Testing Real-time Systems using TTCN-3

Mayada Abdel-hak

A thesis
in
The Departement
- of
Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science
In Electrical and Computer Engineering
Concordia University

Montreal, Quebec, Canada

August 2006
© Mayada Abdel-hak, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-20738-3
Our file Notre référence
ISBN: 978-0-494-20738-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Testing Real-time Systems using TTCN-3
Mayada Abdel-hak

In system engineering, testing plays an important role to validate systems and
systém components. As the market time becomes ever shorter and the requirements on
system features, reliability, availability, integrity and performance further increase,
assured quality of system and its components is very important. Moreover, in real-time
systems extreme reliability and safety are the most fundamental requirements. Thus, in
order to fulfill the requirements of such systems as well as those of the market, a
systematic proficient approach to testing is an essential need. The Testing and Test
Control Notation TTCN-3 has been developed by ETSI to address testing needs and to

enable systematic specification-based testing for software systems.

This thesis will discuss in particular the use of TTCN-3 for testing real-time
software systems. It takes textual test cases that have previously been generated for a
particular real-time application. Each of them has input actions, time delays, and output
actions. Then, the thesis explains the procedure of transforming the generated test cases
into a test suite coded in TTCN-3. After that, it shows the process of creating aﬁd
implementing the required TTCN-3 interfaces to complete the test system and follows

it by running the test system and analysing the results.

To define the black-box testing procedure of these timed test cases, stimuli are
applied on the system under test. Then, the reactions are observed and compared with
the expected ones with respect to the time delays. According to this comparison, a test
verdict assignment is set to determine the test behaviour of each test case. If the
expected and the observed responses are matched while respecting the value of the
related timers, a test verdict is set to “pass” indicating a successful test case. Otherwise,

the verdict is set to “fail” signifying an unsuccessful test case.

iil

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Abdeslam En-
Nouaary, for his support, guidance, and encouragement during all the stages of my
research. I really appreciate his invaluable advices, directions and inspiring discussions

that help me extend and deepen my knowledge in software testing and real-time system
field.

In addition, I would like to thank all the members of the Examining Committee for

their time and patience in reviewing my thesis.

Finally, I dearly thank my son and my daughter. This thesis is dedicated to them for

their understanding, sacrifices, and hard working with a student mother which was not

easy at all.

iv

TABLE OF CONTENTS

LIST OF FIGURES IX
LIST OF TABLES ' X
ABBREVIATIONS . X1
CHAPTER 1 1
INTRODUCTION ... - e
1.1 THE OBJECTIVE OF THE THESIS 1
1.2 CONFORMANCE TESTING 2
1.2.1 CONFORMANCE TESTING PROCEDURE.......ccectirstureeeicrsaseressessesasarenssesesessssssssaraesssssassnneass 3
1.2.1.1 Test Suite DevelOPmMEnL.............ooreevvereeeneenieeeiceeeeesisistsse st ss s 3
1.2.1.2 TESE EXCCULION c.vvevveeveesrerrereieiririsisiosreseissenssesossssesesssssssssnssessessssassassassassssnasssassnessens 5
1.2.1.3 RESUIt ANQIYSISeueeevveiriniriiiiniiiiinits bbbt s aan 5

1.2.2 TEST METHODS AND CONFIGURATIONoovievevraessisessesseesesssinsesssessossossossossassessassesnsssenss 5
123 CONFORMANCE TESTING AND SPECIFICATIONuveevievosreeervereessessrsssesssssessmesesssesesssssseses 7
1.3 TESTING REAL-TIME SOFTWARE SYSTEMS 8
1.4 TESTING TIMED TEST SUITE WITH TTCN-3 10
1.5 THESIS OUTLINE 11
CHAPTER 2 13
TTCN-3 CORE LANGUAGE AND TEST SYSTEM 13
2.1 BACKGROUND 13
2.2 OVERALL VIEW OF TTCN3 14
2.2.1 TTCN-3 OBJECTIVE AND APPLICABILITY ...ccvovvesreueeeseeeeeeesereeeseesssrssersssrsreserseararerssseses 14
222 ESSENTIAL FEATURESuvvviieteeeirintrceerseeeesssseemsssesessssesssssesessasssssssssnsersasssesassnnenssssssases 14
2.2.3 DIFFERENT PRESENTATION FORMATS ...cccvioriersiverersessecessessssssesesssssnsssssasnsranenessssnessorsns 15
2.3 TTCN-3 CORE LANGUAGE STRUCTURE 16
2.3.1 MODULE DEFINITION PARTooutivitieeierenirrisriseesisesssessssressassesseesssesessrsssassossensosssssonss 17
2.3.1.1 Module Definitions Part............couveeeimeevemiieiineeieeseetenseeeserasessessessesstostsssessacsssseesssaese 17
2.3.1.2 Templates DefiNitiOns.............ccuceeveeueernecrireneeraeerericeitrirsssassassessssssssssssssssssssssssssssees 18
2.3.1.3 Ports and Components Types DEfiRitions..............couvcerereoiveirisiinisiiiiinsiiooeeens 18

2.3.1.3.1Timer as a Related Configuration ToOl..............iivnivinniniiniininninienninns

2.3.1.4 Test cases and FURCLIONS dEfiNItIONSccccovuvvviiinininnsiinisiniinieeeesrasteessesasssnens
2.3.1.4.1 Test Verdict a Related Behaviour TOOL................cceeeevcceeveneeeeeeeeereeveesiresinsenns
2.3.2 MODULE CONTROL PART ... eiititieeieeerereieieeeeieensnesissssesssssessrssssnsnsasssssransssssesssanasssssasen

24 GENERAL STRUCTURE OF TTCN-3 TEST SYSTEM

24.1 TTCN-3 EXECUTABLE (TE)....cuevtetireiueiesuerareessssessssssssssassesssssssessasassssssssssasssnssssessssans
242 TTCN-3 CONTROL INTERFACE (TCI)...oveeruierernenserercssinsianiesssnessnssiessiessessseessessssesssnsnses
2.4.2.1 Test Management (TM).........ccooovenveeveeiierieneesieceeissenetesscsessseasesssesassssesssssssosssosess
2.4.2.2 Coding and Decoding (CD)ccouuvevcvvinnrniininniiiininenisnsissessossessssonsenons
2.4.2.3 Components Handling (CH)ccoccoiuvivrininvniniirnerritviissinsssssessnasnens
2424 TeSt LOGING (TL) c.uooeeeeeieeeeeireeieeeiestesereeeasesesiessieee s s nes e sessasnas s ssesassassnons
243 TTCN-3 RUNTIME INTERFACE (TRI) ...oovverirenrernerirernnns eeeeteeereretetateeaneberesetenetenans

2.4.3.1 SUT Adaptor (SA)

2.4.3.2 Platform Adaptor (PA)cccocueiiniennieniniesesrsccnsinstesstrescesesesessssssessassesssssesanes

2.5 SUMMARY

CHAPTER 3

OUR METHODOLOGY FOR EXECUTING TIMED TEST CASES USING TTCN-3..........

3.1 OVERVIEW OF THE METHODOLOGY AND TEST SYSTEM
3.2 TIMED TEST SUITE GENERATION USING TIOA AND MSC
33 TEST CASES CONVERSION TO TTCN-3 ATS

3.4 TTCN3 EXECUTABLE (TE) GENERATION

34.1 TTCN-3 PROJECT CREATION ...ucvviruiniirinriisresisisionsrssissssisresnssisisissssnsssssmssessesssrasasss

342 OVERVIEW OF THE TTCN-=3 MODULEcccovtrrrervencessessesseeessesseessessmreseesanesnerssanesseesees

3.4.2.1 Test Data...............

3.4.2.2 COMMURICALION POFISccoocvvveeeeieieeeeeeeeieeeiee e ieeeeeeeeetsississssssssssssssesessstansasnsssannereresess

3.4.2.3 Test Components ...
3.4.2.4 Test behaviour
343 PRODUCING THE TE

'35 SUMMARY

CHAPTER 4

TEST SYSTEM IMPLEMENTATION AND EXECUTION

4.1 CLASS DIAGRAMS

vi

23

25
26
28
29
30
32
33
34
35

36

38

38

38

41

45

48

48

49
50
50
51
33

54

55

55

55

4.1.1 CODEC PACKAGE......ieeietiiiiiiissiesiiniississstensisssisnissssnssssssssesssessesssssssesssassnssssessasssssnes 57

4.1.2 TRIPACKAGE w.c.uteriiritisnrestinnesroesiessessisressaosnesssssessassssnssesasessessassessestassssssssasssassasssssaass 58
4.13 TOOLS PACKAGEccurereeeieierecetaseneseseeacsstsesssasnenesiensasassersssssbsssesstersssnssssssssasnssssssssssss 60
4.2 OVERVIEW OF THE TEST IMPLEMENTATION 61
43 CODECS 63
44 SUT ADAPTER (SA) 64
4.5 SYSTEM UNDER TEST 66
4.6 PRODUCING EXECUTABLE FILES FOR THE JAVA PROGRAMS......cccectvrucsurseee 66
4.7 LOADING AND RUNNING THE TEST SYSTEM 67
4.7.1 MODULE LOADER FILE (MLF) ..c.uviviieeirernnereenseentrneieerseesetnieesesseesssnessssssosassssssasesns 67
472 RUNNING THE TEST SYSTEM «...cvreureneeerererercencssesenssessesescsessesescesessssensasasssssssasssesesssss 68
4.8 SUMMARY , 72
CHAPTER 5 73
CONCLUSION AND FUTURE WORK 73
5.1 CONTRIBUTIONS 74
52 EXTENSIONS AND FUTURE WORK 75
5.2.1 TIMEDTTCN-3: A REAL-TIME EXTENSION FOR TTCN-3cccooovurrerrienrenrrenensnsenes 75
5.2.1.1 Time EXIEHSIONc.uovviiienirinrieirintiscecstcetestcasssest st st se s sssese st esasatsebestsenssssaness 76
5.2.1.2 Real-Time Properties EVQIUGLION................cccccooivrnniisiiscirionnisiieeeneesissscenesstsssesecone 76

