ROUTING PROTOCOLS FOR AD HOC NETWORKS
WITH UNCERTAINTY IN THE POSITION OF THE
DESTINATION

ANUP PATNAIK

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

FEBRUARY 2006
(© ANUP PATNAIK, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14333-9
Our file Notre référence
ISBN: 0-494-14333-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Routing Protocols for Ad Hoc Networks with Uncertainty in the Position

of the Destination

Anup Patnaik

An ad hoc network comprises a set of computing devices, often mobile, that communicate
using wireless transmissions with the devices within their transmission range. These de-
vices or nodes are able to detect the presence of other nodes in their transmission range
as well route packets on behalf of other nodes. Hence, the network does not need to de-
pend on any predefined infrastructure. This lack of infrastructure makes the problem of
routing and packet forwarding a challenging task in such networks. To carry out this task
in an efficient and scalable manner, several authors have proposed position-based routing
algorithms. Position-based routing algorithms utilize the position or location of the desti-
nation node to inform routing decisions. However, obtaining the accurate position of the
destination may not be feasible in some settings.

In this thesis, we consider the problem of routing in an ad hoc network where the
source node knows the approximate position of the destination node, but is uncertain about
its exact current location. We investigate two approaches to this problem: one, based on a
traversal of the faces of a planar sub-graph of the graph representing the network, and the
second, based on flooding a limited area of the graph that represents the region the destina-
tion is likely to be found. We propose several variants of both approaches, and do extensive
simulations to analyze the performance of the algorithms. Our results indicate that a simple
modification of the basic flooding approach yields the best trade-off for optimizing deliv-
ery rate, stretch factor, as well as transmission cost. If however, delivery is required to be
guaranteed, then a variant of the face tree traversal approach that we propose has the best

performance.

iii

Acknowledgments

This thesis has been much more than an academic experience. Many wonderful people
have contributed towards this experience in very many ways. I would begin by expressing
my gratitude towards my mother, Deepti, and father, Rabindra. It is their care and uncon-
ditional love that has made me the person that I am. I dedicate this work to them. Also, I
would like to mention my little sister, Anuradha, whose non stop chattering was always a
welcome break.

I have been very fortunate to have been working under Dr. Lata Narayanan. She has
guided, motivated and supported me in all respects all throughout my stay at Concordia.
Her energy is contagious. And, her dedication to her work and her students has and will
always inspire me. A big thanks to her for everything.

Dr. V. S. Alagar taught me many important lessons. I have enjoyed the many technical
and non-technical discussions with him, which have helped me develop a systematic way
of thinking. He has been a true mentor to me. My sincere thanks to him.

I thank my friends: Ankur, for filling up the role of a mother, GB, for his idiosyncrasies,
Israat, for making me think on her problems, Kruthi, for all that nagging, Pari, for those
beautiful songs that are hard to let go, Ram, for being eternally confused, Sabeel, for being
eternally bored, Sandesh, for those morning strawberry milk shakes and, Tejas, for being
T. It is for their presence that my stay in Montreal was memorable.

I would like to thank my co-authors Evangelos Kranakis, Danny Krizanc, and Sunil
Shende with whom we have submitted a paper titled “Routing with uncertainty in the po-
sition of the destination”.

I would also like to thank Halina for taking care of all my administrative needs and
Pauline for giving me interesting tutoring assignments.

Finally, I would like to thank the Art of Living Foundation and all my friends there.

iv

Contents

List of Figures vii
List of Tables ix
1 Introduction 1
1.1 AdHocNetworks e 2
1.1.1 ABriefHistory 4

1.1.2 Applications of Ad Hoc Networks 5

1.1.3 Challenges in Designing Ad Hoc Networks 6

1.2 Routingin AdHoc Networks 7
1.2.1 Proactiveprotocols 8

122 Reactiveprotocolso 9

1.2.3 Position-based protocolso 10

1.3 Routing with Uncertainty in Destination’s Position 11
131 RelatedWork 11

1.4 Contributionof Thesis o o 13

1.5 Organizationof Thesis 15

2 Face Tree Traversal Based Protocols 16
2.1 Graphs. 16

22 UnitDiskGraph. 17

2.3 PlanarizationofaGraph o oL 17

24 NetworkModel e 18

2.5 Position-basedRouting o 19
25.1 GreedyRouting oo oo 20

252 FaceRouting o 21

253 GFGRouting 23

2.6 Algorithms for Routing with Uncertainty, 24
2.7 Face Tree Traversal Algorithms 25
2.77.1 Face Tree Construction 25

272 FaceTreeTraversal 28

3 Flooding Based Protocols 39
3.1 All-Neighbor (AN)Flooding 39
3.2 Subset-Neighbor (SN) Flooding 41
33 Extended ANFlooding 42
34 Extended SNFlooding 43

4 Simulation Results and Discussion 44
4.1 Simulation Environment L L. 44
4.2 Face tree traversal-based algorithms 45
4.3 Flooding-based algorithms, 48
4.4 Comparison between two approaches 53

5 Conclusion 54
Bibliography 58
Appendices 61
A Protocol Packet Formats and Pseudocodes 62
A.1 GFG Routing Packet Format and Protocol Pseudocode 62
A.2 Doubling Face Tree Routing Packet Format and Protocol Pseudocode . .. 65
A.3 DFS Face Tree Routing Packet Format and Protocol Pseudocode 72
A.4 Mark Entry Edge Face Tree Routing Packet Format and Protocol Pseudocode 77
A.5 BFS Face Tree Routing Packet Format and Protocol Pseudocode 83
A.6 || Face Tree Routing Packet Format and Protocol Pseudocode 88
A.7 AN Flooding Routing Packet Format and Protocol Pseudocode 92
A.8 SN Flooding Routing Packet Format and Protocol Pseudocode 95

vi

List of Figures

1.1
1.2
1.3
1.4
2.1
2.2

2.3

2.4
2.5

2.6

2.7
2.8
2.9
2.10
2.11
2.12
2.13

2.14

Aninfrastructure WLAN. o oo 2
Mesh topology of anad hocnetwork. 3
An ad hoc network with changing topology. 3
A vehicularadhocnetwork. Lo L 12
Planar and nonplanar geometric graphs. 17
A unit disk graph, where r denotes the transmission radius of node v. The

circular disk denotes the transmissionareaofnodev. 17
The GABRIEL GRAPH algorithm [BMSU99]. Here, disk(u,v) is the disk
with diameter (u,v) and N(v) is the set of neighbors of node v in the UDG. . 18
Gabriel graph computation. L 0oL 19
An example showing GREEDY ROUTING. The dotted circle centered at d
is to show that g is closest to d amongst all neighborsof p 20
An example showing a topology for which GREEDY ROUTING fails. The

dotted circle centered at d is to show that p is closer to d than all of its

neighbors. L 21
Traversal of a face using righthandrule. 21
FACEROUTING. v vt v it e e e i e et e e e e e 22
FACEROUTING. v v v v ettt et e e e e e e 22

Failure of FACE ROUTING in presence of uncertainty in destination position. 23
GFGROUTING. . . v v v vttt it e e e e e e e e e e e e s 24
Entry edge computation for the face [uvw]. uw is the entry edge. 27
An example showing the face tree for a planar graph. The arrows moving

from child to parent face, passing through the entry edges, represent the

edgesof thefacetree. L. 27
The FACE TREE algorithm (from [MorO1]). 29

vii

2.15

2.16
2.17

2.18

2.19
2.20

221

3.1
32

33

4.1

4.2

4.3

4.4

4.5

4.6

The entry edge computation algorithm used by DOUBLING FACE TREE (from

[MorO1]). o e 30
The entry edge computation algorithm used by DFS FACE TREE. 32
An example where the path taken by DOUBLING FACE TREE is much

longer than that taken by DFS FACETREE. 32
The entry edge computation algorithm used by MARK ENTRY EDGE FACE

TREE. e 34
The BFS FACE TREE algorithm. 36
An example showing the execution of BFS FACE TREE up to two levels of

thefacetree. 37
The || FACE TREE algorithm. 38
An example where flooding within the uncertainty zone fails 40

Greedy algorithm to choose minimum subset of 1-hop neighbors that cover
all 2-hop neighbors. Ni(v) is the set of 1-hop neighbors of a node v that
lie within the uncertainty zone and N, (v) is the set of 2-hop neighbors of a
node v that lie within the uncertainty zone. 41
An example where SN FLOODING within the uncertainty circle fails but
AN FLOODING succeeds. v i ... 42
Stretch factor for varying uncertainty radius for 75, 100, and 125 nodes
respectively. Simulation field - 800 x 700. Transmission radius - 120 46
Transmission cost for varying uncertainty radius for 75, 100, and 125 nodes
respectively. Simulation field - 800 x 700. Transmission radius - 120 47
Delivery rate for varying uncertainty radius for 75, 100, and 125 nodes
respectively. Simulation field - 800 x 700. Transmission radius - 120 49
Delivery rate of AN FLOODING for increasing r/A. Simulation field - 3600
x 3600. Number of nodes - 2866. Transmissionradius - 120 50
Stretch factor for varying uncertainty radius for 75, 100, and 125 nodes
respectively. Simulation field - 800 x 700. Transmission radius - 120 51
Transmission cost for varying uncertainty radius for 75, 100, and 125 nodes

respectively. Simulation field - 800 x 700. Transmission radius - 120 52

viil

List of Tables

1 A comparison of the algorithms. Here, n is the number of nodes in the
network and d is the maximum degree of a node. All memory requirements
are in terms of number of bits. The symbol — means the algorithm is

memoryless

ix

Chapter 1
Introduction

The Internet was born thirty six years ago with the aim of building a nationwide network
of computers [Tug69]. A key element in the vision for the Internet, as articulated by its
founders, was that anyone will be able to plug in from any location with any device at any
time [Kle03]. Truly, in recent times, this anytime anywhere information access has become
the need of our society and industry.

This need for computing and communications on the move has seen the emergence of
Wireless Local Area Networks (WLANs), computer networks where radio waves are used
as the physical medium for transmitting data. Owing to the standardization of IEEE 802.11
protocols for the physical and MAC layers, deployment of WLANs has seen tremendous
growth. Such networks consist of special devices called access points, which are respon-
sible for serving wireless hosts over a range of 100-200 m. The access points act as an
interface between the wired and the wireless networks. The wireless hosts connect to the
access points to communicate with other hosts on the wired/wireless network using wire-
less network interface cards (NICs). The mobility of a host is not restricted to the range
of a single access point. Hosts are free to move from the coverage of one access point to
the other by means of a process called a handoff. IEEE 802.11 based WLANSs as described
above are known as infrastructure networks. An illustration of an infrastructure WLAN is
given in Figure 1.1. Apart from this, wireless hosts can also directly communicate with
other wireless hosts within their transmission range without the need of any access points.
Such a mode of operation of the hosts is called ad hoc mode. This thesis concerns itself

with such infrastructure-less networks or ad hoc networks.

Wired node

Figure 1.1: An infrastructure WLAN.

1.1 Ad Hoc Networks

An ad hoc network comprises a set of computing devices, often mobile, that communi-
cate using wireless transmissions, directly with the devices within their transmission range.
Since the transmission range is limited, typically 50-200 feet, not all devices are in each
other’s range. To communicate with devices outside their transmission range, a device re-
lies on intermediate devices to relay or forward packets. These devices or nodes are able
to detect the presence of other nodes in their transmission range as well route packets on
behalf of other nodes. Therefore, every node in the network acts as both an end machine
as well as a router. The network has a mesh topology (see Figure 1.2) as opposed to the
star topology of an infrastructure network (refer to Figure 1.1). Unlike the infrastructure
network, in an ad hoc network the data is transmitted over multiple wireless links, hence
such networks are also called multi-hop wireless networks.

Such networks are very different from the traditional wireless/wired networks. Since
the nodes are free to move about randomly, the network’s topology may change rapidly
and unpredictably. An example of this can be seen in Figure 1.3. Here, the topology of the
network drastically changes as node D moves out of node A, B and C’s transmission range
into node E’s transmission range. As more and more devices participate in the network,
the network becomes more robust with multiple paths between any two set of nodes. The
network is self-organizing, meaning the network is formed and destroyed on-the-fly without

the need of any administration and whenever needed, hence the name ad hoc.

Figure 1.2: Mesh topology of an ad hoc network.

Figure 1.3: An ad hoc network with changing topology.

1.1.1 A Brief History

Multi-hop relaying, the principle behind ad hoc networking dates back to 500 B.C. when
Darius I (522-486 B.C.), the king of Persia, made use of a line of shouting men positioned
on tall structures to send messages from his capital to the remote provinces of his empire
[MMO4]. In 1972, this principle was applied to broadcast radio networks in the Packet
Radio Network (PRNET) project sponsored by the Defense Advanced Research Projects
Agency (DARPA) [DAR]. The PRNET consisted of mobile nodes having radio interfaces
that used a combination of ALOHA [Tan02] and carrier sense multiple access (CSMA)
[Tan02] to access the shared radio channel. The network consisted of mobile radio re-
peaters responsible for relaying packets from one repeater to another, until the packets
eventually reach the destination node. The classical Bellman-Ford algorithm was used as
the routing algorithm. Early prototypes of the system were very successful proving the fea-
sibility and efficiency of infrastructure-less networks. In the 1980s, the success of PRNET
led DARPA to extend the work on such networks through the survivable radio networks
(SURAN) project [FLO1]. This project mainly focused on improving the radio devices by
making them small, low-cost and power efficient. In this project they were also able to
improve on the network’s scalability and survivability (i.e., resilience to node and link fail-
ure). In the mid 1990s, DARPA initiated the Global Mobile (GloMo) Information Systems
project to take advantage of the rapidly developing Internet infrastructure and technologies
[DAR]. The main goal was to provide mobile users anytime anywhere connectivity. Many
novel ideas of networking within an ad hoc network as well as between an ad hoc network
and the Internet were tried out in this project. Around the same time, with the availabil-
ity of laptop computers, the concept of ad hoc networking was taken to the commercial
world. Realizing the need for open standards in the protocols involved in ad hoc networks,
a working group within the Internet Engineering Task Force (IETF), called the mobile ad
hoc networks (MANET) working group was formed [IET]. The goal of the MANET group
is to “standardize IP routing protocol functionality suitable for wireless routing applications
within both static and dynamic topologies” [IET]. Soon after, the IEEE 802.11 subcom-
mittee standardized a medium access protocol based on collision avoidance and resilient
to the hidden terminal problem. The standard also specified the physical layer. This led to
wide scale manufacturing of cheap radio/wireless cards that could be plugged into laptops
and other mobile devices. As a result now ad hoc networks could be built out of cheap

off-the-shelf equipment. Currently, companies such as Packethop, Tropos and Motorola

are providing ad hoc networking solutions for areas ranging from public safety to wireless
broadband.

1.1.2 Applications of Ad Hoc Networks

Being infrastructure-less, these networks can be deployed rapidly anytime anywhere in a
cost-effective manner. They can also provide reliable connectivity in spite of mobility of
nodes. Owing to these, ad hoc networks find applications in several areas. Some of these
include: military communications, disaster management, emergency operations, health-
care, vehicular networks, collaborative computing, wireless mesh networks and wireless
sensor networks. We discuss some of these below.

Military communications was one of the foremost areas of application for ad hoc net-
works. In battleground scenarios of hostile enemy territories and difficult terrains such as
mountains and desserts, availability of a communication infrastructure cannot be assumed.
In such environments, ad hoc networks help in instantly setting up communications be-
tween groups of soldiers and mobile military vehicles such as vans, tanks and planes.

Ad hoc networks also meet temporary communication needs of collaborative com-
puting by enabling communication without the need of any prior setup. Such scenarios
arise in conferences where a group of people coming together for a purpose may need to
coordinate, communicate and share resources.

Ad hoc networks are very useful in emergency, search and rescue, and disaster man-
agement scenarios. In cases of earthquake and hurricanes, conventional infrastructure
could be broken. Here, ad hoc networks immediately provide communication for coor-
dinating rescue and restoration activities. Also, in emergency situations, ad hoc networks
provide more localized and dedicated communication infrastructure as compared to the
conventional ones [MMO04].

Wireless Mesh Networks are ad hoc networks with dedicated nodes forming a mesh
topology to provide communication infrastructure for fixed/mobile users. Unlike other ad
hoc networks as discussed above, in such networks the end user terminals do not carry out
any routing. Maintaining of the topology and routing are carried out exclusively by the
dedicated nodes. In the context of 802.11 based networks, each of the access points, acts
as a node in the ad hoc network. The user terminals connect to the access points which
in turn connect to other access points over the wireless medium. A mesh of hundreds of

such access points mounted on top of buildings and street lights can be used to provide

broadband wireless Internet access throughout a city. A survey of wireless mesh networks
is given in [AWWOS].

Sensor networks are another application of ad hoc networking. Sensors are tiny de-
vices that are capable of sensing environmental parameters and communicating them over
the wireless links. Sensor networks are ad hoc networks comprising a large collection of
sensor nodes. The use of ad hoc networking enables such networks to be deployed in a cost
effective manner and gives the flexibility of effortless addition, removal and movement of
sensors. Some of the application scenarios for such networks are: detection of nuclear
radiation, border intrusion and temperature sensing [ASSCO02].

