Nonlinear System Identification using a Genetic Algorithm and

Recurrent Artificial Neural Networks

Yugqing Zhu

A Thesis
in
The Department
of

Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science at
Concordia University

Montreal, Quebec, Canada

April 2006

© Yuqing Zhu, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-20771-0
Our file Notre référence
ISBN: 978-0-494-20771-0
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Nonlinear System ldentification using a Genetic Algorithm and Recurrent

Artificial Neural Networks

In this study, the application of Recurrent Artificial Neural Network (RANN) in
nonlinear system identification has been extensively explored. Three RANN-based
identification models have been presented to describe the behavior of the nonlinear
systems. The approximation accuracy of RANN-based models relies on two key factors:
architecture and weights. Due to its inherent property of parallelism and evolutionary
mechanism, a Genetic Algorithm (GA) becomes a promising technique to obtain good
neural network architecture. A GA is developed to approach the optimal architecture of a
RANN with multiple hidden layers in this study. In order to approach the optimal
architecture of Neural Networks in the sense of minimizing the identification error, an
effective encoding scheme is in demand. A new Direct Matrix Mapping Encoding
(DMME) method is proposed to represent the architecture of a neural network. A
modified Back-propagation (BP) algorithm, in the sense of not only tuning NN weights
but tuning other adjustable parameters as well, is utilized to tune the weights of RANNs
and other parameters. The RANN with optimized or approximately optimized
architecture and trained weights have been applied to the identification of nonlinear
dynamic systems with unknown nonlinearities, which is a challenge in the control
community. The effectiveness of these models and identification algorithms are
extensively verified in the identification of several complex nonlinear systems such as a

“smart” actuator preceded by hysteresis and friction-plague harmonic drive.

-iil -

Acknowledgements

This thesis was carried out in the Mechanical and Industrial Engineering Department of
Concordia University, Montreal, Canada. It was a great opportunity for me to have such
experience in the Artificial Intelligent Control filed. I am grateful to all those who have

contributed to this thesis and helped me:

Firstly, I would like to express my great thanks to my supervisor, Dr. W. F. Xie, for her
effective support and guidance throughout the work of this thesis. Her hard-working
deeply impressed me. Her broad knowledge on control and artificial intelligence area also

encourages me to study deeply in this research field.

Secondly, I would like to thank the Technical Support and System Analyst Group of the
Department of Mechanical and Industrial Engineering at Concordia University for their

continuous support and help.

I am also very grateful to my classmates, friends and fellow students for their help and

advice during my research.

Finally, I would also like to thank my families, for their encouragement, support and help

in my study and life.

Yuging Zhu

Montreal, Canada

-1V -

Table of Contents

LiSt Of FIQUIES ..ottt bt enes viii
List Of TADIEScooei e Xi
List of Symbols, Abbreviations and Nomenclature.....................cccocoocvenee. Xii
Chapter 1 INrOQUCHON. ..ottt et 1
1.1 MOUIVALION.....tieiiriiiiiit ittt st e s saar s sn s as s ae b 1

1.2 LAETAtUIE TEVIEW ..c..ceviniiiniriienceretenstiee ettt et et s et se e a s e e nssassressessassennas 2
1.2.1 The development of system identification.........ccccceceveevececirccnniiccnscnceene 2

1.2.2 Overview of system identification teChniques...........cocccevvveevecnnicrcninacnne. 3

1.2.3 The development of NN-based Nonlinear System Identification................ 7

1.2.4 Category of Neural Networksccccoverieiiiiniiiiieerenceeeeteneeeee 9

1.2.5 Types of NN-based Nonlinear System Identificationc.ccecccevveeccenennne 9

1.2.6 Training algorithms for Neural Networks........c.ccceevevveeniiiniennicencenecnnne. 10

1.2.7 Key factors of NN-based appliCationsc..cccoccevevveriervencenieneereencesenseenieae 11

1.2.8 Neural network encoding methodsceocciveeiriecerinenneenennrceneencenens 12

1.2.9 Genetic AlGOTItRIMS ...oevuviiiriiieiiiiriee ittt ettt re e 14

1.3 Research objectives and main contributions of this thesis.........cccoccoveiiennnenen. 17
1.3.1 ReSearch ObJECHIVES.ccccouurvuirriieiciriienertirienrecee et entereste et essessaesneenesanens 17

1.3.2 Main CONtIIDULIONScoievviriiiciiiciiriiicet ettt et eeee st et eneeseeene 17

1.4 Thesis Outline 18
Chapter 2 Nonlinear systems and identification modelsc..cccooovviinnnncnne. 19
2.1 Three types of nonlinear SYStEMSceecueeiveriieriicrinnineeent e seeesreeerecstecneeeesnenns 19

2.1.1 Type I: unknown nonlinear Systems...........cccoceeiiiiiieniniiinienicne e 19

2.1.2 Type II: Serial-Linear nonlinear SYStemscooiiiiiiciiciinncnciccnereneeenes 20
2.1.3 Type III: Parallel-Linear nonlinear SyStems.........ooccevveieirniniinininceinccinenes 21
2.2 Three RANN-based Identification Models for Nonlinear Systems........c...ccc.ce... 22
2.2.1 Model I: Single RANN Model........ccoooiiiiiiiiiiineieeeeieeteeeenve e 23
2.2.2 Model II: Serial-Linear RANN Modelcocooniiininiiiniiiiiicneeecieeene 25
2.2.3 Model HII: Parallel-Linear RANN Modelcccociiiiieriiniiiiiieinieceee. 27
Chapter 3 Architecture approaching of RANNS ... 29
3.1 The overall proCedureoooviiiiiiiiii e 29
3.2 Direct Matrix Mapping Encoding method.............ooooiiiiiiiiniiiiiiiccrinneeeene 31
3.3 Evolution of multi-hidden layer neural network architecture............cccccerrrennns 33
3.3.1 GA operators--Fitness Evaluation and Selection...........cccoccevveneevecrencnnee. 34
3.3.2 GA OPEratOrs-—-CTOSSOVETcovueeruievieiiieririenirieneesteereesstessneseseessesssensesees 36
3.3.3 GA operators--MUutation........ccceveueeiiieeeiiereeece e 38
Chapter 4 The modified BP algorithm and adaptation laws............cccccereneaeenee. 41
4.1 The modified BP algorithmi........cccccociiviimiinnininiiniircicenece et 43
4.2 Adaptation laws for the Single RANN Modelc.cccoeoiiiiiininnniinianineerenane 44
4.2.1 Weight adaptation 1aws ...t 44
4.2.2 Number of time delays adaptation 1aws..........c.ccceeveeeeeceecrieceeeecresneeeenie. 46

4.3 Adaptation laws for the Serial-Linear Model.............ccoevvveiieciericinciieeeecvee, 48
4.3.1 Weight adaptation Jawsc.ccceeeiiveennieciienieieencnetecseneeeeeeseseesenenens 49
4.3.2 Linear part parameters adaptation 1awscccoceeerercnreniveneneseennennen, 50
4.3.3 Number of time delays adaptation 1aws..........c.ecoccevereeiiiiennrcnennnenneiennnes 51

- Vi -

4.4 Adaptation laws for the Parallel-Linear Model...........ccooociii 53

4.4.1 Weight adaptation Jawsccccocoiiiiiiiiiie e 53

4.4.2 Linear part parameters adaptation 1awsc.ccooeeeininiininiinnnce, 55

4.4.3 Number of time delays adaptation 1aws..........ccccoeeveevmenrcricinviieniirininnnnn, 56
Chapter 5 Simulation reSUS ... s 59
5.1 Normalization of training and generalization data sets.........ccccvierivieiiinnnnnnne, 59

5.2 Applications of Single RANN Model.........ccccocoriiiiiiniininiiieicerceenes 61

5.3 Applications of Serial-Linear RANN Modelcccooiiininicie, 75

5.4 Applications of Parallel-Linear RANN Modelc..ccooiiiniiiiiniiniiins 84

5.5 CONCIUSION «.vvmvinreeirerienriiecicsteeaiet ettt s rssr e st e b e nnan 92
Chapter 8 Conclusions and Future Work................ccccoeevnniiinnncccncincicieens 94
Appendix Al: Weight adaptation laws for general NNS.........cccccoeiiiiiiininincniieinn, 97

Al.1 Weights updating by using unipolar sigmoid function as activation function.. 99
A1.2 Weights updating by using bipolar sigmoid function as activation function.. 107
A1.3 Weights updating by using linear activation function for output neurons...... 109

REFET@IACES ... e e eeseseeesesemeseseseseses s sssseseseses e s s s s esesassesessesasssaesesssesessans 111

- Vii -

List of Figures

Figure 1-1 Example of using NN by Professor Ljung (Ljung 2005)..........ccccovvnnueeee 6
Figure 1-2 An example of Direct Encoding..........cccoovvvviiiimiiiiiiinniineeecees 13
Figure 1-3 An example of Grammar Encoding...........ccocooviiiiinninniniiiennn, 14
Figure 1-4 The work flow of a typical GA ..o 15
Figure 2-1 Unknown nonlinear systems oo eeeeee et eeeeee e ee e s e 20
Figure 2-2 Serial-Linear nonlinear SyStems.........oococueeviiviciinininncnicnenicieneeieeen 20
Figure 2-3 Parallel-Linear nonlinear SyStemscccococvcininniiciiiinceeninencnienens 21
Figure 2-4 Delays of input and OULPUL NEUTONScceeeeeereecrerreerreeneerserserereeseenuens 22
Figure 2-5 Single RANN Model for Nonlinear Systems Identification 23
Figure 2-6 Diagram of the Single RANN Model.......ccccocoviiciriiinininnennnsenencnnnens 24
Figure 2-7 Serial-Linear Model for Nonlinear Systems Identification...................... 26
Figure 2-8 Parallel-Linear Model for Nonlinear System Identification 27
Figure 3-1 Framework of NN architecture optimization procedure............ccceceuennen. 30
Figure 3-2 An example of neural network architectureccceevevecververrceneenennnen. 32
Figure 3-3 Two example network architecture before the crossover operator 37
Figure 3-4 Two example network architecture after the crossover operator 38
Figure 3-5 An example of mutation OPEration..........cceeeveereeeerereenrereeseeneeressussessenes 39
Figure 4-1 The work flow of the modified BP algorithm.......c..cccocceverninnrerevcncnnnane. 43
Figure 4-2 The structure of two hidden-layer NNS.........ccccociiviiiiirrninnirreeseceenenns 44
Figure 4-3 Time delays of the neural networkcocvveveriiniiinvncinrenceeeeen 47
Figure 5-1 The simple sigmoid function.......c...ccccceciienrnnneeereorneeccreeneeereneceenesnenee 60

- viij -

Figure 5-2 The hyperbolic tangent function ... 60
Figure 5-3 The modified input signal in Example 1.........ccocooiiiinnnn 62
Figure 5-4 Identification results of Example 1 ... 63
Figure 5-5 The performance of the architecture optimization GA in Example 1

Figure 5-6 Identification results of Example 1 in (Yazdizadeh and Khorasani 2002)66

Figure 5-7 The input signal in Example 2...........cccoovivinininice 67
Figure 5-8 Identification results of EXample 2cc.cocerviiininiinnineninneneneeneceeenee 68
Figure 5-9 The performance of the architecture optimization GA in Example 2 68

Figure 5-10 Identification results of Example 2 in (Narendra and Parthasarathy 1990)

Figure 5-11 The perfonnaﬁce of the architecture optimization GA in Example 3 72
Figure 5-12 The convergence of BP algorithm in Example 3.......cccccccviiinninnnnnnnne. 73
Figure 5-13 Identification results of EXxample 4c.ccccvviveniniinincnncncenincene 75
Figure 5-14 The performance of the architecture optimization GA in Example 4 76

Figure 5-15 The simulation results of Example 4 in (Yazdizadeh and Khorasani

2002) .ottt ettt ettt e sttt e r s be st st b e b eeseane 78
Figure 5-16 The hysteresis under the input u(t) = sin(2.3) .cocccevvvvievncrvneeninnnenne 79
Figure 5-17 The representation of the “smart” actuatorccceeovveievrineniiiiisecnnene. 80
Figure 5-18 The modified input signal in Example S........ccccoceviviinncncnnnnnnrnnnnae 81
Figure 5-19 Identification results of Example 5ccovviivivecinccenennneencninceeneeneens 81

Figure 5-20 The performance of the architecture optimization GA in Example 5 82
Figure 5-21 The modified input signal for Example 6.......c..c.cocevrecrnnrernenennnennens 84

Figure 5-22 Identification results of EXample 6cccooeeviivcoinivcnnnnneeececcennees 85

-ix -

Figure 5-23 The performance of the architecture optimization GA in Example 6 85

Figure 5-24 Identification results of Example 6 in (Yazdizadeh and Khorasani 2002)

.. 87
Figure 5-25 The representation of the harmonic drivecccovivriniiiiinnnns eeee 89
Figure 5-26 Identification results of Example 7coccociiviivinniininccinenicnnrceneenne 89

Figure 5-27 The performance of the architecture optimization GA in Example 7 90

Figure A1-1 The structure of @ DEUTON..........ccccoiiiiiiiriiieeee e 97

List of Tables

Table 5-1 RANN parameters comparison in Example 1 ..o 64
Table 5-2 RANN parameters comparison in eXample 2ccoovivviiiionnenncncnennen, 69
Table 5-3 RANN parameters comparison in €Xample 3 ..., 73
Table 5-4 RANN parameters comparison in example 4c.coocviviiiinninnninniccenenns 77
Table 5-5 RANN parameters comparison in eXample Scceveeviveenvernieenenreneennens 82
Table 5-6 RANN parameters comparison in eXxample 6c.ccccevvvvecrveriniirccnnnciennee 86
Table 5-7 RANN parameters comparison in eXample 7ccccevevvveeceinenvecnnennececnnen 91
Table 5-8 Tests of the COMPULAtION tIMEeooveriiriieirieceiecteteee et eeeens 93

-Xi-

List of Symbols, Abbreviations and Nomenclature

Symbol

ANN
RANN
GA

BP
DMME

SISO

Np
fL ()
fNL ()

E(m)

Definition
Neural Network
Artificial Neural Network
Recurrent Artificial Neural Network
Genetic Algorithm
Back-propagation
Direct Matrix Mapping Encoding
single-input single-output
The connection matrix between the i and the j* layer
The weight matrix between the i and the j* layer
The delays number of input signal
The delays number of output signal

The delays number of nonlinear element

The output of the linear part

The output of the nonlinear element
The total number of training samples

The total mean average mean square error of the

identification system

The average mean square error under m™ training

- Xii -

sample

The difference between the real output and identified

€ output

y(k), ¥, Real system output

y(k), y, Identification system output

h(-) Output of nonlinear element

u(k) Input signal

a;,b, Linear part parameters

a;, Ei Approximated linear part parameters

net zl Net output of the i* neuron in the I layer

Yi Neuron output of the i* neuron in the I"* layer
Associated weight between the j* neuron in the I*

ij Layer and the i neuron in the (I-1)* layer

Aw,.'j Increment of w;

Ag, Increment of g,

AEI. Increment of b,

4 z;' Back-propagated error of the /* neuron in the I layer

o() Activation function of hidden layers

Q) Activation function of the output layer

- Xiii -

5,a

5,00

Learning rate for parameters in BP algorithm
Evaluation of fitness

Sampling interval

Parameter of maximum input time delays

Parameter of maximum output time delays
Weight vector of the first hidden layer

Input vector of the RANN

Coulomb friction force
Viscous friction force

The magnitude of the Stribeck friction

The magnitude of the Stribeck friction at the end of
the previous sliding period

The magnitude of the Stribeck friction after a long
time at rest

The velocity

The characteristic velocity of the Stribeck friction

Time constant of frictional memory

The temporal parameter of the rising static friction

The dwell time, time at zero velocity

Moment of inertia of Harmonic Drive

- Xiv -

Viscous damping constant of Harmonic Drive

The torque constant of Harmonic Drive

- XV -

Chapter 1 Introduction

1.1 Motivation

Many plants and electrical devices used in control systems can be modeled by linear
differential equations; however, usually, some parameters in the linear differential
equations are not exactly known. In addition, nonlinearities, such as backlash, friction,
dead zone, etc., exist in most plants or devices, and usually are unknown or partially
unknown. Systems with unknown linear parameters or unknown nonlinear characteristics
cannot be controlled optimally. Therefore, in order to design control systems better, to
identify these unknown linear parameters and nonlinear characteristics is essential in
control domain.

System identification is a process of estimating the architecture and parameters of a
mode! from the input and output data. Since the description of a process is often a
prerequisite to the analysis and controller design, the study of system identification
techniques has become an established branch of control theory. For the linear
time-invariant system, a plethora of identification methqu have been developed based on
well-established results in linear system theory. For the most practical systems that are
nonlinear and time varying, the assumption of linearity may not hold. Thus, these
methods are generally applicable and extensible to only a special class of nonlinear
systems. In some cases, the identification techniques must have been custom developed
for the selected class of nonlinear systems. To apply the results to general classes of
nonlinear systems, restrictive a priori knowledge about the system is required. The
comprehensive overview of nonlinear system identification and its mathematical

principles can be found in (Voss, Timmer et al. 2004), (Juditsky, Hjalmarsson et al. 1995),

(Piche 1994), (Sjoberg, Zhang et al. 1995). Some linear and nonlinear system
identification models were explored in (Canelon, Shieh et al. 2004), (Teixeira and Zak
1999), (Reed and Hawksford 1996), (Hunt, DeGroat et al. 1993), (Bendat 1990), and the
approaches for linear and nonlinear system identification were summarized in (Prasad
and Bequette 2003). Since much recent research has shown that intelligent techniques,
such as neural networks (NNs), are very robust and effective to identify complex
nonlinear systems, the research in this thesis aims at identifying nonlinear system using
artificial intelligent techniques: Genetic Algorithm (GA) and Recurrent Artificial Neural

Networks (RANNS).