522 TIMEDGFT: A REAL-TIME GRAPHICAL PRESENTATION......cccveveerirencerrerserneessonsraneases 77
BIBLIOGRAPHY 79
APPENDIX A : ' 84
ABSTRACT TEST SUITE GENERATOR PROGRAM 84
APPENDIX B 96
TTCN-3 ABSTRACT TEST SUITE MYMODULE.TTCN) 926
APPENDIX C 104
PACKAGES AND CLASS HIERARCHY IN JAVA DOC 104
APPENDIX D 105
MYCODEC JAVADOC 105

vii

APPENDIX E

MYSUT JAVADOC

APPENDIX F
MYADAPTER JAVADOC

APPENDIX G

BUILD FILE

viil

109
109
114
114
117

117

LIST OF FIGURES -

FIGURE 1-1: CONFORMANCE TESTING FRAMEWORKcoiseeresssereceresencrentecsussssssessenessssesensissnsssssssssssnssensnes 4
FIGURE 1-2: BASIC TYPES OF TEST METHODScceveetrsruecsrenesessencessreresesesrsresssessssssssossssssassssesssssissssmssssesessssens 6
FIGURE 2-1: TTCN-3 FORMATS AND MAPPINGScccrverererseraostsocscseossrorssosiersssssressssosssesnersnssssasstsssnsssensssessseses 16
FIGURE 2-2: TTCN-3 COMPONENTScovvceeteverervercrsssesessnorecesssessssssssosssossssssestsessssssissssssissstosssssnssssessssesssnass 19
FIGURE 2-3: COMMUNICATION PORTS......c0euieteerreetsasensassesesnesesessssesssassssserssessenssassssesasacessmnsssssasssssessessesesnsnss 20
FIGURE 2-4: GENERAL STRUCTURE OF TTCN-3 TEST SYSTEM.....cccecterirtererererresserssneresaesessessesessenseseessesrssesss 24
FIGURE 2-5: REFINEMENT OF TTCN-3 TEST SYSTEM STRUCTURE.......ccovvrinrmsiesiisseesseesssessnmssnssssesssssssnesnessnns 26
FIGURE 2-6: ABSTRACT VALUES HIERARCHYvevevererererresssessrseneressnsnnsenssssiosssssosesssssonssesessssssssssasssensasssessons 27
FIGURE 2-7: TCITM SUB-INTERFACESccvevevteterereseeressasesesessssesessesensesssesssssessstssssssssssssstsssesssssssssssassssssessons 28
FIGURE 2-8: TCICD SUB-INTERFACES ...c.ceevevetenersneesesaestssessesssassassesasssssesessenssosstsntsotstsssssasssssssssassassesosesns 29
FIGURE 2-9: GENERAL STRUCTURE OF DISTRIBUTED TEST SYSTEM.....cccererereererueeeressereesersecsenersmeneeneeseesesseserss 31
FIGURE 2-10: TCICH SUB-INTERFACESceceereetreeteaeressesrrsenteseesesssstessenaresessssessssssnssesassessssoesossassessorstsssstoses 31
FIGURE 2-11: DETAILED VIEW OF TEST LOGGINGcceovenererrereesirsnscsiesssesnssnsosisessesssssssisissesssssssssssisssssenes 33
FIGURE 2-12: TRICOMMUNICTIONSA INTERFACE.......cccvtitrmiatraistentsioreesesnssessensssstesssssssesessessesesassasssesseseasesosses 35
FIGURE 2-13: TRIPLATFORM INTERFACE ..c..cccucieiteeueerearerestereseesssnesesanossesssessasossassssessssssssstsssnasssssnnsssnsssosssesse 36
FIGURE 3-1: OVERVIEW OF THE PROCESS OF TTCN-3 TEST SYSTEM ...c.ccertreeeiinrenniensessiessnsississuesssssoesssiosss 39
FIGURE 3-2: TEST PURPOSE OF MULTIMEDIA SYSTEM.......ccveerereserentressescrereeessesseserssserersssssessesonsestsassssenssasss 42
FIGURE 3-3: SPECIFICATION OF MULTIMEDIA SYSTEMceccterteerirsiecsiisssionsississsosssssiessesssnossesssensssssssssasssnes 43
FIGURE 3-4: GRID AUTOMATON OF SPECIFICATION AND TEST PURPOSESccceetrieretererssereresessaesansassesseseeses 44
FIGURE 3-5: FILE OF TIMED TEST CASES ..coutertietiireieseieneninietsasestessesesstsessessssessestosssssessessesassastssassssssesssons 45
FIGURE 3-6: FILE OF GENERAL TIMED TEST CASES.......ccecevtrrrtetiestetssnsnntenssssssesssssssssssassssssesssssssssassassnsaes 46
FIGURE 4-1: PACKAGE DIAGRAM.......cceiteterrereniesresersssesesessesessnsssssnssessonesessesessesssssssossssassssssesessentssssssrosesosss 56
FIGURE 4-2: OVERALL CLASS DIAGRAMcovieteirirnicenresaeteresiensensessseserestsessescsesenssssessesencaresssesnsntsosstsessesenss 56
FIGURE 4-3: CLASS DIAGRAM OF CODEC.......cciriniimiinntemieniiiesumsssmsesmmsiesssssismssmiss st ossssatasssessnsssssssessaes 57
FIGURE 4-4: CLASS DIAGRAM OF TRL.....cccoitiieirintiniriteireesertestseseetseeseesestesssssasaseseesessssssssssssessassassnssesesnes 59
FIGURE 4-5: CLASS DIAGRAM OF TOOLS «..uvevetriererrreeressossoncesessssesssssassssssssorssesesesssssosssonsnssssstsnssssceserenesssss 60
FIGURE 4-6: TEST IMPLEMENTATION PROCESScccotrtrrrereeseserersensesesessssssressonessassessensossntassseseneesensencsssseseeens 62
FIGURE 4-7: TEST REPORTcoveuietetrurresessesesseresessorssesesesssesesessosenssssssssassessnsssessasst soestresserosssess sossesssssssossassns 69
FIGURE 4-8; TEST REPORT (CONTINUE) 1.cvereeerernresersersessnescosssesensrosssrssssssossiossssssossassssssssssessssssassessesesesonsns 70
FIGURE 4-9: PASSED TEST CASEc.civeueseetereesresmsarssesssssnesesseresencaosssasesesesescsasscssssesssossesassssosessonsestsusssssssssess 70
FIGURE 4-10: FAILED TEST CASE.....cccteisetrrtreeteniesentantesteseseesessessosessestasssessasenssesonsosessssssssosensessassonsasssssoresssssns 71
FIGURE 4-11: GRAPHICAL RESULT OF A PASSED TEST CASE ...cccvuiinuiimiiirininininniesresisisssesnssnesmneneinsines 71
FIGURE 4-12: GRAPHICAL RESULT OF A FAILED TEST CASEcccectrietiiererentrreeetseenssestssnesesssssssessessssnsssensens 72

ix

LIST OF TABLES

TABLE 2-2: OVERVIEW OF TTCN=3 TYPES ..eteittieeieitrereersteecsanessssaisresesaisssssssesssonesssssestesssssossssssssssssassarsessos 17
TABLE 2-3: TIMER OPERATIONS ...euutettteittttieerrsssiorsessersessssesesssssesssissssssssestosssssasssossnsssssssransssssnsssssnssssssensasanses 21
TABLE 2-4: OVERWRITING RULES OF TEST VERDICTS ..euvertreercrerererercacerseerecsesesessssssssssassasssssessnsnsesssssssnsossasssss 22
TABLE 2-5: OVERVIEW OF TEST SYSTEM CORRELATION......cciieteettreruresseseerierrsansenseraesessssssvsssssserssassnsssssssnsnnnsns 25
TABLE 5-1: REAL-TIME CONSTRUCTS OF TIMEDGFT........... e s n s sene et eee e 77

ABBREVIATIONS

API Application Programming Interface

ASN.1 Abstract Syntax Notation Number One (based-text notation)
ATS Abstract Test Suite

CH Component Handler

CORBA Common Object Request Broker Architecture

ECD External CoDecs
ETS Executable Test Suite
ETSI European Telecommunications Standards Institute 2005

FIFO First In First Out

IDL (COBRA) Interface Definition Language
ISO International Organization for Standardization
ITU-T International Telecommunication Union ~Telecommunication

Standardization Sector
IUT Implementation Under Test
MSC Message Sequence Chart
MTC Main Test Component
MTS Methods for Testing and Specification
OBSAI Open Base Station Architecture Initiative
OMG Object Management Group
OSI Open System Interconnection
PA Platform Adapter

PTC Parallel Test Component

xi

SIP

SA
SUT
TFL

TC

TCI

TE

TID
TIOA
TL

™
TRI
TSI
TTCN
TTCN-3
TT-Medal
U2TP
UML

XML

Session Initiation Protocol

SUT Adapter

System under Test

Test Frame Language

Test Control

TTCN-3 Control Interface

TTCN-3 Executable

Timer Identification

Timed Input Output Automaton

Test Logging

Test Management

TTCN-3 Runtime Interface

Test System Interface

Tree and Tabular Combined Notation
Testing and Test Control Notation version 3
Test and Testing Methodologies for Advanced Languages
UML 2.0 Testing Profile

Unified Modelling Language

Extensible Mark-up Language

xii

CHAPTER 1

Introduction

In a software life cycle, testing is one of the most significant activities. Its
purpose is to make sure of the quality of the product or service being tested and to
detect bugs. However, testing is an expensive and time-consuming phase. In addition,
the significant growing complexity of systems and the lack of market time have added
more exigencies to testing. Accordingly, the test process should satisfy the
requirements of quality, reliability, and responding to the complexity of today’s

systems with minimal time and cost.

