
can be interpreted as “either Mary is not a Parent or Mary is not a Female”. “Mary
is not a Female” conflicts with the statement “Mary is a Female” in the ABox.
Now let us consider the first part: “Mary is not a Parent”. Consider axiom (i) in 7,
we have the following assertion by replacing Parent with its definition and moving

negation only in front of concept names:
(4) Mary : -Person Ll VhasChild.—~Person

Now the assertion is comprised of two parts: the first part that states “Mary is not a
Person” conflicts with “Mary is a Person” in the ABox; the second part that states
“all of Mary’s children are not Persons” conflicts with “Tom is a child of Mary and
Tom is a Person” in the ABox. Obviously, the assumption that “Mary is not a
Mother” does not hold. Thus, we infer that “Mary is a Mother” holds.

The kind of logical inference we just discussed is called satisfiability in which we
tried to test if an individual Mary can be an instance of the concept ~-Mother. The
procedure we used to expand a concept according to a TBox is called unfolding. Other
logical inferences frequently used in a DL based KB system also include subsumption,

equivalence, and disjointness. We will discuss these inferences later in detail.



1.1.4 Closed-world versus Open-world Assumptions

It is useful to compare database systems with knowledge-base systems. The analogy
is that the schema of a database is compared to the TBox and the instance with
the actual data is compared to the ABox. However, the semantics of ABoxes differs
from the usual semantics of database instances. While a database instance represents
exactly one interpretation, namely the one where classes and relations in the schema
are interpreted by the objects and tuples in the instance, an ABox represents many
different interpretations, namely all its models. As a consequence, absence of infor-
mation in a database instance is interpreted as negative information, while absence
of information in an ABox only indicates lack of knowledge.

For example, if the only assertion about Peter is Peter:hasChild(Harry), then in
a database this is understood as a representation of the fact that Peter has only
one child, Harry. In an ABox, the assertion only expresses that, in fact, Harry is
a child of Peter. However, the ABox has several models, some in which Harry is
the only child and others in which Harry has siblings. Consequently, even if one
also knows that Harry is male, one cannot deduce that all of Peters children are
males. The only way of stating in an ABox that Harry is the only child is by doing
so explicitly, that is by adding the assertion Peter:(< 1)hasChild.Person. This
means that, while the information in a database is always understood to be complete
(the assumption of closed-world), the information in an ABox is in general viewed
as being incomplete (the assumption of open-world). The semantics of ABoxes is
therefore sometimes characterized as an “open-world” semantics, while the traditional
semantics of databases is characterized as “closed-world”.

This view has consequences for the way queries are answered. From a logical point
of view, querying in database systems means a finite look up. Since an ABox repre-
sents possibly infinitely many interpretations, namely its models, query answering is

more complex: it requires nontrivial reasoning. Thus, querying in knowledge-based

10



systems can be very complex.

To illustrate the difference between closed-world versus open-world semantics, we
will discuss the famous so-called Oedipus example, which has stimulated a number
of theoretical developments in DL research [1].

Example 1.1 According to the Oedipus story from ancient Greek mythology,
Oedipus killed his father; married his mother Iokaste; and had children with her,
among them Polyneikes. Also, Polyneikes had children, among them Thersandros.

To represent the rudimentary facts, we build the following ABox A, in Figure
3. To simplify our discussion, we use an atomic concept Patricide to represent an

individual who murdered his or her own father.

hasChild(IOKASTE, OEDIPUS) hasChild(IOKASTE, POLYNEIKES)
hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS)
Patricide(OEDIPUS) —Patricide(THERSANDROS)

Figure 3: The Oedipus ABox Ao

Suppose we now want to know from the ABox whether IOKASTE has a child that
is a Patricide and that child itself has a child who is not a Patricide. This can be

expressed as follows:
Aoel= (3hasChild.(Patricide M FhasChild.—Patricide))(IOK ASTE)

The symbol “E” denotes the entailment which means the right-hand side is a
logical consequence of the left-hand side.

By applying the closed-world assumption, we may do the following reasoning:
IOKASTE has two children: OEDIPUS and POLYNEIKES. Nothing tells us that
POLYNEIKES is a Patricide, so POLYNEIKES is not the child we are looking for.
OEDIPUS is a Patricide, and he has a child POLYNEIKES. Again, nothing tells
us that POLYNEIKES is not a Patricide. Thus OEDIPUS is not the child we are
looking for. Therefore, we give the answer that IOKASTE does not have this kind of
child.

11



However, by applying the open-world assumption, we may do reasoning as the
following: POLYNEIKES is a child of IOKASTE, and POLYNEIKES can only
be either Patricide or not a Patricide. Suppose POLYNEIKES is a Patricide,
since POLYNEIKES has a child THERSANDROS who is not a Patricide. Then
POLYNEIKES is the child we are looking for, and the answer is yes. Then suppose
that POLYNEIKES is not a Patricide. Because IOKASTE has a child OEDIPUS
who is a Patricide and OEDIPUS has child POLYNEIKES who is not a Patricide,
OEDIPUS is the child we are looking for. Again, the answer is yes.

As the above example shows, open-world assumption reasoning may require case
analysis. Therefore, inferences in knowledge-based systems are obviously more com-

plex than query processing in databases.

1.1.5 Rules

In general, the knowledge bases we considered so far consist of a TBox 7 and an
ABox A. We use K = (T, A) to denote a knowledge base.

In some DL systems, rules are also used to express knowledge as well as the
terminologies we discussed above in a TBox 7. The simplest variant of such rules
are expressions in the form of (C = D) where C and D are concepts. The meaning
of this rule is “if an individual is proven to be an instance of C, then it is also an
instance of D.” Such rules are also called triggers which are used active DB systems.

Note that rule (C = D) is not the same as the terminology (C C D). (C = D)
emphasizes only one-way reasoning “if C then D” by definition, while the terminology
(C T D) represents two way reasoning, i.e., both (C = D) and (=D = —-C).
As mentioned earlier, in the following sections, we shall use the rules to represent

absorbable axioms in a TBox to emphasize one-way reasoning.

12



Chapter 2

Description Logics

Up to now we have been working with informal DL, i.e., the person who uses it has
to know the meaning of the symbols in it. We now re-express all of the above in more
formal terms and then move to introduce formal description logic systems, i.e., the
person using the system no longer has to know the meaning of the symbols in the
language or the meaning behind any rule — the only thing communicated is the form
of the expressions and rules, and the relations between them [13]. At last, we will

introduce the automatic reasoning procedure for a formal DL based system.

2.1 The Language of Description Logics

Similarly to defining a formal language, the description logic language ALCN can be

defined as follows:

Definition 2.1 (ALCN Description Logic Language)

The ALCN description language is based on two components: alphabet and gram-
mar.

The alphabet consists of the following sets:

(i) A set of atomic concepts NC.

(ii) A set of atomic roles NR.

13



(iii) A set of punctuation symbols {(,)}

(iv) A set of connective symbols {—-,C,=,U,M, =}

(v) A set of role restriction connective symbols {V,3,(> n),(< n)} where n is a
nonnegative integer.

The grammar, which defines concept or role expressions based on NC and NR, is
given by:

(i) Each of the atomic concepts is a concept based on NC.

(it) Each of the atomic roles is a role based on NR.

(i11) If C and D are concepts based on NC, and R a role based on NR, then (—C),
(cnbD) (CubD) (CC D) (C=D) (C= D), 3ARC), (VRC), (> nR.C),
(< nR.C) are all concepts.

(iv) Nothing else is a concept or a role based on NC and NR.

Based on the above definition, it is not difficult for us to give definitions to ALCN
extension languages by modifying the alphabet or grammar building rules. For
example, if we add a new rule such as “let R and S be a role respectively, then
(STR), (SUR), (ST R) are all roles”. Thus, we have more power to express roles.
More expressive description logics can be found in [2].

Now that we have an alphabet and a grammar, we call a grammatically valid
logic expression a sentence. A sentence is also called an aziom in description logics.
A set of axioms is called a terminology or a TBox.

In the next section we will discuss the meaning of terminologies i.e., semantics
of a TBox. After that, we will discuss automatic reasoning with formal description

languages.
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2.2 Semantics of Description Logics

From a semantics point of view, a concept is interpreted as a set of individuals, while
a role is interpreted as a set of pairs of individuals. In order to define a formal
semantics of a DL language, we define an interpretation Z that consists of a non-
empty set AT (the domain of interpretation) and an interpretation function, which
assign every atomic concept A to a set AZ CAT and every atomic role R to a binary
relation RT C AT x AT. Thus, we can give the definition for an interpretation of a

DL language.

Definition 2.2(Interpretation) An interpretation is a pair T= (A%, .T), where AT is
a non-empty set, called the domain of I, and % is a function mapping NC to 227 and
NR to 287xA%,

An interpretation 7 is called admissible with respect to a TBox T if T satisfies
every aziom in T, denoted by T =T . We denote by the set Int(L) for all admissible
interpretations with respect to T of the language L. If a non-empty subset for I is
able to satisfy all axioms in a TBox T, then we call this set a model of T. For two
arbitrary TBox T and T, for every T € Int(L), if T =T, we also have T =T, we
call T entails 7', denoted as T =T . Two TBoz are called equivalent, denoted as
T=T,iff TET andT =T.

From the above definitions, it is easily to draw the following conclusions:

Proposition 2.1 Let £ be a DL and T a TBoz. An interpretation T € Int(L) is a
model of T iff, for each C; T Cy € T, C* C CZI holds, and for each C; = Cy € T,
Ct = C? holds. A concept C € L subsumes a concept D € L with respect to T iff,
for all T € Int(L) with T =T, D* C C? holds.

Proposition 2.1 is also applicable to inductive concept descriptions such as:
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T — Al
17 =
(A =ANA?
(cnbDyY} = citnp?
(VR.C)T ={aec AT |Vb (a,b) € RT - be C?}
(3R.T)* = {a € AT|3b (a,b) € R*}

Therefore, we naturally come to the following lemma:

Lemma 2.1 The interpretation CT of a compound concept C € L depends only on

the interpretation of those atomic concepts and roles that occur syntactically in C.

Based on the semantics of a DL, we can further give definitions to the common

reasoning tasks such as satisfiability, subsumption, equivalence, and disjointness.

Definitions 2.3 (satisfiability, subsumption, equivalence and disjointness):
Satisfiability: A concept C is satisfiable with respect to T if there exists a model
T of T such that C! is nonempty. Otherwise, this concept is unsatisfiable.
Subsumption: A concept C is subsumed by a concept D with respect to T if
C! C D! for every model T of T.
Equivalence: Two concepts C and D are equivalent with respect to T if CT = D!
for every model T of T. In this case we write C = D.
Disjointness: Two concepts C and D are disjoint with respect to T if C'NDf = ¢
for every model T of T .

From the above definitions, the relationship between disjointness and satisfiability is
obvious: if two concepts are disjoint, then the conjunction of these two concepts is
unsatisfiable. Notice that, in the syntax of Description Logics, concept expressions are
variable-free. In fact, a concept expression denotes the set of all individuals satisfying
the properties specified in the expression. Therefore, each grammatically valid axiom

in description logics can be regarded as a first-order logic sentence. For example,
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(CT D) can be regarded as a first-order logic sentence (C(z) A D(z)), where z ranges
over all individuals in the domain Z and C(z) is true to those individuals that belong
to concept C. As a matter of fact, by doing this, we can describe description logics as
a fragment of first-order logic. Concepts with role restrictions can also be expressed

as the fragments of first-order logic as well. For example:

JR.C: {z € AT | 3y € AT, R(z,y) A C(y)}
VR.C : {z € AT |Vy € AT, R(z,y) — C(y)}

Since we have proven in first-order logic that the expression C(z) — D(z) is equiva-
lent to the expression -C(z)V D(z), it is obvious that the above subsumption problem
can be reduced to the satisfiability problem. In fact, the following proposition indi-
cates that subsumption, equivalence, and disjointness of concepts can all be reduced

to the satisfiability problem and vice versa:

Proposition 2.2 (Reduction to Unsatisfiabililty and vice versa)

For arbitrary concepts C and D
(i) CED <= CnN-D is unsatisfiable;

(i) C=D <= both (CT1=D) and (-C M D) are unsatisfiable;
(ii) C disjoint D <= CN D is unsatisfiable;
The proof of the above proposition is obvious. Certainly, the above statements also

hold with respect to a TBox.