Recently, use of ad hoc networking is also being explored in the arena of cellular net-
works [WQDTO1]. The main idea here is to enable each phone with multi-hop relaying so
that the base station as well as other cell phones can be reached through other intermedi-
ate phones. Such a hybrid (cellular/ad hoc) wireless network architecture results in an

increase in the number of users supported per cell.

1.1.3 Challenges in Designing Ad Hoc Networks

Due to their unique characteristics, ad hoc networks face many challenges. We discuss

these below.

o Wireless medium: Because of the use of the wireless medium, transmissions in an
ad hoc network are prone to noise and interference from outside signals. Hidden-
terminal and exposed-terminal problems could also occur. Also, wireless links have
severe bandwidth constraints as compared to the wired ones. Therefore, protocols

need to be designed in a manner so as to shield the upper layers from such details.

o Infrastructure-less: In the absence of any centralized servers, all the network man-
agement, routing and security functionalities have to be distributed across different
nodes. This implies that all the protocols must be designed in a perfectly distributed

manner.

e Multi-hop routing: Since there are no dedicated routers in the network, every node
in the network has to gather the topology information, build its routing tables and

forward packets. This makes designing routing protocols very hard.

¢ Dynamically changing topologies: Because of arbitrary movement of nodes, the
topology of the network can change frequently and unpredictably. To cope with this
the routing protocols have to be designed in a manner so that they always maintain

accurate topology information.

e Asymmetric node and link capabilities: Nodes in the network with radio inter-
faces may have different transmission and receiving capabilities. This can result in
asymmetric links. Also, different nodes may have different processing and power
capabilities. Designing protocols for such heterogeneous networks can be very com-

plex.

e Energy constrained operation: Nodes, being mobile, are constrained by limited
battery power. This is an important issue in ad hoc networks since each node expends
energy in forwarding packets for other nodes. Hence, protocols have to be designed

for optimal energy usage.

1.2 Routing in Ad Hoc Networks

In computer networks, routing is defined as carrying out the following two functions:

¢ Discovering paths (also called routes) between network terminals/nodes along which

data packets can be sent.

e Forwarding, the passing of addressed packets from their source node to their desti-

nation node.

The nodes in the network that carry out this functionality are called routers and the
distributed algorithm running at the network layer that performs the routing functionalities
is called the routing protocol.

The forwarding function can be achieved in three main ways. One, by building and
maintaining routing tables at each router, which maintain a record of next-hop node along
the path for every destination node. Two, by storing the full path from source to destination
in the header of the packet itself. Such a technique is called source routing. Three, by using
the node location information. This does not require any routing state to be maintained at

the nodes. We discuss algorithms based on this approach in detail in Chapter 2.

In protocols based on routing tables, the discovery of paths involves building and main-
taining the routing tables. There are two approaches to achieve this: Distance Vector (DV),
in which each node sends its neighbors its entire routing table, and Link State (LS), in
which each node sends to all the other nodes the state of its link with its current neighbors
via flooding. To guarantee that routing tables are up to date and reflect the current network
topology, nodes continuously exchange route updates.

In the context of ad hoc networks, the real challenge in designing routing protocols is
in maintaining accurate routing tables in the face of changing topology, and doing so in
an efficient manner so as to meet the bandwidth and energy constraints. For this, many

different strategies are deployed. We classify and discuss them below.

1.2.1 Proactive protocols

The table-driven DV and LS based protocols that calculate all possible paths irrespective of
their use are called proactive protocols. The advantage here is that a path to the destination
is always available without any delay. Two of the prominent proactive routing protocols are
Destination Sequenced Distance Vector (DSDV) [PB94] and Optimized Link State Routing
(OLSR) [CeA*03] protocols. We discuss these below.

Destination Sequenced Distance Vector

As it is a routing table based protocol, each node maintains a table that contains the
shortest distance and the first node on the shortest path to every other node in the network.
Additionally each entry also contains a sequence number. The tables are exchanged be-
tween neighbors periodically, or when a topology change is detected. These updates occur
either by exchanging complete routing tables or parts of it incrementally. For each update
for a destination, an entry in the routing table is updated only if the update has a more re-
cent sequence number or if it has the same sequence number but a better path length. This
mechanism prevents routing loops and the count-to-infinity problem.

Optimized Link State Routing

OLSR is a link state routing protocol with optimized flooding of the network with
routing updates (called link state packets). Each node selects, independently from other
nodes, a minimal set of nodes, called Multipoint relays, from its one-hop neighbors. Only
these nodes are responsible for link state updates and for packet forwarding. Link state

updates are generated periodically.

1.2.2 Reactive protocols

Another strategy in designing a protocol is to calculate a path to a destination only when
there is a need. In the absence of any data transmission, such protocols do not generate any
routing traffic. This class of protocols are called reactive or on-demand protocols. Dynamic
Source Routing (DSR) [JM96] and Ad hoc On Demand Distance Vector routing (AODV)
[PR99] are two main reactive routing protocols. We discuss them below.

Dynamic Source Routing

DSR involves two main mechanisms: Route Discovery and Route Maintenance. Route
Discovery is triggered by the source node when it wants to find a path to the destination
node. Route Request (RREQ) packets containing the sender address, destination address,
a unique number to identify the request and route record are flooded in the network. An
intermediate node receiving the RREQ relays it only if it has not relayed it before (this
check is made by looking at the unique number). If the intermediate node has a route
to the destination in its cache then it replies to the RREQ with the complete route, else
it appends its address to the route record and broadcasts the packet to its neighbors. On
receiving a RREQ packet, the destination replies to it with a Route Reply (RREP) packet
containing the complete route record from the RREQ. This RREP is sent along the path
obtained by reversing the route record in the RREQ. In some cases to restrict the flooding
of the whole network, the Time To Live (TTL) parameter in the RREQ is set to a value less
than the network diameter. Route Maintenance, as opposed to Route Discovery, involves
invalidating stale entries in the cache. When an intermediate node detects a link break to
its next-hop node towards the destination, it removes this link from its route cache and
sends a Route Error message to the source. On receiving the Route Error (RERR) message
the source removes the entry in the cache for the destination, and triggers a new route
discovery.

Ad hoc On Demand Distance Vector Routing

Like DSR, AODV also makes use of RREQ and RREP packets to discover routes, but
the main difference here is that the newly found route is stored at the nodes and not in the
packet. Every node receiving the RREQ sets up the reverse path from itself to the source by
adding the neighbor from which it received the RREQ as the next-hop towards the source
node. Hence, by the time the RREQ packet reaches the destination node, the reverse path
from the destination to the source node is set on all intermediate nodes. On receiving
the RREQ, the destination node sends the RREP along this path. Similar to RREQ, as

the RREP is propagated towards the source node, the reverse path from the source to the
destination is set on all intermediate nodes. To maintain freshness of routes, route entries
are deleted if they are not used within a given route expiration time interval. Similar to
DSDV, AODV also maintains sequence numbers corresponding to each destination. A path
information towards a destination is updated only if the destination sequence number in
the packet received is greater than the last destination sequence number stored at the node.
Route maintenance involves periodic transmission of HELLO messages. Upon detecting
a link break, an unsolicited RREP message is sent to all precursor nodes involving the
broken link. A precursor node is a node that is one before the current node on the path to the
destination through the next-hop. These nodes in turn relay packets to their precursor nodes
so that all sources involving the broken link on their path to the destination are notified. On

receiving the unsolicited route reply, the source nodes start a new route discovery.

1.2.3 Position-based protocols

The protocols in the previous two categories heavily rely on flooding and frequent updates
of routing tables. These are very resource-intensive operations, especially in the context of
ad hoc networks. Therefore, to reduce the amount of control traffic, several authors have
proposed the use of node location information. We refer to the problem of routing from a
source node s to a destination node d at position p by ROUTEC(s,d, p). Protocols that solve
this problem are often called position-based routing protocols. In such protocols, every
node is assumed to know the locations of itself and its neighbors. In addition, the source
node is assumed to know the location of the destination. These protocols are stateless,
meaning there are no routing tables or any other routing states maintained at the nodes.
An intermediate node picks the next-hop node on the path towards the destination based
on the location information of the destination and its neighbors. One such protocol is the
compass routing proposed by Kranakis, Singh and Urrutia [KSU99]. In compass routing,
an intermediate node / forwards the packet to one of its neighbor N such that the direction
IN is closest to the direction ID, where D is the destination node. Compass routing does
not guarantee the delivery of packets. Our study in this thesis is centered on position-based

protocols. We discuss them in detail in Chapter 2.

10

1.3 Routing with Uncertainty in Destination’s Position

All the position-based routing protocols above assume the use of exact location informa-
tion about the destination node. This information can be obtained using a location service
[CBWO02], or from messages previously received from the destination. However, in both
these cases, there can be inaccuracies in the position information. In the presence of such
inaccuracies, the routing algorithm may have a reduced rate of delivery. Also, in some set-
tings maintaining a location service may be too resource consuming or may not be feasible
at all.

In this thesis, we assume that the source node s knows the destination node d’s position
(x0,y0) at time 7o, but is interested in sending a packet to d at time #; where #; > #;. If the
maximum velocity of node d is v units per second, then the position of d at time ¢ is a point
inside the circle with center (xo,yo) and radius v(¢; — fp) units. This leads to the problem of
routing with uncertainty in the position of the destination. Instead of routing to a specific
destination at a known position (x,y), we are interested in routing to a specific destination
whose position is somewhere inside a circle with known center and radius. We refer to the
problem of routing from a source node s to a destination node d contained in the circle of
radius r centered at position p as ROUTE-U(s, d, p,r) and r as the uncertainty radius.

The problem of routing with uncertainty in destination’s position may occur especially
in vehicular ad hoc networks where the goal is to enable communication between vehicles
without the need for a network infrastructure. In such networks, because of rapid movement
of the vehicles, a source vehicle s wanting to send data to the destination vehicle d may not
always have the accurate position of d. This is illustrated in Figure 1.4. Here, s has the
exact location of d at time £y, but when it wants to send the data to d at time #;, vehicle d
has moved to a new location (Figure 1.4 (b)). This movement is shown by the solid arrows.
Note that other vehicles may also move, however, this need not affect the routing algorithm.
Note that although s does not know the exact location of d at ¢y, it can be safely assumed to

be within the dotted circle centered at d’s old location and with r as its radius.

1.3.1 Related Work

To the best of our knowledge, this is the first work to deal with the problem of routing with
uncertainty in the destination’s position. However, the problem is similar to the problem of

geocasting. In geocasting, the objective is to route packets from a single source node to all

11

(a) A vehicular network at time ¢

(b) The vehicular network at time 7

Figure 1.4: A vehicular ad hoc network.

12

nodes in a given geographical region. From this, it follows that the problem of ROUTE-U is
subsumed by the problem of geocasting. Therefore, a solution to the geocasting problem
would necessarily solve the ROUTE-U problem. However, such a solution may not be
efficient as compared to one that solves only the ROUTE-U problem. We discuss some of
the geocasting algorithms proposed in the literature below.

In [KV99], Ko and Vaidya propose the Location Based Multicast (LBM) algorithm
based on flooding. They restrict the flooding by defining forwarding zones, which include
at least the destination region and a path between the sender and the destination region.
An intermediate node forwards a geocast packet only if it belongs to the forwarding zone.
They give two schemes to determine the forwarding zone. The first scheme defines the for-
warding zone as the smallest rectangular shape that includes the sender and the destination
region. The second scheme defines the forwarding zone by the coordinates of the sender,
the destination region and the distance of a node to the center of the destination region.
LBM does not guarantee delivery of packets. The authors of [SH04] give an algorithm that
consists of reaching a node g contained in the circle with radius r centered at p, and then
flooding all nodes contained in the circle. This approach also does not guarantee delivery.
We call algorithms based on this approach flooding-based algorithms and propose several
variants of this approach in Chapter 3. Recently, Stojmenovic [Sto04] gives two algorithms
for geocast that guarantee delivery. The first algorithm is essentially flooding inside the
circle, augmented by face traversals initiated by inside border nodes; this approach was
also outlined in [SHO4]. In the second algorithm, the packet is sent simultaneously to a
grid of points just outside the circle, which then initiate a flooding inside the circle. In
[dBvO096], an algorithm that performs a traversal of a planar graph in O(n?) steps is
given. The algorithm is based on constructing and traversing a tree of the faces of the pla-
nar graph. This was improved in [BMO02], to an algorithm that can be used for geocasting
with guaranteed delivery in a MANET in O(nlogn) steps [BMSU99]. We discuss these

face tree traversal-based algorithms in detail in Chapter 2.

1.4 Contribution of Thesis

In this work, we investigate two classes of protocols to solve the problem of routing with

uncertainty in the position of the destination. The first class consists of variants of a

13

flooding-based approach, while the second class consists of variants of the face tree traver-
sal algorithm proposed by Bose and Morin [BM02, Mor0O1]. We define and analyze all
the protocols mentioned above. We also implement and simulate each of the protocols to
compare performance. We also study the effect of the number of nodes and the size of the
uncertainty radius on delivery rate, stretch factor, and the transmission cost. The delivery
rate is the percentage of packets that get transmitted successfully to the destination. The
stretch factor is the number of hops taken by a packet compared to the minimum hop path
available in the network, averaged over all successfully delivered packets. The transmis-
sion cost is the ratio of total number of times that copies of the packet get transmitted in the
course of successful delivery of the packet to the number of transmissions in the minimum
hop path, averaged over all successfully delivered packets. It is a measure of the energy
costs of the algorithm.,

The surprising findings of our experiments are listed below:

¢ Flooding-based algorithms show an interesting behavior whereby the delivery rate
first decreases and then increases as the uncertainty radius increases.

¢ A simple augmentation of flooding, that we call EXTENDED SN FLOODING , achieves
very high delivery rate, at the same time as achieving very low stretch factor, and a
drastically reduced transmission cost.

e While the accepted wisdom is that flooding is very resource-inefficient, and would
have a high transmission cost, our results show that some variations of the face tree
traversal approach, including the version given in [BMSU99], have a very high trans-
mission cost as well. Indeed, there is considerable overlap between the transmission
cost profiles of the two approaches. In particular, the cheapest algorithms among
the ones studied are EXTENDED SN FLOODING and SN FLOODING, while the two
most expensive algorithms are face tree traversal-based algorithms.

¢ The difference between geocasting and ROUTE-U is highlighted by the fact that a
technique that provably improves the performance for geocasting appears to degrade
the performance for ROUTE-U.

e The original face tree traversal-based approach is memoryless as compared to the
flooding-based approaches, which require a constant amount of routing state at nodes.
However, an obvious modification of FACE TREE that uses extra memory does not
yield much benefit. In particular, its performance is still worse than the best flooding

approach in our experiments.

14

o Finally, if marked bits are not practical, or if guaranteed delivery is required, then
DFS FACE TREE would seem to be best approach, but otherwise, EXTENDED SN
FLOODING would be best.

1.5 Organization of Thesis

In Chapter 2, first we give a discussion on graphs, unit disk graphs, planarization of graphs
and the network model used in this thesis. Next, we describe three position-based routing
protocols and give an outline of our solution to the problem of routing with uncertainty in
destination’s position. Finally, we present a class of algorithms based on face tree traversal.

In Chapter 3, we present a class of algorithms based on simple flooding. We illus-
trate cases where such algorithms fail to guarantee delivery and also suggest techniques to
improve delivery rate.

In Chapter 4, we give details of the simulation environment used in our experiments. We
compare the performance of all the algorithms categorizing them into face tree traversal-
based and flooding-based. Finally, we give a discussion comparing the two approaches.

In Chapter 5, we present a summary of our findings and suggest future research direc-

tions.

15

Chapter 2
Face Tree Traversal Based Protocols

In this chapter we detail a class of algorithms that solve the problem of routing with uncer-
tainty in the destination’s position. We begin with a discussion on graphs, unit disk graphs
and their planarization in Sections 2.1, 2.2 and 2.3 respectively. We give the network
model used in this thesis in Section 2.4. In Section 2.5, we give background on position-
based routing protocols and discuss the GFG ROUTING algorithm. Finally, in Section 2.7,

we present the face tree traversal-based algorithms.

2.1 Graphs
A graph can be defined as follows [Car79]:

A graph G = (V, E) consists of

1. afinite set V = {v1,vy,...,v,} whose elements are called vertices;

2. a subset E of the Cartesian product V x V, the elements of which are

called edges.

A geometric graph is a graph with points on the plane as vertices and straight line
segments joining them as edges. A geometric graph is said to be planar if no two of its
edges intersect other than at a common endpoint. A geometric graph with intersecting
edges is called nonplanar. Examples of planar and nonplanar geometric graphs are given

in Figure 2.1.

16

(a) Planar Graph (b) Nonplanar Graph

Figure 2.1: Planar and nonplanar geometric graphs.

Figure 2.2: A unit disk graph, where r denotes the transmission radius of node v. The
circular disk denotes the transmission area of node v.

