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ABSTRACT

The Efficiency of the Oil Futures Market and the Hedging Effectiveness of Symmetric
vs. Asymmetric GARCH Models during Periods of Extreme Conditional Volatility

Mario El-Khoury

This paper investigates the efficiency of the NYMEX Division light sweet crude oil
futures contract market during recent periods of extreme conditional volatility. Crude oil
futures contract prices are found to be cointegrated with spot prices and unbiased
predictors of future spot prices, including over the period prior the onset of the Iraqi war
and until the formation of the new Iraqi government on April 2005. Both futures and spot
prices exhibit asymmetric volatility characteristics. Hedging performance is improved

when asymmetries are accounted for.

Keywords: oil futures; market efficiency; hedging.

JEL Codes: G13, G14.
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1. Introduction

Arbitrageurs, speculators, producers, and policymakers refer to the futures
market for predicting future spot prices and minimizing their risk. A stress-test
of any futures market is its ability to generate prices that are efficient,
particularly during periods of extreme volatility/heightened uncertainty.
Furthermore, during such periods, the choice of effective hedging procedures is

of paramount importance for risk- managers.

In recent years, oil markets have experienced sustained periods of extreme
conditional volatility. Episodes of persistent market uncertainty are not
unprecedented.’ Historically, prolonged sharp increases in energy prices have
led to inflation and adverse economic performance for oil importing countries.
Similarly, sharp decreases create serious budgetary problems for oil exporting

countries (see e.g. Abosedra and Baghestani, (2004)).

A number of studies have appeared that have addressed the efficiency of the oil
futures market (e.g. Crowder and Hamed (1993), Moosa and Al-Loughani
(1994), and Peroni and McNown (1998)). However, the literature to date does

not provide any clear consensus. Moreover, no studies have appeared that

! As A. Greenspan noted: “In early twentieth century, pricing power was firmly in the hands of
Americans, predominately J. D. Rockefeller and Standard Oil.” Reportedly appalled by the
volatility of crude oil prices in the early years of petroleum industry, Rockefeller endeavored
with some success to control those prices. See A. Greenspan, Remarks to the National Italian
American Foundation, Washington, D.C., October 15, 2004/



examine market behavior during periods of sustained extreme conditional
volatility or of the effectiveness of alternative hedging models during such

periods.

Our paper tests the efficiency of the oil futures during periods of extreme
conditional volatility. Using Fama’s (1984) regression approach with monthly
data, a daily regression tests, as well as the Johansen (1998) cointegration
techniques that are robust to varying error structures, we find that futures
prices are unbiased predictors of future spot- prices, consistent with the
speculative efficiency hypothesis during the recent episodes of extreme
volatility from the onset of the Iraqi war until the formation of the new Iraqi

government.

Most applications of time-varying models of hedging have imposed symmetry
in the responses of volatility to positive or negative shocks. In a recent study,
Brooks, Henry, and Persand (2002) demonstrate that there are benefits to
accounting for asymmetry in volatility in deriving optimal hedge ratios for
-equities with futures. The asymmetry that is typically found for equities
associates negative price shocks with greater volatility increases than positive
price shocks, due to leverage effects (e.g., Glosten, Jagannathan, and Runkle
(1993) (GJR)). For oil, however, the asymmetry that we observe involves

positive price shocks leading to greater volatility increases than negative



shocks. To our knowledge, this is the first paper to incorporate asymmetries in
volatility in the oil market to derive optimal hedge ratios for oil. Our results
indicate that hedging performance is improved when such asymmetries are

incorporated into the hedging procedures, based on out-of-sample estimates.

The paper proceeds as follows: In the second section, we provide a brief review
of the literature. The third section describes the data. The efficiency tests and
hedging analyses are provided in section four. The paper concludes with a

summary in section five.