2.3 Reasoning with respect to TBox and ABox
2.3.1 Reduce Concept Reasoning w.r.t. a TBox to Concept Reasoning
w.r.t. an Empty TBox

From the above discussion we have seen that all concept reasoning problems can be
reduced to the concept satisfiability problems. Thus, it is easier to develop reasoning

procedures by only considering concept satisfiability. Also, it is conceptually easier
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to do reasoning based on a concept without a TBox, i.e., a concept with an empty
TBox. However, in real application, concepts usually come in the context of a TBox.
Let us consider if it is possible to reduce concept reasoning w.r.t. a TBox to concept
reasoning w.r.t. an empty TBox.

In general, TBox axioms of ALCN DL have the form:
CCD o CC=D

To do concept reasoning with respect to a TBox, in which all axioms have the
above mentioned format, generally we have two ways to reduce reasoning problems
w.r.t. a TBox to reasoning problems w.r.t. an empty TBox. The first method is

called unfolding. For example, consider the following TBox:

(i) Parent = Father U Mother

(i) Mother = Woman N JhasChild Person
(iii) Woman = Female M Person

(iv) Father = Man M 3hasChild.Person
(v) Man = Male M Person

Figure 4: A TBox example

In this example we call the kind of axiom in which there is an equality whose left-
hand side is an atomic concept a complete definition axiom. The right-hand side is
called the definition for the left-hand side atomic concept. The left-hand side atomic
concept is called a defined concept. If an atomic concept only occurs on the right-
hand side, we call this concept a base concept. Accordingly, we call the set of concepts
which only occur on the right-hand base-concept set; and the set of concepts which
occur on the left-hand side a name-concept set. If the left-hand side of an axiom is an
atomic concept A and the relation symbol with right-hand side is not the equivalence
symbol but the inclusion symbol which represents only necessary conditions, we call
the concept A a primitive concept. Please note that some papers use the notion
primitive concept for different meaning which is called base concept in this thesis.

Also, let A and B be atomic concepts occurring in 7. We say that A directly uses

18



B if B occurs on the right-hand side of a definition of A. We call uses the transitive
closure of the relation directly uses. Then, 7 contains a cycle and is called cyclic
accordingly, iff there exists an atomic concept in 7 that uses itself. Otherwise, 7 is
called acyclic.

In the following part, we may assume that our TBox of interest is acyclic. For the
cyclic TBox, we have two ways to work on it:

The first solution is to convert cyclic axioms into acyclic axioms. For example, we

have the following axiom:
(i) ACBN(-ALC)
We can rewrite this axiom as:
(ii) ~AU (BN (~AUQ))
(ii) which can be further simplified as:
(iil) ~Au (BN C)

That is:
(iv) AC(BNC)

Thus, we have converted a cyclic axiom into an acyclic axiom without changing
its original semantics. However, not all cyclic axioms can be converted into acyclic

axioms by rewriting. For example,
Human C VhasParent. Human

In this case, descriptive semantics still apply with some special considerations.
Please refer to [1] for more detail. If there is no explicit specification, the conclusions
drawn in this thesis are all applicable to cyclic TBoxes as well.

We also assume that if an atomic concept belongs to the name-concept set in a

specific TBox, then it has and only has one definition. We denote the TBox in Figure
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(i) Mother = Female M Person 1 3hasChild.Person

(i) Parent=(MaleMNPersonM3hasChild. Person)L(FemalelMPersoni ShasChild. Person)

(ili) Woman= FemaleNPerson
(iv) Father= Malel Person JhasChild.Person
(v) Man= Male Person

Figure 5: An unfolded TBox example

4 as T. We have the TBox shown in Figure 5 by replacing the defined concepts
occurring on the right-hand side by their definitions recursively.
We call the TBox generated in this way an unfolded TBox. In this example, we

refer to the unfolded TBox of T as T . We have the following proposition:

Proposition 2.3 (TBox 7 and its unfolded TBox T")

(i) T and T' have the same name-concept set and base-concept set;

(i) T and T are equivalent.
The proof of this proposition is quite simple. Suppose A = C and B = D are two
definition axioms in 7 such that C uses B. Let C' be the concept obtained from
C by replacing B in C with D, and let T" be the unfolded TBox of T obtained by
replacing A = C with A = C’". Then the base-concept set and name-concept set in T
and 7" are identical since no new concept being introduced on the left-hand side or
right-hand side of 7" nor is any concept missing on the left-hand side or right-hand
side of 7'. In addition, these two TBoxes are equivalent since we replaced a concept
by its equal concept. Then the two TBoxes have the same models.

Now let us turn our attention back to the reasoning problem w.r.t. TBoxes. Sup-
pose we need to check the satisfiability of the concept K: (Woman(i— Father) with
respect to the TBox 7 in Figure 4. Because T is equivalent to 7~ in Figure 5, the sat-
isfiability checking for K w.r.t. 7 is equivalent to the satisfiability checking w.r.t. T .
We replace all concepts in the concept of interest with its definitions in the unfolded

TBox:
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(i) (WomanM—-Father) w.r.t. 7 =

(il) FemalelPersonm(—MaleLi-PersonlVhasChild.~Person)

Note that in axiom (i), we keep the “w.r.t. 7”. However, in axiom (ii), we removed
“w.r.t. T” because every restriction in TBox 7 has been recursively applied. In this
way, we have unfolded a TBox and reduced the concept reasoning with respect to a
TBox to concept reasoning with an empty TBox.

Another way of reducing concept reasoning w.r.t. a TBox to concept reasoning
with an empty TBox is called generalization.

Before we start to discuss generalization, let us first summarize TBox semantics. As
we have already discussed, a TBox 7 usually consists of a set of axioms in the form of
(C C D) or (C = D), where C and D are concepts. An interpretation Z satisfies 7 if
for every axioms (C C D) € T, (CT C D), and for every (C = D) € T, (C! = D%);
T is satisfiable if there exists some non-empty interpretations that satisfies 7. In
addition, by using the following equivalences, all axioms in a TBox can be reduced

to axioms in the form of T C C according to our previous discussion:

CCD<TLC-CUD
C=D<«+= TLC(Cu-D)n(-Cub)

Figure 6: Equivalences for generalization

Let 7 be a TBox, and a; and ay be axioms of 7. Suppose M is a model of 7, x is an
individual and £ € AM . Then z satisfies both a; and a, according to our previous
discussion. Since a; and as can be reduced to the form of T C C; and T & (5, we
can rewrite these two axioms into one axiom where z satisfies the axiom T & C; M Cj.
Similarly, if x satisfies the axiom T C C}MCs, we can also prove that z satisfies both
T CE C, and T C (. Therefore, we illustrate that an arbitrary TBox can be reduced
to an axiom in the form of T C C, where C is called the reduction concept of T. We

call the procedure to achieve the reduction concept of a TBox as “generalization”.
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Till now we are able to reduce an arbitrary TBox T into 7', where TBox T  has
the foom T C C. In addition, we have already shown that all concept reasoning
problems can be reduced to concept satisfiability problems. To keep the generality,
we need to check the satisfiability of concept E with respect to 7. We make the

following proposition:

Proposition 2.4 (Generality)
C is the reduction concept of T. Concept E with respect to 7 is satisfiable iff

concept £ M C is satisfiable.
Proof

We prove (i) first. We consider the only if direction first. Suppose
concept E is satisfiable with respect to 7', a non-empty set M is an arbitrary
model of it. If z € M is an arbitrary individual of M, then z satisfies both
E and 7. Thus, z also satisfies the reduction concept of T which is C.
We conclude that x satisfies both concept E and C, i.e., x satisfies EMC.
Therefore, M is also a model of EMC.

Just as we have seen, similar to unfolding, we can also apply the generalization
to convert a problem of concept reasoning with respect to a TBox to a problem of

concept reasoning with an empty TBox.

2.3.2 Reduce Arbitrary Reasoning to ABox Reasoning

In general, a knowledge-base consists of two parts: a terminology set called TBox
and an assertion set called ABox. In the previous discussions, we mainly focused on
reasoning tasks with a TBox. In this section, we will discuss the reasoning tasks in
more general — reasoning with respect to both TBox and ABox.

We recall that an ABox contains two kinds of assertions: concept assertion in the

form of C(a) and role assertion in the form of R(a,b). It is obvious that an ABox has
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to be consistent. For example, if an ABox contains the assertions Male( Tomcat) and
Female( Tomcat), the system should be able to find that, together with the TBox
{T C -MaleLI-Female}, these statements are inconsistent.

In terms of model theoretic semantics, we can easily give a formal definition of

ABox consistency:

Definition 2.3 (ABox consistency) An ABoz A is consistent with respect to a TBozx

T, if there exists an interpretation that is a model of both A and T .

If A is consistent with respect to an empty TBox, we simply say that A is consistent.
For example, the set of assertion {Male(Tomcat), Female( Tomcat)} is consistent
with respect to an empty TBox, because without any further restrictions on the
interpretation of Male and Female, the two concepts can be interpreted in such a
way that they have a common element. However, the assertions are not consistent
with respect to the TBox {T C ~MaleLi-Female}, since in every model of it, Male
and Female are interpreted as disjoint concepts.

Similar to the case of concept satisfiability checking w.r.t. a TBox, which can
be reduced to concept satisfiability checking w.r.t. an empty TBox, checking the
consistency of an ABox w.r.t. a TBox can also be reduced to checking an expanded
ABox w.r.t. an empty TBox. We denote the expansion of ABox A with respect to
TBox 7 as A’ that is obtained from .A by replacing each concept assertion C(a) in
A with the assertion C’(a), where C” is the expansion of C with respect to 7. As we
have discussed, for every model of 7', a concept C with respect to 7 is interpreted in
the same way as its expansion C'. Thus, A is consistent w.r.t. 7 iff A" is consistent.
The prototypical ABox inference task on which all other ABox inference tasks are
based is instance checking, i.e., to check if an assertion is entailed by an ABox. Let
A be an ABox, and « be an assertion. If every interpretation that satisfies A, i.e.

every model of A, also satisfies a, we say that « is entailed by A, denoted as A = a.
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Thus, we have the following proposition:

Proposition 2.5 (ABox and its expansion)
(i) A is consistent w.r.t. T iff its expansion A’ is consistent.
(ii) For a consistent ABox A, A |= C(a) iff {AA—C(a)} is inconsistent, where a is

an arbitrarily chosen individual name.

Proof

We have already proved (i). Now let us prove (ii).

For the if direction to be inconsistent, let b be an arbitrary individual
that satisfies A’ = {4 A ~C(b)}. A’ is comprised of two parts: A and
-C(b). Since A is consistent, then —C(b) must be inconsistent due to the
inconsistency of A’. That is, the assertion C(b) is consistent. Since b is an
arbitrary individual, we conclude that A = C(a).

The only if direction is obvious.

Furthermore, we have the following lemma:

Lemma 2.2(Reduce concept reasoning to ABox reasoning)
Concept C is satisfiable iff C(a) is consistent, where a is an arbitrary individual

name.

From model theory, the above proposition is obvious because if C' is satisfiable, then
there must exist a model for it. An arbitrary individual from its model also makes
C(a) consistent. In addition, it is obvious that the set of individuals which satisfy
C(a) is a model of C.

From Lemma 2.2, we are able to draw the conclusion that all reasoning tasks in
a DL based KB system can be reduced to ABox reasoning tasks. To generalize and
simplify our discussion, in the following sections, we will mainly focus our discussion
on the reasoning tasks with respect to a TBox. As we have just seen, all our discussion

results and conclusions are still applicable to general cases with respect to both TBox
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and ABox.

Since our discussion will focus on concept reasoning with respect to a TBox (we
also use the term reasoning with a TBoz), we will introduce a frequently used tech-
nique -— TBoz rewriting in the following sections, namely the discussion about TBox

equivalence.

2.3.3 TBox Equivalence

In practice, we are often confronted with the problem to check if two TBoxes are
in fact semantically equivalent. Especially, TBozx rewriting is often used to improve
reasoning performance. Therefore, the TBoz equality checking is one of the topics of
our interest.

From our previous discussion, we know that each TBox can be reduced by gener-
alization to a concept. The resulting concept is called the reduction concept of T. It
is obvious that if two reduction concepts are equivalent, then the corresponding two

TBoxes are also equivalent. Thus, we have the following proposition:

Proposition 2.6 TBox T and TBox T, are equivalent iff the corresponding reduc-

tion concepts C and Cy are equivalent.