1.2 Literature review

1.2.1 The development of system identification

The statistics and time series communities revealed the early explorations of system
identification. Gauss and Fisher did some fundamental research on system identification
before 1920 (Gauss 1809), (Fisher 1918a). Many researchers followed the theory of
stationary stochastic processes before 1970 (Barrett 1963), (Astrom and Bohlin 1965).
Graphical methods by analyzing step, impulse or sinusoidal responses and
cross-correlation and cross-spectral methods were two popular non-parametric methods
before the year of 1965. The main shortages of these methods are lack of precision, no
tools to estimate model errors, infinite dimensional models of step responses and
frequency functions, and cannot deal with close loop data. Kalman proposed a
model-based prediction and control theory, i.e., Kalman filter (replaces Wiener filter) and

LQG control (Ho and Kalman 1965). State-space based control design methods turned on

the research of estimation of state-space parametric models from data, such as the
ARMAX model for input-output formulation (Astrom and Bohlin 1965). The subspace
identification was proposed by Ho and Kalman (Ho and Kalman 1965). The stochastic
realization theory was inspired by the combination of deterministic realization theory and
innovations theory. The Hankel matrix factorization and identification of parametric /O
models were two significant achievements in the 1970s. Identification was viewed as
approximation in (Anderson, Moore et al. 1978), (Ljung and Caines 1979). After the year
of 1985, identification is viewed as a design problem (Gevers and Ljung 1986). In the
1990s, much research focused on: state space parametric identification based on subspace
methods, identification for control, and nonlinear system identification. A new research
topic, control oriented experiment design, was triggered by the identification for control
recently (Hildebrand and Gevers 2003), (Hjalmarsson 2005).

In particular, Professor Lennart Ljung (Gevers and Ljung 1986) contributed greatly
to the system identification in the following aspects:

« PE framework as well as PE framework for nonlinear identification

= Identifiability of closed-loop systems

= Nominal parameters 0* and the bias expression of 6*

= Asymptotic variance expression

» Books and the Matlab toolbox for system identification

1.2.2 Overview of system identification techniques
For linear systems, state-space models can be obtained from input-output data using

subspace identification methods. For nonlinear systems, these methods can not be applied

directly (Prasad and Bequette 2003). M. Enqvist (Enqvist 2005) did an extensive research
on how to approximate a nonlinear system using an estimated linear model, and the
prediction-error method is the main system identification method used by Enqvist.

Sometimes, the physical model of a nonlinear system is very difficult to obtain, or
only a not very suitable higﬁ order model can be developed, hence, the techniques of
identifying such kind of systems by empirical models obtained from input-output data are
in demand. For linear systems, two approaches are used to obtain the linear models from
input-output data. One is to obtain an autoregressive model, such as ARX, ARMAX
models and the other one is to find a state-space model, such as the N4SID model
(Overschee and Moor 1994). The main shortage of autoregressive method is the high
dependence of the structure and parameterization of the identified model. Nonlinear
autoregressive models, polynomial functions based models—Volterra functions, and
artificial neural network based techniques are main approaches for nonlinear systems
identification. For ANNSs, since recurrent neural networks are much difficult to be
trained, most researchers use feedforward neural networks instead although recurrent
neural networks are explored to be more suitable to obtain a state-space model (Prasad
and Bequette 2003).

Among neural network based techniques, if linear parameters are known, then
nonlinear intelligent observers can be used to identify nonlinear characteristics (Strobl
and Schroder 1998), (Frenz and Schréder 1997), (Xie, Krzeminski et al. 2002). Schroder,
et al (Schroder, Hintz et al. 2001) gave an overview of these methods in 2001. In the
cases of some parameters of the linear part are unknown, Bernhard T. Angerer (Angerer,

Hintz et al. 2004) proposed a method of structured recurrent neural network embedded

into the partially known function of a nonlinear system to identify nonlinear systems with
a priori known system structure. Some heuristic intelligent optimization techniques, such
as genetic algorithms, simulated annealing, ant colony optimization, tabu search, and
artificial neural networks used in the control areas, especially for nonlinear system
identification are well discussed in (Kalinli and Karaboga 2004). Recurrent neural
networks can be used to represent nonlinear systems exactly, and are very effective to
identify complex nonlinear systems with models are completely unknown (Yu 2004).

In his book (Liu 2001), G. P. Liu also presented couple of intelligent techniques
involving genetic algorithms and neural networks for nonlinear system identification and
control. The variable-structure neural network, based on radial basis functions, is used in
this book to derive a continuous-time adaptive contrql schema, and Lyapunov stability
theory based techniques are adopted to guarantee the stability of this method. Wavelet
networks technique, based on feedforward neural networks, is another nonlinear system
identification approach in this book. A recursive identification scheme, based on Volterra
polynomial basis function networks, is also introduced to identify nonlinear discrete time
systems. Genetic algorithms and multi-objective optimization techniques, such as
approximation accuracy and model complexity, are proposed for model selection and
parameter estimation. In this book, affine neural network predictors are used in
constructing a nonlinear predictive control scheme and variable-structure control.

In (Sjoberg, Zhang et al. 1995), structure models in system identification are
classified into three categories: White-box models, Grey-box models and Black-box
models, and structure constructing techniques, such as neural networks, radial basis

networks, wavelet networks, hinging hyperplanes, wavelet-transform, and fuzzy sets and

rules are extensively discussed. Lennart Ljung (Ljung 2005) categorizes these models

into two main types: Black-box models and Grey-box models. Ljung introduced three

techniques of constructing Black-box models, i.e., one hidden layer artificial sigmoidal

neural networks, Wavelets, and (Neuro) Fuzzy modeling techniques. The regressors for

dynamic systems, as Ljung pointed out, can be selected as one of the following models:

o

o]

0]

0

0

NFIR-models, with using past inputs

NARX-models, with using past inputs and outputs
NOE-models, with using past inputs and past simulated outputs
NARMAX-models, with using inputs, outputs predicted outputs

NBJ-models, with using all four regressor types

Furthermore, Ljung mentioned that recurrent neural networks must be used when

NOE, NARMAX or NBJ is chosen. Figure 1-1 shows the simulation results of the

example, system identification with Sigmoidal network, by Ljung (Ljung 2005). Where

dash line represents the measured output and the solid line represents the model

simulated output.

Sigmoidal NN: Fit 54.19 %

[+ 200 400 [ciait] 800 1000 1200

Figure 1-1 Example of using NN by Professor Ljung (Ljung 2005)

Ljung classified Grey-box models into four categories: Physical Modeling,
Semi-physical Modeling, Block-models, and Local Linear Models, and explained in
detail how to implement them. As a conclusion, Ljung pointed out that neural networks
are effective techniques to obtain dynamic models, particularly for Black-box models.
However, since local optima may exist when adjusting a parameterized model structure
to data, it is difficulty to generate initial conditions when using neural network based
techniques (Ljung 2005). In other words, to obtain good parameterized neural network

architecture with appropriate parameters is very difficult.

1.2.3 The development of NN-based Nonlinear System Identification

Artificial Neural Networks (ANNs) are inspired by the structure and functions of the
biological neural networks (BNNs) (Bose and P.Liang 1998), (Ham and Kostanic 2001),
(Haykin 1999), (Widrow and Lehr 1990). The first logical neuron model was introduced
by W. S. McCulloch and W. Pitts in 1943. Later, in 1949, D. O. Hebb introduced the
neuron connection weights updating laws. These are fundamental of later research on
ANNs. In 1958, F. Rosenblatt introduced the Perception model, which is the first
complete ANN model.

Although there were lots of studies on the system identification models decades ago
(Sagaspe 1979), (Rugh 1981), (Schetzen 1989), (Billings and Fakhouri 1977), (Asdente,
Pascucci et al. 1976), (Barrett 1963), (Billings 1980), a lot of research has been done on
describing and controlling nonlinear systems using ANN techniques since the 1980s. The
neural networks with number of hidden layers have been explored to be nonlinear models
that can approximate any function with arbitrary | degree of accuracy (Hornik,

Stinchcombe et al. 1989). Reviews of some relevant approaches are given in (Wang,

Spronck et al. 2003), (Madar, Abonyi et al. 2005), (Canelon, Shieh et al. 2004), (Hunt,
Sbarbaro et al. 1992) and (Agarwal 1997). Both linear models and nonlinear NN models
were applied to the nonlinear discrete dynamic systems’ control in (Canelon, Shieh et al.
2004). The use of the neural network model excludes the systems’ reliance on its physical
principle model, which was shown to bring direct benefits to the design of the controller:
(a) the proposed approach and the design of the controller are based on the neural
network obtained from data, not a physical principle dynamic system model; (b) the
proposed approach avoids identifying physical principle nonlinear dynamic models,
which is a very difficult work, and uses the same neural network model, so it is easy to
implement the linearization approach of a network with low computational effort; (c) at
every operating state, the design techniques of linear state-space control are available for
the controller’s design (Canelon, Shieh et al. 2004).

Recent rapid development of neural networks has provided invaluable tools to tackle
the problem of nonlinear system identification. Past research has shown that Artificial
Neural Networks are effective methods to model and control a broad category of complex
nonlinear systems, especially to those systems whose mathematical models are extremely
difficult to obtain. Three main characteristics of ANNs make them the prime candidates
for the nonlinear system identification, (i) ability to learn from experience and adapt to
different environmental conditions, (ii) generalization ability for untrained inputs and (jii)
parallel and pipeline processing capability to perform different tasks more efficiently

(Yazdizadeh and Khorasani 2002), (Gupta and Sinha 1999).

1.2.4 Category of Neural Networks

Neural networks can be categorized into two major types: feedforward networks and
recurrent networks. In the literature, feedforward NNs are most popularly used for
nonlinear system identification (Canelon, Shieh et al. 2004), (Hornik, Stinchcombe et al.
1989), (Cybenko 1989), (Funahashi 1989). A typical example is the Multilayer
Perceptions (MLP), which is utilized to identify the nonlinear characteristics of a
nonlinear system. The feedforward NNs suffer from two major pitfalls: sensitivity to the
training data and ignorance of the local data structure information when updating
weights. On the other hand, recurrent NNs can overcome these two disadvantages and
have demonstrated strong dynamic nonlinear characteristics in a large amount of research

works.

1.2.5 Types of NN-based Nonlinear System Identification

Nonlinear system identification using neural network techniques has become an
interesting topic (Madar, Abonyi et al. 2005), (Becerra, Garces et al. 2005), (Canelon,
Shieh et al. 2004), (Yu 2004), (Prasad and Bequette 2003), (Kiong, Rajeswari et al.
2003), (Liu, Kadirkamanathan et al. 1998), (Liu, Kadirkamanathan et al. 1996),
(Polycarpou and Loannou 1991), (Billings and Chen 1992), (Chen, Billings et al. 1990),
(Kadirkamanathan and Liu 1995), (Kuschewski, Hui et al. 1993), (Liu, Kadirkamanathan
et al. 1998), (Qin, Su et al. 1992), (Willis, Montague et al. 1992). In general, the Neural
Networks for identification of dynamic systems fall into three main categories
(Yazdizadeh 1997). The first category is a static network with tapped delay lines. The

delay elements are used to introduce delayed inputs and outputs that are then fed to a

static network as the regressor vector so that the predicted NN output will simulate the
target output. The second category is a dynamic network constructed by dynamic
neurons. One of such dynamic NNs is time delay neural network (TDNN) with each
weight associated with a delay. The third category is a Recurrent Artificial Neural
Network (Funahashi and Nakamura 1993). Among various NNs, the RANN bears
powerful capability to represent nonlinear systems effectively and robustly. This study

uses a RANN to identify nonlinear systems.

1.2.6 Training algorithms for Neural Networks

Some NNs training methods were introduced in (Sjoberg, Zhang et al. 1995), (Piche
1994), (Huang, Koh et al. 1992), (Zurada V1992) and (Chandra and Singh 2004). In
principle, the training of NNs aims at minimizing the difference between the target and
the actual output by tuning adjustable parameters in NNs. Among various adaptive tuning
techniques, the steepest descent algorithm is most widely used in the literature (Yu 2004),
(Feng and Michel 1999), (Polycarpou and Ioannou 1992). The back-propagation (BP)
algorithm, first introduced by Werbos in 1974, is a typical steepest descent approach.
Sigmoid BP networks (Rumelhart, Hinton et al. 1986) were proved to bear arbitrary
nonlinear characteristics as in (Funahashi 1989), (Gybenko 1989) and (Hornik,
Stinchcombe et al. 1989). Wen Yu (Yu 2004) did some studies on the weights adjustment
using the gradient descent law and the back-propagation like algorithm. P1A. Ioannou and
J. Sun (Joannou and Sun 1996) proposed another generalized method to improve the
techniques. M.M. Polycarpou and P.A. Ioannou (Polycarpou and Ioannou 1992)

concluded that the exact convergence of identification error can be guaranteed by

10

back-propagation based algorithm. There are some other studies on modifying normal
gradient or back-propagation algorithms to ensure the stability of the learning process
(Jin and Gupta 1999), (Suykens, Vandewalle et al. 1997), (Kosmatopoulos, Ploycarpou et
al. 1995), (Jagannathan and Lewis 1996). The major drawback of BP is that the identified
weights tend to converge to local minima and the global optimality of the nonlinear
identification cannot be guaranteed. In addition, BP only tunes the weights of a given NN
to minimize the output error. How to optimize the architecture of NNs toward the global

optimum remains a challenge for the researchers.

1.2.7 Key factors of NN-based applications

The successful application of NN for nonlinear system identification relies on two
key factors: architecture and weights. Most research in the literature focuses on tuning the
weights. The NN architecture, on the other hand, is designed via a tedious trial-and-error
process with human intervention. The architecture design of Neural Network is crucial in
the successful application of NN due to its significant impact on a network’s information
processing capabilities. Although there are some studies on the automatic design of
architectures (Chester 1990), (Frean 1990), (Hirose, Yamashita et al. 1991), (Roy, Kim et
al. 1993), (Weigend 1994), how to design a good architecture systematically and
autonomously remains a challenging problem.

In general, model reduction should be considered in system identification (Prasad
and Bequette 2003), (Zhou, Doyle et al. 1996), (Karnin 1990). Usually, a regulation
operator is required for NN reduction during the training. The sensitivity analysis is one

of the most popular methods (Prasad and Bequette 2003). The hidden neuron with the

11

least sensitivity according to the output error will be deleted or assigned with a penalty
term during the training process. The sensitivity analysis works with the learning rate,
forces weights or other adjustable parameters towards zero, and it reduces the number of
redundant parameters as well as the degree of over parameterization of the network

(Prasad and Bequette 2003).

1.2.8 Neural network encoding methods

In order to optimize the architecture of NNs, an effective encoding scheme is in
demand. There are two popular encoding approaches: Direct Encoding and Grammar
Encoding. The Direct Encoding method takes into account all possible connections
between neurons and encodes the parameters of the NNs, e.g. weights and/or
connections, directly into a matrix.

In 1989, Miller et al. (Miller, Todd et al. 1989) used the Direct Encoding to evolve
the connection topology for a feedforward neural network with a fixed number of units.
A number of studies (Marin and Sandoval 1993), (Schaffer, Caruana et al. 1990),
(Schiffmann, Joost et al. 1993), (Whitley, Starkweather et al. 1990), (Wilson 1990) also
are focused on Direct Encoding.

Figure 1-2 shows a typical example of the Direct Encoding. The connection topology
of the network is represented by a 5 x 5 matrix. Each entry in the matrix denotes the
status of the connection - either “1” (connected) or “0” (unconnected). The connection
matrix is transformed into the chromosome in the form of a binary string in the bottom of
Figure 1-2. It can be seen that the binary string can be easily decoded into a NN’s

architecture as well.

12

Neural Network Architecture Connection Matrix

Chromosome: 00101 00010 00101 00001 01000

Figure 1-2 An example of Direct Encoding

As analyzed by Xin Yao (Yao 1999), a potential problem in Direct Encoding is the
large size of connection matrix introducing heavy computational load. To cut down the
size of the connection matrix for a large neural network requires sufficient domain
knowledge and expertise (Yao 1999). Potential invalid connections (e.g. the connections
between input neurons and output neurons) further increase non-trivial cost for fitness
evaluation. Finally, most past studies on Direct Encoding are focused on designing a
feedforward neural network.

A feedforward NN typically disallows connections between non-contiguous layers or
feedbacks, as illustrated in dashed arrows in Figure 1-2. Hence the connection matrix and
the chromosome have to be managed with high caution. It is known that in GA, the
genetic content of any chromosome is subject to permutation or alteration due to various
evolutionary operators, e.g. crossover and mutation. Although invalid connections may

be explicitly banned, it is at the cost of a large amount of extra work for the validity

i3

check.

