Autonomic Systems Modeling and
Development: A Survey

IRINA DANIELA CROITORU

A MAJOR REPORT
IN
THE DEPARTMENT
OF COMPUTER SCIENCE
AND

SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

APRIL 2006
@IRINA DANIELA CROITORU, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14344-4
Our file Notre référence
ISBN: 0-494-14344-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Autonomic Systems Modeling and Development: A Survey

Irina Daniela Croitoru

This major report is a survey of autonomic systems modeling and development. Its aim is
to explore current research and developments, such that subsequently, autonomic
computing to be applied to the Concordia University developed TROM formalism and
TROMLAB framework. Firstly, the report formulates the vision of Autonomic System
Timed Reactive Model (AS-TRM) and briefly introduces real-time reactive systems,
TROM formalism and TROMLAB framework. Secondly, it surveys autonomic
computing characteristics, abstracting out algorithms with potential for development.
Thirdly, it illustrates patterns for modeling and development of autonomic complex
systems. In addition, the report conducts a thorough survey on existing intelligent multi-
agents technologies and open standards with a high potential of enabling autonomic
computing. Insights into industry and academic efforts that leverage autonomic
computing are provided as well. At the end, the report provides exploratory research

directions that have a high potential for realizing the Autonomic System Timed Reactive

Model (AS-TRM).

iii

Acknowledgements and Dedication
I consider myself fortunate to have had Dr. Olga Ormandjieva as a professor and as a
supervisor as she is such an intelligent and exquisite person. I thank her deeply for her

guidance and for encouraging me to explore autonomic computing.

It was a pleasure to work on this major report, and I dedicate my efforts to my wonderful

family, for the joy they bring each day in my life.

iv

Table of Contents

LAST OF TADLES ..vveveiereriitieieeeeeiet et sttt see e se e bbsaesas b sa s as s s b b e saeeseerbe s e s e nanaees vii
LISt OF FIGUIES cvvvvteveteirirveenienteesieereeeesiisiesssstentss s st s s e aa b sn e s e s e s e e s b sessnsaene viii
Chapter 1 INtroQUCTIONceuveveriicrereceieeeieece ittt et 1
1.1 The Vision of Autonomic System TRM (AS-TRM)ccccertromiimimimnrinreiesesiceteisnsr e 1
1.2 Autonomic Computing Modeling and Development Challenge...........ccooeieeeinenmieninennnnnninnesennes 3
1.3 An OVerview Of thiS SUIVEYceeuiiirieriiireieieereteeenes ettt s st s 4
Chapter 2 Timed Reactive Object Model (TROM) Formalism and TROMLAB
FIAMEWOTK ..ottt e ettt e e eee e s bet e s e e e sbas s sban s s anb s e abae s e sasaassbanansns 7
2.1 INIFOAUCTIONvviieiiiiiere s ettt et e e et ereses e st st e b st e s s sae e s era s e e ns st be s e b e s aasnnssaabeasnentenesane 7
2.2 Timed Reactive Object Model (TROM)......cccocmiviiniininiininieinenv ittt 9
2.2.1 First Tier — Larch FOrmaliSmi.......cvvooveerrierieeie ettt sttt sttt e etn s san et se e sane 10
2.2.2.8econd Tielr — TROMociiiieiieeererer e eseeeres s eeets s st s s s s a e s e asensseb e abae s e e e ansaunesne 10
2.2.3 Third Layer — System Configuration Specification ... 11

2.3 TROMLAB ATCRItECTUIE.......cviiirieeeeeieeetenteeeritee e eescae et sresassss e sas b sae e e e e bs st s e s s e e saanstssesaneen 11
2.4 Managing Complexity in Real-Time Reactive SyStemsccoceviirininirinicennieninnsenreneseeseceecns 14
Chapter 3 Autonomic Systems CharacteriStiCs........coouvviiiiiniiiiiiinrieniiiseseeesssesneeieens 18
3.1 IMMTOAUCHION ©..vvvicveeieiieteeete e st e e ere et e e b seee e et et s et e e sesesesat et bt e raesrsobsshbenbe e st e asersensasbe st nesnansensesn 18
3.2 The Human Autonomic NEervOoUS SYSIEIMccceruerrerierrinmiiiisiiis st st stseieestee e nes s ssss s sanessessnesnace 20
3.3 Characteristics of Autonomic Computing SYSIEIMSccivverrieiiiniiiiinie et 23
3.3.1 Self-CONTIGUIAtIONeeicirieire ettt et s e e st et s e 27
3.3.2 Slf-healing.....cocueeerieieriiieree e e e et 30
3.3.3 Self-OPLIMIZAtION «...coorveerrereireirerceint ittt bbb s 33
3.3.4 Self-ProtECtionceeeeieieeee ettt e et b et e b e s e s 36
3.3.5 Autonomic Computing: Related Terms and Technologies...........cooviivinineniniieninienicininiineniens 37

3.4 CONCIUSIONeeeiereiertestereresteere et et e st s e et st et e b e s e st sat e b et st e sa e st s b e s R e e sa b sh e b e oaa e s b e s e basrnan g s st asesuesanens 43
Chapter 4 Autonomic Systems Modeling and Development............cooovvoiiiiiinninnenicnneens 49
A1 MOGEHNE. ...ttt sttt ettt sttt et et b s s b st e e b e s e d st e b e e s s s b e eR e s na b sant et s ne st satan 49
.11 ATCRITECIUIE ...vveveteeesieteee et eesetee s e seen e see s e e sr s e e e st asb et st b et s s s s b e s e s Rt a b e s b s b aas st aanebesbsstnssesesnesaens 51
1.2 DIESIZN . eeurereiiereeecririereentese e s eee e se s et sh e bbb s bR b e seR e e bR E AR e e r e Rtk 53

4.2 DEVEIOPIMENL.......ceerveeeereereereretereriessensesesernenessrenensstbaraststsstestos e nsesstabses s s ase s s s baststs s et st sasansenesesseaseases 59
4.2.1 POlicy Determination.......cccccveriiiriiereriiiiciiiiintissn st ssresnssn s s asassnsseesesnesenanesansnasanas 60
4.2.2 SOIULION KNOWIEAZEveereeieireerieieerieeeereeteisreretsie i abe st sre s s s e e stsnesestssa e st st s e ssaseeseses 62
4.2.3 Common System AdminiStration........c.coceveerreriniiniiniiiiiinne e 64
4.2.4 Problem DeterMiNation.........c.eevrerrerrrressiresessseresresseesreneiosiassisstisissssesssesssesssesssssnssssesssssssassssssse 65
4.2.5 AUtONOMIC MOMITOTINE ...veveeieuirietiree st b ree et st ese e e s et esssies s e st sbe e sreeta st sesarasennenasbsssaasans 66
4.2.6 ComPLeX ANALYSIS...ccceeririeiriieeiniiie ittt e s s n s 70
4.2.7 Transaction MEASUICINEIL.........ccvvereerrrereeeterreerrremrroncrsseasisstessessessntesssasssensaessserssssssssesssnsssnensensas 72

4.3 Evolutionary APProach.......c.ceecvierriiiniiminiiiiicnt it er et et st i 72
.4 CONCIUSION.....cveeueirriiteeerreieieeeteetestreere e e e teesteasees st eraeeraesrereseae bt sasasb s e bt s e bt s s b e s s b e b e be e aseras et easbanssnaones 74
Chapter 5 Autonomic Computing Tools and Open Standards............coeveieinniinicniinnienne 78
5.1 Intelligent SOftWAre AZENLScccovviriiiiiiiiiriii et st 78
5,11 DEIIMILION. c.veeeteeriereereeteeteeeee et rste e eee e rbesresssesaeesreesenenesotosbesbtsabs e bs s ba s sesaresanesanesanasnsassensasesnns 79
5.1.2 Agent CRaracteriStICS «.iu v rererreereerneerercereerereentsieseimese st s esre s b s s et s a e e st s s e s st st s s see st eansaesnesesnesar 80
5.1.3 Agent ClassifiCationcceeeerucrerrrniiniiiniisii ettt b et 80

5.2 MU= AZEINLS .. veieereeietieiere ettt se e st e et s tesar s e s e s be sh s s e e as s b e b e s b e s e s R b e s n e na b ees e st sae e s e sb b b st s 82
I O T | OO OO U IO P PP POTIP PP TO 85
5.2.2 Java Agent Template Lite (JatLite) ...c...covcimveiviiiiniiriiiiiiiie et 85

S.2.3 AGENIBUIIAEToivireriireeieeeeetnte ettt ses et ee s st as s e ae s ebene et ebeseetensetan 86

S2AZEUS ...ttt ettt et e s et s s se bbbt eteae sttt et et et st ersanats 88
5.2.5 FIPA Open Source (FIPA-OS)c.cocvrmrririnnrirninisinissieessssssesesssssssssssssisssssssesssssssssstessssanes 90
5.2.6 Java Agent Development Environment (JADE).........coovvrrrrinreemrnreriseeiessnnressnnnrereressnensenns 91
S2ITTAS oottt st et et ettt ettt srara b et eretennaranants 94
5.2.8 Cognitive Agent Architecture (COUGAAR).....cccuvueiiviirieeceeeeeceeeeeteeeeeeteesteseeesese et esesessesssnessnis 95
5.2.9 Agent Building and Learning Environment (ABLE).........ccoceuvviuioireveereeee it eceeeveeceevesnesenas 97
S.2.T0 UIIEY ot cncreeicns et sests e sse st e se st st s s s st et be e e ses s sanasese s seesessasensasesessesessarensanasenens 100
5.2.11 NASA’s Lights-Out Ground Operations System (LOGOS)ccvueeeeenenivnnireesererereesssesrsenns 102
5.2.12 NASA’s Agent Concept TeStbed (ACT) ..covviuieeereeeeeeeceereecteeee ettt e et ens 105
5.2.13 NASA’s Autonomic and Swarm-based SYSLEMScvvveverererrierererereinieseseseeseresererenseesessesens 108
5.3 StandardiZationccocoeereriicecerrriririe sttt et b st rs b rerer s s e b a s bt 109
3.3.1 Open Standards..........ccoceveerecirireeiseecnie ettt srere s eeeteernrerersereeeseenreanaaeas 109
5.3.2 Mapping Open Standards against Core Autonomic Capabilities...........coovevvvverrererereneieierirenenan, 112
5.4 CONCIUSION.......eceerereierirtreetrtr ettt ettt st nane s s s sttt b e b s seretesebeness s st et st ototesasnsttssssssetenensannas 113
Chapter 6 Case Studies from INAUSLEYc.ecvevieeviriiereieeeieeerccr e 118
6.1 An OVverview Of this Chapler........ccovioiiiiicieiiecce ettt eeae ettt aenins 118
6.2 IBM Trivoli Management SUILE..........c.covveirrreerrrenrernirensasesesssissseesssssesessssesssassessssssesessssesssssesins 118
6.2.1 Modeling and DeveloPMENLccocecviioiiieeeenicsste et et rass s e ssssss s sorones 119
6.2.2 Autonomic Computing CharacteriStiCS.......iuuirrrrerrrrrrirrirereserererirreressesseseesessesesesessssssssssssssans 120
6.2.3 Process Development EVOIULION..........cccocverriniinivinininsnesese et sssesseenssseesssesessssssssesssenns 123
6.2.4 Leveraging Open Standards..........c.oeeeiveeeveeerereeerereeeieeseesesetesesssseescesesessesessssssessssessssssessssessns 123
6.3 IBM DB2 Database Management SYSTEIMccccovvurureeeierearnsinsarereieeesrereresereserssessssesssesessssanas 124
6.3.1 Autonomic Computing ChAraCtEriSTICS. ...vvrvrveieeureerrinririictetesenessecaeseres et ss s s aererererensnssens 124
6.3.2 Process Development EVOIUTION......ccc.ovoeucrueeieiecrenierere e esesenessesss s v sensssesnsnsssossssnenesones 125
6.3.3 OPEN SANAALTS.....c.vevetririiririeeistee vt eee ettt ere et st eae s st st s seas s e e sesesmonensneneneneenens 125
6.4 Sun MICTOSYStEIMS - N ..ooviicncecierierniieee e ereb ettt st s s ese e e e b bbb asas s eresenaneenen 126
6.4.1 Modeling and DeVEIOPIMENLccccceeieiriiirieereeesisee s e reses s s ssssss e ssssssesssssssessnae 126
6.4.2 Autonomic Computing CharaCteriStCS ... vvvvivirirrrrererereereririrererereeeeeseseseresteesesss s sna s sseseseans 130
6.5 Hewlett-Packard’s Adaptive ENLEIPriSe......corrnvivirreririiiiceeisisioreesesseseseseneesessssesesssssessnssssssssesessans 131
6.5.1 Modeling and DeVEIOPIMENLc.cevereeeereiristeteereerereteeere et sttt eesses st st eessanea 131
6.5.2 Autonomic Computing CharacteriStiCs........cccvuaurrrrinrernreeeineeeeeeseseenenesereresesssessssssesssessssens 133
6.5.3 Process Development EVOIULION..........ccceiririeirereinesecieie et te et sene e 134
6.5.4 OPEN SLANAATAScviiiririieiiirecie ettt r et st be st e eneerenesenessneneneenseneneenent 135
6.6 Microsoft’s Dynamic Systems INFHALIVEccccccverereririiis et erssemes s se oo seesesesnene 135
6.6.1 Modeling and DevVeIOPIMENTc.cceueurirriririicere e ens s essssss e ens s sas e snans 136
6.6.2 Autonomic Computing CharacteriStiCs......c.viveueririeiiererieieriesee e esessseeraese s rerseessssessessssens 138
6.6.3 Development Process EVOIULION..........vvereiciciieiiieteserceceetceceseee sttt ses e 140
6.6.4 OPen StANAATAS.......coereriireririeriirieciee ittt et ettt ettt st se st a et bt s e esaneneanan 141
6.7 Current on-going UNIiversities PIOJECEScvvevccceiriiieeeteeieteeeee ettt sttt sassssnias 141
6.7.1 OCEANSIOLEemreeeeniierirererentetetee ettt ts s e st st bbb esebeben s cesssesaesessa s srasaseresarenessasasnnesesans 141
6.7.2 Recovery-Oriented Computing (ROC)........cceuieierereeeieeiceeeecreeieecessveesesteiestesesesseeneeessenensonas 142
6.7.3 ANTNILL.....ocoiiiiiiiicieet ettt et r s ea e a et bbb et sr s nsa et eae 142
6.7.4 SOtWare REJUVEHALIONeueurueierteeeiririeiccriee et tes s re st ssssssssststosstsssssosssesssotssanen 143
6.7.5 J2EEML.......cotiiiiiiertrtt ettt sttt ettt r et st nens 143
60.7.60 AULOMALEvviiririicnercrnncte ettt eae ettt stonecsasasese b b estssesetes et ssssessnsseesanssnnsssesessnsssassorone 144
6.7.7 AULONOMIAeviiiicetriet ittt ettt sttt s s e e na bbb at s b s s etetesesesassensesseseseseretesensasasasans 146
6.7.8 Autonomic Computing Infrastructure (MAACE).......c..cooviveeeereeeererereeeeeieet e 148
6.7.9 SMAIT GIidvvviiieiiiieierreeet ettt s s s ersese b et r et et b dae e st st sttt esessaranabons 148
Chapter 7 Future Research DIt€CONSeveeevereieriicececcieieesesseerese s ssese s 152
7.1 EXPlOTatory APDPIOACHES ...ccovvveviieereieiiieteteretetese et tsts e tssess e ssese e seess et st st st et seessesarenessesesesnenennanes 152

vi

List of Tables

Table 1: Different characteristics for Autonomic Computing [24]

Table 2: Autonomic Computing characteristics identified as quality factors [24]ccoeveeereeeerererereeennns

vii

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

The characteristics of Autonomic System TRMccoveeeirerivenieeceiesneseesmaeeseseseeeeseeseesseseneeene 2
TROM model: Three Tier FOrmaliSm [17] ..ccccoieeereriererieierere et eeeesnnns 10
TROMLAB distributed architeCture [2].......eciviereerrirreriirerieeeierteeeiesseseesssrsesseseessesessseseessneaes 12
Mlustration of siMple arc refleX [2] .ovvoiiiiiee e rer e e res e e s aeseesesesaesaresnnes 21
Flow diagram of a simple arc refleX.......cocoereerecrirmnerenienenncnnisertciestssesesesesnnssessnssssaesesees 21
AC characteristics mapped to quality metrics framework [24].......ccccceoverircrniccininiiiin, .26
Autonomic systems core CharaCteriStiCs [S]...oiivvinirirerienreeiiernesresesisrerrsssersesuesenesseseessessesnseneenes 26
Self-healing alZorithim [1]...ccveurioeierireirrreerercrcee ettt e 31
The relationship between proactive and autonomic computing [28]cccoceverrvrenrverenninvnecnnee 42

Autonomic computing control 100P [1]....covevieeerieeriniriinrniecrrerie ettt resessas 50
Simplified intelligent control loop representation..........cooevvvrverereererrereereenrarereeseererresersessesreenns 50
Autonomic computing reference architecture [2]c.c.coeeeverereeeneecenennrceseeereerreeeerennennes 51
Intelligent control 100D [1].c.ceierieriirierinieitreesieee ettt e se ettt es et e e e eee e s e e nenes 54
Autonomic manager collaboration [1]ccoieeeeiriiririiiiieireerseere e seeseseneressenens 59
Policy characteristiCs [2] ... e o riee et se et et e e st e san et et s e seee e e e eneen 61
Autonomic computing maturity iNdeX [3]....ccccerrerierrierieeeeieseeesvereerrsrnesesesesnesseseeseeneecsaeaes 73
Software agent characteristics [10]ovuviiviererierriee ettt ettt sesene e eeene 80
AZent tOPOIOZY [10] .neerierieieriererereertes e sterrrere s e aesaes e arassrasesbassansesssantesassasnessesssensesseeneeseenas 80

Figure 19: FIPA reference model of an agent platform [6]ccocervrmrrrerneoenieeinenreneencresenneneeereonaes 83
Figure 20: FIPA agent life CYCIE [6] .. .cvoirerieririirieieie ettt sten st st ste st st s e s ssn e e sbesesnesons 83
Figure 21: Java agent infrastructure with message routing [9]....c..cccoververerereireneennrienccr s 85
Figure 22: AgentBulider toOIKit [10]....ccccetrrrrrrerrrrieiciererrrrrisaisesnsessesesessssessssesesssssnsnssesanesseneessenesssnenes 86
Figure 23: AgentBuilder intelligent agent architecture [10]........cccccovnimnnnnniieeeerererenrre e 87
Figure 24: FIPA based ZEUS reference model [11]....c.ccviviriririnritriicerereneneereseneeeeseseenne e ses s e eseene 88
Figure 25: Generic ZEUS agent architecture [11]......c.ccoiiirrirrriiirire s sicereniesnrsressessessesseeneesesenesneenee 89
Figure 26: FIPA-OS reference architecture [12] ..ocooiioiiiieiiiineeiecieeciiesiestesesesesressenesaessessessnesesseeneenes 91
Figure 27: FIPA conceptual model of an agent platform {13, 14].....ccccvvvenrernreincmnneeneeicrenirercsnencnene 92
Figure 28: JADE distributed architecture [13, 14] ..ot ses e es e sessersenne 92
Figure 29: Generic JADE agent architecture [13, 14] ..o e oot ee e e e 93
Figure 30: Swarm architecture as nested hierarchy of swarms [14]ooveeeeernrrreeineininrnneseeeeeeneens 95

Figure 31:

GOUGAR architectural view [16]c.ccoevvvecnene Lereeresteereesesaratean et e aseneranentenanseantsees e eebaneeraant 96

Figure 32: COUGAAR agent reference model [16]......cccoueereiceeieiicriieeiceeeieeeeee e e e e e 96
Figure 33: Agent multi-role Capacity [16]......ccocucueiirerririrrinereeieteenee et sse e s e e enesne 97
Figure 34: ABLE agent characteristics [18]cvvevereririeiriiererrtrerner et eseesasnescsassesesne 98
Figure 35: ABLE agent model [18]ovouiiireiireneiecrcceniirenieenteeeteteneeenres oo neses s eense et ssssesassasssssssons 98
Figure 36: ABLE distributed agent platform [18]coveeerieriirinririirineineseccenieererie et seseneresaenes 99
Figure 37: ABLE agent architecture [18]c.ccovirireririrreienieeresieenesersresessensessssnesesessnssensesessesseseeseensene 99
Figure 38: Logos architeCture [207]cocoiiiroie ittt et e ve e se et te s e e sr e s ebassnssnesesraeneensas 103
Figure 39: ACT architeCture [20]ccovviiiioeieirticecrerie st e e e et ba st e n e sse e ens 106
Figure 40: Mapping open standards to autonomic computing capabilities [1]......cccooevverereieerenccrcrneneenes 113
Figure 41: IBM Trivoli Management across IBM overall architecture [4]cccooevvevrecemenrecerinnenererencnns 119
Figure 42: Trivoli autonomic software products [4].......ccceevereiiereeienticresese e ese s seeseseesseenens 120
Figure 43: DB2 autonomic characteristics [4].....ccevviririnreiinieeseiisesirirssesesesseseeseesnseessessesesenssensenessneses 125
Figure 44: Grid cluster general architecture [12,13]......ccceiriiriiiiniiieniresese s e raee e sreeseeesbeseesaeeseas 127
Figure 45: Sun Management Center within N1 grid cluster architecture [12, 13].....ccccevenvevrerreceneeccrenenn 128
Figure 46: Sun Management Center’s intelligent agent-based reference model [12]........coccevveiivvcrrnnnneene 129
Figure 47: Sun-N1 autonomic CharacteriStiCs.......couvvuererririreriereriesieriseeesiereeestessstestasseesesssesesesseesesseseessens 130
Figure 48: Darwin architecture [15]occvvirirerriiririeieiese et teee e ee e e seesaesesbe e sasesesseeseeseseencs 132
Figure 49: Manage and Control within HP’s Darwin architecture [15]cocoocerevinerniinionniecenereeeecniene 133

Figure 50:

Microsoft’s reference MOdEl [13]....ccvieviiieiieiieiie it ererereereere e eere e e erecsesraesnseesnasees 136

Figure 51: Microsoft’s DSI autonomic characteristics [13]ocvvvreeeiinerinirenvereneeeesieieseseeseereseeseeeeenes 138
Figure 52: AutoMate’s autonomic computing architecture [23]ccoecevirrierennenireeecereeeseereeseseennes 144
Figure 53: Accord autonomic cOMPONENt [22]....c.ccerierrereereeerireiiereeerieessesesersseeseessesessssssssesessseseseesesssases 145
Figure 54: Autonomia mobile multi-agent autonomic computing architecture [25]cccovrevevceeeerreennnee 147

viii

Chapter 1 Introduction

1.1 The Vision of Autonomic System TRM (AS-TRM)

Real-time reactive systems are some of the most complex systems being built today.
Examples of such systems are alarm systems, command and control systems, flight
control systems, avionics systems, communication systems, robotic systems, process
control systems and telecommunication systems. Consequently, the modeling and
development of real-time reactive systems is a very challenging and difficult task. The
complexity involved comes from their real-time and reactive core characteristics: involve
concurrency, have strict timing requirements, must be reliable and involve software and
hardware components. In addition, recent real-time reactive systems have become

increasingly heterogeneous and increasingly intelligent [5].