2.2 Unit Disk Graph

A unit disk graph (UDG) is a specific type of geometric graph used to model broadcast net-
works. In a UDG, an edge exists between two vertices u and v if and only if the euclidean
distance between 1 and v is at most 1. In the context of ad hoc networks, the vertices in the
UDG represent network nodes. An edge exists between two nodes if the euclidean distance
between the two nodes is less than or equal to a node’s transmission range r. These neigh-
boring nodes can directly communicate with each other over the wireless media. Here, it is
assumed that all nodes have transceivers of equal power and hence the same transmission

range r. Figure 2.2 shows an example of a UDG.

2.3 Planarization of a Graph

Planarization is the process of transforming a UDG into a planar graph by removing cer-
tain edges. Some of the position-based routing protocols, such as FACE ROUTING, require

the underlying graph of network nodes to be planar. This is accomplished by the use of a

17

GABRIEL GRAPH Algorithm

1. foreachu e N(v)do

2 if disk(u,v) N (N(v)\{u,v}) # 0 then
3. delete(u, v)

4 end if

5. end for

Figure 2.3: The GABRIEL GRAPH algorithm [BMSU99]. Here, disk(u,v) is the disk with
diameter (u,v) and N(v) is the set of neighbors of node v in the UDG.

planarization algorithm. The nature of ad hoc networks requires that the planarization algo-
rithms be completely distributed. Here, we discuss the Gabriel Graph (GG) planarization

algorithm. In all of our algorithms we use the GG planarization.

Gabriel Graph Algorithm

The GABRIEL GRAPH algorithm is completely distributed and computes the planar sub-
graph of a UDG using only immediate neighbor information. Each node executes the
algorithm to compute its neighbors in the planar subgraph. This neighbor set is used by the
routing protocols that require planarization of the UDG. Given a unit disk graph G = (V,E),
the Gabriel graph of G is the subgraph G’ = (V, E') where (u,v) € E' if and only if (u,v) € E
and disk(u,v) contains no nodes in V other than u and v [GS69]. Here, disk(u,v) is the disk
with diameter (u,v) containing both u and v. Figure 2.3 gives the pseudocode for the
GABRIEL GRAPH algorithm. Given that the UDG is connected, it has been proved that the
corresponding Gabriel subgraph is connected and planar (Lemma I from [BMSU99]). An
example of Gabriel graph construction is given in Figure 2.4. Here, edge (u,v) is elimi-
nated in the Gabriel graph since nodes x and y lie within the disk(u, v), while all other edges
are retained. The complexity of the GABRIEL GRAPH algorithm is O(dlogd) where d is

the maximum degree of a vertex in the UDG.

2.4 Network Model

In this thesis we model an ad hoc network as a UDG. Mobile devices/nodes, represented by
vertices of the UDG, are randomly and uniformly distributed on a euclidean plane. Each

node has a omnidirectional antenna to transmit and receive messages. All nodes transmit

18

u u

@G (b) GABRIEL GRAPH (G)
Figure 2.4: Gabriel graph computation.

with the same power and hence have the same transmission range r, which is the unit
distance for the corresponding UDG. An edge represents the communication link between
a pair of nodes that are within the transmission radius of each other. All communication
links/edges are bidirectional, i.e., if a node u can receive messages from node v, then v can
also receive messages from u. Also, we assume the absence of any obstacles since presence

of obstacles may not result in a UDG.

2.5 Position-based Routing

Position-based routing utilizes node location information for improving the efficiency of
routing by reducing the overhead of control traffic. This location information can be ob-
tained from the Global Positioning System (GPS) that is assumed to be present in each
node. Every node knows the location of itself and its neighbors. The neighbors’ loca-
tions can be obtained and maintained using a neighbor discovery beaconing protocol. The
source node is assumed to know the destination location and includes this information in
the packet for every intermediate node to see. Each intermediate node chooses the next hop
for the packet in a localized manner based solely on the location of itself, its neighboring
nodes, and the destination. As a result of this localization, position-based routing protocols
are highly scalable.

In the rest of the section, we discuss two of the position-based routing protocols used in

our work, GREEDY ROUTING and FACE ROUTING. Geographic distance routing (GEDIR)

19

Figure 2.5: An example showing GREEDY ROUTING. The dotted circle centered at d is to
show that g is closest to d amongst all neighbors of p

[SLO1}, compass routing [KSU99], terminode routing [BBC*01] and location-aided rout-
ing (LAR) [KV98] are some other position-based routing protocols. A survey of position-
based routing protocols can be found in [GS04].

2.5.1 Greedy Routing

In [Fin87], Finn proposed a greedy heuristic for routing using location information. In
GREEDY ROUTING a node p selects a neighboring node g (Figure 2.5) such that its eu-
clidean distance to the destination d is least among all its neighbors. This node is the
packet’s next hop towards the destination. Note that GREEDY ROUTING works on the
UDG and does not require any planarization. GREEDY ROUTING suffers from the prob-
lem of local maximum wherein a node is closer to the destination than all of its neighbors.
Hence, in such a case the only route to the destination is to go through a node relatively
farther from the destination. Figure 2.6 shows an example of such a topology. Here, p is
closer to destination d than its neighbors x and y. Therefore, GREEDY ROUTING does not

guarantee delivery. However, it gives a path with near optimal hop count.

20

Figure 2.6: An example showing a topology for which GREEDY ROUTING fails. The dotted
circle centered at d is to show that p is closer to d than all of its neighbors.

Figure 2.7: Traversal of a face using right hand rule.

2.5.2 Face Routing

A planar geometric graph G divides the plane into connected regions bounded by the edges
of G called faces. FACE ROUTING relies on the traversal of these faces to route a packet
from the source to the destination. For this it makes use of the right hand rule [BM76]
which states that all the walls of a maze can be visited by keeping the right hand on the
wall and walking in a forward direction. Since a maze essentially is one large face, this rule
implies that all the edges of a face can be traversed by traversing the edge to the right of the
current edge (which is also the first edge in clockwise order) moving in forward direction.
An example of this is shown in Figure 2.7.

FACE ROUTING starts by sending the packet along the first edge in clockwise order

with respect to the imaginary line segment td where ¢, to start with, is the location of the

21

3

Figure 2.8: FACE ROUTING.

Figure 2.9: FACE ROUTING.

source node s and 4 is the location of the destination node. Every intermediate node sends
the packet along the first edge in clockwise order with respect to the previous edge. If
this edge intersects td and the distance between the intersection point and the destination
location is less than the distance between ¢ and d, then ¢ is updated to this intersection point
and the packet is sent along the first edge in clockwise order with respect to the intersecting
edge. That is, the packet is forwarded to the next face. This updating and tracing of
edges intersecting the imaginary line segment between the source and destination node
locations ensures progress of the packet towards the destination. This process is followed
until reaching the destination node. Figure 2.8 and Figure 2.9 show examples of the paths
taken by FACE ROUTING. Note that in Figure 2.9, the exterior face of the planar graph G
is traversed in clockwise direction while the interior faces are traversed in counterclockwise
direction.

The FACE ROUTING algorithm used in this thesis is based on the FACE-2 algorithm
given in [BMSU99]. The original FACE ROUTING algorithm which Bose et al. refer to as
FACE-1 was given by Kranakis et al. in [KSU99]. In FACE-1, the entire face is traversed to

determine the intersection point of line segment ¢d and an edge, while in FACE-2, traversal

22

Figure 2.10: Failure of FACE ROUTING in presence of uncertainty in destination position.

of a face terminates on reaching an edge that intersects td. The FACE ROUTING algorithm
is known to guarantee delivery for all connected planar geometric graphs (Theorem 5 of
[BMSU99)).

However, FACE ROUTING cannot guarantee delivery with only an estimation of the des-
tination’s position. In particular, using FACE ROUTING to solve ROUTE-U(s,d, p,r) (refer
to Section 1.3) results in the packet looping around the face enclosing p. See Figure 2.10
for an illustration of this phenomenon. Here, note that the intersection point # is discovered
the second time while traversing the edge [z, w|, hence the packet does not change face and

loops in face [w, x,y,7].

2.5.3 GFG Routing

FACE ROUTING can sometimes lead to very long paths in the graph. Bose et al. [BMSU99]
propose a combination of greedy and face routing called GFG ROUTING (Greedy-Face-
Greedy) algorithm (also proposed by [KK0O] as the GPSR routing protocol) that guar-
antees delivery of packets at the same time as reducing the length of paths. The GFG
ROUTING algorithm follows GREEDY ROUTING until the current node has no neighbor
closer to the destination than itself (such a node is called a concave node). At this node, the
algorithm switches to FACE ROUTING. With the concave node as the source, face routing
is followed until a node closer to the destination than the last concave node is encoun-
tered. At this node the algorithm switches back to GREEDY ROUTING. This switching
between greedy and face routing continues till the destination is reached. An example of
GFG ROUTING is shown in Figure 2.11. Here, the solid arrows denote the path taken by
GREEDY ROUTING while the dotted arrows denote the path taken by FACE ROUTING, c is

the concave node and the dotted circle centered at d is to show the distance of other nodes

23

Figure 2.11: GFG ROUTING.

in comparison to the concave node ¢. The packet format and the pseudocode for the GFG

ROUTING protocol are given in Appendix A.1.

2.6 Algorithms for Routing with Uncertainty

An obvious approach to solve ROUTE-U(s,d, p,r) is to use an algorithm to solve the
ROUTE(s,d, p) problem, with an augmentation to stop if the destination node is found
anywhere enroute. Since the destination may no longer be at position p, and may not be
encountered enroute to the position p, the message may not be delivered. A second ap-
proach would be to ignore the imprecise location information and simply flood the entire
network, but this is clearly resource-inefficient.

Therefore, we use the following approach to solve the ROUTE-U(s, d, p, r) problem. We
refer to the circle of radius » centered at p as the uncertainty zone and r as the uncertainty
radius. All our algorithms have two phases. In the first phase, we attempt to reach any node
in the uncertainty zone. For this we use the GFG ROUTING algorithm as described above
to solve the problem ROUTE(s,d, p). We follow the path given by this algorithm until we
reach a node inside the uncertainty zone, we call this node the entry node. In the second
phase, we attempt to find a path from the entry node to d, using either a face tree traversal-
based approach or a flooding-based approach. The use of the face tree traversal approach
to find the destination node within the uncertainty zone is based on the observation that
all the nodes within a circular/rectangular region can be visited by traversing all the faces
intersecting and contained in the region [BMSU99].

For convenience, in this thesis we always consider the uncertainty zone to be a circular

24

arca. However, the algorithms presented in this thesis will work for uncertainty zone of any
shape as long as it is a connected region in the plane.
In the following section we present several variants of the face tree traversal algorithm

given in [BMO02, Mor0O1]. In Chapter 3 we discuss the flooding-based algorithms.

2.7 Face Tree Traversal Algorithms

In [dBvOQO96], de Berg ef al. propose an algorithm to traverse a tree of all the faces
in a planar geometric graph without using any additional memory. Bose and Morin ap-
plied this algorithm to the geocasting problem in the context of ad hoc networks to con-
struct and traverse a tree of all the faces intersecting and contained in the geocasting region
[BMO02, Mor01]. The traversal of this tree, called the face tree, is followed until returning
back to the start edge. This algorithm can clearly be used to solve the ROUTE-U(s,d, p,r)
problem. In this section we describe the concept of face tree followed by various traversal
algorithms. Based on their memory requirements, we classify the algorithms into mem-
oryless, constant memory and non-constant memory. The memoryless algorithms do not
maintain any routing state at the nodes. The constant memory algorithms require a con-
stant amount of memory at every node for maintaining routing state. The non-constant
memory algorithms require non-constant memory for the routing state at every node. In all
algorithms, we assume that we are allowed to include O(log n) bits of information in the
header of the packet for routing purposes. Since the destination’s identity always needs to
be in the packet header, it always needs to contain Q(log n) bits of information !. In all our
protocols except one, the number of fields in the packet is constant; that is, it does not grow
with the size of the network or the length of the path. Thus, all of our algorithms except

one use O(log n) bits of information in the header for routing purposes.

2.7.1 Face Tree Construction

The input to the face tree construction is an arbitrary fixed point in the plane 5. With

respect to this point, a total order on the edges of the planar graph G is defined. For every

"Here we assume that we use a simple addressing scheme in which every node is identified by a unique
monotonically increasing number starting from zero. This helps us in comparing the algorithms in terms
of their memory requirements. However, if a standard protocol such as IP is used for addressing, such an
assumption would not be valid, and in that case an address field would have a fixed length.

25

edge e = (u,v):

_.___) _)
keyy(e) = (distance(e,s'),s'c(e), Z5' uv, uv)

where,

e distance(e,s') is the radius of the smallest circle C centered at 5’ that intersects the

edge e, let ¢(e) be the point where C intersects e.

e s'c(e) is the angle of the line s’c(e) measured counterclockwise from the positive

x-direction.
e /s'uv is the smallest angle between s',u and v.

e uv is the angle of the line 7v measured counterclockwise from the positive x-direction.

The total order on the edges is defined by lexicographic comparison of the key values
of the edges. We denote this lexicographic comparison of the keys by <. Bose and Morin
prove that for any two edges e # e of a planar geometric graph key(e)) # key(ep) (Lemma
10 from [Mor01]).

For every face f, an entry edge , entry(f,s') is defined as the edge minimizing the
value of the key amongst all other edges of the face. It follows from the total order defined
above that an entry edge for a face is unique and well defined. Figure 2.12 shows the entry
edge computation for face [u,v,w]. Here, as it can be seen that distance([wv],s’) is greater
than distance([uw|,s’) and distance([uv],s’). Therefore, [wv| is not an entry edge. While

comparing edges [uw] and [uv], it can be seen that distance([uw],s’) = distance([uv),s")

and, s'c(uw) = s'c(uv). However, the third component of the key, Zs'uw is smaller than
Zs'uv. Hence, edge [uw] is the entry edge for the face [uvw]. The entry edges define a
partial order between the faces of G in the following manner: for any face f, its parent f” is
defined as the other face that the entry edge for f belongs to. Bose and Morin prove that for
any face f of G that does not contain s', entry(f,s’) is on the boundary of two faces of G
(Lemma 11 from [Mor01]). This implies that all faces except the root face necessarily have
a parent face, and that the relationship between faces defines a spanning tree of all faces in
the graph. This tree is called the face tree, and the face containing s’ is the root face. An

example showing the face tree of a planar graph can be seen in Figure 2.13.

26

f : —
- s’cle)

[suw

Figure 2.12: Entry edge computation for the face [uvw]. uw is the entry edge.

Figure 2.13: An example showing the face tree for a planar graph. The arrows moving
from child to parent face, passing through the entry edges, represent the edges of the face
tree.

27

2.7.2 Face Tree Traversal

In this section we describe various algorithms to traverse the face tree. These algorithms
constitute the second phase of the solution to the ROUTE-U(s,d, p,r) problem with entry
node g acting as their start node. The algorithms start at the szart edge and traverse the faces
intersecting or contained in the uncertainty zone until finding the destination or returning
back to the start edge. The start edge is the first clockwise edge from gp incident on gq.
The arbitrary fixed point, s’, with respect to which the face tree is defined, is computed by
taking an arbitrary point to the left of the start edge. The algorithms differ in two ways:

one, the order of traversal of the faces and, second, the way they compute the entry edge.

Doubling Face Tree Algorithm

This is essentially the algorithm given in [BMO02, Mor(01], modified to stop as soon as the
destination is encountered. In this algorithm the faces of the face tree are traversed in
depth-first order. Each face in turn is traversed using the right hand rule. Starting from
the entry node on the face containing s’, say face_of(s’), the packet changes over to the
opposite face (child of face_of(s’)) if the next edge to be traversed according to the right
hand rule is an entry edge for the opposite face. The packet returns back to the parent
face of the current face f if the next edge to be traversed is an entry edge for the current
face. Note that a precondition for an edge to be an entry edge is that it should intersect the
uncertainty zone. Figure 2.14 gives the pseudocode for this algorithm, which we call the
FACE TREE algorithm. Here, face of(s’) is the face containing s’, next(e, f) is the next
edge following the right hand rule on face f, entry(f,s’) is the entry edge for face f with
respect to point s’ and opposite(e, f) is the other face that the edge e of face f belongs to.

As evident, the computation of an entry edge is an important part of the algorithm.
For this, Bose and Morin give an innovative doubling approach to determine if a given
edge e is the entry edge. Essentially, starting with d = 1, the packet traverses d edges to
the left of e, then 2d edges to its right, and so on, until an edge ¢’ is encountered such
that keyy(e') < keyy(e) (which confirms that e is not the entry edge), or until we are sure
that all edges of the face have been seen (which confirms that e is the entry edge). The
pseudocode for this entry edge computation algorithm is given in Figure 2.15. We call the
FACE TREE algorithm combined with the entry edge computation as described above as
the DOUBLING FACE TREE algorithm.