The Grammar Encoding was first proposed by Kitano (Kitano 1990). It uses complex
grammar, which is a set of rules, to represent the connection status of an NN. Figure 1-3
is a typical example of the Grammar Encoding, given by Melanie (Melanie 1999).
Comparing to the direct encoding method, the Grammar encoding is too complex with
prohibitively high computational cost (Melanie 1999).

In this thesis, we propose a new approach based on the Direct Encoding method, to

conquer the drawback of current encoding approaches, which will be detailed in Chapter

3.

PP o ; * ® S I . M W
a”’*@i& *’”“*wg m””*&ﬁ C~a & % Mwﬂ
. B n T I T B o3 t 1
Bk o0 B g3 FR o5 e G5 P& L0

{a)

A B meae

&Mwm m&;&** =
aasb

Figure 1-3 An example of Grammar Encoding

1.2.9 Genetic Algorithms

The Genetic Algorithm (GA) is a very powerful optimization algorithm due to its

14

inherent property of implicit parallelism (Holland 1975). By exploring a large number of
potential solutions in parallel, it is less likely to get stuck at a local optimum. The
selection mechanism in a GA further ensures the good building blocks in chromosomes
can be passed to next generations. In addition, GA works with a good balance between
exploration and exploitation of the search space. The crossover operator recombines the
obtained information to exploit promising areas in the search space. And the mutation
operator generates new genes to ensure exploration of unvisited areas so that premature
convergence of the population can be effectively avoided. In summary, GA is a

promising technique to optimize the architecture of an NN.

(Initial population)

[Fitness computation]

and ranking

| Mutation l
v

(New population)

Figure 1-4 The work flow of a typical GA

15

The overall work flow of GA is shown in Figure 1-4. A GA starts with an initial
population generated at random, each individual (chromosome) of which is assigned a
fitness value (indicating the “goodness” of a potential solution). After ranking all the
chromosomes with respect to their fitness, one keeps a proportion of the best candidates
intact to the new generation (elitism). Pairs of parents are selected within the current
population in such a way that a chromosome with better fitness has more reproductive
opportunities. New offspring are generated, by exchanging the genetic information of
their parents (crossover). Mutation is then applied to the whole population. A new
population is formed after these operations. The program runs until a termination
condition is satisfied.

Hence a typical GA essentially contains the following operators:

« Selection: select elites to be passed intact to the new population and parents
‘to be mated,;

« Crossover: recombine parental chromosomes to generate chromosomes;

« Mutation: randomly alter the genes of some chromosomes.

Some researches have used GA techniques to do nonlinear system identification
(Madar, Abonyi et al. 2005), (Liu, Liu et al. 2004), (Rodriguez and Fleming 1998), (Gary,
Smith et al. 1998), (Pham and Karaboga 1999). An overview of the applications of GAs
in control fields is given in (Wang, Spronck et al. 2003). However, the GAs are only used
either to find out the nonlinear function of the model or to figure out some parameters of
the identification model. In this research, GA is used to approach the optimal structure of

a neural network in the sense of minimizing the identification error.

16

1.3 Research objectives and main contributions of this thesis

1.3.1 Research ‘ob jectives
The main research objectives of this thesis are:
1) To develop a new Genetic Algorithm to optimize the architecture of a Neural
Network in the sense of minimizing the identification error. The optimized Neural
Network should have strong and robust identification ability when embedded into
nonlinear system identification models.
2) To develop a new Neural Network encoding method to encode Neural Networks
more efficiently and effectively. The newly developed encoding method is expected
to overcome two major problems of traditional encoding methods: high redundancy
and computational cost.
3) To develop adaptation laws for adjustable parameters in the nonlinear models and
searching algorithms to tune these parameters effectively.
4) To develop RANN-based nonlinear system identification models based on a priori
knowledge of a nonlinear system and the relationship between the linear part and the
nonlinear element of the nonlinear system, and verify the developed identification
techniques by applying them to several complex nonlinear systems, including

numerical complex nonlinear systems and real world nonlinear systems.

1.3.2 Main contributions

In this research, RANN is extensively studied to model dynamic nonlinear systems

and the main contributions are summarized as:

e Three RANN-based models are established to describe the behaviour of nonlinear

17

dynamic systems with different configurations.

+ A novel GA-based strategy is developed to approach the optimal architecture of the
RANN with multiple hidden layers in the sense of minimizing the identification error.

o The Direct Matrix Mapping Encoding (DMME) method, aiming at reducing the
redundancy and computational cost of the NN architecture representation, is used to
encode the architecture of a RANN.

e A modified back-propagation (BP) algorithm in the sense of tuning not only weights
but all other parameters in the identification models as well is developed to tune the
parameters of NNs.

The effectiveness of these models and identification algorithms are extensively
verified in the identification of several nonlinear complex systems such as “smart”

actuator preceded by hysteresis, and friction-plague harmonic drive.

1.4 Thesis Outline

The thesis is organized as follows. Chapter 2 introduces three classes of nonlinear
systems and then analyzes the relationship between the input and the output of these three
nonlinear systems, by integrating RANNs with linear mathematical models in different
ways. In Chapter 3, a GA is discussed to optimize the architecture of the RANN in the
sense of minimizing the identification error. Chapter 4 shows the modified BP algorithm
that updates the adjustable parameters of the RANN and the linear mathematical rﬁodell.
Simulation results are presented in Chapter 5. Chapter 6 concludes the thesis with some
possible future work. The detailed derivation of the adaptation laws is presented in

Appendix A.

18

Chapter 2 Nonlinear systems and identification models

In this chapter, nonlinear systems are classified into three types based on the
knowledge to the systems, and three corresponding RANN-based identification models

are introduced to do nonlinear systems identification.

2.1 Three types of nonlinear systems

This research mainly focuses on identifying the input-output mapping of a
single-input single-output (SISO) nonlinear system. A general SISO nonlinear system can

be described by the following equation (Tan, Lee et al. 2001):
y+1D) = f(y(@),...,yt— N +D,u(t),...,.u(t—M +1)) (2-1)
where M and N represent the maximum time delays of the input and output signals,
respectively; and M < N . f is the nonlinear function of the system (detailed restrictions
for the function were discussed in (Narendra and Parthasarathy 1990)). Based on the
knowledge of the relationship between linear part and nonlinear elements in a SISO
nonlinear system, we could categorize the SISO nonlinear systems into three types, for

which three corresponding nonlinear system identification models are proposed in the

following sections.

2.1.1 Type I: unknown nonlinear systems
When there is no a priori knowledge about a nonlinear system, the system is

modeled as a completely unknown black-box (Billings 1980), (Sjoberg, Zhang et al. 1995)

as shown in Figure 2-1.

19

Figure 2-1 Unknown nonlinear systems

The discrete time nonlinear differential equation of this model is:
y(k+1) = fly(k), y(k =1),---, y(k = N + D, u(k),u(k = 1),---u(k - M +1)] (2-2)
where M and N represent the time delays of the input and output signals, respectively

withM < N ; f represents a nonlinear function.

2.1.2 Type II: Serial-Linear nonlinear systems
In this type of nonlinear system, the relationship between linear part and nonlinear

element is series as shown in Figure 2-2.

Figure 2-2 Serial-Linear nonlinear systems

The discrete time nonlinear differential equation of this nonlinear system is:

N-1 M,-1
yk+1)=> ayk—i)+ Y bh(k—i) (2-3)
i=0 i=0

where nonlinear element’s output is:
h(k) = flh(k =1),h(k =2),---,h(k — N,),u(k —1),u(k =2),---u(k —=M)] (2-4)
where N and M, represent the time delays of the output and input signals to linear part,

respectively, and M, < N, and N, and M represent the time delays of the output and input

20

signals to nonlinear element, respectively, and M < N, , here Ny is not the same parameter

as N in Eq. (2-2).

2.1.3 Type I1I: Parallel-Linear nonlinear systems
In this type of nonlinear system, the relationship between linear part and nonlinear

element is parallel as shown in Figure 2-3.

u(k)

Figure 2-3 Parallel-Linear nonlinear systems

The discrete time nonlinear differential equation of this model is:

yk+D) = f(u,y)+gu,y)

N-1 M~1
=Y ayk—i)+ Y bulk—i)+ g(u,y) @-5)
i=0 i=0

where f(u, y) and g(u, y) are the outputs of linear part and nonlinear element,
respectively, y=[y(k),y(k—1),---,y(k—N+1)] is the vector of the delayed output
signal, and u =[u(k),u(k —1),---,u(k —M +1)] is the vector of the delayed input signal.

Any unknown nonlinear system can be treated as a black-box in system identification.
If linear part of a nonlinear system is partially known, it can still be classified as either
serial-linear or parallel-linear no matter how complex its nonlinearity is. Therefore, the

three nonlinear system types introduced above can cover most of nonlinear systems and

21

the corresponding three nonlinear system identification models can be used to describe

most of nonlinear systems in principle.

2.2 Three RANN-based Identification Models for Nonlinear Systems

The objectives of the system identification in this study are to establish an off-line
RANN-based model and develop algorithms to identify both the parameters and the
architecture of the RANN model. In this section, three RANN-based models are
described to demonstrate the input-output mapping of SISO nonlinear systems. The
RANN has multi-delays on both input x(k) and output y(k) of a nonlinear system as

shown in Figure 2-4.

Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer L~ Output Layer

k 4

71
L

Figure 2-4 Delays of input and output neurons

The input vector to the input layer is formed by composing delayed input and output

signals [x/ (k),x/ (k=1),--,x/ (k=M +1), y2(k),y% k=1, -,y (k-N+D]" € R**" , here

22

i=j=1.
Based on a prior knowledge of a nonlinear system and the relationship between
linear part and nonlinear element, three RANN-based nonlinear system identification

models have been proposed.

2.2.1 Model I: Single RANN Model
When there is no a priori knowledge about a nonlinear system, One RANN model
can be used to represent an unknown nonlinear system as shown in Figure 2-5. In this |

study, it is named as Single RANN Model.

u(k)

Figure 2-5 Single RANN Model for Nonlinear Systems Identification

In the Single RANN Model, the M+N inputs of the RANN are u(k), u(k-1), ...,
u(k-M+1), y(k), y(k-1), ..., y(k-N+1), and the only one output is (% +1) ; where N and
M represent the maximum steps of time delays of the output and the input signals,

respectively. The RANN diagram of this model is shown in Figure 2-6.

23

Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer L Output Layer

(total N neurons) (total N- neurons) (total \; neurons) (total Ny neurons) (total N neurons)

Figure 2-6 Diagram of the Single RANN Model

Since it is a SISO system, the RANN output y(k + 1) can be obtained as:
N, Ny
A o 0.0 oL
y(k+1)= f(net')= ZWA X = Zwil Yi (2-6)
i=1 i=1

where f{*) is the activation function of the output layer O, net is the net output of
the output neuron, L represents the L™ hidden layer, here we assume there are totally L

hidden layers, Ny, is the number of neurons in the hidden layer L, x_is the input of the

output neuron, and it equals to the output of the previous neuron, i.e., yiL , actually.

The output of the j * neuron in the I™ hidden layer is:
1 « 111
y;= G(Z w; ¥,) 2-7)

i=]

24

where o(-) is the activation function of hidden neurons. Thus, the RANN output

can be represented as:
Ny, Ny
e+ = f(net?)= fO [wg 0O w2 oW, e V)] (2-8)
) i=l p=l1

where ¢ is the number of neurons in the 2" hidden layer, and gel[l, N,1,
W, =W, Wa - - s Wagpr Wontsnyps Wartszypr+ - » Wtamp] IS the weights vector of the first hidden
layer, and,V, =[u(k),u(k —1),...,u(k—M +1), y(k),y(k —1),...,y(k =N+ D] is the input
vector of the RANN.

The RANN’s output y(k +1)is a nonlinear function (represents by the activation

function in neural network) of u(k—i),i=0,1,---,(M —1) - the inputs of the RANN,
and y(k—i),i =0,1,---,(N —1)- the delayed outputs of the plant. Hence the system can

also be described as:
Yk +1) = fy[y(k), y(k —1),- -+, y(k — N +1),u(k),u(k -1),---u(k — M +1)1(2-9)

where f, () isanonlinear function of the system.

For any nonlinear system (Eq. 2-2), the RANN identification model type I in Figure
2-5 describes its input-output mapping. Therefore, the Single RANN architecture can be

used to represent an unknown dynamic nonlinear system (Funahashi and Nakamura

1993), (Yazdizadeh 1997).

2.2.2 Model II: Serial-Linear RANN Model

In some cases, linear part of a nonlinear system is known. The linear part can be

25

integrated with a RANN in an either serial or parallel fashion. The RANN models the

nonlinear elements in the system.

Figure 2-7 Serial-Linear Model for Nonlinear Systems Identification

In the Serial-Linear Model shown in Figure 2-7, the output of the identification
system y(k + 1) can be obtained by Eq. (2-10).
N-1 M-1
§lk+D)=2 ayk =)+ 2 bk =) (2-10)
where g is the number of neurons in the 2" hidden layer, and g€ [1,N,], h(k) is the
output of the RANN. Assume there are L hidden layers in the RANN, its output can be
obtained by:

W) = f(net?) = F Qw0 (Y wE, oW, sV)D (2-11)

p=l

ol 1 1 1 1 1 T: .
where W, =[w,,W,,, s Wy s Woran s Warszyps s Wanenyp 1 18 the weights vector of

26

the first hidden layer, and,V, =[u(k),u(k -1),---,u(k —M),h(k),h(k —1),---,h(k — N,) is
the input vector of the RANN.

For any nonlinear system of type I (Eq. 2-3, 2-4), the Seral-Linear RANN

architecture above (Eq. 2-10, 2-11) can be used to describe its input-output mapping.

2.2.3 Model III: Parallel-Linear RANN Model

Figure 2-8 Parallel-Linear Model for Nonlinear System Identification

In the Parallel-Linear Model, the output of the identification system y(k + 1) is:

Y+ = f,(k+D+ f, (k+1), (2-12)

where f; (k +1)is the output of linear part:

N-1 M-1
fuk+D =Y ayk—i)+ Y bu(k—i) @13)
i=0

i=0

27

and f,, (k +1)1s the output of nonlinear element:

futk+1D) = f(net10) = f(ZL[W,? O'(Zl WIZ,QO'(W,, VI (2-14)

Thus,
Yk+D)=flk+D+ f(k+1)

= Zoaiy(k -+ ibiu(k -0+ f(EL[wg ...0'(2 wf,qa(Wp V) (2-15)

i=0 i=1 p=1

N-1 M-1
=Y a;y(k—i)+ D bu(k—i)+glU,Y]
i=0

i=0
where ¢ is the number of neurons in the 2" hidden layer, and gel[l, N,1,

W, =Wy, Wy, Wh s Warsnp» Warszyp > Wanmyp]’ 18 the weights vector of the first

hidden layer,V, =[u(k),u(k —1),--,u(k — M +1), y(k), y(k —1),---, y(k = N +D)I" is the input
vector of the RANN, among which Y =[y(k),y(k—1),---,y(k—N +1)] is the output
vector of the real system, and U =[u(k),u(k —1),---,u(k —M +1)] is the input vector of
the system. g(U,Y) is the nonlinear function of the RANN.

The RANN identification model in Figure 2-8 can be used to represent a
Parallel-Linear nonlinear system.

For most nonlinear systems, one of the three identification models can be used to
describe their nonlinear behaviour based on a priori information. The architecture and
weights of the RANNs may vary to approximate the output of the nonlinear system. The
approximate accuracy of the RANN-based Models relies on two key factors: architecture

and weights. How to find the approximate architecture and weights of RANNs will be

discussed in the following chapters.

28

Chapter 3 Architecture approaching of RANNs

RANNSs’ architecture design and weights tuning are very crucial to the RANN-based
nonlinear system identification and directly affect the approximation accuracy. Normally,
the architecture of a RANN is pre-determined based on a priori knowledge of the
nonlinear system or the designer’s experience. The design process is basically a tedious
trial-and-error process. The training of NNs focuses on tuning weights of NNs. Since GA
is a powerful optimization algorithm (Holland 1975), in this chapter, a GA-based method
is developed to approach the optimal architecture of RANNS in the sense of minimizing
the identification error for the three types of RANN-based identification models
‘discussed in Chapter 2. The purpose of this method is to find the optimal or

approximately suboptimal feedforward network architecture.

3.1 The overall procedure

Figure 3-1 shows the framework of NN architecture optimization procedure. It can
be seen that the GA works as the backbone and is “wrapped” around the modified BP,
which tunes the weights of the RANNS, the adjustable linear parameters, as well as the
time delays. The details of the modified BP algorithm will be elaborated in Chapter 4.
The developed procedure of optimizing NN architecture using GA is similar to the
general GA with adaptation laws to find the optimized architecture and weights of NNs.
As illustrated in Figure 3-1, if the number of maximum generations is reached, the
program exits from the GA cycles. Since one of the major advantages of NNs is their
ability to generalize, a generalization process is carried out on the best RANN obtained

from the GA.

29

Since in this research, SISO systems are studied, the proposed algorithm is mostly

applied to the RANN-based SISO nonlinear systems identification.

Figure 3-1 Framework of NN architecture optimization procedure

30

3.2 Direct Matrix Mapping Encoding method

In order to use GA to optimize NNs, the primary important thing is to choose an
appropriate encoding method. In this study, an effective encoding method, called the
Direct Matrix Mapping Encoding (DMME) method, is proposed.