Researchers today, have come to the conclusion that one of the ways of removing the
complexity barrier is to model and develop complex computer systems that are

autonomic.

Autonomic computing is a new research area led by IBM Corporation concentrating on
making complex computing systems smarter and most importantly easier to manage.
Many of its concepts are based on self-controlling model of human autonomic system. As
a result, autonomic complex computer systems are envisioned to combine the following

seven characteristics: self-configuring, self-healing, self-optimizing self-protecting,

self-aware, contextually aware and open [3]. The first four characteristics listed above

are considered to be the core characteristics of an autonomic computer system.

Autonomic computing paradigm is driven by the increasing complexity of computer
systems and the growing induced cost to manage them. By putting this new paradigm in
pérspective, researchers at Concordia University envision to apply it to the Time Reactive
Object Model (TROM) - a rigorous formalism for modeling and development of complex

real-time reactive systems [1].

The vision of Autonomic System Timed Reactive Model (AS-TRM) is best described as

follows:

“To be able to create autonomic distributed real-time reactive systems on a framework

that leverages their modeling, development, integration and maintenance.”

Figure 1: The characteristics of Autonomic System TRM

It is this vision that prompted the current survey whose objectives are to provide a broad
overview of the IBM Corporation led research into modeling and development of
autonomic systems, and to identify future research directions that have a high potential

for realizing the Autonomic System Timed Reactive Model (AS-TRM).

1.2 Autonomic Computing Modeling and Development Challenge

The task of autonomic computing modeling and development was acknowledged to be
very difficult and in particular to require significant exploration of new technologies and
innovations, in 2001 by Paul Horn, Senior Vice President of IBM Corporation. In his
manifesto at that time, he introduced the grand challenge for the entire information

technology industry and academy:

“The information technology industry loves to prove the impossible possible. We
obliterate barriers and set records with astonishing regularity. But now we face a
problem spinning from the very core of our success - and too few of us are focussed on
solving it. More than any other Information Technology problem, this one - if it remains
unsolved - will actually prevent us from moving to the next era of computing. The
obstacle is complexity.... Dealing with it is the single most important challenge facing

the Information Technology industry.” [3]

Furthermore, Paul Horn introduced IBM Corporation Vision of Autonomic Computing as

follows;

“Systems manage themselves according to an administrator’s goals. New components
integrate as effortlessly as a new cell establishes itself in the human body. These ideas
are not science fiction, but elements of the grand challenge to create self-managing

computing systems” (2, 3, 4].

1.3 An Overview of this Survey

Concordia University AS-TRM group is currently conducting research to extend the
formal TROM framework for developing reactive systems, currently based on Timed
Reactive Object Model (TROM) formalism, to Autonomic System Timed Reactive
Model (AS-TRM) formalism. The purpose of this survey is to provide an insight into
TROM framework and more importantly to examine autonomic systems modeling and
development in general such that, in a subsequent study, a feasibility assessment for

developing an AS-TRM can be made.

Chapter 2 contains details about the on-going Concordia University research on AS-TRM

development environment and its distributed, real-time and reactive characteristics.

Chapter 3 discusses in detail the four core characteristics of autonomic systems, namely,

self-configuring, self-healing, self-optimizing and self-protecting,.

Autonomic systems modeling and development based on IBM Corporation lead research

is surveyed in chapter 4.

Existing and emerging tools and open standards that leverage the development of
autonomic systems are presented in chapter 5. The accent is put on the multi-agent
technology, a definite player in driving autonomic characteristics of complex computing

systems.

In chapter 6 case studies on use of autonomic systems in industry and academia are
presented. In particular IBM, Sun, HP, Microsoft approaches and their autonomic

products will be discussed in detail. Current universities’ projects are introduced as well.

Chapter 7 outlines the future research directions for modeling and development of

autonomic computing systems.

References

[1] R. Achuthan, “A4 Formal Model for Object-Oriented Development of Real-Time
Reactive Systems”, Ph.D. Thesis, Department of Computer Science, Concordia
University, Montreal, Canada, 1995.

[2] Jeffrey O. Kephart, David M. Chess, “The Vision of Autonomic Computing,”
Published by IEEE Computer Society, Volume 36 (1), pp. 41-50, 2003, available at:

http://www.research.ibm.com/autonomic/research/papers/AC_Vision Computer Jan 20

03.pdf
[3] Paul Horn, “Autonomic Computing: IBM’s Perspective on the State of Information
Technology”, IBM Corporation, October 15, 2001, available at:

http://www.research.ibm.com/autonomic/manifesto/autonomic _computing.pdf

[4] A. G. Ganeck, T.A. Corbi, “The Dawning of the autonomic computing era”, IBM
Systems Journal, Volume 42, No. 1, 2003, available at:

http://www.research.ibm.com/journal/sj/421/ganek.pdf

[5] Frantz J. Ramming, “Autonomic Distributed Real-Time Systems: Challenges and
Solutions”, Proceedings of the Seventh IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing (ISORC’04), 2004.

Chapter 2 Timed Reactive Object Model (TROM)

Formalism and TROMLAB Framework

Abstract

This chapter gives a brief introduction into real-time reactive systems, Timed Reactive

Object Model (TROM), and TROMLAB framework developed at Concordia University.

2.1 Introduction

Firstly, we introduce the basic definitions of real-time systems, reactive systems, formal
methods, TROM formalism and TROMLAB framework in order to set clearly the
context of this chapter. The following subsections, describe in detail the TROM

formalism and TROMLARB architecture,

Reactive Systems
Reactive systems react continuously to the environment, at a speed driven by the
environment. The three main characteristics of reactive systems are [1]:
e have infinite behavior,
o satisfy stimulus synchronization: the system reacts always to stimulus from the
environment, and
o satisfy response synchronization: the time elapsed between a stimulus and its
response is satisfactory to the environment; that is, the environment is still

receptive to the response when the latter is received from the system.

Real-Time Systems (RTS)

Real-Time Systems (RTS) are complex computer systems that have reactive behavior.
Basically, an RTS consists of a controller part and a controlled part. The controlled part
can be one or more physical devices with fundamental timing requirements. The
correctness of an RTS depends both on the time in which computations are performed as
well as the logical correétness of the results. The most two important requirements for
real-time systems are to provide safe and reliable execution. Severe consequences may
result if those two requirements are not met. In general, real-time systems are special
purpose systems, require fault tolerance, and usually are embedded in larger complex

systems.

Formal Methods
Formal methods are traditional techniques used to verify complex systems. A formal
specification can be used as input to a model checker, to prove that the properties of the

system are correct and to check for particular types of errors.

Timed Reactive Object Model (TROM)
The TROM formalism provides a formal basis for specification, analysis and refinements
of real-time reactive systems. It is mainly based on object-oriented and real-time

technologies [1].

TROMLAB

TROMLAB is a software framework developed at Concordia University for rigorous
development of real-time reactive systems. Basically, it is an environment “where TROM
formalism, language and method, can be practiced in accordance with a process model
that integrates formal methods with several phases of the development life cycle. The
process model incorporates iterative development, incremental design, validation, and
formal verification of design models” [1]. In other words, TROMLAB integrates the
formalism that provides solid formal foundation for specification and rigorous analysis
with a practical object-oriented methodology to actually develop real-time reactive

systems.

2.2 Timed Reactive Object Model (TROM)

The TROM formalism has three levels. The first two levels match the typical object
oriented approach to system development that is: define classes, then compose
subsystems by instantiating defined classes. The third level is distinctive to TROM and

contains the definition of data models.

“The three tiers independently specify systems configuration, reactive objects, and
abstract data types, by importing low layer specifications into upper layers. Large and
complex systems can be developed incrementally by composing, verifying, and

integrating subsystems” [1, 2, 10].

Animation

Tool

Validation

Requirements specification in
Allen’s Temporal Logic(ATL)

Prover

Formal Verification

System (I«mfiguratia‘nl

Subsystem
Computations

Specification

Computations

System Theory:

Synch. Axioms in ATL

TROM theory:

Object Model

Larch Shared

Axioms in ATL

First order

Dyata Model

|
|
|
:
|
i
1
:
i TROM
:
|
|
|
]
:
1
|
|

Operational Scmantics

Language (L.SL)

|
|
I
1
1
¥
1
1
1
i
i
1
i
1
I
I
I
:
g » !
Timed Reactive ;
1
1
i
I
I
I
]
|
1
]
1
1
1
1
1
1
|
|
|
I
I

3 Tiered Design
Specification

Logic

Logical Semantics

Figure 2: TROM model: Three Tier Formalism [1]

2.2.1 First Tier — Larch Formalism

The Larch formalism is a family of languages. It leverages two-tiered style of

specification. Each specification has components written in the following two languages:

(1) Larch Interface Language (LIL), and

(2) Larch Shared Language (LSL).

2.2.2 Second Tier - TROM

The second tier is the actual TROM, which at this level is viewed as a “hierarchical finite

state machine augmented with ports, attributes, logical assertions on the attributes and

10

time constraints” [1, 2]. A TROM has the following two characteristics: (1) has a single
thread of control and (2) communicates with its environment by message passing

happening at a port.

2.2.3 Third Layer — System Configuration Specification
The third layer called Configuration Specification (SCS) specifies a real-time reactive
system or a subsystem by composing collaborative reactive objects from the second tier

or by composing smaller subsystems.

2.3 TROMLAB Architecture

The following figure gives an overview of TROMLAB distributed architecture.

11

Graphical User Interface —

’ MGl
{ ROMLABGUL [veocu
R i e GRC Translator|

i Formal Specification J

SIMULATION TOOL

SIMULATION)
- TOOLSET

Interactive/

Batch Mode

JJime || Debeeger
o

S

Figure 3: TROMLAB distributed architecture [2]

The following paragraphs contain brief descriptions of current TROMLAB development

environment components.

Interpreter
The interpreter is a tool that parses, syntactically checks a specification and subsequently

constructs an internal representation [4].

12

Simulator
The simulator is a tool that simulates a subsystem behavior at the design phase before the
implementation, and enables a systematic validation of the specified system [3, 14]; the

results are animated with the visualization animation tool [13].

Rose-GRC Translator
Rose-GRC Translator is an automatic tool that allows reactive classes to be visually

composed, edited, refined, and automatically mapped to the TROM notation [12].

Browser for Reuse
The browser for reuse is a user interface to the library of system components [7]. It helps

users query and access system components for reuse during system development.

Graphical User Interface

The graphical user interface is a visual modeling and interaction tool [5].

Reasoning System

The reasoning system is a tool for system testing during simulation by allowing
interactive queries of hypothetical nature for system behavior [6].

Verification Assistant

The verification assistant is an automated tool that enables mechanized axiom extraction

from real-time reactive systems [15].

13

Verification Tool
The verification tool is an automated tool that enables mechanized validation for the

safety and liveness properties, and is based on PVS [8].

Test Cases Generator
The Test Generator is an automated tool for generating test cases from TROM

specifications and for optimizing the test suite based on the test adequacy measurement

[16].

TROM - Software Reliability Measurement System (TROM-SRMS)
TROM-SRMS is a reliability measurement module that predicts the level or reliability

from the TROM specifications of the system [17].

TROM - Software Complexity Measurement System (TROM-SCMS)
TROM-SCMS calculates from the TROM specifications the architectural complexity and

displays the maintenance profile of the system [9].

2.4 Managing Complexity in Real-Time Reactive Systems

In the year 2000, V. S. Alagar, O. Ormandjieva and M. Zheng were stating in their article

called “Managing complexity in Real-Time Reactive Systems” [11] the following:

14

“There is not much work done in the area of complexity measurement and management

for real-time reactive systems.” [11]

At the time, researchers at Concordia University were approaching methods [18] to
assess architectural, design, representation, implementation, testing and validation
complexities on TROMLAB framework. Subsequently, there was no surprise that, when
IBM announced its lead in autonomic computing, AS-TRM group formulated in turn
their vision for Autonomic System Timed Reactive Model. This present survey is the
starting point of the journey towards achieving an ambitious goal since autonomic
computing has many dimensions to conquer and practically spawns every aspect of

computer science.

References

[1] R. Achuthan, “A Formal Model for Object-Oriented Development of Real-Time
Reactive Systems”, Ph.D. Thesis, Department of Computer Science, Concordia
University, Montreal, Canada, 1995.

[2] V.S. Alagar, R. Achuthan, D. Muthiayen, “TROMLAB: A Sofiware Development
Environment for Real-Time Reactive Systems”, Technical Report, Concordia University,
Montreal, Canada, first version 1996, revised 1999.

[3] D. Muthiayen, “Animation and Formal Verification of Real-Time Reactive Systems
in an Object-Oriented Environment”, Master of Computer Science Thesis, Computer

Science Department, Concordia University, Montreal, Canada, 1996.

15

[4] A. Tao, “Static Analyzer: A Design Tool for TROM”, Master of Computer Science
Thesis, Department of Computer Science, Concordia University, Montreal, Canada,
1996.

[5] V. Srinivasan, “4n Intelligent Graphical User Interface System for TROMLAB”,
Master of Computer Science Thesis, Computer Science Department, Concordia
University, Montreal, Canada, 1999.

[6] G. Haidar, “Simulated Reasoning and Debugging of TROMLAB Environment”,
Master of Computer Science Thesis, Department of Computer science, Concordia
University, Montreal, Canada, 1999.

[7] R. Nagarajan, “VISTA — A Visual Interface for Software Reuse in TROMLAB
Environment”, Master of Computer Science Thesis, Computer Science Department,
Concordia University, Montreal, Canada, 1999.

[8] D. Muthiayen, “Real-Time Reactive Systems Development — A Formal Approach
based on UML and PVS”, Ph.D. Thesis, Computer Science Department, Concordia
University, Montreal, Canada, 2000.

[9] M. Zhuo, “Real-Time Reactive Systems Measurement Tool TROM-QM: Design and
Implementation”, Master of Computer Science Major Report, Concordia University,
Computer Science Department, Montreal, Canada, 2003.

[10] Vasu Alagar and Ralf Lammel, “Three-Tiered Specification of Micro-
Architectures”, Proceedings of the 4™ International Conference on Formal Engineering
Methods: Formal Methods and Software Engineering, pp. 92-97, 2002.

[11] V.S. Alagar, O. Ormandjieva, M. Zheng, “Managing Complexity in Real-Time

Reactive Systems”, In Proceedings of the Sixth IEEE International Conference on

16

Engineering of Complex Computer Systems (ICECCS2000), pp. 12-24, Tokyo, Japan,
September 2000.

[12] Oanna Popistas, “Rose-GRC Translator: Mapping UML Visual Models onto
Formal Specifications”, Master of Computer Science Thesis, Computer Science
Department, Concordia University, Montreal, Canada, 1999.

[13] Mubarak Sami Mohammad, “Visualization Animation for Real-Time Reactive
Systems Simulation”, Master of Computer Science Thesis, Computer Science
Department, Concordia University, Montreal, Canada, 2004.

[14] Shi Hui Liu, “Simulated Validation of Real-Time Reactive Systems with
Parameterized Events”, Master of Computer Science Thesis, Computer Science
Department, Concordia University, Montreal, Canada, 2003.

[15] F. Pompeo, “A Formal Verification Assistant for TROMLAB Environment”, Master
of Computer Science Thesis, Computer Science Department, Concordia University,
Montreal, Canada, 1999.

[16] M. Chen, “The Implementation of Specification-Based Testing System for Real-time
Reactive System in TROMLAB Framework”, Master of Computer Science Major Report,
Computer Science Department, Concordia University, Montreal, Canada, 2002.

[17] Fong-Ann Lee, “Reliability Measurement Based on the Markov Model for Real-time
Reactive Systems: Design and Implementation”, Master of Computer Science Major
Report, Concordia University, Computer Science Department, Montreal, Canada, 2003.
[18] Olga Ormandjieva, “Deriving new measurements for real-time reactive systems”,

Ph.D. Thesis, Computer Science Department, Concordia University, Montreal, Canada,

2000.

17

Chapter 3 Autonomic Systems Characteristics

Abstract

This chapter presents a survey of autonomic systems characteristics. Firstly, it reviews
some basic terminology of autonomic systems. A quick overview of the human
autonomic nervous system is introduced in the following section in order to provide an
insight to its autonomic functionality. In the third part, autonomic computing systems
characteristics, the counterpart to human nervous autonomic characteristics, are presented
in detail. Based on articles we surveyed to date, an introductory hint of current
approaches, algorithms and limitations is conducted for each autonomic characteristic in

particular. At the last part, the conclusion for this chapter is given.

3.1 Introduction

Here we introduce the definitions for autonomic term in general, autonomic nervous

system, pervasive computing paradigm and autonomic computing paradigm.

Definition of Autonomic
The American Heritage Dictionary of the English Language: Fourth Edition, 2000
defines formally autonomic as:
Physiology
a Of, relat'ing to, or connected by the autonomic nervous system.
b. Occurring involuntarily; automatic: and autonomic reflex.

Resulting from internal stimuli; spontaneous. [1]

18

Definition of Human Autonomic Nervous System (ANS)

The term autonomic comes from aufo, meaning self and nomos, meaning law. True to its
name, the human autonomic nervous systems runs by itself, involuntary, governed b}‘I its
own rules as opposed to the somatic nervous system nervous systems in which activity is
under voluntary and conscious control. It is responsible for the management of functions
of internal organs “adapting them to the needs of the moment and maintaining

equilibrium of internal environment of the human body” [2].

Definition of Pervasive Computing Systems
According to Mark Weiser, pervasive computing systems are “so embedded, so fitting, so

natural, that we use them without thinking about them” [38].

Definition of Autonomic Computing Systems

Autonomic Computing concept was first expressed by Paul Horn at the AGENDA 2001
Conference, as “an approach to self-managed computing systems with a minimum of
human interference” [9]. In addition, he noted that autonomic computing is very much
inspired from the human autonomic nervous system, which monitors and regulates
temperature, respiration, heart rate, pupil dilatation, and digestion with little or no human
intervention. Furthermore in his definition, Paul Horn linked the idea of pervasiveness to
the human autonomic nervous system and consequently to the definition of computing

autonomic systems.

19

Consequently, a complete definition of autonomic computing systems is “computer
systems that achieve the same level of self-regulation and pervasiveness as human

autonomic system” [9].

3.2 The Human Autonomic Nervous System

Historically, the discovery of the human autonomic nervous system is attributed to Galen
(AD 130-200). A great anatomist and physiologist of ancient times, he was the first to
describe some of the cranial nerves, the sympathetic chains, the cervical ganglia, and the

rami communicants [2].

Anatomically, the human nervous system is composed of nerve cells or neurons that are
arranged in circuits and networks, the simple being the reflex arc. In a simple reflex arc
such as is a knee jerk, a stimulus is detected by a receptor cell, which interacts with a
sensory neuron. This latter in turn sends the impulse to the spinal cord, where it interacts
with an inter-neuron. The motor neuron, which interacts with the inter-neuron, carries the

nerve impulse to the effector, such as a muscle, and this in turn responds by contracting.

20

. spinal cord
recepmr_‘gi
cell

Sensory
nedroneg

rmotor
nedrone interneurone

effector (muscle)

Figure 4: Illustration of simple arc reflex [2]

A simple flow diagram representation of the simple arc reflex depicted above is as

follows:

brainorspinal cord

sensoryneurone motorneurone

N
| EFEC

cell
ororgan

muscles
orglands

STIMULUS RESONSE
external,internal movement,
stimuli secretion,

behaviour

Figure 5: Flow diagram of a simple arc reflex

The human autonomic nervous system is subdivided into two major parts:

a. Sympathetic and

21

b. Parasympathetic.

The two systems are functionally integrated with each other to regulate activity of the
different organs, although the function regulated by the two components are usually

opposite in nature [4].

Let us take as an example the normal the cardiac autonomic function. The two
components of the autonomic nervous system work in careful equilibrium to regulate the
second-to-second activity of the heart and the blood vessels. This modulation of

autonomic tone is influenced by:

(1) physiologic parameters that function as afferent components of a reflex arc. Common
examples are (a) baroreceptors (sensitive to pressure or stretch) and (b)

chemoreceptors (sensitive to changes in specific chemicals) and

(2) factors that function as efferent responses to these reflexes as are for example: (c) the
source of the stimulus, (d) input from central nervous system, (e) state of
responsiveness of the receptors, (f) influence from other chemical substances and (g)

the interaction from more than one reflex arc.

This highly complex interaction at multiple levels determines the overall efferent activity

of the autonomic nervous system and the cardiovascular response [3].

