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ABSTRACT

Structure-Oriented Directional Approaches to Video Noise Estimation and Reduction

Mohammed Asaad Ghazal

Video has become increasingly used in television broadcast, Internet, and surveil-
lance applications. The presence of noise in video signals is not only visually unac-
ceptable, but also hinders the performance of video processing applications. Thus,
the interest in researching methods for fast, automated, and robust techniques to
estimate and reduce image and video noise has grown over the years.

This thesis proposes approaches to estimate and reduce additive white Gaussian
noise (AWGN) in video signals that are adaptive to frame structure and noise level.
First, a spatio-temporal method for estimating the variance of AWGN is proposed.
The method divides the video signal into cubes. Cube homogeneity is measured us-
ing Laplacian of Gaussian operators. The variances of homogeneous cubes calculated
along homogenuous plains are used to estimate the noise variance. The Least Me-
dian of Squares (LMS) robust estimator is utilized to reject outliers and produce the
domain-wise noise variance estimate. The domain-wise estimates are averaged to ob-
tain the frame-wise estimate. The proposed algorithm works well for video sequences
with high structure and motion activity with a maximum estimation error of 1.7 dB.

The thesis then proposes a framework for spatial adaptive multi-directional fil-
tering of AWGN in video frames and adaptive multi-directional Sigma and Wiener
filters. The proposed multi-directional Sigma filter achieves gains in the Peak Signal
to Noise Ratio (PSNR) of up to 4.8 dB in real-time. The proposed multi-directional
Wiener filter achieves gains in PSNR of up to 5.6 dB and is well suited for offline ap-
plications. The structure preservation capabilities of the proposed filters are studied

using the Modulation Transfer Function.
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Chapter 1

Introduction

1.1 Motivation

The demand for visual information is increasing on daily basis. Statistics Canada
revealed that Canadians spent 21.6 hours per week watching television in 2002 [6].
Watching television at home is not the only form of daily interaction we have with
video. For example, we record and watch video on the move with camcorders, mobile
phones, portable televisions, iPods, and portable DVD players.

The rapidly increasing interest in visual information (or more specifically video)
triggered a move from the analog to the digital domain spawning in the way many new
digital video processing opportunities. Academia and the industry are able to realize
many of these opportunities in the form of a wide range of video-related services
and technologies. For example, consumers expect to watch high-quality television
and record their favorite shows on the smallest amounts of storage or they want
to be able to watch PAL DVDs on NTSC television sets and vice versa. Internet
users want to search databases of entertainment videos for specific shows or scenes of
interest. Security and law enforcement agencies require extracting significant portions

of surveillance videos and querying them by events. Film makers need to restore and
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preserve motion pictures and video tapes recorded over the last century for their
historic, cultural and artistic values.

In all mentioned video processing applications, noise is considered to be an un-
desirable phenomena. For example, video display devices with visible noise are un-
acceptable. Moreover, uncorrelated noise consumes unnecessary bandwidth in video
compression. Video motion estimation algorithms suffer from noise interfering with
the estimation process. Similarly, Video object segmentation algorithms may mis-
classify backgrounds and objects due to noise. Since noise is inevitable, the presence
of noise must be accounted for through adaptation, preprocessing or post-processing.

Video noise estimation and reduction are used countermeasures against noise.
They stem from a branch of video processing referred to as Video Quality Enhance-
ment. As can be seen from Fig. 1.1, video noise estimation and reduction fit into
the preprocessing and/or the post-processing stages of typical video processing sys-
tems. Information about the noise process (e.g., noise variance) is estimated in the
video noise estimation stage and relayed to the video noise reduction stage which may

utilize this information to tune the noise reduction process for better performance.

Video Communication System

Camera o
o] | =
f : " o
1 Video L. Video -
; . ENncoder bos Transmission p Decoder |-
/| Enhancement " uhl * 4 Enh t -
! \ 4 —
/ “\ / \‘\ Wonitor
4 i \
\ l
‘ / \
Noise | | Noise Nolse | | Noise
Estimation Redugstion Estimation Reduction

Figure 1.1: Video noise estimation and reduction in a typical video communication
system.

The need for fast, accurate and robust video noise estimation algorithms rises from
the fact that many video processing algorithms such as compression, deinterlacing,
motion estimation and file format conversion require a priori knowledge of the noise

present in the signal in order to adapt their parameters and improve performance. For
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example, noise reduction filters can be tuned to perform better with a priori knowledge
of the noise. Noise reduction filters themselves have become integral components
added to video applications to improve the overall performance. Different applications
bring forth different requirements for noise reduction filters. For example, with the
emergence of new image and video products and services, such as in mobile devices,
digital cameras and iPods, rises the need for real-time noise reduction filters with
high algorithmic speed, low memory consumption, and ability to handle variable
noise levels. Offline applications are less interested in algorithmic speed or memory
consumption and more interested in producing high gain in quality (e.g., PSNR)
while still preserving high frequency image or video content such as fine details and
structures.

This thesis proposes noise estimation and reduction algorithms tailored for the re-
quirement and characteristics of digital image and video signals. The noise estimation
algorithm utilizes spatio-temporal information present in video signals to estimate the
noise level. The noise reduction algorithm utilizes information about the noise level

to adapt the filtering process and achieve high gain in video quality.

1.2 Background

This Section first introduces the common types of noise to affect video signals. It
then moves to describe the adopted video noise model and quality measures. Finally,

it gives an overview of the basic methods for video noise reduction.

1.2.1 Types of Noise

Noise in this thesis refers to unwanted stochastic variations as opposed to determinis-

tic distortions such as shading or lack of focus. Image and video signals are affected by
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noise regardless of the precision of the recording equipment. They may be corrupted
with noise from various sources such as camera noise, shot noise from electronic hard-
ware and the storage on magnetic tape, thermal noise and granular noise on film [7].
Impulse noise is also added through bit errors during signal transmission. When the
signal is transmitted through analog channels, Gaussian noise is another form of noise
to corrupt the signal. Image and video compression standards operate on the block-
level and introduce signal or motion discontinuity along block boundaries or blocking

artifacts [8].

1.2.2 Video Noise Model

The noise signal can be added to the video signal (i.e., additive noise) or multiplied
with the video signal (i.e., multiplicative noise). Noise can also be signal dependent
or signal independent. Moreover, The noise signal is classified as white or color noise
based on its spectral properties. Usually, the noise component results from a mixture
of contributions from various noise sources. In practice, the aggregate effect of noise is
modeled as an additive white Gaussian noise (AWGN) process [7,9,10] with zero mean
and variance a% that is independent from the ideal uncorrelated video V. Accordingly,

the corrupted digital noisy video signal is given by

Vo=V +n, (1.1)

where 7 is the added noise component. The noise estimation problem now reduces to

estimating the variance of the noise, 0727, which is sufficient to characterize the noise
process. The noise reduction problem reduces to obtaining the best possible estimate

V of the original signal V' given only V.
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1.2.3 Video Quality Measurement

To assess the performance or a noise estimation algorithm or measure the gain by a
noise reduction algorithm, a measure of the quality of a video signal must be defined
first. Image and video quality assessment is not a trivial task and is still an ongoing
research process. The most commonly used measure in video processing literature is

the Peak Signal to Noise Ratio (PSNR) [11] given by

(255)2
Z (‘/77(7’7.77 n) - V(iaja n))Q’

VA

PSNR = 10 - log (1.2)

where (7, j,n) is the spatio-temporal coordinate of the signal element or pixel. The
PSNR gives a measure of the improvement in Signal-to-Noise (dB). Contrary to the
Signal-to-Noise Ratio (SNR), it is independent of the signal. Despite this, the PSNR
is still unweighted with respect to visual perception. In other words, while the PSNR
reflects the improvement in the quality of a video signal it does not necessarily reflect
human subjective perception.

We can obtain the noise PSNR (i.e., PSNR,)) from the noise variance 072, using

(255)2
PSNR,, = 10 - log — (1.3)
"
and the noise variance 0727 from the PSNR,, using
(255)2
%) = —PSNR, (14)
107

The Modulation Transfer Function (MTF) measures the degradation of object
contrast due to blurring as a function of the spatial frequency. It will be used in this
thesis to assess the structure preservation capabilities of noise reduction filters. The

MTF can be calculated as the Fourier transform of the first derivative of the Edge
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Spread Function (ESF) which is defined as the response of the system to an ideal
edge. The ESF can be approximated from the Cumulative Distribution Function
(CDF) of the signal and the fact that the locality from which the CDF was estimated

represents a hard edge.

1.3 Summary of Proposed Methods

This thesis proposes approaches for estimating and reducing AWGN in video signals.
First, a method for AWGN variance estimation is proposed which utilizes spatial,
temporal and spatio-temporal information independently. The algorithm operates on
units of 3D portions of the signal or cubes. The video is divided into cubes and the
spatial, temporal and spatio-temporal homogeneity of the cubes are measured using
3D Laplacian of Gaussian operators. The variance of a selected number of homo-
geneous cubes calculated along homogeneous plains is recorded. A Least Median of
Squares (LMS) robust estimator is applied to select the domain-wise (spatial, tempo-
ral and spatio-temporal domains) estimates of the noise variance. The domain-wise
noise variance estimates are averaged to produce the frame-wise final noise variance
estimate.