Real-time systems are special kind of systems> that are restricted by time
constraints. When testing such systems, particular difficulties arise due to the system
behaviour restricted by these constraints, which adds another testing challenge. A real-
time system must react to externally input stimuli within a limited and specified
duration. Consequently, the correctness of system implementation depends not only on

the logical results, but also on meeting the operational deadlines.

Therefore, the necessity for concrete systematic automated test methods that
fulfill all the above requirements and response to the challenges is increasing. The
Testing and Test Control Notation — Version 3 (TTCN-3) is a standardized testing
language to pace and ease the specification and implementation of test suites for

complex systems.

1.1 The Objective of the Thesis

In this research, we are going to develop a methodology for executing Timed Test
Suite using TTCN-3 testing language. The starting point of our methodology is from a
given text file of Timed Test Suite that has a collection of test cases for a real-time

application. Our objective is to execute those test cases through the usage of TTCN-3.

Within the methodology, we will develop a program to automatically convert the test
cases into a TTCN-3 Abstract Test Suite (ATS) produced as an output. The purpose of
the methodology is to let the program automatically generate ATSs to save time, cost,
and possible learning effort to the TTCN-3 language. In addition, we aim to make the
program reusable for as many similar applications as possible. Once we compile the
generated ATS under a TTCN-3 environment, the TTCN-3 Executable (TE) for that
Abstract Test Suite is produced. The TE at this point is still abstract and portable
between toolsets of different vendors who support concrete and language mapping.

Therefore, we need some supplementary work to be able to run it.

Through the second phase of our development, we will complete the work and
render the abstraction concrete. To make the TE and System Under Test (SUT) able to
intercommunicate and understand each other, we need to encode/decode the messages
exchanged between them from abstract data to real world data and vice versa. This is
what we will implement as a part of the TTCN-3 Control Interface. Furthermore, the
TE should adapt to a specific platform, test devices, and SUT, which we will also
implement in the TTCN-3 Runtime Interface. By doing so, the test system is completed
and ready to be applied on a simulated SUT. It will be run to automatically execute the

test cases.

We will give more information about testing timed test suite using TTCN-3 in
section 1.4 after introducing conformance testing since we are going to perform this
type of testing. Thus, in the next section, we will talk about conformance testing and
show its procedure as defined in the standardized Conformancé Testing Methodology

and Framework.

1.2 Conformance Testing

Distributed real-time systems communicate with the environment by exchanging
messages. The manners of communication depend on communication protocols. So, a
protocol implementation has to be compatible with other implementations [1]. To
guarantee such compatibility, all implantation must conform to a well-detailed

specification. The principle of testing the implementation is defined as Conformance

2

Testing. Nevertheless, different developers/testers could achieve this type of testing in
different ways or may test the same system more than once. To avoid the previous
problems, there is a necessity for a unified approach. The International Organization for
Standardization (ISO) has developed and internationally standardized the Conformance
Testing Methodology and Framework (CTMF) to cover the aspects of conformance
testing. Although it focuses on conformance testing of OSI protocol entities, it has been

used with success for functional testing.

Conformance testing objective is to determine whether an implementation
conforms to a specification or not. The standard (ISO 1S-9646) [2] defines the CTMF
framework for conformance testing through specifying its main general procedure of
test suites generation, test execution, and test result analysis. It also identifies the
representation of test suite and test verdict. The standard recommends this general

procedure of testing without targeting any specific testing protocol.

1.2.1 Conformance Testing Procedure

The procedure consists of three stages: test suites development, test execution, -
and result analysis. In Figure 1-1 [2], we illustrate this recommended conformance

testing procedure.

1.2.1.1 Test Suite Development

A test suite is a set of test cases representing the test for particular test purpose.
Test purposes are derived from the specification to identify what to test. Each test
purpose covers one or a set of conformance requirements specified in the specification.

Related requirements may be expressed as a single test purpose to be tested.

When test purposes become available, one generic test suite is derived from each
test purpose. A generic test suite explains the high-level test actions to perform a
specific test purpose, without taking into account the execution environment or the test

method to be used.

At last, in order to generate an abstract test suite from the generic test suite, a

specific test method should be considered besides the restrictions implied by the test

environment. This is because the generated ATS should be adaptable to prospective real

test architecture. An overview of test methods and their architectures is given in section

1.2.2.

——_————— =

Test Suite Development
— Test Methods

-~ Test Notation
Abstract Test Suites
_— e — —— —— —— —]
A
Exscotable Test Suites nformation of IUT and
Derivation - execution Environment

Test Execution

Result Analysis

Reference
Specification

Test Purpoese Derivation

Test Purposes

Generic Test Suites
Derivation

Test Suites Transform

-~

xecutable Test Suites
Test Execution [o e

Result Analysis

Test Yerdict Report

Figure 1-1: Conformance Testing Framework

The resulted ATS is independent of any implementation and the test cases in an

ATS are represented in a well-defined test notation. TTCN, the tree and Tabular
Combined Notation, is a semi-formal standard language to specify abstract test suite is

suggested by ITU-T in its recommendation [3], as we will see in seqtion 1.4.

1.2.1.2 Test Execution

The ATS is independent of any real time testing environment and any IUT; hence,
the data and parameters in the test cases are abstract and not real data. Due to this, the
ATS can not be applied on real test devices until it is transformed to executable test
suite with concrete data. Therefore, it is time to know about the system under test
implementation and the test environment. A test case, for instance, could be passed as
the parameters of a function, or the payload of a packet. Additionally, if there are some
test cases in the ATS that could be irrelevant to the implementation owing to some

options offered in the specification, they should be deselected before the transformation.

When the executable test suite has been created and ready for execution, it is

applied to the IUT. The reactions of the IUT are observed and logged.

1.2.1.3 Result Analysis

The recorded reactions of IUT are compared with the expected ones as specified
in the test suite, and a verdict report is generated. A verdict can have one of the three
values: PASS, INCONCLUSIVE, or FAIL. If the outputs of each test case indicate that
the implementation conforms to the specification and test purpose, a PASS verdict is
concluded. In case the implementation conforms to the specification but not to the test
purpose, INCONCLUSIVE verdict is concluded. However, if the implementation fails
to conform to the specification, a FAIL verdict is concluded. If all test cases applied on

the IUT lead to the verdict PASS, it means that the IUT conforms to its specification.

1.2.2 Test Methods and Configuration

The IS 9646 standard has recommended the four basic types of test methods.
Each method represents different logical concepts of test architecture with regards to

the accessibility of the IUT to the tester as depicted in Figure 1-2 [4].

5

2
Upper Tester PCO
\ 4 PCO
Upper Tester A Coordination IJT
IUT Procedure y
Lower Tester L
C I PCO Lower Tester PCO
X
Local Single-Layer Coordination Single-Layer
h" Upper Tester
Upper Tester I PCO
Upper Tester UT
It Y PO y Y
Y
I PCo \ 4 v A 4
I []
Distributed Single-Layer Remote Single-Layer Architecture

Figure 1-2: Basic Types of Test Methods

For any test architecture, there are an Upper Tester (UT), Lower Tester (LT),
Implementation Under Test (IUT), and Points of Control and Observation (PCOs) [4].
The UT behaves as the upper layer of the IUT that enquires services from the IUT via
the PCO on the upper boundary. While the LT acts as a lower layer of the IUT and its
peer-layer. It creates services and sends signals to control the behaviours of the IUT via
PCOs. It also generates the test verdict and test report. PCOs are service access points
to enable the tester observing and controlling the TUT behaviour'. In a concrete test
configuration, the UT and LT representing the functional entities are mapped to one or
more test components, e.g. active elements which are executed in parallel. Each test
component realizes the functionality of one or more UTs and LTs. The lower tester

control function is integrated in the main test component (MTC). The number of test

components depends on the degree of concurrency in the behaviour of the tester. In a
multi party context, one test component should be defined for each party. However, it
should be noted that, in principle, several test components again may be executed on

the same physical device.

The four testing methods are: Local Single-Layer (LS), Distributed Single-Layer
(DS), Coordinated Single-Layer (CS), and Remote Single-Layer (RS) Method. In the
LS method, both lower and upper testers as well as the IUT reside in the same system.
In the DS method, the LT is at the remote location and requires communicatibn with
IUT through the PCOs of the low layer service provider. It also communicates with the
UT through a Test Coordination Procedure in order to apply a proper test suite to the
IUT and reports related outcomes. The CS method is similar to the DS one except that
both testers are in the same location, but separated and coordinate through the local
coordination procedure. The RS method differs from the DS in that there is no upper

tester and the remote tester has an access to only one PCO.

1.2.3 Conformance Testing and Specification

The amount of information given about the system implementation determines
the way in which tests can be specified. Two types of testing can be distinguished with
regards to the implementation: black and white-box testing. Conformance testing is a
black-box testing most of the time. This type of testing ignores the internal structure of
the implementation. The test cases are generated based on the specification, and then
they are applied to the implementation. The implementation is tested against the
specification to verify its conformance to it. In addition, the test fault coverage and

result analysis are checked with respect to the specification.