To reduce the path length, we make a slight change to the algorithm. We store the entry

28

FACE TREE Algorithm

1. f« faceof(s)

2. egqn — e « first clockwise edge from gp incident on g //where ¢ is the entry node
3. repeat

4, if e intersects the uncertainty zone then

5. if e = entry(f,s’) then // return to parent of f

6. f < opposite(e, f)

7. else if e = entry(opposite(e, f),s’) then //visit child of f
8. f < opposite(e, f)

9. end if

10. end if

11. e — next(e, f)

12. until destination = one of the end-points of e or e = ey 4

Figure 2.14: The FACE TREE algorithm (from [MorO1]).

edge for the current face in the packet once it is found. Hence, the entry edge need not
be computed again as long as we traverse the same face. For the example in Figure 2.13,
the faces are traversed in the order 1, 2, 3, 4, 3, 8, 3, 2, 5,2, 1, 6, 7, 6, 1. This algorithm
is memoryless. Bose and Morin in [BMO2] prove that it has a worst case complexity of
O(n log n), where n is the number of nodes in the network. The packet format and the
pseudocode for the DOUBLING FACE TREE protocol as implemented in this thesis are
given in Appendix A.2.
Finally, the characteristics of DOUBLING FACE TREE can be summarized as follows:

Stretch factor: O(nlogn)
Memory at node : Memoryless
Memory in packet : O(log n)
Duplicate packets: No

DFS Face Tree Algorithm

In the DFS FACE TREE algorithm, the faces of the planar graph are traversed in the same
order as in the DOUBLING FACE TREE algorithm, hence, it uses the FACE TREE algorithm

as given in Figure 2.14. However, the entry edge computation is different. In the DFS

29

DOUBLING ENTRY EDGE Algorithm

1. ke1

2. je—i

3. repeat

4, while j#i+kdo

3. je—j+1

6. if keyy(ei) = keyy (e;) then
7. output false

8. end if

9. end while

10. k— 2k

1. while j£i—kdo

12. je—j—1

13. if keyy(e;) = keys/(ej) then
14. output false

15. end if

16. end while

17. k— 2k

18. until £ > [2n/3]

19. output true

Figure 2.15: The entry edge computation algorithm used by DOUBLING FACE TREE (from
[Mor01]).

30

FACE TREE algorithm, to determine if a given edge is the entry edge, we simply do a
right hand based traversal of the entire face keeping track of the edge with minimum key
value. This entry edge computation algorithm is given in Figure 2.16. This is the same as
proposed by de Berg et al. in [dBvOO96]. As in DOUBLING FACE TREE, we store the
entry edge for the current face in the packet to avoid doing the same computation a second
time. This algorithm is also memoryless but has a complexity of O(n*). The packet format
and the pseudocode for the DFS FACE TREE protocol are given in Appendix A.3.

Interestingly, as our experimental results show, there are many situations where DFS
FACE TREE has smaller path length than DOUBLING FACE TREE . The reason is that DFS
FACE TREE can sometimes end up encountering the actual destination while simply doing
its entry edge computation, which involves traversing the entire face. Note that when used
for geocasting, DFS FACE TREE can never have a better performance than DOUBLING
FACE TREE .

An example of this phenomenon is shown in Figure 2.17. The start edge is (g,r). DFS
FACE TREE finds the destination d while checking if (g, v) is an entry edge for face 4, while
visiting face 2. On the other hand, DOUBLING FACE TREE quickly determines that (g, v)
is not the entry edge for face 4, therefore visits face 2 then returns to face 1, then visits
face 3, then returns to face 1, and now while checking if edge (u,q) is an entry edge for the
opposite face, it finds the destination d. For this example, the length of the path found by
DOUBLING FACE TREE is 56 hops while that found by DFS FACE TREE is 14 hops.

Finally, the characteristics of DFS FACE TREE can be summarized as follows:

Stretch factor: O(n?)
Memory at node : Memoryless
Memory in packet : O(log n)
Duplicate packets : No

Mark Entry Edge Face Tree Algorithm

In this version of face tree traversal, faces are traversed in the same order as in DOUBLING
FACE TREE (which is given in Figure 2.14), but the entry edge computation is different. In
the MARK ENTRY EDGE FACE TREE algorithm, every time we enter a new face, we find

the entry edge in the face and mark it. This means the next time we enter the face, we do

31

ENTRY EDGE Algorithm

e — next(e, f)
until e = estar[
output ecpry

1. esaqr < e < start edge for the face
2. €entry < Estart

3. repeat

4. if keyy(e) < keyy(€eenry) then
5. Centry < €

6. end if

7.

8.

9,

Figure 2.16: The entry edge computation algorithm used by DFS FACE TREE.

Figure 2.17: An example where the path taken by DOUBLING FACE TREE is much longer
than that taken by DFS FACE TREE .

32

not need to do the entry edge computation, which potentially decreases the number of hops
required. Hence, as shown in Figure 2.13, when the packet returns to face 3 from face 4, the
entry edge for the face has already been computed and saved. This is unlike the DOUBLING
FACE TREE and the DFS FACE TREE algorithms where the entry edge will need to be
computed again. The entry edge for face 3 is computed when face 3 is entered for the first
time through face 2. In the MARK ENTRY EDGE FACE TREE algorithm, first-time entry
edge computation is done in the same way as in the DFS FACE TREE algorithm, that is, by
traversing the entire face. The marking of the edges requires storing of constant memory
routing state at the nodes. The pseudocode for the entry edge computation algorithm is
given in Figure 2.18. The complexity of this algorithm is O(n). The packet format and the
pseudocode for the MARK ENTRY EDGE FACE TREE protocol are given in Appendix A.4.

Finally, the characteristics of MARK ENTRY EDGE FACE TREE can be summarized as

follows:

Stretch factor : O(n)
Memory at node . O(d)
Memory in packet : O(log n)
Duplicate packets: No

BFS Face Tree Algorithm

In this algorithm, the face tree is traversed in breadth first order. Therefore, for the example
in Figure 2.13, the faces are traversed in the order 1,2, 1,6, 1, 2,3,2,5,2,1,6,7, 6, 1,
2,3,4,3,8, 3,2, 1. The algorithm maintains a queue Q of entry edges for the faces in
the packet that determines the order of traversal of the faces. The first traversal of a face
involves identifying the entry edges for the opposite faces and putting them in Q. Note
that unlike DOUBLING FACE TREE and DFS FACE TREE, BFS FACE TREE does not visit
the opposite face immediately on encountering the entry edge for it. The opposite face is
visited, if the current edge is the first element in Q. This is while traversing the face a
second time. Every time an opposite face f is visited, its corresponding entry edge, which
is the first element in Q, is dequeued and enqueued. At this point the entry edge for f is
the last element of Q. Again, a first traversal of face f enqueues the entry edges for the

opposite faces. In Q, these edges are right after the entry edge for f. However, if f does

33

MARK ENTRY EDGE Algorithm

1. egar < € « start edge for the face
2. €entry < €start

3. entryle] < null ¥ e € GABRIEL-GRAPH(G)
4. repeat

5. if keyy(e) < keyy(eensry) then
6. €entry < €

7. end if

8. e — next(e, f)

9. until e = eyun

10. repeat

11, if e = eepry then

12. entryle] « true

13. else

14. entryle] «— false

15. end if

16. e« next(e, f)

17. until e = eyt

Figure 2.18: The entry edge computation algorithm used by MARK ENTRY EDGE FACE
TREE.

34

not have any of its edges as entry edge for the opposite faces then the entry edge for f is
still the last element in Q. This implies that this face is a leaf node in the face tree and
should not be visited again. This check is made while returning to the parent face of f
through the entry edge for f, and if it is true then this edge is dequeued from Q and added
to a set S also maintained in the packet. The membership of an entry edge of f in the set
S indicates that the subtree rooted at f has been completely traversed. Entry edges for the
opposite face are enqueued in Q only if they are not present in §S. Following the algorithm
as described above ensures that the faces of the face tree are traversed in breadth first order.
The algorithm stops if the destination is found enroute or if Q is empty. Figure 2.19 gives
the pseudocode for the BFS FACE TREE algorithm.

An example of the algorithm showing up to two levels of traversal of the face tree is
given in Figure 2.20. Here, the start edge is el and Q at ei denotes the state of Q while
traversing edge ei. The state of the queue is shown only for the entry edges since the
queue does not change while traversing other edges. The algorithm begins by traversing
face 1 once and enqueuing edges el and e2. The packet moves to edge 3 on face 2 while
traversing face 1 the second time. This is because, now el is the first element in Q. Before
starting the traversal of face 2, edge el is dequeued and enqueued again. The first traversal
of face 2 adds edges €3 and e4 to the queue. The packet returns to the parent face 1 through
edge el. This process is followed until reaching face 5 in Step 15. Face 5 is a leaf in the
face tree and does not have any of its edges as an entry edge for the opposite faces. Hence,
in Step 16., edge e4 is all together dequeued from Q and added to S. Because of this adding
of e4 in S, face 5 will not be visited again when the packet comes back to face 2 to visit
faces 4 and 8, which are at level 3 of the face tree.

Note that at any point of time, there are no duplicate edges in the queue. Hence the
bound on the size of the queue is O(F), where F is the number of faces in the graph.
However, for planar graphs in the worst case this can be O(n), where » is the number of
nodes in the network. The time complexity of the BFS FACE TREE algorithm is O(#?).

Note that although we discuss the BFS FACE TREE algorithm in terms of edges, our
actual implementation involves nodes and packets. We give the pseudocode for the imple-

mented protocol in Appendix A.S.

35

BFS FACE TREE Algorithm

I. S0

2. Q<+« null

3. f face_of(s)

4. e« first clockwise edge from gp incident on g //where q is the entry node
5. repeat

6. if e intersects the uncertainty zone then

7. if e = first(Q) then

8. enqueue(Q,dequeue(Q))

9. f <« opposite(e,) /Ivisit child of f
10. else if ¢ = entry(f,s’) then

11. if e =last(Q) then

12. S — S U {dequeue(Q)}

13. if empty(Q) = true then

14. return

15. end if

16. end if

17. f «— opposite(e, f) //return to parent of f
18. else if e = entry(opposite(e, f),s') then
19. if e ¢ S then

20. enqueue(Q, e)

21. end if

22. end if

23. end if

24. e — next(e, f)

25. wuntil destination = one of the end-points of e

Figure 2.19: The BFS FACE TREE algorithm.

Finally, the characteristics of BFS FACE TREE can be summarized as follows:

Stretch factor: O(n?)
Memory at node : Memoryless
Memory in packet : O(nlog n)
Duplicate packets: No

36

Step 1. Qatel: el
Step 2. Qate2: el, €2
Step3.Qatel:e2, el
Step4.Qate3:e2,el, e3
Step 5. Qated: €2, el, €3, ed
Step 6. Qatel: e2,el,¢3, e4
Step 7. Qate2: el, e3,e4, €2
Step 8. Qate5: el, 3, ed, €2, e5
Step 9. Qate2: el, e3,e4, €2, ¢5
Step 10. Q at el: €3, e4, €2, e5, el
&7 Step 11. Qate3: e4, €2, 5, el, €3
————— 8 Step12. Qateb:ed, e2, e5,¢l,e3, e6

Step 13. Qat e7: e4, €2, €5, el, €3, €6, e7

Step 14. Q at e3: 4, €2, €5, el, e3, €6, e7

Step 15. Q at e4: €2, €5, el, €3, €6, €7, e4

Step 16. Q at ed: e2, €5, el, e3, e6, e7 S:ed
Step 17. Q at el: e2, €5, el, 3, €6, €7

Step 18. Q at €2: €5, el, €3, €6, €7, €2

Step 19. Q at e5: el, €3, €6, e7, €5

Step 20. Q at e3: el, €3, €6, e7 S: ed.e5
Step 21. Q at e2: el, €3, €6, e7

Figure 2.20: An example showing the execution of BFS FACE TREE up to two levels of
the face tree.

| Face Tree Algorithm

This is a parallelized version of the Face Tree algorithm. While traversing a face, if a given
edge is the entry edge for the opposite face, then another copy of the packet is spawned to
explore that face. Each packet continues the traversal until either finding the destination or
until completing the traversal of a face. Figure 2.21 gives the pseudocode for the algorithm.
The algorithm is memoryless and has a time complexity of O(n). For the example in
Figure 2.13, first face 1 is traversed, then faces 2 and 6 in parallel, then faces 3 and 5 in
parallel, and finally faces 7, 4 and 8 in parallel. Unlike all other algorithms in this chapter,
this algorithm involves many duplicate packets in the network to solve the same routing
problem. The number of concurrent duplicate packets is O(f) where f is the number of
faces in the graph. The packet format and the pseudocode for the || FACE TREE protocol
are given in Appendix A.6.

Finally, the characteristics of || FACE TREE can be summarized as follows:

Stretch factor: O(n)
Memory at node : Memoryless
Memory in packet : O(log n)
Duplicate packets : Yes

37

|| FACE TREE Algorithm

1. f« face_of(s)
2. e« first clockwise edge from gp incident on g //where ¢ is the entry node
3, VISIT(f,e)

VISIT(f,e)
1. repeat
2 if e intersects the uncertainty zone then
3 if e =entry(f,s’) then
4 drop packet
5. else if e = entry(opposite(e, f),s') then //visit child of f
6. spawn a new packet to solve VISIT(opposite(e, f), e)
7 end if
8 end if
9 e —next(e, f)
10. until destination = one of the end-points of e

Figure 2.21: The || FACE TREE algorithm.

38

Chapter 3
Flooding Based Protocols

The following chapter discusses algorithms to solve the ROUTE-U(s,d, p,r) problem that
are based on simple flooding of the uncertainty zone. The algorithms discussed in Chap-
ter 2, except the || FACE TREE algorithm, have only a single copy of the packet traversing
the network at any point of time. On the other hand, flooding-based algorithms generate a
vast number of duplicate packets that traverse the network concurrently thereby increasing
the energy cost of such algorithms. Flooding algorithms are simple and easy to implement,
however they fail to guarantee delivery. In the following sections we present the simple
flooding algorithm. We also present three variants of simple flooding which attempt to im-
prove the delivery rate and reduce the number of duplicate packets in the network. In all
the algorithms, we follow the same path as GFG ROUTING on the problem ROUTE(s, d, p),
until reaching the entry node. In the following sections, we assume that the packet has al-
ready reached the entry node within the uncertainty zone and we focus on the algorithm

starting at the entry node.

3.1 All-Neighbor (AN) Flooding

This is the simple flooding algorithm. Here, to start with, an entry node broadcasts the
packet to all its 1-hop neighbors. Any node receiving this packet, broadcasts it if and only
if it lies inside the region. Any further copies of the packet are ignored. The packet format
and protocol pseudocode for AN FLOODING are given in Appendix A.7.

In all the flooding-based approaches, a unique identifier corresponding to the packet

to be flooded is stored at each node, to prevent re-transmission of the same packet ad

39

Figure 3.1: An example where flooding within the uncertainty zone fails

infinitum. This requires a per packet constant memory of routing state to be maintained
at the nodes. The time complexity of the flooding-based algorithms is O(n), which is the
diameter of the network in the worst case. Also, in flooding-based algorithms, unlike the
face tree traversal-based algorithms, all the edges in the unit disk graph are traversed.

As mentioned earlier, flooding within the uncertainty zone does not guarantee delivery
of packet to the destination. This is because all paths from the entry node to the destination
may go through nodes outside the uncertainty zone. Figure 3.1 shows an example of such
a case.

Finally, the characteristics of AN FLOODING can be summarized as follows:

Stretch factor: O(n)
Memory at node : O(1)
Memory in packet : O(log n)
Duplicate packets : Yes

40

GREEDY NEIGHBOR SUBSET Algorithm

1. v+« current node

2. ReN(v)

3. S0

4. while R +# 0do

5. select an x € N;(v) that maximizes | Ny (x) NR |
6. R — R—Ny(x)

7. S — Su{x}

8. end while

9. output S

Figure 3.2: Greedy algorithm to choose minimum subset of 1-hop neighbors that cover
all 2-hop neighbors. Nj(v) is the set of 1-hop neighbors of a node v that lie within the
uncertainty zone and N2(v) is the set of 2-hop neighbors of a node v that lie within the
uncertainty zone.

3.2 Subset-Neighbor (SN) Flooding

The difference between Subset Neighbor (SN) Flooding and AN Flooding is that nodes
inside the region, instead of broadcasting the packet to all 1-hop neighbors, forward it to
only a subset of 1-hop neighbors whose neighbors in turn include all 2-hop neighbors of the
original node. Computing a minimal subset of such 1-hop neighbors is known to be an NP-
complete problem for arbitrary graphs, but its complexity for unit disk graphs is unknown
[CMWZ04]. Hence we use a greedy algorithm to compute the subset: we iteratively select
a 1-hop neighbor that covers the maximum number of 2-hop neighbors not yet covered,
and terminates when all 2-hop neighbors have been covered. Note that only the 2-hop
neighbors inside the uncertainty region are considered in the algorithm. The pseudocode
for the algorithm to compute the subset is illustrated in Figure 3.2.