The thesis then proceeds to propose a framework for adaptive multi-directional
filtering and multi-directional Sigma and Wiener filters. In the proposed framework,
filtering is performed along homogeneous directions and not across edges to com-
bat blurring. Window size, shape and pixel weighting are adapted to the image
content and the noise level to optimize the filtering process. First, an adaptive multi-
directional Sigma filter suitable for real-time image or video noise reduction is pro-
posed. It achieves gains of up to 4.8 dB PSNR and is capable of preserving image
content. Second, an adaptive multi-directional Wiener filter that achieves gains of up

to 5.6 dB PSNR. The proposed directional Wiener filter is well suited for offline video
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noise reduction. To show the eflicacy of the proposed framework, we use, besides
the PSNR, the Modulation Transfer Function to measure the degradation in object

contrast due to blurring as a function of the spatial frequency.

1.4 Overview of Contributions

The following list states which parts of this thesis are original to the knowledge of

the author at the time the proposed methods of this thesis were developed:

e Spatio-temporal Video Noise Estimation

— Division and treatment of the video signal as a set of 3D cubes

— Development of 3D Laplacian of Guassian operators to measure spatial,

temporal, and spatio-temporal homogeneity of video cubes.

— Utilization of the Least Median of Squares (LMS) robust estimator to
calculate the domain-wise (spatial, temporal and spatio-temporal) noise

variance estimate.
e Spatial Adaptive Directional Noise Reduction

~ Generalization of the directional filtering of [3].

— Introduction of noise level adaptation in directional filtering toward devel-

opment of adaptive directional filtering.
— Theoretical study of the benefits of adaptive directional filtering,.

— Development of a procedure to find the optimal window size, number of

directions and directional filter coefficients.

~— Development of structure-oriented multi-directional Sigma and Wiener fil-

ters.



1.5. THESIS OUTLINE 8

— Utilization of the Modulation Transfer Function to measure the structure

preservation capabilities of the proposed spatial filters.

In addition, various referenced methods for real-time video noise estimation and re-
duction were studied, implemented, and their performance analyzed and compared

with the proposed methods.

1.5 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 presents the proposed
spatio-temporal video noise estimation method. A review of related work is given
in Section 2.2 and is followed by a description of the proposed approach in Section
2.3. Simulation results are provided in Section 2.4 for a representative set of video
sequences with different levels of texture and types of motion activity. Chapter 3
follows and presents the proposed framework for spatial adaptive multi-directional
filtering of noise in video frames. It starts with an overview of the related work
in Section 3.2 followed by analysis of generalized multi-directional filtering and a
study of the benefits of adaptive multi-directional filtering in Section 3.3. Section
3.3.3 presents the proposed multi-directional Sigma and Wiener filters. Subjective
and Objective simulation results are provided for a representative set of images and
videos corrupted by typical levels of noise in Section 3.6. Chapter 4 concludes the

thesis and suggests future work.



Chapter 2

Spatio-Temporal Video Noise

Estimation

2.1 Introduction

This chapter proposes a low-complexity algorithm that uses both spatial (intra-frame)
and temporal (inter-frame) information to yield a stable and robust estimate of the
noise variance. The proposed method divides the video signal into cubes and measures
their homogeneity. The noise variance is then estimated from a set of selected cubes
along the homogeneous plains only. The Least Median of Squares robust estimator
is used to estimate the dimension-wise (spatial, temporal and spatio-temporal) noise
variance. The dimension-wise estimates are averaged to produce the frame-wise noise

variance.

The remainder of the chapter is as follows. Section 2.3 presents the proposed
approach theoretically and gives an interpretation of its good performance. Objective
simulation results are presented and discussed in Section 2.4. Finally, Section 2.5

summarizes the chapter.
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2.2 Related Work

Proposed algorithms for estimating the variance o,% of the AWGN are either inter-
frame or intra-frame based. There exist few methods for inter-frame noise estima-
tion [2,12]. These methods are challenged by the presence of object or global mo-
tion. Motion detection or motion compensation are commonly used countermeasures.
Hence, methods in this area such as the one in [12] tend to be computationally ex-

pensive. The method in [2] attempts to utilize temporal adaptation to stabilize the

spatially estimated noise variance.

Many methods for intra-frame noise estimation have been presented. Difficulties
with these methods rise from frames with very high or very low noise levels as well
as highly structured frames. The problem lies in determining whether intensity vari-
ations are due to noise or frame details. Intra-frame methods are categorized into
smoothing-based, wavelet-based and block-based methods. Smoothing based algo-
rithms such as the one in [13] estimate noise from the difference of the noisy frame
and its smoothed version. The assumption is that the difference frame represents an
approximation of the noise signal. These approaches are computationally expensive
and tend to overestimate the noise variance.

The authors in [14] use the wavelet domain to decompose the frame into sub-bands.
The coefficients of the diagonal details or the HH (High-High) band are used to
estimate the noise variance. Wavelet decomposition isolates the high frequency noise
in the HH band. Methods that use the wavelet domain are similar to the smoothing-
based methods in overestimating the noise variance because the HH band has also
high frequency frame information. Moreover, it is computationally demanding to
transform every frame in the video sequence into the wavelet domain.

Block-based methods in [1] and [11] are less computationally demanding. These

methods attempt to locate regions with the least amount of signal information. The
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intensity variations in these regions is assumed to be due to noise. The algorithm in [1]
uses the variance to measure block homogeneity. The problem with this approach is
that the variance is not always a reliable measure of homogeneity. The algorithm
in [11] proposes a homogeneity test in which a number of high-pass operators are
applied directionally. The variance of the noise is estimated from the local variances
of the blocks selected to be the most homogeneous. The algorithm in [11], however,
does not exploit the temporal information present in the video signal in the estimation

process.

2.3 Proposed Approach

The proposed method attempts to estimate the global variance of the noise from the
local variances of selected cubes in the video signal. The selected cubes have the
common characteristic of being intensity homogeneous in the 2D or 3D space. Cube
inhomogeneity is due to fine details and structures in the spatial domain, motion in
the temporal domain or noise. The algorithm starts by dividing the 3D space defined
by the video signal into cubic subspaces in an interpretation different from the one

in [2] treating the video signal as a sequence of 2D images.

2.3.1 Local Homogeneity Measurement

Recalling (1.1) where we defined a noisy digital video signal V,, using
Vo=V +n. (2.1)

A pixel in V,, is denoted by V, (¢, j,n) where ¢ and j are the spatial coordinates and
n is the temporal coordinate. 7(i,j,n) is the amount of noise added to V (i, j,n).

Since the algorithm is designed to be context-free, there are no restrictions on the
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original signal V. The division of V,, into cubes Cj;,, with spatial indecies k and !

and temporal index m is done using

C’klm = {‘/7](2,], n)|(7'7]7 TL) € ‘Ilklm};

Upim = {(i, j,n)|k — Vot < i < k4 YL,

where Wy, is a cubic window of size W? (W € odd Z™) centered around the 3D
point (k,[,m) € V;,. To locate the homogeneous cubes in the video signal, we define a
set of low-complexity homogeneity measures with (2.3). Theoretically, these measures

represent the quantities in (2.4)-(2.8).

{¢p}, D € {ST,T,S,VT,HT}: (2.3)
Ia2 i 6;‘.2” %22’ : (2.4)
Ia2 ] (2.5)

s = |‘9;.;’ ) (26)

Cvr = la;]‘;n + %2::2;7'» (2.7)

¢z a;\g : (2.8)

The proposed homogeneity measures are the magnitudes of 3 dimensional Lapla-
cian operators. For (2.4)-(2.8) to be useful for digital video, they must be expressed
in discrete form. For this purpose, we define the 3D masks in Fig. 2.1.

Fig. 2.1(a) is a 3D Laplacian operator used to measure spatio-temporal homo-
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Figure 2.1: Homogeneity analyzer cubical masks where pixels in the same gray level
belong to one plain.

geneity or (sr in (2.4). The central coefficient of the mask (mask’s 3D midpoint)
can be calculated using W3 — 1. The central coefficient accumulates to this value as
a result of combining the 2" derivatives in all directions. The mask in Fig. 2.1(b)
evaluates homogeneity along the temporal direction or {7 in (2.5). It acts as a local
low-complexity motion detector. The mask in Fig. 2.1(c) is the spatial domain Lapla-
cian operator. It measures purely spatial homogeneity or (g defined in (2.6). This
mask’s response is an approximation of the sum of directional responses of the masks
defined in [11]. The mask in Fig. 2.1(d) measures both the homogeneity along the
spatial vertical direction and the temporal direction or (¢ in (2.7). Similarly, the
mask in Fig. 2.1(e) measures the homogeneity along the spatial horizontal direction
and the temporal direction or (yr in (2.8).

To understand the motivation behind the proposed homogeneity analyzers, we
review a number of commonly used structure (or edge) detectors in image and video
segmentation literature. Generally, these detectors approximate the first or second

derivatives. Some of these detectors are shown in Fig. 2.2.