Unlike black-box testing, in the white-box testing, the implementation and the
internal structure are known. They are used along with the specification for the test

cases derivation, fault coverage, and test result analysis.

Another type of testing is called grey-box testing where only high-level module

structure of the implementation is acknowledged without any details.

Besides conformance testing, there are many other types of testing such as

interoperability, robustness, regression, system, and integration testing.

1.3 Testing Real-Time Software Systems

Real-time systems are usually large and complex systems that need extreme
reliability and safety. They have real-time control and concurrent control of separate
systems that communicate with each others and with the environment. Hence, these
systems must react to input stimuli from the environment within a finite and specified

period.

Testing real-time systems is subject to real-time constraints, which are the
operational deadlines from event to system response. For instance, emerging
multimedia over internet is considered one of its applications. Non real-time systems
do not have deadlines, but quick responses are desired and preferred to obtain high
performance. In contrast, the correctness of the functionality of a real-time software
system depends not only on the logical results of the system, but also on the time at

“which these results were delivered. Therefore, in these systems, the emphasis is on
both scheduling and performance. Failure to respond through a specified delay is as bad

as the wrong response.

It is extremely crucial in hard real-time systems that responses happen within the
required deadline such as flight control systems, missile guidance systems, medical
device monitoring, and power plant control. If a time constraint is violated or a deadline
is missed, the failure will be disastrous on human lives as well as on the environment.
Such applications of real-time systems are considered mission critical and testing them

is one of the challenging research areas.

As mentioned before regarding modern complex systems, testing is a more 'cqstly
and time-consuming process. Testing scenario will be worst when we test real-time
systems because time is not under the control of the tester and the timing factor
produces too many states [5]. Before concrete tests can be carried out on a system, big

efforts should be spent on specifying what and how to test and on getting the test

descriptions in a format that is accepted by the test devices [6].

To reach such kind of testing, three main steps could be recognized in general.
First of all, test cases are generated using an efficient method especially for real-time
applications called Automated Timed Test Suite Generation. This step or method is not
part of our work, but its final output will be our starting point. Thus, in chapter 3, we
will talk briefly about its process of generation without any implementation or details.
This is just to give the reader an idea about it and show how and why our work will be
the continuation for it. In this method, timed test cases are generated based on the
specification of the system and test purposes. As mentioned before, test purpose is the
partial functionality of the system under test. Its objective is to reduce the number of
test cases while ensuring acceptable fault coverage. Each test case represents a
sequence of interactions among the components of the system and their environment as
well as the time constraints on these interactions. The construction of use cases
employs timers and time constraints between each pair of events in order to specify the
timing behaviour of a real-time system. As a result of this generation, a collection of
test cases is written into a file. Each test case consists of input actions, time delays, and
output actions. Time delay is the maximum duration allowed between two actions (2
inputs, input-output, or 2 outputs). Our work will start with this file and include the

following steps.

In the second step, the generated test cases are applied to the implementation of the
system under test. For each time delay in a test case, we set a timer and we wait for its
expiration before processing the next event, then the reactions of IUT are observed.
Finally, the test results are analyzed and a verdict is concluded. If the outputs of each
test case match those expected with respect to corresponding timers value, the
implementation is conforming to the specification and test purpose. Otherwise, faults

within the implementation must be sited and fixed.

The approach adapted in the first step is not part of our work, but its final output
will be our starting point. Thus, in chapter 3, we will briefly talk about its process of

timed test suite generation to show the reader how and why our work will be the

continuation to it. However, the implementation and details of the generation are out of
the scope of this thesis. Then, based on the outcome of this step, we will proceed our

development for the second and third steps in this research.

1.4 Testing Timed Test Suite with TTCN-3

The manual testing methods used before cannot ensure the reliability and quality
of the actual diverse complex systems within acceptable time and cost. Today, testing
of software intensive systems is in many cases done in an ad-hoc fashion with
languages not designed specifically for testing. In the third part of Conformance
Testing Methodology and Framework, the Tree and Tabular Combined Notation TTCN

is defined and recommended as a test specification language [7].

Later, TTCN-3 has been developed and intemétionally standardised as a test
language. It is used to test the specification and implementation of complex test
systems (e.g. Distributed and reactive sysfems) for different kinds of applications.
However, TTCN does not include OSI or conformance testing specific constructs in its
third version. Instead, it provides many new compelling features as a modern testing
language. To tackle the increasing requirements of today’s systems, automating testing

of test suites using the standardized testing language TTCN-3 is adapted.

Our approach will focus on developing a methodology to execute Timed Test
Suite using the TTCN-3 testing language. We are going to apply the methodology on a
real-time multimedia application. The program that we will develop in our
methodology starts from a provided set of test cases in a file generated as mentioned in
the previous section and will be our input. The program will automatically transform
the test cases into a TTCN-3 ATS. The aim of our methodology is to be able to use the
program as ATSs generator to save time, effort, and cost that would be invested if the
ATS is built manually by training developers or testers for this new language. In
addition, we want to apply the reusability software concept and reuse the program or
the TTCN-3 ATS for as many similar applications as possible with little modification if
needed. The output of our program will be a file containing the TTCN-3 ATS. When
we compile this ATS under a TTCN-3 environment, we get the TTCN-3 Executable

10

(TE) for that abstract test Suite. The ATS / TE are intended to be abstract to make the
tester focuses on the specification of the test independently of any implementation,
language, or platform. Hence, the TE is portable and supported by the toolsets of
different vendors who provide language mapping, and that is why the TE cannot be run

at this stage.

Therefore, the generation of the ATS with its TE is the core part of our work, but
not all. We will complete the work through the second stage of our development when
we render the abstraction concrete. To do that, the executable needs adaptation to a
specific platform, and system under test, which we will implement through the TTCN-3
Runtime Interface. Additionally, the ATS needs encoding abstract data to real world
data and decoding the real world data to abstract. Encoding is required, so that the
System Under Test (SUT) be able to understand the stimuli coming from the ATS. On
the inverse direction, decoding is needed, so that the responses (to the stimuli) sent
from the SUT to the ATS can be understood by the ATS. This is also what we will
implement through the TTCN-3 Control Interface. As a result to our development, we
will have a complete test system that we apply on a simulated SUT. Then, we run the

test system, which will automatically execute all the given test cases.

However, due to the fact that the TTCN-3 testing language is still new, we will
talk about it before starting our development. This is to make it easy to the reader to
follow our work. Thus, the thesis will first explain the structure of the language and its
elements. It also highlights its features and mechanisms such object-oriented like
syntax, timer handling, dynamic test configuration and communication, test behaviour,
and test verdicts. These concepts will be used by the program generating the TTCN-3
abstract test suite. We will also explain where we get the file of timed test suite and

why we consider it our starting point.

1.5 Thesis Outline

This thesis consists of five chapters. The remainder of this thesis is organized as
follows: Chapter 2 talks first about TTCN-3 core notation. It starts with a background.

Then, it introduces the third version, its objective and applicability, presentation

11

formats, essential capabilities. After that, it explains the TTCN-3 core language
structure, main parts, and how it is used to create a TTCN-3 abstract source code and
produce the executable. Then, the chapter describes the structure of a whole TTCN-3
test system as a collection of conceptual interacting entities. Each of which has a
functionality to perform a specific role in the test system implementation. According to
its functionality, an entity belongs to either the executable of the abstract test or to one
of the two related interfaces: TTCN-3 Control Interface and TTCN-3 Runtime interface.
The chapter will then talk about each involved entity along with its task.

Chapter 3 focuses on our methodology for the development of a TTCN-3 test
system to automatically execute given timed test cases. In this chapter, we will first
illustrate and give an overview of the process of building a TTCN-3 test system. Then,
we will explain the approach of timed case generation that has already been done by the
others to generate a file of test cases to start our development with. Then, we will begin
our methodology by creating a program to generate a TTCN-3 ATS. After that, the
compilation of the ATS and the production of the TTCN-3 Executable are described.

Chapter 4 is devoted to the design, implementation, and execution of the test
system. In this chapter, we will complete the development of our test system to be able
to run the given test cases of a real-time multimedia system. The chapter starts with
explaining the object oriented design to the packages and classes involved in our
development. Then, we will give an overview of our test implementation. After that, we
will implement the classes used for this development and build them. At the end of the
chapter, we show how to run our test system to automatically execute the test cases and

analyse the results.

Finally, in chapter 5, we will summarize the thesis and our contribution based on
the work and the results of this research. Then, we will discuss the future extensions
related to our work. Specifically, we will talk about the TIMEDTTCN-3 extension to
efficiently address the hard real-time requirements and the TIMEDGFT extension to
graphically represent the TIMEDTTCN-3.

12

CHAPTER 2
TTCN-3 Core Language and Test System

This chapter first talks about the language history. Section 2.1 gives an idea about
TTCN-3 background. Section 2.3 provides an overall view of TTCN-3 including its
objectives and applicability, features, presentation formats. Then, section 2.3 explains
the structure of the core language according to the functionality of its different elements.
The core language enables us to create a TTCN-3 Abstract Test Suite/module and
produce its TTCN-3 Executable (TE). The latter is just part of the test implementation
and the first step of the process. To be able to execute a TTCN-3 test system, the whole
test system structure should be built. Section 2.4 will describe the structure of a TTCN-
3 test system based on its various functionalities where the TE is its center as given in
the first subsection. Completing the structure requires a TTCN-3 Control Interface (TCI)
and a TTCN-3 Runtime Interface (TRI), which will be explained in the other

subsections along with their corresponding entities and sub interfaces respectively.