DMME encodes an ANN with multiple hidden layers. The connections of neurons
between two neighbouring layers are represented in a connection matrix. Only neurons in
hidden layers are taken into account in the connection matrix. If there are L hidden layers,
(L+1) connection matrices will be generated. We assume that all connections in the
output layer are fully connected.

The principle of this new method is illustrated as follows. The total number of
neurons on the hidden layers is randomly selected from a given range [0, N]. N is the total
number of neurons on the hidden layers and can be initialized as a large number for a
particular application. For any hidden layer, its maximum number of neurohs is N minus
the sum of all neurons on its preceding hidden layers. For example, if the number of

neurons on the 1% hidden layer is N, , the maximum number of neurons on the 2™ hidden
layer is N — N, and the number of neurons on this layer falls in the range of [0, N - N,].
Further, if the number of neurons on the 2* hidden layer is N,, the maximum number of
neurons on the 3™ hidden layer is N -~ N, — N,, and the number of neurons on this layer
~ falls in the range of [0, N-N,—N,], and so on.

A connection matrix C; describes all incoming connections of current layer i from

its preceding neighbour layer j, the direction of which is from j to i. The m™ row in C;

denotes the m™ neuron on the layer i. The n™ column in C; denotes the n™ neuron on

31

the layer j. The value of each entry in C; is either “1” (with connection) or “0” (no

connection).
As shown in Figure 3-2, the input layer of the NN is labelled as layer O, the first and
the second hidden layer is labelled as layer 1 and layer 2, respectively, until layer L.

Hence there are altogether L+1 connection matrices denoted as Cyg, Coy, :.., until CiLipi.

Input Layer(0)

Figure 3-2 An example of neural network architecture

With solid arrows as valid connections (with the value “I””); and dashed arrows as

empty connections (with the value “0”) in Figure 3-2, these connection matrices can be

written as:
Cia Cyni 1 0
C. = Cia Cn,2 0 1
10 -
Cin, CnN, 1 1

32

vy Sy T Cnvgn 01 -1

C. = Govey Camen T Cmapn | |10 e
21 - - v .. -
Cuneeny) Coveny 7 CNyNeNy) o1 -0
Cn-nN+y Cn-Npspaveny 7 ENN+ 11 1
C(L+1)L = =
C(N'NL)NO C(N—N,_+1)No T CNNO 1 1 P |

Note that we assume a full connection between the last hidden layer and the output
layer, as indicated by the matrix Cy.. L+1 weight matrices Wj; with real-valued
weights are also generated, in a one-to-one correspondence with Cj, which act as the
masking matrices of the former. The values of the weights are updated by a modified BP
algorithm, before which each Wj; is multiplied by its corresponding C;;.

For each Wj;, the weights and bivases of a neuron are initially assigned a random value
between —1.0 and +1.0 except 0, since a “0” simply means no connection at all, which is
indicated in the connection matrix Cj;.

Therefore an NN of L hidden layers can be represented by its L+1 connection
matrices Cj; and weight matrices Wj;. A chromosome in the GA is simply a group of these

matrices.

3.3 Evolution of multi-hidden layer neural network architecture

For a specific NN, the numbers of neurons on the input and the output layers are
fixed. Hence the GA optimization aims at finding out optimal or approximately optimal
network architecture, with an optimal or approximately optimal number of neurons on
each hidden layer and interconnections between neurons.

With the DMME method, each hidden layer is assigned a random number of

33

neurons, which falls within a certain range, as discussed above\ in Section 3.2. Then the
connections between neurons on neighbouring layers are randomly assigned either “0”
(no connection) or “1” (with connection). A number of chromosomes are generated
similarly and form the initial population.

The NN generated is evaluated by the average mean square error as shown follows

between the output of the model and the plant in the training process.

E= ZPZ ; Z(y 3 (3-1)

i=l i=1
where P is the number of training samples, €; is the error between the target or real

output ¥ and the identification model output Y for the i training sample.
p Y g P

The smaller the error is, the better the network architecture is. For each chromosome
that corresponds to specific network architecture, a modified BP algorithm is used to train

its weights, which is detailed in Chapter 4.

3.3.1 GA operators--Fitness Evaluation and Selection
Finding the optimized architecture C,; of RANN using GA is a standard parametric

optimization problem (Ramacher 1993). Since the minimum squares error algorithm is

normally used to do the parametric identification (Ljung 1999), the network architecture

will be optimized or approximately optimized based on the objective function F defined

as:

1
Minimize F =—— Z e] = Z(yd, 3i,) (3-2)
iy=1

34

. * . .
To find C,-j , where connection matrix C i

I<i<(L+1),0<j<L
Subject to:

Input u(i,) and output y,(i,) ,1<i, <P,

The number of hidden layers < L,

The total number of hidden neurons < N,

where P is the number of training samples, €; is the error between the target or

real output Y; and the identification model output ¥, for the i*training sample.
p 5 p li s g p

To maintain a reasonable difference between relative fitness ratings of chromosomes
and prevent a too-rapid takeover of some well performed chromosomes, ranking selection
is used in this study. The ranking selection works as follows. Firstly, the population is
sorted based on its fitness values from the smallest to the biggest, actually representing

the chromosomes from the best to the worst. Then for a population with n chromosomes,

the selection proportion for the k" ranked chromosome is:

k-1
pk = qmax —(j(qmax - qmin) (3'3)
n-1

where g, and g, are the probabilities of the best and the worst chromosomes,

max min 3
()

where g, and g, canbesetas: ¢, =% and g, =0. That means assigning
n

the best chromosome with the highest proportion and no proportion for the worst

chromosome.

35

Furthermore, in order to speed up the convergence, the elitism operator is adopted.
The best 2% or at least 1 if it is less than 1, individual(s) within the population is (are)

copied directly into the new generation.

3.3.2 GA operators--Crossover

Crossover occurs between a pair of randomly selected parents if a probability P,
which is generated randomly, is smaller than a given bias (e.g. 0.7). Otherwise these
parents are copied intact into the next generation.

A new crossover operator is defined specifically for this study. After two parents
(chromosomes) are randomly selected from the population (with a crossover probability),
the neurons to be manipulated are also randomly selected from each of them. For
implementation, firstly a connection matrix is randomly selected. Subsequently, a row of
this connection matrix is also randomly selected from each of the selected networks. The
incoming connections of the two neurons (two selected rows) are then swapped.

Sometimes the dimensionality of these two matrices does not match. For example,
suppose we have a matrix A of M; x N; and B of M, x N, where the number of columns
N; # N, but N; < N,. The rows to be swapped are q; in A and b; in B. In this case the
entire a; and the first N; elements of b; are swapped.

Figure 3-3 gives out an example of crossover.

36

Output Layer

Hidden Layer 2

Input Layer

Structure 1 Structure 2

Figure 3-3 Two example network architecture before the crossover operator

The original matrices are:

Architecture 1:

C,=10 c—Ollc—[11]
10 ’21_101’ 32
11
Architecture 2:
01
1 001
10
Co=|, | Cu=|l 0 1 0|, C,=[1 1 1]
0111
10

Assume neuron 5 in architecture 1 and neuron 9 in architecture 2 are selected, that is,

the 3" row in Cyg - [1 1, and the 3™ row in Cy; - [0 1 1 1], respectively. According to the

rule mentioned above, the first 2 elements of the latter are exchanged with the former

ones. Hence the new rows become [0 1] and [1 1 1 1] respectively. The new connection

matrices are:

Architecture 1:

37

1 0
c.=lo 1], ¢, = '} C, =0 1]
10 ’21—101’ 32
0 1
Architecture 2:
0 1
1001
1 0
Co=|, ,|» Ca=[1 01 o, ¢, =01 1 1]
1111
10

Output Layer

Hidden Layer 2

e Hidden Layer 1

Input Layer

Structure 1 Structure 2

Figure 3-4 Two example network architecture after the crossover operator

3.3.3 GA operators--Mutation

The Mutation operator can prevent the loss of diversity by randomly altering some

genes in a chromosome. Specifically in this study, a neuron to be mutated is randomly

selected. All the connections from its preceding neurons to this neuron are then flipped.

Figure 3-5 shows an example of the mutation. Figure 3-5 (a) is the original NN.

Assume neuron 4 is selected for mutation. Neurons 1 and 2 are its preceding neurons,

with the connections [0 1] (i.e. no connection between 1 and 4, whereas a valid

38

connection between 2 and 4). After the mutation, as shown Figure 3-5 (b), the
connections become [1 0], that is, a valid connection between 1 and 4, and no connection

between 2 and 4.

Output Layer

Hidden Layer 2

Hidden Layer 1

Input Layer

(a) Before mutatior (b) After mutation

Figure 3-5 An example of mutation operation

The connection matrices before and after the mutation are shown below.

Before mutation:

1
011
Co=|0 1|, C;= 10 10 (:32“_‘[1 1]
0o 1 -
After mutation:
1

Cp=

o=

0 c~011 C, = 1]
1’ 21—101’ 32

<

After the elitism, crossover and mutation operators, a new population is generated.

After a sufficient number of generations, the optimal or approximately optimal

architecture Cu of an NN can be found by this GA algorithm.

In this chapter, a new neural network architecture optimization algorithm using GA

39

is proposed. Detailed GA operators, such as selection, elitism, crossover, and mutation

are presented. A new neural network encoding method - DMME is also introduced. The
approximate optimal architecture of NN (C;.) is obtained and is ready to be used in the

RANN-based nonlinear system identification models.

40

Chapter 4 The modified BP algorithm and adaptation laws

The objective of adaptation laws is to find out the learning rules for the parameters in
the identification models to approach their nominal values in the sense of minimizing the
identification error. In this study, a modified BP algorithm is developed to tune the
weights and other parameters of a given RANN. Known as the Generalized Delta Rule,
BP is a predominant supervised training algorithm, which is based on the steepest
gradient descent algorithm. The learning rate n, in the subsequent formulas, determines
the rate of weight change. This is typically a number between 0 and 1. Usually the
learning rate is chosen to be sufficiently small to increase the probability of finding out
the optimum values in principle of the tuning parameters. However, the small learning
rate means the slow convergence. Hence, in some cases, the learning rate is increased to
speedup the convergence, with a side effect of increased oscillation. Usually a
momentum term a is used to adjust the balance (McClelland and Rumelhart 1988). This

term indicates how much the change of a previous weight should influence the change of

a current weight. When the momentum term a is applied, the weights W;; are updated as:

w; (k +1) = w; (k) + Aw,; + a(w; (k) —w; (k - 1)) CBY

where

Aw, (k +1) = Aw, (k) + a(w, (k) —w,(k~1)) @2

The modified BP differs from the traditional BP in that the traditional BP is mostly

used to tune weights only; whereas the modified BP in this study is used to tune both

41

weights and all other adjustable parameters, such as linear part’s parameters and the
number of delays of the input and the output of the system. The work flow of the
modified BP is illustrated in Figure 4-1.

In this study, all RANNs obtained from the GA are trained off-line, that is, to use
historical training data pairs to update parameters for epochs till a specified number of
iterations or an acceptable error between the target and the actual output(s) have been
reached (Prasad and Bequette 2003).

In the following sections, general formulas are used to describe the adaptation laws
of parameters, e.g. weights. In case that some neurons in the previous layer are not
connected to the current neuron; all the formulas can still hold. The only difference is that
the number of the incoming connections is not the same as the number of neurons in the
previous layer. In other words, the architecture optimization algorithm will not affect the

adaptation of the RANN parameters.

42

4.1 The modified BP algorithm

_ Initialization

Figure 4-1 The work flow of the modified BP algorithm

Figure 4-1 shows the work flow of the modified BP algorithm. After the weights are
updated, a sensitivity analysis is performed to trim the NNs (Kamin 1990; Prasad and
Bequette 2003). The weakest neuron on hidden layers is removed from the network to

avoid redundancy and excessive growth of the network. When sensitivity analysis is

43

used, to the input layer, the noise, such as Gaussian white noise (Barrett 1963), and

redundancy in the input signal can be filtered out, and to the 1* hidden layer, the number

of states in the NN models can be reduced. The sensitivity of weight W;; can be derived

by (Karnin 1990):

P-1 (p) F
S = > JE Ap® Vi “s)
ij ij F I -
o OW; Wy — W,

where w,.f is the final weight, and w,;. is the initial weight, P is the total epochs of the

training.

4.2 Adaptation laws for the Single RANN Model

In the Single RANN identification Model, there is only one RANN block to
represent a completely unknown nonlinear system without any linear part accompanying
with it. As shown in Figure 2-5, the inputs to the RANN are the last step control input,
last step real output of the plant, and their up to M and N delayed values, respectively.
And, since only SISO systems are considered here, there is only one output neuron in the
RANN. The adaptation laws for this model are the weight adaptation laws only.

4.2.1 Weight adaptation laws
As an example, assume there are only two hidden layers in the architecture as shown

below.

input layer 1" hidden layer 2" hidden layer output layer
(has N;=p neurons) (has Nyneurons) (has Nyneurons) (has Ny =Q neurons)

Figure 4-2 The structure of two hidden-layer NNs

Since the bipolar sigmoid function is used as the activation function in most
simulations in this study, the weight adaptation laws under the bipolar sigmoid function
are described here.

For the j™ neuron in any layer:

M
net; = Zwijxj + 9j (4-4)

i=1

g = flrety =2t 2, 4-5
j J 1+e—netj 1+e—netj (=)

where w;; is the incoming weights of the j* neuron; x; is the input of the j* neuron, which

equals to the output of the i neuron . on the previous layer, and 8, is the bias of the j*
q P y p Y j J

ncuron.

Thus,

U4 7 1
Y, = f'(net)) =5(l—yf) (4-6)

The corresponding back-propagated errors in the output layer, the 2" hidden layer,

and the I*' hidden layer for the p™ training sample are shown as follows, respectively.

aE(P) , 1
8 === (P ~) (net) = O = HA-GIPY) @)
!
5(;’) — aE(p) — 5(17) 4 — 1 (P (P)\2
jk "_’5”1‘8—;" i Wuf (netk)_—z-akl w, (1-(y,")") (4-8)
k
aE(P) N , 1 Ng
P =S = Y G wf (ret)) = 2 P WA= @)
i k=l k=1

For the incoming weight w;; of the j'h neuron,

45

oE L OE™
Aw, =—fj—=-1) 4-10
w,; =1 T 77m=l aW,-j (4-10)

ij

where 7 is the learning rate, and, in general, 0 <7 <1; P is the number of total training

samples. Suppose there are Q output neurons in the output layer, the mean square error of

a neural network for the p™ training sample is:
(p) 13 2 18 (P (P)y2
BV =226 =5 204" =™ @1
2 j=1 2 j=1

where y(")4 and y®; represent the j’h output neuron’s real/target output and its
neural network output, respectively. For SISO systems, Q=1.

Based on the gradient descent learning algorithm, the weights adaptation laws for the
output layer, the 2" hidden layer, and the I* hidden layer for the p™ training sample are
derived:

P P
w,(+D) =w, () + 2 AW,Z") =w, (t)+ 772 5,5,'"))),((”') (4-12)

m=1 m=1

P P
wE+ D) =w,)+ D AW =w, (D+n) 8Py 4a3)

m=1 m=1

P P
W+ D) =w, () + D AwS” =w,(D+7 D 6y™ (414

m=1 m=1

4.2.2 Number of time delays adaptation laws
Since the time delays are the parameters for the delayed input and output signals,

they are the inputs of the neurons in the first hidden layer, as shown in the following

figure.

46

The I* hidden layer

f(net;) —p

{ neuron i

Figure 4-3 Time delays of the neural network

For the i hidden neuron on the first hidden layer:

M-1 N-1
net;” =Y wPu(t—rT)+) wly(—qT) (4-15)
r=0 q=0

where r and g are the number of delays of input and output signals, respectively, and T is

time interval.

Letz, =gT . For the p™ training data set, the adaptation laws for the time delays 7,

are derived:
Az'l(v”) _p oE®P —p JEP anetlo(p) s anetlo(p) @16
oz " onet!” 97 ¢y
where,

47

Ny
) (p)
aneth(p) azwkz)’p N, (p) N, az WiYj
_ J=
P aTw) —21: Lipy (p) Z Wy 8 @))V
N N k=

k=1

(p)

ZZsz)’k(m[Z k}’,(p) (Z nym(a (p) [ZW uP (- r(”)) +Z ly<p> (t_Tl(Vp))]))]

(P) {(p))
Bt S S, 2

(4-17)

For all training data pairs, the adaptation laws for the time delay 7, are obtained:

T @+ =7,()+ ZAr(”’) (4-18)

m=1

Letz,, =rT. For the p'h training data set, the adaptation laws for the time delays,, are

derived as:
AP JE» ey J0E” Onet’? s onet’? @19
M az',(f) anetlo 2 ar,(l}’) . 82',(”")
where,

onet?? M M DDy P () T
1 —zwklyk(p)[ijky](p)(Z)’i(p)(ZW”. (M) (M))]

afif) i=1 r=0 T
(4-20)
For all training data pairs, the adaptation laws for the time delays 7,, are obtained:
T, (E+1D) =7, (8) +ZAT('") @-21)

m=1

4.3 Adaptation laws for the Serial-Linear Model

In the Serial-Linear Model, the output of the identification system y(k +1) is

composed of both outputs of the RANN and the cascaded linear part, as described by Eq.

48

(2-10) and Eq. (2-11).