We have already stated the proof for this proposition — each TBox can be reduced to
a concept without modifying its semantics (refer to Section 2.3.1). The equivalence
of the two reduction concepts represents the equivalence of the two TBoxes.
However, to compare the equivalency of two reduction concepts is time consuming
and cumbersome from practical point of view due to requirement of semantic reason-
ing. Thus, to test the equivalence of two TBoxes, other indirect techniques are often
applied. To introduce these techniques, let us first introduce the definition of direct

consequence which is widely used in many logic related fields.
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Definition 2.4 (Direct Consequence)

If A= B, then B is called a direct consequence of A.
From this definition, we have:

Proposition 2.7 For arbitrary TBozes T1 and T, if every aziom in T4 is a direct

consequence of T+, then Ty |= Ty.

Proof

Given an arbitrary interpretation Z of 77, if Z =71, then T satisfies all
axioms in 7. Because each axiom in 75 is a direct consequence of axioms
in 7, Z also satisfies each axiom in 75. Thus, Z =T also holds. From
Definition 2.2, we have that 77 = 73 hold.

By Definition 2.2, if 7; = 7; and 7; = T, then 7, = 7. In practice, this method is
more widely used to check TBox equivalence than the method to check the reduction
concepts directly.

In the following section, we will introduce an algorithm known as Semantic Tableau
Algorithm to demonstrate in detail how to reduce reasoning tasks with respect to a

TBox to reasoning tasks with respect to an ABox.

2.4 Tableau Algorithm

Before describing a tableau-based satisfiability algorithm for ALC in more detail, we
shall illustrate the underlying ideas with some examples. Suppose in the following
discussion A and B are concept names, and R and S are role names.

For the first example, assume that we want to know if (3R.A)11(3R.B) is subsumed

by 3R.(A M B). Then, we need to check whether the following concept

C = (3R.A)N (3R.B)N~(3R.(AN B))
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is unsatisfiable.
First, we shall convert the expression to negation normal form, i.e., negation signs

occur only in front of concept names. As a result, we get the following concept:
Co=(3R.A)N(AR.B)NVR.(-AU-B))

Second, we try to construct an interpretation Z such that CI # ¢. It means that
there must exist an individual in Z that is an instance of CZ.

The algorithm generates such an individual, say b, and imposes the constraint
b € CE on it. Since Cj is the conjunction of concept descriptions, b needs to satisfy

the following three constraints at the same time:

(1) b € (3R.A)T,
(2) b e (3R.B)%;
(3) b € (VR.(—AUL-B))L.

From (1), we can deduce that there must exist an individual c such that (b,c) € R?
and ¢ € A. Analogously, b € (3R.B)? implies there exist an individual d such that
(b,d) € RT and d € B. Please note that b and d do not necessarily have to be

identical according to the semantics of (1) and (2). Thus,

For an existential restriction the algorithm may introduce a new individ-
ual as role successor if there is no role successor exists, and this individual

must satisfy the constraints expressed by the restriction [1].

Since b must also satisfy the restriction VR.(—AU-DB) , and ¢, d are introduced as
R successors of b, we get the additional constraints: ¢ € (wAU-B) and d € (—AU-B).

Analogously, we can deduce the rules of applying disjunction and conjunction:

For disjunction constraints, the algorithm tries both possibilities in suc-
cessive attempts. It must backtrack if it reaches an obvious contradiction.

For conjunction, the algorithm tries all conjunct elements at one time.
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(1)The rM-rule

Condition: A contains (C; M Cz)(z), but it does not contain both C1(z) and Ca(z).

Action: Ay = AU{Ci(z), Ca(z)}

(ii))The U-rule

Condition: A contains (C; U C2){(z), but neither C;(z) nor Ca(z).

Action: Ay = AU {Ci(z)}, A1 = AU{Ca(x)}

(iil)The J-rule

Condition: A contains (3R.C)(z) if there is no individual name z such that C(z)
and R(z,z) are in A

Action: Ag = AU {C(z),R(z,2)}

(iv)The V-rule

Condition: A contains (VR.C)(z) and R(z,y), but it does not contain C(y).
Action: Ag = AU{C(y)}

Figure 7: Tableau Algorithm rules for ALC

Let A be an ABox and Ag, A; be the tableau expansions of A. The tableau-based
satisfiability algorithm for ALC is summarized in Figure 7.

For other rules such as number restriction rules, please refer to [1].

To simplify our discussion with Tableau-algorithms and to understand how it is
used in applications, we will introduce some definitions.

Note that a TBox can be restricted to contain only the inclusion axioms and
equality axioms by using the equivalence shown in Figure 6. Therefore, without
loosing generality, we can restrict our discussion to axioms in the form of C; C C or
C, = C,, where C; € L.

In practice, all DL reasoning problems are usually reduced to ABox reasoning
problems by applying Lemma 2.2. Therefore, a tableau expansion is usually applied
in the way with respect to a specific concept. To facilitate our following discussions,
we will introduce the notion of a witness as an abstraction of the Tableau Algorithms

applied to a specific concept.

Definition 2.5 (witness) Let £ be a DL and C € L be a concept. A witness W =
{AW v L%} for C consists of a non-empty set AV, a function  that maps NR to
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2AWXAW, and a function LY that maps AW to 2 such that the following properties

hold:
(W), ) there ezists some x € AW with C € L(z);
(W) there exists an interpretation T€ Int(L) that stems from W;
(W3) for each interpretation T€ Int(L) that stems from W, it holds that D €
LY (z) implies C C D.
An interpretation I is said to stem from W if it satisfies:
(i) AT = AW
(i) * |nr="", and
(ii3) for each A€ NC, (A € LY (z) <= 1 € AT) and (A € LW (z) < z ¢ AT).
A witness W is called admissible w.r.t. a TBoz T if there exists an interpretation

T € Int(L) that stems from W withT = T.

Please note that, for any witness W, (W?2) and (iii) of “stemming” implies that
there can not exist z € A" and A € NC, such that {4,-A} € L¥(z). In general,
however, more than one interpretation may stem from a witness. Suppose there are
two interpretations Z; and Z, that stem from £(z). It might be true that there exists
an element z € AW and £*(x)A{A, ~A} holds because z € A% and 2 € ~A™ hold at
the same time. Thus, in order to simplify our discussion, we only focus on one special
witness which stems from only one particular interpretation. Each interpretation

stems only one particular witness, we call such a witness canonical witness.

Definition 2.6 (Canonical Witness)
Let £ be a DL. For any interpretation T€ Int(L) where Int(L) is the set of all
interpretation, we define the canonical witness Wz ={AWz Wz LWV} as follows:

(i) AWz = AT

(ii) Wr=T|nr, and

(i) LV = {Vz € AWz | {D € L = z € D}}
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The following elementary properties of a canonical witness will be useful in our fol-

lowing discussions.

Proposition 2.8(properties of a canonical witness)

Let £ be a DL, C € £, and 7 a TBox. For each Z€ Int(L) with CT # ¢,
(i) each interpretation Z' stemming from Wr is isomorphic to Z.
(ii) Wr is a witness for C,

(i) Wr is an admissible witness w.r.t. T iff Z = 7.

Proof

(i) Let Z; stem from Wy. This implies ATt = AT and 7t =7|yg. For each z € AT,
and any concept D, we also have z € AT because ATt = AT, Thus, if D € £V, we
have z € D. This implies D € £"Z. This proves that 7' |yc=7|nc and hence T;
and Z are isomorphic.

(ii) Properties (W1) and (W?2) hold according to the definition of Wy. Obviously,
T stems from Wr and from (i) it follows that each interpretation Z stemming from
Wr is isomorphic to Z, hence (W3) holds.

(iii) Since Z stems from Wy, T |= 7 implies that Wr is admissible according to
the definition of an admissible witness. For the only if direction: if Wz is admissible
w.r.t. 7, then there is an interpretation Z* stemming from Wy with Z* |= 7. Since
7 is isomorphic to Z*, hence Z = 7.

As a consequence, we are able to conclude the existence of an admissible witness
is closely related to the satisfiability of a concept w.r.t. a TBox. The relationship is

described by the following proposition:

Proposition 2.9 Let L be a DL. A concept C € L is satisfiable w.r.t. a TBox T iff

it has a witness that is admissible w.r.t. T.

Proof
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Let us consider the “=" direction first. Let W be the admissible witness w.r.t. 7,
T is the interpretation with Z |= 7. We have CT # ¢. Thus, C is satisfiable.
Then, let us consider the “<” direction. Since C is satisfiable, there exists an

interpretation Z € Int(L) which makes C! # ¢ w.rt. 7. That is Z = T. Let the

corresponding canonical witness of C' be Wr. Then, Wr is admissible.

2.5 Complexity of Reasoning

It is much appealing to apply tableau-based algorithms for solving reasoning problems
in a DL knowledge-based system due to its directness. However, when applying the
expansion formula described by Figure 6, disjunctions are added to the label of each
node of the tableau for each general axiom (one disjunction is added for axioms in
the form of C; C C»; two disjunctions are added for axioms in the form of C; = Cs).
This leads to an exponential increase in the search space as the number of nodes
and axioms increases. This kind of increase will directly cause non-determination
for reasoning tasks. For example, consider a KB with 100 inclusive axioms in the
form of Cy E C,. Such a KB is really small compared to knowledge-based systems in
real application. However, in the worst-case, by directly applying tableau-expansion,
there could be 100 disjunctions to be added to the tableau, and those disjunctions
can be non-deterministically decomposed in 2% different ways'. We have to find a
more efficient way to do reasoning. In other words, the reasoning algorithm based on
Semantic Tableau has to be optimized to meet the requirement of real applications.
In the following sections, we will mainly focus on a technique called “TBox rewriting”
to fulfill the optimization. The goal is to rewrite a TBox to a format suited for faster

reasoning.

1To apply Tableau rules, we have to convert the axiom in the form of C C D into ~C Ul D to apply the disjunction
rule.

31



Chapter 3

Normalization and Simplification

It is obvious that getting rid of redundant knowledge from a KB can improve the
system’s reasoning performance. We call the procedure of removing redundant knowl-
edge simplification in this thesis. In addition, when we talk about reasoning in
knowledge-based system, we are in fact talking about automatic reasoning using a
computer. That is, all forms and expressions that we are concerned about must be
suitable for automatic processing with computers. For example, the logic expressions
(An(BR(CuD)), (ANBR(CuD))and (ANMBNC)U(AMBMD)) are hard to be
recognized as identical by a syntactical comparison. To solve such kind of problem,
one solution is to convert all logic expressions into the same format before reasoning.
In other words, those expressions need to be normalized before reasoning. The proce-
dure of computing normalized expression is called normalization. Based on the above
discussion, it is not hard to find that simplification and normalization are in fact two
techniques tightly related — it is obvious that a normalized expression facilitates to
find syntactical equivalence, contradictions, tautologies, and can be simplified easier.
In this section, we will briefly introduce the normalization and simplification tech-
niques used in our system. The result and conclusions of this chapter will be directly

used in the following sections.
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3.1 Normalization

3.1.1 Enhanced Negation Normal Form

In real KB applications, especially those KBs manually constructed, axioms may
not be in a same format. Those axioms may be more readable for humans, but it
might be hard to automatically find obvious tautologies and contradictions. To solve
this problem, usually we employ the NNF (negation normal form) to normalize the
logic expressions to facilitate detection of conflicts. However, in many cases using
NNF is still not enough to find direct equalities or contradictions. In the above
mentioned example, even though all expressions are in NNF, they still can not be
directly recognized syntactically to be equivalent.

Some Reasoners, such as RACER, use an enhanced NNF to improve the search
performance [6]. The steps of normalizing an arbitrary logic expression into enhanced

NNF can be explained as follows.

AN

G

U
< 0
A/\\F

e
N

Figure 8: An example of an NNF syntax tree

The first step is to draw the logic hierarchy for an NNF expression. Since the
steps of converting an arbitrary logic expression into NNF is trivial, we shall not
discuss it here. To draw the logic hierarchy, we put operands under operators and
expand the operands inductively. For example, the syntax tree of the logic expression
(AN ((BUC)M E))U (FMG) in NNF is shown in Figure 8.

The next step is to convert NNF into enhanced NNF. The primary idea is to

absorb the lower level operator if the lower level operator is the same as its upper
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level operator since keeping the same logic operator in two adjacent level is in fact
redundant. Thus, the enhanced NNF format of the above mentioned logic expression

is shown in Figure 9.

Figure 9: Conversion of NNF into enhanced NNF

In many cases, the enhanced NNF can help to reduce the search space. However,
in some cases, the enhanced NNF format is still not enough to help dectect obvious
contradictions or equalities directly. For example, the two logic expressions (AN (B U
CNEYU(FNG)and (FU(ANEN(BUC)N(GU(ANEN(BUCQ)))) are
syntactically equivalent by applying De Morgen’s law. Unfortunately, even though
both of these expressions are already in enhanced NNF format, they can not directly
be found as syntactically equivalent.