The SN FLOODING algorithm reduces the transmission cost by restricting flooding
of packets, however, it fails to deliver the packet in some situations where AN FLOOD-
ING succeeds. As seen in Figure 3.3, the packet for the problem ROUTE-U(s,d, p,r) is
not sent to ¢, the 2-hop neighbor of r, since only 2-hop neighbors inside the uncertainty
region are considered by the SN FLOODING algorithm. Hence, the packet is not delivered
to d. Note that in all the face tree traversal-based and flooding-based algorithms, a packet
is directly delivered to the destination if the destination is a 1-hop neighbor of the current

node. Now, in contrast to SN FLOODING , in AN FLOODING all nodes inside the region

41

Figure 3.3: An example where SN FLOODING within the uncertainty circle fails but AN
FLOODING succeeds.

flood to all their neighbors. Hence, the packet will be sent to ¢, which in turn will deliver it
to d, its 1-hop neighbor.
The packet format and protocol pseudocode for SN FLOODING are given in Appendix A.8.

Finally, the characteristics of AN FLOODING can be summarized as follows:

Stretch factor: O(n)
Memory at node : O(1)
Memory in packet : O(log n)
Duplicate packets . Yes

3.3 Extended AN Flooding

In order to discover paths to the destination, we extend the region of flooding by a constant
value in this algorithm. EXTENDED AN FLOODING on the problem ROUTE-U(s,d, p,r)
is identical to flooding on the problem ROUTE-U(s,d, p, r +A) where A is the transmission
radius of nodes. Therefore, in Figure 3.1, the packet will be sent to nodes / and ¢ thereby

reach the destination d.

42

The characteristics of EXTENDED AN FLOODING can be summarized as follows:

Stretch factor: O(n)
Memory at node : O(1)
Memory in packet : O(logn)
Duplicate packets : Yes

3.4 Extended SN Flooding

In this algorithm, we extend the uncertainty radius of SN FLOODING . That is, EXTENDED
SN FLOODING on the problem ROUTE-U(s,d, p,r) is the same as SN FLOODING on the
problem ROUTE-U(s,d, p,r+\).

The extended flooding algorithms are expected to have higher transmission cost because
of the increased flooding area, however they also have higher delivery rate. This increase
in delivery rate is achieved without compromising the stretch factor.

The characteristics of EXTENDED SN FLOODING can be summarized as follows:

Stretch factor: O(n)
Memory at node : O(1)
Memory in packet : O(log n)
Duplicate packets : Yes

43

Chapter 4
Simulation Results and Discussion

To compare the performance of the algorithms given in Chapters 2 and 3, we simulate them
on a large number of static network topologies. We also study the effect of the number
of nodes and the size of the uncertainty radius on delivery rate, stretch factor, and the
transmission cost. In this chapter, we present the results of our simulations. Section 4.1
gives the details of our simulation environment. We discuss the results of face tree traversal-
based algorithms in Section 4.2. In Section 4.3, we discuss the results of flooding-based

algorithms. Finally, in Section 4.4 we compare and contrast the two classes of algorithms.

4.1 Simulation Environment

In the simulation experiments, a set S of n points (where n € {75,100,125}) is randomly
generated on a rectangle of 800m by 700m. For the transmission range A of nodes, we
use 120m. We implement a beaconing protocol for nodes to discover their neighbor’s
address and location. A single run of the beaconing protocol generates the unit disk graph
G = UDG(S). Note that the density of the network is 6, 8 and 10 nodes per unit disk
for n = 75, n = 100 and n = 125 respectively. After generating the UDG, a source and
destination node is randomly chosen. If there is no path from s to d in UDG(S), the graph
is discarded; otherwise, all routing algorithms are applied on G. This process is repeated
for 100 node-pairs on each graph, and then for 1000 graphs. We do this for increasing
uncertainty radius starting from zero to 104, in which case the whole network is contained
within the uncertainty zone. Recall that the uncertainty radius r = v(z; —1p). Here, we

assume that the network latency / is negligible as compared to #; —t9. However, if that is

44

not the case then a better estimation of the uncertainty radius » would be v(# + 1 —tg).

In our experiments we measure delivery rate, stretch factor and transmission cost. The
delivery rate is the percentage of packets that get transmitted successfully to the destination
on a valid graph. The stretch factor is the number of hops taken by a packet compared to
the minimum hop path available in the network, averaged over all successfully delivered
packets. The transmission cost is the ratio of total number of times that copies of the
packet get transmitted in the course of successful delivery of the packet to the number of
transmissions in the minimum hop path, averaged over all successfully delivered packets.

It is a measure of the energy costs of the algorithm.

4.2 Face tree traversal-based algorithms

The graphs in Figure 4.1 show the stretch factor for face tree traversal-based algorithms
for 75, 100, and 125 nodes, respectively. The stretch factor of | FACE TREE is best fol-
lowed by BFS FACE TREE, DFS FACE TREE, MARK ENTRY EDGE FACE TREE, which
all have similar performance followed by DOUBLING FACE TREE which has the worst
performance. While all others are quite close, the doubling algorithm’s performance is
significantly worse. The worst case time complexity of DOUBLING FACE TREE is better
than DFS FACE TREE , however, as mentioned above, DFS FACE TREE has better stretch
factor than DOUBLING FACE TREE. The reason is that DFS FACE TREE can sometimes
end up encountering the actual destination while simply doing its entry edge computation,
which involves traversing the entire face. Note that when used for geocasting, DFS FACE
TREE can never have a better performance than DOUBLING FACE TREE .

The stretch factor of all algorithms increases with increasing uncertainty radius, espe-
cially the non-parallelized algorithms. This is because as the uncertainty radius increases,
more and more of the graph is being searched using the face tree traversal method. In
particular, there is a greater chance of the exterior face being traversed.

Somewhat surprisingly, using marked bits does not help in reducing the stretch factor
for smaller values of uncertainty radius. At higher values of uncertainty radius, the MARK
ENTRY EDGE FACE TREE implementation starts to outperform all face tree traversal-based
algorithms except || FACE TREE.

The graphs in Figure 4.2 show the transmission cost for face tree traversal-based al-

gorithms for 75, 100, and 125 nodes, respectively. The transmission cost of BFS FACE

45

24 T T T L
DFS Face Tree —+—
BFS Face Tree --
2 |} Face Tree -~
Mark Entry Edge Face Tree
Doubling Face Tree --
20 -
18 F
16
B
E 14
g
o 12F
&
10
8|
6
44
..... "
Py =i s .) s L
0 200 400 600 800 1000 1200
Uncentainty radius
35 T T
DFS Face Tiee ——
BFS Face Tree -
| Face Tree
0 b Mark Entry Edge Face Tree d
Doubling Face Tree -
25 | / d
¥
B
£
5
2
7]
° " L) L L
0 200 400 600 800 1000 1200
Uncertainty radius
60 T T T T
OFS Face Tree ~——
BFS Face Tree -
|| Face Tree ---%---
Mark Entry Edge Face Tree &~
50 r_ Doubling Face Tree - -
-
/I {
8
g
=
= 4
2
3
@

Uncertainty radius

Figure 4.1: Stretch factor for varying uncertainty radius for 75, 100, and 125 nodes respec-
tively. Simulation field - 800 x 700. Transmission radius - 120

46

DFS Face Tree —— j j j
BFS Face Tree
22 + |t Face Tree =
Mark Entry Edge Face Tree -
Doubling Face Tree
20 ¢ 4
18
® 1% B
8
5 wp 1
2 l
E
E 12 "
10 4
8 4
6 4
4k ; 4
ettt
2= 1 L — s L
0 200 400 600 800 1000 1200
Uncenainty radius
70 T T T T
DFS Face Tree
BFS Face Tree
|| Face Tree -
60 L Mark Entry Edge Face Tree J
Doubling Face Tree

Transmission cost

800 800 1000 1200
Uncertainty radius

180

DFS Face Tree ——
BFS Face Tree ---x---

Doubling Face Tree -

Transmission cost
=
]
T
L

60 |

20t

800 1000 1200
Uncenainty radius

Figure 4.2: Transmission cost for varying uncertainty radius for 75, 100, and 125 nodes
respectively. Simulation field - 800 x 700. Transmission radius - 120

47

TREE, MARK ENTRY EDGE FACE TREE, and DFS FACE TREE is much lower than that
of || FACE TREE or DOUBLING FACE TREE. For all algorithms, as the number of nodes
increases, the stretch factor and transmission cost both increase. In particular, the transmis-
sion cost of || FACE TREE becomes intolerable. || FACE TREE uses more energy because
there is no way of stopping the spawned packets that are exploring other faces while the
destination has been already found. We expect that if the destination node does not lie
within the uncertainty zone then || FACE TREE will have the same energy cost as other
algorithms.

The delivery rate is 1 for all face tree traversal-based algorithms and is therefore not
shown here.

We conclude that the performance of DFS FACE TREE, BFS FACE TREE, and MARK
ENTRY EDGE FACE TREE are all similar, and they use the least energy, while | FACE
TREE achieves the best stretch factor.

4.3 Flooding-based algorithms

The graphs in Figure 4.3 show the delivery rate for flooding-based algorithms for 75, 100
and 125 nodes, respectively. It is interesting to note that all fiooding-based algorithms
have a dip in the delivery rate at around r = 2A where A is the transmission radius of
nodes. This can be explained by the following observation. When r < A/2, all nodes in
the uncertainty circle are directly connected to each other, therefore flooding must succeed
(this is confirmed by the experiments). Similarly, when the uncertainty radius is large
enough that the entire field is contained in the uncertainty circle, flooding is guaranteed to
succeed, since we only use connected graphs. However, as the uncertainty radius increases
from A/2, the chance of having two disconnected components inside the uncertainty circle
first decreases, and then again increases as the number of nodes inside the zone increases.
At what radius is the probability of having two or more disconnected components in the
uncertainty zone highest? Is it when r is close to 2A or does it depend on the size of the
simulation area?

To answer these questions, we carried out simulations with large number of nodes for
the AN FLOODING algorithm. The transmission radius is the same, however the length and
width of the simulation area are now chosen to be 30A. We pick the number of nodes such

that the density is 10 nodes per unit disk. Figure 4.4 shows the results of our simulations.

48

1 T T g T T
///
"
//
0.98 p
. 4 4
N\, /‘
N
0.96 | L]
g oser R
>
H
& oo} B
0s [4
088 AN Fiooding ——]
Extended AN Flooding -
looding
Extended SN Flooding -
0.86) . L K i
0 200 400 600 800 1000 1200
Uncertainty radius
1 T T T v
AN Fiooding —+—
/ Extended AN Flooding ---%---
/ SN Flooding
099 |))/ Extended SN Flooding & |
\\v/
0.98 R
2 097 4
g 9
>
H
& o J
0.95 |- p
0.94 r— B
0.93 1 “u' 1 1 L 1
[200 400 600 800 1000 1200
Uncertainty radius
1 T T T
7 AN Fidoding ——
/ Extended AN Flooding ---%---
ooding --- %
\ / Extended SN Fiooding &
0.995 \ / R
0.89 \n/ 4
e
@
z i
H 0.985
&
0.98 q
0.975 1
0.97 L ")) L
0 200 400 600 800 1000 1200

Uncertainty radius

Figure 4.3: Delivery rate for varying uncertainty radius for 75, 100, and 125 nodes respec-
tively. Simulation field - 800 x 700. Transmission radius - 120

49

As we can see, AN FLOODING follows the same trend as in the simulations with smaller
number of nodes, that is, the delivery rate first decreases and then increases as the number
of nodes within the zone increases. Also, the dip occurs around r = 2A, which is the same

as earlier simulations.

Delivery rate

AN Flooging —

1 ! 1

97

or

10 15 20 25 30 35
Uncertainty radius/Transmission radius

Figure 4.4: Delivery rate of AN FLOODING for increasing r/A. Simulation field - 3600 x
3600. Number of nodes - 2866. Transmission radius - 120

EXTENDED AN FLOODING improves the delivery rate, but cannot guarantee delivery
for all values of uncertainty radius, though always over 95% for all values studied.

The graphs in Figure 4.5 show the stretch factor for flooding-based algorithms for 75,
100 and 125 nodes, respectively. The stretch factor is almost the same for all flooding-based
approaches. The stretch factor is in general very good, always less than 2.2, and exactly 1
for uncertainty radius >= 5. Note that the stretch factor of the route found in the second
phase is exactly 1 for AN FLOODING and EXTENDED AN FLOODING; the shortest path
may not be found in the first phase where GFG is being used. As the uncertainty radius
increases, the part of the path that is constructed in the first phase is proportionally smaller;
this explains why the stretch factor decreases as the uncertainty radius increases. Also, the
stretch factor decreases as the number of nodes increases; this is in line with the well-known
behavior of GFG ROUTING.

The graphs in Figure 4.6 show the transmission cost for flooding-based algorithms for

50

22 ! A T T T
AN Flooding ~——
Extended AN Flooding ---%---
8N Flooding
2 L Extended SN Flooding &

18 1 J

E 16t |
&
£
2
4
& 14 F |
1.2} |
1k
0.8 — . N L)
o 200 400 600 800 1000 1200
Uncertainly radius
1.7 . , . ’ —
AN Flooding —+—
Extended AN Flooding
SN Flooding
Extended SN Flooding
§
§ -
8
£
5
1
@ -
1 i M S .
0 200 400 600 800 1000 1200
Uncertainty radius
v T
AN Flooding ——
Extended AN Flooding -
SN Fiooding
Extended SN Flooding
5 -
k]
£
£
S
B
03 -

Uncertainty radius

Figure 4.5: Stretch factor for varying uncertainty radius for 75, 100, and 125 nodes respec-
tively. Simulation field - 800 x 700. Transmission radius - 120

51

Transmission cost

Transmission cost

Transmission cost

Figure 4.6: Transmission cost for varying uncertainty radius for 75, 100, and 125 nodes

25

20

25

20

AN Flooding —+—]
Extended AN Flooding ---x---
N Flooding ------
1 1 N . Extended SN Flooding &
0 200 400 600 800 1000
Uncertainty radius
u r : . .

1200

AN Flooding —+—
Extended AN F:ood}nq

RV

ooding --- %---
Extended SN Flooding 8-
2 s s . H
200 400 600 800 1000 1200
Uncertainty radius
T T T T T
- B
AN Flooding —+—
Extended AN Flooding ---x---
SN Flooding ---%---
X . X) Extended SN FIPoding)
0 200 400 600 800 1000 1200

Uncertainty radius

respectively. Simulation field - 800 x 700. Transmission radius - 120

52

75, 100 and 125 nodes, respectively. The transmission cost of SN FLOODING and EX-
TENDED SN FLOODING are similar and much lower than other flooding-based approaches.
The cost of AN FLOODING is higher, and the cost of EXTENDED AN FLOODING is even
higher.

EXTENDED SN FLOODING appears to achieve a good balance between delivery rate

and transmission cost.

4.4 Comparison between two approaches

It is clear that the flooding-based approaches have much better stretch factor than the face-
tree approaches. However, many of the face tree traversal-based algorithms examined here
are memoryless, and as such are not comparable to the flooding-based algorithms, which all
require routing state to be maintained at nodes. The interesting finding is that incorporating
routing state into face tree traversal as in MARK ENTRY EDGE FACE TREE does not seem
to improve the stretch factor except when the uncertainty is very high.

Flooding is known to be resource-inefficient. However, our experiments show that the
transmission cost of AN FLOODING, the most expensive algorithm in the flooding-based
class, while worse than most of the face tree traversal-based approaches, is not significantly
higher, and indeed, is better than the | FACE TREE and DOUBLING FACE TREE algo-
rithms. At the other end, the transmission costs of SN FLOODING and EXTENDED SN
FLOODING are lower than the cheapest face tree traversal-based algorithm. Thus, making
minor adjustments to the basic flooding algorithm results in greatly reduced transmission
cost while not sacrificing the delivery rate or the stretch factor. Meanwhile, the high stretch
factor of the face tree traversal-based approaches also translates to a high transmission cost.

Put another way, while flooding uses duplicate packets and seems to explore all possible
edges in an unintelligent manner, the maximum number of edge traversals performed by
flooding is 2e, since each end-point of an edge will send a packet across the edge at most
once. In face tree traversal-based algorithms edges should be traversed at most once, but in

fact, the entry edge computation often imply that an edge is traversed many times.

53

Chapter 5
Conclusion

With the slogan ‘anytime anywhere’, today’s communication world demands information
access on the move, in many cases without any previously established infrastructure. Ad
hoc networking is the technology that realizes this vision. An ad hoc network is a collec-
tion of wireless devices, called nodes, that do not need to rely on any predefined infras-
tructure to keep the network connected. In the absence of infrastructure, designing rout-
ing protocols for such networks is a challenging task, especially in the face of changing
topologies. To this end, several authors have proposed the use of host location informa-
tion [KSU99, BMSU99, KK00, KV98, BBC*01]. In such protocols, called position-based
routing protocols, every node in the network is assumed to know the locations of itself and
its neighbors. Also it is assumed that the position of the destination host is known to the
source node. It is this assumption that we question in this thesis.

We study the problem of routing in an ad hoc network where the source node is un-
certain about the exact current position of the destination but knows only an approximate
position of the destination node. We formulate the problem as routing from a source node
s to a destination node d contained in the circle of radius r centered at position p and call
it the ROUTE-U(s,d, p,r) problem. We call the circle the uncertainty zone and the radius
the uncertainty radius. The position p can be understood as the last known location of the
destination node.