2.1 Background

The Tree and Tabular Combined Notation (TTCN) was developed and standardized
as a black-box functional testing language. Its objective was to describe tests in an
effective unambiguous manner that is simple to be used by testers. Some enterprises
applied the language for critical testing to their products under development and found it

effective.

Progressively, its success was the reason for the development of the next version,
TTCN-2, using the conformance testing methodology. Standardization organizations and
forums such as ETSI and ATM have developed test suites for their specifications using
TTCN-2 with success. In addition, many companies started developing their own test
suites as a complement to the public test suites. Once again, that success and good

experience with the second version led to improve it in order to meet the testing needs for

13

other applications in many different areas like internet and software.

2.2 Overall View of TTCN3

Thé most recent version of the language, TTCN version 3 (TTCN-3), is developed,
standardized, and maintained by European Telecommunication Standards Institute (ETSI:
ES 201 873 series). The International Telecommunication Union — Telecommunications
(ITU-T) has published the language as the recommendations (ITU-T: Z.140 series) [10]

and adopted it as well.

2.2.1 TTCN-3 Objective and Applicability

The Testing and Test Control Notation TTCN-3 has been developed to write
detailed test specifications that address testing needs of modern Telecom/Datacom and
IT technologies, and to widen the scope of applicability. One of the objectives of
TTCN-3 is to enable systematic specification-based testing for software systems based

on CORBA, EJB or XML technologies.

TTCN has been used to specify tests for many kinds of applications, including
mobile communications (GSM, 3G, TETRA), wireless LANs (Hiperlan/2), cordless
phones (DECT), Broadband technologies (B-ISDN, ATM), CORBA-based platforms,
internet protocols (IPv6, SIGTRAN, SIP and OSP), software Modules, services testing
(including supplementary services), and APIs [11].

TTCN-3 does not include OSI or conformance testing specific constructs, but it
provides many other concepts. This is to widen its usability for many types of testing
such as interoperability, robustness, regression, system, and integration testing besides

conformance testing.

2.2.2 Essential Features

TTCN-3 did not reinvent; instead, it retained the well-proven concepts of TTCN-2,
improved the others, and reserved the expertise of version-2 developers. The following

outlines these features [20]:

14

e Triple C
o Configuration: Dynamic concurrent test configurations with test
components.
o Communication: Various communication mechanisms (synchronous and
asynchronous).
o Control: Test case execution and selection mechanisms.
e Improved
o Harmonized with ASN.1.
o Module concept.
¢ Extendibility via attributes, external function, external data.
e Well-defined object-oriented like syntax (looks like Java/C++).
e Static and operational semantics.

e Different presentation formats.

2.2.3 Different Presentation Formats

The TTCN-3 standard offers three different presentation formats: textual, tabular,

and graphical format illustrated in figure 2-1.

Usually, the text-based Core Language (ES 201 873-1) is the normal choice for
who got used to use conventional programming environment [13]. With this format,
developers can effectively specify test types and values. In addition, it is considered as a
standardized interchange format of TTCN-3 test suites between TTCN-3 tools. It also

serves as the semantic basis for different presentation formats.

However, there were considerable investment for the already made tabular format
in TTCN and ES 201 873-2 [17] of the previous version and there are users familiar with

it. Therefore, developers of TTCN-3 were well aware of that and have defined a tabular
format (TFT).

Moreover, TTCN-3 came up with the third standard representation, ES 201 873-3
[18] graphical format (GFT). This format is helpful when the focus is on testing purposes

and definition of dynamic behaviour in order to draw complex test cases rapidly and

15

create appealing documentation in parallel. GFI is also a good choice to visualize test

executions in case errors have been found.

In addition to previous formats, if there is a need for other presentation ones, the

language facilitates the development of non-standard formats.

ASN.1 A

Types & Tabular

Values Format <

IDL R P(“rraphitcal p TTCN-3 User
TTCN-3 orma
Core o o
Notation ~——

XML |

C, C++, R Presentation |

Java g Format ,, -~

Figure 2-1: TTCN-3 formats and mappings

The core language may be used independently of the presentation formats.
However, neither the tabular format nor the graphical format can be used without the core

language.

2.3 TTCN-3 Core Language Structure

The top-level unit of all TTCN-3 test specifications is called a Module. 1t is the
building block that defines an executable test suite [14]. A module cannot be structured
into sub-modules, but it can import other modules or definitions from other modules. The
language allows test suite parameterization through using module parameters option. A

test suite is one or more modules that contain a completely defined set of test cases. Each

16

module consists of a module definition part and an optional module control part that will

be explained in the following sub sections.

2.3.1 Module Definition Part

As the name indicates, the definitions part of a module defines data types, constants,
test data templates, test components, communication ports, functions, signatures for
procedure calls at ports, test cases, etc. TTCN-3 language does not support global
variable. However, the variables defined in a test component can be used by all test cases
and functions running on that component. According to its different functionalities, the
definition part could be divided into three main parts: Type and Templates definitions for
test data, components and ports for communications, and test cases and functions for test

behaviour

2.3.1.1 Module Definitions Part

Table 2-2 gives an overview of the types of TTCN-3 [14]. The type definitions are
needed for test data structures.

Class of type Keyword
Simple basic types integer
float
boolean
obijid
verdictiype
Basic string types bitstring
hexstring
octetstring
charstring
universal charstring
Structured types record
record of
set
set of
enumerated
union
Special data types anytype
Spectial configuration types address
port
component
Special default types default

Table 2-2: Overview of TTCN-3 Types

17

TTCN-3 has a number of pre-defined basic data types as well as structured types
such as records, sets, unions, enumerated types and arrays. It also defines normal and

external constants. These type definitions are global to the whole module.

2.3.1.2 Templates Definitions

A template is a special kind of data structure which is necessary for concrete test
data. It provides parameterization and matching mechanisms for specifying test data that
should be transmitted or received during the test via the test ports. Template can be used
to transmit a set of distinct values and/or to check if a set of received values match the

template specification.

2.3.1.3 Ports and Components Types Definitions

A module has two kinds of test components: the Main Test Component (MTC) and
the Test Parallel Component (PTC). Within every test configuration there must be only
one MTC while we could have many PTCs. The Test System Interface is also considered
as a third component. Figure 2-2 shows a configuration to a test system consists of the
MTC connected to two other test components [14]: PTC1 and PTC2 from one side and
communicated with the SUT from the other side. Usually, the object being tested is called
IUT, which could represent a direct interface for testing or a part of the system. Therefore,
this object means either IUT or SUT and generally called SUT. The PTC1 and PTC2
should also communicate with the SUT. In addition, the figure illustrates the test system

interface as the boundary of the test system to the SUT.

The single MTC is created automatically by the test system at the beginning of each
test case execution. But, PTCs should be created dynamically during the execution of a

test case using the create operation explicitly. The behaviour defined in the body of the

test case will be executed on the MTC component.

Each test component may have its own local ports and timers. During a test case
execution each test component has its own behaviour and hence several test behaviours

may run concurrently in the test system. Therefore, a test case can be seen as a collection

18

of test behaviours. Test case execution should end when the MTC terminates [14]. When
the MTC terminates, the test system has to stop all PTCs not terminated by the moment

when the test case execution is ended [14].

—

* Abstract Test System Interface v #

Figure 2-2: TTCN-3 Components

Test components can communicate with each others via abstract mechanisms called
communication ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. The principle of procedure-based
communication is to call procedures in remote entities. On the other hand, message-based

communication is based on an asynchronous message exchange.

The configuration and connection among the components themselves through the
communication ports are defined by using create and connect keywords and occur at test
run. While the connection between the components and the test system interface is
dynamic and can be modified during the test run using map and unmap keywords. Each
port is modeled on the receiving side as FIFO queue to store the incoming messages or
procedure calls until they are processed by the component of that port as illustrated in

figure 2-3 [14].

Test component types and port types indicated by the keywords component and

19

port should be defined in the module definitions part. However, the actual configuration
of components and the connections between them (performed by create and connect
operations) or the communication with the test system interface (by means of the map

operation) are within the test case behaviour.

Test system Connected Ports

Figure 2-3: Communication ports

TTCN-3 allows the dynamic specification of test configurations. A configuration
consists of a set of inter-connected test components with well-defined communication
ports and an explicit test system interface, which defines the borders of the test system
[13].

In real test environment, test cases need to communicate with SUT, so we need to
define the number and type of all possible communication ports that connect a use case to
SUT at the test run. Each test case should be accompanied with an abstract test system

interface (TSI) to define the borders of the test system.

The test configuration along with its dynamically created test components and
communication topologies to the SUT are considered one of the powerful features of
TTCN-3.

20

2.3.1.3.1 Timer as a Related Configuration Tool

Timers are usually declared in component type definitions can be declared in the
module control part, test cases, functions and altsteps, which are running on the given
component type. A timer declaration may be assigned by default to a non-negative float

value where the base unit of duration is measured by seconds.

TTCN-3 supports timer handling by using a number of timer operations shown in
table 2-3 [14]. In each TTCN-3 scope unit timers declared there are two conceptual local
lists: running-timers list and timeout-list. The timeout-lists are part of the snapshots that
are taken when a test case is executed. The two lists belonging to a unit are updated when

a timer is started, stopped, or timed out in the scope of that unit.

Timer operations
Statement Associated keyward or symbol
Start timer start
Stop timer stop
Read elapsed time read
Check if imer running nunning
Timeout event timeout

Table 2-3: Timer operations

When a timer expires, it is conceptually added as an event to the timeout list where

each timer has just one entry, and the timer is deactivated right away for that scope unit.