The masks in Fig. 2.2(a) and (b) approximate the first derivative or the gradi-
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Figure 2.2: Different discrete structure detecting masks.

ent. The main problem with these masks is that they are inherently directional. They
respond to vertical or horizontal edges only which does not account for complex struc-
tures or motion patterns. The masks in Fig. 2.2(c) are Laplacian operators. They
form the basis to the proposed homogeneity analyzers. These masks have a degree
of rotational invariance to account for unpredictable object shapes or movements
which means that they respond to change in different oricntations. For example,

the mask in Fig. 2.1(c) is 45° rotation invariant (or isotropic) in the spatial domain.
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This means that the masks response is invariant to 45° rotations. Moreover, these
masks are more sensitive to fine details and structures than the Sobel or Perwitt
operators in Fig. 2.2(a) and (b). On the other hand, the disadvantages of using the
Laplacian are threefold: 1) sensitivity to noise, 2) producing double edges and 3)
inability to determine edge directions. Since the objective is to locate homogeneous
areas, edge direction is of no interest. Similarly producing double edges is not an
issue as no segmentation is needed. The most important problem facing the pro-
posed masks is the sensitivity to noise. To overcome such sensitivity, the proposed
method uses the Laplacian of Gaussian (LoG) filter which is the result of convolving
a Gaussian smoothing filter with the Laplacian filter to produce the LoG filter with

the continuous-time impulse response

(2.9)

h(z,y) is sampled to produce the discrete-time mask in Fig. 2.2(d) which combines
both Gaussian smoothing and Laplacian structure detection. Unfortunately, the
smallest mask size that can be used to approximate the Laplacian of Gaussian is
5 x 5. Extending this mask to the 3" temporal dimension requires 5 frames delay
which is a negative point in practical video processing systems. As an alternative ap-
proach, the masks in Fig. 2.2(e) are used to approximate the Laplacian of Gaussian.
To study the effect of using these masks over the Laplacian, an expression of the
Laplacian’s sensitivity to noise is developed using Fig. 2.3 which shows a spatial 3 x 3

window of the original signal.

The response Y of applying the spatial Laplacian mask in Fig. 2.1(c) can be

calculated with
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G(1) | G(2) | G(3) X(1) | X(2) | X(3) N(1) | N(2) [ N(3)

G(4) | G(0) | B(5) |=| X(4) | X(0) | X(5) | +| N(4) | N(D) | N(5)

G(B) | G(7) | G(B) | | X(B) | X(7) | X(8) N(E) | N(7) | N(8)

Figure 2.3: Evaluation of sensitivity to noise in Laplacian operators

8
Y =8G(0) - ) G() (2.10)
= 8(X(0 28: (2.11)
[8)( ix } + ( ~ 0) +8N(0). (2.12)

8 8
[8X 0)—-> X (z)] measures the homogeneity of the window as (Z N(i) = 0) be-
i=1 =1

cause the noise model is AWGN. We can see that the term 8N(0) can impair the

Laplacian’s response.

By applying the Gaussian mask in Fig. 2.2(e) before the Laplacian mask, G(0) ~
X(0) and the effect of noise is reduced. At a later stage, robust estimation of the
variance will be used to exclude cubes that pass the homogeneity test due to noise or

other sources of outliers.

2.3.2 Homogeneous Cubes Selection

The quantities {(p} in (2.4)-(2.8) are calculated for every cube Ci,, by applying the

3D extensions of the masks in Fig. 2.2(e) to the video signal. Let Up be the set of all
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selected homogeneous cubes based on (p or
L .
Up = {Oklml I]?lln(CD)} , D€ {ST, T,5 VT, HT}, Uc = U Up. (213)
i D

Note that (2.13) indicates that we are considering the set of the L € Z most homoge-
neous cubes selected independently based on each {p (i.e., (s, {7, (57, wr and Cvr)-
Since the five masks in Fig. 2.1 are used, the cardinality of the set of all selected cubes
Uc equals to 5L. L was fixed to 10% of the total number of blocks in [13] and [11].

In the proposed algorithm, L is variable and is computed by

. PSNRmzt

L= Lmaz y
B

(2.14)

where PSNRy,;; is the initial estimate of the PSNR,, calculated from the median of
the variances of the 3 most homogeneous cubes over all (. Moreover, let o2 ;, be the
corresponding initial estimate of the noise variance calculated from PSNR,,;, using
(1.4). Ly, is the maximum number of cubes to be used and £ is a scaling factor.
The choice of L, is arbitrary between 5 and 30. In our simulations, L,,,, was set
to 15 and = 5. The function L can be replaced by any monochromically decreasing
positive function of PSNR,,;; and is used to ensure the inclusion of more cubes in case
of noisy video sequences and less cubes in case of less noisy ones. Using less cubes in
case of less noisy videos results in a more reliable estimate. Homogeneity measures

of a cube are not combined because a cube that is highly homogeneous temporally

(low () can be spatially non-homogeneous (high ().

After homogeneous cubes are selected, we calculate their sample mean and vari-
ance along the plains (pixels with the same gray level in Fig. 2.1) found to be most

homogeneous. For all cubes in Ug, we use
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g = Z(,',j)g;/k?! Vn(iJ);

: (2.15)

Z(i,j)ewkl (Va(i.3)~us)?
W21

(7?9 =
where WUy, indicates that we use only pixels along the middle spatial plain of the
cube (pixels in the same gray level in Fig. 2.1(c)). The set of all local variances
calculated spatially from cubes in Uy is denoted Ug ?. For cubes found to be temporally

homogeneous we use

_ Xamery, Valin)

Hr, s :
’ (2.16)
02 — S imyewy,, (Valim)—ur,)?
T/’ - W2_1

where Wy, indicates that we use only pixels along temporal plains (pixels in the same
gray level in Fig. 2.1(b)). Using (2.16), we calculate the sample mean pr, and variance
a%p along each plain p = {1, .., W} and then compute the average over the W plains.
It is important that the noise variance is estimated using only plains found to be
homogeneous as we have no information about the homogeneity along other plains.
Following the same notation, the set of all local variances calculated temporally from
cubes in Ur is denoted U§2. For cubes that are chosen to be spatio-temporally most

homogeneous (i.e., Usy |J Unr |J Uyr), the sample mean and variance are calculated

over all pixels in the cube using

i gnyewyy,, Valiin)

HST VT HT = Wz ;
. (2.17)
2 . Z(i,j,n)ewklm(Vﬂ(ivj’n)_NST,VT,HT)rZ
OsT VT HT = W31

The corresponding sets of variances calculated spatio-temporally are denoted U g;, U I‘fT

2
and Uy
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2.3.3 Robust Estimation using the Least Median of Squares

‘The dimension-based (i.e., spatial, temporal and spatio-temporal) noise variances are
robustly estimated from UZ%’. Robustness is defined in [15] as the ability to deal
with the possible consequences of deviations from the assumed statistical model. In
computer vision literature, M-Estimators and Least Median of Squares (LMS) are
the most commonly used robust estimators [16]. The overall noise variance estimate

from a set UZ’, 03, is calculated using the LMS robust estimator as

~2 . . 2 )
0p = argmin median |0, — o}, (2.18)
02€R o}, €Ug

where R is given by

R=|o? ih U—Eh o2+ 0—?}1} (2.19)

where o7 is a variance in R and 0%, is a variance in Ug’. Eq. (2.19) states that the

values of o2 in (2.18) are varied between o2,

— 07,/2 and 02, + 02,/2 in steps of
%2" as illustrated in Fig. 2.4. @ is the search step size and can be varied between
5 and 15. It controls the accuracy versus the complexity or the number of search
steps. Larger () means more computations but more accurate estimation and vice
versa. oy, is set to correspond to a PSNR. value of 2.75dB. The breakdown point is
defined as the maximum percentage of outliers that can be injected into the assumed
model before it fails (deviates largely from the expected behavior). The breakdown
point measures the robustness to outliers of an estimator. The LMS is used because
it has the highest breakdown point of 0.5. The mean and eventually any least squares
based estimator has a breakdown point of 0. Which means that a single outlier can

impair the estimation result as opposed to 50% outliers in case of the LMS.

To speed up the median calculation process, the proposed method uses an algo-

rithm that calculates the median without resorting to sorting. When calculating the
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Figure 2.4: Deployment of robust Least Median of Squares estimator in the proposed
algorithm

median, the fact that it has less than half the data smaller than it, and less than half
the data larger than it is utilized. The procedure starts by taking the first value of the
data and counting the number of elements Ns in the rest of the set that are smaller
than the first value and the number of elements Nb that are larger. If Ns # Nb, the
first value is not the median. If N's < Nb, then we do not need to consider any value
less than the first value because we already know that the median is larger than the
first value. On the other hand, if Ns > Nb, then we do not need to consider any
value larger than the first value because we are sure the median is smaller than the
first value. The search proceeds until the median is found when Ns = Nb for a spe-
cific value. This procedure is similar in nature and complexity to linear search. This
means we reduce the complexity (number of search elements) of median calculation

from in the best case scenario to O(n).

The efliciency of median calculation increases with larger L. For smaller L, the

median can be used instead which can be expressed by

5% = median(od,), oo, € UG . (2.20)
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Using (2.20), the quantities 53, 02, 627, 047 and G2 are calculated.
The frame-wise noise variance is then estimated using the domain-wise noise vari-

ances using

1
~9 ~9
= 2.21
UT) ND — 9D ( )

where Np is the number of domain-wise estimates used. We only include in the

2

averaging process the domain-wise estimates that do not exceed oy ,, by more than

o2, to account for the case of complete estimation failure in a given domain.