4.3.1 Weight adaptation laws
e Output layer weight adaptation laws
For the p’h training sample, based on Figure 2-7, the output layer weight adaptation

laws are described as:

QE® OE® 39(k +1) oy(k +1)
AP = — = — = o =t -
M e T T Hkr) dwy T owg R
where
B+D_§, ay(k—z) Z , k=) (4-23)

oWy i=0 Owy
Since y(k-i) is the real output of the plant, and has no relation with wy, the change of

output y(k + 1) with the weight wy, are obtained as:

B+ o Zb ah(k

awkl i=0 Wy

M-
be (net!* D)y (4-24)

Thus, the adaptation laws (Eq. 4-22) becomes:

y 99k +1) 1)

AW,(dp) 5(1)
ow,

Ny - “’))be(neto(" ")y"‘ " (4-25)

where y(’J)= J(k+1) is the output of the identification system, and y(”)= y(k+1)

is the real output of the plant.

For all P training samples, the weights in the output layer are updated as follows.

49

P ” L am OV(k+1
wu(t +D =wy () + . Awi? = w, () +1Y 6" P&+

m=1 m=1 awkl

Ml ' ‘ (4-26)
= wy (1) + UZ[(y(”" Y)Y b f (et})y
i=0
« Hidden layers weight adaptation laws
For the p™ training sample, the hidden layers weight adaptation laws are:
(p)
AW® = 0E™
jk ow
jk
_ 0EY 95(k+1)
Hk+1) ow, : 4-27)
M-l otk
= n5k,Zbi F (net?*yw, f'(net,) yﬁ.")
i=0
For all P training samples, the weights in hidden layers are updated as follows.
wi+D) =w, (6)+ ZAW("’) (4-28)

m=1

4.3.2 Linear part parameters adaptation laws
Following the same principle of the steepest descent gradient algorithm, the updating

of the coefficients of the linear mode is derived as follows.

LD _ . 0E® dj(k+1) _ o Pk +1)
04, Pk +1) da, “ da

1

A(p) _ _
Aa” =

(4-29)

where
oy(k +1) NZ | ay(k —z) Z A ah(k——z)

l

a4, i=0 i=0 . (4-30)
= y(k-t)+0= y(k —1i)

50

Therefore, Eq. 4-29 is rewritten as:

9k +1)

~(p) _ (p)
da,

1

=18 y(k—i) =n(y =y)yk i) 4-31)
For all P training samples, the coefficients of a; are updated as:

,
a,(k +1) =a,(k)+ Y Aa™

m=1
P
=a,(k)+ 772 5/51’"))’(]C —1) . (4-32)
m=1
P
=a,(k)+1 (95" =y) ylk —1i)
m=1

Similarly, the coefficients of b; are updated as:

~ A P ~
b(k +1) =b,(k)+ > Ab™

m=1

")id
=b,(k)+1) 8 h(k i) . 4-33)

m=1

~ P
=b,(k)+ 1) (y§" — y"™ Ak —i)
m=1

4.3.3 Number of time delays adaptation laws

For the p™ training data set, the adaptation law for T, is:

0EP 0E® 9y P (k+1) 0y (k +1)
ATP) = — - =no®)
VTP T TEP k) or T

where,

51

A (p)
BTGk 0 [Z y(k——l)+2bh(k——l)]

or¥ T or 2
k-~ oh(k —
Z iaY((p)l) Zb,. ((» 2
i=0 aT i=0 a
_ N-] 1(’i y(P)(t T(P)) y(p) (l (P) T)
e T
M-l N L N , N-1 (p)(t—’l'(p))-— (p)(t_z.(p) ~T)
+ Zh(Zwk,yk‘”’[Zw,ky,-‘”(Zw,,y,"”(z)
=0 k=l j=1 = T
(4-35)
For all training data pairs, the adaptation law for 7, is:
P
T+ =7, () + D AT (4-36)
m=1
For the p”' training data set, the adaptation law for 7,, is:
AZ® = - oE® i aE(p) aj}(P) (k + 1) s aj‘,(P)(k + 1) @
" oy - P (k+D) 9ryp Y
where,
aj‘)(p) (k +1) 9 M M-
k—i)+) bh(k—i
52 W[Z ay(k—1i) Z (k—1)]
L j Ok —i) oh(k —i)
Z T(P)
M- , uP(t— z.(p) —uP(t~ T(p)
~Zb (Zwklyk(p)[z kyj(p)(iwgyz(p)(z w, () (T)))])
=0 k=l = T
(4-38)
For all training data pairs, the adaptation law for 7, is:
P
T, C+D) =7,)+) ATy’ (4-39)

m=1

52

4.4 Adaptation laws for the Parallel-Linear Model

In the Parallel-Linear Model, the output of the identification system y(k +1) is the
summation of the output of linear part f, (k +1) and the output of RANN f,, (k +1), as

described in Eq. (2-15).

4.4.1 Weight adaptation laws
e Qutput layer weight adaptation laws
For the p™ training sample, base on Figure 2-8, the changes of the output weights are

derived as:

_OE® _ 9E 9j(k +1)

Aw'P) = -
i ow,, ”®m+n ow,,

(4-40)

The back-propagated error of the output layer is defined as:

O apw AGOP)
e N

__(y(p) (p)) 4-41)

where y”’ = $(k +1) is the output of the identification system, and y'” = y(k+1) is

the real output of the plant.

and,
Bk +1) _ 3, (k+D) Ay (k+D)
ow, ow, ¥ ow, (4-42)
where
of, (k+1) ¥ oyk- du(k -
i ()ZZ)’(Zb u((4-43)

ow, pars

53

Since both y(k-i) and u(k-i) are one of the samples of the real plant output and input,

and are independent, the Eq. 4-43 becomes:

A k+]) _ NZ W= Zb Qu(k —i)

Iwy i=0 dw, awkl (4-44)
=0+0=0
dy(k —1) s -,
Here —————= =0 because y(k-i) is the real plant output, and it’s not related to wy.
Wa
o . ay(k +1)
In case that y(k-i) is the output of the RANN, the computation of ————= becomes a
Wa

recursive process (Piche 1994),

and

(p)
df i (k +1) _ af(netlo) af(nel‘l) a(z Wu¥i)

ow ow " onet® aw = f(net))y,P . (4-45)
H d 1 kl

The Eq. 4-42 is rewritten as:
oy(k +1) _ af, (k+1) + df . (k+1)
ow,, ow,, owy
=0+ f'(net])y _ (4-46)
= f'(net,)y(p) |

The change of output layer weight (Eq. 4-40) is shown:

(p)

oE
Aw’(dp) =-n— — — n(y(p) p))f (net)y(p). (4-47)
kl

For the p™ training sample, the adaptation laws for the output layer weights are:

Wu(t+ 1) =w, @)+ AP = w () + (Y — y) f(net?)y . (4-48)

For all P training samples, the weights in the output layer are updated as:

54

P P
w,E+1D) =w, () + ZAwZ") =w, @)+ ”Z()’f]m) _)’l(m)))’zl(p))’;im) (4-49)
m=1

m=1

o Hidden layers weight adaptation laws

For the p'h training sample, the weights in hidden layers are updated as:

, aE(P)
wy (+1) =wjk(t)+Aw§,f =w,#)-n W
jk
OE™ 99k +1)
YRS GTD aw, -; (4-50)

=W, (£)+ ndklf/(netlo)wklf,(netk)ygp)

For all P training samples, the weights in hidden layers are updated as follows.

P
Wi (E+D=w, () + Y AW

m=1

P
=W (t)+”Zaé;n)f,(neﬁo)Wklf/(”etk)yi'm)

m=1

(4-51)

4.4.2 Linear part parameters adaptation laws

Based on the same principle of the steepest descent gradient algorithm, the

coefficients of the linear mode are updated as:

AGP =—p QE® _ OE® 99(k+1) P oy(k+1)
’ da, H(k+1) 04, Y
' 4-52
e QLD | AP (kAD), *>2)
] a&i a&i

where

55

o (k+1) _ g ola,y(k—] K3, Ou(k —i)
da, & 9 < b, 3. @53)

= y(k—i)+0= y(k—i)

Since f Nf’ (k+1) is unrelated to a; , the change of it with respect to g; is:

L (k+1) of (net?)
h 04, - 04, =0. (4-54)

The change of y(k +1) with respect to a; becomes:

Ik +1) _ of”(k+1) af“’)(k+1) —i)
da 9, da (4-35)

Therefore, one obtains the following update law:

AGP =8P af’(k +1)

= =08 y(k—i) =0 — yP)y(k i), 4-56)

For all P training samples, the coefficient a; is updated as:

a,(k+1) =a, (k)+ZA“'”) =a, (k)+n25,§;">y(k—z)

m=1 m=1

4-57)
=400 +7Y O = 3™ yk =)
m=1
Similarly, the coefficient b; is updated as:
N N P . A~ P
by(k+1)=b,(k)+ D Ab™ =b,(k) + 1) 6 u(k —i)
m=1 m=1

(4-58)

=b, (k>+n2(y<'"> ¥ Yu(k —i)

m=1

4.4.3 Number of time delays adaptation laws

In the parallel-linear model, the output of the identification model is composed of

56

both outputs of linear part and RANN. The time delays of the input and output signals
only affect the first hidden layer.

For the p™ training data set, the change of 7, is:

2 (p)) (P (p)
Az'f\,”)=—ﬂaE(e AaE ay (k+1) kl[ay k+1) ay (k+1)]
az.(p) ay(p)(k+1) az-(p) or (p) az.(p)
N-1
d, a(g[& YRl Z[b u?e=D) & 0P (k +1) onet’”
_77 kl[a’l'l(f) Z{: (p) BTI(V”))]
Nl (P t—-’l'(p) P t_T(p)_
N-1 (p) t-—T(p) ¢)] t—T(p) _

+Z>’:(")szyk(p)[z Y (ZW,,)’,(”) (Z t—7y") 7): - D

(4-59)
For all training data pairs, the adaptation law of the number of delays is:
P
Tyt +D) =7,)+ D AT (4-60)
m=1
For the p’h training data set, the adaptation law is:
aE(p) aE(p) ay"”(k+1) (p)(k-l-l) ay(p)(k+1)
A (P) _ —
e T T Pk oy i o0 orp |
N-1
vt — (»)
ag{a P k—i)]+ Z[bu *k-i) ey (k) dnel®
u® p)) ()
__775 [Zb (t T() 1;1 (t Ty T)
i:y,(p)wthk(p)[z ky;(p)(quy‘(p)(Z’1 (P)(t "71(\;)) —;lfp)(t '“71(:) "T)))]]
k=1 =

(4-61)

For all training data pairs, the adaptation law for the number of delay 7,, is:

57

P
T, +D) =7, () + Y AT (4-62)

m=1

In this chapter, the modified BP algorithm is introduced in detail to tune all
adjustable parameters in the three RANN-based nonlinear system identification models
proposed in chapter 2. All the adaptation laws for the weights, linear parameters, and time
delays are developed based on the steepest gradient descent algorithm. During the
training process of the RANN, all these adjustable parameters are tuned, and their
approximately optimal values in the sense of minimizing the identification error are
obtained by the proposed modified BP algorithm. When the GA, discussed in chapter 3,
and the modified BP algorithm work together, both the architecture of the RANN and all
the parameters of the identification model are obtained to identify the nonlinear system

successfully.

58

Chapter 5 Simulation results

In this chapter, seven examples and their results are demonstrated to evaluate the
performance of the proposed GA and RANN-based nonlinear system identification. Two
types of application systems are applied to each of the three RANN-based identification
models. One is the numerical nonlinear systems, as used in (Yazdizadeh and Khorasani
2002) or (Narendra and Parthasarathy 1990), the other one is a real world nonlinear
system. A special example of multi-inputs nonlinear system identification is
demonstrated using the Single RANN model also.

Most research in literature identifies the input-output mapping of a system by using
both input and output signals although there were few studies on using only the output
signal (Rozario and Papoulis 1989) (relay on high order statistics of the output signals).
In this research, all the simulations use both input and output signals. As described in
(Yazdizadeh and Khorasani 2002), the reference input signals should be persistently
exciting. Because the selection of the reference signals is out of the scope of this study,
we simply select signals that are the same as or similar to those in (Yazdizadeh and
Khorasani 2002) or (Narendra and Parthasarathy 1990).

Finally, for all the simulations, the configuration of the optimized RANN after GA is
listed in Table 5-1 to 5-7, where the initial status of the RANN before GA is also listed

for reference only.

5.1 Normalization of training and generalization data sets

The activation function used in neural networks could be any bounded,

differentiable, and monotonically increasing nonlinear function (Chandra and Singh

59

2004). In general, the activation function for nonlinear identification is a smooth

1

< » as shown in

function, typical examples of which are the sigmoid function 1+e
1—-e™

Figure 5-1, and the hyperbolic tangent function 1+e™’ as shown in Figure 5-2, with

unipolar and bipolar outputs in the range of (0, 1) and (-1, 1), respectively.

0.9
08
0.7
0.6
0.5
0.4
03
0.2

08
0.6
04
02

-0.2
-0.4
-0.6
-0.8

&
&
o
ol
Nk
ol
ol

Figure 5-2 The hyperbolic tangent function

60

In order for the network to operate properly, both input and the output vectors must
be normalized, by adding a normalization layer before the first hidden layer, or simply
normalizing the input vector to [0,1] or [-1, 1] before it is fed to the neural network. In

this study, the following general normalization formula proposed in (Canelon, Shieh et

al. 2004) is used.

O=—1+2x— —mn_ 5-1
) (5-1)

where © and 6 are the values before and after normalization, respectively.@ , and

0, arethelower and upper bounds of the original vector.

If the range of the input or the output is ‘[O, 1] or [-1, O], the following corresponding

normalization formulas could be adopted.

0-0_
G = 0 6¢|0,1 -
6. -0, 104 G2
0-0_.
g=—1+—2 " Omn__ e l-1,0 _
®|ﬂax - @min [] (5 3)

The hyperbolic tangent sigmoid function is used as the activation function in the
modified BP algorithm, and the output of the plant is used as the feedback of the RANN

both in the training and the generalization processes.

5.2 Applications of Single RANN Model
Example 1
The system’s governing equation is:

_02y(t-1)+0.6y(t—2)
- 1+ y(t —1)?

() +sin(u(z - 1)) . (5-4)

61

The same reference input signal is adopted as in (Yazdizadeh and Khorasani 2002), i.e.:

. 2t . 27t
u(t) = sin(——) + sin(—) (5-5)

10 25
To test the robustness of the system, the input signal is modified as in (Yazdizadeh
and Khorasani 2002): 50% amplitude reduction within 100-200 time steps, 50%
frequency reduction within the 200-300 time steps, and 100% frequency increase within

the 300-400 time steps.

The modified signal is illustrated in Figure 5-3 and is used in this example.

R

1 H i 1
0 50 100 150 200 250 300 350 400
Time steps

Figure 5-3 The modified input signal in Example 1

After tuning, the parameters of the GA and the modified BP are chosen as:
« Maximum hidden neuron number: 30
« Population size: 20

o Maximum GA generations: 800

62

o Crossover rate: 70%
o Mutation rate: 80%
« Initial connection rate in connection matrices: 80%
e Maximum BP runs: 200
o BP learning rate 77:0.016
The nonlinear identification model I was applied to the system, with the

identification results shown in Figure 5-4.

1-5 T T L T T T T
----- RANN Identification Model Output
; Plant Output
it
05 ! |} I H
:js«
- 1] -:
L o ATRUANE bR
! | .
-05 ,,
\ ; |

_1 .5 i ! 1 1 1 H |
0 50 100 150 200 250 300 350 400

Time steps

Figure 5-4 Identification results of Example 1

Figure 5-5 shows the minimal average square error of the best individual in the

population in each generation.

63

x10
10 T T i T T T

95+ 4

Best Evaluation
o
i

6.5 7

] 100 200 300 400 500 600 700 800
GA lterations

Figure 5-5 The performance of the architecture optimization GA in Example 1

The final average mean square error (Eq. 3-1) is 0.006309. Figure 5-4 shows that the
output of the identification system simulates the target output well even when both the

amplitude and the frequency of the input signal vary.

Table 5-1 RANN parameters comparison in Example 1

Before GA After GA
Hidden neurons 0-30 The 1* layer: 27, the 2™ layer: 1
Hidden layers lor2 2
Connections Random Fixed

The connection matrix for the 1% hidden layer:

_0011111101100101010011111101.

O —m OO OO0 OO0 0000 e O e O oA O O -0

100010011011011011101000111
I .

*x 2

O

The connection matrix for the 2* hidden layer:

lf11111110111101111111111111]

* —
21

C

65

-

100 150 200 250 300 350 400
Time Steps

Figure 5-6 Identification results of Example 1 in (Yazdizadeh and Khorasani 2002)

Figure 5-6 shows the identification results of the same example in (Yazdizadeh and
Khorasani 2002). It can be seen that in our example, although very small GA and BP
parameters (population size: 20, generations: 800, BP iterations: 200) are used, and the
obtained NN architecture is also very simple also (with only one neuron in the 2" hidden

layer), but the similar identification results could be researched as that in the reference

paper.