2.3.1.4 Test cases and Functions definitions

Functions may be used to do some calculation or to specify test behaviour using
the communication operations (e.g. send, receive). A test case is a special kind of
function to represent a collection of test behaviour describing the MTC behaviour. The
header of the test case should define two parts: the interface and system. The interface
part references the MTC on which the test case will run. The system part refers to the
test system interface and it may be optional if the only component used in a test case is

the MTC.

21

When a test case is invoked, the MTC is created, the ports of MTC and test
system interface are instantiated and the behaviour specified in the test specification is
started on MTC. All the actions are preformed implicitly without any operation (no
create or start is needed). At the beginning of a test case, the test configuration destroys
all previous operation on precedents test cases, so they become invisible to the new test
case. A test case starts by the use of execute statement in the module control part. It
finishes with the MTC termination which stops all running PTCs and removes them
from the system. Then, the final test verdict will be calculated on the basis of the local

ones of all test components and the result of a test case is a value of type verdicttype.

2.3.1.4.1 Test Verdict a Related Behaviour Tool

Local verdict is an object created for each test component at the time of its
instantiation in the MTC and every PTC with the initialized verdict value none. The
setverdict and getverdict are the only test verdict operations. The verdict can have five
different values: pass, fail, inconc (inconclusive), none and error. When changing the
value of the local verdict using the setverdict operation for example, the effect of this

change must follow the predefined overwriting rules listed in the table below [14].

Current vaiue of
Verdict
pass inconc fail
inconc inconc inconc fail
fail fail fail Tail

Table 2-4: Overwriting rules of test verdicts

These rules make sure that, e.g., a fail test verdict does not become a pass during
test case execution. When the execution of all test components for a test case terminates,
the global verdict of the test case will be updated according to those rules and returned.
The effect of this implicit operation should also follow the overwriting rules shown in

the same table.

22

Example :
setverdict(pass); // 'The local verdict is set to pass

setverdict(fail); //' When this line is executed, the value of the local verdict is
: // overwritten to fail
// When the PTC terminates, the test case verdict is set to fail

2.3.2 Module Control Part

Test cases are defined in the module definition part while calling them as well as
managing and controlling their execution should be done within the module control part.
Therefore, the control part is considered the dynamic behaviour of the TTCN-3

specifications.

The control of test execution describes the relations between test cases such as
sequences, repetitions and dependencies on test outcomes. For this purpose, selection
and /or iteration statements such as (if-else, do-while), and conditions for starting a test
case may be used. The control part can declare its own dynamic elements (local

variables and timers) in its declaration part.

2.4 General Structure of TTCN-3 Test System

Conceptually, a TTCN-3 test system can be seen as a set of entities that interact
with each other. Each entity has a specific functionality in the test system to implement

as follows [19]:

e Test Execution (TE): Execute or interpret compiled TTCN-3 code

o Test Management (TM): Manage test execution.

e Coder/Decoder (CD): Administer types, values.

e Test Logging (TL): Handle test components.

e Test Component Handler (CH): Handle test components.

e SUT Adapter (SA): Perform suitable communication with the SUT.

e Platform Adapter (PA): Implement external functions and handle timer

operations.

23

Figure 2-4 [20] shows the general structure of a TTCN-3 test system

implementation as a group of entities, which will be explained soon [22].

The TTCN-3 Executable (TE) entity is considered the heart of a test system. It
implements a TTCN-3 module on an abstract level using the core language. The other

interacting entities of a TTCN-3 test system make these abstract concepts solid [22].

Besides the TE entity, the TTCN-3 test system has two major interfaces, the
TTCN-3 Control Interface (TCI) and the TTCN-3 Runtime Interface (TRI). The
purpose of both interfaces is to deal with all other features that can not be concluded
from only the information in an abstract test represented by a TTCN-3 module. Table 2-
1 depicts an overview of the test system interrelation [11]. It also shows which entities

belong to each of the two interfaces TCI and TRI.

.

1 Under Test (SUT)

Figure 2-4: General structure of TTCN-3 test system

The rest of this chapter will describe these entities and give an idea about their
roles in the test system. It will also explain the interaction among them and define their
corresponding interfaces as it is illustrated in the previous figure and summarized in

table 2-5 according to their TTCN-3 standardizations parts.

24

Test Component | Entity Identification TTCN-3 part
ETSI ES 201 873-1
TE TTCN-3 Executable
TTCN-3 Core Language (CL)
SA System Adapter ETSIES 201 873-5
TTCN-3 Runtime Interface
PA Platform Adapter -
(TRI)
CD Codec
™ Test Management ETSI ES 201 873-6
CH Component Handling TTCN-3 Control Interfaces
TL Test Logging (TCI)

Table 2-5: Overview of test system correlation

2.4.1 TTCN-3 Executable (TE)

The TTCN-3 Executable (TE) illustrated in figure 2-4 is the part of the test
system in charge of the interpretation and execution of TTCN-3 modules. Figure 2-5,
which is a refinement to figure 2-4, illustrates the different TE structural elements
[12][13]. As explained earlyier in this chapter, these elements are control, behaviour,
components, types, values, ports, timers, and queues. The structural elements within the
TE represent the functionalities that are defined either in a TTCN-3 module or in the
TTCN-3 standard (ES 201 873-1).

For example, the structural element "Control" represents the control part in a
TTCN-3 module and is specified within the module. On the other hand, "Queue" is
another structural element not defined in the module [13]. It is a requirement of a
TTCN-3 Executable from the TTCN-3 specification that each port of a test component
has its own port queue and that is why its functionality is defined in the specification
instead of the module. As a result, the TE entity in a test system implementation
corresponds to the executable code produced either by a TTCN-3 compiler or a TTCN-

3 interpreter.

25

System Under Test (5UT)

Figure 2-5: Refinement of TTCN-3 test system structure

Conceptually, the TE can be decomposed into six conceptual interacting units: a
Control, Behaviour, Component, Type, Value, and Queue entity. These units deal with
the execution or interpretation of test cases, the sequencing and matching of test events,
as defined in the corresponding TTCN-3 modules. It interacts with the runtime entities
to send/receive/log test events during test case execution, to create/remove TTCN-3 test

components, and to handle external function calls/action operations/ timers [20].

2.4.2 TTCN-3 Control Interface (TCI)

The TTCN-3 Control Interface (TCI) is the sixth part of TTCN-3 standardization
(ETSI ES 201 873-6 V3.1.1 (2005-06) [19]). Its objective is to provide adaptation for
test management, distribute execution of test components among different test devices,
encode and decode test data, and log information about test execution [20]. This
interface is defined as a collection of operations independent of any target using the
Interface Definition Language (IDL). Then, concrete language mappings to Java or
ANSI- C, for example, are defined in the TCI standard specification (ETSI ES 201 873-
6).

26

There are two kinds of TCI operations “required” and “provided”, which are
defined from user’s point of view [19]. The operations that a TTCN-3 Executable
should called required operations. It means the user “requires” from a TTCN-3
Executable a specific functionality to provide to the TTCN-3 test system and participate
in its construction. To satisfy such requirements, the TE must tell the user about events
where the user should “provide” an option. Thus, the functionality that should be
provided by the test system to the TTCN-3 Executable is named provided operation.

Type gettypely
string getvalusRncoaing()

[eereringrasne | footetatringriind | [Cuamatrsagvains] [iescesogvine
Sriiei k1

I_",.'___,,___-/___;._..\-...,-
[Unionvalue | | Emmeratedvalus Recoraorvaine | | Recorsvaine |

Figure 2-6: Abstract values hierarchy

Besides operations, test data play an important role during test execution. The
TCI specification defines a set of abstract data types (ADTs) used to signify data
communicated between the TE and the other entities using the TCI interface. With
these ADTs, the TCI can describe at a high level the kind of data that should be passed
from a calling to a called entity. For these abstract data types, a set of operations is
defined to process the data by the coder/decoder. Each operation returns either a

TTCN-3 value of these ADTs or a TTCN-3 basic type like integer or string. Then, the

27

concrete representation of these ADTs and the definition of basic data types like string
are defined in the chosen language mappings (e.g. Java). Figure 2-6 shows the
hierarchy of the abstract data values. Within a TTCN-3 test system, the TCI defines the
interaction between TE entity frdm one side and the CH, the TM, CD, and TL entities

from another side. These TCI entities will be explained in the next subsections.

2.42.1 Test Management (TM)

TM is the entity in charge of the overall management of a test system and the

implementation of a test system user interface including error handling.

It interacts with the TE as follows. After the test system has been initialized, test
execution begins with the TM entity. The TM calls TTCN-3 modules, transmits module
parameters and external constants to the TE, keeps track of the test case execution, and
supplies test event logging. The differentiation between functionality related to test

execution control and those related to test event logging can be done in the TM entity.

On the other hand, the TE provides the entry points to the test cases, the
start/stop of a test case and a control part. The Test Management Interface has two sub-

interfaces: TciTM Required and TciTM provided, as it is depicted in the below [22].

TeiTM Required

\ LD
GEED

T¢iTM Provided

Figure 2-7: TciTM sub-interfaces

The TCI-TM Required Interface: TCI-TM defines the interface of the test management
to the TTCN-3 runtime behaviour. The test management needs to call TTCN-3 module,
start execution of the control part and test cases, as well as to interrupt test execution.
The TE from its part offers the entry point for test case execution and some elementary

database functionality.