2.4 Simulations

To evaluate the performance of the algorithm, estimation error defined to be the
absolute difference between the true value of the variance of noise a,% and the estimated

value 02, or E = |02 — 02,], is used. The estimation error average ug and variance

n

0% are computed using (2.22)

CSNBG), S (BG) - e
E=""N " BT N-1

(2.22)

where N is the total number of test frames used. While pg measures the performance
of a noise estimation algorithm, o2 measures the reliability of that performance. The
standard video sequences Pricar, Tennis, Train, Football, Car and Flowergarden were
corrupted with 20, 30 and 40 dB AWGN. Simulation was run on the first 50 frames
of each sequence using W = 3 cubic windows. Average time needed for the proposed
and referenced algorithms was measured and the Time Ratio (TR) between them was
calculated accordingly. Implementation was using C++- under an Intel(R) Xeon(TM)
CPU 2.40GHz machine running Linux. The proposed method was found to be faster
than all referenced methods except [11].

Table 2.1 shows that the proposed algorithm has the most reliable performance
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for different noise levels. Figs. 2.5, 2.6, 2.7, 2.8, 2.9 and 2.10 show the individual
estimation error for the test sequences used for the proposed and referenced methods
at different noise levels. The proposed method produces less error for all sequences
and noise levels.

Fig. 2.11 shows the average estimation error over time, yp, and estimation error
standard deviation, 0%, averaged over all test sequences for every noise level. As can
be seen from Fig. 2.11, the proposed method gives a lower average estimation error
than referenced methods and is temporally stable. It also shows that the reliability

of the proposed method is better than referenced methods for all noise levels.

Table 2.1: The average and the standard deviation of the estimation error for 20, 30
and 40 dB noise.

| | 20dB | 30dB | 40dB | ]

Alg. \pe log |pe [or [us |or | TR
Inter-frame

Proposed | 0.23 | 0.33 | 0.50 | 0.41 | 0.65 | 0.68 | 1.0

2] 2801077 1253111931 |[578]|15
Intra-frame

[13] 1.99 1201321142434 |1.704.5

[14] 1.75 1126 212|181 (336270 2.2

1] 079 1113101 1.20{1.10]1.24]|23

[11] 160 1155]1239(1251191]1.16 0.6

2.5 Summary

This chapter proposed a technique in which the variance of the AWGN noise is es-
timated from selected homogeneous cubes in the 3D video signal. Spatial, tempo-
ral and spatio-temporal homogeneity are measured using 3D Laplacian of Gaussian
operators. The noise variance is estimated from the local variances of selected ho-

mogeneous cubes calculated along intensity uniform plains. Least Median of Squares
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(LMS) robust estimators are deployed to calculate the domain-wise (spatial, tempo-
ral and spatio-temporal) noise variance estimate. The domain-wise noise variance
estimates are averaged to obtain the frame-wise final noise variance estimate. The
proposed algorithm works well for video sequences with high structure and motion
activity. It performs reliably with different noise levels with a maximum estimation

error of 1.7 dB.
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Chapter 3

Spatial Adaptive Multi-Directional

Noise Reduction

3.1 Introduction

AWGN is evenly distributed over the frequency domain (i.e., white noise), whereas
an image contains mostly low frequency information. Hence, the noise is dominant in
high frequencies and its effects can be reduced using lowpass filtering performed using
frequency domain or spatial domain filters. Often a spatial domain filter (or a spatial
filter) is preferable, as it is computationally less expensive and faster than a frequency
domain filter making it attractive for real-time video processing applications.
Lowpass filtering an image or a video signal leads to suppression of fine details
and structures or blurring as shown in Fig. 3.1. The Human Visual System (HVS) is
sensitive to high frequencies and can easily visualize blurring. For this purpose adap-
tive lowpass filters have been developed. Adaptive lowpass filtering is performed in
the spatial, temporal or spatio-temporal domains using linear or non-linear operators.
Motion is the biggest challenge facing filtering in the temporal domain. Therefore,

it must be either detected and adapted for or estimated and compensated for. With
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& Low:pass'filter 2D) | eSpectrumrofimage:signal  fnverse DSFT
after low-pass filtering’ {notice image blurring)

Figure 3.1: Lowpass filtering and the blurring side effect

motion detection, filtering is performed in areas where small or no motion is detected.
The disadvantage is that little, if any, noise reduction is performed in strongly mov-
ing areas. In motion estimation, filtering is performed along motion trajectories. The
disadvantage is the computational cost associated with motion estimation. Moreover,
noise impairs the motion estimation process. Temporal filtering based on impaired
motion information can result in a more visually objectionable signal than the original
noisy signal. Also, only global motion can be measured with a degree of reliability.
Spatio-temporal filters suffer from the same disadvantages as temporal filters. More-
over, spatio-temporal filters such as a 3D Wiener filter suffer from the fact that the
wide-sense stationarity assumptions are virtually never true because of moving ob-
jects. For the above reasons, spatial filtering is still more preferable than temporal
filtering in the absence of accurate motion information. More information about

temporal and spatio-temporal filters can be found in [7}.

In this chapter, a framework for multi-directional noise filtering and improved
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noise filters: multi-directional Wiener and Sigma filters are proposed. The improved
filters aim at limiting filtering to pixels within the same population or region to avoid
cross population filtering which leads to blurring. With the proposed framework, the
limiting behavior of spatial filters is improved based on the assumption that pixels are
spatially grouped into homogeneous (intensity invariant) regions in natural images or
video frames. To demonstrate the proposed framework, we propose a spatially multi-
directional Sigma (Section 3.4) and Wiener (Section 3.5) filters the advantage of
which, relative to existing methods, is increased gain and better preservation through
adapting the filter’s selectivity to image content and noise levels.

The remainder of this chapter is as follows. Section 3.2 summarizes the related
work in the field. Section 3.3 generalizes directional filtering to propose multi-
dire_ctiqnal filtering and its adaptation to image structure and noise level. Section
- 3.4 presents the proposed multi-directional Sigma filter and Section 3.5 the proposed
multi-directional Wiener filter. Objective simulation results are presented and dis-

cussed in Section 3.6. Finally, Section 3.7 concludes the paper.

3.2 Related Work

Filters in [2-4,17-19] are spatial filters intended for real-time video processing. The
method in [4] introduces a spatial filter that is based on the Sigma probability of
the Gaussian Distribution. This filter, known as the Sigma filter, is widely used as
a benchmark for testing spatial adaptive filters against. It sclects which pixels to
include in or exclude from the filtering process based on the estimated noise level.
The drawback of the Sigma filter is that it does not impose any constraints on the
pixels that pass the Sigma probability test. Thus, any neighboring pixel in a block
surrounding the processed pixel whose value is within 20, away from the value of

the processed pixel is included in the filtering process. The filter in [3] introduces a
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criteria to measure homogeneity and a homogeneity-based filter and applies filtering
to the intensity most homogeneous direction. The work presented in [17] and [2],
defines a real-time recursive Sigma filter that adds a number of modifications to the
Sigma filter. These modifications include changing the shape of the block, making
the filtering recursive and using a tri-level weighting function. The filter in [18]
solves a global variational optimization problem making it slower than other real-time
methods. The filter in [19] replaces the center pixel by the average of the direction
which has minimum variance. The problem with [19] is that the variance is not a

reliable measure of homogeneity in the presence of noise [11].

Filters in [5,20-25] are used in offline application where high gain is more needed
than high algorithmic speed. A classical approach to spatial noise reduction is the
adaptive spatial Wiener filter in [5]. The drawback of this Wiener filter is despite
producing high PSNR gain, it suffers from residual blurring in the image or video near
edges [7]. The work in [20] builds a modified Sigma filter with a larger block than
the recursive Sigma filter and an improved weighting function. These modifications
give better gain at the expense of lower performance in less noisy images and slower
execution. The filter in [21] is another filter to trade speed with higher gains by
proposing a weighting function that depends on an optimized parameter causing
the filter to be significantly slower than other filters. The method in [22] uses Gauss
curvature driven diffusion and is computationally expensive. Recent methods that use
the wavelet domain for denoising such as the ones in [23-26] are also computationally

expensive.

Noise filters work better if they are adaptive to image content, e.g., using direc-
tional or rational filters. Directional filters [3,19], apply filtering to selected directions
(see Fig. 3.2) within a local image block and rational filters [27-29] modulate the co-

efficients of a linear low-pass filter to limit its actions in the presence of image details.
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Rational filters can be applied directionally for increased preservation of image con-
tent. For example, [28] is applied to the 0°, 45°, 90° and 135° directions. The filter
in [28] does not adapt to more complex structures such as corners. Moreover, filter
parameters are set manually to tune the filter’s response. The work in [28] is extended
in [29] with the rational filter applied temporally. The method requires multiple frame
delays and still adapts parameters manually.

Noise filters can also be adapted to noise level for increased noise reduction gain.

In the remainder of this paper, adaptation is to image content and noise level.