In addition, by using the enhanced NNF format to deal with our logic storage
model, we have to maintain a tree-like data structure as an internal data model. For

such kind of data model some operations such as searching are complicated.

3.1.2 Normalize TBox into Set and Logic operations into Set Operations

To find a suitable model for logic expressions, a solution is to implement logic opera-
tions as set operations and convert tree-like data structures into flat sets. Notice that
the relationship between axioms in a TBox is in fact a conjunction. For example,
let a3 and @z be two axioms in 7. Then, ay May € 7. Moreover, from the above
discussion we have seen that each axiom in a TBox can be converted into the format

T E C, where C is a concept. Since “T C” exists in each axiom, there is neither the
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need to store it into our physical data structure nor for the conjunction relationship.
Therefore, we conclude that a TBox can be normalized into a set of concepts.

Now let us consider the attributes of an axiom in a TBox. Suppose we have an
axiom T C CMN D in a TBox. As we know, this axiom can be split into two axioms
T C C and T C D without changing the semantics of the original TBox. In fact,
we can convert an arbitrary concept into CNF (conjunction normal form), i.e., in the
resulting concept, there are only two levels: the first level only contains conjunctions
and the second level only contains disjunctions. In this way, we can easily remove
conjunctions from TBox axioms. Therefore, each axiom in a TBoz can be normalized
to a kind of axiom not containing conjunctions.

Based on this idea, in the above example both (AN(BUC)N E)U(FMNG) and
(FU(ANEN(BUC)N(GU(ANEMN(BUC)))) can be easily normalized to
the set (F, A),(F,E),(F,B,C),(G,A),(G,E),(G,B,C). Thus, they are obviously

equivalent, shown simply by a syntactic checking.

3.2 Simplification

In addition to normalization, we can also include a series of simplifications during
TBox rewriting so that syntactically obvious contradictions and tautologies can be
detected. For example, (A U —A) could be simplified to T. The following list enu-
merates the most frequently used simplification formulas:
(LY(AN-A) =L
(2)(AU-A)=T
(3)AN(AuB)=A
4) AU(ANB)=A
(
(
(

6)AL(=ANB)=AUB

)
)
5)AN(-AUB)=ANB
)
7) (YR.ANVYR.B) = VR.(AN B)
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(8) (AR.AL3R.B) = 3R.(AL B)

(9) 3R. L=1

(1) VRT =T

(11)(A=Cand B=(C) < ((AUB)=C)

The proof for most of the above formulas is trivial. For example, formula (3) and
(4) are obvious by enumerating truth table of the both sides. The others are also
obvious by applying Tableau expansions or De Morgan’s law.

The above simplification rules are applicable to all concepts or axioms in a TBox.
For example, if a TBox contains both the axioms (ALB) and (ALUBUEUIR. M), then
the latter axiom can be directly discarded according to formula (3). Moreover, the

above mentioned simplifications can be more easily detected in a normalized TBox.
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Chapter 4

Absorption

4.1 Lazy Unfolding

In previous sections, we have discussed TBox reasoning and fundamental rewriting
techniques such as normalization and simplification. Starting from this chapter, we
will focus on some techniques that can deal more efficiently with TBox reasoning.

As we have discussed previously, the complexity of a DL based KB system reason-
ing is usually due to the reasoning with respect to a TBox. We have also discussed
that reasoning non-determinism is often caused by the axiom unfolding during tableau
expansion. One of the most intuitive optimization techniques is called lazy unfolding
— only unfolds concepts when required during the progress of subsumption or satis-
fiability testing [4]. In other words, an atomic concept will only be unfolded when it
occurs in a tableau expansion node. For example, if a TBox 7 contains the axiom
A = C, and (AN B) € L(x), while applying the M — rule, A and B are added to
L(z). At this point, by applying lazy unfolding, we add C to £(z) as well. However,
if A does not occur in £(z), we do nothing.

More generally, lazy unfolding can then be described by the following additional

tableau algorithm rules:
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rulel: IfAeL(z)and (A=>C)eT
then L(z) — L(z) U{C}

rule 2: If-A€ L(z)and (~A=C)eT
then L(z) — L(z) U {C}

where A € NC*,

Compared to normal tableau rules in which many disjunctions are introduced —
the main cause for a high inefficiency— the above rules are obviously more efficient
since no new disjunctions will be introduced during the expansion. In addition, lazy
unfolding only unfolds a concept when it occurs in the expansion tree which avoids
to expand the entire TBox as we do during generalization. As a matter of fact, lazy
unfolding has proven to be very efficient comparing to normal tableau rules [7].

As we have just noticed, rule 1 and rule 2 can only be applied to a rule aziom
in 7 and the left-hand side of the rule aziom has to be an atomic concept. In
real applications, it is not always the case that all axioms in an arbitrary TBox
happen to satisfy these restrictions. Therefore, an intuitive optimization technique
was proposed: dividing an arbitrary TBox 7 into two parts, an unfoldable part 7,
and a general part 7, such that 7, = 7 \ 7,. 7, contains only rule axioms with
concept names on the left-hand side, while 7; contains the rest of 7. In this way,
reasoning tasks with respect to a TBox can be considered as reasoning tasks with
respect to 7, and 7,: apply “lazy unfolding” to 7, and regular tableau expansion to
T,. As we already mentioned that the reasoning performance for 7, can be very high,
while the reasoning performance to 7, might be low when applying regular tableau
expansion due to the introduction of many disjunctions. By considering 7, and 7,
we apply the following optimization technique: if one can move axioms from 7, to
7, while keeping the semantics of 7 unchanged, one should be able to improve the

reasoning performance. This technique is called “absorption”.

1We do not list the “=” rule in this list since the axiom A = C can be easily rewritten as A = C and -A = —C,
and the above mentioned rules can be easily applied as well.
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4.2 Absorption

As we have seen in the previous section, the primary idea of absorption is to move
axioms from 7, to 7, while keeping the semantics of the new TBox identical to the
original TBox. The question is how can we achieve this goal without affecting the
semantics of the original TBox. In other words, we have to define criteria for a
correct absorption and make sure that a pre-absorption and post-absorption TBox
are semantically equivalent. A discussion about correct absorption has been made in

[8] which can be summarized as follows.

Definition 4.1 (unfolded witness, correct absorption)
Let L be a DL and T a TBozx. An absorption of T is a pair of TBozes (T, 1,) such
that T = T,UT, and T, contains only rule azioms in the form of A= D or-A= D,
where A is an atomic concept, i.e., A€ NC.
For a witness W, if for each z € AW,
(A=DeT,NAec LV (z))= De LV(z)
(~FA=>DeT,AAcLY(z))= D e LW()
CiCCyeT, = (-C,UC,) € LY(x)
Ci=Cy €T, = (-C1UCy) M (CLU-Cy)) € LY (z)
then W is admissible w.r.t. T. If an absorption (T,,T,) satisfies the above conditions,

it us called correct. If a witness satisfies the above condition, it is called unfolded w.r.t.

T.

Please note that the symbol = is a rule expression which represents only one-way
reasoning?®. In addition, if the “with respect to” a specific TBox is clear from the
context, we may omit the w.r.t. 7 in the following sections.

Unfortunately, the definition of correct absorption as specified above can not be

applied directly to evaluate the correctness of an absorption. For example, suppose

2In some papers, “C” is also employed to represent one-way reasoning.
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T’ is an absorption of T'Bozes T:

T=T,UT,and 7, =0; T,={AC C; ~AC D};
T =T/UT and T/ = {A= C; A= D}; T, = 0.

Even though it is not hard to prove that 7 # 7 from a semantics point of view,
we are unable to conclude that the absorption 7" is not a correct absorption of T
from the definition itself. Therefore, we propose the term wvalid absorption to be the

criterion to evaluate the correctness of an absorption in the following sections.

Definition 4.2 (valid absorption)
Let T be an arbitrary TBoxz, and T be a correct absorption of T. If T' = T and
T =T, then T is called a valid absorption of 7.

Based on the above definition, the following absorptions are all valid absorptions,

provided that A is an atomic concept and C, D, F are arbitrary concepts.

Proposition 4.1
LetT =T,UT, T, =¢ and Ty ={ACT D}; T =T,UT,, T, ={A = D} and
’Z; =¢ . Then T is a valid absorption of T.

Proof

First, it is obvious that 7 = 7 because {A C D} = {A = D}. We
only need to prove that 7' }= 7. Suppose that 7" |# 7 which means the
expression (A = D) M —~(A C D) is satisfiable. This expression can be
rewritten to (A = D) AT —-D by rewriting (A C D) to (=AU D) and
convert it to NNF. To make this expression satisfiable, A and —D must
be both satisfiable. However, if A is satisfiable, then D is also satisfiable
according to (A = D). This conflicts with the fact —D is satisfiable. Thus
we infer 7' = 7 holds.

Proposition 4.2 Let T = T, U7, be a TBoz, T, = ¢ and T, = {A = D}, A€ NC;
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T’ is an absorption of T, T =T, UT,, T, = {A= D;=A= -D} and T, = ¢ .

97 *u

Then T is a valid absorption of T .

Proof

The proof is similar to the proof of Proposition 4.1. It is obvious
that 7 = 7 because {A = D} => {A = D;-A = —~D}. We only need
to prove that 7 = 7. Suppose that 7  |# 7. That is, the expression
(A= D)N(-A = -D)N(AUD)N(-~AU-D) is satisfiable. Suppose there
exists such an individual z which satisfies this expression. First, we assume
z is an instance of A4, i.e., ' € AL Az ¢ (-A)!. It is obvious that such an
x does not exist since we can easily infer that if z € A, then both x € D
and x € =D hold from the above expression. Similarly, if we assume that
zl € (mA) Azl ¢ Al Again, we can easily to conclude that such an z does

not exist either by using the same analysis as above. Thus, 7" |= T holds.

In fact, Proposition 4.2 can be extended to apply to a more general TBox 7 where

7 contains more than one axiom in the form of A = D.

Lemma 4.1 Let T be a TBox containing axioms entirely in the form of A; = D;
where A; € NC, ifi#j A # A; ; T =T UT ,, T, = ¢, and T, consists of the
axioms in the form of {A; = Di;—~A; = —D;}, where A; € NC. Then T is a valid

absorption of T.

Proof

We can prove this lemma inductively. We assume an arbitrary lineariza-
tion Az, Ag, ...... , Ai, of the “uses” partial order on the atomic concept names
appearing on the left-hand side of axioms in 7" such that, if A; uses A;, then
1 > j and the defining concept for A; is D;.

For i = 1, Lemma 4.1 holds according to Proposition 4.2. Suppose
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for i = k — 1 Lemma 4.1 also holds. We need to prove that ¢ = k also
holds.

Clearly 7' = 7, U T, holds. If i = k — 1, then, we have T, = {4, =
Dy, ~A;y = =Dy, oo, Agmy = Dy_y,mAp_1 = =Dy}, T, = {Ay = Dy}
Thatis,ifi=k,T=7 =T, UTg' holds. Since the Ay does not ever appear
in the left-side of 7, and 7, is acyclic, adding two axioms { Ay = Dy, ~A;, =
=Dy} will not affect the reasoning behavior and reasoning result of other
axioms in ’Z;' Moreover, from Proposition 4.2, converting an equivalent
axiom from 7; to two rule axioms and move them from 7, to 7, will not

change the semantics of a TBox. Thus, when ¢ = k, Lemma 4.1 also holds.

Now that we have proven that absorption can be applied to a more general TBox
containing more than one axioms in the form of A = D, and these axioms can be
completely eliminated from 7, a question of whether absorption can be applied to
an arbitrary TBox rises. To answer this question, let us consider some special cases

first.

Proposition 4.3 Let (7,,7,) be a valid absorption of a TBox T .
1. if T' is an arbitrary TBog, then (T, T,UT ) is a valid absorption of T UT .
2. if T' is a TBox that consists entirely of azioms in the form of A T D, where
A € NC and neither A nor —=A occurs on the left-hand side in T,, then (T, U {A =
D}, T,) is a valid absorption of TUT .

Proof

1. Let C € L be a concept and W be an unfolded witness for C w.r.t.
the absorption (7,7, U 7"), this implies that W is unfolded w.r.t. the
absorption (7,,7,) because (7T,,7y) is smaller. Since (7y,7,) is a valid
absorption, there is an interpretation Z stemming from W with Z = 7.