28

The TCI-TM Provided Interface: TCI-TM provided defines the user interface of the
TTCN-3 runtime behaviour to the test management. Objects that implement this interface
have to provide the TTCN-3 runtime behaviour with the module parameters and will be

called by the runtime behaviour upon the termination of test execution for a single
TTCN-3 test case or a TTCN-3 module.

2.4.2.2 Coding and Decoding (CD)

This entity is in charge of encoding TTCN-3 values according to the encoding
attribute into bitstrings to be sent to and understood by the System Under Test [19].
Additionally, it is responsible for decoding bitstrings according to decoding hypothesis
into TTCN-3 values to be sent to the TE. The TE decides which codecs should be used.
It passes the TTCN-3 data to the suitable encoder to be encoded. Also, the CD entity
decodes the received data using the appropriate decoder to get TTCN-3 values. The
TCI Codec Interface describes its “required” and “provided” operations through two
sub-interfaces: TCI-CD required interface and TCI-CD provided interface shown in
figure 2-8 [22].

The TCI-CD Required Interface: It specifies the operations the CD requires from the
TE. All these operations are also required at the TCI-TM and TCI-CH interfaces. The
TciValue interface defines operations on type server objects of the TTCN-3 Runtime
Interface. These objects represent either types that are defined in a TTCN-3 module or
basic TTCN-3 types. Each object returns a Type upon a request. To be able to achieve
decoding, the CD requires particular functionality from the TE indicated by operations.

TeiCD Required TeiCD Provided

Figure 2-8: TciCD sub-interfaces

29

The TCI-CD Provided Interface: When the TTCN-3 runtime behaviour makes an
encoding/decoding request, this interface should respond to the request. To do that, it is
implemented as objects that provide the TTCN-3 runtime behaviour with access to

particular encoders/decoders. Normally this will be the test adapter object.

The codec will perform two actions encoding and decoding. In the first action,
the codec takes the communication data that are described in a high-level in the TE
entity and passes it to the encoder. By using a set of functions and accessing this data
through the Value interface, the encoder converts the internal TTCN-3 data
representation to bitstring to make it real world data. This encoding process is
independent from the SUT. While in the second action, the decoding is done through
decoding hypothesis. Specifically, the decoder translates bitstring accessed by Type to
TTCN-3 data representation. TE may query multiple times for decoding the same
bitstring. Accordingly, the decoder tries to decode the provided bitstring using the
suitable decoding rules into a value of given type to allow matching with TTCN-3
template definitions. In case the decoding successes, it returns the value; otherwise, a

null value is returned.

2.4.2.3 Components Handling (CH)

This interface consists of operations needed to implement the management of the
communication between TTCN-3 test components in a centralized or distributed test
system. It includes operations to create, start/stop test components, set up connection
between TTCN-3 components, manage test components and their verdicts, and handle

message/procedure based communication between TTCN-3 components.

The TE can be distributed among several test devices across one or many
physical systems. It also synchronizes test system entities that could be distributed onto
several test devices as depicted in figure 2-9 [19]. In this case, there will be multiple
TEs. One of them is special because it is responsible for starting a test case and

calculating its final verdict.

Each node within a test system includes the TE, SA, PA, CD and TL entities.

30

Nevertheless, the test system has only one TM and one CH entity to provide test
management and test component handling respectively between the TEs on each node.
All the operations specified in CH interface are distributed into two sub-interfaces:

TciCH Required Interface and TciCH Provided Interface as depicted in figure 2-10 [22].

Figure 2-9: General structure of distributed test system

TciCH Required Interface: This interface specifies the operations the CH requires
from the TE. Besides, it requires all operation of the TCI-CD interface whose kind is

required. Furthermore, the CH provides operation to start parallel test components and

handle procedure based communication between test components.

- TeiCH Provided TeiCH Required

T o
.g_;_:«
o]
[N
UECG
o L
{2

Figure 2-10: TciCH sub-interfaces

31

TciCH Provided Interface: In this interface, test component handling occurs. The
interface specifies the operations should be provided to the TE by the CH entity. With
these operations, it implements the communication of the TTCN-3 components among
each other. It includes operations to establish connections between test components, send

messages to a test component, and enqueue messages received from a test component.

Communication between TTCN-3 components is achieved through message
based, procedure based, or mixture of both. Thus, it is the job of the CH to adapt
message and procedure based communication of TTCN-3 components to the specific
execution platform of the test system. CH is aware of connections between TTCN-3
test component communication ports. It transmits send request operations from one
TTCN-3 component to another. The receiving component may reside in a different
instance of the same TE located on a different node. Then, it places the received test

events in the port queues of the TE in order to inform the latter of their presence.

The CH is also aware of the Procedure based communication operations between
TTCN-3 components. It is able to distinguish between the different kinds of procedure-
based communication operations (e.g. call, reply, and exception), and has to spread
them to the target component located in TE using a suitable mode [19]. Nevertheless,
the CH is not responsible of the implementation of the behaviour for the different

components implemented in the TE; instead, it implements their communication.

2.4.2.4 Test Logging (TL)

The TL entity (interface) represents the test system to the user, performs test
event logging, and provides information about the test execution as shown in Figure 2-

11 [19].

For all TTCN-3 level operations, the logging provides an operation to log the
respective event being performed by the TE, SA, PA, CH, or CD to the user. For
instance, it logs the components that have been created, started and terminated; data has
been sent to the SUT, received from the SUT and matched/mismatched to TTCN-3
templates; timers have been started, stopped, or timed out [19]. In addition, the TL

entity controls the level of detail of this information.

32

The TCI Test Logging Interface (TCI-TL) describes the operations a TE is
required to implement and the operations should be provided by test logging

implementation to the TE.

The TL entity has a unidirectional interface where any entity belongs to the TE

may send a logging request to the TL entity [20].

Figure 2-11: Detailed View of Test Logging

TCI-TL Provided: It specifies the operations the TL should provide to the TE. A

hundred operations are implemented.

2.4.3 TTCN-3 Runtime Interface (TRI)

The TTCN-3 Runtime Interface (TRI) is the 5th part of TTCN-3 standardization
that defines two sorts of adaptation. One is the adaptation for communication of a test
system to a particular processing system under test. The other is the adaptation for
timing and external functions to a particular processing platform. It provides techniques
for the TE to send test data to the SUT or manipulate timers, and similarly to notify the

TE of received test data as well as timeouts.

Similar to what we have seen in TCI interface, the TRI interface is defined as a

33

collection of operations independent of any target language. Vendors can support
language mappings for the TRI abstract specification to possible target languages such
as ANSI C. These operations are implemented as part of one entity and called by other
entities of the test system. For each operation, the interface specification defines the
related data structures, anticipated effect on the test system, and any constraints for

using the operation.

In the TRI operations, only encoded test data should be passed. Instead of
defining an explicit data interface for TTCN-3, the TRI standard defines a group of
abstract data types (ADTs) to indicate which information is to be passed from the
calling to the called entity, and vice versa. The ADTS are used in the definition of TRI
operations for connection (e.g. TriComponentldType), timer (e.g. TriTimerIdType),
and communication (e.g. TriMessageType) purposes. The concrete representation of
these ADTs as well as the definition of basic data types are defined in the respective

language mappings in Part 5 of TTCN-3 standardization.

The TRI Interface defines the interaction between the TTCN-3 Executable (TE),
SUT Adapter (SA), and Platform Adapter (PA) entities contained by a TTCN-3 test
system implementation. By its two entities SA and PA, the TRI can achieve the

adaptation as we will see with more details in the following sub sections.

2.4.3.1 SUT Adaptor (SA)

The SA is the implementation of the System under Test Adaptor as defined in ES
201 873-5 [20]. It adapts the TTCN-3 message and procedure based communication
operations with the SUT to the particular execution platform of the test system based on

an abstract test system interface.

The SA implements a real test system interface with the TE called
triCommunication. The mapping of the TTCN-3 test component communication ports
to test system interface ports is visible to the SA. Thus, this interface is used to
exchange encoded test data between the two SA and TE entities. The job of the

triCommunication operations is to initialize the Test System Interface, set up

34

connections with the SUT, deal with message and procedure based communication to
the SUT, and to reset the SUT Adapter. These operations are divided into two
categories between two sub interfaces: TriCommunicationSA Interface and

TriCommunicationTE Interface as it is depicted in Figure 2-12 [22].

TriCommunicationSA Interface: Its operations are classified into categories. For
example, it has a rest, communication handling, Message and procedure based

communication operations.

TE

_ TriCommunicationTE S

e

/. TriCommunicationSA

SA

Figure 2-12: TriCommunictionSA interface

TriCommunicationTE Interface: It is also defined through a set of operations to add a

message or a call to a queue.

2.4.3.2 Platform Adaptor (PA)

The PA is the implementation of the Platform Adaptor as defined in ES 201 873-
5 [20]. In addition, it is an entity that adapts the TTCN-3 Executable to a particular

execution.

The PA implements external functions and handle timer operations. The timer
instances are created in the TE; however, the PA provides a TTCN-3 test system with a
sole concept of time. A timer in the PA can only be recognized by its Timer
IDentification (TID). This means that the PA treats both explicit and implicit timers in

the same manner.

Figure 2-13 shows the PA interface with the TE, which is called TriPlatform [21].

35

It includes all operations and toois required to adapt the TTCN-3 Executable to a
specific execution platform. The TriPlatform interface has operations to enables the call
of external functions. It also has operations to implement and control timers using
Timer IDs[20]. The timer operations enable starting, reading, stopping, and the
inquiring the status of timers. When a timer times out, TriPlatform will add it to the
timeout list and the PA informs the TE about it. The PA reports the status back and the

TE indicates errors.