3.3 Theory

We propose a framework for multi-directional noise filtering and also propose im-
proved noise filters: multi-directional Wiener and Sigma filters. The resulting filters
aim at limiting filtering to pixels within the same population or region to avoid cross
population filtering which leads to blurring. With the proposed framework, the lim-
iting behavior of spatial filters is improved based on the assumption that pixels are
spatially grouped into homogeneous (intensity invariant) regions in natural images or
video frames. To demonstrate the proposed framework, we propose a spatially multi-
directional Sigma (Section 3.4) and Wiener (Section 3.5) filters the advantage of
which, relative to existing methods, is increased gain and better preservation through
adapting the filter’s selectivity to image content and noise levels.

In AWGN, noisy pixels are assumed to be independent identically distributed (iid)

Gaussian. Accordingly, the noisy image or video frame F,, is modeled as
F,=F+n. (3.1)

where F' is the noise-free image or video frame and 7 is the added noise. The problem
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now is to obtain an approximation of F', or F , given F,, only.

3.3.1 Generalizing Directional Filtering to Include Multiple
Directions

Image and video frames have the characteristic that spatial correlations between
sample pixel values exist. These correlations are created by the surfaces of video
objects in the scene. Spatially uncorrelated video noise can be reduced with spatial
averaging, which corresponds to low-pass filtering in the frequency domain. With
low-pass filtering, however, structured areas with fine details like edges and corners
are blurred.

To overcome the blurring side effect, directional filtering can be used in which
filtering is performed along edges and fine details and not across them. The detection
of image structure is done in [3] using intensity-homogeneity analyzer masks applied
along eight candidate directions in a block (see Fig. 3.2).

mask 1 mask 2 mask 3

010160

Figure 3.2: Homogeneity Analyzer Masks in [3].

These analyzers work as directional second order Laplacian operators with the
coefficients {—1,—1,..., W —1,...,—1,~1}, where W denotes the block size and is
a positive odd integer. For example, when W = 3, mask coefficients are {—1,2, —1}.

Let z € {1,2,...,8} be the mask index. Each mask measure homogeneity, ¢, along a
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direction. Since each mask represents a direction, we use z to identify a direction as
well. Let ¢, denote the response of mask z. (, is close to zero for pixels with close
intensity values. Let S = {(,} be the set of mask responses. To generalize directional
filtering to include multiple directions, we start by defining z,;,, = argmin (S) to be
the index of the most homogeneous direction. Accordingly, the index Zof the second
most homogeneous direction is Zmin, = argmin (S — {Zmin, }) and the index of the n*

most homogeneous direction is

n—1

Zming, = argznin (S — U{zmmd}). (3.2)

d=1

Let D = (Zmings Zming, - 2ming) denote the ordered sequence of mask indexes based
on (. The size of the sequence D is |D| = 8. Let 1 < D, < |D| be the number of
directions used in filtering. For example, when D, = 2, the most (e.g., Zmin,) and
second most (€.g., Zmin,) homogeneous directions are used. In Fig. 3.3, we define a

set of spatial masks Gy (2) used to isolate a direction from a block of size W. Note

G(1) G G3) G G5  G6) G Gy8)
[ G] 01110 1i0]0 0§01 01010 Qio|o 010 gl1]o
110 0010 01010 Q1010 01011 1j0]0 1|00 01011
olofo 01110 001 1j0]0 al1]0 gj1{0 olofo 0]0f0

|

Figure 3.3: Spatial mask G3(z) for z € {1,2,...,8}.

that the value assigned to the center pixel is zero in all Gy/(z) or any combination
(Gw/(z;) +Gw/(z;)) of them. In other words, we also use Gw (2) to exclude the central

pixel from the direction so as to assign a separate weighting to it. Fig. 3.3 depicts

G3(z) for W =3 and z € {1,2,...,8}.

With D and Gw (z), we generalize directional filtering to include multiple direc-
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tions with
W-1 W-1
Fy(i,5)+ X2 w(a, b)Fy(i + a,j +b)
Ao a=1-W b=1-W
kG, g) = W-1 W-1 ?
w(a, b)
a=1-W b=1-W
Dy,
w(a,b) = > Gw (zminy), (3.3)
d=1
W-1 W-1 W-1 W-1 [Dn
w(a,b): Z I:ZGw(med):l
a=1-W b=1—-W a=1-W b=1-W Ld=1

=Dy x (W—-1)+1,

where F;(i,7) is the pixel at spatial coordinate (7,7) of the noisy image or video
frame and F(i, j) is the noise-reduced pixel. The spatial mask w(a,b) is the result
from combining two or more spatial masks Gw (z). Multiplying F,,(i + a,j + b) by
w(a, b) isolates a subset from the W x W population by choosing pixels that make up
the D, most homogeneous directions. For example, if D,, = 1 and z,, = D(1) = 1,
(i.e., the horizontal direction is detected to be the most homogeneous), (3.3) reduces

to

o Fi, )+ Fyi,5— 1)+ Fo(i, 5+ 1
F(m):n() n( ) + Fy( )’

3
w(aa b) - G3(Zmin1) - G3(1)7 (34)
2 2
w(a,b) = > > G3(1) =Dy x (W —1)+1
a=—2b=—2

=1x24+1=3

We can express specific directional filters such as [3] and [19] using (3.3). For
example, we can obtain [3] from (3.3) using fixed block size, W = 3, and a fixed

number of directions, D, = 1 and obtain [19] by setting W = 3, D,, = 1 but with
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a different S. In [19], S = {02} where o2 is the variance of pixels in direction z. [3]
and [19] are adapted to image content by filtering in one direction only and their
order will always be 3. With 3-tap filter, small gain can be achieved especially at

high noise levels.

3.3.2 Proposed Framework for Adaptive Multi-Directional

Filtering

We propose to improve the adaptivity to image content of directional filtering by
combining directions using w(a, b) and to introduce adaptivity to noise level to (3.3)
to optimize the filtering process. First we vary W and D,, depending on ag which
is the noise variance in F, estimated using the approach in [11]. W, is the noise-
adaptive block size and D, the noise-adaptive number of directions. We also assign

pixel weights based on the noise level. We define (), as the weight of the center pixel

r 1-Cy
and €} = Do

W) 8 the weight of the non-center pixels where pixel weightings sum
7

to 1 to preserve the signal mean. The aim is to increase W, and D, and decrease
C,, for noisier images to achieve higher gain and vice versa to combat blurring. The

function for the noise-adaptive multi-directional filtering based on (3.3) is

Wa—1 Wy—1

CT)FU(Z7.])+ Z E UJ(G, b)Fﬁ(Z+a’]+b)
. a=1-W, b=1-W,

B, j) = W ,
> wla,b)
a=1-Wy, b=1-W,
D"n
w(a,b) = Cw(2zming)Ch, (3.5)
d=1

Wp—1 W,—1

> > wla,b) = CyDp, [Wy — 1]+ Cy.

a=1—-Wh b=1-W,

To demonstrate the efficacy of the proposed adaptation in (3.5), the effect of
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enlarging the block and increasing the number of directions is studied. It can be

2

shown that the output noise variance, o> in }:“, after applying (3.5) is

No
2 _ 2 2 -Gy
o, = Cron + Do (W, — 1)0”' (3.6)
The noise reduction gain R[dB] as a function of W, D, and C, is
7
R(WmDnnnd)[dB] = 10log (—)3- = (37)
Mo

101 Doy (W — 1)
O .
S\, W, — 1) +1]C2—2C, +1

Fig. 3.4 compares R(31,¢,) (the gain for block size 3 x 3 and using the most homo-
geneous direction only) to Rs1.¢,) and Rs2¢,). As can be seen, enlarging W and

increasing D,, produce an increased (theoretical) gain, R[dB].

QH/WW'%% - R{31,Cn) | |
N -~~~ R{51.Cn)
. \ — R{5.2,Cn)
o
o7 SRR
14 -7 -
[ 5} L " N\
= - \
(U] " \,\
g ? AN
S N
] .
b
Y b
]
2
O 2
=
1k
'}D Di1 8.2 (}T-B D‘A a8 QfB oz D.’B O:B 1

Central Coefficient {Cn)

Figure 3.4: The relationship between the central coefficient C,, and the noise reduction
gain R [dB] for {W, =3 D,, =1}, {W, =5 D, =1} and {W,, =5 D,, =2}.
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On the other hand, Fig. 3.5 shows that using a larger block and more directions
introduce blurring in less noisy images. This is evident as filtering with W,, = 3
and D,, = 1 is compared to filtering with W, = 5 and D,,, = 1. The performance
decrease in the W,, = 5, D, =1 filter after PSNR = 28dB is due to blurring. In
the next Sections, we propose adaptive multi-directional Sigma and Wiener ﬁlters to

increase the noise reduction gain and the structure preservation.

4
s 4 T E 7

3’. . R N
. S,
R \k\
" e o §
B i1 .
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= of . . . LT
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3 -1k . L . . “\
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v 8 §
5 i H § 5
20 o5 ag 35 4D
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Figure 3.5: Average gain at different noise levels for a {W, = 3, D, = 1} and a
{W, =5, D, =1} blocks.