Suppose Z |# 7. Then there must exist an element # € Z and an axiom
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(DC E) € T such that z ¢ (-DU E)? .

Since W is unfolded with respect to the absorption (7,,7, U7 ) and
(DC E) € T,UT , we have that z € (-~D U E)T. This is a contradiction
to the above conclusion z ¢ (—D U E).. As a result, it also holds that
T =T . Therefore, (T, T,UT )= (TUT )and (TUT) (T, T,UT),
ie., (7,7, UT') is a valid absorption of (T UT").

2. This is obvious from lemma 4.1 since neither A nor ~A has a rule

axiom in 7.

In Proposition 4.3, the axiom (A C D) in 7, can be absorbed to 7, under the
condition that neither A nor —A has a rule definition in 7,. Is it still possible to
absorb this axiom into 7, with the presence of either A or —=A on the left-hand side of

7,7 To answer this question, we have the following lemmas from Proposition 4.3:

Lemma 4.2 Let (7,,7;) be a valid absorption of a TBox T. If T is a TBoz that
consists entirely of axioms in the form A € D, where A € NC. If A already has

a rule definition in T,, say A = C, and A has no rule definition in T,, then

{(T.\A=C)U (A= (DNCQC)),T,} is a valid absorption of TUT .

The proof for this lemma is obvious. If a TBox contains two axioms {AC C, A C
D}, they can be reduced to one axiom A T (C M D) that can be absorbed into the
axiom A = (C'M D) according to Proposition 4.1.

Similarly, we can further discuss how to absorb the axiom A T D in 7; when —~A

has a rule definition in 7.

Lemma 4.3 Let (7,,,7,) be a valid absorption of a TBox T. If T  is a TBox that
consists entirely of axioms of the form A T D, where A € NC. If -A already
has a rule definition in T, say ~A = C, and A has no rule definition in T, then

{T.U{A= D}, T,u{CUD}} is a valid absorption of TUT .

Proof
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This is equivalent to prove that the TBox 7 {-A = C,A = D,T C
(C U D)} is equivalent to the TBox 7: {AC D,—~ALC C}.

It is obvious that 7' |= 7 because each axiom in 7 is a direct conse-
quence of T'. To prove that 7 = T, we only need to prove T = 7T .

Suppose T |# T'. First we reduce the TBox 7 and 7" into two concepts
C and C” by generalization (refer to Section 2.3.1). Suppose 7 is an arbitrary
model of T, then there exists an x € AT and z € (CM1-C")! since T |# T .
That is:

z € (A = C)N(A = D)N(CUD)N(AL~C)N(=AU-D)N(~DU~C))*

Let us do a case analysis about . Suppose z € AZ. Then x € —-D?
upon (—A U -D), and z € D* upon (A = D). This is a contradiction.
Analogically, we can easily enumerate all possibilities of £ and conclude
that such an z does not exist. That is C' T —C" is unsatisfiable. therefore,

T =T also holds, and the above absorption is a valid absorption.

Now we will extend the discussion to the most general case where both A and —A

have rule definitions in 7.

Lemma 4.4 Let (T,,T,) be a valid absorption of a TBox T, if T is a TBox that
consists entirely of axioms in the form of AC E, where A € NC. If A already has

a rule definition in T, say A = C, and -A also has a rule definition in 7,, say

~A= D, then {(T,)\{A=CHU{A= (CNE)},(T,\{ACE})U{T CDUE}}

to 1, is a valid absorption of T U T

The proof for this lemma is similar to the proof of Lemma 4.3. We will not repeat

it here.

From Lemma 4.3 and Lemma 4.4, it is obvious to have the following lemma:

Lemma 4.5Let (T,,7,) be a valid absorption of a TBor T. Suppose {A = K; A=
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Ky} € T, and there is no rule definition in T, for either A or —A, then the absorption
{A=> Ky;-A= K} € T,; {K1 = K2} € T, is a valid absorption of T .

We also omit the proof for this lemma here because the conclusion is obvious.

4.3 Role Absorption

So far we have discussed the Tableau Algorithm and its extension to lazy unfolding.
Based on model theory, we also discussed concept absorption. In this section, we will
turn our attention to the other aspect — roles. Upon model theory, an interpretation
is a pair Z= {AZ, .7}, where AT is a non-empty set, and . is a function mapping NC
to 247 and NR to 287%A7 That is, if an individual z is related to an individual y
by a role R, R is a mapping from the set of individuals z to the set of individuals y.
As we mentioned before, the set of individual z can be seen as a concept, say C. To
denote this, we therefore use an axiom such as Domain(R, C ). Accordingly, the set of
individual y can also be seen as a concept, say D. To denote the relationship between
D and R, we denote as Range(R, D). 1t is obvious that C, D are both subsets of AZ.

Domain and range constraint are widely supported by modern KB description
languages such as OWL. With the presence of domain and range axioms, reasoning
tasks relating to role restrictions can be interpreted to: if R(z,y), Domain(R,C) and
Range(R, D), then z € C and y € D.

The above mentioned idea raises a new kind of optimization technique which we
call Role Absorption® [5] [14]. In many description languages, especially some old
KB systems, domain and range axioms are not directly supported, but can trivially
transformed into GCls. That is, restricting the domain of a role R to be a concept C is
equivalent to adding an axiom asserting that the concept whose instances are related
to some other individuals by role R is subsumed by C (i.e. 3R. T C C); similarly,

restricting the range of a role R to be concept D is equivalent to adding an axiom

3In some papers, it is also called Domain and Range absorption
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asserting that the most general concept is subsumed by the concept whose instances
are related by role R only to instances of D (i.e. T T VR.D) [10]. The problem of such
a transformation is that these GClIs are not suitable to be converted to trigger rules
(absorption). As we discussed above, the complexity of reasoning for trigger rules and
GClIs is very different. Most modern reasoners, such as RACER, FaCT++ or Pellet,
act much less well with KBs containing a significant number of unabsorbable GClIs.
Unfortunately, many modern knowledge bases contain large numbers of different roles
— each with domain and role constrains — thus the resulting KBs contain many

unabsorbable GClIs. To solve this problem, we have the following proposition:

Proposition 4.4 Let T be an arbitrary TBox, R be a role

1. An interpretation I satisfies T and an aziom AR.T T C iff T satisfies T U
{Domain(R, C)}.

2. An interpretation T satisfies T and T CVR.D iff T satisfies TU{Range(R, D)}.

Proof

The proof for the above proposition is obvious considering the definition
of domain and range. For the first claim, we consider the iff direction
first. Z satisfies 7 implies that 7 satisfies every axiom of 7. To prove this
assertion, we only need to prove that if 7 satisfies AR. T T C, T also satisfies
Domain(R,C). Suppose that there is some (z,y) € R?, and z ¢ CZ.
However, (x,y) € R implies z € (3R.T)Z. Thus, z € CT since (IR.T)? is
a subset of C — a contradiction. Similarly, it is not difficult to prove the

second part of this proposition.

This kind of rewriting technique can be extended to deal with a wider range of
axioms. First let us prove an equivalence: (3R.C = JR.CM3IR.T). It is obvious that
(3R.CT3R.T C 3R.C). We need to prove (FR.C C FR.CMIR.T). Let us check
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the satisfiability of (3R.C M —~(3R.C M 3R.T)). This concept can be simplified as
(3R.C TIVR.L). It is obvious that this concept is unsatisfiable. Therefore, (IR.C =
JR.CN3R.T) holds. From this equivalence, we can rewrite the axiom such as (3R.C C
D) to (3R.CN3R.T C D),ie., (IR.T C (VR.-~C)UD). Thus, the axiom in the form
of (AR.C C D) can be absorbed as Domain(R, D UVR.~C). Similarly, the axiom in
the form of (D C VR.C) can be rewritten as (R.—~C C —D). It can also be absorbed
as Domain(R,-~D UVR.C).

4.4 Complexity of Absorption

4.4.1 Ambiguity of Equivalence

In the preceding sections, we have mentioned several times the “left-hand side” when
describing the absorption algorithms. Please note whenever we mentioned the left-
hand side, we referred to the left-hand side of the symbol “=-". If we apply absorption
algorithms without considering this restriction, it may generate an invalid absorption
during unfolding.

Consider the following example: a TBox 7 contains two parts, 7, and 7,. 7, =
{A=B}*and 7, = {T C -BUC} . A and B are atomic concepts; C is an arbitrary
concept. By applying Proposition 4.3, one may consider that B does not occur on

the “left-hand side” of 7, and get the following absorbed TBox 7

7. ={A=B;B= C}
T, =¢

g

In fact, the above absorption is invalid. One example is that concept (B M —A) is
now.
We can do reasoning by applying lazy unfolding and semantic tableau as the

following;:

4In some papers and reasoners, the symbol “=” is used as a two way reasoning symbol in 7, to represent an
concept definition axiom.
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(1) Add B and —A to L(z) because the expression is a conjunction.

(2) The axiom A = B is the same as B = A because the left-hand side and the
right-hand side of “=” is exchangeable. Therefore, from B = A, we are able to add
A to L(z) by lazy unfolding. This causes conflict. Thus, the concept (B M —~A) with
respect to 7 is unsatisfiable.

However, the reasoning procedure can also be applied as follows:

(1) Add B and —A to L(z) because the expression is a conjunction.

(2) Considering the axiom B = C, add concept C to L£(z) by applying lazy
unfolding,.

Then the L(z) can not be further unfolded, and no conflict occurs. Thus, we claim
that the concept (B M —A) with respect to 7 is satisfiable!

To avoid such kind of invalid reasoning, many reasoners restrict the kind of ab-
sorptions mentioned above. Because of this restriction, some axioms may not be
absorbed successfully. As a result, reasoning performance for such kind of KBs could
be affected significantly.

In fact, the main reason of the above mentioned problem is caused by one-way
reasoning mechanism of lazy unfolding and the required two way reasoning for the
symbol “=” in an axiom. We can easily solve this problem by rewriting the axiom
{A = B} into two rule axioms {A = B;~A = —B} instead. Of course, we have other
ways to rewrite this axiom. For example, we can also rewrite it to {B = A;-B =
—A} as well. We can also easily prove that the above pairs are also valid absorptions
of the axiom A = B. Therefore, in this thesis we do not use the symbol “=" but use
only the symbol “=" to represent axioms in 7, to emphasize one-way reasoning.

Moreover, there are also other ways to solve this kind of problem. For example,
we can redefine the rule for lazy unfolding as: whenever the symbol in 7, is “=" for
an atomic concept A, we replace both A and —A in £(z) by their definitions. In the

above example, we replace A by B and —A by —-B whenever we have A or —A in
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L(x).

4.4.2 Non-determinism of Absorption Results

By applying trigger rules, i.e., axioms with “="_ instead of axioms with “=" in a
TBox unfoldable part, we are able to eliminate above-mentioned problem with ab-
sorption. However, the non-determinism of absorption results still makes absorption
effectiveness very unpredictable. We say the non-determinism of absorption means
the result of absorption is undeterminable. That is, we may have several choices to
rewrite 7, to 7,,.

The reason of absorption non-determinism is obvious. For example, to rewrite
7, = {~AU B} (A and B are atomic cdncepts) to 7,, we have two choices: either
absorb it into {A = B} or {B = —A}. The more complex a TBox is, the more
possible absorption results we may have. Please see the following example.

Let T be a TBox, T =T, U7, and 7, = ¢, T, = {~AUB; AUC}; A, Band C
are all atomic concepts.

By applying the absorption rules described in previous sections, we can easily see

that the following absorption results are all valid absorptions:

(1) Ty = Ty Uy
Tu={A=B,-A=C,-B=C}; T =¢

(2) Ty = Typ U T
T2={A=B;-A=C;,-C=B};Tp=¢

(3) T3 = T3 U Tys:
Ts={"B=-A4-A=C}; Tz=¢

(4) Ta = T U Tya:
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Tu4={_'B:>_|A;_'C:>A}; 7;]4=¢

(5) Ts = Tys L T gs:

Any of the above absorption results completely absorbed 7; to 7,. The many
possibilities of absorption results may increase in the presence of roles since we may
have more options to absorb an axiom by applying either domain and range absorption
or concept absorption. For example, the axiom {ATM3R.B C C} can be rewritten to
{3R.B C C U -A}. This axiom can be absorbed by using extended role absorption
to Domain(R,YR.—~B L C U —-A). Obviously, this axiom can also be rewritten as
ALCVR.(-BUC). Thus, we can absorb it as the axiom {A = VR.(-B U C)}.