22

3.3 Characteristics of Autonomic Computing Systems

Autonomic computer systems are computer systems that can govern themselves much in
the same way as our autonomic nervous system regulates and protects our bodies.
Autonomic computing system components and the system, as a whole should be capable
to anticipate computer systems needs and resolve problems when they appear without or
very little human intervention. In 2001, Paul Horn mentioned eight general characteristics
[9], which define autonomic computing as follows:

1. To be autonomic a computing systems needs to “know itself” — and comprise
components that also possess a system identity.

2. An autonomic computing system must configure and reconfigure itself under
varying and unpredictable conditions.

3. An autonomic computing system never settles for the status quo — it always
looks for ways to optimize its workings.

4. An autonomic computing system must perform something akin to healing — it
must be able to recover from routine and extraordinary events that might cause
some of its parts to malfunction.

S. A virtual world is no less dangerous than the physical one, so an autonomic
system must be an expert in self-protection.

6. An autonomic computing system knows its environment and the context
surrounding its activity, and acts accordingly.

7. An autonomic system cannot exist in a hermetic environment.

23

8. Perhaps the most critical for the user, an autonomic computing system will
anticipate the optimized resources needed while keeping its complexity
hidden.

Paul Horn’s definitions of autonomic computing systems characteristics have evolved
since 2001. The table below, based on a survey performed by Paul Lin, Alexander
MacArthur and John Leaney [24] summarizes the most commonly autonomic computing

characteristics being used today.

Horn | see description of characteristics from 1 to 8 above

Kephart self-management, self-configuration, self-optimization, self-healing,
self-protection

Sterrit dependability, self-aware, self-managing, self healing, self-protecting,
self-optimizing

Ganek self-management, self-configuration, self-optimization, self-healing,
self-protection

Kaiser self-configuring, self-healing, self-optimizing, self-managing

Agarwal open, self-defining, context-aware, anticipatory, self-adapting, self-
composing, self-optimizing, self-configuring

Trumler context-aware, anticipatory, self-healing, self-configuration

Warlop self-configuration, self-optimization, self-healing, self-protection, self-
management

Table 1: Different characteristics for Autonomic Computing [24]

Furthermore, in the article called “Defining Autonomic Computing: A Software
Engineering Perspective” the authors mentioned above have tried to establish a
standardized definition of Autonomic Computing and its characteristics through the
application of the Quality Metrics Framework (QMF) defined in IEEE Std 1061-1998.

While following the steps of Quality Metrics Methodology they came up with the

24

following table that contains quality factors, which are in fact the characteristics

autonomic computing.

| Quality Fac
Anticipatory

Definition

The Autonomic Compﬁting system must
have a projection of the user needs and
actions in the future.

of

Context-awareness

The Autonomic Computing system must
find and generate rules for how best to
interact with neighboring systems.

Openness

The Autonomic Computing system must
function in a heterogeneous world and
implement open standards.

Self-awareness

The Autonomic Computing system must
be aware of its internal state

Self-configuring

The Autonomic Computing system must
adapt automatically to the dynamically
changing environments.

Self-healing

The Autonomic Computing system must
detect, diagnose, and recover from any
damage that occurs.

Self-management

The Autonomic Computing system must
free system administrators from the
details of system operation and
maintenance.

Self-optimizing

The Autonomic Computing system must
monitor and tune resources
automatically.

Self-protection

The Autonomic Computing system must
detect and guard itself against damage
from accidents, equipment failure, or
outside attacks by hackers and viruses.

Table 2: Autonomic Computing characteristics identified as quality factors [24]

Then, by applying the quality factors from above table to the generic Quality Metrics

Framework found in IEEE Std 1061-1998, they obtained the Quality Metrics Framework

for Autonomic Computing as shown in the following figure:

25

Autonomic Computing

Openess Anticipatory

Figure 6: AC characteristics mapped to quality metrics framework [24]

According to the above figure, at the core, an autonomic system must have the following

characteristics: self-configuration, self-healing, self-optimization and self-protection.

Traditionally, IBM illustrates the core self-management characteristics with the following

figure:

-~ Self-
Protecting

Figure 7: Autonomic systems core characteristics [5]

26

3.3.1 Self-configuration

Definition

Self-configuration is the capability of an autonomic computing system to automatically
initially self-configure and then later to self-re-configure under unpredictable and
unexpected system conditions while assessing risks involved. Self-configuration can be
extended to contact external services, if needed. In an autonomic computing system self-
configuration spawns over autonomic components and autonomic system as a whole and

follows high-level information technology policies [5,6,7].

According to the definition, in an autonomic computing system self-configuring
components and the system adapt dynamically to (a) the initial installation and
configuration and (b) the subsequent maintenance. The latter addresses deployment of

new components or removal of existing ones and increase or decrease in workload.

As opposed to an autonomic configuration, a standard complex systems configuration
demands many hours of work for information technology personnel being subject to
errors as well. Any software or application installation demands detailed planning,
discussion and preparation and detailed testing to ensure that new configuration will run
at the desired levels. Today, there are numerous install, configuration and maintenance
procedures. The differences of system administration tools and their distribution
packaging format make managing configuration of complex systems, where application

functionality can be composed dynamically, very difficult.

27

In an autonomic system that implements self-configuration a common solution
knowledge capability eliminates the complexity mentioned above by capturing install and
configuration information. Solutions are combination of platform capabilities and
application elements to solve a particular customer’s problem. For example, IBM Trivoli
Configuration Manager [18] is an integrated inventory and software distribution solution
where self-configuration is possible by using software package reference models to

match desired software configuration.

The following paragraphs abstract out some of the research and development efforts

underway mainly within IBM for self-configuring autonomic systems.

In the article “4 System Model for Dynamically Reconfigurable Software” [11], the
difficulties of dynamic reconfiguration of software are examined. The authors K.
Whinsnant, Z. T. Kalbarczyk and R.K. Tyer have come to the conclusion that in order to
define a workable reconfiguration model, both (1) static structure and (2) run time

behavior must be captured.

In the article “Dynamic Reconfiguration: Basic Building blocks for autonomic computing
on IBM pSeries servers” [12] the authors J. Jann, L.M. Browning, R. S. Burgula describe
Dynamic Logical Partitions (DLPR) and Dynamic Reconfiguration (DR) technologies
that have enabled IBM pSeries 690 server to become truly autonomic computer servers.
As mentioned by authors these servers are self-protecting and self-healing and have basic

building blocks for self-configuration and self-optimization.

28

The paper “Enabling autonomic behavior in systems software with hot swapping” [13]
presents hot swapping as a technique for leveraging autonomic computing in systems
software. The authors J. Appavoo, K. Hui, C.A.N. Soules, R.-W. Wisniewski, D.M. Da
Silva, O. Krieger, M.A. Auslander, D.J. Edelsohn, B. Gamsa, GR. Gagner, P.
McKennedy, M. Ostrowski, B Rosenburg, M Stumm and J. Xenidis have developed a
prototype called K42 which is a research operating system. K42 is Open Source Software
that explicitly supports self-configuration by interposition and replacement of active

operating system code.

An autonomic approach to network service deployment that scales to large,
heterogeneous networks is explored in the article “Autonomic service deployment in
networks” [14]. R. Haas, P Droz and B. Stiller introduce a two-phase intelligent network
service deployment: (1) a macro-level operating in a hierarchical distributed way to query
and collect capabilities of the nodes in the network, (2) a micro-level that refines

installation according to custom capabilities of each network component.

Craig Boutilier, Rajarshi Das, Gerald Tesauro, Jeffrey O. Kephart and William E. Walsh
in the paper “Cooperative Negotiation in Autonomic Systems using Incremental Utility
Elicitation” [15] claim that cooperative negotiation using incremental elicitation is
required to perform resource allocation in a distributed autonomic system. To support
their claim the authors present algorithms for computing minimax regret and two

elicitation strategies. They use an automated resource manager that allocates resources to

29

workload managers in order to maximize total organizational utility and solve the

resource allocation problem.

R. Buyya, H. Stockinger, J. Giddy, and D. Abramson provide economic models, system
architecture, and policies for resource management in their article “Economic Models for

Management of Resources in Peer-to-Peer and Grid Compuﬁng 7 [29].

R. Haas, P. Droz and B. Stiller examine management issues related to topology, service
placement, cost and service metrics in an intelligent and heterogeneous network

infrastructure. Their paper is called “Autonomic Service Deployment in Networks” [23].

L. Paulson in his article “Computer System, Heal Thyself” [30] considers topology based
adaptation. In his approach self-configuration is concerned with physical design and
deployment and their aspects: static i.e. physical topology and dynamic i.e. adapting to
changes from initial state. The project called LAMDA (Lights-out, Automated
Management of Distributed Applications) is based on an adaptation of the Hierarchical

Queuing Petri Nets to model the environment.

3.3.2 Self-healing

Definition

Self-healing is the characteristic of autonomic systems to automatically self-detect self-
diagnose and self-repair software and hardware problems. That is to say that the system is

capable to recover from events that cause system failures or operational malfunctions, by

30

recognizing the problems and being able to find their solutions. Self-healing includes the
capability to contact external services in case of new problems and to learn those new
problems and their resolutions [5,6,7].

The following algorithm shows a systemic approach to self-healing:

 Identify Problem

. Determine Solutions or Alternatives

Provide Services as Needed or on Demand

~Install Optimal Solution

Figure 8: Self-healing algorithm [1]

More advanced self-healing systems can incorporate a proactive approach in which they

can anticipate problems and implement actions accordingly [1].

By contrast, current standard approaches to healing computing systems has left the load
to the information technology personnel with strong analytical skills who spends hours in

identifying problems by looking at traces, code dumps and log files.

The paper “Affect and machine design: Lessons for the development of autonomous

machines* [16] sets the stage for future research on how the study of affect [16] in

31

biological systems might contribute in developing complex autonomic systems that must
deal with unpredictable situations. The authors D.A. Norman, A.Ortony, D.M. Russell
suggest that gffect can improve overall systems behavior and point out that lack of

warning is a common problem in automated systems.

In October 2003, IBM issued a paper called “Adutomating problem determination: A first
step toward self-healing computing systems” [17]. Researchers at IBM propose a problem
determination methodology and architecture that standardize log/trace format, content
and organization. In IBM vision, autonomic computer systems that implement self-
healing are based on a common problem determination architecture in order to be able to
identify the problem, implement solutions in order to perform complex analysis and

require rules and criteria to be able to find best solutions.

The article “Toward a new landscape of systems management in an autonomic computing
environment” [18] presents IBM Trivoli Monitoring which implements the self-healing
algorithm. G. Lafranchi, P. Della Peruta, A Perrone and D. Calvanese propose an
approach to system self-healing autonomic systems based on “resource model” concept
and on System Management Ontology as a way in representing Common Information

Model Constructs.

D.C Verma, S. Sahu, S. Calo, A. Shaikh, I. Chang and A. Acharya propose a self-healing
method that automates mirroring and replication of applications in a network of servers.

In their article “SRIRAM: A scalable resilient autonomic mesh” [19] they describe a

32

design based on an autonomic, self-configuring mesh of computers and a communication

mechanism between nodes that operates on a rooted spanning tree.

3.3.3 Self-optimization

Definition

The self-optimizing characteristic is the property to automatically self-monitor and self-
tune resources triggering actions driven by the type of tuning needed. In an autonomic
system, the components and systems continually look for opportunities to improve their
own performance and efficiency. Self-optimization translates itself into a high standard of

service and in the end into quality of service (QoS) [5,6,7].

According to the definition, a self-optimizing system is capable to: (1) assign a solution
or additional resources in order to complete a user transaction in a given time, (2) adapt

to dynamically changing workload, and (3) improve overall utilization of the system.

In a computer system without this autonomic feature of self-optimizing all the tuning
parameters are changed manually by human intervention. For example, databases and
web servers have hundreds of tuning parameters, each new release introducing new ones.
Software tools that exist today to monitor and maintain system performance are
sophisticated, based on algorithms and mathematical solutions such as linear
programming and modeling tools. Human intervention with knowledge of programming

and extensive training is needed, in order to use those tools. Adding to this the

33

complexity of heterogeneous distributed real time systems makes the task of system

optimizing almost impossible.

In the following paragraphs we are going to outline some of the resulting solutions,
algorithms and limitations from research work conducted so far with respect to self-

optimization characteristic of autonomic systems.

D. M. Yellin in the paper “Competitive Algorithms for the Dynamic Selection of
Component Implementation” [20] proposes adaptive components as framework for
component based development. An adaptive component has multiple implementations;
each optimized for a particular request workload. The author claims that dynamic
switching between implementations at run-time will become a useful self-optimizing tool

in autonomic computing.

Statistical modeling, tracking and forecasting techniques borrowed from econometrics are
explored in “Clockwork: A new movement in autonomic systems” [21] to yield a
predictive autonomic system which regulates its behavior in anticipation of need. The
authors L.W. Russel, S.P. Morgan and E.G. Chron claim that systems using the
Clockwork method detect and forecast cyclic variations on the future performance, and

use data to reconfigure themselves in anticipation of need.

The self-optimizing feature of autonomic computing is detailed in the article “LEO: An

Autonomic Query Optimizer for DB2” [21]. The authors V. Markl, G. M. Lohman and V

34

Rahman describe LEO, a learning optimizer and its two essential functions: differed

feedback based learning for future queries and current query progressive optimization.

Y. Diao, J.L.Hellerstein, S Parekh and J.P Bigus describe intelligent agents, that make use
of control theories techniques to autonomic adjust a web server to dynamic workloads, in

their article “Managing Web Server Performance with AutoTune Agents” [26).

According to IBM, autonomic systems in order to implement the self-optimizing

characteristic have to:

“Institute an end-to-end transaction management infrastructure that gives knowledge of
how the systems involved commit their resources to execute the workload and how
changes in allocation affect performance overtime. This distributed workload
management can optimize work across the distributed infrastructure in an attempt to
meet all the goals associated with each service. If not all the goals can be achieved, then
automatic changes can be made to ensure that the most important goals can be achieved.

Eventually this enables the system to self-optimize to meet the business requirements.”

[17]

IBM Trivoli Monitoring [17] implements this autonomic characteristic using templates
applied against a resource model engine. In a distributed environment, a server with one-
application instance sees increasing usage of a buffer pool. Instead of just raising an event

to a management console, Trivoli monitoring will notice the “increased in usage, check

35

processor utilization, check for available system memory and automatically increase the
memory pool for the application. As demand changes and usage of the pool decreases it

automatically lowers the pool ceiling to return system memory to the server [17].

3.3.4 Self-protection

Definition

Self-protection characteristic of autonomic systems is the property to automatically self-
detect, self-identify and self-defend against external or internal threats, malicious attacks
or failures {5,6,7]. More specifically, this characteristic of autonomic systems protects
against unauthorized access and use, worms, viruses, denial of service attacks and
internal threats. In a nutshell, self-protecting capabilities allow autonomic systems to

consistently exert infrastructure security and privacy policies.

In systems that do not implement self-protecting feature, a major cause of poor quality of
information is the diversity in the format and content provided by different technologies.
A typical company might receive more than 300,000 heterogeneous security threats per
day [2] from various security products that need to be analyzed by information

technology personnel.

For example, IBM Risk Manager [2] developed solution offers a self-protecting core
technology that is designed to protect systems infrastructure by integration of many

technologies. Integration of anti-virus, firewalls, routers, virtual private networks, web

36

servers and operating systems can “speed response to real threats by filtering in 30

meaningful threats a day out of 300000 heterogeneous security events per day” [2].

Security and privacy issues in the modeling and development of autonomic systems are
discussed in the article “Security in an Autonomic Computing Environment” [25]. D. M.
Chess, C.C. Palmer, and S.R. White provide some recommendation of autonomic

principles usage in order to make systems more secure.

3.3.5 Autonomic Computing: Related Terms and Technologies

Autonomic Characteristics vs. Usability

Traditionally, usability translates itself into ease of use, easy to learn and easy to
maintain. In recent years, there has been a major effort in usability analysis and analysts,
designers and developers focused heavily on User Centered Design. Following, we
provide some highlights from articles we surveyed that study how autonomic computing

can provide a framework for usability.

In the paper “Usability and design consideration for an autonomic relational database
management system” [27], the ease-of-use ramifications of autonomic computing are
examined in the context of relational databases. R. Telford, R. Horman, S. Lightstone, N.
Markov, S. O’Connell and G. Lohman propose autonomic computing as a new approach
to usability focused on self-management rather than of the simplicity of the user-
interface. The following advantages are mentioned in the paper (1) reducing the number

of low-level system administrator tasks, (2) handling exceptions which otherwise would

37

result in system wide alerts and (3) learning by the system of action taken by the
administrator. There is also an interesting point made by the authors which is that human
intervention must still be factored in, and care must be taken in the design of autonomic

systems not to make the system administration more difficult [27].

On the same topic, in the article “Dealing with Ghosts: Managing the user experience of
autonomic computing" [31] the authors state that although the goal of autonomic
computing is to make systems to work continuously, robustly and simply, people
interaction with computer systems will not be eliminated completely. Moreover, D. M.
Russel, P.P. Maglio, R. Dordick and C. Neti argue that autonomic systems require an

even greater attention to the design of the user interaction.

Usability from the complex systems administrator’s perspective, is analyzed by Rob
Barrett, Paul P. Maglio, Eser Kandogan and John Bailey in their paper called “Usable
Autonomic Computing Systems: the Administrator’s Perspective” [32]. As a result of
their analysis they propose guidelines for constructing autonomic computing systems
supporting the following administrator’s activities: (1) rehearsal and planning, (2)
maintaining situation awareness and (3) managing multitasking, interruptions and

diversions.
Autonomic Characteristics vs. Reliability

Reliability is defined as the probability of failure-free software operation for a specified

period of time in a specified environment [33]. The reliability of complex systems is not

38

only essential, but also critical because of the high costs and catastrophic consequences
associated with failure and fault recovery. “It is estimated that companies spend 33-50%
of their total cost of ownership recovering from or preparing against failures” [33]. T.
Marshall and Y.S. Dai state that improving systems reliability through autonomic
computing will have a tremendous economic, security and safety impact. In their article
“Reliability Improvement and Models in Autonomic Computing” [33], the authors study
technologies and theories proposed for autonomic computing with a focus on those that
enhance reliability of a complex system. Moreover, they propose a preliminary
hierarchical layered design for reliable autonomic complex systems and suggest that

monitoring plays an important role in the implementation of such systems.

Autonomic Characteristics vs. Dependability

“Dependability is a long — standing desirable property of all computer-based systems”
[34]. Roy Sterritt and Dave Bustard discuss the relation between dependability and
autonomic computing in their article “Autonomic Computing — a Means of Achieving
Dependability?” [34]. The authors state that they believe autonomic computing through
self-healing, self-configuring, self-optimizing and self-protecting characteristics will in

fact increase dependability.

Autonomic vs. Personal Computing

Personal computing is distinct from servers, centralized storage elements or network
infrastructures because of (1) more variable and less secure applications and connectivity
and (2) less skilled personnel [35]. With this respect, D.F. Bantz, C. Bisdikian, D.

Challener, J. P. Karidis, S. Mastriani, A. Mohindra, D. G. Shea and M. Vanover note that

39

autonomic personal computing represents a distinct part of autonomic computing concept

in their article “Autonomic personal computing”. Moreover, they define autonomic

personal computing as personal computing on autonomic computing systems [35] and
they map the autonomic characteristics to personal computing as follows:

(a) Self-configuration is the property of autonomic personal computing to (1) self-
automate installation and configuration of software according to the needs of platform
and (2) to accommodate automatically user-initiated configuration changes.

(b) Self-healing is the characteristic of autonomic personal computing to (1) self-monitor,
(2) self-detect errors and (3) automatically self-resolve the errors detected.

(c) Self-optimizing characteristic of autonomic computing systems translates itself into
optimizing its own resources.

(d) Self-protecting is the characteristic of autonomic personal computing that makes it
achieve security, privacy, function and data protection. This characteristic addresses

the distinct attribute of personal computing mentioned earlier.

Autonomic vs. Smart Adaptive Computing
Autonomic computing systems and Smart Adaptive Systems [39] share the required self-
adaptive behavior. The latter has been classified into the following levels by the Smart
Adaptive Systems field:

(1) adaptation to a changing environment,

(2) adaptation to a similar setting without explicitly being ported to it, and

(3) adaptation to a new/unknown application.

40

Autonomic vs. Autonomous Computing
Tom De Wolf and Tom Holvoet in their article “Towards Autonomic Computing: Agent-
Based Modeling, Dynamical Systems Analysis, and Decentralized Control” [36] express
the idea that autonomic computing aims to deal with the complexity of today systems by
letting the system handle the complexity autonomously [36]. In other words, they define
autonomic system as the ones able to take the initiative to decide and do things
themselves. To be autonomic, in their vision, the systems must “become autonomous
such that real complexity can be hidden from the user of the system” [36]. Furthermore,
to support their idea, the authors postulate that a notable contribution in development of
complex autonomic systems can be made by the integration of:

(1) multi-agent systems which enable natural modeling of the system, autonomous

behavior and distributed interaction,
(2) dynamic systems theory which enable analysis of the dynamics of the models,

and

(3) decentralized control theory, to control the dynamics of autonomic systems.

Autonomic vs. Proactive Computing
Intel Research is exploring another computer paradigm called proactive computing. In
their vision proactive computing “overlaps autonomic computing but at the same time

enables the transition from interactive computing systems to systems that anticipate our

needs and act on our behalf* [28].

The following figure illustrates the relationship between the two computing paradigms:

41

AUTONOGIMIC COMPUTING

Figure 9: The relationship between proactive and autonomic computing [28]

The goals of proactive computing are the following (1) connecting to the physical world
(2) real-time and closed ldop operation (3) techniques that allow computers to anticipate
user needs, (4) addressing security and privacy concerns, (5) dealing with uncertainty, (6)

planetary scale systems and (7) deep networking.

In the article “Comparing autonomic and proactive computing” [28], the authors R.
Want, T. Pering and D. Tennenhouse provide a detailed overview of first three proactive

computing characteristics mentioned above.