Now we propose a procedure by which the optimum W,, D, and C, can be
determined. Optimality here refers to maximizing the gain R[dB] in (3.7) in PSNR

or

R(PSNR,,, PSNR,) = PSNR,, — PSNR,, (3.8)

where PSNR47 denotes the PSNR of the noise-reduced image or video frame F and
PSNR,, is the PSNR of the noisy image or video frame. PSNR,7 is either measured
in the presence of F' or estimated in its absence. Finding the optimal W, and D,,

can be treated as a quantization problem. For W, and D, , we divide the region of
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support B of the PSNR,, B = [PSNR;””,PSNR,T“‘“] = [20dB, 55dB], into intervals
By = [bj_1,b;) where | = {0,1,2,...,L} and L is the number of possible block sizes
or directions. Then, we assign a level (block size or number of directions) g; from
possible block sizes (e.g., g € {3,5,7,9}) or possible number of directions (e.g.,
g € {1,2,...,8}). Optimal g; and b [30] which completely define W, or D, can be

found by solving

B, = {PSNR,, : Ry, (PSNR,, PSNR,) < R, (PSNR,, PSNR,)} (3.9)

g1 = argmax E{R,,(PSNR,,, PSNR,)|PSNR, € B;} (3.10)
ai

where R, denotes the gain in PSNR for using W, = g, or D,,, = g;. Egs. (3.9)
and (3.10) are known in quantization theory as the generalized nearest neighbor and
generalized centroid conditions, respectively. With absence of information about the
pdf of the PSNR,,, Llyod algorithm for optimal scalar quantization [31] can be used
on a representative set of training data. Finding the optimal set of filter coefficients
C, and C] can be treated as an optimal prediction problem. The solution of such

problem is given by

C,=[A]'r (3.11)

where [A] is the correlation matrix between non-center pixels and r is the correlation

vector between the center pixel and all non-center pixels.

3.3.3 Adaptive Multi-Directional Sigma and Wiener Filters

In Sections 3.4 and 3.5, we demonstrate the extendability of the proposed adaptive
multi-directional filtering in (3.5) by proposing adaptive multi-directional Sigma and
Wiener filters. In both filters, the block size W, the number of directions used in

filtering D, and pixel weights (), are adapted to noise level 0727. Since the proposed
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Sigma filter is intended for real-time systems, W,, D, and C, are designed to be
fast to compute. Contrary to the Sigma filter, the Wiener filter is slow due to the
computation of local variances. As a result, the proposed Wiener filter is meant
for offline systems. Both the proposed Sigma and Wiener adapt W, the same way.
However, in the proposed Wiener filter C, is adapted based on the Wiener estimate

and it controls D,, .

3.4 Proposed Adaptive Multi-Directional Sigma Fil-

ter

3.4.1 Principle Idea

The Sigma filter [4] is based on the Sigma probability of the Gaussian distribution.
It smooths the image noise by averaging neighborhood pixels which have intensity
values within a fixed Sigma range of the center pixel.

We propose an adaptive multi-directional Sigma filter that combines the D, most
‘homogeneous directions in a block and creates with w(a,b) in (3.5) a kernel that best
fits the image structure and then excludes using a noise adaptive Gy (z) the pixels
that fail the Sigma probability test to further adapt the kernel shape to noise level.

In details, the filter:

e Populates the ordered sequence of mask indexes D based on the homogeneity

of the mask’s direction (, using (3.2) and adapt D,, to the noise level 0,27 using

K 10,>1
D, = K (3.12)

n
1 : otherwise

In simulation, x = 2 is used to maintain the fast algorithmic speed of the filter.
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e Adapts the block size W;, to o7 as

W, :o0,>t
W, = R (3.13)

W, : otherwise

where W, ranges from 5 to 9 and W, from 3 to W), — 2. We used W, =5 and

W; = 3 in simulations.

e Selects ¢, to combine the benefits of both block sizes W, = 3 and W,, = 5. In
Fig. 3.5, the point the curves of the W, = 3 and W, = 5 block sizes intersect
corresponds to a noise level of 28 dB (o, = 10.13) which is a used as t, in

simulations.

o Adapts pixel weights C, in (3.5) as follows

PSNR, 255?
077 = PSTI:{Z&;E, PSNRn =10 logw (—gg—) y (314)

PSNR, .4, = 55dB.

e Changes the spatial mask Gw(2) to Gw(z, 0,) based on the Sigma probability

to make pixel selection noise level adaptive as follows

GW(Z,O'n) =
Gw(z) : Fy(k,1) =20, < Fy(i,§) < Fy(k, 1) + 20,

, (3.15)
0 : otherwise

where F),(k,[) denotes the neighboring pixel in the combined D, most homo-

geneous directions or F, (i + a,j + b) in (3.5).
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3.4.2 Performance Analysis and Comparison

In Section 3.3.2 Fig. 3.4, we demonstrated the benefits of the proposed adaptive multi-
directional filtering in (3.5) in terms of the gain in quality (or PSNR;). The multi-
directional Sigma filter inherits these benefits. With the enhanced (noise-adaptive)
selection function Gw (z, 0,,) defined in (3.15), we can now analyze other aspects of the
proposed filter such as structure preservation. First, we use the Modulation Transfer
Function (MTF) [32] to illustrate this structure-preservation capabilities relative to
non-adaptive methods [4] and [3]. Second, we show, using local histograms, why
the use of the Sigma probability to adapt the spatial mask Gw(z,0,) resulted in
improved preservation of structure. Third, we examine the change in the size, shape
(as controlled by combining the D, most homogeneous directions and Sigma test
in (3.15)), and weighting of the filter block as a result of the added modification.
Finally, we propose a solution to ensure that the added modification do not decrease
the speed of the proposed filter.

To approximate the MTF from a local region Z in a single image or video frame

F, let H(x) be the normalized local histogram calculated from pixels in Z as

K
H(z) = %, 0 <z <255, (3.16)
where K, is the number of pixels with gray level z € Z and K is the total number

of pixels in Z. H(z) approximates the probability density function p(z) of region

Z C F. By finding the cumulative sum of H(z) with
P(z)=> H(z), 0<z < 255 (3.17)
0

we get an estimation of the cumulative distribution function (CDF) or P(z) of region

Z [33]. P(z) is related to the Edge-Spread Function (ESF(x)), defined as the response
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of the system to an ideal edge [34], by P(z) = z(ESF) when it is known that the
locality or region Z on which the histogram was calculated represents an edge. MTF
measures the degradation of object contrast due to blurring as a function of the
spatial frequency w. It can be calculated as the Fourier transform, F{.}, of the first

derivative of the ESF, that is,

OESF(x)

MTF(w) = F{—

1. (3.18)

Fig. 3.6 shows the MTF of the local region Z in Fig. 3.7 (Cameraman image) for the
proposed multi-directional Sigma filter versus the filters in [4] and [3]. The proposed
Sigma filter achieves a higher contrast transfer ratio than [4] and [3] due to using

(3.12)-(3.15).

1 L ¥ 1
08t
o8t Onginal Image
g o7}
85 Proposed Directional Sigma Filter
8 06
g Directional Filter [2]
g 0o+
» . . 1
E 04l Sigma Filter [1]
8§
U 03r
02
01p
0 X .
4] 20 40 60 B0 100

Spatial Frequency (cpd)
Figure 3.6: Estimation of Modulation Transfer Function (MTF) of region Z in Fig.

3.7 for the proposed multi-directional Sigma and referenced methods.

We will use the local histograms shown in Fig. 3.7 to explain the improved

structure-preservation capabilities of the proposed Sigma filter. For unstructured
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regions X and Y in Fig. 3.7, the noise reduction gain, R(w py,c), can be calculated
from (3.7). The local histogram at area Z shows two distinct sample populations.
The rectangles superimposed on the Cameraman image are magnified blocks. If fil-
tering takes place over pixels in region Z, the assumption being that they belong to
the same population, blurring will occur. The multi-directional application of the
Sigma probability will act as a low-pass filter that will isolate one population so that
no cross population averaging takes place, hence, effectively reducing the blurring

side effect. This is shown in Fig. 3.8.

Figure 3.7: Local histograms at structured and unstructured areas of the noisy Cam-
eraman (see Fig. 3.8).

Moreover, the improved structure-preservation capabilities of the proposed multi-
directional Sigma filtering over the Sigma filter [4] is due to the fact that two criteria
are used in the proposed method as opposed to one in the Sigma filter. The proposed
method imposes an extra constraint that pixels have to be spatially grouped in a
direction rather than scattered as in the Sigma filter. The proposed method ensures

exclusion of pixels which randomly satisfy the Sigma probability without being in the
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Figure 3.8: The multi-directional Sigma probability isolates a sample population to
prevent blurring while filtering. Assuming the block on region Z in Fig. 3.7 is centered
around a high-intensity pixel.

same population as the center pixel.

Fig. 3.9 shows the change in the shape of the block at different noise level ranges
between the proposed Sigma filter and [3]. In Fig. 3.9(a,b), all pixels in the homo-
geneous direction are assumed to belong to one population and are included in the
filtering process. Fig 3.9(c,d) illustrates how the proposed filter adapts block size,

shape and weighting to frame and noise characteristics.

In the proposed Sigma filter, the selection of the parameters W, D, , C, and
Gw (z) determines its speed of computation. We select these parameters to ensure
real-time performance. For example, the filter is designed to work with W, = W,
(see (3.13)) with the outermost pixels given extra binary weights of 1 or 0 based on
U%. This way those pixels can be turned off completely to reduce the block size to W,

without complexity.
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Figure 3.9: Fixed directional filter [3] block size versus proposed variable block size,
shape and weighting for the multi-directional Sigma filter at different noise levels.