Most modern knowledge bases are very complex. For example, the GALEN KB
has thousands of atomic concepts, while the TAMBIS KB has hundreds of atomic
roles. Among so many absorption choices, which one is the best? How to find the
“best” absorption for a specific KB? These two questions are the main topic of the

following sections.

4.4.3 Absorption Cycles

In Lemma 4.3 and Lemma 4.4, to absorb an axiom from 7, sometimes we also
need to push back another axiom into 7;. The action of “push back” may cause
absorption cycles. For example, the following is a TBox T = 7, U 7y:
T.={A= B;B=A;}
T,={T C BUD}
By applying Lemma 4.3 to absorb 7, the first step is to add =B = D to 7,, and

put T C DU A back to 7,. Then absorb -A = D to 7, and put back T £ BU D to

7,. Thus, a cycle occurs.
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To solve this problem, a fizpoint or block needs to be considered. For example,
because the axiom T & B U D that needs to be put back to 7, is not a new axiom,

we can just discard it. Therefore, the absorption result of 7 is as follows:

T.={A= B;B= A;,-B= D;-A= D}
T, =

4.5 Absorption Algorithms

4.5.1 Standard Absorption Algorithm

In previous sections, we have discussed absorption and its complexity. In this section,
let us first take a look at the absorption algorithms already widely applied in many
reasoners. We refer to such kind of absorption algorithm as standard absorption
algorithm. Axiom absorption in a standard absorption algorithm relies on the form
of an axiom. For example, if an axiom has the form (A C C) in 7; where A € NC. If
neither A nor —A has a rule definition in 7, then this axiom can be easily absorbed
into 7, as (A = C). Based on this idea, the formulas described in Figure 10 are

widely employed in standard absorption algorithm to absorb GCI from 7, to 7.

{C1|—|C2 C D} == {Cl = —'CQUD} or {CQ = -C1 UD}
{C‘-__—Dl,CEDz} = {C=>D1HD2}
{C =D} <~ {C=D,D=C}

Figure 10: Axiom equivalence used in absorption

The standard absorption algorithm can be summarized as follows (see [9] for more

details).

Given a KB divided into an unfoldable part T, and a general part T,. If an aziom
has the format AC C or A= C in T where A € NC and neither A nor A occur
on the left-hand side of T,, then put this axiom into T,. Otherwise, put this axiom

into T,. Then, initialize a set 'Z; to be empty, and convert any arioms of the form
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{(C = D) € T,} into an equivalent pair of axioms C € D and ~C & D first. Then,
apply the following steps to all axioms in Ty in the form of C T D:

For each C T D € T,

(1) Initialize a set G = {—~D,C}, representing the aziom in the form T C - N
{-=D,C} (i.e. TC DUSC).

(i) If for some A € G, there is a rule definition (A = C) € T, then absorb the

general aziom into a primitive definition axiom so that it becomes
A= THC, -1 (G\ {A})},

and exit.
(13) If for some A € G, there is no rule definition in T, then absorb the general

axiom into the primitive definition axiom so that it becomes
A=-1(G\{4}),

and exit.
(iv) If for some A € G, there is an aziom (A = D) € T, then substitute A € G
with D

G — {D}UG\ {4}

and return to step (ii).
(v) If for some —=A € G there is an aziom (A = D) € T,, then substitute ~A € G
with =D

G — {-D}uG\{-4}

and return to step (ii).

(vi) If the axiom can not be absorbed, add this axiom to Tg' and exit.

Upon experimental results, the above mentioned absorption algorithm has a signif-

icant gain in optimizing the reasoning performance compared to reasoning without
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absorption. However, in some cases the absorption algorithm itself may be also time-
consuming. For example, in step (iv) and step (v) we are substituting an atomic
concept by its definition. For a very complex KB, the substitution itself may take
some time. To solve this problem, in RACER, an enhanced absorption algorithm is
employed. That is, a “split” algorithm is applied instead of a substitution if there
are axioms left in 7, containing the atomic concept which has a complete definition
in 7,. For example, a concept definition axiom A = C can be split into two axioms
{A = C}and {T C AU-C1}, the first axiom can be used to absorb any general axiom

containing —A; the second axiom can be put back into 7; for further absorption.

4.5.2 Criteria of the “Best” Absorption

It is obvious that both the standard absorption algorithm mentioned above and the
enhanced absorption algorithm employed by RACER are non-deterministic. In the
first place, there may exist multiple choices to divide 7 into unfoldable and general
parts. For example, if 7 contains more than one complete definition for a concept
name A, then one of them must be selected as a definition in 7, while the others
are treated as GCIs in 7;. The criteria of which one should be selected has never
been specified. Moreover, the intuition behind the non-deterministic of the standard
absorption algorithm is that the target GCI may contain multiple atomic concepts
into which this axiom could be absorbed. For example, for a GCI: {T C —A; LU-As}
in 7y, and two axioms {A; = C} and {A, = D} in 7T,, then the axiom could be
absorbed into either A; to give A = C M —A; or into A, to give Ay, = DM —A,.
In short, the result of the standard absorption algorithms depends on the axiom
order and axiom format in the target KB upon the steps specified by the algorithm.
Moreover, there is an implicit restriction in the above mentioned algorithms which
prevents both A and —A from being absorbed into 7,.

Now, for a specific KB, by following the absorption formula we may have many
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absorption results. Since the basic motivation is to improve reasoning performance
for a specific KB, then among all the possible absorption possibilities, which one is
the best?

To answer this question, we have to go back to the underlying idea of absorption
and tableau algorithms. As we know, the root cause of the inefficiency of tableau al-
gorithms is mainly caused by the disjunctions in the specific KB; while the efficiency
of absorption is that it “absorbs” axioms from 7, to 7, which avoids the unnecessary
unfolding and decreases the number of disjunctions in 7;. Therefore, based on the
above analysis, we propose a criterion for the “best” absorption is: the best ab-
sorption is the one which contains the least number of disjunctions in 7,°.
Based on this criterion, in the following sections, we discuss some other absorption

algorithms which will improve reasoning performance.

4.5.3 Heuristic Absorption Algorithm

As we have discussed above, the standard absorption algorithm depends on the axiom
order and axiom format in the target KB, while the content of a KB is irrelevant to
the KB format. Thus, we can not expect that the standard absorption algorithm
generates the “best” one, i.e., it contains the least number of disjunctions in 7.
Therefore, an intuition is that the “best” absorption algorithm has to be independent
of the format of the KB. To develop an absorption algorithm irrespective to the
format of a TBox, the intuition is that we should evaluate an axiom absorption by
considering the entire TBox instead of one specific axiom. In addition, a possible good
way to find the “best” absorption is to heuristically absorb as many general axioms
as possible into 7,,. To simplify our discussion, the objective of heuristic absorption
algorithms that we will discuss in the following sections is to reduce the number of

axioms instead of the number of disjunctions in T;. We leave the topic of heuristic

5Upon experimental result, the criterion we propose here may not always be the “best” absorption regarding to
reasoning. Please refer to Chapter 7.
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absorption algorithms purely based on the number of disjunctions in T} to our future
work (see Chapter 7).

The first step of the heuristic absorption algorithm is normalization and sim-
plification as discussed in Chapter 3. In this step, we first convert all normal-
ized axioms from a TBox 7 into 7, , and 7, is initialized to be empty. We do
not divide a TBox in the first step because in some KBs, even though the ax-
iom can be put in 7, by using the standard absorption algorithm, the axiom may
not be in fact an “unfoldable” one (see Section 4.5.1). For example, assume a
TBox T={Ao = BoMCo M Dy,By = AgM Ex M Fy, T £ By LI 3R,.C1} (suppose
Ag, By, Co, Dy, Ey, Fy are all atomic concepts). The first two axioms would be directly
put in T, by standard absorption algorithms. Thus, this TBox becomes 7 = 7, U7y,
T, ={Ao = BN CyMNDy,By = AsMEy M Fy}; T, = {T C By U3R;.C1}°. The
only possibility to absorb the third axiom is to absorb it into By. Unfortunately, By
can not be directly absorbed based on the standard absorption algorithm since By
already has a complete definition in 7,. However, if we simplify and normalize the
entire TBox first, then apply absorption algorithm to the entire TBox, we may be able
to absorb all axioms from 7, even by following the standard absorption algorithms.

First, rewrite the TBox to the following by simplification and normalization:
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(6){FoU—By};

SWe keep the symbol “=” for the standard absorption algorithms in 7Ty, since it is still being used in other papers.

55



(7){30 U 3R101},

From axioms (1) and (2), we conclude that concept Ay = By. This axiom can be
added into the unfoldable part 7, and the axioms (1) and (2) should be removed
from 7,. At the same time, we are able to replace all occurances of Ag in 74 by By.

Now the TBox 7 becomes’:

T,

(1){4o0 = Bo};
(2){~A¢ = —Bo};
1y

(1){Co L =~Bo};
(2{Do U ~Bo};
(3){Eo U ~Bo};
(4){FoU~Bo};
(5){Bo U 3R;.C1 };

Now this TBox 7 can be completely absorbed as the following:

T.:

(1){Ao0 = Bo};
(2{~Ao = ~Bo};
(3){~Co = =Bo};
(4){—~Do = —Bo};
(5){—~Eo = —Bo};
(6){~Fo = ~Bo};
(7){—Bo = 3IR,.C1};
1, = ¢

“We do not use the symbol “=” in Ty, in the following discussions to avoid ambiguity.
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If we analyze the underlying idea for absorption in detail, we can find that there
are two directions to absorb more axioms from 7, to 7,: one direction is to absorb
as many axioms as possible in 7;; the other direction is to reduce the number of
axioms in 7, as much as possible. The fundamental idea of the latter direction is
based on the absorption restrictions: the maximum number of axioms in 7, depends
on total number of atomic concepts in the target TBox if we do not consider the role
absorption. Therefore, if we reduce the number of concept names occurring on the
left-hand side of axioms in 7, i.e., the number of axioms in 7,, we may be able to
absorb more axioms from 7,. Eventually, we may be able to reduce the number of
disjunctions in 7, to improve the reasoning performance. From this point of view, let

us discuss the algorithms for this direction first. Please refer to the following example:

A given TBox T = 7, U7 is given as follows:
7., contains:

(1)(A = B)

(2)(C = B)

B)(B = (AUC))

7, contains:

(1)(TC AUCU3IR.D)

It is obvious that the axiom in 7; can not be further absorbed by the standard
absorption algorithms because all of A, B, C already occur on the left-hand side of
T.. However, if we analyze the axioms (1) and (2), we can rewrite them to one axiom
such as {AUC = B}. Then let us consider axiom (3), and we can rewrite axiom (1),
(2), (3) to another axiom {B = (AU C)} or a pair of axioms {B = (AU C)} and
{-B = (mAN-C)}. Now the number of axioms in 7, can be reduced from three to
two. Therefore, axiom (1) in 7, can be easily absorbed into 7, as {~A = CU3R.D}
since neither A nor ~A occur on the left-hand side in 7, any more. Now the TBox 7

can be completely absorbed. We refer to this type of absorption as primitive definition

37



to complete definition conversion.
To be more precise, the absorption algorithm procedure of primitive definition to

complete definition conversion can be summarized by the following steps.

Given an arbitrary TBox 7. Suppose A is an atomic concept.

1. Simplify and normalize T. After normalization, T, = O and T, contains a set
of axioms in the form T E C U D where C and D are either atomic concepts
or modal expressions. Then each aziom in T, can be erpressed as a set. For
example, the set G = {C, D} represents the axiom in the form T C CU D. As
a consequence, = G represents a set containing the concept ~C M —D. Therefore,
in each ariom of 1y, it only contains A, or A, or neither. We also need a

function con() which returns for a given set G its represented concept, e.g., if G

= {C, D}, then con(G) returns C U D.

2. Initialize two sets Ty, , Ty, to be empty and consider A the chosen (fized) atomic

concept.

3. For any set G, if A € G, then remove G from T, and add an element —(G\{A})
to T,,; if A € G, then remove G from T, and add an element G\{—A} to Ty,;

otherwise, keep G in Ty.
4. For each element Gy in T,,, if G3 also appears in T, ,
g2 g1

(a) remove Go from both 1, and Ty,;
(b) add the aziom {A = con(G2)} and {—A = con(—Gz)} to 7,.
5. For each element set G left in Ty, , create a new set ~Gy U {A} and put it back

into Ty; for each element set Gy in T,,, create a new set Gy U {—A} and put it

back into Ty.

The above algorithm can be further improved in step (4) by checking more than

one element sets in GGo. The gain is obvious if many axioms can be absorbed into
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one concept definition. However, in the worst case, if the algorithm fails to find
a complete definition for a specified atomic concept, the performance may not be
improved significantly.