To solve this problem, we divide it into two phases. The first phase involves reach-
ing a node inside the uncertainty zone, while the second phase involves searching for the
destination node within the uncertainty zone. For the first phase, we use the GFG ROUT-
ING algorithm as proposed in [BMSU99] and [KKO00]. For the second phase, we investigate

54

two classes of algorithms: one, based on a traversal of a tree of the faces of a planar sub-
graph of the graph representing the network, and the second, based on flooding of the
uncertainty zone. We discuss the face tree traversal algorithm proposed by Bose and Morin
[BMO02, Mor01] (we call it the DOUBLING FACE TREE algorithm) and propose four vari-
ants: DFS FACE TREE, BFS FACE TREE , MARK ENTRY EDGE FACE TREE and || FACE
TREE . The face tree traversal-based algorithms guarantee delivery. We also propose some
algorithms based on flooding the uncertainty zone. Flooding does not guarantee delivery,
hence, we propose EXTENDED AN FLOODING , which results in an increase in the delivery
rate while SN FLOODING and EXTENDED SN FLOODING aim to reduce the transmission
cost. Table 1 gives a comparison of the algorithms. We also give detailed pseudocode for
the corresponding protocol implementation for each of the algorithms in the appendices.

This can serve as a guide for anyone wanting to implement them.

Table 1: A comparison of the algorithms. Here, n is the number of nodes in the network
and d is the maximum degree of a node. All memory requirements are in terms of number
of bits. The symbol — means the algorithm is memoryless.

Algorithm Guaranteed | Worst case | Memory | Memory | Duplicate
delivery complexity | at node | in packet | packets
DOUBLING Yes O(n log n) - O(log n) No
FACE TREE
[BMSU99, Mor01]
DFS Yes 0(n?) — O(log n) No
FACE TREE
[dBvOO96]
BFS Yes o(n’) - O(nlogn) No
FACE TREE
MARK ENTRY Yes O(n) o(d) O(logn) No
EDGE FACE TREE
|| FACE TREE Yes O(n) - O(log n) Yes
AN FLOODING[SHO04] No Oo(n) o(1) O(logn) Yes
SN FLOODING No O(n) 0o(1) O(logn) Yes
EXTENDED No O(n) o(1) O(log n) Yes
AN FLOODING
EXTENDED No O(n) o(1) O(log n) Yes
SN FLOODING

55

In order to compare performance, we carried out experiments by simulating the pro-
tocols for large number of static network topologies. We study the effect of the number
of nodes and the size of the uncertainty radius on the delivery rate, stretch factor, and the
transmission cost of the protocols. We observe that flooding-based algorithms show an
interesting behavior whereby the delivery rate first decreases and then increases as the un-
certainty radius increases. Also, the EXTENDED SN FLOODING algorithm achieves very
high delivery rate, at the same time as achieving very low stretch factor, and a drastically
reduced transmission cost. Our results show that some variations of the face tree traversal
approach, including the version given in [BMSU99], have as high transmission cost as the
flooding-based approaches. Indeed, there is considerable overlap between the transmission
cost profiles of the two approaches. In particular, the cheapest algorithms among the ones
studied are EXTENDED SN FLOODING and SN FLOODING, while the two most expensive
algorithms are face tree traversal-based algorithms. We note that the difference between
geocasting and ROUTE-U is highlighted by the fact that DOUBLING FACE TREE algo-
rithm, which provably improves the performance for geocasting, appears to degrade the
performance for ROUTE-U. Finally, we conclude that if marked bits are not practical, or if
guaranteed delivery is required, then DFS FACE TREE would seem to be the best approach,
but otherwise, EXTENDED SN FLOODING would be best.

As shown in our results, the DFS FACE TREE algorithm outperforms the DOUBLING
FACE TREE algorithm, though the worst case time complexities of the two algorithms sug-
gest otherwise. Worst case analysis is more indicative of the time required for geocast,
where every node in the uncertainty zone needs to be reached. However, in our case, we
are looking for a specific node in the uncertainty zone. Therefore, we believe that an aver-
age case analysis of the algorithms would be more instructive for the ROUTE-U problem
and would be a useful avenue for further investigation. Also, as we have seen in Chapter 3,
the flooding approach can sometimes fail to deliver packets to the destination. An inter-
esting question to ask here is: what is the likelihood that flooding fails? In this regard, we
have seen in our results that the delivery rate of flooding-based algorithms first decreases
and then increases with increase in the uncertainty radius. A theoretical analysis of this
interesting behavior displayed by flooding should be useful.

In all our simulations the network nodes are generated uniformly at random, hence,
our results are valid only for networks with such a distribution of nodes. Simulating the

protocols for non-uniform distribution of the network nodes may give different results,

56

specifically, we expect a reduction in the delivery rate of flooding-based approaches. In
this thesis, whenever needed, we use the Gabriel graph algorithm for planarization of the
UDG. However, there exist other planar subgraphs of the UDG such as the Relative Neigh-
borhood Graph for which there exist localized extraction algorithms [Tou80]. Though the
worst-case complexity of all the algorithms would remain the same, irrespective of the
planarization algorithms used, in practice, using a different planar subgraph might give

improved results.

57

Bibliography

[ASSCO02]

[AWWOS5]

[BBC*01]

[BM76]

[BMO02]

[BMSU99]

[Car79]

[CBWO02]

I. F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci. A survey
on sensor networks. IEEE Communications Magazine, 40(8):102— 114, 2002,

I. F. Akyildiz, X. Wang, and W. Wang. Wireless Mesh Networks: A Survey.
Computer Networks Journal (Elsevier), 47(4):445-487, 2005.

L. Blazevic, L. Buttyan, S. Capkun, S. Giordano, J. Hubaux, and J. Le
Boudec. Self-organization in Mobile Ad Hoc Networks: The Approach of
Terminodes. IEEE Communications Magazine, 39(6):166— 174, June 2001.

J.A. Bondy and U.S.R. Murty. Graph Theory with applications. Elsevier
North Holland, 1976.

P. Bose and P. Morin. An improved algorithm for subdivision traversal with-
out extra storage. International Journal of Computational Geometry and
Applications, 12(4):297-308, 2002. Special issue of selected papers from
the 11th Annual International Symposium on Algorithms and Computation
(ISAAC 2000).

P. Bose, P. Morin, 1. Stojmenovic, and J. Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. In Proc. of 3rd ACM Int. Workshop
on Discrete Algorithms and Methods for Mobile Computing and Communica-
tions (DIALM99), pages 48-55, August 1999.

Bernard Carré. Graph and Networks. Clarendon Press, 1979.

T. Camp, J. Boleng, and L. Wilcox. Location information services in mobile
ad hoc networks. In Proceedings of the IEEE International Conference on
Communications (ICC ’02), pages 3318-3324, 2002.

58

[CeA"03]

[CMWZ04]

[DAR]

[dBvOO96]

[Fin87]

[FLO1]

[GS69]

[GS04]

[IET]

[JM96]

[KKO00]

T. Clausen, P. Jacquet (editors), C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler,
A. Qayyum, and L.Viennot. Optimized link state routing protocol (olsr). RFC
3626, October 2003. Network Working Group.

G. Calinescu, I. Mandoiu, P. J. Wan, and A. Z. Zelikovsky. Selecting forward-
ing neighbors in wireless ad hoc networks. Mobile Networks and Applica-
tions, 9(2):101-111, 2004.

DARPA Home Page. http://www.darpa.mil.

Mark de Berg, Ren van Oostrum, and Mark Overmars. Simple traversal of
a subdivision without extra storage. In SCG '96: Proceedings of the twelfth
annual symposium on Computational geometry, pages 405-406, 1996.

G. G. Finn. Routing and addressing problems in large metropolitan-scale
internetworks. In IS7 res. rep. ISU/RR-, pages 87-180, 1987.

James A. Freebersyser and Barry Leiner. Ad Hoc Networking, pages 29-51.
Addison-Wesley, 2001.

K. Gabriel and R. Sokal. A new statistical approach to geographic variation
analysis. Systematic Zoology, 18:259-278, 1969.

S. Giordano and I. Stojmenovic. Position based routing algorithms for ad hoc
networks: A taxonomy. Ad Hoc Wireless Networking, X. Cheng, X. Huang
and D.Z. Du (eds.), pages 103—-136, 2004.

IETF MANET Working Group Information.

http://www.ietf.org/html.charters/manet-charter.html.

David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc

wireless networks. In Tomasz Imielinski, editor, Mobile Computing, chap-
ter 5, pages 153-181. Kluwer Academic Publishers, 1996.

B. Karp and H.T. Kung. Greedy perimeter stateless routing for wireless net-
works. In Proceedings of the Sixth Annual ACM/IEEE International Con-
ference on Mobile Computing and Networking (MobiCom 2000), pages 243—
254, August 2000.

59

[Kle03]

[KSU99]

[KV98]

[KV99]

[MMO04]

[Mor0O1]

[PB94]

[PR99]

[SHO4]

[SLO1]

L. Kleinrock. An Internet vision: the invisible global infrastructure. Ad Hoc
Networks, 1(1):3-11, July 2003.

E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric net-
works. In Proceedings of 11th Canadian Conference on Computational Ge-

ometry, 1999.

Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (lar) in mobile ad
hoc networks. In MobiCom ’98: Proceedings of the 4th annual ACM/IEEE
international conference on Mobile computing and networking, pages 6675,
1998.

Young-Bae Ko and Nitin H. Vaidya. Geocasting in mobile ad hoc networks:
Location-based multicast algorithms. In IEEE Workshop on Mobile Comput-
ing Systems and Applications (WMCSA), pages 101-110, 1999.

C. Siva Ram Murthy and B. S. Manoj. Ad Hoc Wireless Networks. Architec-
tures and Protocols, pages 191-225. Prentice Hall, 2004.

P. Morin. Online Routing in Geometric Graphs. PhD thesis, School of Com-

puter Science, Carleton University, January 2001.

Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile computers. In Pro-
ceedings of the SIGCOMM 94 Conference on Communications Architectures,
Protocols and Applications, pages 234-244, August 1994.

Charles E. Perkins and Elizabeth M. Royer. Ad hoc on-demand distance vec-
tor routing. In Proceedings of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications, pages 90-100, February 1999.

K. Saeda and A. Helmy. Efficient geocasting with perfect delivery in wireless
networks. In Proceedings of IEEE Wireless Communications and Networking,
2004.

Ivan Stojmenovic and Xu Lin. Loop-free hybrid single-path/flooding rout-
ing algorithms with guaranteed delivery for wireless networks. IEEE Trans.
Parallel Distrib. Syst., 12(10):1023-1032, 2001.

60

[Sto04]

[Tan02]

[Tou80]

[Tug69]

[WQDTO1]

I. Stojmenovic. Geocasting with guaranteed delivery in sensor networks.
{EEE Wireless Communications Magazine, 11(6):29-37, December 2004,

Andrew Tanenbaum. Computer Networks. Prentice Hall, 2002.

G. Toussaint. The relative neighborhood graph of a finite planar set. Pattern
Recognition, 12(4):261-268, 1980.

Thomas Tugend. UCLA to be first station in na-
tionwide computer network, UCLA Press Release.
http://www.lk.cs.ucla.edu/LK/Bib/REPORT/press.html, July 1969.

Hongyi Wu, Chunming Qiao, Swades De, and Ozan Tonguz. Integrated cel-
lular and ad hoc relaying systems: iCAR. IEEE Journal on Selected Areas in
Communications, 19(10):2105 - 2115, 2001.

61

Appendix A

Protocol Packet Formats and

Pseudocodes

A.1 GFG Routing Packet Format and Protocol Pseudocode

GFG ROUTING Packet format

type — a numeric value indicating the protocol this packet belongs to

srcld — source address

dstld «— destination address

nextHop «+ next hop address

prevHop < previous hop address

hopCount «— number of hops the packet has traveled so far

ttl «— maximum number of hops the packet can travel

dstLoc < destination location

distance «— distance to the destination of the last node chosen by GREEDY ROUTING
t « the intersection point in FACE ROUTING

GFG ROUTING Protocol
Initialization of the packet pkt:
srcld «— s // source address

dstld «— d /] destination address

62

nextHop « null // next hop address

prevHop « s // previous hop address

hopCount «+— 0 // number of hops the packet has traveled so far

ttl «— MAXVAL // maximum number of hops the packet can travel

dstLoc — location(d) // destination location
distance «— MAXVAL // distance to the destination of the last node
chosen by GREEDY ROUTING

t «— null // the intersection point in FACE ROUTING

GFG-ROUTING(pkt, c) // c is the address of the current node

1.

doFace — true
GG{c) < 0 // this set stores the one-hop neighbors of ¢ in the gabriel graph
N(c) < set of one-hop neighbors of ¢ in the UDG // a node discovers its
neighbors by running the neighbor discovery protocol
if ¢ = pkt.d then
deliver(pkt)
return
end if
if pkt.hopCount > pkt.ttl then

drop(pkt)
return

. end if

if pkt.d € N(c) then
pkt.nextHop — pkt.d
pkt.prevHop «— ¢
pkt.hopCount «— pkt.hopCount + 1
send(pkt)

return

. end if

if distance(location(c), pkt.dstLoc) < pkt.distance then
pkt.distance — distance(location(c), pkt.dstLoc)
for each u € N(c) do
if distance(location(u), pkt.dstLoc) < pkt.distance then

63

23,
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

40.
41.

42.
43,
44,

45.
46.

47.
48.
49.
50.
51.

pkt distance «— distance(location(u), pkt.dstLoc)
pkt.nextHop «— u
doFace «— false
end if
end for
end if
if doFace = true then
changeFace «— false
if pkt.t = null then
pkt .t — location(c)
changeFace « true
end if
GG(c) «— GABRIEL-GRAPH(c)
do
if changeFace = true then

if location(c) = pkt.t then

pkt.nextHop — w € GG(c) such that [c,w] is the first clockwise

edge from ¢d incident on ¢

else

pkt.nextHop — w € GG(c) such that [c,w] is the first clockwise

edge from [c, pkt.nextHop] incident on ¢
end if

else

pkt.nextHop «— w € GG(c) such that [c,w] is the first clockwise

edge from [pkt.prevHop,c| incident on ¢
end if
if [c, pkt.nextHop) intersects td at point x

and distance(x, pkt.dstLoc) < distance(t, pkt.dstLoc) then

if d is to the right of [c, pkt.nextHop] then
changeFace — true
pkt.t —x

end if

else

64

52.
53.
54.
55.
56.
57.
38.

changeFace — false
end if
while changeFace = true
end if
pkt.hopCount = pkt.hopCount + 1
pkt.prevHop =c
send(pkt)

GABRIEL-GRAPH(v)

1.