An interesting note here is that a true autonomic computing system may incorporate

proactive computing for example through evolutionary learning.
Autonomic vs. Introspective Computing

In the article “Introspective Failure Analysis: Avoiding Correlated Failures in Peer-to-

Peer Systems” [37], H. Watherspoon, T. Moscovitz and J. Kubiatowicz state that

42

autonomic computing implies a system reacting to events whereas introspective

computing involves both reactive and proactive behavior.

3.4 Conclusion

In this chapter, we surveyed autonomic characteristics: self-configuring, self-healing,
self-optimization and self-protection in detail. It is important to note that those attributes
are not separated of one another; they overlap or differ with respect to aptitudes or
motivation and jointly form the core that enables the true autonomic capability much

sought for complex systems.

References

[1] American Heritage Dictionary of the English Language: Fourth Edition, 2000.

[2] Ackerknecht EH, “The history of the discovery of the vegetative (autonomic) nervous
system”, Medicine History, Volume 18, pp. 1-49, 1974.

[3] Robert W. Teasell, MD, FRCPC, “The Autonomic Nervous System Physical Medicine
and Rehabilitation”, Volume 10, No. 1, pp. 1-27, February, 1996.

[4] Richard Murch, “Autonomic Computing”, Prentice Hall Professional Technical
Reference, IBM Press, pp. 119-132, 2004.

[5] IBM Corporation, “An architectural blueprint for autonomic computing”, IBM and

autonomic computing, April 2003, available at:

http://www-03.ibm.com/autonomic/pdfs/ACwpFinal.pdf
[6] IBM Corporation, “An architectural blueprint for autonomic computing”, Autonomic

Computing White Paper, October, 2004, available at:

43

http:// www-03.ibm.com/autonomic/pdfs/ACBP2 2004-10-04.pdf ;

[7] IBM Corporation, “An architectural blueprint for autonomic computing”, Autonomic
Computing White Paper, June, 2005, available at:

http://www-

03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%%20Paper%20V7.pdf

[8] A. G. Ganeck, T.A. Corbi, “The Dawning of the autonomic computing era”’, IBM
Systems Journal, Volume 42, No. 1, 2003.

[9] Paul Horn, “Autonomic Computing: IBM’s Perspective on the State of Information
Technology”, IBM Corporation, October 15, 2001, available at:

http://www.research.ibm.com/autonomic/manifesto/autonomic computing.pdf

[10] Jeffrey O. Kephart, David M. Chess, “The Vision of Autonomic Computing”,
Published by IEEE Computer Society, Volume 36 (1), pp. 41-50, 2003, available at:

http://www.research.ibm.com/autonomic/research/papers/AC Vision Computer Jan 20

03.pdf

[11] K. Whinsnant, Z. T. Kalbarczyk, R.K. Tyer, “4 System Model for Dynamically
Reconfigurable Software”, IBM Systems Journal, Volume 42, No. 1, 2003.

[12] J. Jann, L.M. Browning, R. S. Burgula, “Dynamic Reconfiguration: Basic building
blocks for autonomic computing on IBM pSeries servers”, IBM Systems Journal, Volume
42,No.1, 2003.

[13] J. Appavoo, K. Hui, C.A.N. Soules, R.W. Wisniewski, D.M. Da Silva, O. Krieger,
M.A. Auslander, D.J. Edelsohn, B. Gamsa, G.R. Gagner, P. McKennedy, M. Ostrowski, B
Rosenburg, M Stumm, J. Xenidis, “FEnabling autonomic behavior in systems sofiware

with hot swapping”, IBM Systems Journal, Volume 42, No.1, 2003.

44

[14] R. Haas, P Droz, B. Stiller, “Autonomic service deployment in networks”, IBM
Systems Journal, Volume 42, No.1, 2003.

[15] Craig Boutilier, Rajarshi Das, Gerald Tesauro, Jeffrey O. Kephart, William E.
“Cooperative Negotiation in Autonomic Systems using Incremental Utility Elicitation”,
IBM Autonomic Computing White Paper, 2003, available at:

http://www.research.ibm.com/autonomic/research/papers/utility elicitation UAIO03.pdf

[16] D.A. Norman, A.Ortony, D.M. Russell, “Affect and machine design: Lessons for the
development of autonomous machines®, IBM Systems Journal, Volume 42, No.1, 2003.

[17] IBM Corporation, “Automating problem determination. A first step towards self-
healing computing systems”, IBM Autonomic Computing White Paper, October 2003,
available at:

http://www-03.ibm.com/autonomic/pdfs/Problem Determination WP Final 100703.pdf

[18] G. Lafranchi, P. Della Peruta, A. Perrone, D. Calvanese, “Toward a new landscape of
systems management in an autonomic computing environment”, IBM Systems Journal,
Volume 42, No.1, 2003.

[19] D.C Verma, S. Sahu, S. Calo, A. Shaikh, I. Chang, A. Acharya, “SRIRAM: A
scalable resilient autonomic mesh”, IBM Systems Journal, Volume 42, No.1, 2003.

[20] D.M. Yellin, “Competitive Algorithms for the Dynamic Selection of Component
Implementation”, IBM Systems Journal, Volume 42, No.1, 2003.

[21] L.W. Russel, S.P. Morgan, E.G.. Chron, “Clockwork: A new movement in autonomic
systems”, IBM Systems Journal, Volume 42, No.1, 2003.

[22] V. Markl, G. M. Lohman, V. Rahman, “LEO: An Autonomic Query Optimizer for

DB2”, IBM Systems Journal, Volume 42, No.1, 2003.

45

[23] R. Haas, P. Droz, B. Stiller, “Autonomic Service Deployment in Networks”, IBM
Systems Journal, Volume 42, No.1, 2003.
[24] Paul Lin, Alexander MacArthur, John Leaney, “Defining Autonomic Computing: A

>

Software Engineering Perspective”, Proceedings of the 2005 Australian Software
Engineering Conference (ASWEC’05), 2005 IEEE.

[25] D.M.. Chess, C.C. Palmer, S.R. White, “Security in an Autonomic Computing
Environment”, IBM Systems Journal, Volume 42, No.1, 2003.

[26] Y. Diao, J.L.Hellerstein, S Parekh, J.P Bigus, “Managing Web Server Performance
with AutoTune Agents”, IBM Systems Journal, Volume 42, No.1, 2003.

[27] R. Telford, R, Horman, S. Lightstone, N. Markov, S. O’Connell, G. Lohman,
“Usability and design consideration for an autonomic relational database management
system”, IBM Systems Journal, Volume 42, No.1, 2003.

[28] R. Want, T. Pering, D. Tennenhouse, “Comparing autonomic and proactive
computing”, IBM Systems Journal, Volume 42, No.1, 2003, additional information can be

found at:

http://www.intel.com/research/exploratory/

[29] R. Buyya, H. Stockinger, J. Giddy, D. Abramson, “Economic Models for
Management of Resources in Peer-to-Peer and Grid Computing”, SPIE International
Symposium at the Convergence of Information Technologies and Communications, pp.
1-13, August, 2001.

[30] L. Paulson, “Computer System Heal Thyself’, IEEE Computer, Volume 35, No. 8§,

pp. 20-22, August, 2002.

46

[31] D. M. Russell, P. P. Maglio, R. Dordick, C. Neti, “Dealing with ghosts: Managing
the user experience of autonomic computing”, IBM Systems Journal, Volume 42, No.1,
2003.

[32] Rob Barrett, Paul P. Maglio, Eser Kandogan, John Bailey, “Usable autonomic
Computing Systems: the Administrators Perspective“, Proceedings of the International
Conference on Autonomic Computing (ICAC’04), pp. 18-26, 2004.

[33] T. Marshall, Y. S. Dai, “Reliability Improvement and Models in Autonomic
Computing”, Proceedings of the 2005, 11™ International Conference on Parallel and
Distributed Systems (ICPADS'05), pp. 468-472, 2005.

[34] Roy Sterrit, Dave Bustard, “Autonomic Computing — A Means of Achieving
Dependability”, Proceedings of the 10™ IEEE International Conference and Workshop of
the Engineering of Computer-Based Systems (ECBS’03), pp. 247-251, 2003.

[35] D.F. Bantz, C.Bisdikian, D. Challener, J. P. Karidis, S. Mastriani, A. Mohindra, D.
G. Shea, M Vanover, “Adutonomic personal computing”, IBM Systems Journal, Volume
42, No.1, 2003.

[36] Tom De Wolf, Tom Holvoet “Towards Autonomic Computing: Agent-Based
Modeling, Dynamical Systems Analysis, and Decentralized Control”, Proceedings of the
First International Workshop on Autonomic Computing Principles and Architectures, pp.
10, 2003, available at:

http://www.cs.kuleuven.ac.be/~tomdw/publications/

[37] H. Watherspoon, T. Moscovitz, J. Kubiatowicz, “Introspective Failure Analysis:

Avoiding Correlated Failures in Peer-to-Peer Systems”, Proceedings of the 10™ IEEE

47

International Conference and Workshop of the Engineering of Computer-Based Systems,
pp. 113-717, October, 2003.
[38] Mark Weiser, “The Computer for the 21° Century”, Scientific American, pp. 94-104,

September, 1991, reprinted in IEEE Pervasive Computing, pp. 19-25, January-March,

2002.

[39] H. Lieberman, T. Selker, “Out of context: computer systems that adapt to, and learn

from, context”, IBM Systems Journal, Volume 39, No.3&4, 2000.

48

Chapter 4 Autonomic Systems Modeling and

Development

Abstract

This chapter presents the autonomic computing reference architecture and its details, the
autonomic computing reference model with its core development capabilities, and the
evolutionary development process of autonomic systems. The architectural concepts
presented in this section are primarily based on IBM Corporation’s blueprints and on the
on-going research for autonomic computing conducted at the IBM’s laboratories. The
three blueprints published as white papers under the name “An architectural blueprint for
autonomic computing” in 2003, 2004 and 2005 are overviews of the basic concepts,
constructs and behaviors for building autonomic capability into complex computer
systems. We will use the concepts presented in this section, later in chapter 6, as a
mechanism for discussing, comparing and contrasting the approaches that different

vendors use to deliver self-management capabilities in complex computing systems.

4.1 Modeling

At the basis of the autonomic computing architecture is the autonomic computing control

loop.

49

AN
/

Control
Measure

Figure 10: Autonomic computing control loop [1]

A more complex control loop is called an intelligent control loop. Ric Telford, Director
of Architecture and Technology Autonomic Computing IBM refers to an intelligent

control loop as “Autonomic Computing Reference Model “ [10].

For simplicity, an intelligent control loop can be represented graphically as:

Figure 11: Simplified intelligent control loop representation

50

4.1.1 Architecture

According to IBM blueprints [1, 2, 3], the autonomic computing architecture is organized
into two dimensions: horizontally, into layers corresponding to decision-making contexts
and vertically, into parts with distributed infrastructure. The decision-making contexts are
used to illustrate the purpose and role of an autonomic element within the autonomic
computing architecture. The distributed infrastructure can be visualized as a service bus
[2] that connects: (1) managed resources, (2) touchpoints, (3) autonomic managers and
(4) an integrated solution console.

The autonomic computing reference architecture is depicted in Figure 12 below.

Orchestrating
Autonomic

) f’; i ™

& &
Self- Self- """ Seif-

Configuring ~ Configuring Cortfiguring Configuring Optimizing Hedling Protecting

Autonomic
Managers

Databasel .
Storage Network Middleware Applcation

Figure 12: Autonomic computing reference architecture [2]

51

First Layer - Managed Resources
The first layer contains the managed resources that exist in the real-time environment or
in the system environment and that can be managed. An interesting note here is that

resources themselves can have embedded autonomic properties.

Second Layer - Touchpoint
The next layer contains standard interfaces called touchpoints. The touchpoints are used

for the management of resources from first layer.

Third Layer - Touchpoint Autonomic Managers
Layer three contains autonomic managers each implementing in particular a self-

configuring, self-healing, self-optimizing or self-protecting control loop.

Fourth Layer - Orchestrating Autonomic Managers

Layer four contains orchestrating managers. From the architecture above we note that the
orchestrating managers can manage autonomic elements of the same type or autonomic
elements of different types. This layer provides the system wide autonomic capability
because the orchestrating managers have the broadest view of the overall system

infrastructure.

Fifth Layer — Integrated Solution Console

The top layer provides an interface for common system management as an integrated

solutions console.

52

4.1.2 Design

As stated above, the basis of the autonomic architecture is the control loop. Enhanced
with decision-making components that (1) monitor, (2) analyze, (3) plan, and (4) execute
using shared knowledge create an intelligent control loop. An intelligent control loop is
also referred to as autonomic element or autonomic component. The autonomic
component architecture is based on the technique of feedback control optimization rooted
on forecasting models [4], which enables the important self-management characteristics
of an autonomic system. An autonomic system contains many autonomic components
that interact by communicating and negotiating with each other and eventually other
types of resources within or outside system boundaries. This is called autonomic
manager collaboration. The following subsections present in detail the key concepts

just mentioned above.

4.1.2.1 Basic Autonomic Control Loop

A basic autonomic control loop was depicted in Figure 10 above, adapted from

“Autonomic Computing Concepts”, IBM White Paper, 2001.

A basic control loop is composed of a managed element called resource and a controller
called autonomic manager. The resource is highly scalable, as it can be anything from a
file, server, database, network, middleware, an application or even a business unit.
According to the illustration, the autonomic manager makes decisions and controls the

resource based on received measurements.

53

4.1.2.2 Intelligent Control Loop

A more refined control loop is defined as intelligent control loop in autonomic
computing. In an intelligent control loop (Figure 13), the autonomic manager (1)
monitors, (2) analyses (3) plans and consequently (4) takes actions to achieve the goals
and objectives of the managed element. Based on the monitoring and analysis, the
autonomic manager can be enhanced to eventually model and learn about the managed

element.

Autonomic Element

Knowledge

Figure 13: Intelligent control loop [1]

Steve R. White, James E. Hanson, lan Whalley, David M. Chess, and Jeftrey O. Kephart
extend the definition of intelligent control loop. In their article, “An Architectural

Approach to Autonomic Computing”, they define it as:

“A component that is responsible for managing its own behavior in accordance with

policies, and for interacting with other autonomic elements to provide or consume

computational services”. [11]

54

4.1.2.3 Managed Element

The managed element is a controllable autonomic system component. It can be a single
resource (a server, a database server, a router, etc) or a collection of resources (a pool of
servers, cluster or business application). It is controlled, through autonomic component

interface composed by its sensors and its effectors.

4.1.2.4 Sensors

The sensors collect information about the state and state transitions of an autonomic
element. The sensors gather information about the current state or events, when the state

of the element changes in an important way.

4.1.2.5 Effectors

The effectors change the state (for example the configuration) of an autonomic element in

some notable way.

4.1.2.6 Manageability Interface

The sensors and effectors positioned above the autonomic element in Figure 13 constitute
the manageability interface of an autonomic element. The architecture proposed by IBM
“encourages the idea that sensors and effectors are connected together. For example a
configuration change that occurs through effectors should be reflected as a change

notification through the sensor interface” [1]. This idea is illustrated in Figure 14.

55

4.1.2.7 Autonomic Manager

The autonomic manager component of an autonomic element implements the control
loop. The architecture illustrates the autonomic manager as composed of into four distinct

parts that share knowledge namely: (1) monitor, (2) analyze, (3) plan and (4) execute.

Monitor
The monitor collects, aggregates, filters, manages and reports details (metrics and

topologies) gathered from the managed element.

Plan

The plan part correlates and models complex situations (time-series forecasting and
queuing models, for example). The plan part enables the autonomic manager to learn
about the complex system environment and eventually help predict future situations. As
well, the plan part provides mechanisms to organize the action needed to achieve goals
and objectives. The plan part of an autonomic manager is responsible for interpreting and

translating policy details, finally using those policies to lead his work.

Execute

Execute part controls the execution of a plan with respect to real-time updates.

Analysis

The analysis part is responsible to determine if the autonomic manager can abide by the

policy, in current and in future situations.

56

An interesting note is that the four parts work together to provide the control loop
functionality. The four parts are shown as a structural arrangement and not as control
flow. For example the plan part might ask the monitor part to collect more or less
information. Another example is that the monitor part may ask the plan part to create a
new plan. “The four parts collaborate using asynchronous communication techniques,

like a messaging bus” [1].

4.1.2.8 Shared Knowledge

Metrics, commands, topology information, events, logs, performance data and policies
are collected through manageability interface by sensors and effectors and represent the
shared knowledge part of an autonomic component. Data stored as shared knowledge is
analyzed subsequently by the autonomic manager in the analysis phase. For example,
knowledge used by a particular autonomic manager could be created by the monitor part,
based on the information gathered by sensors, or passed into the autonomic manager
through its effectors. “An example of the former occurs when the monitor part creates
knowledge based on recent activities by logging the notification it receives from a
managed element into a system log. An example of the latter is policy” [1]. A policy is
defined as a set of behavioral constraints that drives the decisions taken by the autonomic

manager. Policies are interpreted by the plan part.

57

4.1.2.9 Autonomic Manager Collaboration

Autonomic managers are required to collaborate through communication and negotiation
in order to yield the self-management features of an autonomic element. Furthermore, the
numerous autonomic managers in a complex computing system must cooperate to
achieve overall system common goals. For example, “a database system needs to work
with the server, storage subsystem, storage management software, and other elements of
the system in order for the system infrastructure as a whole to become an autonomic
complex computing system” [1].

According to the architecture presented earlier, the collaborative interaction between
autonomic managers (1) spawns two directions: peer-to-peer and hierarchical, and (2) is

enabled by their sensors and effectors (i.e. their manageability interfaces).

58

Knowledge

Figure 14: Autonomic manager collaboration [1]

The figure above illustrates how the collaboration of autonomic managers is
accomplished through their sensors and effectors, using a “matrix management protocol”.
This protocol “makes it possible to identify situations in which there are multiple
managers situations and enables autonomic managers to negotiate resolutions for domain

conflicts, based on a system wide business and resource optimization policy” [2].

4.2 Development

There are presently seven core capabilities available for autonomic manager development

[1], namely: (1) policy determination, (2) solution knowledge, (3) common system

59

administration, (4) problem determination, (5) autonomic monitoring, (6) complex

analysis and (7) transaction measurement.

4.2.1 Policy Determination
Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, and Jeffrey O. Kephart
in their article “An Architectural Approach to Autonomic Computing” [11] define policy

as follows:

“A representation in a standard form, of desired behaviors or constraints on behaviors.”

It is also noted that “policy-based management of computer system has been an active
topic of research for over a decade and that for autonomic computing the focus is on

policy-based self-management” [11].

Policies are basically the key part of the knowledge used by autonomic managers to make
decisions because they contain the criteria used to attain goals or determine directions of
action. Policies are essentially controlling the planning component of the autonomic
manager. The following figure depicts policy management within autonomic

components.

60

3. Analyze
(1) Analyze the system
with respect to the
policies
(2) Create reports
based on policies

2. Policies are stored
as Knowkedge

6. Supply data
based on policies

1. External policies
are delivered
through effectors

4, Plan

(1) Assigns tasks based on
policies

(2) Assigns resources based
on policies

(3) Enables sensors

(4) Adds/modifies/deletes
policies.

|

5. Enabled/Disabied
based on policies.

Figure 15: Policy characteristics [2]

As mentioned in the definition, an autonomic complex computing system requires a
uniform method for defining the policies that control the decision-making for autonomic
managers. By defining policies in a standard way, they can be shared between autonomic
managers such that multiple subsystems are managed in a similar manner. In other words,
policies must be specified consistently for a complex autonomic system to behave
cohesively.

The autonomic computing blueprint is currently defining the specifications and
capabilities for policy-based autonomic managers. To date, this definition includes [2]:

e Specification of canonical configuration parameters for management elements.

e Format and schema used to specify user requirements or criteria.

e Mechanisms used, including wire formats, for sharing and distributing policies.

61

e Schema used to specify and share policies between autonomic managers.
As a conclusion it can be noted that one of the key responsibilities of the autonomic
systems is to share policies among autonomic managers, such that in turn this capability

will support and extend the policy standards.

4.2.2 Solution Knowledge
Solution knowledge contains many types of data coming from multiple points such as
operating systems, application languages, system utilities, performance data, etc. This

data can be used in all areas of autonomic computing.

From an autonomic systems perspective, the lack of solution knowledge is a drawback
for self-configuring, self-healing and self-optimizing properties. For example, to date
there exist an enormous number of maintenance mechanisms for install and
configuration. The differences in system administration tools and distribution packaging
formats creates unexpected problems in complex systems administration. These problems
are further increased in dynamic environments where application functionality can be

added/removed dynamically.

A common solution knowledge removes the complexity introduced by differences in
formats and install tools. Furthermore, the knowledge acquired in a consistent way can be
used by autonomic managers in contexts other than configuration, such as problem

determination or optimization for example.

62

Taken in particular, solutions are combinations of platform capabilities (operating
systems and middleware) and application elements. The idea here is to acquire this
information to support the install, configuration and maintenance processes at the

solution level instead of using proprietary mechanisms.

The autonomic computing blueprint defines a set of constructs for composing installable
units and design patterns that make it possible to standardize solution knowledge. There
are three categories of installable units [1] that build on each other:
(1) smallest installable unit which contains one atomic item,
(2) container installable unit, which aggregates a set of items for a particular type,
and

(3) solution module installable unit which contains many container installable units

Moreover, the autonomic computing blueprint identifies a number of supporting
technology components for solution knowledge. To date, these include:
(1) a dependency checker, which checks whether the dependencies are satisfied in the
targeted hosting environment,
(2) an installer, which extracts the artifacts in the installable units and invoke
necessary operations on the target hosting environment,
(3) an installable unit database, which is a library for installable units,
(4) deploy logic, which distributes an installable unit to an installer component, and
(5) an installed unit “instances” database, which is a database that stores the

configuration details about installable units and the hosting environments.