Example 2
The governing equation of the system is:

Y@y —Dy(t —2u@ - Dy —2) -1) +u)

y+h= 142G -2)+y* (1)

(5-6)

The input signal, the same as in (Narendra and Parthasarathy 1990), is:

66

sin —— <500
u(t) = 250 5.7)
08sin22-+02sin 2" 5500
250 25
1
0.5} _
% o
0.5 _
o 200 200 600 300 1000

Time steps

Figure 5-7 The input signal in Example 2

Here the total data sampling time step is 1000 and the time interval is 0.1. A subset of
200 input-output data pairs are used as the generalization data set.
After tuning, the parameters of GA architecture and modified BP training are chosen
as:
o Maximum hidden neuron number: 30
» Population size: 20
o Maximum GA ggnerations: 800
« Crossover rate: 70%
« Mutation rate: 80%
 Initial connection rate in connection matrices: 80%

o Maximum BP runs: 200

67

. BPleamningrate 7:0.016

The nonlinear identification model I was applied to the system, with the

identification results shown in Figure 5-8.

1.5 v T .
----- RANN Identification Model Output

Plant Output

Time steps

Figure 5-8 Identification results of Example 2

Figure 5-9 shows the minimal average square error of the best individual in the
population in each generation.

-3
x 10
4 T) T T T T T

35 E

|

0 100 200 300 400 500 600 700 800
GA Herations

Best Evaluation
[2]

Figure 5-9 The performance of the architecture optimization GA in Example 2

The final average mean square error (Eq. 3-1) is 0.002178. It can be seen that our

68

system achieves the same performance as that in (Narendra and Parthasarathy 1990), with

a much smaller training data set.

Table 5-2 RANN parameters comparison in example 2

Before GA After GA
Hidden neurons 0-30 The 1% layer: 23, the 2™ layer: 2
Hidden layers lor2 2
Connections Random Fixed

The connection matrix for the 1** hidden layer:

o

0
=)
il
O ke e D e bt D R = OO D R D bk O O s
O O e O ek OO e e ek = D ke = = O e OO O = O
i D D O bk e e = OO k= e OO O ks = O e e e e
CO O D ko e e O = OO0 D e OO e s = e

O et D D e e b e D = = OO Qe e e OO R e e

69

The connection matrix for the 2" hidden layer:

21 T

. j01r 0000111111 111001111°¢00P0
11110100100O0O0O0O1O011O0O0°O0O0DO0

L
e "*1 oo
0.8 :- g 3
oS i "
g~ :
@ 0.0 .
il 85 b ; ¥ At
3 ' e ‘ 3 «
i | 1
~k.0 - ' 4 L - i "
a 200 AQ0 8O0 800

Figure 5-10 Identification results of Example 2 in (Narendra and Parthasarathy 1990)

As shown in Figure 5-10, for the same example in (Narendra and Parthasarathy
1990), although a large number of identification procedure (100 000) was carried out, a
similar identification results was got as in our example with only 1000 identification

procedure is carried out here.

Example 3
As a special study case, a VDCL (Voltage Dependent Current-reference Limiter) unit
black-box nonlinear system (Narendra, Sood et al. 1995) is used to verify the proposed

algorithms.

70

An HVDC (High Voltage Direct Current) converter fed into a weak AC system is
prone to commutation failures. Under such conditions, an adaptive current reference can
be useful to optimize the system recovery following a fault and alleviate the possibility of
subsequent commutation failures. In an HVDC transmission system, a VDCL unit is
traditionally used to generate an adaptive current reference for the converter controller.
This current reference can be either adapted to the DC (transmission line) voltage or the
AC voltage at the filter bus of the converter.

The traditional VDCL unit in the HVDC control system is of multiple-input
single-output (MISO) type with a non-linear voltage-current characteristic. An intelligent
VDCL unit was proposed in (Narendra, Sood et al. 1995) with an NN of eighty four
neurons on the hidden layers. It demands a huge amount of computation, and may be not
suitable for power systems, which need quick responses. According to Qi’s research (Qi
2005), 40 neurons on the hidden layers could also get the same result, but it may not be
the optimal solution. There may exist a better architecture of the neural network that can
be found systematically. As a special example, the proposed Single RANN identification
model I is used to solve this problem. The objective is to find a more effective neural
network system with neurons less than 40.

After tuning, the parameters of GA architecture and modified BP training are chosen
as:

« Maximum hidden neuron number: 30
« Population size: 30
o Maximum GA generations: 50

o Crossover rate; 40%

11

« Mutation rate: 10%
» Initial connection rate in connection matrices: 50%
« Maximum BP runs: 200

« BP learning rate 7:0.016

The GA and BP parameters are not the same in all simulation ‘because, generally, we
need to tune these parameters to get better or acceptable results; for instance, the
mutation rate in this example is much smaller than in other simulations because if we use
a small mutation rate in other simulations, it is much difficult to obtain better
chromosomes. It shows that the mutation operator in other simulations pays a more
important role than in this example. Figure 5-11 shows the average mean square error of

the best individual in the population in each generation.

2.5 .

Best Evaluation
N
T
1

1 1 i 1 l | 1 i i i

0 5 10 15 20 25 30 35 40 45 50
GA [lterations

Figure 5-11 The performance of the architecture optimization GA in Example 3

Figure 5-12 shows the mean square error with respect to BP’s time steps.

72

0-045 T T T T T T T T T

0.04

0.035

0.03

0.025

0.02

Best Evaluation

0.015

0.01

0.005

1 i I I 1 i 1 1 :
00 20 40 60 80 100 120 140 160 180 200

BP lterations

Figure 5-12 The convergence of BP algorithm in Example 3

It can be seen that the proposed algorithm is better than Qi’s work in that it finds a
RANN of 22 neurons in total, with 13 neurons and 9 neurons on the first and the second
hidden layer, respectively. This is because the simple the neural network, the quicker the

response of the VDCL unit (represented by the NN)

Table 5-3 RANN parameters comparison in example 3

Before GA After GA
Hidden neurons 0-30 The 1% layer: 13, the 2" layer: 9
Hidden layers lor2 2
Connections Random Fixed

The connection matrix for the 1* hidden layer:

73

00100010

1 01 011

01111010

0 1

1 0000011

1 11 1 0
11100001
01011000
0000O01O0T1

0

01111001

1 0010111

00010101

01101011

*
10 ™

C

The connection matrix for the 2°¢ hidden layer:

e - OO O e e
O = O O o v e e
- -0 O O —= O O O
O OO - O O O O -
— - O - -0 O O O
- e = O - OO O
e =T T I R
— e o oy o e O O e
— e - OO O O OO
O O — O O O = o= -
e e - OO O O
O - O~ O - O O
o e ° -
Il
* &
0

The three examples above indicate that the proposed unknown nonlinear
74

identification model has a robust capability to identify completely unknown nonlinear

systems.

5.3 Applications of Serial-Linear RANN Model

Example 4

The governing equation of the system is:

0.6
H=03y¢-D+06y(t-2)+—mm— -
y(@) y@-1) y(-2) a1 (5-8)
The same reference signal, as in (Yazdizadeh and Khorasani 2002), is:
. 2 -1)
u(t—1)=sin——= .
(-1 100 | (5-9)

The nonlinear identification model I was applied to the system, with the identification

results shown in Figure 5-13.

-0.5 4
----------- RANN ldentification Model Output
Plant Output
_1 1 1 X Y T T T
(4] 20 40 60 80 100 120 140 160

Time Steps

Figure 5-13 Identification results of Example 4

Figure 5-14 shows the minimal average square error of the best individual in the

population in each generation.

75

Best Evaluation

1 0 50 100 150 200
GA Rerations

Figure 5-14 The performance of the architecture optimization GA in Example 4

After tuning, the parameters of GA architecture and modified BP training are chosen as:
o Maximum hidden neuron number: 30
« Population size: 20
o Maximum GA generations: 200
« Crossover rate: 70%
o Mutation rate: 80%
 Initial connection rate in connection matrices: 80%
o Maximum BP runs: 200

o BPlearning rate 7:0.016

The final average mean square error (Eq. 3-1) in this example is 0.001359. It can be
seen that although GA was only run for 200 generations, the performance of this system

is very good, with a medium sized RANN, as shown in Table 5-4.

76

Table 5-4 RANN parameters comparison in example 4

Before GA After GA
Hidden neurons 0-30 The 1% layer: 13, the 2°? layer: 3
Hidden layers lor2 2
Connections Random Fixed

The connection matrix for the 1% hidden layer:

0

O*

I
OO D e e O Rk ek (O e e
f— i DD = e el e e ek O e e
O O OO O O e e e

r
|

The connection matrix for the 2™ hidden layer:

0011111
C,={1 101111
1000110

_— O e

OO
el D

77

[S S
- o O
Pt e O

200 400 S00 800

Figure 5-15 The simulation results of Example 4 in (Yazdizadeh and Khorasani 2002)
Figure 5-15 shows the identification results of the same example in (Yazdizadeh and
Khorasani 2002). To obtain a similar result as in our example, a much larger training data
set was used in the reference paper. In addition, the identification system order (4) was

higher than the real system (2) in (Yazdizadeh and Khorasani 2002), but in our example,

it is lower (1).

Example 5

In this example, the backlash-like hysteresis (Su, Stepanenko et al. 2000) is taken
into account as the unknown nonlinear characteristic in “smart” actuator. As pointed by
(Su, Stepanenko et al. 2000), hysteresis is a nonlinear characteristic exists in many
control systems, such as electric servo actuators, harmonic drives, and electronic relay
circuits. In this example, the same backlash-like hysteresis model is adopted. The

description of the hysteresis model is:

78

h(t) = P(u(t))
c(u(t)— B), if u(t) > 0and h(t) = c(u(t) - B)
=qc(u(t)+B), if u(t) < Oand h(t) = c(u(t) + B) (5-10)
h(t.), otherwise

where P() is the function of the backlash-like hysteresis, ¢>0 is the slope of the lines, and
B>0 is the backlash distance. The same values are used as in (Su, Stepanenko et al.

2000), i.e. ¢=3.1635, B=0.345.

Figure 5-16 shows the hysteresis while the input signal is chosen as u(¢) =sin(2.3¢).

w(t)

-1 -0.5 0 0.5 1

Figure 5-16 The hysteresis under the inputu(z) = sin(2.3¢)

The “smart” actuator is piezoelectric actuator whose dynamics is identified as a

second-order linear model coupled with a hysteresis (Jan and Hwang 2000).
my(2) +by (1) + ky(t) = kh(?) (5-11)
where Y(t) denotes the position of piezoelectric actuator, m, b and k denote the mass,

79

damping, and stiffness.

The “smart” actuator preceded by backlash-like hysteresis is shown in the Figure

5-17.

Figure 5-17 The representation of the “smart” actuator

Since in the representation model, the backlash-like hysteresis nonlinear element is
serially preceding to the known linear model of the “smart” actuator, the proposed RANN

identification model II is applied to this complex nonlinear system.

The following reference input signal is used:

. Tt
u(t)=sin(—
Q) (25) (5-12)

A similar modification in the example 3 of (Yazdizadeh and Khorasani 2002) is
applied to the input signal: 50% amplitude reduction within 25-50 time steps, 100%
amplitude increase within the 50-75 time steps, and 50% frequency reduction within the

75-100 time steps, and 100% frequency increase within the 100-150 time steps.

The modified input signal is illustrated below.

80

11 |

2 ' 50 100 150

Time steps

Figure 5-18 The modified input signal in Example 5

Identification results are shown in Figure 5-19.

1

0.8

06},

04r

oz‘-:

vy

04

0.2

04}

0.6

-0.8F RANN Identification Model Output

Plant Qutput
100 150

-1

Time Steps

Figure 5-19 Identification results of Example 5 ‘

Figure 5-20 shows the minimal average square error of the best individual in the

population in each generation.

81

0.039

0.038 |

0.037 i

0.036 n

0.035 J

Best Evaluation

0.034 .

0.033 | 1

0.032 l 4

0.031 (4] 200 400 600 800 1000

GA Iterations

Figure 5-20 The performance of the architecture optimization GA in Example 5

After tuning, the parameters of GA architecture and modified BP training are chosen as:
o Maximum hidden neuron number: 30
» Population size: 20
o Maximum GA generations: 1000
o Crossover rate: 70%
e Mutation rate: 80%
o Initial connection rate in connection matrices: 80%
« Maximum BP runs: 200

o BP leamning rate 77:0.016

The final average mean square error (Eq. 3-1) is 0.031290.

Table 5-5 RANN parameters comparison in example 5

Before GA After GA
Hidden neurons 0-30 Thé 1* layer: 13, the 2™ layer: 11
Hidden layers lor2 2
Connections Random Fixed

82

The connection matrix for the 1* hidden layer:

i ¥
O e O et v el O vl e e e o O

10011111010111110L
i
I

* &

O

The connection matrix for the 2™ hidden layer:

111110

11111

1

1

00000O0O1O0O0O0OT1O00O0
0000O0O1O0O0OO0OO0OO0OTI1O0

0001111111111

10110111111

1
11101

1

1

1

1 01111

01010010O0O0O0OO0OO0
01 001100O0O0OO0O0DO

1101111111101

1111101001111
00000011 OOOOOO

* —
21 T

C

83

5.4 Applications of Parallel-Linear RANN Model

Example 6

This example was taken from the example 3 in (Yazdizadeh and Khorasani 2002),

but the system’s governing equation is modified below:

(1) = y—Dy@=2)(y(-1)+2.5)
1+ yt =1% + y(t —2)* +0.03u(z —1)
+0.8u(t—1)+0.02u(t - 2)+0.05y(t -1) + 0.01y(t - 2)

.(5-13)

The same reference input signal is used as in (Yazdizadeh and Khorasani 2002), i.e.:

.27t
u(t) = sin(=—
() (>3) (5-14)

The same modification as in (Yazdizadeh and Khorasani 2002) is applied to the input
signal: 50% amplitude reduction within 100-200 time steps, 100% amplitude increase
within the 200-300 time steps, and 50% frequency reduction within the 300-400 time

steps, and 100% frequency increase within the 400-500 time steps.

1 n .
0.5 4
-
-1 o
-0.5
LV
-1 -5 ~ u “ “ u |
-2 H 1 1 L
o 100 200 300 400 500

Time steps

Figure 5-21 The modified input signal for Example 6

84

The proposed identification Model III was applied to the system. The identification

results are shown in Figure 5-22.

1 T lﬂ ﬁ P T T
05} ﬁ
0
B
™™
-0.5
H
1k i
----------- RANN Model Output
15 . . Plant Output
o 100 200 300 400 500

Time Steps

Figure 5-22 Identification results of Example 6

Figure 5-23 shows the minimal average square error of the best individual in the

population in each generation.

0.45

o.] _

0.35 | b

0 50 100 150 200
GA Herations

Figure 5-23 The performance of the architecture optimization GA in Example 6

85

After tuning, the parameters of GA architecture and modified BP training are chosen as:

Maximum hidden neuron number: 30

« Population size: 20

« Maximum GA generations: 200
o Crossover rate: 70%

o Mutation rate: 80%

« Initial connection rate in connection matrices: 80%
e Maximum BP runs: 200

« BPlearning rate 7:0.016

The final average mean square error (Eq. 3-1) is 0.001799. The proposed identification
model III achieves equivalently good simulation effects with less complex neural

network architecture than that in (Yazdizadeh and Khorasani 2002).

Table 5-6 RANN parameters comparison in example 6

Before GA After GA
Hidden neurons 0-30 The 1* layer: 11, the 2™ layer: 9
Hidden layers lor2 2
Connections Random Fixed

86

-
L T

o
I
L

250 300 350 400 4850 500
Time Steps

Q 50 100 180 200

Figure 5-24 Identification results of Example 6 in (Yazdizadeh and Khorasani 2002)

Figure 5-24 shows the identification results of the similar example in (Yazdizadeh
and Khorasani 2002). It can be seen that although our modified system is complex than

the original one in the reference, with small population size and GA as well as BP

iteration number, not worse results got in our example.

Example 7

In this example, friction is taken into account as the unknown nonlinear characteristic
in a Harmonic Drive system, whose representation model is similar to that in (Xie,
Krzeminski et al. 2002). A harmonic drive actuator is an integral package consisting of
an encoder, servo motor and precision harmonic drive gearhead and is reported to be

plagued by friction The same 7 parameters friction model as (Xie, Krzeminski et al.

2002) is used here, as described below.

87

1

F=F, +F, ep|+F, (7.1,

1+ v-(t—7,) i (5-15)

vs

_ _F).
Fs(yatz)_Fs,a-l_(Fs,oo Fs,a) l‘2+}/ (5-16)

where,

F' s the instantaneous friction force,

F_ is the Coulomb friction force,

Fv is the viscous friction force,

F, is the magnitude of the Stribeck friction,

FM is the magnitude of the Stribeck friction at the end of the previous sliding period,

F, .. is the magnitude of the Stribeck friction after a long time at rest,

V is the velocity,

V, is the characteristic velocity of the Stribeck friction,

T, is the time constant of frictional memory,

Y is the temporal parameter of the rising static friction,

f, is the dwell time, time at zero velocity.

The Harmonic drive considered with friction can be represented as shown in Figure 5-25.

88

Friction
Model

u®) + Y 1 1| y®
J,s+B, s

Figure 5-25 The representation of the harmonic drive

where J,, and By, are J and B divided by K, respectively; J represents the harmonic drive
moment of inertia, B represents the viscous damping constant, and K represents the

torque constant of the harmonic drive.

The system, with a known linear model, is simulated in Matlab/Simulink. The
identification model I1I is utilized for its identification. The same reference input signals

as in example 5 are used.