N o A wo

GG(v) —0
for each u € N(v) do
if disk(u,v) N (N(v)\{u,v}) =0 then
GG(v) — GG(v)U{u}
end if
end for
return GG(v)

A.2 Doubling Face Tree Routing Packet Format and Pro-

tocol Pseudocode

DoUBLING FACE TREE Packet format

type < a numeric value indicating the protocol this packet belongs to

srcld «— source address

dstld — destination address

nextHop «— next hop address

prevHop « previous hop address

hopCount «— number of hops the packet has travelled so far

tt] — maximum number of hops the packet can travel

dstLoc +— destination location, this is the center of the uncertainty zone

radius < radius of the uncertainty zone

s" « reference point for the face tree

65

estarr < Start edge

e « current edge

ent — entry edge for the face

lastNode «— used for doubling entry edge computation
startNode «— used for doubling entry edge computation
k «— used for doubling entry edge computation

J < used for doubling entry edge computation

isentry «— used for doubling entry edge computation
direction — used for doubling entry edge computation
this face + used for doubling entry edge computation
stop « used for doubling entry edge computation

[< used for doubling entry edge computation

DOUBLING FACE TREE Protocol

Initialization of the packet pkt:
srcld « s // source address
dstld «— d // destination address
nextHop « null // next hop address
prevHop « null // previous hop address
hopCount «— 0 // number of hops the packet has traveled so far
ttl — MAXVAL // maximum number of hops the packet can travel
dstLoc < p // the old location of destination, this is the center of
the uncertainty zone
radius « radius of the uncertainty zone
estart — |¢, W] where g is the entry node and w € GABRIEL-GRAPH(q) such that [g,w]
is the first clockwise edge from [g, pkt.dstLoc] incident on ¢
€ < €sart
ent «— null
s' « a point close to the mid of ey, on the left side
lastNode — null
startNode «— null
k—0

66

Jj<=0

isentry «— —1

direction «— true

thisface — true

stop «— false

[« null

DOUBLING-FACE-TREE-ROUTING(pkt, ¢) // c is the address of the current node

1.

change — false
GG(c) « 0 // this set stores the one-hop neighbors of ¢ in the gabriel graph
N(c) « set of one-hop neighbors of ¢ in the UDG // a node discovers its
neighbors by running the neighbor discovery protocol
if ¢ = pkt.d then
deliver(pkt)
return
end if
if pkt.hopCount > pkt.ttl then

drop(pkt)
return

. endif

if pkt.d € N(c) then
pkt.nextHop «— pkt.d
pkt.prevHop « ¢
pkt.hopCount «— pkt.hopCount + 1
send(pkt)

return

. end if

GG(c) <« GABRIEL-GRAPH(c)
do
change «— false
if pkt.nextHop = null then
pkt.nextHop <« w such that e, = [c, W]

else

67

25. pkt.nextHop — w € GG(c) such that [c,w] is the first clockwise
edge from [pkt.prevHop, c] incident on ¢

26. if pkt.startNode # null then

27. isentry(pkt,true)

28. return

29. else

30. pkt.e — [c, pkt.nextHop)

31. if pkt.e = pkt.eg gy then

32. drop(pkt)

33. return

34, end if

35. end if

36. end if

37. if intersects([c, pkt.nextHop), pkt.dstLoc, pkt.radius) then
38. if s’ not contained in the face with pkt.e on its boundary

and ((pkt.ent # null and pkt.e = pkt.ent)
or (pkt.ent = null and isentry(pkt,true))) and pkt.stop = false then

39. pkt.e — [pkt.nextHop,c|

40. pkt.prevHop — pkt.nextHop

41. change — true

42. pkt.ent — null

43, else if 5" not contained in the face with pkz.e on its boundary

and pkt.stop = false and isentry(pkt, false) then

44, pkt.e — [pkt.nextHop,c]

45. pkt.prevHop «— pkt.nextHop
46. change — true

47. pkt.ent < pkt.e

48, end if

49. if pkt.stop = true then

50. return

51. end if

52. end if

53. while changeFace = true

68

54. pkt.hopCount = pkt.hopCount + 1
55. pkt.prevHop =c
56. send(pkt)

ISENTRY (pkt, thisface)

1. change — false

2. do

3. change — false

4, if pkt.startNode # null and pkt.startNode = c then

5. if pkt.isentry = 0 then

6. pkt.startNode — null

7. pkt.nextHop «— w such that pkt.e = [c,w)

8. pkt.prevHop «— w € GG(c) such that [c,w] is the first counterclockwise
edge from [c, pkt.nextHop) incident on ¢

9. return false

10. else if pkt.isentry = 1 then

11. pkt.startNode — null

12. pkt.nextHop «— w such that pkt.e = [c,w]

13. pkt.prevHop — w € GG(c) such that [c,w] is the first counterclockwise
edge from [c, pkt.nextHop] incident on ¢

14. return true

15. end if

16. pkt.k — 2« pkt .k

17. if pkt.thisface = true then

18. if pkt.direction = true then

19. pkt.j — —1

20. else

21. pkt.j 0

22. end if

23. else

24, if pkt.direction = true then

25. pkt.j—0

26. else

69

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,

43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.

54.
55.

56.

pkt.j — —1
end if
end if
else if pkt.startNode = null then
if |GG(c)| = 1 then
return false
end if
pkt.lastNode — null
pkt.isentry « —1
pkt.direction «— true
pkt.startNode « ¢
if thisface < true
pkt.l — pkt.e
pkt.k — 1
pkt.j — —1
pkt.prevHop — w € GG(c) such that [c,w] is the first
counterclockwise edge from [c, pkt.nextHop)] incident on ¢

pkt.thisface «— true

else
pkt.l — [x,w] such that [w,x] = pkt.e
pkt.k 1
pkt.j —0
pkt.prevHop «— x such that [c,x] = pkt.e
pkt.thisface «— false

end if

end if

if pkt.direction = true then
pkt.nextHop «— w € GG(c) such that [c,w] is the first clockwise
edge from [c, pkt.nextHop) incident on ¢
else
pkt.nextHop — w € GG(c) such that [c,w] is the first counterclockwise
edge from [c, pkt.nextHop] incident on ¢
end if

70

57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

70.
71.
72.
3.
74.
75.
76.
1.
78.
79.
80.
81.
82.

&3.
84.
85.
86.
87.

if pkt.j # —100 then
pkt.j «— pkt.j+1
if pkt.direction — true then
tempe « [c, pkt.nextHop|
else
tempe «— [pkt.nextHop,c|
end if
if keyy (tempe) < keyy (pkt.l) then
pkt.isentry — 0
if pkt.startNode = c then
pkt.startNode «— null
pkt.nextHop — w such that [c,w] = pkt.e
pkt.prevHop « w € GG(c) such that [c, w] is the first
counterclockwise edge from [c, pkt.nextHop)| incident on ¢
return false
end if
t «— pkt.nextHop
pkt.nextHop <« pkt.prevHop
pkt.prevHop —t
pkt direction < !pkt.direction
pkt.j — —100
else if pkt.lastNode = pkt.nextHop then
pkt.isentry «— 1
if pkt.startNode = c then
pkt.startNode «— null
pkt.nextHop — w such that [c,w] = pkt.e
pkt.prevHop «— w € GG(c) such that [c,w] is the first counterclockwise
edge from [c, pkt.nextHop] incident on ¢
return false
end if
t «— pkt.nextHop
pkt.nextHop — pkt.prevHop
pkt.prevHop «—t

71

88. pkt.direction <! pkt.direction

89. pkt.j — —100

90. else if pkt.j = pkt.k then

91. pkt.lastNode « pkt.nextHop
92. t «— pkt.nextHop

93. pkt.nextHop «— pkt.prevHop
94, pkt.prevHop —t

9s. pkt.direction ! pkt.direction
96. pkt.j — —100

97. if pkt.startNode = ¢ then

98. change «— true

99. end if

100. end if

101. while changeFace = true

102. pkt .hopCount = pkt.hopCount + 1
103. pkt.prevHop = ¢
104. send (pkt)

GABRIEL-GRAPH(V)
1. GG(v)«~0

2. foreachu e N(v) do

3 if disk(u,v)N(N(v)\{u,v}) =0 then
4, GG(v) «— GG(v)U{u}

5 end if

6. end for

7. return GG(v)

A.3 DFS Face Tree Routing Packet Format and Protocol

Pseudocode

DFS FACE TREE Packet format

72

type «— a numeric value indicating the protocol this packet belongs to
srcld «— source address

dstld «— destination address

nextHop «— next hop address

prevHop «— previous hop address

hopCount — number of hops the packet has travelled so far

ttl < maximum number of hops the packet can travel

dstLoc «— destination location, this is the center of the uncertainty zone
radius «— radius of the uncertainty zone

s" « reference point for the face tree

esiars < Start edge

e «— current edge

¢’ « starting edge for traversal of face during entry edge computation
ent «— entry edge for the face

oent — entry edge for the opposite face

mode «— used during entry edge computation

DFS FACE TREE Protocol

Initialization of the packet pkt:
srcld «— s // source address
dstld — d // destination address
nextHop «— null // next hop address
prevHop < null // previous hop address
hopCount «— 0 // number of hops the packet has traveled so far
ttl — MAXVAL // maximum number of hops the packet can travel
dstLoc < p I/ the old location of destination, this is the center of
the uncertainty zone
radius «— radius of the uncertainty zone
estart < [g,w] where g is the entry node and w € GABRIEL-GRAPH(g) such that [g, w]
is the first clockwise edge from [g, pkt.dstLoc] incident on ¢
€ < Esiant

e — null

73

ent «— null

oent «— null

mode — 0

s’ « a point close to the mid of ey, on the left side

DFS-FACE-TREE-ROUTING(pkt, ¢) // ¢ is the address of the current node

1.

change «— false
GG(c) <« 0 // this set stores the one-hop neighbors of ¢ in the gabriel graph
N(c) « set of one-hop neighbors of ¢ in the UDG // a node discovers its
neighbors by running the neighbor discovery protocol
if ¢ = pkt.d then
deliver(pkt)
return
end if
if pkt.hopCount > pkt.ttl then
drop(pkt)

return

. end if
. if pkt.d € N(c) then

pkt.nextHop «— pkt.d
pkt.prevHop «— ¢

pkt.hopCount «— pkt.hopCount -+ 1
send (pkt)

return

. end if

GG(c) < GABRIEL-GRAPH(c)

. do

change — false
if pkt.nextHop = null then
pkt.nextHop — w such that egqr = [c, W]
else
pkt.nextHop — w € GG(c) such that [c, w] is the first clockwise

edge from [pkt.prevHop, c| incident on ¢

74

26.
27.
28.
29.
30.
31.
32.

33,
34,
35.
36.
37.
38.
39.
40.
41,
42.
43.
44,
45.
46.
47,

48.
49.

50.
51.
52.
53.
54.
55.

if pkt.mode = 0 then
pkt.e — [c, pkt.nextHop|
if pkt.ent 5 null and pkt.oent # null and e = ey, then
drop(pkt)
return
end if
if intersects([c, pkt.nextHop)|, pkt.dstLoc, pkt.radius) and
|GG(c)| > 1 then
pkt.oent — null
end if
end if

end if
if pkt.ent = null and pkt.mode =0 then

pkt.mode — 1
¢ — [c, pkt.nextHop]
pkt .ent — [c, pkt.nextHop]

if pkt.oent = null and pkt.mode = 0 then
pkt.mode «— —1
pkt.prevHop «— pkt.nextHop
¢’ — [pkt.prevHop,c]
pkt.oent — |pkt.prevHop,c]
pkt.nextHop «— w € GG(c) such that [c,w] is the first clockwise
edge from [pkt.prevHop,] incident on ¢
else if pkr.e’ # null then
if (pkt.mode =1 and pkt.e’ = [c, pkt.nextHop)) or
(pkt.mode = —1 and pkt.¢’ = [pkt.prevHop,c]) then
pkt.€ «— null
pkt.mode «— 0O
pkt.nextHop «— w such that pkt.e = [x,w]
if pkt.oent = null then
change «— true

continue

75

56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

71.
72.
73.
74.
75.
76.
77.
78.

79.
80.
8l1.
82.
83.
84,
85.
86.

end if
end if
else if pkt.mode = 1 then
if keyy([c, pkt.nextHopl) < keyy (pkt.ent) then
pkt.ent — [c, pkt.nextHop]
end if
else if pkt.mode = —1 then
if keyy([pkt.prevtHop,c]) < keyy(pkt.oent) then
pkt.oent — [pkt.prevHop,c|
end if
end if
end if
if pkt.¢’ = null then
if intersects([c, pkt.nextHop), pkt dstLoc, pkt.radius) then
if s’ not contained in the face with pkz.e on its boundary
and pkt.e = pkt.ent then
pkt.e — [pkt.nextHop, c|
pkt.prevHop «— pkt.nextHop
change < true
temp «— pkt.ent
pkt.ent — pkt.oent
pkt.oent — temp
end if
else if s’ not contained in the face with pkz.e on its boundary
and [x,w| = pkt.oent such that pkt.e = [w, x| then
pkt.e — [pkt.nextHop, |
pkt.prevHop « pkt.nextHop
change < true
temp < pkt.ent
pkt.ent — pkt.oent
pkt.oent — temp
end if
end if

76

87. end if

88. while changeFace = true

89. pkt.hopCount = pkt.hopCount + 1
90. pkt.prevHop =c

91. send(pkt)

GABRIEL-GRAPH(V)
1. GG(v) <0

2. foreachu e N(v) do

3. if disk(u,v) N (N(v)\{u,v}) =0 then
4, GG(v) — GG(v)U{u}

5. end if

6. end for

7.

return GG(v)

A.4 Mark Entry Edge Face Tree Routing Packet Format

and Protocol Pseudocode

MARK ENTRY EDGE FACE TREE Packet format

type < a numeric value indicating the protocol this packet belongs to
srcld «— source address

dstld « destination address

nextHop < next hop address

prevHop < previous hop address

hopCount «— number of hops the packet has travelled so far

ttl — maximum number of hops the packet can travel

dstLoc — destination location, this is the center of the uncertainty zone
radius < radius of the uncertainty zone

s" < reference point for the face tree

estars < Start edge

e «— current edge

77

¢’ « starting edge for traversal of face during entry edge computation
ent «— entry edge for the face
oent «— entry edge for the opposite face

mode «+— used during entry edge computation

MARK ENTRY EDGE FACE TREE Protocol

Initialization of the packet pkt:
srcld «— s // source address
dstld «— d // destination address
nextHop «— null // next hop address
prevHop «— null // previous hop address
hopCount < 0 // number of hops the packet has traveled so far
ttl «— MAXVAL // maximum number of hops the packet can travel
dstLoc < p // the old location of destination, this is the center of
the uncertainty zone
radius «— radius of the uncertainty zone
estart — [g, w] where g is the entry node and w € GABRIEL-GRAPH(g) such that [g, w]
is the first clockwise edge from |g, pkt.dstLoc| incident on ¢
€ < €start
¢ «— null
ent «— null
oent — null
mode — 0

s' « a point close to the mid of ey, on the left side

MARK-ENTRY-EDGE-FACE-TREE-ROUTING(pkt, ¢) // ¢ is the address of the current node
1. change «— false
2. GG(c) < 0 // this set stores the one-hop neighbors of ¢ in the gabriel graph
3. N(c) « set of one-hop neighbors of ¢ in the UDG // a node discovers its
neighbors by running the neighbor discovery protocol
marked|v] — null ¥V v € GG(c)
if ¢ = pkt.d then

78

26.
27.
28.
29.
30.
31.
32.

33.
34.
35.

deliver(pkt)

return

end if
if pkt.hopCount > pkt.ttl then

drop(pkt)
return

. endif

if pkt.d € N(c) then

pkt.nextHop «— pkt.d
pkt.prevHop «— ¢

pkt.hopCount < pkt.hopCount + 1
send (pkt)

return

. endif

GG(c) «— GABRIEL-GRAPH(c)

. do

change «— false
if pkt.nextHop = null then
pkt.nextHop «— w such that egqr = [c, W]
else
pkt.nextHop «— w € GG(c) such that [c,w] is the first clockwise
edge from [pkt.prevHop, c] incident on ¢
if pkt.mode = 0 then
pkt.e — [c, pkt.nextHop|
if pkt.ent # null and pkt.oent # null and e = e, then
drop(pkt)
return
end if
if intersects([c, pkt.nextHop), pkt.dstLoc, pkt.radius) and
|GG(c)| > 1 then
pkt.oent «— null
end if
end if

79

36.
37.
38.
39.
40.
41.
42,

43,
44,
45.
46.
47.

48,
49,

50.
51
52.
53.
54.
55.
56.
55.
56.
35.
56.
55.
55.
56.
55.
56.

end if
if marked|[c, pkt.nextHop|| = null and pkt.ent = null and pkt.mode = 0 then
pkt.mode — 1
¢’ — [c, pkt.nextHop]
pkt.ent «— |[c, pkt.nextHop)
else
if marked|[c, pkt .nextHop|| = null and pkt.oent = null and
pkt.mode = 0 then
pkt.mode — —1
pkt.prevHop «— pkt.nextHop
¢’ « |pkt.prevHop,]
pkt.oent «— [pkt.prevHop,c|
pkt.nextHop — w € GG(c) such that [c,w] is the first clockwise
edge from [pkt.prevHop, c| incident on ¢
else if pkt.e’ # null then
if (pkt.mode=1and pkt.¢' = [c, pkt.nextHop]) or
(pkt.mode = —1 and pkt.e' = [pkt.prevHop, c]) then
if pkt.mode = 1 then
pkt.mode — 2
else
pkt.mode — —2
end if
if pkt.ent # null then
if pkt.ent = [c, pkt.nextHop] then
marked|[c, pkt .nextHop|| < true
else
marked||c, pkt .nextHopl| < false
end if
end if
if pkt.oent # null then
if pkt.oent = [c, pkt.nextHop) then
marked|[c, pkt .nextHop)| — true

else

80

55.
56.
55.
49.

50.
S1.
52.
53.
54.
55.
56.
49.
55.
56.
55.
56.
55.
56.
55.
49,
55.
56.
55.
56.
55.
56.
55.
58.
59.
60.
61.
62.

marked|[c, pkt.nextHop|| — false
end if
end if

else if pkt.mode =2 and pkt.¢' = [c, pkt.nextHop)) or
(pkt.mode = —2 and pkt.e' = [pkt.prevHop,c]) then

pkt.e' — null
pkt.mode — 0
pkt.nextHop — w such that pkt.e = [x,w]
if pkt.oent = null then
change «— true
continue
end if
else if pkt.mode = 2 then
if pkt.ent # null then
if pkt.ent = [c, pkt.nextHop) then
marked|[c, pkt.nextHop|| — true
else
marked|[c, pkt.nextHop|| — false
end if
end if
else if pkt.mode = —2 then
if pkt.oent # null then
if pkt.oent = [c, pkt.nextHop| then
marked|[c, pkt.nextHop|| — true
else
marked|[c, pkt.nextHop)| < false
end if
end if
else if pkt.mode = 1 then

if keyy([c, pkt.nextHop|) < keyy (pkt.ent) then

pkt.ent «— [c, pkt .nextHop]
end if
else if pkt.mode = —1 then

81

63.
64.
65.
66.
67.
67.
68.
69.
70.

71.
72.
73.
74.
75.
76.
71.
78.