63

4.2.3 Common System Administration

Common system administration can be achieved by a common console approach and
consists of a framework for reuse and a consistent presentation of complex system
autonomic properties. Autonomic complex systems require common console technology
to create a consistent human-interface for the autonomic components composing the

infrastructure of complex systems.

According to IBM blueprints, “the primary goal of a common console is to provide a
single platform that can host all the administrative console functions in server, software
and storage products in a manner that allows users to manage solutions rather than
managing individual systems or products. Administrative console functions range from
setup and configuration to solution runtime monitoring and control. By enabling
increased consistency of presentation and behavior across administrative functions, the
common console creates a. familiar user interface that promotes reusing learned

interaction skills versus learning new, different product-unique interfaces” [3].

Consistency of presentation and behavior drive the improvement of complex systems
administrative efficiency, and will definitely “require cooperation among many product
communities” [1]. In chapter 6, we will present current approaches taken by IBM, SUN,
and Hewlett Packard for console technologies. With this respect the IBM blueprints state
that “console guidelines will take time to emerge, given the large number of human

factors and design organizations involved” [2].

64

4.2.4 Problem Determination

IBM autonomic blueprint defines a problem as “a situation in which an autonomic
manager needs to take action” [1]. Autonomic managers take actions based on problems
they find with the managed element. With this respect, the first basic capability of
autonomic managers is to be able to extract high quality data in order to determine
whether or not a problem really exists. The second basic capability of autonomic
managers is that once a problem happens, the autonomic manages must be able to

classify it.

In current complex computing systems a major cause of poor quality information is the
diversity in the format and content of the information provided by the managed element.
In addition, there are different nomenclatures to report same situations. For example, one
component may report the situation that a "component has started" and another
component reports that a "component has begun execution." This diversity in the
description of the status makes maintaining complex systems extremely difficult. Another
issue with current complex computing systems is the lack of an industry standard for

classifying occurring problems.

Autonomic computing blueprints address the variability of collected data by defining

common problem determination (PD) architecture that:

1. Normalizes the data collected, in terms of format, content, organization and
sufficiency by determining and then defining a base set of data that must be collected

or created when a problem or event occurs.

65

2. Categorizes the collected data into a set of situations.

3. Accommodates legacy data sources (logs and traces) by defining an adapter/agent
infrastructure that provides 1) the ability to plug in adapters to transform data from a
component specific format to the standard format and 2) sensors to control data

collection (filtering, aggregation, etc.).

The IBM article, “Automating problem determination is the first step towards self-
healing computing systems” [5] addresses in detail the problem determination in
autonomic systems. The solutions proposed are technologies for log adapters, log

analyzers, autonomic managers, and a symptom database.

4.2.5 Autonomic Monitoring
IBM blueprints of autonomic computing defines autonomic monitoring as “the capability

of the autonomic managers of gathering and filtering data from the sensors” [1].

Autonomic monitoring capability enables autonomic managers to filter, aggregate and
perform a thorough analysis baséd on collected data in order to detect problems in the
systems when they happen. Basically, this capability includes:
(1) atool to gather the information from the sensors,
(2) a built-in sensor data filtering mechanism,
(3) a pre-defined set resource models and mechanisms for creating new models that
enable the description of the state of a logical resource,

(4) atool to add policy knowledge, and

66

(5) analysis engines for basic event, cause analysis, server level correlation across

multiple complex computing systems, and automate problem resolution.

Wang Fei and Li-Fan-Zhang present an interesting algorithm for decision-making in their
article “The Design of an Autonomic Computing Model and the Algorithm for Decision-
Making” [13]. They have designed the algorithm based on their formalized unified model

of autonomic systems.

Autonomic monitoring capability improves the management of applications or resources
by (1) allowing processing of data from industry standard interfaces, (2) linking
corrective actions to the repeated occurrence of a problem condition, and (3) leveraging

origin identification and response to problems.

In the article “Towards a new landscape of systems management in an autonomic
computing environment” [7] the authors G. Lafranchi, P. Della Peruta, A. Perrone and D.
Calvanese present IBM Trivoli monitoring system. This system management application
is based on the resource model concept, which is the main tool for implementing an
“identify, notify and cure “ [7] autonomic systems management strategy. Based on the
work from the article we introduce in the following two subsections the Resource Model
concept and System Management Ontology.

The third following subsection introduces an interesting idea of knowledge discovery that

makes use as well of ontology-based software.

67

4.2.5.1 Resource Model

A resource model is composed of a dynamic model and a reference model. A resource
model is created for each problem and it contains the best practices used to identify and

correct a well-defined problem.

Dynamic Model
The dynamic model uses Common Information Model (CIM) formalism standardized by
the Distributed Management Task Force (DMTF). Here, we provide some basic

definitions used in the formalism.

CIM classes and CIM properties are used to describe resources (for example memory)

and their performance metrics (for example process working set).

CIM methods are used to describe actions that can be performed against resource for

example starting a process.

CIM associations are used to represent the resource within a high level object (logical

object)

. Reference Model
The reference model is actually composed by “the best practices” used by the system
administrators to detect problems and to identify their origin. The reference model is

connected to the dynamic model and describes the resources it analyses, the properties of

68

objects aggregated in the model, generates resources status, and triggers actions to correct

problems.

4.2.5.2 Systems Management Ontology (SMO)

“Ontologies are metadata schemas, providing a controlled vocabulary of terms, each
with an explicitly defined and machine understandable semantics™ [7].

Traditionally, description logics capture ontologies on a given domain in logical terms.
For this reason, their reasoning capabilities can be applied in autonomic monitoring to
CIM and resource models, “allowing for automated use of the knowledge represented in
such models and making use of the state of the art reasoning tools developed for

expressive description logics” [7].

The use of ontology is taken even further, by G. Tziallas and B. Theodoulidis in their
study “Building Autonomic Computing Systems Based on Ontological Component
Models and a Controller Synthesis Algorithm” [12]. They use block-diagrams and state-
transition diagrams (hierarchical state machines) adapted to the extended ontological
Bunge ontology and Bunge-Wand-Weber (BWW) models. Additionally, the authors
provide details into Ramadge and Woham supervisory control theory of discrete systems

used for supervisory control of their proposed autonomic system.

4.2.5.3 Knowledge Discovery

John Strassner and Barry J. Menich provide a general framework to incorporate

knowledge and knowledge discovery in autonomic systems in their article “Philosophy

69

and Methodology for Knowledge Discovery in Autonomic Computing Systems” [10].
Their framework is based on information models, metadata, an ontology lattice and a

hypothesis component and works as follows:

“A system is loaded with existing business rules that the system must strive to optimize, as
well as desired system behavior (e.g. in the form of sets of final state machines).
Knowledge exists in two forms — expected (already modeled) and unexpected (not
modeled.). The underlying model and ontology can be used to filter data received,
matching expected data against its system and analyzing new data to determine if said
data should be added in the model or not. Received data is used to deduce the current
state of the system, which is compared to the desired state. If the states don’t match then
the control loop uses policy to generate commands to move the system to the desired

state.” [10]

4.2.6 Complex Analysis

Autonomic managers must collect and operate based on large amounts of data collected
from sensors and managed resources. In addition, autonomic managers need to have the
capacity to perform complex data analysis and reason based on the data. This data
includes information about resource configuration, status, workload and throughput and
consequently is static or dynamic. Therefore, an autonomic manager's ability to quickly

analyze data is crucial to its successful operation.

70

Common complex data analysis tasks include classification, clustering of data to
characterize complex states and detect similar situations, prediction of anticipated
workload and throughput based on past experience, and reasoning for causal analysis,
problem determination and optimization of resource configurations. According to IBM

blueprints the complex analysis technology:

“Uses a rule language that supports reasoning through procedural and declarative rule-
based processing of managed resource data. The underlying rule engines can be used to
analyze data using scripting as well as forward and backward inferencing using if-then
rules, predicates and fuzzy logic. Application classes can be imported directly into rule
sets so that data can be accessed (using sensors) and control actions can be invoked
directly from rules (using effectors). The rules language features both Java programming
language-like text and XML source rules end representations, enhancing productivity for
rule authors familiar with Java syntax and allowing portable knowledge interchange.
Rule sets can include multiple rule blocks so that a mix of procedural and inferencing

methods can be used to analyze data and define autonomic manager behavior.” [1]

Other complex analysis advanced technologies include the following:
¢ JavaBeans,
e machine learning beans,
e software agents,
e neural networks,

e (decision trees and

71

e bayesian classifiers to perform statistical analysis using numerous genetic

algorithms.

4.2.7 Transaction Measurement
Transaction measurement represents the information based on the flow of transactions

over an autonomic architecture. According to IBM, autonomic managers need:

“A transaction measurement capability that spans system boundaries in order to
understand how the resources of heterogeneous systems combine into a distributed
transaction execution environment. By monitoring these measurements, the autonomic
manager can analyze and plan to change resource allocations to optimize performance
across these multiple systems according to policies, as well as determine potential

bottlenecks in the system.” [1]

4.3 Evolutionary Approach

To implement autonomic computing, IBM proposes an evolutionary approach in order to
improve current existing complex systems. IBM blueprint states that “the evolutionary
process will be enabled by technology but it will ultimately implemented by each
enterprise through adoption of technology and supporting processes” [3].

This evolution toward more highly autonomic capabilities can be described with five

autonomic maturity levels [3], illustrated in the following figure:

72

{ { :
Basic Managed . Predictive Adaptive | Autonomic
- * Doy on ayslie I agenent E’ Indbeidual 1T - ®IT componatits, %17 cotpanents
@ r raports, roguct b osoftiors i plaos i+ componanteand efivicially and ;3 oollectively and
& x documsaation, § 1o providy Lowystams colsotively, able L automatioally
@ 0 and manud . consolidation, managere oo monitor, ’ managed by
§ antons to . focilitation and . od able o L memdyze andd . business rules
2 | contigure, - automation of IT | mondorand . laks action with - ond policies
optinmize heal _ lasks O anslyze changes % robdnal Buman ostablishad in
S and protact 3 . and reconeneng o ndereantion the swstom
individual 1T alast analysis actions
oumponents | and orsocated _ ®actions canbe * Dynaemis
| actions IT staff can s provisioning of
% Boauirss § datarmined and choossio automalically by acdditional
 Bdehsna bighly . plenwrited by implanent systam tasources fron
skilled IT stal L 3T stall miRndations iedaenat or
. put forth by the sdarnal sourced
‘ system
— hal g
= s dhyrsaneleayny
fugiedd .
g % daep skl
k&
5 & ogystergs i
£ 1 b
% rdernotiog
. .
e Autonomic
Manual '

Figure 16: Autonomic computing maturity index [3]

Basic level

The basic level is starting point of complex system environments, is the level at which
many complex systems are today. Each complex system component is managed

separately by administrators who set it up, monitor it and eventually replace it.

Managed level

The managed level is where systems management technologies can be used to collect
information in a consistent manner from separate system components and display it on

fewer consoles, reducing the time it for the administrator monitor the complex system.

73

Predictive level

In the predictive level, new technologies are introduced to provide mappings among the
infrastructure components. The complex system begins to “recognize patterns, predict the

optimal configuration and provide advice on what course of action the administrator

should take” [3].
Adaptive level

The adaptive level is where the complex system can “automatically take the right actions
based on the available information and the knowledge of what is happening in the

environment” [3].
Autonomic level

In autonomic level “business policies and objectives control the complex system
infrastructure operation. Users interact with autonomic technology to monitor business

processes, alter objectives or both” [3].

4.4 Conclusion

As stated in the introduction, this chapter is based mainly on the architectural blueprints
that IBM has set as a basis for their on-demand computing architecture. This survey has
dedicated a whole chapter to the description of this architecture based on the fact that the
IBM autonomic computing architecture is an open architecture for distributed interactive
complex systems. Moreover, IBM architecture “does not prescribe a particular
management protocol or instrumentation technology since the architecture needs to work
with the various computing technologies and standards that exist in the industry today

and with new standards that will emerge in the future” [1]. It is true that IBM endorses

74

the WEB and web services, because on-demand systems run inherently on the web but
this is just a complementary characteristics that even AS-TRM group might want to

consider at a later time.

References
[1] IBM Corporation, “An architectural blueprint for autonomic computing”, Autonomic
Computing White Paper, April 2003, available at:

http://www-03.ibm.com/autonomic/pdfs/ ACwpFinal.pdf

[2] IBM Corporation, “An architectural blueprint for autonomic computing”, Autonomic
Computing White Paper, October, 2004, available at:

http://www-03.ibm.com/autonomic/pdfs/ACBP2 2004-10-04.pdf

[3] IBM Corporation, “An architectural blueprint for autonomic computing”, Autonomic
Computing White Paper, June, 2005, available at:

http://www-

03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V 7.pdf

[4] Richard Murch, “Autonomic Computing”. Prentice Hall Professional Technical
Reference, IBM Press, pp. 119-132, 2004.

[5] IBM Corporation, “Automating problem determination. A first step towards self-
healing computing systems”, Autonomic Computing White Paper, October 2003,
available at:

http://fwww-03.ibm.com/autonomic/pdfs/Problem Determination WP Final 100703.pdf

75

[6] G.Lafranchi, P. Della Peruta, A Perrone, D. Calvanese “Toward a new landscape of
systems management in an autonomic computing environment”, IBM Systems Journal,
Volume 42, No. 1, 2003.

[7] Jeffrey O. Kephart, David M. Chess, “The Vision of Autonomic Computing,”
Published by IEEE Computer Society, Volume 36 (1), pp. 41-50, 2003, available at:

http://www.research.ibm.convautonomic/research/papers/AC Vision Computer Jan 20

03.pdf

[8] A. G. Ganeck, T.A. Corbi, “The Dawning of the autonomic computing era’, IBM
Systems Journal, Volume 42, No. 1, 2003.

[9] Paul Horn, “dutonomic Computing: IBM’s Perspective on the State of Information
Technology”, IBM Corporation, October 15, 2001, available at:

http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

[10] John Strassner, Barry J. Menich, “Philosophy and Methodology for Knowledge
Discovery in Autonomic Computing Systems”, Proceedings of the 16" International
Workshop on Database and Expert Systems Applications (DEXA’05), pp. 738-743, 2005.
[11] Steve R. White, James E. Hanson, lan Whalley, David M. Chess, Jeffrey O. Kephart,
“An Architectural Approach to Autonomic Computing”, Proceedings of the International

Conference on Autonomic Computing (ICAC04), pp. 2-9, 2004.

[12] G. Tziallas, B. Theodoulidis, “Building Autonomic Computing Systems Based on
Ontological Component Models and a Controller Synthesis Algorithm” Proceedings of
the 14™ International Workshop on Databases and Expert Systems Applications (DEXA

03), pp. 674-681, 2003.

76

[13] Wang Fei, Li-Fan-Zhang, “The Design of an Autonomic Computing Model and the

Algorithm for Decision-Making”, Presented at 2005 IEEE GrC Program, April, 2005.

177

Chapter 5 Autonomic Computing Tools and Open

Standards

Abstract

Today it is a known fact that technology can be used to manage technology. There are
many companies that have already developed and deployed complex products based on
this idea. The advances in software agents, the emergence of XML and a‘host of new
standards promise incremental paths to the ultimate solution of autonomic computing [3].
This chapter provides a to-date global view of agents technology, and presents current

existing open standards that have the capability to enable autonomic computing.

5.1 Intelligent Software Agents

The attention, while building computer systems, is always turned towards human models
for inspiration. The era of artificial intelligence makes no exception. However, the

understanding of human information processing is not an easy task either as:

“attentional processes may be relatively data-driven, particularly when biologically
imperatives are built into the human systems, or centrally controlled as a result of
learning; the capacity to scan, store or transmit complex information is clearly limited to
human organisms, however central and autonomic functions can be studied in order to
explain the complexity of human reading; no integrated processing of information is

possible without reference to stored information, which enables complex planning and

78

prediction of the environment; this brings us to human complex memorial processes;
insights can be gained as well by studying the development of human cognitive processes
together with integration of data from multiple soitrces. There is a marvelous complexity
involved in the integration of mental resources with cognitive and motor functions in

order to yield such a smooth and integrated performance”. [4]

The field of artificial intelligence started over 50 years ago when Alan Turing described
his prototype for intelligent machines. Since then, there has been notable evolution of
speech recognition, speech generation, natural language understanding, knowledge
representation, machine learning and machine reasoning through symbol processing

techniques, neural networks, genetic algorithms and fuzzy logic.

Intelligent software agents’ field has captured people imagination. Researchers believe
now [1] that agent technology is one of the key and core technologies that could drive

true autonomic computing functionality.

5.1.1 Definition

IBM researchers define intelligent agents as:

“Software entities that carry out some set of operations on behalf of a user with some
autonomy and employ either knowledge or representation of the user’s goals and

desires.” [5]

79

5.1.2 Agent Characteristics

The table below summarizes agents and intelligent agents’ characteristics.

Autonomous

Agent Able to communicate with other agents and user
Monitors the state of its execution environment

Able to use symbols and abstractions

Able to exploit significant amounts of domain knowledge
Capable of adaptive goal-oriented behavior

Intelligent Agent Capable of operation in real-time

Tolerant of error, unexpected, or wrong input

Able to learn from the environment

Able to communicate using natural language

Figure 17: Software agent characteristics [10]

5.1.3 Agent Classification
The following figure visualizes very clearly the software agent topology. We notice that

smart (intelligent) agent is situated at the intersection of all categories.

Smart
Agents
Collaborative
Laarning
Agents
Astonomous
Operation
Coltaborative Interfoce
Agents Hggernts

Figure 18: Agent topology [10]

80

The following paragraphs contain short introductions into interface agents, mobile agents,

informational agent and heterogeneous agents.

Interface Agents
Interface agents are autonomous and are based on learning in order to achieve goals

specified by users.

Mobile Agents

Mobile agents can be visualized as processes with computational power able to move
over wide area networks (for example Internets or World Wide Web). They are capable
to interact with foreign hosts and to return to the user after gathering information and

performing their assigned tasks.

Information Agents

Traditionally, information agents are used for finding, analyzing and retrieving large

quantity of information.

Heterogeneous Agent Systems

Heterogeneous agent systems are systems of agents with different agent architectures.
From the documentation we surveyed, we found the following paragraph that highlights
the key requirement of heterogeneous agent systems namely interoperability:

“Because of the wide variety of application domains, it is unlikely that any agent

architecture will be used exclusively across all domains; for each domain, the most

81

appropriate agent architecture will be selected. Agents in these heterogeneous systems
will communicate, cooperate, and interoperate with each other. A key requirement for
this interoperation is the availability of an agent communications language that will

allow different kinds of software agents to communicate with each other”. [10]

5.2 Multi-Agents

Agent based systems and architectures provide a firm foundation for design and
development of autonomic systems. In the following subsections we describe some
toolkits and multi-agent platforms currently available in industry or for educational use.
The information presented in this subsection is a compilation of information we found in

articles, user guides, reference guides and web sites we surveyed to date.

It is important to mention that there are three considerable agent standardization efforts,
which are attempting to support interoperability between agents on different types of

agent platform, namely, KQML, OMG’s MASIF and FIPA.

Foundation for Intelligent Physical Agents (FIPA)

The Foundation for Intelligent Physical Agents (FIPA) is an international organization
that was formed in order to support the industry of intelligent agents by “openly
developing specifications supporting interoperability among agents and agent-based
applications” [6]. It is possible by open collaboration among its member organizations

namely companies and universities that conduct intensive research and development in

82

the field of agents. FIPA makes the results of its activities public to its members and then

makes available the results to the appropriate formal standards consortiums.

Agent Platform

| i
i Acmd !
| Management | | Drectory ACC g
i Systerm Facitator <+
! I | i
i Itarnal Platform Message Transport i

Figure 19: FIPA reference model of an agent platform [6]

Suspendec :

Unkrnown
Destroy

Creste

Inttisted [

Figure 20: FIPA agent life cycle [6]

Knowledge Query Meta Language (KQML)
KQML or Knowledge Query Meta Language [7] was one of the first development to
specify how to manage the “social interaction characteristic of agents using a protocol

based on speech acts and is now also one of the most pervasive Agent Communication

83

Language (ACL)” [7]. However, to date, KQML is not a true standard because there is no
consensus in the community on a single specification (or set of specifications). As a
result, there are different versions of KQML. In consequence, different agent systems,
speaking different dialects, may not inter-operate completely.

KQML sprung from a large effort, namely the DARPA Knowledge Sharing Effort that
consisted of developing techniques and methodology for building large-scale, reusable

and sharable, knowledge bases.

Mobile Agent System Interoperability Facility (MASIF)

The Object Management Group Mobile Agent System Interoperability Facility [8],
MASIF, differs from both KQML and FIPA by how it defines agent’s mobility from one
location to another. “In contrast to MASIF, both KQML and FIPA emphasize agency and
social interaction between multi-agents as the defining properties for software agents.
MASIF does not support or standardize interoperability between non-mobile agents on
different agent platforms. Further, MASIF restricts the interoperability of agents to agents
developed on CORBA platforms whereas the focus of FIPA is to directly support the
interoperability of agents deployed on agent frameworks which can support
heterogeneous transports. OMG is exploring how to support other types of software agent
than mobile agents. It has issued a Request for Information on agents. FIPA has supplied

its specifications as input to this request. This is still work in progress at this time” [8].

84

5.21 ClAgent
The CIAgent framework developed by J. P. Bigus is an agent building framework

developed for educational use [23].

5.2.2 Java Agent Template Lite (JatLite)

The Java Agent Template Lite, developed at Stanford Center for Design Research (CDR),
Stanford University is a toolkit written in the Java language that enables users to quickly
create software agents that communicate and interact with each other. JATLite agent’s

basic infrastructure model is depicted in the following figure.