3.5 Proposed Multi-Directional Wiener Filtering

A classical variant of the spatial Wiener filter is based on the Minimum Mean Square

Estimate (or Wiener estimate) of F'(3, j) in terms of F,(, )

2

.. ag ..
F(i,§) = —(Fy(in3) = 1) + i, (3.19)
Fn

where up, is the local mean of a block of size W centered at coordinates (4,5) in Fj,,
a%n is the corresponding local variance in F,, and 0% is the same local variance but in
F. Recall that F(i, j) is a pixel in the noise-free image or video frame F, F, (i, j) is

the noisy pixel in F), and F'(4, ) is the noise reduced pixel in F'.

In the classical Wiener filter, an estimate of 0% (or 6%) is obtained from the noisy

image F;, is using the Maximum Likelihood (ML) estimator as

~

0% = max (01%177 ~02,0). (3.20)

By combining (3.19) and (3.20), we get the pixel-wise spatial Wiener filter input out-
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put

(F (4, j),ﬁ(i, 7)) relationship as
N T
F(i,5) = —-(Fy(i,5) = pr,) + b, (3.21)
F"l

3.5.1 Proposed Adaptation

We propose an adaptive multi-directional Wiener filter by applying multi-directionally
the Wiener filter in (3.21) and defining the mean, p,, along a direction z (see Fig. 3.2)

as

Wy—1  W,—1
> w(a,b)F,(i+a,j+b)
a=1-Wy b=1-W
py = e . (3.22)
> > wlab)

a=1-W, b=1—-W,
where w(a,b) is given by (3.3). Similarly, the variance, o2, along a direction z in

Fig. 3.2 is
Wy—1  Wy-1
> w@b)(F(i+a,j+0b) - u)
2 a=1-W, b=1-Wy,
o, = - . (3.23)
>. wia,b)

a=1-W, b=1-W,

~

Thus, the input output (F,,(4, 5),F{i, j)) relationship of the proposed multi-directional
Wiener filter based on (3.22) and (3.23) is

O-,Z - 072770)

2
0%

iD' max
Plid) = ( Byl ) =) e (324)

In (3.22)-(3.24), we use the block size adaptation W, as in (3.13) and the pixel

weight, C),, is given by
1 max(o;—o07,0)
“ = Wo? (3:25)

The number of directions to include in the filtering process, D,,, is decided by the
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Wiener weighting function in (3.24). If the direction is homogeneous (small ¢, ), the
local directional variance o2 will be less than the estimated noise variance o'g causing

(3.24) to reduce to F'(i,§) = p,. If 62 is larger than o2

7

indicating a direction with
high activity, (3.24) will reduce to F(, j) = F, (4, j) which will ensure that no filtering
takes place along that direction. This way Dy varies depending on both the level of
structure and the level of noise. This behavior is different from that of the Wiener
filter in (3.21) where the entire block is considered in the local mean and variance
calculation causing outlier pixels to be included in the averaging process which will

eventually increase blurring.

3.5.2 Filter Analysis and Comparison

Here, we analyze the proposed multi-directional Wiener filter as follows: we first use
the Modulation Transfer Function (MTF) (defined in Section 3.4.2) to illustrate the
degradation of contrast due to blurring by the proposed multi-directional Wiener
filter relative to the Wiener filfer [5] and comment on the reason behind the improved
structure preservation. Then, we examine the change in the size, shape and weighting
of the filter block as a result of the proposed structure and noise adaptations.

Fig. 3.10 shows the MTF of the local region Z in Fig. 3.7 for the proposed multi-
directional Wiener filter versus the Wiener filter. The proposed multi-directional
Wiener filter achieves a higher contrast transfer ratio than the Wiener filter. This is
because the number of used directions is adapted to image content and noise level.
This means that filtering is adjusted to full filtering action in case of a totally homo-
geneous region and to no filtering in case of a highly-structured region.

Fig. 3.11 shows the change in the shape of the block at different noise level ranges
between the directional filter in [3] and the proposed multi-directional Wiener filter.

In Fig. 3.11(a,b), all pixels in the homogeneous direction are assumed to belong to
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Figure 3.10: Modulation Transfer Function of region Z in Fig. 3.7 for proposed
multi-directional Wiener and Wiener filter.

one population and are included in the filtering process. Fig. 3.11(c,d) illustrates how
the block size and weighting are adapted to frame and noise characteristics in the

proposed multi-directional Wiener filter.
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Figure 3.11: Fixed directional filter [3] block versus proposed variable block size, shape
( number of directions) and weighting at different noise levels for the multi-directional
Wiener filter.
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3.6 Results

To experimentally evaluate the proposed framework, we use the criteria time com-
plexity (Section 3.6.1), temporal stability in PSNR gain (Section 3.6.2), PSNR gain
at different noise levels for the proposed multi-directional Sigma filter (Section 3.6.3)
and the proposed Wiener filter (Section 3.6.4). (Note that in Figs. 3.6 and 3.10
we have shown the relative structure preservation capabilities of the proposed filters
relative to referenced methods in terms of the MTF.)

To validate the proposed approach, 8 images (Fig 3.12(a-h)) and 5 video sequences
(Fig. 3.12(i-m)) were used in simulation. The images were selected to represent differ-
ent levels of structure. The video sequences were selected to represent different types
of video motion and levels of structure. Video sequences Car and Pricar represent
tracking camera motion. Video sequence Train represents translational object motion
with fixed camera. Video sequence Wheel represents rotational object motion and
video sequence Kiel represents zoom motion. The images and video sequences were
corrupted by noise levels ranging from 20-40 db PSNR in steps of 5 dB and the video
sequences with levels 20-40 in steps of 10 db.

For related work comparison, we implemented and compared the proposed Sigma
filter with real-time filters [2-4] and the proposed Wiener filter with computationally
expensive filters [5,21]. We compare with [21] because it attempts to optimize filtering

adaptively in the same manner as the classical Wiener filter.

3.6.1 Time Complexity

Table 3.1 shows the time (averaged over images in Fig. 3.12(a-h) for all noise levels)
needed by the referenced methods compared to the time needed by the proposed
multi-directional Sigma method to process a 512 x 512 image when implemented

using C++ under an Intel(R) Xeon(TM) CPU 2.40GHz machine running Linux. The
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(a) Gray (b) Cosl {c) Cos2 (d) Trees (e) Lena

(f) Aerial (g) Field (h) Baboon (3) Pricar

(k) Train (1) Kiel (m) Wheel

Figure 3.12: Images and Video Sequences used in Simulation.

proposed multi-directional Wiener filter is still faster than the Wiener filter. The
added complexity of using the Sigma probability in the multi-directional Sigma filter

is justified by the significant increase in gain.

Table 3.1: Time Complexity Comparison.

Algorithm (Time Ratio/512x512 frame)

Directional Filter [3] 0.80
Directional Sigma 1.00
Standard Sigma [4] 1.44
Recursive Sigma [2] 1.67
Directional Wiener 2.57
Standard Wiener [5] 3.02
Zed Filter [21] 6.50

3.6.2 Temporal Stability

The average gain (in PSNR dB) over time for the proposed multi-directional Sigma,
the proposed multi-directional Wiener, and referenced methods is shown in Fig. 3.13

for the video sequences in Fig. 3.12(i-m) corrupted with 25[dB] noise. It can be seen
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that the proposed algorithms outperform the referenced methods and are also more

stable over time.

az| 7+ Proposed Directional Wiener Filter | .
% Proposed Directional Sigina Filter e
. - Pl T
5 e Bigma Filter ST
- - - Wiener Filter va’{
P - " e 4
28h ‘qu,ﬂ,"y‘? %ﬂwWW*MM
28} -
hE RO s‘*&*‘*m&*’***%&*‘*** ******&*
P § N : P N & %)
L % #® E
& :
o
Qgz
2k :
A2} .
Y s = -
o F R oy ppii¥ig
By e i By
18baoesetenng age ™ ErL .
]

Frame humber

B0

Figure 3.13: Gain (in [dB]) over time achieved from applying proposed and referenced
methods to 25[dB] noisy video sequences in Fig. 3.12(j-1).

3.6.3 Results of the Proposed Directional Sigma Filter

A comparison of the gain achieved by the proposed multi-directional Sigma filter and

referenced real-time methods at different noise levels is shown in Fig. 3.14 (for the test

images) an;i Fig. 3.15 (for the test video sequences). The proposed multi-directional

Sigma filter outperforms the Sigma filter [4], the directional filter [3] and the recursive

sigma filter [2] in terms of performance. Recall that it is faster than all referenced

methods except [3] (as shown in Table 3.1).
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Figure 3.14: Applied to images in Fig. 3.12(a-h), the average gain achieved by pro-
posed multi-directional Sigma, directional filter [3], Sigma filter [4] and recursive
Sigma filter [2].