79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.

if keyy([pkt.prevtHop,c|) < keyy(pkt.oent) then
pkt.oent — [pkt.prevHop, c|
end if

end if

end if
end if

if pkt.e’ = null then

if intersects([c, pkt.nextHop), pkt.dstLoc, pkt.radius) then

if s’ not contained in the face with pkt.e on its boundary

and marked|pkt.e] = true then

pkt.e «— [pkt.nextHop,c]
pkt.prevHop «— pkt.nextHop
change «— true

temp «— pkt.ent

pkt.ent < pkt.oent

pkt.oent — temp

end if

else if s’ not contained in the face with pkz.e on its boundary

and marked|[x,w|] = true such that pkt.e = [w, x| then

pkt.e — [pkt.nextHop,c|
pkt.prevHop «— pkt.nextHop
change «— true

temp «— pkt.ent

pkt.ent «— pkt.oent

pkt.oent — temp

end if

end if
end if

while changeFace = true

pkt.hopCount = pkt.hopCount + 1

pkt.prevHop = ¢
send (pkt)

82

GABRIEL-GRAPH(V)

1. GG(v)«0

2. foreachueN(v)do

3 if disk(u,v) N (N(v)\{u,v}) =0 then
4 GG(v) «— GG(v)U{u}

5. end if

6. end for

7. return GG(v)

A.5 BFS Face Tree Routing Packet Format and Protocol

Pseudocode

BFS FACE TREE Packet format

type « a numeric value indicating the protocol this packet belongs to
srcld — source address

dstld < destination address

nextHop < next hop address

prevHop «— previous hop address

hopCount — number of hops the packet has travelled so far

ttl — maximum number of hops the packet can travel

dstLoc < destination location, this is the center of the uncertainty zone
radius « radius of the uncertainty zone

s" « reference point for the face tree

esart < start edge

e «— current edge

¢ « starting edge for traversal of face during entry edge computation
ent «— entry edge for the face

oent « entry edge for the opposite face

mode «— used during entry edge computation

Q « bfs queue, maintains a queue of entry edges to be visited

§ « a set of entry edges

83

BFS FACE TREE Protocol

Initialization of the packet pkt:
srcld — s // source address
dstld — d [/ destination address
nextHop «— null // next hop address
prevHop «— null // previous hop address
hopCount — 0 // number of hops the packet has traveled so far
ttl — MAXVAL // maximum number of hops the packet can travel
dstLoc «— p /] the old location of destination, this is the center of
the uncertainty zone
radius < radius of the uncertainty zone
estart “— [, w] where g is the entry node and w € GABRIEL-GRAPH(q) such that [g,w]
is the first clockwise edge from [g, pkr.dstLoc] incident on g
€ < €gart
e — null
ent «— null
oent «— null
mode — 0
s' « a point close to the mid of egq,; on the left side
Q<0
S—0

BFS-FACE-TREE-ROUTING(pkt, ¢) // ¢ is the address of the current node
1. change «— false
2. GG(c) < 0/ this set stores the one-hop neighbors of ¢ in the gabriel graph
3. N(c) < set of one-hop neighbors of ¢ in the UDG // a node discovers its

neighbors by running the neighbor discovery protocol

4, if ¢ = pkt.d then
5. deliver(pkt)
6. return

7. endif

84

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
27.
28.

29.
30.
31
32.
33.
34.
35.
36.
37.
38.

if pkt.hopCount > pkt.ttl then

drop(pkt)
return

end if
if pkt.d € N(c) then

pkt.nextHop — pkt.d
pkt.prevHop «— ¢

pkt.hopCount — pkt.hopCount + 1
send(pkt)

return

end if
GG(c) < GABRIEL-GRAPH(c)

do

change «— false
if pkt.nextHop = null then
pkt.nextHop «— w such that egqr, = [, W]
else
pkt.nextHop — w € GG(c) such that [c,w] is the first clockwise
edge from [pkt.prevHop, c] incident on ¢
if pkt.mode = 0 then
pkt.e — [c, pkt.nextHop)
if intersects([c, pkt.nextHop)|, pkt.dstLoc, pkt.radius) and
|GG(c)| > 1 then
pkt.oent «— null
end if
end if
end if
if pkt.ent = null and pkt.mode = 0 then
pkt.mode — 1
¢ — [c, pkt.nextHop|
pkt.ent «— [c, pkt.nextHop]
else

if pkt.oent = null and pkt.mode = 0 then

85

39.
40.
41.
42.
43,

44.
45.

46.
47,
48.
49.
50.
5L
52.
53.
54.
5.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

pkt.mode — —1
pkt.prevHop «— pkt.nextHop
¢ — |pkt.prevHop,c]
pkt.oent — |pkt.prevHop, c|

pkt.nextHop — w € GG(c) such that [c,w] is the first clockwise

edge from [pkt.prevHop, c] incident on ¢
else if pkr.¢’ # null then
if (pkt.mode=1and pki.e’ = [c, pkt.nextHop)) or
(pkt.mode = —1 and pkt.¢' = [pkt.prevHop,c|) then
pkt.e' — null
pkt.mode — 0
pkt.nextHop «— w such that pkt.e = [x, w)
if pkt.oent = null then
change «— true
continue
end if
end if
else if pkt.mode = 1 then
if keyy([c, pkt.nextHop|) < keyy (pkt.ent) then
pkt.ent — [c, pkt.nextHop|
end if
else if pkt.mode = —1 then
if keyy(|pkt.prevtHop,c|) < keyy(pkt.oent) then
pkt.oent — [pkt.prevHop, c]
end if
end if
end if
if pkt.¢’ = null then
if intersects([c, pkt.nextHop), pkt.dstLoc, pkt.radius) then
if pkt.Q # 0 and e = first(pkt.Q) then
enqueue(pkt.Q,dequeue(pkt.Q))
pkt.e — [pkt.nextHop,c|
pkt.prevHop «— pkt.nextHop

86

70. change «— true

71. temp «— pkt.ent

72. pkt.ent — pkt.oent

73. pkt.oent — temp

74. end if

75. if s’ not contained in the face with pkt.e on its boundary

and pkt.e = pkt.ent then

76. if pkt.e = last(pkt.Q) then

77. pkt.S — pkt.S U {dequeue(pkt.Q)}
78. if pkt.Q = 0 then

79. drop(pkt)

80. return

81. end if

82. end if

83. pkt.e — [pkt.nextHop,c|

84, pkt.prevHop «— pkt.nextHop

85. change «— true

86. temp «— pkt.ent

87. pkt.ent — pkt.oent

88. pkt.oent «— temp

89. end if

90. else if s’ not contained in the face with pkt.e on its boundary

and [x,w| = pkt.oent such that pkt.e = [w, x| then

91. if pkr.e ¢ S then

92. enqueue(pkt.Q, pkt .e)
93. end if

9. end if

95. end if

96. end if

97. while changeFace = true

98. pkt.hopCount = pkt.hopCount + 1
99. pkt.prevHop =c¢

100. send (pkt)

87

GABRIEL-GRAPH(V)
1. GG(v)—0

2. foreachu € N(v) do

3 if disk(u,v) N (N(v)\{u,v}) =0 then
4, GG(v) — GG(v)U{u}

5 end if

6. end for

7. return GG(v)

A.6 || Face Tree Routing Packet Format and Protocol Pseu-

docode

|| FACE TREE Packet format

type «— a numeric value indicating the protocol this packet belongs to
srcld < source address

dstld < destination address

nextHop < next hop address

prevHop «— previous hop address

hopCount — number of hops the packet has travelled so far

ttl — maximum number of hops the packet can travel

dstLoc — destination location, this is the center of the uncertainty zone
radius +— radius of the uncertainty zone

s" — reference point for the face tree

esart < Start edge

e «— current edge

¢’ — starting edge for traversal of face during entry edge computation
ent — entry edge for the face

oent «— entry edge for the opposite face

mode «— used during entry edge computation

88

| FACE TREE Protocol

Initialization of the packet pkt:
srcld — s // source address
dstld — d // destination address
nextHop < null // next hop address
prevHop < null // previous hop address
hopCount — 0 // number of hops the packet has traveled so far
1tl — MAXVAL // maximum number of hops the packet can travel
dstLoc < p I/ the old location of destination, this is the center of
the uncertainty zone
radius — radius of the uncertainty zone
estart < |g,w] where ¢ is the entry node and w € GABRIEL-GRAPH(q) such that [g, w]
is the first clockwise edge from [g, pkz.dstLoc] incident on g
€ < Estart
e «— null
ent — null
oent «— null
mode — 0

s’ « a point close to the mid of ey, on the left side

||-FACE-TREE-ROUTING(pkt, c) // ¢ is the address of the current node
1. change — false
2. GG(c) < 0// this set stores the one-hop neighbors of ¢ in the gabriel graph
3. N(c) < set of one-hop neighbors of ¢ in the UDG // a node discovers its
neighbors by running the neighbor discovery protocol
if ¢ = pkr.d then
deliver(pkt)
return
end if
if pkt.hopCount > pkt.ttl then
drop(pkt)

A S A R

10. return

89

I1.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.

26.
27.
28.
29.
30.
31.
32.

33.
34.
35.
36.
37.
38.
39.
40.
41.

end if
if pkt.d € N(c) then

pkt.nextHop < pkt.d
pkt.prevHop «— ¢

pkt .hopCount «— pkt.hopCount + 1
send (pkt)

return

end if
GG(c) < GABRIEL-GRAPH(¢)

do

change «— false
if pkt.nextHop = null then
pkt.nextHop — w such that egq = [c, W]
else
pkt.nextHop «— w € GG(c) such that [c,w] is the first clockwise
edge from [pkt.prevHop, c| incident on ¢
if pkt.mode =0 then
pkt.e — [c, pkt.nextHop|
if pkt.ent # null and pkt.oent # null and e = ey, then
drop(pkt)
return
end if
if inrersects([c, pkt.nextHop), pkt.dstLoc, pkt.radius) and
|GG(c)| > 1 then
pkt.oent «— null
end if
end if
end if
if pkt.ent = null and pkt.mode =0 then
pkt.mode — 1
¢’ « [c, pkt.nextHop|
pkt.ent — [c, pkt.nextHop)

else

90

42.
43.
44.
45.
46.
47.

48.
49.

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

71.

if pkt.oent = null and pkt.mode = O then
pkt.mode — —1
pkt.prevHop «— pkt.nextHop
¢’ — |pkt.prevHop,c|
pkt.oent «— [pkt.prevHop, |

pkt.nextHop «— w € GG(c) such that [c,w] is the first clockwise

edge from [pkt.prevHop, c] incident on ¢
else if pkr.e’ # null then
if (pkt.mode =1and pki.¢’ = [c, pkt.nextHopl) or
(pkt.mode = —1 and pkt.e' = [pkt.prevHop, c]) then
pkt.e’ — null
pkt.mode — Q
pkt.nextHop « w such that pkt.e = [x, w]
if pkt.oent = null then
change < true
continue
end if
end if
else if pkr.mode = 1 then
if keyy([c, pkt.nextHop)|) < keyy(pkt.ent) then
pkt.ent — [c, pkt.nextHop)
end if
else if pkt.mode = —1 then
if keyy([pkt.prevtHop,c]) < keyq(pkt.oent) then
pkt.oent «— [pkt.prevHop,]
end if
end if
end if
if pkt.e’ = null then
if intersects([c, pkt.nextHop|, pkt.dstLoc, pkt.radius) then
if s’ not contained in the face with pkt.e on its boundary
and pkt.e = pkt.ent then

return

91

72. end if
73. else if s’ not contained in the face with pkz.e on its boundary

and [x,w] = pkt.oent such that pkt.e = [w, x| then

74. make a copy of pkt and send //the packet is sent to pkt.nextHop
75. pkt.e — |pkt.nextHop,c|

76. pkt.prevHop «— pkt.nextHop

77. change «— true

78. temp «— pkt.ent

79. pkt.ent «— pkt.oent

80. pkt.oent — temp

81. end if

82. end if

83. end if

84. while changeFace = true

85. pkt.hopCount = pkt.hopCount + 1
86. pkt.prevHop =c

87. send(pkt)

GABRIEL-GRAPH(V)
1. GG(v)—0

2. foreachu € N(v) do

3 if disk(u,v)N(N(v)\{u,v}) =0 then
4 GG(v) — GG(v)U{u}

5. end if

6. end for

7. return GG(v)

A.7 AN Flooding Routing Packet Format and Protocol Pseu-

docode

AN FLOODING Packet format

92

type « a numeric value indicating the protocol this packet belongs to
srcld «— source address

dstld < destination address

nextHop < next hop address

prevHop «— previous hop address

hopCount «— number of hops the packet has travelled so far

tt] +— maximum number of hops the packet can travel

dstLoc « destination location, this is the center of the uncertainty zone
radius < radius of the uncertainty zone

seqno < a sequence number to stop broadcasting of duplicate packets

AN FLOODING Protocol

Initialization of the packet pkt:

srcld « s [/ source address

dstld < d // destination address

nextHop « null // next hop address

prevHop «— null // previous hop address

hopCount — 0 // number of hops the packet has traveled so far

ttl «+— MAXVAL // maximum number of hops the packet can travel
dstLoc < p I/ the old location of destination, this is the center of
the uncertainty zone

radius < radius of the uncertainty zone

seqgno «— a sequence number to stop broadcasting of duplicate packets

AN-FLOODING-ROUTING(pkt, ¢) // c is the address of the current node

I. S«0

2. seqno «—0

3. N(c) « set of one-hop neighbors of ¢ in the UDG // a node discovers its

neighbors by running the neighbor discovery protocol
4. if c = pkt.d then
deliver(pkt)

return

o w

93

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

end if
if pkt.hopCount > pkt.rtl then
drop(pkt)
return
end if
if pkr.d € N(c) then
pkt.nextHop «— pkt.d
pkt.prevHop «— ¢
pkt .hopCount «— pkt.hopCount + 1
send (pkt)
return
end if
if pkt.srcld = c then
pkt.segno <+ seqno
seqno «— segno+ 1
end if
if distance(location(c), pkt.dstLoc) < pkt.radius then
if { pkt.srcld + pkt.dstld + pkt.segno} € S then
drop(pkt)
return
else
pkt.hopCount = pkt.hopCount + 1
pkt.prevHop = ¢
for all w € N(c) do
pkt.nextHop «— w
make a copy of pkt and send //the packet is sent to pkt.nextHop
end for
S« S U {pkt.srcld + pkt.dstld + pkt.seqno}
end if
else
drop(pkt)
return
end if

94

A.8 SN Flooding Routing Packet Format and Protocol Pseu-

docode

SN FLOODING Packet format

type «— a numeric value indicating the protocol this packet belongs to
srcld « source address

dstld « destination address

nextHop «— next hop address

prevHop «— previous hop address

hopCount — number of hops the packet has travelled so far

ttl — maximum number of hops the packet can travel

dstLoc < destination location, this is the center of the uncertainty zone
radius « radius of the uncertainty zone

seqno — a sequence number to stop broadcasting of duplicate packets

SN FLOODING Protocol

Initialization of the packet pkt:
srcld — s // source address
dstld «— d [/ destination address
nextHop < null // next hop address
prevHop «— null // previous hop address
hopCount «— 0 // number of hops the packet has traveled so far
ttl — MAXVAL // maximum number of hops the packet can travel
dstLoc «— p // the old location of destination, this is the center of
the uncertainty zone
radius < radius of the uncertainty zone

segno <+ a sequence number to stop broadcasting of duplicate packets

SN-FLOODING-ROUTING(pkt, ¢) // ¢ is the address of the current node

95

w

S0
seqno «— 0
N(c) « set of one-hop neighbors of ¢ in the UDG // a node discovers its
neighbors by running the neighbor discovery protocol
if ¢ = pkt.d then
deliver(pkt)
return
end if
if pkt.hopCount > pkt.1tl then
drop(pkt)

return

. end if
. if pkt.d € N(c) then

pkt.nextHop <« pkt.d
pkt.prevHop «— ¢

pkt.hopCount «— pkt.hopCount + 1
send (pkt)

return

. endif

if pkt.srcld = c then
pkt.seqno «— seqno

seqno « seqno + 1

. end if
. if distance(location(c), pkt.dstLoc) < pkt.radius then

if {pkt.srcld + pkt.dstld + pkt.seqno} € S then
drop(pkt)
return
else
pkt.hopCount = pkt.hopCount + 1
pkt.prevHop = c
for all w € GREEDY-NEIGHBOR-SUBSET(c¢) do
pkt.nextHop — w
make a copy of pkt and send //the packet is sent to pkt.nextHop

96

33, end for

34. S« S U {pkt.srcld + pkt.dstld + pkt .seqno}
35. end if

36. else

37. drop(pkt)

38. return

39. end if

GREEDY-NEIGHBOR-SUBSET(V)

v « current node

R — N>(v)//set of two-hop neighbors of v

S—0

while R # 0 do
select an x € N1 (v) that maximizes | Ni(x) "R |// Ny is set of one-hop neighbors of v
R — R—Ni(x)
S —Su{x}

end while

R A Al e

return S

97