Agent
Agent
Infrastructure
Register/ ;
R |
Connect ci%':;?t

Figure 21: Java agent infrastructure with message routing [9]

JATLite agents can register with an Agent Message Router using a name and password,
connect/disconnect from the Internet, send and receive messages, transfer files with FTP.
Basically JATLite agents can exchange information with other agents on the various

computers where they are executing. Agents in JATLite are based on Knowledge Query

85

and Manipulation Language (KQML) protocol for exchanging information and
knowledge. “Although JATLite does not, by itself, construct agents that seek information
or automate human tasks, it does provide a robust substrate for building such intelligent
agents leaving the developer free to use whatever theories and techniques are best suited

for the targeted application or research” [9].

5.2.3 AgentBuilder

AgentBuilder is software toolkit that allows software developers to quickly develop

intelligent software agents and agent-based applications. AgentBuilder has two major

components. They are mentioned below as described in the toolkit’s documentation [10].

(1) The Toolkit that provides mechanisms for managing the development process,
analyzing the domain, designing and developing networks agents, defining behaviors
of agents, and debugging and testing agent software.

(2) The Run-time System that incorporates an agent engine that provides a framework

for the execution of software.

e Project Manager

O ntology Manager
Concept Mapper
Chject Modeler

Agenacy Manager
Agency Viewer
Reoie Editor

— Aggnt Manager
Action Editor
Commitment Editor
PAC Editor
Ruile Editor

Protocol Manager
Protocol Editor

Figure 22: AgentBulider toolkit [10]

86

Agents constructed using AgentBuilder communicate using the Knowledge Query and
Manipulation Language (KQML). In addition, AgentBuilder allows the developer to

define new customized inter-agent communications commands.

Initial Mental Modet

= Initiai intentions
+ Initlat Belists

+ initial Commitments
« Capabitities

+ Behavicrat Rules

Incoming Messagas

Mental Model

Beliefs

Agent Cycie

Process

Determine Applicable
Behavioral Rules

»~
o Execute Private and
7| Communicative Acticns
@ Capabilities
tipcate Mental
Kode!
External
"‘kr. i } L} Environment >
. /

Figure 23: AgentBuilder intelligent agent architecture [10]

According to the above figure, the agent execution cycle consists of the following steps:

1. processing new messages

2. determining which rules are applicable to the current situation
3. executing the actions specified by these rules

4. updating the mental model in accordance with these rules

5. planning

87

5.2.4 ZEUS

Zeus is a multi-agent toolkit, developed by the British Telecommunications Laboratory.
This toolkit offers a library of software components and tools that facilitate fast and
friendly design, development, and deployment of multi-agents. In the article “ZEUS: 4
Toolkit for Building Distributed Multi-Agent Systems™ [11] the authors Hyacinth S.
Nwana, Divine T. Ndumu, Lyndon C. Lee & Jaron C. Collis illustrate in a context

diagram some of the issues involved in knowledge level multi-agent collaboration.

Agent Nome Sevver

Comne Messags Fosant {Language)

Shewved BEAHZE CORLENL
Frpreseantation snd ontxngy

7

K : >
N ;o M
AR B Favilitator
§os

3
3

HY .l "y

. MESSAGE s sbises

Transpont Pratonnd Databaze

o,

! Agent t

Parform Perboren
Task A Task O

Figure 24: FIPA-based ZEUS reference model [11]

Ferfrrm
Task D

88

It Srxorvicg
I vsargpe s Mergn s

"
Maitbox Handier
Execution Cey~ordination
Manitor Engine

e =

- o Manner and
Exterrat Schedular
§ B yeedanars R

Task/Plan
Database

QLo Oogy
Database

Figure 25: Generic ZEUS agent architecture [11]

R COMMMNi cation s with
otk sr Aag=nts

Ceordination Layer

Ccrganisston _ayar

DIsfirdti on L eysr

mffectors R

Figure 23: Generic ZEUS agent layered design [11]

Furthermore, the authors depict the ZEUS agent layered design as follows:

89

Application Programmer’s Interface Layer

The application programmer’s interface links the agent to the external programs that
provide it with resources and/or implement its characteristics.

Definition Layer

At the definition layer, the agent is viewed as an autonomous reasoning entity with
competencies, rationality model, resources, beliefs, preferences, etc.

Organization Layer

The organization layer enables agent’s relationships with other agents, what other agents
are aware of, what abilities it knows those other agents possess, what relationships its has
with the other agents, etc.

Co-ordination Layer

At the co-ordination layer co-ordination and negotiation techniques are implemented such
that the agent is visualized as a social entity.

Communication Layer

Communication layer is composed of protocols that implement inter-agent

communication.

5.2.5 FIPA Open Source (FIPA-OS)

Foundations of Intelligent Physical Agents Open Source (FIPA OS) is an open agent
framework developed by Nortel Networks. The framework is based on communication
between multiple agents using an agent standard communication language. “A key focus
of the platform is that it supports openness. This is naturally supported by the agent

paradigm itself and by the design of the platform itself whose parts have loose coupling

90

such that extensions and innovations to support agent communication can occur in
several key areas. The openness is further emphasized in that the platform software is

distributed and managed under an open-source licensing scheme” [12].

agents

Figure 26: FIPA-OS reference architecture [12]

5.2.6 Java Agent Development Environment (JADE)

Java Agent Development Environment (JADE) was developed by TILAB in an effort to
develop a distributed multi-agent system. “The intelligence, the initiative, the
information, resources and control can be fully distributed on mobile terminals as well as
on computers in the fixed network. The environment can evolve dynamically with agents

appearing and disappearing in the system according to the needs and the requirements of

91

the application environment. Communication between agents is completely symmetric
with each agent being able to play both the initiator and the responder role” [13, 14].
Java Agent Development Environment (JADE) complies with Foundation for Intelligent

Physical Agents (FIPA)

Agent Platform

Normative Services 1 Optional Services

[LifeCycle
___Management |
| Agent Software
. ; Integration
White Page
__ Services
- ——-—— Ontology Service l
Yellow Page :
Services
Human Agent J

(Message Transport Interraction
| Services -

Figure 27: FIPA conceptual model of an agent platform [13, 14]

host1 host2 host3
[[[+ | w | []
EIE||E =] SIHEIE
5|5 > glals o1& S
SHE|S 2212 IR
s|s|s HEE s||gls
3818 8188 81188
ol alla Sllalla allala
ajlalla Qllalla
<<y 2122n| <<

Container

JRE JRE JRE

Network Protocol Stack
o |

Figure 28: JADE distributed architecture [13, 14]

92

Tl £ i

S c|leo G | jactiveagent

§ E E E behaviors

] o || ® @ | |intentionsftasks

e} O 0 0

g @

-f(:'; ol B fo
ol 2| |2 @ ¥
G| |@© g © g . -
ol €IS 8|3 scheduler life- capabilities
El & 5 12 >
SESEE || o || ol ||l
g = g 8|3 behaviors | manager| | application
| |9] B & dependent
E private inbox of agent

ACL messages resources

Figure 29: Generic JADE agent architecture [13, 14]

JADE internal architecture is being thoroughly detailed in the article “JADE — A FIPA-

compliant agent framework” by Fabio Bellifemine, Agostino Poggi and Giovanni

Rimassa [8].

Dario Bomino, Alessio Bosca and Fluvio Corno, in the paper “An Agent Based
Autonomic Semantic Platform™ [22], propose an autonomic agent-based platform

developed using JADE. The platform is called the Distributed Open Semantic

Elaboration (DOSE).

JADE was chosen as well for the development of a control system design by V.
Gyurjyanm, D. Abbot, G. Heyes, E. Jastrzembski, C. Timmer, E. Wolin. In their article
called “FIPA agent based network distributed control system” [3] they address the issues

of interoperability and scalability of complex control systems by development of an open

architecture control system.

93

5.2.7 JAS

JAS is a simulation toolkit designed to enable agent based simulation modeling. Agent
based models in JAS are views of dynamic social systems made possible through object-
oriented computer programs.

JAS is a clone of the Swarm library, an ABM framework initially developed by the Santa

Fe Institute in order to create multi-agent simulations of complex adaptive systems.

“In the Swarm system, agents are organized in terms of the fundamental component
referred to a 'swarm'. A swarm is a collection of agents with a schedule of events over
those agents. The swarm represents an entire model: it contains the agents as well as the
representation of time. Swarm supports hierarchical structures whereby in a nested
Sfashion an agent can be composed of swarms of other agents. In some cases, the higher
level agent's behavior is defined by the emergent phenomena of the agents inside its
swarm. This multi-level model approach offered by Swarm is very powerful. Multiple
swarms can be used to model agents that themselves build models of their world. In
Swarm, agents can themselves own swarms, models that an agent builds for itself to

understand its own world”. [14]

94

-

Sub-sub-swarm

Figure 30: Swarm architecture as nested hierarchy of swarms [14]

5.2.8 Cognitive Agent Architecture (COUGAAR)
Cognitive Agent Architecture (COUGAAR) is a Java-based architecture developed to
support the development of large-scale distributed agent systems. The architecture was

developed as part of a research program funded by DARPA.

“Cougaar is a large-scale workflow engine built on component-based, distributed agent
architecture. The agents communicate with one another by a built-in asynchronous
message-passing protocol. Cougaar agents cooperate with one another to solve a
particular problem, storing the shared solution in a distributed fashion across the agents.
Cougaar agents are composed of related functional modules, which are expected to
dynamically and continuously rework the solution as the problem parameters,

constraints, or execution environment change.” (BBN, Technologies, 2003)

95

Society

Commutity}
Nodel Node 2
Agentl Agent2 Agentl Agent2

Community2
Nodel Node2
Agentl Agent2 Agentl Agent2

Figure 31: GOUGAR architectural view [16]

Publish Subscribe

i

Message Queue

Figure 32: COUGAAR agent reference model [16]

96

Cuslomer

‘Prybv,iqer

Figure 33: Agent multi-role capacity [16]

Denis Gracanin, Shawn A. Bohner, Michael Hinchey propose COUGAAR as a
framework for the agent-based, model-driven architecture for building autonomic
applications in their article "Towards a Model-Driven Architecture for Autonomic

Systems” [17].

5.2.9 Agent Building and Learning Environment (ABLE)
Agent Building and Learning Environment is the autonomic IBM agent technology. It
provides a Java agent framework, a library of intelligent components (JavaBeans) a set of

development and test tools and an agent platform.

J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrom, W. N. Mills , Y. Diao describe in detail
ABLE’s architecture in their paper called “ABLE: A toolkit for building multiagent
autonomic systems” [18]. Their approach to build autonomic systems is to combine
autonomous intelligent agents in a structured way. With this respect, they further mention

that ABLE’s architecture includes components with the following characteristics:

97

Has short-term, long-term and associative memory functions

Is proactive with reflexive, reactive, goal-oriented behavior

ABLE Agent Has reasoning, planning and learning new behaviors

Has emotional behavior that associates feelings with internal states
Communicates with the environment through sensors and effectors

Figure 34: ABLE agent characteristics [18]

In the paper, the ABLE agent model is depicted with the following figure:

GET
APPLICATION
DATA

APPLICATION
ACTION

Figure 35: ABLE agent model [18]

ABLE distributed agent platform corresponds to FIPA reference architecture and is

illustrated below:

98

AGENT PLATFORM
DIRECT

NAMING

SERVICE
BOOTER LIFECYCLE
DIRECTORY SERVICE .
SERVICE SERVICERMI
CONFIRMATION AGENT
DESCRIPTION
Y
SERVICEROOT TRANSPORT
SERVICE
RMI
AGENT LOOKUP/
MODIFICATION

Figure 36: ABLE distributed agent platform [18]

In addition, the paper shows as well the architecture of ABLE’s autonomic agent. As
stated by the authors it is based on prior work in this area, in particular the work of

Solomon and Minski.

EXECUTNE(SELF) © — ACTION PLANNER

WORLD MODEL

LEARNED
BEHAVIOR

' NSTINGT

2 REFLEXES

Figure 37: ABLE agent architecture [18]

99

5.2.10 Unity

Unity is a multi agent system approach to autonomic computing. It was developed at
IBM T.J. Watson Research Center. Its aim is to develop an autonomic distributed
computing system based on interactions among autonomous agents, which are called

autonomic elements.

The Unity system components are implemented as autonomic elements. In fact, every
Unity component is an autonomic element. Jeffrey O. Kephart, from IBM TJ Watson
Research Center, presents Unity in his article “A Multi-Agent System Approach to
Autonomic Computing” [19]. The following paragraphs abstract out Unity’s elements
described in detail in the above-mentioned article.

Computing Resources Elements

Computing resource elements can be databases, storage systems, servers, etc.
Application Manager Element

Application manager element is responsible for internal management of the environment,
for obtaining the resources that the environment needs and for communication with other
elements depending on the needs of the environment.

Resource Arbiter Element

The resource arbiter element calculates an optimum resource based on estimated received
from each application environment.

Server Element

Server element is responsible for publishing the server’s address and capabilities such

that possible users of the server can use them.

100

OSContainer Element

OSContainer receives requests from elements to start up services or autonomic elements.
Registry Element

Registry element enables elements to locate other elements with which they need to
communicate. It corresponds to registries in other multi-agent systems.

Policy Repository Element

Policy Repository element provides human-computer interfaces that allow administrators
to enter high-level policies that control the operation of the system.

Sentinel Element

Sentinel element monitors the functioning of an element on behalf of another element. If
the monitored element becomes unresponsive, the sentinel sends a notification to the

element that requested the monitoring about the situation.

Jeffrey O. Kephart sates the following with respect to elements behavior and

relationships in Unity:

“Each autonomic element is responsible for its own internal autonomic behavior, namely,
managing the resources that it controls, and managing its own internal operations,
including self-configuration, self-optimization, self-protection, and self-healing. Each
element is also responsible for forming and managing relationships that it enters into in
order to accomplish its goals, that is, the external autonomic behavior that enables the

system as a whole to be self~-managing.” [19]

101

An experimenting technique in Unity called “goal-driven self-assembly” is described in
another article called “Unity: Experiences with a Prototype Autonomic Computing

System” by David M Chess, Alla Segal, lan Whalley and Steve R. White [2].

5.2.11 NASA'’s Lights-Out Ground Operations System (LOGOS)

Lights-Out Ground Operations System (LOGOS) [20] is multi-agent NASA autonomic
system. It was developed based on agent technology, to illustrate autonomous ground and
space operations with low costs and to provide new technology for future missions with
long time periods between contacts with the ground. The following subsections, that
describe LOGOS modeling and development and its autonomic characteristics, are based
on the article “Some Autonomic Properties of Two Legacy Multi-Agent NASA Systems —
LOGOS and ACT” [20] written by Walt Truszowski, James Rash, Christopher Rouff and

Micke Hinchey.

5.2.11.1 Modeling and Development

LOGOS has multi-agent autonomous architecture depicted in the following figure:

102

Spsesh

Paging

L Syst
: i \
" : - ’ s
Senie £ e \} { aaine \3 §omme { g Y

Ly U s J ‘\ AL

T oG
AGENT COMMUNITY | wragem P

£ uorsa H/ TE Y/ dnte Ef HICE /
S L L S Sgent) Wagent L Fagenl] /
AN 5 AN /

Figure 38: Logos architecture [20]

According to the architecture above, LOGOS agent community contains 10 agents as

follows:

1. System Monitoring and Management Agent, which has knowledge about all agents in
the community and informs agents requesting services about other agents addresses.

2. Fault Isolation and Resolution Expert (FIRE), who resolves satellite problems.

3. User Interface agent provides human-computer interface between agent community
and humans that may need to interface with LOGOS.

4. VisAGE Interface agent which interfaces with VisAGE2000 data visualization
module that displays spacecraft telemetry and agent log information.

5. Pager Interface agent interfaces with external analyst’s pager system.

103

6. Database Interface agent, (7) Archive Interface agent and (8) LOG agent store short
term, long term and logging data for debugging respectively.

9. GenSAA/Genie Interface agent interface ground station software in order to handle
communication with the spacecraft.

10. Mission Operation Planning and Scheduling Interface agent interfaced with ground

station planning and scheduling software.

5.2.11.2 Autonomic Features

Self-Configuration

LOGOS self configures when a spacecraft pass is close to happen. GIFA wakes-up the

FIRE, UIFA, and VIFA agents if needed for system configuration. If for example an

anomaly is detected, FIRE agent is woken up.

Self-Optimization

Self-optimization feature is envisaged through learning. Following are some examples:

o FIRE agent learns new anomalies and their fixes by adding them in its knowledge
base.

o VisAGE agent learns information about session when an analyst logs into the system.
Data will be available to the analyst at the next log in.

e Pager agent learns analysts’ availability times and decides whom to page at a

particular time.

104

Self-Healing

LOGOS self-healing properties are supported by the FIRE agent actions: examines
anomalies, decides their resolutions, contacts external system (analyst) if new problems
are encountered and learns the new fixes provided by the analyst for future use.
Self-protecting

Self-protection is performed through User Interface agent that identifies analyst at login
and by FIRE agent that validates commands sent by the analyst such that they do not

damage the spacecraft.

5.2.12 NASA’s Agent Concept Testbed (ACT)

Similar to LOGOS, Agent Concept Testbed (ACT) [20] is a multi-agent NASA
autonomic system. The autonomic properties of the system were designed and developed
such that NASA missions are to be conducted without constant human intervention. The
self-configuring, self-healing, self-optimizing and self-protecting properties of both
LOGOS and ACT make them autonomic systems. The following subsections, that
describe ACT’s modeling and development and its autonomic characteristics, are also
based on the article “Some Autonomic Properties of Two Legacy Multi-Agent NASA
Systems — LOGOS and ACT” [20] written by Walt Truszowski, James Rash, Christopher

Rouff and Micke Hinchey.

5.2.12.1 Modeling and Development

ACT has an evolving-system component-based architecture, in which a component can
be easily replaced with a more advanced one. There are two types of agents in ACT

architecture:

105

Reactive agent (simple agent) - receives inputs from environment and in turn reacts
accordingly.
Robust agent (complex, intelligent agent) - can reason in a deliberative, reflexive or

social way.

Briren e nt

%

: X o B
Commmiat Ferceptors o 2% Htectors
Communications Aotiong
A Purents A
act i
i ' Cutput
Agernt Cata Muodeling Data Sverution
Reasoning A State seeition
‘ ans %
Fan : A {}iw ting
Fonedtd § . arnpition
& s Hatus Heps Hatus
(- Hareing i
- and Sate Agenda
S heduing infe

Figure 39: ACT architecture [20]

According to the above figure the ACT Architecture has the following components:

1.

2.

Modeler component responsible for the domain model of agents and environment.
Reasoner component makes decisions and sets goals for the agents based on data in
its knowledge and based on data from modeler component

Planner/Scheduler component is responsible for agent planning and scheduling. Its
input is a goal and its output is a plan as a directed graph of steps, composed of
preconditions, actions and post-conditions.

Agenda and Executive components execute plans developed by Scheduler/Planner.

Agent communication component sends and receives messages from/to other agents.

106

6. Preceptor component monitors the environment on behalf of agents.

7. Effector component sends output to the environment.

The ACT message format used between agents is based on Foundations of Intelligent
Physical Agents (FIPA) standard. The transmitting of messages occurs through

Workplace, a proprietary agent messaging software developed by NASA.

5.2.12.2 ACT Autonomic Properties

Self-Configuring

In case of a problem, the Contact Manager changes the current satellite schedule and the
problem is addressed. The spacecraft environment that is currently planned for the
contact is reconfigured subsequently.

Self-Optimizing

ACT is self-optimizing when a proxy agent detérmines a problem and consequently a re-
planing/rescheduling activity is triggered. This optimizes the entire ACT behavior.
Self-Healing

The self-healing property is ensured by the problem diagnosis/corrective action cycle,
which may involve access to the human component of ACT and consequently learning.
Self-Protecting

ACT is self-protecting by continuously monitoring the spacecraft and modifying its
operations when constraints are violated. It also contains a thorough validation of system
commands received from administrators when self-healing thus ensuring that they will

not have adverse impact on the spacecraft.

107

5.2.13 NASA’s Autonomic and Swarm-based Systems
This section is based on the article “Formal Methods for Autonomic and Swarm-based
Systems” written by Christopher Rouff, Amy Vanderbilt, Mike Hinchey, Walt
Truszkowski and James Rash [21]. The article discusses some on-going work to develop
a formal method for verifying (NASA) swarm and autonomic systems. According to the
authors: “For swarm exploration, individual autonomy is not crucial, but the mission
cannot succeed unless each team has all the autonomic properties of being. Because of
this, current methods must be modified or new methods must be created to properly take
into account the learning, intelligence and emergent behavior of such systems™ [21].
Furthermore the authors state that to date, the following two formal approaches have been
used to analyze emergent behavior:
1. Weighted Synchronous Calculus Communicating Systems (WSCCS) that was used
by Tofts to model social insects, and to analyze the non-linear aspects of social

insects.
2. X-Machines that have been used to model cell biology.

As noted by the authors these approaches do not predict emerging behavior but model the

emergent behavior after the fact. Consequently, an effective formal method must:

e predict the emergent behavior of 1000 agents as a swarm as well as the behavior of
individual agents,

o track the goals of the mission as they change, and

e modify the model of the universe based on new data that flows in.

Currently the merging of the two above formal methods and others is being performed

within NASA.

108

5.3 Standardization

Definition
Open standards are defined as interfaces of formats that are openly documented and have
been accepted in the industry through either formal or de-facto processes, and are freely

available for usage by the industry.

According to IBM documentation [1], industry standards are necessary to support

autonomic computing such that the following are ensured:

e Uniform approach to instrumentation and data collection. This will enable the
intersystem exchange of instrumentation and control information and create the basis
for collaboration and autonomic behavior between heterogeneous systems.

e Dynamic configuration.

e Operation.

5.3.1 Open Standards

Following, are some proposed standards of interest to autonomic computing together with
a small description The standards descriptions are based on information found on
standards web pages, and on the survey provided by Richard Munch in his book called
“Autonomic Computing” [1].

1. BlueFin

BlueFin specification is a proposed standard for data collection.

109

. Distributed Management Task Force (DMTF)

Distributed Management Task Force (DMTF) is the industry organization that is
conducting the development, adoption, and unification of management standards for
desktop, enterprise and Internet environments.