Now let us consider how to absorb axioms from 7, in a more general way. As
we have discussed in previous sections, there usually have more than one choice
for absorbing a specific axiom from 7; to 7,. For example, in the following TBox

7 =7T,U 7T, suppose A, B,C, D, E are all atomic concepts:

T.=¢

7, contains the following axioms:
(1) TC(RALCO),

(2) TC(BUD)

(3) TC (~BU~C)

(4) TE(-AUE)

To absorb axiom (1), we have at least two choices: absorb it into A = C or -C = -A.
The intuitive question is: which one is better? One intuitive response is that we should
choose the one which absorbs more GClIs, i.e., more disjunctions from 7; upon the

criterion we set in the previous section®

. In this case, it is obvious that absorbing
the axiom into A = C' is better than absorbing it into =C = —A because in this
TBox, there are two axioms contain —A but only one axiom contains C. If we absorb
axioms based on —A, we can reduce two axioms from 7. Thus, the concept occurrence
frequency in 1, is an indicator to tell how many axioms could be absorbed. However,

an algorithm simply based on atomic concept occurrence frequency in 7, may not

always be the best choice. Please consider the following example TBox 7 = 7, U T

7, contains the following axioms:

(1) B= A;

8To be more precise, the number of axioms may not necessarily be directly proportional to the number of disjunc-
tions in 7. We leave the discussion about this topic to our future work.
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2)C = A

7, contains the following axioms:
(1) TC (~ALCO);

(2) TC (-BLU-C)

(3) TEC(-AUE)

In the above example, if we use the same criterion as we used in the above example
to absorb axiom (1) and (3) at the same time because there are two axioms contain
—A, we may find out that axiom (2) can not be absorbed. To absorb as many axioms
in 7, as possible, we developed the following heuristic absorption algorithm as an ex-
tension to the above mentioned primitive definition to complete definition conversion.
To simplify our following discussions, we refer to this absorption algorithm as basic

absorption algorithm.

Given an arbitrary TBox 7 = 7, U T;. 7, contains a set of axioms in the form of

A = C. 7, contains a set of axioms in the form of T C D.
1. Simplify and normalize T as described above.

2. Suppose c, is the total number of appearance of A inTy; and cy, is the total number
of appearance of ~A in T,. Among all atomic concepts A(cp,cn), tgnore the
concepts where both c, and c, equal to zero. Then divide these atomic concepts
into two groups: the concepts in the first group where one of ¢, or c, is 0; put

the remaining atomic concepts in the other group.

3. Select the atomic concept from the first group which has the greatest value among
all the c's and c,’s and absorb all the azioms in Ty which contain this atomic

concept® to T,,.

4. Repeat the steps 2 to 4 until there is no item left in the first group.

SIf the greatest value is cp, then the selected concept is A. Otherwise, the selected concept is —A.
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5. Select the atomic concept from the second group with the greatest value among
all the ¢,'s and c,'s, then absorb all the axioms in T, which contain this atomic

concept'® to T, if these azioms can be absorbed.

6. Repeat the steps 2 to 6 until there is no item in the second group or no more

concepts can be absorbed.

Theoretically, the above mentioned heuristic absorption algorithm is based on
the entire TBox, and in each absorption step, it tries to absorb as many axioms as
possible. Therefore, compared to the standard absorption algorithm, it is supposed to
be better. However, similar to the standard absorption, there still exists the implicit
restriction that A and —A are not allowed to occur at the same time on the left-hand
side of 7,. This kind of restriction limits the maximum number of axioms in 7,
to be the number of atomic concepts in the TBox. In fact, this limitation can be
relaxed because of Lemma 4.3 and Lemma 4.4. Thus, we can develop an extended

absorption algorithm in addition to the basic heuristic absorption algorithm.

4.5.4 Extended Heuristic Absorption Algorithm

Based on Lemma 4.3 and Lemma 4.4, we are able to develop an absorption algo-
rithm by allowing both positive and negative atomic concept names to occur on the
left-hand side of 7,,.

Consider the following example (A, B,C € NC):

T=T,U7T;

T, = ¢

7, contains the axioms:
TCE-AU-BU-C,
TCAUBUC,

T E BU4dR,.Cy,

10Same as in the step 3.
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T C CU3R,.0y,
TC AUVR;.Ch

Let us apply the basic heuristic absorption algorithm directly since no obvious com-
plete atomic concept definition can be found.

The statistical values can be calculated as the following,

A(2,1), B(2,1), C(2,1), C1(0,0), C2(0,0)

Suppose we absorb axioms containing A first since no atomic concepts falls in the
first group for the basic heuristic absorption algorithm. The TBox is as follows after

the absorption,

T=T,U1;

7, contains:

-A = (BUC)NVR;.Cs;
7, contains:
TE-AU-BU-C,

T C BU3R,.Ch,
TCCU3IR,.Co

The statistical values are the following!! for the above TBox,
A(0,1), B(1,1), C(1,1)
Since —A already has a rule axiom, the axiom containing —=A can not be absorbed.
Therefore, we check the atomic concepts in the second group. Suppose we absorb
axioms containing —B in 7, this time, the TBox is as follows after the absorption,
T=T,U1,;
T, contains:
-A= (BUC)MNVR;.Cs,
B = -AuU-C;

7, contains:

113We ignore the concepts where both ¢, and ¢, equal to zero.
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TCBUAR.Cy
TCCUIR,.Co

The statistical values are as the following for the above TBox,
B(1,0), C(1,0).
Eventually, this TBox can be absorbed as follows by applying the basic heuristic

absorption algorithm,

T=T,U7T,;

7T, contains:

-A = (BUC)NVR;.Cs,
B=-AU-C,

—C' = 3dR,.Cy;

7, contains:

TC BUAR,.Cy

There is still one axiom in 7, that can not be absorbed . If we apply Lemma 4.3

and Lemma 4.4, the above absorption can be further absorbed as the following,

T=T,UTg;
7T, contains the axioms:
(1)-A = (BUC)NVR3.Cs
(2)B=-AU-C
(3)-C = 3R,.Cs
(4)-B = 3R,.C,
(5)C = dR;.CLUA
(6)A = 3AR;.C; U AR,.Cy;
7, contains the axioms:
(1)T C 3R,.C1 U 3AR,.C2 LIVR;.C;
(2)T C3R,.C;U3IR,.C;UBUC
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In fact, axiom (2) in 7, is redundant. In the original TBox, we already have an axiom
{T € BU3R,.C1} which was absorbed into axiom (4) in 7, and in axiom (2) in 7
we also have the segment { BUJR,.C;}. According to the formula (AM(AUC) = A)*?
provided in Section 3.2, axiom (2) in 7y can be ignored. Moreover, axiom (1) in 7
can also be absorbed by using role absorption (see Section 4.3). Thus, the above

TBox can be completely absorbed as the following,

T=T,UT;
7., contains the axioms:

(1)-A= (BUC)MVR;.Cs

(2)B=-AU-C

(3)-C = dR,.C,

(4)-~B = 3R,.Cy

(5)C = 3R,.C;UA

(6)A = 3R;.Cy U 3AR,.Cy;

(7)Domain(R3, AR;.C; U IR,.Cy LVR;.C5)

Iy=¢

Unlike the basic heuristic absorption algorithm, the extended heuristic absorption
algorithm does not need additional calculation steps. We can see it as an extension
to the primitive definition to complete definition conversion and the basic heuristic
absorption algorithm. To an arbitrary TBox, after we apply the above two algorithms,
if there are still some axioms left in 7, we simply apply Lemma 4.3 and Lemma
4.4 to the residual axioms in 7,. If necessary, we apply role absorption as well.

It worth to mention that the extended heuristic absorption algorithm may not
terminate in some cases. The root cause is that during the application of Lemma
4.3 and Lemma 4.4, an additional axiom may be introduced to 7;. If the newly

introduced axiom is “simpler” (less disjunctions introduced) than the axiom absorbed,

121 this case, we can replace A in the fomula with {T = BU3R;.C1} and C with {IRy.Ca L C}
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it would make 7, smaller. Otherwise, it may make 7, more complicated and cause
non-termination eventually. We leave the topic of heuristically applying Lemma 4.3

and Lemma 4.4 to our future work.
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Chapter 5

RACER Preprocessor

Implementation

In the previous sections we have defined the notion of a valid absorption. We also have
discussed how to explore absorption to optimize reasoning tasks. In addition to that,
we presented several improved absorption algorithms. In this section, we discuss the
problem of how to implement these algorithms for real applications. Moreover, we
also discuss the problem how to “connect” the newly implemented algorithms with
reasoners such as RACER.

To achieve this goal, we will first discuss the system architecture of a RACER
preprocessor designed to compare the performance of different absorption algorithms.
Then, based on this architecture, we introduce the logic representation and logic
operation using the OO model to implement the normalized TBox data structure
proposed in Chapter 3. The test result and conclusion are discussed in the next

chapter.
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5.1 Implementation

5.1.1 Architecture

To check the effectiveness of the newly developed algorithms, we compared them
with the ones currently employed by RACER. Firstly, we used a customized RACER
version with a disabled absorption module. We developed a new external absorption
module (as a stand-alone program) by implementing the algorithms described above.
Each of our test KBs is processed by the external absorption module. Its output
is used as input to the customized RACER version. To test how different absorp-
tion algorithms could affect the reasoning performance, we developed a configuration
panel. Together with the above mentioned modules, we constructed a preprocessor
for RACER.

The reasoning system architecture with preprocessor is shown as follows:

( 1.Input KB “
6. Configuration 2. RACER
panel preprocessor

1

( 3. Intermediate KB (

4. Customized
RACER

5. Reasoning report

Figure 11: Architecture of the reasoning system with preprocessor
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5.1.2 Interface Design with RACER

We decided to use an intermediate file as the interface between the RACER pre-
processor and RACER. There are two reasons for this. One reason is that RACER
is implemented in LISP. RACER’s internal data structures are very different from
those of RACER preprocessor which has been developed in JAVA. The other rea-
son is the possible flexibility of integrating it with other systems. Thus, to keep the

independence of these two systems, the best solution is to use an intermediate file.

5.1.3 Knowledge Representation by Using OO Design

The OO (object oriented) data model is also suitable to represent knowledge. In fact,
the inheritance in OO model is very suitable to represent the IS-A relationship in
a DL based KB. If it is designed properly, the other attributes in OO model such
as encapsulation, polymorphism [12] can also be employed to better represent a KB
model.
A typical OO based knowledge representation model applied in our system is shown in
Figure 12. In this figure AtomicConcept, CompoundConcept, NumberRestrictionCon-
cept, and RestrictionConcept are all concepts since they all inherit from the Class
[3] AbstractConcept which is an implementation of the Interface [3] Concept. In
addition, we use attributes and methods of each Class to represent their differences
and the available operations that could be performed. For example, the results of the
methods such as negation, disjunction and conjunction are all Concept even though
the implementation of those operations might be different for different Concepts. Sim-
ilarly, the Interface Role is an abstraction of the atomic role in DL which is a required
attribute for the concepts RestrictionConcept and Number RestrictionConcept. A
Role also has some attributes such as domain and range.

From the above description, it is obvious that the above model exactly meets the

requirement to represent the ALCN Description Language [see Chapter 2.
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/ ™

etRange() .. Corcept

Figure 12: UML of concept/role representation using OO model
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Figure 13: OO model! for representing TBoxes

So far, we have discussed the ALCN Description Language representation by using
the OO model. To apply the OO model to solve reasoning problems with respect to
axioms, we need a model to represent T'Boxes as well. The Figure 13 shows the OO
design model we used in our system.

A TBox can be considered as a container containing a series of containers such
as RoleContainer which contains rolenames, ConceptContainer which contains all
conceptnames, Primitive AriomContainer which contains all absorbable axioms,
and General AriomContainer which contains all GCls. Each container is in fact

a Set [3].

5.1.4 Performance Considerations

Since performance is one of our main considerations, and the OO model emphasizes

on the simplification of representation and implementation, the trade off between
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implementation and performance has to be considered.

To improve the system performance, we applied two main technique: hashing
and caching. To apply the hashing technique, we designed a hash code generation
algorithm for each possible object of interest to accelerate the searching speed in a set
container. For caching, we keep an instance for possible reuse in memory to prevent

garbage collection [3] by the JAVA system.