Figure 2-13: TriPlatform interface

TriPlatformPAlnterface: It consists of a set of TriPlatformPA operations classified [21]

under three categories: Platform reset, timer, and external functions operations.

TriPlatformTE Interface: The following is a TriPlatformTE operation [21]:

- void triTimeout (...);

2.5 Summary

This chapter introduced TTCN-3 and discussed the structure, and features of the
core language. The new features provide timer handling, matching mechanisms, test

verdicts, distributed test components, encoding information. With these features, the
structure of the language allows building solid abstract test specifications. After that,
the chapter explained the structure of a complete test system. It also showed the

interactions among its entities though sub interfaces that specify what is provided by

36

the corresponding entity and what is required from the interacted entity. These
interactions are defined in terms of operations as a part of one entity and called by other
test system entities. The operations definitions use a set of abstract data types and
values of the types. In the next chapter, we will explain our methodology and start

building our own test system.

37

CHAPTER 33
Our Methodology for Executing Timed Test Cases
using TTCN-3

This chapter will talk about a methodology that we have developed to execute a
previously given file containing a collection of timed test cases. The methodology is
based on using the TTCN-3 language and all its related entities explained in the prior
chapter to execute the test cases in that file. Section 3.1 will provide an overview of the
methodology and the test system. After that, section 3.2 will give an idea about Timed
Input Output Automata approach that was used to generate the test cases in that file
based on the test purpose concept and the specification. The file generation is not part
of our work, but we will show this approach only to give the reader an idea about the
process that led to generate the test cases of that file without any implementation details.
Then, section 3.3 is the starting point of our work in this thesis where we will explain
by details the methodology that we have created. The methodology converts the test
cases in that given file into an abstract test suite coded in the TTCN-3 testing language
as a first step of the execution of the test. Finally, in section 3.4, we will explain how
we configured our ATS, created a TTCN-3 project, and compile the ATS to get its

executable.

3.1 Overview of the Methodology and Test System

As mentioned in the previous chapter, a TTCN-3 test system is conceptually
composed of a set of interacting entities. Each entity corresponds to a particular aspect

of functionality in a test system implementation as previously illustrated in figure 2-5.

In this section, we will give the reader an overview of our methodology through
the development process of a TTCN-3 test system as it is illustrated in Figure 3-1 [34].

During the process, we will focus on our developed test system. In general, the process

38

consists of six steps.

Test System

TTCN-3
Executable

Abstract Test Suite compile +
TTCN-3 Control Interface
D

Executable

Figure 3-1: Overview of the Process of TTCN-3 Test System

Step one: It is about the development of a TTCN-3 Abstract Test Suite for the
timed test cases. This can be done directly under a TTCN-3 environment provided by
~ any TTCN-3 tools. However, in this case, test developers should have good knowledge
of TTCN-3 testing language and be trained for it. To save time, effort, and training cost,
we developed our methodology in this thesis through a program that automatically
converted the timed test suite into TTCN-3 Abstract Test Suite (ATS). The
methodology is also intended to use that program whenever we need to automatically
generate TTCN-3 ATS for similar applications. Then, we compile the generated ATS to

get the TTCN-3 Executable (TE) as a result of the compilation, which is depicted in the
upper part of the Figure.

However, the TE cannot be run as it is because it is still in an abstraction level.
To move from the abstraction to concrete level, we need to support the TE by

implementing other parts to make from it a complete test system. The TE is the core

39

entity of the test system and should interact with the other conceptual entities through
the TTCN-3 Control Interface (TCI) and TTCN-3 Runtime Interface (TRI). As it is
shown in the right hand-side of the figure, the TE with the TCI and TRI together form a

complete test system that can easily be run.

Step two: This step is related to the TTCN-3 TCI interface. As we have
explained in chapter 3, the TCI consists of four entities. The TM entity is responsible of
the test management and the user test interface, which allows the interaction between
the tester and the test system during run time. The CH entity is in charge of components
handling while the TL entity supports logging the test events. The TM, CH, TL entities
have ready-to-use implementation that comes with the compiler and tools supported by
vendors. The fourth entity in the TCI interface is the CD. This entity needs to be
implemented to adapt the data of the messages exchanged between the TE and SUT.

Step three: This step is related to the TTCN-3 TRI interface. The TRI has two
entities: SA and PA. The PA is the platform adapter, which has also ready-to-use
implementation. However, the SA is in charge of the system adaptation. It takes the
encoded messages and communicates them to the SUT. It also takes the decoded
responses and communicates them to the TE. This means the SA adapter depends on
our configuration used in the abstract test, and that is why the SA should be

implemented.

Step four: Once we have the TE, the codec (CD entity of the TCI interface), and
the SUT adapter (SA entity of the TRI interface) ready, it means our test system is
completed. This is indicated by the oval shown in the figure above. This test system
should be applied on the SUT. However, because we are doing a black-box testing,
there is no real time system or implementation under test. Thus, we have to stimulate a

SUT in this step.

Step five: We build the programs mentioned above together using simple XML
file and we get the executable test. Then, we apply the final executable on the SUT.

Step six: This step is about loading and running the test system to execute the test

40

suite like it is shown in the lower part of the figure as an action. We need a module
loader file to load the test campaign. Then, we run the test that will automatically

launch the execution of the test cases.

In the following, we are going to explain and implement each of these steps, but
before that we will talk about the TIOA approach for generating a file of timed test
cases. This is just to show that we will start our methodology from a timed test case
file generated by a solid approach. However, the implementation and details of the
generation are out of the scope of this thesis. Our methodology is the continuing work
that comes after the generation process with the purpose of executing the generated test

cases and analysing the final results of the test.

3.2 Timed Test Suite Generation Using TIOA and MSC

As stated in chapter 1, the timed test suite for a real-time multimedia application
has been generated based on the specification and test purpose. The approach deals
with Timed Test Case Generation using Timed Input Output Automata (TIOA) and
Message Sequence Charts (MSCs). The TIOA is used to describe the specification
while MSC ‘is used to describe the test purpose of the user. MSC is a graphical
specification language standardised by the ITU-T as Recommendation Z.120 [35]. A
test purpose is a precise representation of the functionality to be tested. The user is
interested in testing only the most critical functions of the system or the most frequently
executed parts of the system. The objective of using a test purpose is to help reduce the
number of generated test cases since an exhaustive testing of a TIOA causes the well-
known state explosion problem [36]. MSC-2000 provides a graphical representation
that helps the user to clearly specify what to test. With this scenario language,
communication behaviour between system entities and their environment can be
specified [37]. It is used becaﬁse it has tools that are efficient to express timing
behaviour for real-time systems such as timers and the time constraints between any

pair of events.

Figure 3-2 [38] depicts a test purpose in MSC for the multimedia system for

which we will implement and run the TTCN-3 test system later in this chapter and the

41

next one.

MSC Multimedia_Svsiens

ENV ILT .
R | . CZ”;_”Z"_”]
Simuge - _?' o
' [ﬁ% D
Peound
; 0.2
. lackALL 16.2)
b W§

Figure 3-2: Test Purpose of Multimedia System

0
On the other hand, a TIOA is a tuple (IA, OA, LA, / y CA, T A) [39], where:

- IA is a finite set of input actions. Each input action begins with “?”.
- OA is a finite set of output actions. Each output action begins with “!”.

- LA is a finite set of location. The term “location” is chosen instead of the term
“staote " because the latter is used to define the operational semantics of the TIOA.

-1 4 O LA is the initial location.

0
- CA is a finite set of synchronous clocks set to zero in | p assuming the time is dens,

which means that the clocks values are real numbers.
- T P is the set of transitions. Each transition consists of a source location, an input or an

output action, a clock guard that should hold in order to execute the transition, a set of
clocks to be reset when the transition is executed, and a destination location.

Figure 3-3 [38] is an example of a TIOA describing the behaviour of a simple
multimedia system. The system receives an image and its sound within two time-units,
sends an acknowledgment in less than five time-units after the reception of the image,
and then sends the message reset and starts waiting for another image. If the time

constraints are not satisfied, the system issues the message error and goes back to its

42

initial state. The TIOA that describes the system has four locations 10 (the initial

location), 11, 12, and 13, six transitions and two clocks x and y. The transition from 10 to

11, denoted by /0 Imope.x - x-00=0 511, is executed when the system receives the
message image and the value of clock x is less than or equal to 2. When the transition is

fired, the clocks x and y are set to 0 [38].

Figure 3-3: Specification of Multimedia System

This approach of efficient generation of test cases for real-time systems consists

of four major phases.

Phase one: The MSCs of the test purposes should be converted to the TIOA
module used for the specification as follows: Each message received by the IUT in
MSC is translated to an input action in TIOA, and each message sent by the IUT is
translated to an output action. The state between each pair of exchanged messages is

indicated as a location in TIOA.

Phase two: a synchronous product is constructed from the TIOAs of the
specification and that of the test purpose. This is done by creating the initial location of
the TIOA through the concatenation of the initial location of the specification with that
of the test purpose. Then, the transitions of the synchronous product are incrementally
built and the remaining states are added to the set of states. Figure3-4 illustrates the

synchronous product of the test purpose and specification TIOAs for the same

43

multimedia system [38].

Figure 3-4: Grid Automaton of Specification and Test Purposes

Phase three: The infinity of delay transitions makes the number of states of the
TIOA infinite. So, test cases should be generated from a subset of the TIOA called Grid
Automaton (GA) [36] [38]. In this GA, the regions graph of the synchronous product is
sampled by choosing a set of représentatives for each state and accordingly

instantiating the delay transition in the definition of region graph.

Phase four: The Grid Automata is traversed to extract the test cases for the
system. S