3.6.4 PSNR Gain of the Proposed Wiener Filter

A comparison of the gain achieved by the proposed multi-directional Wiener, standard
Wiener [5] and the Zed Filter [21] at different noise levels is shown in Fig. 3.16 (for
the test images) and Fig. 3.17 (for the test video sequences). The proposed multi-
directional Wiener filter outperforms both the Wiener [5] and the Zed filters [21] while

still being faster than both (see Table 3.1).

3.6.5 Visual Comparison of the Proposed Wiener Filter

Fig. 3.18 shows how the proposed multi-directional Wiener filter, increases the struc-
ture preservation capabilities of the Wiener filter while still yielding high gain. Note
the blurring introduced by the Wiener filter in high structured areas such as the hair
in the Lena image or the vertical stripes in the Barbara image or the facial hair of

the Baboon image. Fig. 3.19 show the first frames of the Train sequence. With the
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Figure 3.15: Applied to video sequences in Fig. 3.12(i-m), the average gain achieved by
proposed multi-directional Sigma, directional filter [3], Sigma filter [4] and recursive
Sigma filter [2].

Wiener filter, details at the south part of the Train image are suppressed.

3.7 Summary

This paper proposed a framework for adaptive multi-directional spatial filtering of
AWGN in images and video frames. The adaptation to image content is achieved
through combining most homogeneous directions to tailor a kernel that best fits im-
age structure. The adaptation to noise level is through controlling the order and
coefhicients of the filter using the block size, number of directions used in filtering and
pixel weighting. We proposed a low cost multi-directional Sigma filter suitable for
real-time noise reduction. The proposed multi-directional Sigma filter achieves higher
gains in PSNR than the classical Sigma filter. It can achieve up to 4.8 dB PSNR gain
in real-time. We also proposed a multi-directional Wiener filter capable of achieving

gains in PSNR of up to 5.6 dB. The proposed multi-directional Wiener filtering is well



3.7. SUMMARY 58

-4 B N ]
—— Proposed Directional Wiener Filter \\
—-&-- Wiener Filter N
- Zed Filter

-8 I I 1 I 1 i 1

20 22 24 26 28 30 32 34 36 38 40
PSNRN(dB)

Figure 3.16: Applied to images in Fig. 3.12(a-h), the average gain achieved by pro-
posed multi-directional Wiener filter and the Wiener filter [5]. Note the average gain
of 3.31 [dB] of the proposed multi-directional Wiener compared to the 1.62 of the
Wiener filter in the 25-30 [dB] range.
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Figure 3.17: Applied to video sequences in Fig. 3.12(i-m), the average gain achieved
by by proposed multi-directional Wiener and the Wiener filter [5]. The proposed
multi-directional Wiener clearly outperforms the classical Wiener filter.
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(a) 25dB Noivsy Lena.

(d) 25dB Noisy Barbara.

(d) 20dB Noisy Baboon.

(g) Reduced residual blurring next to the Baboon'’s left eye.

Classical Wiener to the left and proposed Wiener to the right.

(b)Wiener filter [5], 3.5 dB Gain.

(e)Wiener filter [5], 2.9 dB Gain.

(h) Reduced residual blurring around the Baboon’s mustasch
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(c)Proposed Directional Wiener, 4.7 dB Gain.

(f)Proposed Directional Wiener, 3.4 dB Gain.

iener, 3.1 dB Gain.

(f)Proposed Directiona.

Classical Wiener to the left and proposed Wiener to the right.

Figure 3.18: Improved structure-preservation in the multi-directional Wiener filter
over the classical Wiener filter for Lena, Barbara and Baboon images.

suited for offline image or video noise reduction. The Modulation Transfer Function

(MTF) was used to measure the relative structure preservation capabilities of the
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(a) 25dB Noisy Train.

(b)Wiener filter [5]

(c)Proposed Directional Wiener

Figure 3.19: Reduced residual blurring in first frame of the Train sequence. Note the
high structure in the grass area south of the picture is lost due to blurring with the
classical Wiener filter and is better preserved with the proposed Wiener filter.

proposed and referenced methods. The proposed Wiener filter reduces the residual

blurring caused by the classical Wiener filter.
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Chapter 4

Conclusion and Future Work

4.1 Summary

Video noise estimation and reduction methods are among the most integral parts
of video processing systems. They are typically deployed at the preprocessing or
post-processing stages. The video noise estimation stage relays information about
the noise process to the video noise reduction stage which utilizes this information
to optimize the filtering process. Video signals are corrupted with noise at different
stages such as acquisition, recording, transmission and storage. The aggregate effect
of noise can be modeled as Additive White Gaussian Noise (AWGN). With AWGN,
the noise estimation process reduces to estimating the variance of the AWGN which
completely characterizes the noise process. Since most of the information in a typical
video signal is low frequency information and the noise is assumed to be white, most
of the significant noise is located in the high frequency band. For this reason, low
pass filtering is used to reduce noise. Low pass filtering can be performed in the spa-
tial, temporal or spatio-temporal domains. Temporal and spatio-temporal filters are
challenged by the presence of motion. In the absence of accurate motion information,

spatial filtering is more desirable for its real-time performance.
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This thesis proposed approaches for estimation and reduction of additive white
Gaussian noise (AWGN) in video signals. First, it proposed a spatio-temporal algo-
rithm for the estimation of video noise. The method divides the video signals into
3D portions of the signal or cubes. Cube homogeneity is measured using 2D and
3D Laplacian of Gaussian operators in the spatial, temporal and spatio-temporal
domains. The variance across homogeneous plains (or domains) is calculated and
recorded. The Least Median of Squares (LMS) robust estimator is used to produce
the domain-wise estimate. Domain-wise estimates are averaged to get the frame-wise
final noise variance estimate. The proposed algorithm works well for video sequences
with high structure and motion activity. It performs reliably with different noise
levels with a maximum estimation error of 1.7 dB.

Second, this thesis proposed a framework for spatial adaptive multi-directional
filtering of image and video noise. Generalized multi-directional filtering was first
developed and then adapted to the noise level. The benefit of such adaptation was
examined. Adaptive multi-directional Sigma and Wiener filters are also proposed.
The structure preservation capabilities of the proposed filters were studied using
the Modulation Transfer Function. The proposed multi-directional Sigma filtering
achieves gains in PSNR of up to 4.8 dB in real-time. The proposed multi-directional
Wiener filter capable of achieving gains in PSNR of up to 5.6 dB and is well suited

for offline applications.

4.2 Conclusion

Engineers are challenged on daily basis to produce faster, more robust and higher
performance video processing algorithms to match the increased demand for visual
information. The work in this thesis emphasized the importance of noise estimation

and reduction in this process due to the performance deterioration of modern video
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processing algorithm that do not pay attention to the presence of noise.

It was observed that in video noise estimation and reduction, block-based ap-
proaches receive research interest partly because they lend themselves to practi-
cal hardware implementation. With only few lines delay, block-based methods can
achieve comparable results to transform based techniques. Unfortunately, the research
focus nowadays is mainly on transform-based methods. This thesis, in a way, shows
that there is still potential for improved performance that is coupled with real-time
deployability in block-based methods. As an example, there is still a need for robust
block-based signal profiling algorithms such as block-based structure or homogeneity

detection.

It was also concluded that directional approaches are useful in signal preservation
during noise estimation and reduction. The main reason is that the assumptions
upon which many algorithms are built are less violated inside specific regions within
blocks. Directional approaches aim at finding these regions. In that sense, directional
processing can help improve the performance of block-based algorithms. Therefore,
this thesis recommends that more research is conducted to try to integrate directional

approaches and block-based methods.

4.3 Future Work

This section describes the possible future work to this thesis. It starts by presenting
the future work for the proposed noise estimation algorithm and moves to present the

future work of the proposed noise reduction algorithm.
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Spatio-Temporal Video Noise Estimation

The proposed approximation of the Laplacian of Gaussian operator performs well in
detecting cube homogeneity but is still open for improvements. One way to improve
it is to increase the window size. Because it is a 3D operator, increasing the window
size means better sampling of the Laplacian of Gaussian impulse response but also
means more frame-delays. The gain in accuracy of using a larger window size should
be examined. It is also possible to design rectangular parallelopiped operators that
can increase the window size (e.g., 5 x 5 x 3 or 7 x 7 x 3) without the need for
frame delay operators. Another future task is to study the effect of changing the
variance of the Laplacian of Gaussian operator on the overall performance of the
system. Increasing the variance means more smoothing and less structure detection
and vice versa. Adapting the variance of the operator to the variance of the noise
should increase the accuracy of the proposed method. Fast convolution algorithms for
the LoG operators have been proposed in the literature. Another future task would
be to try to use one of the fast convolutions to increase the algorithmic speed of the
proposed method. Also, there is room for improving the model used for Least Median
of Squares calculation. Currently a simple linear model is used. Nonlinear models

may produce better results.

Spatial Adaptive Multi-Directional Noise Reduction

A future task would be to propose other multi-directional spatial filters to try and
find the average gain of performing spatial filtering multi-directionally. Such task
should also improve the generalization of multi-directional filtering. Another future
task would be to apply multi-directional filtering to the temporal domain and examine
the overall performance gain. The homogeneity analyzers should then perform as low

cost motion detectors. There is also room to improve the window size adaptation of
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the proposed Sigma and Wiener filters. Also, the optimal window size and number
of directions can be found from a representative set of training data using Lloyd

quantization algorithm.
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