71



Chapter 6

Case Study

In this chapter, we first illustrate the algorithms we developed in Chapter 4 by
using some example cases. To check the effectiveness of these newly developed al-
gorithms, we compare them with the ones currently employed by RACER through
the preprocessor we introduced in last chapter. Each of our test KBs is processed
by the external absorption module. Its output is used as input to the customized
RACER version. We also process each original test KB with the standard RACER
version. In our graphs we compare for each test KB the TBox classification time of
the customized RACER  version (denoted as “enhanced”) with the standard version

of RACER (denoted as “normal”).

6.1 Absorb Primitive Definition to Complete Definition

The first pattern we are going to discuss is the kind of TBox 7 = 7, U 7, that has

the following format (assume A,B,C,D are all atomic concepts):

T.={A=B;C = B;B= AUC}
7,={TC AUCU3R.D}

The axioms in 7, can not be absorbed by using the standard absorption algorithms

illustrated in Chapter 4 since both A and C' already occur on the left-hand side in
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T... However, by converting 7, into 7, = {—B = (=AMN-C); B = AUC}|see formula
(11) in section 3.2], the above mentioned TBox therefore can be easily absorbed into

the following TBox T :

7. ={B= (AuC);-B = -AN-C;-A = CU3IR.D}
T,=¢
The above example can be seen as a kind of pattern which can be completely ab-
sorbed by the “enhanced” absorption algorithm. To compare the effectiveness of the
“enhanced” absorption algorithm with the “normal” absorption algorithm, one of the
best way is to compare the reasoning performance by replicating the same pattern.
The classification time are as follows:
No. of repeated patterns 20 30 50 65 80 95
Normal absorption (s) 257 17.80 64.89 174.33 380.31 732.67

Enhanced absorption (s) 0.06 0.10 0.18 0.23 0.30 0.39

- 1000 W Normal
F = = «Enhanced
2 100 ;
3]
10 1
11
0.1 1 PR L
- -
0.01 —r T —_ T T T T v
20 30 40 50 60 70 80 20 100

Pattern repeating times

Figure 14: Classification time for primitive definition to complete definition
In the above example, we absorbed three primitive axioms from 7, into two complete
concept definition axioms in 7, in order to absorb more axioms in 7. It is intuitive to
come up with the idea of absorbing more primitive axioms into two concept definition

axioms. Let us consider the following example.
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ATBox T =T, UT,.

7T, contains the axioms:

And 7, contains the axioms:

(1) TC -AU-B;
(2) TCAUBUCUD;
(3) TC ~AL-C
(4) TC-AU-D

As we discussed in the previous section, the traditional absorption algorithm can
not fully absorb all axioms. By applying the enhanced algorithm, we are able to

absorb it into the following format:

7, contains:

(1) B= 3R;.M;
(2) C = 3R, M,

(3) D = 3R3.M;

4) A= -BnN-Cn-D
(5) A= BuUCUD

Ty=¢
Now let us check the result:

No. of repeated patterns 20 30 50
Normal absorption (s) 16.52 133.89 521.96
Enhanced absorption (s) 0.07  0.12 0.20
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Figure 15: Classification time for primitive definition to complete definition — to absorb more prim-
itive axioms

Compared with the result in Figure 14, a better performance improvement is achieved.

6.2 Heuristic Absorption

6.2.1 Basic Heuristic Absorption Algorithm

As we have discussed in Chapter 4, this absorption algorithm is based on the statis-
tics about the occurrence of atomic concepts. The goal is to absorb as many axioms
as possible from 7;. The heuristic criterion depends on the positive and negative
counters of an atomic concept. If one of those counters is zero, then this atomic
concept will have a higher absorption priority than others. In addition, if two atomic
concepts have one counter with a 0 value, then the concept with the higher value
than the other will have a higher priority for absorption; if all counters are the same
for different concepts, then the absorption priority for these two atomic concepts will
be equal.

Suppose we have the following TBox 7 which consists of the following GCls:

TC-AUB
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TE-CU-DU3IR,;.C1 URy.Cy
TC-DUK

TE-MUN
TCCUDUIR.CtUMUA

First let us absorb the above TBox by applying the standard absorption algorithm.
For the detailed steps regarding to standard absorption algorithm, please refer to

Section 4.5.1. The result is shown as follows:

T

A= B

C = -DU3R,.CiUR,.Cy
D= K

M= N

Ty
TCCUDUIR.CLUMUA

For the last axiom, since C, D, M, A already occur on the left-hand side of 7, this
axiom has to remain in 7.

By following the heuristic absorption algorithm, however, we may completely ab-
sorb this KB with the following procedure for this TBox:

Step 1: Compute the statistics of T, for each atomic concept. The result of the

above example (format is A(cy, ¢,)) is as follows:

Divide the above statistics into two groups (we disregard the concepts where both

cp and ¢, are 0):
B(1,0); N(1,0); K(1,0)
A(1,1); C(1,1);D(1,2);M(1,1)
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Step 2: We give the concepts in the first group a higher priority. By applying this
heuristic criterion, the concepts B, N, K have the same absorption priority. Suppose

we absorb into B first, then we have the following absorption result:

T, contains the following axioms:

-B = -A

T, contains the following axioms:
TE-CU-DUIR,.C; UR,.Cy
TE-DUK

TC-MUN
TECUDU3IR,.C;UMUA

We repeat step 1 and step 2.. The statistics of T, now becomes:
A(1,0); N(1,0); K(1,0)
C(1,1);D(1,2);M(1,1)

Among A, N, K, suppose we absorb into A this time since these three atomic

concepts all have the same priority upon our criterion. The TBox now becomes:

T,, contains the following axioms:
-B = -A
-A=CUDUIR,.Ci UM

T, contains the following axioms:
TCE-CU-DU3R,.Ci UR,.Cy
TC-DUK
TC-MUN

The consequent statistics of T, is updated to:
N(1,0); K(1,0); M(0,1); C(0,1);D(0,2);
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We repeat step 1 and step 2 to absorb D and M. The ultimate absorption result

is the following:

T, contains the following axioms:
-B = -4
-A=CUDU3IR,.C; UM
D= KN (-CU3R,.C1 U Ry.Cy)
M=N

Iy,=¢

The test result of the above absorption is as the following:
Axiom pairs 20 35 50 65 80

Classic absorption (s) 4.89 | 35.14 | 131.13 | 350.37 | 773.31

Heuristic absorption (s) | 0.14 | 0.3 0.94 0.76 1.02

1000 1 —— Normal

— - -Enhanced

CPU  Time

100 1

10 4

0.1 T T =T L§ Y Y

20 30 40 50 60 70 80 90
Pattern repeating times

Figure 16: Classification time for the basic heuristic absorption algorithm

6.2.2 Extended Heuristic Absorption Algorithm

Based on the discussion in Section 4.5.4, the extended heuristic absorption algorithm
can be applied if there are still some GCls left in 7, after the application of prim-

itive concept definition to complete concept definition conversion and basic heuristic
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absorption algorithm. To evaluate the effectiveness of such kind of absorption, we
conducted some test based on the example KB discussed in the Section 4.5.4.

The original TBox is as the following where A, B,C € NC:

T=TUT;

T, = ¢;

7, contains the axioms:

TC-AuU-BU-C,

TCAUBUC,

T C BU3IR..Cy,

TCCUIR,.Cy,

TC AUVR;.Cy

To simplify our discussion, please refer to Section 4.5.4 for the detailed absorption

steps. After absorption, we have the following result:

T=T,U7T,;
7, contains the axioms:
(1)~A= (BUC)MVR;3.Cs
(2)B=-AuU-C
(3)=C = 3IR,.Cs
(4)-B = 3R,.C}
(5)C =3R,.C;UA
(6)A = 3R;.C; U3R,.Cy;
(7)Domain(R3,3R;.C, U 3AR,.Cy UVR3.C5)
Iy=¢
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The experimental result for the above absorption is as follows:

1000 1

CPU Time

10 4

Normal
= = =Enhanced

0.1 T T
20 30 40

50

60
Pattern repeating times

70

80

90

Figure 17: Classification time for the extended heuristic absorption algorithm

Pattern repeating times | 20 | 35 50 65 80
Normal absorption (s) 5.87 | 37.66 | 133.29 | 357.75 | 766.10
Enhanced absorption (s) | 0.48 | 0.50 | 0.56 0.64 0.73
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Chapter 7

Future Work

7.1 The Criteria for Best Absorption

In previous discussion, we have proposed the criterion for the “best absorption” based
on experimental result. The underlying assumption for this criterion is that the rea-
soning performance is mostly affected by the disjunctions in 7, during lazy unfolding.
However, in practice, even though a TBox can be completely absorbed, different ab-
sorption results may cause different performances. Consider a very simple example.

The TBox 7 can be easily rewritten in three formats:

Format 1: All axioms remain unabsorbed, i.e. all axioms are in 7, then
the TBox contains the following axioms:

(i)(T CE-BUA)

(ii)}(T E-C U A)

({li)}(TC-DUA)

(ii(T T -EUD)

(iv) (TC-FUQO)

(iv)(T E-GUB)

Format 2: All axioms are absorbed, the absorption sequence is exactly

the same as the concept hierarchy:
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(i)}(B = A)
(ii)(C = A)
(ii)(D= A
(ii)(F = D
(iv)(F = C)
(iv)(G = B)

)
)

Format 3:All axioms are absorbed, the absorption sequence is exactly
the inverse as the concept hierarchy:

(i) (A= —-BMN-CMN-D)

(ii))(—~D = —F)

(iv)(-C = =F)

(iv)(-B = =G)

By duplicating the same pattern 300 times, the classification performance of each

format is shown as the following:

e

Cpu time {s)
O~ NWEOD ~NDw©D

Format 1 Format 2 Format 3

Figure 18: Classification time for different absorption format

From the above test result, we can see that even though in format 2 and format 3
all axioms are completely absorbed, the reasoning performances are quite different.
Therefore, finding out the criteria for the “best” absorption is still one of our future

research directions.
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7.2 Basic Heuristic Absorption

As we have seen in the examples during the discussion about heuristic absorption,
choices still exist upon the heuristic criterion we setup. In addition, the underlying
idea of our heuristic absorption algorithm is to absorb as many GClIs as possible
which is slightly different from the criterion we defined for the “best” absorption.
Both a better criterion for heuristic priority setting and an algorithm based on the

number of disjunctions in 7, are our future research directions.

7.3 Extended Heuristic Absorption

We have discussed the extended heuristic absorption algorithm which is able to absorb
GClIs from T, to 7, regardless of the left-hand side atomic concept sign restriction?
(see 4.5.4).

Theoretically, we claim that all KBs can be completely absorbed except the kind of
axioms in the form of {3R;.C1LIAR,.Cs } by applying the extended heuristic absorption
algorithm. In this way, lazy unfolding is applicable to most of axioms in a KB.
Therefore, a significant performance improvement should be achieved in application.

Unfortunately, directly applying the extended absorption algorithm to an arbitrary
KB may cause nontermination. The KB BC'S4 and BCS5 are typical examples for
such kind of KB. The root cause of it is due to the newly introduced axiom in 7
during absorption. As we know, by applying Lemma 4.3 and Lemma 4.4 to absorb
axioms into both negative and positive concept names in 7, a trade off is that a new
disjunctive axiom has to be added into 7,. If after absorption, 7, contains less axioms
or less disjunctions, we say the size of 7, is reduced. In fact, not all absorptions reduce
the size of 7;. Thus, nontermination may occur.

To solve this problem, more heuristic algorithms need to be developed in future

1The restriction of not allowing both negative and positive concept names occur on the left-hand side of 7y, at the
same time.
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work to deal with the newly introduced axiom to 7j,.

7.4 Absorption of more Expressive DL

Up to now, all our discussions regarding to absorption are conservatively restricted to
the ACCN DL, but we claim that the results we achieved in the previous sections are
also applicable to very expressive DLs and OWL-DL. To apply the absorption algo-

rithms to very expressive DLs and OWL-DL is one of our future research directions.
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Chapter 8

Contribution

We proposed criteria for the “best” absorption based on experimental experience.
Then, we introduced novel heuristic absorption algorithms. We have demonstrated
how these algorithms work, and how they affect the reasoning performance. In ad-
dition, we have shown that some restrictions applied in the absorption algorithms of
RACER could be eliminated. Therefore, the absorption algorithms are able to be
applied to more general axioms.

We have also implemented the heuristic algorithms by incorporating the optimiza-
tions known from the RACER reasoner. We have illustrated their effectiveness by
analyzing the reasoning performance of RACER when classifying benchmark KBs.
The analysis shows that, not only are the new techniques highly effective, but also
the reasoning performance is not significantly affected by the order and format of the

axioms occurring in a KB.
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