. Common Information Model (CIM)

Common Information Model (CIM) standard is an object-oriented information model
that provides a conceptual view of physical and logical components of a system.

. Policy Core Information Model (RFC3060)

Policy Core Information Model (RFC3060) is the standard that presents the object-
oriented information model for viewing policy information developed in
collaboration in the IETF Policy Framework WG and as extensions to CIM activity in
the DMTF.

. Open Group Application Response Measurement (ARM)

Open Group Application Response Measurement (ARM) is a standard for application
instrumentation.

. Web Service Level Agreement (WSLA)

Web Service Level Agreement (WSLA) is a language to express SLA contracts, to
support guaranteed performance, and to handle complex dynamic fluctuations in
service demand.

. Open Grid Service Architecture (OGSA)

Open Grid Service Architecture (OGSA) defines standard mechanisms for creating,

naming and discovering services and specifies various protocols to support accessing

110

10.

11.

12.

services. Basically is a framework for distributed computing based on Web protocols.
It works even in a simply distributed system resources within an enterprise.
Organization for the Advanced of Structured Information Standards (OASIS)
Organization for the Advanced of Structured Information Standards (OASIS)
generates standards for security, Web Services, XML conformance, business
transactions, electronic publishing and interoperability [1].

Physical Agents (FIPA)

The Foundation for Intelligent Physical Agents is an international standards
consortium working for interoperability between agents and agent platforms and has
specifications for agents, agent management services and agent communication
languages.

Java Community Process

Java Community Process is an open organization for Java development.

Java Management Extensions (JSR3, JMX)

Java Management Extensions (JSR3, JMX) specification provide a standard
management architecture, API’s and services for building distributed, dynamic and
modular solutions to manage Java-enabled resources.

Java Agent Services (JSR87)

Java Agent Services are a set of objects and service interfaces to support deployment

and operation of autonomous communicative agents. It is being developed under

SUN Java Agent Services (JSR87)

111

13. Simple Network Management Protocol (SNMP)
Simple Network Management Protocol (SNMP) enables network administrators to
manage network performance, find and solve network problems and plan for network

growth.

5.3.2 Mapping Open Standards against Core Autonomic Capabilities
The following table based on Richard Munch work in his book “Autonomic Computing”
[1] gives insights on the mapping of open standards to autonomic core capabilities

presented in chapter 4, section 4.2.

‘ Solution Install

No standard existing; to be developed

Common System Administration

Portlet Specification (JSR 168)

Problem Determination

Common Information Model (CIM)

Simple Network Management Protocol (SNMP)

Web-Services Distributed Management (WS-DM)

Java Management Extensions (JSR3,JMX)

Logging API Specification (JSR47)

BlueFin

Open Grid Service Architectures (OGSA)

Open Grid Services Infrastructure (OGSI)

Web Services Common Resource Model (WS-CRM)

Application Response Measurement (ARM)

Autonomic Monitoring

Common Information Model (CIM)

Simple Network Management Protocol (SNMP)

Java Agent Services (JSR87)

BlueFin

Open Grid Services Architecture (OGSA)

Open Grid Services Infrastructure (OGSI)
Application Response Measurement{ ARM)

Policy Based Management

Policy Core Information Model

112

Web Services Security
Java Management Extension (Jsr3, JMX)
Open Grid Services Infrastructure (OGSI)
J Complex Analysis
Java Agent Services
Web Services Common Resource Model (WS-CRM)
Open Grid Services Infrastructure
Application Response Measurement (ARM)
Transaction Measurement
Common Information Model (CIM) Web Services Distributed Management (WS-DM)
Java Management Extensions (JSR3, JMX)
Logging AP Specification (JSR47)
Java Agent Services (JSR87)
Open Grid Services Architecture (OGSA)
Open Grid Services Infrastructure (OGSI)
Web Services Common Information Model (WS-CRM)
Application Response Measurement (ARM)

Figure 40: Mapping open standards to autonomic computing capabilities [1]

5.4 Conclusion

An introduction into current agent technologies was presented in the first part of this
chapter. IBM and NASA research and projects demonstrate that autonomic systems

development emergent from agent technology is possible.

This chapter has also presented current standards with enabling power for autonomic
computing. However, for an ultimate solution in a multi-vendor infrastructure, vendors
must agree on a standards-based approach for autonomic systems. Consequently, there is

a need for new standards that will define new mechanisms for inter-operating

heterogeneous systems.

113

References

[1] Richard Murch, “Autonomic Computing”, Prentice Hall Professional Technical
Reference, IBM Press, pp. 119-132, 2004.

[2] David M Chess, Alla Segal, Ian Whalley, Steve R. White, “Unity: Experiences with a
Prototype Autonomic Computing System”, Proceedings of the International Conference
on Autonomic Computing (ICAC’04), pp. 140-147, 2004.

[3] V. Gyurjyanm, D Abbot, G. Heyes, E Jastrzembski, C. Timmer, E. Wolin, “FIPA
agent based network distributed control system”, Computing in High Energy and Nuclear
Physiscs, La Jolla California, 24-28 March, 2003.

[4] J. Richard Jennings, Michael G.H Coles, “Handbook of Cognitive Psychophysiology
Central and Autonomic Nervous System Approaches”, John Wiley & Sons, pp. 30, 1991.
[5] Gilbert and al, “Intelligent Agent Strategy”, IBM White Paper, 1995, additional
information at:

hitp://www.research.ibm.com/iagents/home.html

[6] Foundation for Intelligent Physical Agents, “FIPA Agent Management Specification”,
available at:

http://www.fipa.org/specs/fipa00023/XC00023H.html

[7] Finin et al., “An Overview of KQML: A Knowledge Query and Manipulation
Language”, 1997, available at:

http:// www.cs.umbec.edu/kaml/papers

[8] Fabio Bellifemine, Agostino Poggi, Giovanni Rimassa, “JADE — A FIPA-compliant
agent framework”, Proceedings of the 4th International Conference and Exhibition on the

Practical Application of Intelligent Agents and Multi-Agents, pp. 97-108, 1999.

14

[9] Heecheol Jeon, Charles Petrie, Mark R. Cutkosky, “JATLite: A Java Agent
Infrastructure with Message Routing”, available at:

http://www-cdr.stanford.edu/ProcessLink/papers/iat/jat.html

http://www-cdr.stanford.edu/ProcessLink/papers/JATL html# WhatIsJATLite

[10] “AgentBuilder: Reference Manual and Agent Builder User Manual”, 16 June, 2004
available at:

http://www.agentbuilder.com

[11] Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee, Jaron C. Collis,”ZEUS: 4
Toolkit for Building Distributed Multi-Agent Systems”, available at:

http://www.agent.ai/doc/upload/200302/nwan99 1.pdf

[12] Stefan Poslad, Phil Buckle, Rob Hadingham, “The FIPA-OS agent platform: Open
Source for Open Standards”, available at:

http://fipa-os.sourceforge.net/docs/papers/FIPAOS.pdf

[13] Fabio Bellifemine, “J4DE Framework what it is and what it is next”, Invited speech
at ETAPS 2001 Workshop on Models and Methods of Analysis for Agent Based Systems
(MMAABS), Genova, April, 2001 available at:

http://jade.cselt.it/

[14] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, “JADE a White Paper”, Sept. 2003,
available at:

http://iade.cselt.it/

[15] Hala Al-Bakour, Sheri Markose, “Swarm tutorial®, available at:

http://www.essex.ac.uk/ccfea/swarm/SwarmTutorial/web/swarm_tutorial.htm

115

[16] BBN Technologies Document, “Cougaar Architecture Document”, 23 December,
2004 available at:

http://cougaar.org/docman/view.php/17/170/CAD 11 4.pdf

[17] Denis Gracanin, Shawn A. Bohner, Michael Hinchey, "Towards a Model-Driven
Architecture for Autonomic Systems", 11th IEEE International Conference and Workshop
on the Engineering of Computer-Based Systems (ECBS'04), p. 500, 2004.

[18] J. P. Bigus, D.A. Schlosnagle, J. A. Pilgrim, W.N. Mills, Y. Diao, “4ABLE: A toolkit
Jor building multi-agent autonomic systems”, IBM Systems Journal, Volume 41, No. 3,
2002.

[19] Jeffrey O. Kephart, “A Multi-Agent System Approach to Autonomic Computing”,
Third International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’04), Volume 1, pp. 464-471, 2004.

[20] Walt Truszkowski (NASA), James Rash (NASA), Christopher Rouff (SAIC), Mike
Hinchey (NASA), “Some Autonomic Properties of Two Legacy Multi-Agent NASA
Systems — LOGOS and ACT”, presented at 11th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems (ECBS’04), pp. 490,
2004.

[21] Christopher Rouff, Amy Vanderbilt (SAIC), Mike Hinchey, Walt Truszkowski,
James Rash (NASA), “Formal Methods for Autonomic and Swarm-based Systems”,
available at:

http://isd.gsfe.nasa.gov/Papers/DOC/RashISOLA . pdf

116

[22] Dario Bomino, Alessio Bosca, Fluvio Corno, “4n Agent Based Autonomic Semantic
Platform”, Proceedings of the International Conference on Autonomic Computing,
(ICAC’04), pp. 189-196, 17-18 May, 2004.

[23] J.P. Bigus, I.Bigus, “Constructing intelligent agents using Java”, New York, Wiley,

2004.

117

Chapter 6 Case Studies from Industry

Abstract

To date, there are many visions on how to deal with complexity. They sprung out of years
of research and development and they are all trying to solve the paradox of creating

simple to manage, yet complex systems.

6.1 An Overview of this Chapter

Few case studies from industry were already discussed in chapter 5, for example NASA’s
autonomic agent based systems. Subsections 2 and 3 will present IBM’s autonomic
products Trivoli and DB2 respectively including details about their architecture,
modeling and development. In subsection 4, Sun’s vision fdr the next generation data
center will be discussed in greater detail as well as its modeling and development.
Subsection 5 will discuss Hewlett Packard’s approach to autonomic computing called
The Adaptive Enterprise. Microsoft’s Dynamic Systems Initiative will be depicted in
subsection 6, together with its unifying software architecture centered on its “System
Definition Model” (SDM) Business. Subsection 7 contains an overview of on going

university researches on autonomic computing modeling and development.

6.2 IBM Trivoli Management Suite

Tivoli Management software from IBM provides a jump-start toward fulfilling the

ultimate goal of a fully autonomic system. Today, it continues to participate in

118

developing the ultimate solution. Many Tivoli management products have some level of

automation that can help achieve the benefits of an autonomic computing environment.

6.2.1 Modeling and Development
The following figure depicts the coverage of IBM Trivoli Management products across

the IBM portfolio of products and services:

(Intelligent Business Systems Management j

WEB
Sphere

DB2

MQ

Lotus

IBM
Servers

Storage

[Component Services]

Figure 41: IBM Trivoli Management across IBM overall architecture [4]

Framework
The foundation of the Trivoli Enterprise architecture is distributed object-oriented
software called Trivoli Framework. Most of the applications of the Trivoli Enterprise are

leveraged by services included in this framework. In addition to the framework, Trivoli

119

Enterprise provides management products for deployment, availability, operations and

security management.

6.2.2 Autonomic Computing Characteristics
Tivoli products support and incorporate the core autonomic behaviors of self-configuring,
self-healing, self-optimizing and self-protecting. The following illustration contains some

examples of these products.

Trivoli Enterprise Console
Trivoli Switch Analyser
Trivoli Netview

Trivoli Bus Sys Manager
Trivoli Monitoring

- Trivoli Storage Resource

%Trivoli Config Manager
Trivoli Identity Manager
Trivoli Storage Manager

i
L

Trivoli

| Trivoli Storage Manager
Trivoli Access Manager
Trivoli Identity Manager
Trivoli Risk Manager
Trivoli Privacy Manager

R

Trivoli Service Level Advisor
Trivoli Workload Scheduler for
Applications

Trivoli Bus System Manager
Trivoli Storage Manager

Trivoly Analyser for Lotus Domino
LISEXOH Monitor for Transacti

ons ‘
T SRR T

R

Figure 42: Trivoli autonomic software products [4]

Following are examples of Trivoli products and their autonomic characteristics. The
information provided in this subsection is based on the work of R. Munch in his book

“Autonomic Computing” [4].

120

Self-Configuring

The Configuration Manager can notice when software on a machine is not synchronized
with the reference model and it creates a customized deployment plan for each machine
in a cluster. Moreover, it executes the installation sequence.

The Identity Manager automates the user life cycle with native repositories. It
communicates directly with the access-system to help defining accounts creation,
passwords and account privileges.

The Storage Manager provides self-configuring tasks to automatically identify and load

drivers for storage devices connected to the server.

Self-Healing

Trivoli Enterprise Console inspects error logs, derives root problem cause and initiates
corrective actions automatically.

Trivoli Switch Analyzer correlates network device errors to the rot case without human
intervention. It is at level 2 out of 5 autonomic levels.

Trivoli NetView discovers TCP/IP networks, displays network topologies, correlates and
managing events, monitors network health and gathers data. It has router fault isolation
technology that identifies the cause of the error and consequently initiates corrective
actions.

Trivoli Risk Manager contains self-healing technology developed by IBM research. It
assesses security threats and automates responses for server reconfiguration, patch

deployment and account revocation.

121

Trivoli Monitoring for Applications, for Databases and Trivoli Monitoring for
Middleware automatically discovers, diagnoses and initiates problem resolution.
Trivoli Storage Resource Manager notices automatically storage problems and executes

policy-based actions to solve problems.

Self-Optimizing

Trivoli Service Level Advisor performs trend analysis based on historical performance
data and makes predictions about critical thresholds for the future in form of events sent
to the Trivoli Enterprise Console.

Trivoli Workload Scheduler for Application monitors, controls and automates the
executions of workloads.

Trivoli Monitoring for Transaction Performance enables monitoring of performance and
availability of transactions.

Trivoli Storage Manager supports adaptive differencing technology that helps optimize

resource usage for backup.

Self-Protecting

Trivoli Access Manager self-protects by preventing unauthorized access and has the
ability to control to resources for authenticated users.

Trivoli Identity Manager self-protects by centralizing identity management, integrating
automated workflow with business process.

Trivoli Risk Manager provides system wide self-protection by assessing potential threats

and automating responses to help administrators respond accordingly.

122

6.2.3 Process Development Evolution

“The Trivoli group at IBM is introducing autonomic computing in a step-by-step, phased
manner. This allows customers to leverage their existing technical and staff resources
with today’s autonomic offerings and enables them to progress to the next level as new
offerings appear. This process can help customers achieve a steadily increasing return

on their investments.” Paul Mason, IDC

“By focusing on staged delivery and what is actually available today and tomorrow,
Trivoli sofiware can help its customers work toward the autonomic computing vision.”

James Governor, Illuminata

6.2.4 Leveraging Open Standards
Open standards are essential for managing resources and processes across the system
hierarchy layers. IBM leverages open standards as the foundation for its autonomic
system management solution. According to R. Much [4] these standards currently
include:

e Java Management Extensions,

e Web service-level agreements,

e Storage Networking Industry Association,

e Open-grid systems architecture,

e Web Services standards,

e Telecom management,

e Distributed Management Taskforce,

123

¢ Common Information Model,
¢ Internet Engineering Taskforce (Policy, Simple Network Management Protocol),
¢ Organization for the Advancement of Structured Information Standards (OASIS),

¢ Microsoft Windows management instrumentation.

6.3 IBM DB2 Database Management System

IBM DB?2 is a leading example of autonomic computing in the database marketplace.

6.3.1 Autonomic Computing Characteristics

The following illustration is based on the work of Richard Munch in his book

“Autonomic Computing” [4].

124

Health Monitor
Automatic page write integrity
checking

Automatic index organization
Recovery Expet

1 Fault Monitor

Configuration Advisor
Design Advisor

Query Compiler
(query rewrite, cost-based optimization)
Automatic query parallelism degree
Self-Configuring/optimizingutilities
Adaptive utility throtting
Performance expert

Query patroller workload manager

Figure 43: DB2 autonomic characteristics [4]

6.3.2 Process Development Evolution
As mentioned by IBM, future releases of DB2 will contain enhanced autonomic features
available as for example autonomic maintenance policies and automatic database backup

autonomic feature.

6.3.3 Open Standards

DB2 has a deep commitment and support for the following open standards [4]:

e Linux,
o Java,
o XML,

125

e Web Services,
¢ Grid computing distributed database interoperability, and

e Multi-vendor, multi-platform exploitation.

6.4 Sun Microsystems - N1

N1 stands for managing n number of computers as 1. N1 is Sun Microsystems [12, 13]
product for grid computing. It provides services for managing heterogeneous

environments and removes information technology complexity through technical means.

Sun was one of the first system vendors in supporting Grid Computing as a system
architecture and design philosophy. When Sun acquired the technology in 2000, they
decided to make the source code public in the open source Grid Engine Project, in order

to promote its pervasiness and let people start use the Grid without barriers.

6.4.1 Modeling and Development
N1Ge 6 is Sun’s latest proprietary product based on Grid Engine technology with added
enterprise-level capabilities and it equipped with a powerful system administration tool

called Sun Management Center. The latter is:

“A single point of management for Sun Systems, the Solaris Operating Environment,
applications and services for data center and highly distributed computing

environments.” [12]

126

According to Suns’ documentation [12, 13], the Cluster Grid is the simplest form of a
grid (i.e. multiple systems interconnected through a network). It has a three-tier general

architecture as depicted in the following figure:

Access Nodes

Access
Tier

Management
Tier

Management
Nodes

Compute
Tier

Server

Figure 44: Grid cluster general architecture [12,13]

Access Tier
The Access Tier provides access and authentication to grid users. Access methods are

based on authentication schemes such as NIS, LDAP, and Kerberos [12].

Management Tier
The Management Tier includes one or more servers, which run the server part of client
server software such as Distributed Resource Management (DRM), hardware

diagnosis components and system performance monitors.

127

Compute Tier

The Compute Tier includes servers that run the client part of DRM, the daemons
associated with message passing environments, and agents for system health monitoring.
The compute tier communicates with the management tier, receiving jobs to run and

reporting job status and accounting details.

Cluster Grid Stack is Sun’s implementation of the general architecture above is illustrated

in the following figure:

Figure 45: Sun Management Center within N1 grid cluster architecture [12, 13]

This is a software stack design, with each layer in the stack representing different
functionality. As it can be noticed from the figure below the architecture is open and
modular. While the software components map into the logical three layers there is not
always a one-to-one correspondence. For example Sun Management Center provides
distributed resource management functionality and provides services at each layer in the

architecture: access, management and compute tiers [12, 13].

128

Sun Management Center is based on intelligent agent reference model. In this approach, a
manager monitors and controls managed entities by sending requests to agents residing

on the managed node. Agents collect management data on behalf of the manager.

Console Client

Server

Agent

Figure 46: Sun Management Center’s intelligent agent-based reference model [12]

Sun Management Center utilizes autonomous agent technology to drive its autonomic
capabilities. Autonomous agent technology is a technique in which agents are not
dependent of other software components, and all data collection and processing is done
locally at the agent. These intelligent agents can act on data: initiate alarms,

administrative notifications or specific actions.

Framework
The development tools and run-time libraries provide an integrated software environment

for developing parallel distributed applications.

129

6.4.2 Autonomic Computing Characteristics
System Management includes powerful system administration tools, test and verification
tools and automated installation and deployment technologies. The information presented

in this subsection on based on Sun’s documentation posted on Sun’s web site [13].

Solaris Live Upgrade |
Web Start Flash
Sun Validtion Test

ARCO N1 Grid Engine 6
Accounting and Reporting Console
{Sun Management Center

S

1 ;
[Technical Computing Portal |

Figure 47: Sun-N1 autonomic characteristics

Self-Configuring
Solaris Live Upgrade and Web Start Flash provide automated installation and
deployment technologies. With Solaris Live Upgrade technology, systems can be

upgraded while they run, reducing downtime.

Self-Optimizing

Sun Grid Engine distributed resource management software optimizes utilization of

software and hardware resources in heterogeneous networked environments.

130

Self-Healing

Sun Management Center, which is based on agent technologies provides self-healing
autonomic capabilities.

ARCO NI Grid Engine 6 Accounting and Reporting Console provides a comprehensive

way to collect and analyze extensive detailed statistics of usage on the Grid.

Self-Protecting

Technical Computing Portal provides high-performance technical computing users with
secure anytime, anywhere access to a single Web based point of delivery for service,
content, and complex applications through a standard Internet browser and simple user

interface.

6.5 Hewlett-Packard’s Adaptive Enterprise

Hewlett-Packard‘s vision of autonomic computing is called “The Adaptive Enterprise”
[14, 15] and it reflects its reference architecture, called “Darwin Reference Architecture”
[15]. The Adaptive Enterprise framework enables businesses to create a tighter

connection between system management and business process.

6.5.1 Modeling and Development
Darwin architecture is based on the fact that all its components comply with the
following design methodologies: “simplification, standardization, modularity and

integration” [15]

131

ss Objectives

Application Services

Infrastructure Services

Figure 48: Darwin architecture [15]

The Manage and Control Software is within IT Business Management vertical

dimension and;

“It coordinates and controls the infrastructure through continuous inventory, monitoring,

planning, provisioning, control and maintenance of the whole environment.” [15]

The Manage and Control software is present at each of the three levels: the business

level, the service level and the resource level. Each level has six layers namely plan,

provision, inventory, control, monitor and maintain.

132

Application
Services

Infrastructure
Services

lintegrate and orchestrate

Figure 49: Manage and Control within HP’s Darwin architecture [15]

“The fundamental design elements of Adaptive Enterprise are Service Oriented-

Architecture (SOAs), model driven automation and virtualization.” [15]

6.5.2 Autonomic Computing Characteristics

Self-Configuring

The Adaptive Enterprise establishes an IT environment that can change quickly and is
able to deal with dynamic changes, mergers and acquisitions and integration of new
business. For example HP Blade System Infrastructure allows automated, policy-based

deployment.