Identification results are shown in Figure 5-26.

| I

----------- Identification Model Output
Plant Output
-1 .
0 50 100 150
Time Steps

Figure 5-26 Identification results of Example 7

89

Figure 5-27 shows the minimal average square error of the best individual in the

population in each generation.

0.044

0.042

0.04

0.038

0.036

Best Evaluation

0.034

0.032

0.03 1 A 1
0 50 100 150 200

GA Heration

Figure 5-27 The performance of the architecture optimization GA in Example 7

The parameters of GA architecture and modified BP training are chosen as:
« Maximum hidden neuron number: 30
« Population size: 20
o Maximum GA generations: 200
« Crossover rate: 70%
« Mutation rate: 80%
« Initial connection rate in connection matrices: 80%
o Maximum BP runs: 200

o BPlearning rate 7:0.016

The final average mean square error (Eq. 3-1) is 0.030041.

90

Table 5-7 RANN parameters comparison in example 7

Before GA After GA
Hidden neurons 0-30 The 1* layer: 16, the 2" layer: 5
Hidden layers lor2 2
Connections Random Fixed

The connection matrix for the 1 hidden layer:

*
| e T R i e e e T T = B o S e T
O bt ik e e ik D b ke e e OO O O O
D O O i hm b e e b e e e e e (O

The connection matrix for the 2°® hidden layer:

011011111110110°1
1111110111111111
Cp=l111110111110171T1]1
1110011110111011
101001 1111101111

5.5 Conclusion

Seven simulations have shown that the three RANN-based identification models
have strong approximate abilities and very good performance on nonlinear systems’
identification. After running the GA for not larger than 1000 number of runs, all these
simulations have achieved a RANN with a small amount of hidden neurons and no more
than two hidden layers.

Besides that, the average square error of the best RANN in each generation
progressively decreases, as shown in the figures of the architecture optimization GA in
each example.

It can be concluded that the GA algorithm plays a very key role in finding good
RANN architecture automatically, which is a significant advantage over that of
trial-and-error process with human intervention. Although there are some other NN-based
system identification methods, many of them use fixed network architecture or use one
hidden layer and try to adjust the number of hidden neurons to get a good identification
results. The proposed algorithm can evolve both the number of hidden layer and the
number of hidden neurons on each hidden layer in architecture. It has been shown that it
is a systematic way to obtain the architecture of networks.

Also, it can be séen that all the optimized RANNs have two hidden layers although
they are initialized as either one or two hidden layers at random. We believe that the
RANN with two hidden layers performs the best in terms of the mean square error.

Comparing to those reference examples as in (Yazdizadeh and Khorasani 2002) and
(Narendra and Parthasarathy 1990), smaller GA and BP parameters, same or smaller

training data set, more simple NN architecture (2 hidden layers), lower order of the

92

identification models, same or more complex systems in our simulations, but very similar

or better identification results are obtained here.

For the computational time, a light computation test of Example 6 (GA iterations:

200) and a heavy computation test of Example 7(GA iterations: 1000) are used to

demonstrate the training time of the proposed algorithm. The results are shown in the

following table.
Table 5-8 Tests of the computation time
GA populations | GA iterations | BPiterations | Training data set | Computation time
Example 6 20 200 200 500 61 minutes
Example 7 20 1000 200 149 253 minutes
computer CPU: Intel Pentium III 99MHz; Memory: 512MB
configurations | OS: Windows XP Professional, Version 2002, Service Pack 2
Form Table 5-8, it can be seen that the computational time for the proposed

algorithm is not long. Since the time recording is not a very scientific way, a more

convincing time measurement could be a possible future work.

93

Chapter 6 Conclusions and Future work

In this study, genetic algorithms and recurrent artificial neural networks techniques
are extensively studied for the identification of nonlinear dynamic systems. The main
contributions of this research are summarized as:

1) Three nonlinear system identification models are adopted to represent three
classes of nonlinear systems.

2) Recurrent neural networks are utilized in the proposed identification models for
the identification of the nonlinear system.

3) A genetic algorithm is developed to optimize the architecture of RANNSs in the
sense of minimizing the identification error systematically, hence effectively
avoiding the traditional trial-and-error method.

4) A novel DMME method is proposed to encode neural networks.

5) A modified BP has been proposed to tune both weights and all other adjustable
parameters, such as linear part’s parameters and number of time delays.

6) Extensive simulations have been carried out to evaluate the performance of the

proposed GA and RANN-based nonlinear system identification.

Several examples including numerical and real world nonlinear systems are
extensively studied using the proposed techniques. The identification results of all the
examples show that the proposed algorithms are effective and robust in the identification
of nonlinear systems. The simulation results also reveal that the GA used to optimize the

NN architecture in the sense of minimizing the identification error pays a very important

94

role. After GA, the identification error reduced largely, and a more simple NN
architecture can be obtained. Hence, accompanying with the proposed Direct Matrix
Mapping Encoding method, the computation load of RANN-based identification model
also reduces. NNs with two hidden layers are found to perform better architecture than
those with only one hidden layer. The reason could be that the simulations systems in this
study are all very complex nonlinear dynamic systems. If a system is simple with low
order, maybe only one hidden layer NNs can identify the system well enough. However,
if the neurons number in the hidden layer increased largely, we may need to consider the

using of two hidden layers with totally smaller hidden neurons instead.

Possible future work is as follows:

1) The Back-propagation algorithm is used in this study to train weights and other
adjustable parameters. The major problem of the BP is its slow convergence and
tendency to get trapped in local optima. Specifically in this study, two factors,
i.e. the local optima and the initial weights, affect the performances of the
systems to a large extent. For a given system with few local optima and
appropriate initial weights, the BP algorithm usually works well. Otherwise its
performances may degrade dramatically. In (Liu, Liu et al. 2004), a separated
GA is utilized to evolve the initial weights, which are then fed into BP for
further training. Alternatively, the convergence rate can be enhanced by
adopting a dynamic parameter A into the activation functions as:

1=

1 —e
Xx)= or X) = . A and other weights are then trained
f(x) [T fx) T g
simultaneously.

95

2) GA is another interesting alternative to tune these weights due to its global
search ability.

3) In this study, all nonlinear identification models are trained offline. The possible
next step research is to apply these three identification models in online
nonlinear system identification and control applications.

4) This research mainly focuses on SISO nonlinear systems identification, one
possible future is to use the proposed algorithm to do multi-input and
multi-output (MIMO) systems identification and the study of decentralization

control.

96

Appendix Al: Weight adaptation laws for general NNs

For the j" neuron in any layer, as shown in Figure A1-1, the net output of the neuron is:

M
net; = Zwijxj + HJ. (Al-1)
i=1

Where w;; is the connection weight between this j’h neuron and the i neuron in the
previous layer; x; is the input of the 7™ neuron, which equals to the output of the i neuron

yi, and Hj is the bias of this j‘h neuron.

X}

f(net;)) —

neuron j

Figure Al-1 The structure of a neuron
The net output of this 7™ neuron is:
y; = f(net)) (A1-2)

where f(-) is the activation function of this j neuron.

For a given network, the error between an output neuron’s output and its real/target

output is:

€; =Yg~ Yy (A1-3)

Where y, and y, represent the i output neuron’s real/target output and its neural

97

network output, respectively.
In general, suppose there are g output neurons in the output layer, thus, the mean square

error of a neural network under the p’h training sample is:

1 q
E® = _Z_Zef Z(y(p) yljp)) (A1-4)
=1

Assume there are P training samples fed into a neural network, thus, the total mean

square error of the network becomes:

m=1
— c 1 N (m) (m)
= _I‘Z‘Z(ydj — Yy)?]
m= Jj=1 (Al 5)
1 S (m) (m)
521;(%, -y

Base on the gradient descent learning algorithms, the weights updating principles are as

~ follows.

To the incoming weight w;; of the j’h neuron,

oE L. OE™

Aw. =—p——=— ~
w; =—1] aw, 77m=I o, (A1-6)

Where 1 is the learning rate, and, in general,0 <7 <1.

Under the p™ training sample,

aE(P)
ow

aE(P) anet (A1-7)
anet aw

Aw(p) -7

)

98

Define the back-propagated error as:

(p)
5w = 9E”
y anetj (A1-8)

The weights updated as:

w; ¢+ =w, () + Awi(j”)

=w, (1) + 163")
where f represents a time step.
For all training samples:
P
w,(t+ 1) =w, (1) + D Awi™ (AL-10)
=1

Since, only SISO systems are studied here, thus there is only one output neuron in the

output layer of the NN as shown Figure 4-2.

A1.1 Weights updating by using unipolar sigmoid function as activation
function
For the output layer:

Under the p™ training sample, the output of a NN is the net output (activation function’s

output) of its output neuron, which is:

1
y;” = f(net) = Tte™ (Al-11)

Its derivative is:

99

yl’(P) — f'(net,)
_ _ (_e—net,)
(1 + e—net,)2
_1+ e " —1
(1 + e—net,)2

P
=Y Vi

=y A-»")

(Al1-12)

The weights are updated as:

w, @+ =w, () + Aw
a E(P)
ow,

OE” Onet,
dnet, owy
OE® d(wyx,”)
onet, Owy
AE® d(w,)

onet, Owy

)

= wy (1) —"'aZéT D
1

= Wkl(t)"”

=wy (1) =7

=w, (-1 (A1-13)

=W,d(l‘)—77

Define the back-propagated error of the output layer as:

100

aE(P)
Onet,

aE(p) ay(p)
ay, e Onet,

a((y(p)

(p) __ _
§kl =

i)

(Al1-14)

’(p)

ay(p)

— (y(p)

then,

aE(P)

ow,,

0E'” Onet,
dnet, dw,,

Ny
a(z w,dx,(”))

k=1

aw,
Ny
d (Z Wy ¥i")

k=1

r) . _
Aw’ =-1

=0

=0

Yy -

aw,,
1oy

So, under the p™ training sample,
w,(t+1D) =w, () + Aw,ﬁ,”)
),
=w, () +n0y.”

=w, () + ”(y(p)
=w, () + ”(y(p)

Wy a-

Vi

)

(A1-15)

P))y’(P) (p) Al1-16)

P))y(P)

Under all P training samples, the weights in the output layer are updated as follows.

101

P P
Wt + D) =wy () + D AW = wy () +7 Y 55y

m=1 m=1

—wk,(t)+772(y("') vy (A1-17)

—wk,(t>+nZ(y""> Yy (1=)y

m=1
For the 2™ hidden layer:

under the p™ training sample,

w, E+1) =w,)+ AW

aE(p)
=w, (&)-n
* oW
OEP Onet
=) =1] dnet, dw, .k
a(z (p)
=ij (t)-—'n anetk aij (A1-18)
N,
_ o "2
W= dnet dw
k
aE(P)
=weO)=ng o Onet v
k

where N, is the neuron number in the I* hidden layer.
Define the back-propagated error &%’ in the 2" hidden layer under the p™ training

sample as:

102

aE(P)
B onet,

aE(p) aylgp)
- dy” Onet,

(p) _
5P =

IB(Z w,xP)

— S k=1 ’
—6klp a (p) f (netk)

a(z Wkly(p))
= 5/51[)) k—gyl(c » f ,(netk)
=8 wy f'(nety)

=0 Wy (1= y)

(A1-19)

where N is the neuron number in the 2" hidden layer.

Thus,

(r)

OE
Wi+ D) = wy (1) =1 y

= jk(t) + 775;’5’)))517) (A1-20)
=wy (1) + N6 wy Y (1= p))y(p)

Under all P training samples, the weights in the 2" hidden layer are updated as follows.

P
W (t+1) = wjk(t)+ZAw(m) =wu (O +n) 05y

m=1 m=1
P (A1-21)
=wjk(t)+’725/§lm)wklyk”‘)(l m))y(m)
m=1

For the I* hidden layer:

103

under the p™ training sample,

w, (£ +1) = w, (1) + AwP

aE(P)
aw,.j

OE'P Onet,
onet; ow (A1-22)

N;
o w,;¥")
i=1

_Wij(f)—ﬂ

=W,~,-(f)'"77

Define the back-propagated error &7 in the I” hidden layer under the p™ training

sample as:
aE(p)
5@) -
v onet,
ay(”) anet
aE(p) ,
- By(.p) [(net j)
j
X OE™ Onet,
—kz(a dy® y)f (ne (A1-23)
Ny a(z Wik ylp))
=20) ety
= J
Ny
= 2(5](1?) jk)y(p) (1 _ yﬁ.p))
k=1
Thus,

104

(»)
wy (£ +1) = w, (1)~ naE yP

a]
=w; () +15;" ;" (A1-24)
Ng
=Wij(t)+”2(5(p) Jk)y(p)(l (p))y(p)
k=1
Or w, (¢ +1)can be got directly by:
w; (£ +1) = w, (6) + Aw?
aE(P)
=W (t) /i
ow,
0E” Onet,
= t
=w;(#) - UZI(net, aw..
a t ay(P)
_wu(t)+772(5j(,f) ”f) =1
dy;” ow,
N a(z Wik y]p)) (p)
=w, (t)+77i5(.’” 1 Inet,
* et dy'?) anet. ow;;
a(z)
=Wj, (t)+nZ 8w, f (net)) —==—
’ (A1-25)

Wy (1) + nZ 8wy A=y)y
k=1
Under all P training samples, the weights in the 1* hidden layer are updated as follows.

w;t+D =w, (1) + Z Aw('”) = w, (£) + ”Z Smym
(A1-26)
=Wy @)+ 772 [Z (51(_;”)ij)yg.m) (1- m))]y(m)
m=1 k=1

In summary, the weights updating laws in the output layer, the 2" hidden layer, and the

I" hidden layer under all P training samples are as follows, respectively.

105

P
wy(t+1) = wk,(t)+ZAw(”’) _wk,(t)+n25,§;"’ yim (A1-27)
m=1

m=1

P
w,E+D) =w,)+ ZAW(’"’ =w, (O+n) 6y (A1-28)

m=1 m=1

P
w,(t+1) = (r>+ZAw<'">— w,(0)+1) 8" y™ (A1-29)

m=1 m=1
where the corresponding back-propagated errors in different layers are as follows,

respectively.

SP =P —yP) f(net) = (Y — yP)yP (1—yP) (a1-30)

5(1;) = Wy f (net,) = 6wyl (1= y”) (Al-3D)

5" = 2(51(15) w;)f (net;) = 2(51(5) wi)y A=Y") (aL32)

Also, the hidden layer weight adaptation laws can be written by the following general

formulas. There will not be for a specific hidden layer. For the j* hidden neuron in the I*

hidden layer:
AW ® oE® E)E"” anetl(p) 51(1)) anetl(p)
w.. = - = — _
ij wfj(’” net’“’) awl(p) aw,’j(’” (A1-33)
where,
1(p) OE'” T iy te (D)
P _ P p
5,-j = Bnet’(”) Z 6 jk Wi)f (netj) (A1-34)
and,

106

1(p)
dnet; " _ (A-1(p)

G Vi (A1-35)
Bwl.j

A1.2 Weights updating by using bipolar sigmeid function as activation
function

For the j* neuron in any layer,

M
net; =) w;x; +0, (A1-36)
i=1

Where wy; is the incoming weights of this 7" neuron; x; is the input of the jth neuron,
which equals to the output y; of the i neuron in the previous layer, and 6, is the bias of
this /" neuron.
The net output of this j™ neuron is:

y; = [f(net))

=™ 2 (A1-37)

Cl+e™ 1+e™

and

107

= f'(net;)
_=2e™yY
(L+e ™)
1 4™
21+
_L@+e™) —(1-e™)

2 (1+e net,) (A1—38)
1 e—net)
=—[1-
2[(7)]
1
=§ﬂ“ﬁ)

So, the corresponding back-propagated errors in the output layer, the 2™ hidden layer, an

in the I* hidden layer under the " training sample are as follows, respectively.

6 = = ") f (net) == (y(”) A=) (a139)

5P =5Pw, f (net)-— 5wy (1= (")) (A1-40)

. NK
S =3 (8P w,) f (net) = 2(5,(,5) wi A= (7)) (A1-41)
k=1

weight updating laws in the output layer, the 2" hidden layer, an the I hidden layer

under the p‘h training sample are as follows, respectively.

P P

Wt +1) = wy () + D AWS” =w, () +17)_ 55"y (A1-42)
m=1 m=1
P

w,E+D=w, ()+ ZAw“"’ =w, () +1) 03y (A1-43)
m=1 m=1

108

P P
w,(t+ D =w (1) + D AW = w () + 17D 6"y ™ (A1-44)
m=1 m=1

A1.3 Weights updating by using linear activation function for output
neurons

In many cased, the linear activation function f(ner)=net will be used for the output

layer. Thus, the weights adaptation law in the output layer will be as follows.

since,
y;P = f'(net)) = (net,) =1 (A1-45)
and,
)
§I§p) —_ aE P
: onet,

aE(P) ayl(P)

T WP Oner,

1 -
a(__(yl(ip) - yl(P))Z) (A1-46)
—_ 2 /(p)

- (p) Y

!

=y =)

then,

109

aE(p)
ow,,

0E'™ Onet,
dnet, ow,

(r) _ _
Awy" =-11

(A1-47)
5(p) (W,)’kp))
ow,,

— 7751519) (p)
1

So, under the p™ training sample,

wy, (¢ +1) = w, () + Aw”
=W, (t) + 77 (p) (p)

(A1-48)
=Wy () + n(y“’) v

Under all P training samples, the weights in the output layer are updated as:

P
wy(t+1) = wk,(t)+ZAw('”) —wk,(t)+n25,§;">y,§m> (A1.49)

m=1 m=1

110

References

Agarwal, M. (1997). "A systematic classification of neural-network based control." IEEE
Control Systems Magazine 17: 75-93.