133

Self-Healing

HP Blade System Infrastructure provides auto-failover protection and advanced workload
management across the entire system infrastructure. In addition, HP contains the HP
BladeSystem Management Suite that leverages an integrated virtualized and automated

solution.

Self-Optimizing

“Sharing IT resources eliminates underutilized or over-employed resources, spreads the

load and smoothes out components” [14]. Following are few examples of self-

optimization trough virtualization:

e The usage of single or multiple server environments are optimized by their
configuration as pools of resources.

e HP Storage Architecture, removes physical storage yielding improved capacity
utilization and data availability.

e HP Open Call allocates capacity dynamically in networks.

6.5.3 Process Development Evolution

HP development evolution includes three levels. Following paragraphs highlight the
levels based on the information found on HP’s white paper [14].

Element Virtualization

First level is where single resources are optimized to fulfill requirements within a single

application. Resources can be: servers, storage, network, software, etc.

134

Integrated Virtualization

Second Level is where multiple resources are optimized within a single application to
automatically fulfill service level agreements.

Compete IT Utility

Third level where all resources are pooled and shared over applications to automatically

fulfill demand in real time.

6.5.4 Open Standards
HP is a major player in driving grid standardization [14] as:
e it maintains a leadership position in the Global Grid Forum, responsible for
OGSA
o itself developed a World Services Management Framework (WSMF) which

became a basis for OASIS/WSMD standard.

6.6 Microsoft’s Dynamic Systems Initiative

Dynamic System Initiative (DSI) is a Microsoft effort to incorporate into Microsoft
Windows platform a number of solutions that will ultimately implement autonomic

characteristics.

“Microsoft is readying two new technologies that it says will provide the company with

the same kind of self-configuration and management capabilities that IBM has been

touting for the past several years.” [13]

135

6.6.1 Modeling and Development

Microsoft autonomic computing architecture is based on System Definition Model
(SDM). The SDM is a model that is used to create definitions of distributed system, i.e.
definitions of resources, endpoints, relationships and sub-systems. In addition, the SDM
contains deployment information, installation process, schemas for configuration, events,

automation tasks, health models and operational policies.

» : Applications

L

Application
Hosts

o

Network Topoligy &
Operating Systems

!

comonane i

=

S —

Hardware

Figure 50: Microsoft’s reference model [13]

Here for clarity we provide reference model definitions based on the information from

Microsoft white paper [13].

136

Distributed System

A distributed system is composed of resources, endpoints, relationships and sub-systems.
Resources

In a distributed systems resources can be hardware components or software components.
Endpoints

Endpoints represent communications across the system.

Relationships

Relationships define associations between systems, resources and endpoints.
Sub-Systems

Sub-Systems are complete self-contained systems.

According to the white paper [13], SDM can be used through entire IT life cycle as
follows:

At Design

SDM is used to define a system composed of hardware and software components i.e. all
the information including necessary resources, configuration, operational features,
policies, etc.

At Deployment

SDM is used to automatically deploy the system by dynamically allocating and
configuring software and hardware resources.

At Operations

SDM provides a system-level view for managing the distributed system based on its

definition.

137

Framework

Microsoft’s approach is to create a framework that will enable systems to be designed

with operation in mind:

“By creating this integrated feedback loop spanning the entire life cycle of a system we

can facilitate the ongoing improvement of IT infrastructure with sofiware”. [13]

6.6.2 Autonomic Computing Characteristics

Microsoft Operations
Management

Corporate Error Reporting
Internet Information Services
|System Center

D ic Data Ce

System Management Server
Virtual Disk Services \
Automated Deployment Services |
Windows Management
Instrumentation

Software Update Serwces

Microsoft

Network Load
Balancing
Widows Server
Clustering
Windows System
Resource Manager

Iintegrated Support for. NET
|ntegrated Support for ASP. NET

Figure 51: Microsoft’s DSI autonomic characteristics [13]

138

Self —Configuring

Windows Server: Virtual Disk Service provides a vendor independent interface for
identifying and configuring storage devices from multiple vendors.

Windows Server: Windows Management Instrumentation Command Line and new
command line tools provides administrators with direct and unified management tools
locally and remotely.

Windows Server: Software Update Services automatically delivers critical patches to
target computers from a single Intranet.

System Management Server Application Development provides WAN aware capabilities
to reliable deploy applications to thousands of workstations.

Self-Healing

Microsoft Operation Management (MOM) incorporates event management, proactive
monitoring and alerting, reporting and trend analysis, and system and application specific
knowledge to improve the manageability.

Corporate Error Reporting (CER) tool which is a mechanism to provide information
about problems in applications to the vendor or the in-house application developer.
Windows Server Internet Information Services is a Web server with self-healing

autonomic capabilities, supported by a new fault tolerant process model.

Self-Optimizing

System Management Server Asset Management monitors application and license usage.

139

Self —Protecting
Windows Server provides integrated support for NET and ASP.NET leveraging a fully

managed and protected application environment for Web and XML services.

6.6.3 Development Process Evolution
The following paragraphs highlight the development process evolution undertaken by

Microsoft.
Foundation of Dynamic Systems (Windows Server 2003)

First phase is to provide a solid foundation on which dynamic autonomic system can be
built.
Design for Operations
Design for operation is the next phase is to make it easy to design for operations
employing the Software Definition Model.
Data Center
In the data center phase Windows will evolve to:
e virtualizes the entire system, top to bottom,
e manages distributed resources across a data center,
e provides user with system-level view of their environment, and

o offers core new services to simplify the deployment and operation of

distributed systems.

140

Dynamic data Center Driven
Dynamic data center is the phase driven by business policy. At this last phase, “Microsoft
will deliver a closed loop system level, management solution that provide new levels of

automation in the data center and tie business policies to IT process” [13].

6.6.4 Open Standards

Microsoft is investing significantly in modeling technology, in particular XML, and
works with industry partners to extend those technologies to heterogeneous
environments. In addition, with ADM, Dell, Intel Corporation and Sun Microsystems
announced the publication of Web Services Management a specification for systems to
access and exchange information. The companies mentioned above plan to present the

specification to the Distributed Management Task Force (DMTF).

6.7 Current on-going Universities Projects

6.7.1 OceanStore

OceanStore is a “global persistent data storage designed to scale up to billions of users”
[16]. Researchers at Berkeley University of California are studying systems that perform
continuous on-line adaptation called Introspective Computing through continuous

optimization to adapt to server failures, denial of service attacks and autonomic

computing.

141

6.7.2 Recovery-Oriented Computing (ROC)

Recovery Oriented Computing is a project within Berkeley University of California that
explores autonomic computing techniques for building reliable Internet services. The
researchers investigate recovery from failure techniques. David Petterson et al. [5] state
that ROC focuses on Mean Time To Repair (MTTR) rather than on Mean Time To
Failure (MTTF) in order to provide system availability in their technical report “Recovery
Oriented Computing (ROC): Motivation, Definition, Techniques, and Case Studies”. The
following six techniques are mentioned in the report: (1) redundancy, (2) failure
containment, (3) fault insertion testing, (4) error diagnosis, (5) non-overwriting storage

systems and (6) enhanced availability.

6.7.3 Anthill

Researchers at University of Bologna, Italy are working on Anthill [18, 19] project.
Anthill is a framework that leverages the design, implementation and verification of peer-
to-peer application. Those applications can be visualized as Complex Adaptive Systems
with inherent emergent behavior and interesting properties as resilience, adaptation and
self-organization. Architecturally an Anthill system is composed of dynamic network of
peer nodes, societies of adaptive agents (ants) that can travel over the network interacting
with nodes and cooperating with other agents. The project is founded by Sun

Microsystems.

142

6.7.4 Software Rejuvenation
Software rejuvenation is an on-going project at Duke University. According to
researchers, software rejuvenation is a cost-effective technique to solve software faults by

system restart, application restart and node/application failover [20].

6.7.5 J2EEML

To make development of autonomic application easier, researchers at Vanderbilt
University Nashville, TN have developed J2EEML: Applying Model Driven
Development to Autonomic Enterprise Java Bean Systems or J3 Process. According to
Jules White, Douglas Schmidt, Aniruddha Gokhale in “Simplifying the Development of
Autonomic Enterprise Java Bean Applications via Model Driven Development” [21] their
project has the following four components:

(1) a domain specific language J2EEML, for describing autonomic EJB systems, their
goals and their adaptation plans,

(2) a framework for Java called Jfense, and

(3) J2EEML model interpreter called Jadapt to make developing of autonomic systems

more feasible.

J2EEML is actually a model-driven development (MDD) tool that can formally capture
the design of EJB systems (EJB Structural Model), their quality of service (QoS)
requirements (Goal Model), and the autonomic properties that will be applied to the EJBs

(Goal-to-EJB Mapping). It supports quick development of autonomic EJB applications

143

via code generation, automatic checking of model correctness, visualization of complex

QoS and autonomic properties [21].

6.7.6 AutoMate

This research project is conducted at the Applied Software Systems Laboratory Rutgers,
the State University of New Jersey. The researchers presented their project AutoMate:
Enabling Autonomic Applications at UPP — Autonomic Computing Mt St. Michel,

France, September 15-17, 2004.

Autoniomic Grid Applications

i

Programming System

Accord
Programming
Framework

o
Aaronomic Conporents, Drviamic Compostition, 3
- frady . s . < & . AL
Oppottunistic Interactions. Collaborative Mouitoring' 3
v _ Conno @
ey t}
£ entralized Coordinati S = =3
- Decentralized Coordination Engine & 28w
= Agent Framework. o % a5
o Decentralized Reactive Tuple Space 2 =5 2
Wy N
. s 8
”g 2o = Semantic Middleware Services g
ot = - . \ .. .
o % g - Content-based Discovery, Associative Messaging %
L33 S o 2
55T &
883 . tontent Overlay ®
2 5= Content-based Routing Engine.
8 :

Self-Organizing Overlay

The project has the following architecture:

Figure 52: AutoMate’s autonomic computing architecture [23]

Hua Liu and Manish Parashar present the Accord Programming Framework component

for autonomic applications, in the article “4 Component Based Programming Framework

144

for Autonomic Applications” [22]. It can be noticed from the architecture above that

Accord builds on a middleware that provides services required for the autonomic

applications. The following paragraphs detail the four concepts of Accord according to

the article [22]:

1. Defining Application Context — agreement by the autonomic components on
commons syntax and semantics to define and describe ontologies, namespaces,

sensors, actuators, interfaces events.

2. Defining Autonomic Component. The definition of autonomic component is

illustrated in the following figure:

Rule Agent Sensor Actuator
- Invocation Invocation
Operationa Port I
Computational
Component Control Port | l Rule Agent |
Functional Port | L] L] L
Internal Contextual
. rules
Autonomic Component State Events

Figure 53: Accord autonomic component [22]

The structure of an autonomic component in Accord includes the following:

(1) a functional port which is a set of functionalities provided and used by the

autonomic component,

(2) acontrol port is a set of sensors and actuators and a set of constraints that control

the access to the sensors and actuators,

145

(3) an operational port which is a set of rules. It has the capability to define,
introduce new rules and manage existing rules, and
(4) arule agent which monitors the state of the autonomic component and its context
and controls the firing of the rules. At the application level rule agents cooperate
to fulfill application objectives.
3. Dynamic Composition of Autonomic Components - definition of rules and
mechanisms to define organization and interaction between components.
4. Agent infrastructure - for self-management and dynamic composition behavior.
The multi-agent system consists of peer rule agents embedded within autonomic

components mentioned above and a composition agent.

6.7.7 Autonomia

Autonomia, an Autonomic Computing Environment [25] is an on-going research project
at University of Arizona. It is an autonomic computing development environment, which
includes the following main modules: Application Management Editor (AME),
Autonomic Middleware Services (AMS), Application Delegated Manager (ADM) and

Monitoring Services.

146

Applicatio

Managemeni
Editor
T,

AMS M‘\\“ w“““‘wm M»«.‘ ’

B . K'“NM e
MK Repasitory

N

- Autenomic Run-time System

~ K '
Host B,
A s ° o5t €52
13enin ?
o ; : B . .

MED Mabile Aot Swstern ' foeet Entey Component Segvre fram

05 Compnrer Secvey Mode Entry Component

O Mhi 1 MAE 8 . g

Figure 54: Autonomia mobile multi-agent autonomic computing architecture [25]

Autonomia is envisioned to leverage development and deployment of smart applications
and provide a secure and open computing environment. In addition, it automates smart
applications performance, fault tolerance, deployment, registration, discovery of their
components, automate their configuration and system resources.

Autonomia is a mobile multi-agent system based on Java/lJini technologies. In the
architecture illustrated above, the Middlware Services (AMS) provide applications with
all the services and tools necessary to achieve autonomic requirements. The

implementation of AUTONOMIA is discussed in detail in the article “4AUTONOMIA. An

147

Autonomic Computing Environment” [24] by Xiangdong Dong, Salim Hariri, Lizhi Xue,

Huoping Chen, Ming Zhang, Sathija Pavuluri, Soujanya Rao.

6.7.8 Autonomic Computing Infrastructure (MAACE)

MAACE is a project conducted at Institute of Artificial Intelligence, Zhejiang University,
Hangzhou China and aims to support the development and deployment of intelligent
applications. To date, the team of researchers have implemented a prototype system that
enables self-configuring and self-optimizing of any networked application. MAACE*s
architecture is depicted in detail in the article “Multi-Agent System based Autonomic
Computing Environment” [26] by Jun Hu, Ji Gao,and Jiu-Jun Chen. The authors note that
the architecture is based on previous work: An Infrastructure for Managing and
Controlling Agent Cooperation and An Infrastructure for Managing and Controlling the

Social Behavior of Agents.

6.7.9 Smart Grid
Smart Grid [27] is a project conducted at Columbia University where researchers apply

autonomic computing principles in order to solve Grid problems.

References

[1] Jeffrey O. Kephart, David M. Chess, “The Vision of Autonomic Computing”,
Published by IEEE Computer Society, Volume 36 (1), pp. 41-50, 2003, available at:

http://www.research.ibm.com/autonomic/research/papers/AC Vision Computer Jan 20

03.pdf

148

[2] Paul Horn, “Autonomic Computing: IBM’s Perspective on the State of Information
Technology”, IBM Corporation, October 15, 2001, available at:

http://www.research.ibm.com/autonomic/manifesto/autonomic computing.pdf

[3] A. G. Ganeck, T.A. Corbi, “The Dawning of the autonomic computing era”’, IBM
Systems Journal, Volume 42, No. 1, 2003, available at:

http://www.research.ibm.com/journal/sj/421/ganek.pdf

[4] Richard Murch, “Autonomic Computing”. Prentice Hall Professional Technical
Reference, IBM Press, pp. 235-245, 2004.

[5] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen, James
Cutler, Patricia Enriquez, Armando Fox, Emre Kiciman, Matthew Merzbacher, David
Oppenheimer, Naveen Sastry, William Tetzlaff, Jonathan Traupman, Noah Treuhaft,
”Recovery Oriented Computing (ROC): Motivation, Definition, Techniques, and Case
Studies®, Technical Report CSD-02-1175, University of California-Berkeley, March
2002.

[6] K. Evans-Correia, “Simplifying Storage Management Starts with More LEfficient
System Utilization “, Interview with N, Tabellion, searchStorage, 29 August, 2001.

[7] Aberdeen Group Inc, “IBM Data Management Tools: New Opportunities for Cost-
Effective Administration”, Profile Report, April, 2002.

[8] D. Petterson, “Availability and Maintainability >> Performance: New Focus For a
New Century*, Conference on File and Storage Technologies (FAST’02), January 28-30,
2002.

[9] A. Brown, D.A. Patterson, “To err is human”, Proceedings of the first Workshop on

Evaluating and Architecting System Dependability (EASY *01), July, 2001.

149

[10] Yankee Group, “How much is an Hour of Downtime Worth to You?” from Must-
Know Business Continuity Strategies, July, 2002.

[11] D. J. Clancy, “NASA Challenges in Autonomic Computing”, Almaden Institute, IBM
Almaden Research Center, San Jose CA, April, 2002.

[12] Sun Microsystems, “Sun Cluster Grid Architecture”, White Paper describing the
foundation of Sun Grid Computing, 2002, available at:

http://whitepapers.silicon.com

[13] Sun Microsystems, “ARCO, NI Grid Engine 6 Accounting and Reporting Console”,

White Paper, May, 2005, available at:

http://www.sun.com/software/eridware/ ARCO whitepaper.pdf

[13] Microsoft Corporation, “Microsoft Dynamic Systems Initiative”, White Paper,
October 2003, available at:

http://download.microsoft.com/download

[14] Hewlett Packard, “HP virtualization solutions: IT supply meets business demand —
Enabling the Adaptive Enterprise”, White Paper, 2003, available at:

http://whitepapers.zdnet.co.uk/0.39025945.60094872p-390006369.00.htm

[15] Hewlett Packard, “HP’s Darwin Reference Architecture Helps Create tighter
Linkage Between Business and IT”, News Release, San Jose California, May 6, 2003,

available at:

http://www.hp.com/hpinfo/newsroom/press/2003/030506b.html

[16] http://oceanstore.cs.berkeley.edu/

[17] http://roc.cs.berkeley.edu

[18] bttp://www.cs.unibo.it/projects/anthill

150

[19] http://www.cs.unibo.it/projects/anthill/documentation.html

[20] http://www.software-rejuvenaion.com

[21] Jules White, Douglas Schmidt, Aniruddha Gokhale, “Simplifying the Development
of Autonomic Enterprise Java Bean Applications via Model Driven Development”,
available at:

http://www.cs.wustl.edu/~schmidt/PDF/J2EEML.pdf

[22] Hua Liu, Manish Parashar, Salim Hariri, “4 Component Based Programming
Framework for Autonomic Applications”, In Proceedings of the International Conference
on Autonomic Computing (ICAC’04), pp. 10-17, New York, NY, 2004.

[23] http://automate.rutgets.edu

[24] Xiangdong Dong, Salim Hariri, Lizhi Xue, Huoping Chen, Ming Zhang, Sathija
Pavuluri, Soujanya Rao, “A4UTONOMIA: An Autonomic Computing Environment”,
Proceedings of the Computing and Communications Conference, 2003.

[25] http://www.ece.arizona.edu/~hpdc/projects/ AUTONOMIA/

[26] Jun Hu, Ji Gao, Jiu-Jun Chen, “Multi-Agent System based Autonomic Computing
Environment”, Proceedings of the Third International Conference on Machine Learning
and Cybernetics, Shanghai, Volume 1, pp. 105-110, 26-29, August, 2004.

[27] Columbia University Smart Grid information available at:

hitp://www.ldeo.columbia/ed/res/pi/4d4/testbeds/

151

Chapter 7 Future Research Directions

7.1 Exploratory Approaches

Practically every aspect of autonomic computing leads to a future research direction as
autonomic computing spawns hardware, software and most importantly self-regulatory

human characteristics.

“The underlying technologies to enable greater automation of system management are

ripe for innovation.” [1]

In addition, in 2001 Paul Horn [1] mentioned the following approaches for exploration:
o artificial intelligence,
e control theory,
e cybernetics,
e self-evolving systems,
¢ load management, and

e cellular chips.
These approaches were further extended and detailed in another IBM article issued in

2003, called “The Vision of Autonomic Computing” by Jeffrey O. Kephart and David M.

Chess. They identified emergent engineering and scientific challenges for autonomic

152

computing. The following paragraphs depict some interesting scientific exploratory

principles for autonomic computing.

Behavioral abstractions and models

The authors note that fundamental mathematical work, advanced search and optimization
techniques with parameterized models of the local-to-global relationships and control
theoretical approaches are just a starting point for research into behavioral abstractions

and models.

Robustness theory
Another path toward autonomic computing is the research into robustness, diversity,

redundancy and optimality including relationships between them.

Learning and optimization theory
Learning and optimization are well supported by theories for single agents. However in
multi-agent systems they become challenging problems as so far the research has yielded

only empirical results but no solid theorems.

Negotiation theory

Research is needed for negotiation theories from the system perspective as a whole, that

is, a compound of negotiation algorithms of multiple autonomic elements.

153

Emergent phenomena theories
Insights that are gathered from scientists studying nonlinear dynamics and emergent

systems constitute another path for research to support autonomic computing.

Psychology theories
Research for new goal definition and visualization paradigms is needed to “help humans

build trust in autonomic systems” [2].

Open Standards
From the trials of modeling and development of autonomic systems has emerged a crucial
need of standardization. Definitely, extensive research is needed such that new emergent

standards will ultimately leverage the final solution of autonomic computing.

There are many design patterns highlighted in this survey as a reference from an article,
blueprint, white paper, website, documentation; each one is an avenue for a research
direction towards the paradigm of autonomic computing and then in particular towards

Autonomic System Timed Reactive Model (AS-TRM).

To date, a first step has already been taken towards extending the TROM formalism to
Autonomic System Timed Reactive Model (AS-TROM). H. Kuang presents the
characteristics of AS-TRM, the architecture and communication mechanism of AS-TRM

for implementing autonomic as well as reactive functionalities in his master thesis called

154

“Architecture for Autonomic System: AS-TRM Approach” [3]. In addition, he describes

the reliability assessment model of AS-TRM for the evolution of an AS-TRM system.

References

[1] Paul Horn, “Autonomic Computing: IBM’s Perspective on the State of Information
Technology”, IBM Corporation, October 15, 2001, available at:

http://www research.ibm.com/autonomic/manifesto/autonomic computing.pdf

[2] Jeffrey O. Kephart, David M. Chess, “The Vision of Autonomic Computing,”
Published by IEEE Computer Society, Volume 36 (1), pp. 41-50, 2003, available at:

http://www.research.ibm.com/autonomic/research/papers/AC Vision Computer Jan 20

03.pdf
[3]1 H. Kuang, “Architecture for Autonomic System: AS-TRM Approach”, Master of

Computer Science Thesis, Computer Science Department, Concordia University,

Montreal, Canada, 2006.

155