Anderson, B., J. Moore, et al. (1978). "Model approximation via prediction error
identification." Atuomatica 14: 615-622.

Angerer, B. T., C. Hintz, et al. (2004). "Online identification of a nonlinear mechatronic
system." Control Engineering Practice 12: 1465-1478.

Asdente, M., M. C. Pascucci, et al. (1976). "Modified Volterra-Wiener functional method
for highly nonlinear systems." Alta frequenza 45(12): 369-380.

Astrom, K. J. and T. Bohlin (1965). "Numerical identification of linear dynamic systems
from normal operating records." Proc. 2nd IFAC Symposium on the Theory of
Self-Adaptive Control Systems, Teddington, UK.

Barrett, J. F. (1963). "The use of functionals in the analysis of nonlinear physical
systems." Electron. & Contr. 15(6): 567-615.

Becerra, V. M., F. R. Garces, et al. (2005). "An Efficient Parameterization of Dynamic
Neural Networks for Nonlinear System Identification." IEEE Transactions on neural
networks 16(4): 983-988.

Bendat, J. S. (1990). "Nonlinear system analysis and identification from random data."
New York, John Wiley and Sons.

Billings, S. A. (1980). "Identification of Nonlinear Systems - a Survey." IEE Proceedings
127: 272-285.

Billings, S. A. and S. Chen (1992). "Neural networks and system identification." Neural
Networks for Systems and Control. K. W. e. al. London, Peter Peregrinus: 181-205.

Billings, S. A. and S. Y. Fakhouri (1977). "Identification of nonlinear systems using the
Wiener model." Electron. Lett. 13 (17): 502-504.

Bose, N. K. and P. Liang (1998). "Neural Network Fundamentals with Graphs,
Algorithms, and Applications." New Delhi, India: Tada, McGraw-Hill.

Canelon, J. I, L. S. Shieh, et al. (2004). "A new approach for neural control of nonlinear
discrete dynamic systems." Information Sciences.

Chandra, P. and Y. Singh (2004). "Feedforward Sigmoidal Networks--Equicontinuity and

111

Fault-Tolerance Properties." IEEE Transactions on neural networks 15(6): 1350- 1366.

Chen, S., S. A. Billings, et al. (1990). "Nonlinear system identification using neural
networks." International Journal of Control 51(6): 1191-1214.

Chester, D. L. (1990). "Why two hidden layers are better than one." International Joint
Conference on Neural Networks.

Cybenko, G. (1989). "Approximation by superpositions of sigmoidal function."
Mathematics of Control, Signals and Systems 2: 303-314.

Enqvist, M. (2005). "Linear models of nonlinear systems." Department of Electrical
Engineering, Linkopings University, Sweden. PhD.

Feng, Z. and A. N. Michel (1999). "Robustness analysis of a class of discrete-time
systems with applications to neural networks." American Control Conference, San Diego.

Frean, M. (1990). "The upstart algorithm: A method for constructing and training
feedforward neural networks." Neural Computation 2(2): 198-209.

. Frenz, T. and D. Schréder (1997). "Online identification and compensation of friction
influence of feed drives of machine tools." Proc. Electronics and Applications (EPE)

Trondheim, Norway.

Funahashi, K. (1989). "On the approximate realization of continuous mappings by neural
networks." Neural Networks 2(3): 183-192.

Funahashi, K. and Y. Nakamura (1993). "Approximation of dynamical systems by
continuous time recurrent neural networks." Neural Networks 6: 801-806.

Gary, G., D. M. Smith, et al. (1998). "Nonlinear model structure identification using
genetic programming." Control Engineering Practice 6: 1341-1352.

Gauss, C. F. (1809). "Theoria motus corporum coelestium in sectionis conicis solem
ambientum." Hamburg: Perthes und Besser.

Gevers, M. and L. Ljung (1986). "Optimal experiment designs with respect to the
intended model application." Automatica 22(5): 543-554.

Gupta, P. and N. K. Sinha (1999). "An improved approach for nonlinear system
identification using neural networks." Journal of the Franklin Institute 336: 721-734.

Gybenko, G. (1989). "Approximation by Superpositions of a Sigmoidal Function." Math.
Control, Signals, Syst. 2: 303-314.

Ham, F. M. and I. Kostanic (2001). "Principles of Neurcomputing for Science and

112

Engineering." Singapore, McGraw-Hill.

Haykin, S. (1999). "Neural Networks: A Comprehensive Foundation." NJ, Prentice-Hal.
Hildebrand, R. and M. Gevers (2003). "Identification for control: Optimal input design
with respect to a worst case v-gap cost function." SIAM Journal on Control and

Optimization 41(5): 1586-1608.

Hirose, Y., K. Yamashita, et al. (1991). "Back-propagation algorithm which varies the
number of hidden units." Neural Networks 4(1): 61-66.

Hjalmarsson, H. (2005). "From experiment design to closed-loop control." Automatica
41: 393-438.

Ho, B. and R. Kalman (1965). "Effective construction of linear state-variable models
from input-output functions." Regelungstechnik 12: 545-548.

Holland, J. H. (1975). "Adaptation in Natural and Artificial Systems." Ann Arbor, The
University of Michigan Press.

Hornik, K., M. Stinchcombe, et al. (1989). "Multilayer feedforward networks are
universal approximators." Neural Networks 2: 359-366.

Huang, S. J., S. N. Koh, et al. (1992). "Training algorithm based on newton's method
with dynamic error control." International Joint Conference Neural Network, Baltimore.

Hunt, K. J., D. Sbarbaro, et al. (1992). "Neural networks for control systems-a survey."
Automatica 28: 1083-1112.

Hunt, L. R., R. D. DeGroat, et al. (1993). "Identification of discrete-time nonlinear
systems." The 32nd Conference on Decision and Control.

Ioannou, P. and J. Sun (1996). "Robust Adaptive Control." New Jersey, Prentice-Hall.

Jagannathan, S. and F. L. Lewis (1996). "Identification of nonlinear dynamical systems
using multilayered neural networks." Automatica 32(12): 1707-1712.

Jan, C. and C.-L. Hwang (2000). "Robust control design for a piezoelectric actuator
system with dominant hysteresis." Industrial Electronics Society. IECON 2000. IEEE

International Conference on Industrial Electronics, Control and Instrumentation.

Jin, L. and M. M. Gupta (1999). "Stable dynamic Back-propagation learning in recurrent
neural networks." IEEE Trans. Neural Networks 10(6): 1321-1334.

Juditsky, A., H. Hjalmarsson, et al. (1995). "Nonlinear black-box models in system
identification: mathematical foundations." Automatica 31(12): 1725-1750.

113

Kadirkamanathan, V. and G. P. Liu (1995). "Robust identification with neural networks
using multiobjective criteria." The 5th IFAC Symposium on Adaptive Systems in Control
and Signal Processing.

Kalinli, A. and D. Karaboga (2004). "Training recurrent neural networks by using

parallel tabu search algorithm based on crossover operation." Engineering Applications
of Artificial Intelligence 17: 529-542.

Karnin, E. D. (1990). "A Simple Procedure for Pruning Back-Propagation Trained
Neural Networks." IEEE trans. Neural Networks 1(2): 239-242.

Kiong, L. C., M. Rajeswari, et al. (2003). "Nonlinear dynamic system identification and
control via constructivism inspired neural network." Applied Soft Computing 3: 237-257.

Kitano, H. (1990). "Designing neural networks using genetic algorithms with graph
generation systems." Complex Systems 4: 461-476.

Kosmatopoulos, E. B., M. M. Ploycarpou, et al. (1995). "High-order neural network
structures for identification of dynamical systems." IEEE Trans. Neural Networks 6(2):
431-442.

Kuschewski, J. G., S. Hui, et al. (1993). "Application of feedforward neural networks to
dynamical system identification and control." IEEE Transactions on Control Systems
Technology 1(1): 37-49.

Liu, G. P. (2001). "Nonlinear Identification and Control: A Neural Network Approach."
New York, Springer.

Liu, G. P, V. Kadirkamanathan, et al. (1996). "Variable neural networks for adaptive
control of nonlinear systems." 13" IFAC World Congress.

Liu, G. P., V. Kadirkamanathan, et al. (1998). "Nonlinear predictive control using neural
networks." International Journal of Control.

Liu, G. P., V. Kadirkamanathan, et al. (1998). "Variable neural networks for adaptive

control of nonlinear systems." IEEE Transactions on Systems, Man and Cybernetics Part
C: Applications and Reviews 29(1): 34-43.

Liu, Z., A. Liu, et al. (2004). "Evolving neural network using real coded genetic

algorithm (GA) for multispectral image classification." Future Generation Computer
Systems 20: 1119-1129.

Ljung, L. (1999). "System identification: Theory for the User." New Jersey,
Prentice-Hall.

114

Ljung, L. (2005). "Identification of Linear and Nonlinear Dynamical Systems."
Berkeley.

Ljung, L. and P. Caines (1979). "Asymptotic normality of prediction error estimators for
approximate system models." Stochastics 3: 29-46.

Madar, I., J. Abonyi, et al. (2005). "Genetic Programming for the Identification of

Nonlinear Input-Output Models." Industrial and Engineering Chemistry Research 44 (9):
3178-3186.

Marin, F. J. and F. Sandoval (1993). "Genetic synthesis of discrete time recurrent neural
network." Int. Workshop Artificial Neural Networks.

McClelland, J. L. and D. E. Rumelhart (1988). "Parallel Distributed Processing."
Cambridge, London, England, The MIT Press.

Melanie, M. (1999). "An Introduction to Genetic Algorithms." Cambridge, Massachusetts
* London, England, The MIT Press.

Miller, G. F., P. M. Todd, et al. (1989). "Designing neural networks using genetic
algorithms." 3" Int. Conf. Genetic Algorithms and Their Applications.

Narendra, K. G., V. K. Sood, et al. (1995). "A Neuro-Fuzzy VDCL Unit to Enhance the
Performance of an HVDC System." Canadian Conference on Electrical and Computer
Engineering.

Narendra, K. S. and K. Parthasarathy (1990). "Identification and control of dynamical
systems using neural networks." IEEE Transactions on Neural Networks 1(1): 4-27.

Overschee, P. V. and B. D. Moor (1994). "N4SID: subspace algorithms for the
identification of combined deterministic-stochastic systems." Automatica 30: 75-93.

Pham, D. and D. Karaboga (1999). "Training Elman and Jordan networks for system

identification using genetic algorithms." Artificial Intelligence in Engineering 13(2):
107-117.

Piche, S. W. (1994). "Steepest descent algorithms for neural network controllers and
filters." IEEE Transaction on Neural Networks 5(2): 198-212.

Polycarpou, M. M. and P. A. Ioannou (1992). "Learning and convergence analysis of
neural-type structured networks." IEEE Trans. Neural Networks 3(1): 39-50.

Polycarpou, M. M. and P. A. Loannou (1991). "Identification and control of nonlinear

systems using neural network models: design and stability analysis." USA, Department
of Electrical Engineering Systems, University of Southern California.

115

Prasad, V. and B. W. Bequette (2003). "Nonlinear system identification and model

reduction using artificial neural networks." Computers and Chemical Engineering 27:
1741-1754.

Qi, J. (2005). MASc. thesis. Electrical and Computer Engineering. Montreal, Concordia
university. Master.

Qin, S. Z., H. T. Su, et al. (1992). "Comparison of four net learning methods for dynamic
system identification." IEEE Transactions on Neural Networks 3(1): 122-130.

Ramacher, U. (1993). "Hamiltonian dynamics of neural networks." Neural Networks
6(4): 547-557.

Reed, M. J. and M. O. J. Hawksford (1996). "Identification of discrete Volterra series

using maximum length sequences." Proc. IEE, Circuits, Devices and Systems 143(5):
241-248.

Fisher, R. A. (1918a) "The Correlation between Relatives on the Supposition of
Mendelian Inheritance." Transactions of the Royal Society of Edinburgh, 52: 399 - 433.

Rodriguez, K.-V. and P. J. Fleming (1998). "Multi-objective genetic programming for
nonlinear system identification." Electronics Letters 34(9): 930-931.

Roy, A., L. S. Kim, et al. (1993). "A polynomial time algorithm for the construction and
training of a class of multilayer perceptions." Neural Networks 6(3): 535-545.

Rozario, N. and A. Papoulis (1989). "The identification of certain nonlinear systems by
only observing the output." Proc. of HOSA Workshop, Vail, Colorado.

Rugh, W. J. (1981). "Nonlinear System Theory. The Volterra-Wiener Approach."
Baltimore, John Hopkins University Press.

Rumelhart, D. E., G. E. Hinton, et al. (1986). "Learning internal representations by error
propagation." Parallel Distributed Processing: Explorations in the Microstructure of
Cognition. D. Rumelhart and J. McClelland. Cambridge, The M.I.T. Press. 1.

Sagaspe, J. P. (1979). "About nonlinear identification using Volterra model." 5™ IFAC
Symp. Identif. & Syst. Param. Estim, Darmstadt.

Schaffer, J. D., R. A. Caruana, et al. (1990). "Using genetic search to exploit the
emergent behavior of neural networks." Physica D 42(1-3): 244-248.

Schetzen, M. (1989). "The Volterra and Wiener Theories of Nonlinear Systems."
Malabar, Robert E. Krieger.

Schiffmann, W., M. Joost, et al. (1993). "Genetic synthesis of discretive recurrent neural

116

network." Int. Workshop Artificial Neural Networks.

Schroder, D., C. Hintz, et al. (2001). "Intelligent modeling, observation, and control fro
nonlinear system." IEEE/ASME Transactions on Neural Networks 2(6): 122-131.

Sjoberg, J., Q. Zhang, et al. (1995). "Nonlinear black-box modelling in system
identification: a unified overview." Automatica 31(12): 1691-1724.

Strobl, D. and D. Schroder (1998). "Neural observers for the identification of backlash in
electromechanical systems." Grenoble, France, IFAC Workshop on Motion Control.

Su, C.-Y., Y. Stepanenko, et al. (2000). "Robust adaptive control of a class of nonlinear
systems with unknown backlash-like hysteresis." IEEE Transactions on Automatic
Control 45(12): 2427-2432.

Suykens, J. A. K., J. Vandewalle, et al. (1997). "NLq theory: checking and imposing
stability of recurrent neural networks for nonlinear modelling." IEEE Trans. Signal
Process (special issue on neural networks for signal processing) 45(11): 2682-2691.

Tan, K. K., T. H. Lee, et al. (2001). "Adaptive-Predictive Control of a Class of SISO
Nonlinear Systems." Dynamics and Control 11(2): 151-174.

Teixeira, M. and S. Zak (1999). "Stabilizing controller design for uncertain nonlinear
systems using fuzzy models." IEEE Transactions on Fuzzy Systems 7: 133-142.

Voss, H. U., J. Timmer, et al. (2004). "nonlinear dynamical system identification from
uncertain and indirect measurements." International Journal of Bifurcation and Chaos
14(6): 1905-1933.

Wang, Q., P. Spronck, et al. (2003). "An Overview of Genetic Algorithms Applied to
Control Engineering Problems." Proceedings of the Second International Conference on
Machine Learning and Cybernetics, Xi'an.

Weigend, A. (1994). "On overfitting and the effective number of hidden units."
Connectionist Models Summer School.

Whitley, D., T. Starkweather, et al. (1990). "Genetic algorithms and neural networks:
Optimizing connections and connectivity." Parallel Computing 14(3): 347-361.

Widrow, B. and M. A. Lehr (1990). "30 years of adaptive Neural Networks: Perceptron,
madaline, and backpropagation." Proc. IEEE 78: 1415-1442.

Willis, M. J., G. A. Montague, et al. (1992). "Artificial neural networks in process
estimation and control." Automatica 28(6): 1181-1187.

Wilson, S. W. (1990). "Perceptron redux: Emergence of structure." Phys. D 42: 249-256.

117

Xie, W. F., M. Krzeminski, et al. (2002). "Intelligent friction compensation (IFC) in a
harmonic drive." Newfoundland Electrical and Computer Engineering Conference.

Yao, X. (1999). "Evolving artificial neural networks." Proceedings of the IEEE 87(9):
1423-1447. ‘

Yazdizadeh, A. (1997). "ldentification of nonlinear system using dynamic neural
networks." Concordia University. Ph.D. .

Yazdizadeh, A. and K. Khorasani (2002). "Adaptive time delay neural network structures
for nonlinear system identification." Neurocomputing 47: 207-240.

Yu, W. (2004). "Nonlinear system identification using discrete-time recurrent neural
networks with stable learning algorithms." Information Sciences 158: 131-147.

Zhou, K., J. Doyle, et al. (1996). "Robust and Optimal Control." Prentice Hall.

Zurada, J. M. (1992). "Introduction to Artificial Neural Systems." West Publishing
Company.

Zhu, Y. Q, Xie, W. F and Wang, N. (2006), "Nonlinear System Identification Using

Genetic Algorithm based Recurrent Neural Networks." IEEE Canadian Conference on
Electrical and Computer Engineering, Ottawa, Canada, May 2006.

118