2. Background and Previous Work

In theory, if spot and futures markets are functioning efficiently, then in the
absence of market frictions, futures contracts should be trading at a price
known as the fair value. There have appeared various theoretical models of
market efficiency for oil futures. The starting point of most studies is the

arbitrage free or cost-of-carry model in which the futures price is represented as

. (r+u—d¥T-t)
F,=Se | (1)

where F is the futures price at time t, S is the spot price at time t, r is the risk-

free interest rate, u is the storage cost, d is the convenience yield , T is the



expiration date of the futures contract and T-t is the time to expiry of the futures
contract. In practice, researchers have had difficulty testing the arbitrage
relationship embodied in (1) due to the unobservable nature of storage costs
and convenience yields in the oil markets.”> Hence, most studies have focused
on the Keynes-Hicks and Fama (1970) weak form market/speculative market

efficiency tests of the form:

S =a+pF,_ +g, )
In this approach, market efficiency requires that futures prices should be
unbiased predictors of future spot prices. Otherwise, risk-neutral speculators
could make consistent profits on long or short futures positions through time.
Simple empirical tests of the speculative efficiency hypothesis are based on

tests of the joint hypothesis ¢ =0, =1 in (2). For example, Crowder and

Hamed (1993) examine the NYMEX crude oil contracts and conclude that
accounting for the cointegration between spot and futures, one cannot reject the
speculative efficiency hypothesis during the period March 1983 — September
1990. In contrast, Moosa and Al-Loughani (1994)’s reject futures market
speculative efficiency for the West Texas Intermediate (WTI) contracts for the

period January 1986-July 1990, which antedates the volatility spike that

? For example, Crowder and Hamed (1993) test a limited arbitrage version of (1) that includes
a test for cointegration between oil futures prices, spot prices, and the risk free rate, ignoring
storage costs and convenience yields. As they note, their rejection of this form of arbitrage
efficiency cannot be explained by the behavior of convenience yields, as identified by Gibson
and Schwartz (1990). In particular, since the risk free rate is non-stationary, it cannot be
cointegrated with the stationary convenience yield shown by Gibson and Schwartz (1990).



occurred during the Iraqi invasion of Kuwait in August 1990. They suggest
that their results may be consistent with rational expectations with a time
varying risk premium. However, Peroni and McNown (1998) note that the
Moosa and Al-Loughani conclusion may be unwarranted, as a result of the
shortcomings of the test statistics employed.” Using monthly data, and the
Phillips and Loretan (1991) approach, Peroni and McNown (1998) support the

speculative efficiency hypothesis for the WTI for the 1984-1996 period.

A basic question that we address in this paper is whether oil futures prices are
consistent with speculative market efficiency during periods of significant
uncertainty. Such periods are associated with extreme volatility. Figure I
provides a plot of conditional volatility in the price of the nearby contract of the
NYMEX Light Sweet, Crude Oil futures contract using a GARCH (1,1) model,
estimated over the period January 1, 1986 - April 30, 2005. We define extreme
values- of these estimates in the conventional statistical sense of extreme
outliers, as estimates that exceed three times the inter-quartile range for the data
over this period. For our sample, this corresponds to volatilities in excess of
49. Episodes of extreme volatility are fairly concentrated in time, and have
been most evident over the recent period coinciding with the onset of the Iraqi

war in March 2003.

3 Specifically, Perroni and McNown(1998) demonstrate that the stationary regressors do not
have a drift component, and hence the standard error adjustments used by Moosa and Al-
Loughani (1994) are problematic.



Our tests of the speculative efficiency hypothesis provide two extensions to the
work of Peroni and McNown (1998): a) we test whether the estimation that
includes the recent episodes of extreme volatility leads to pricing biases that
are inconsistent with speculative efficiency; and b) in contrast to who use the
single equation Phillips and Loretan (1991) NLS procedure we employ the
Johansen ‘s (1988) cointegration tests that have been shown to produce superior
inference relative to such estimators, and are robust to alternative error

structures (Gozalo (1995)).

Given time-varying volatility of the oil markets that is observed, one might
expect that much attention would be devoted to devising appropriate hedging
modelé for such markets. This does not appear to be the case, however. Baillie
and Myers (1991) and Moschini and Myers (2002) are among the few studies
that have looked at hedging oil contracts. Both studies are based on symmetric
GARCH models and conclude that time varying hedge ratios outperform the
constant hedge model. We will reexamine this issue using more recent data that
encompasses a more volatile period in the market. In addition, we will analyze
the relative performance of hedging models that incorporate the observed

asymmetric responses of volatility to shocks that is found for these contracts.



3. Data

3.1 - Data Description

The data employed in this study consist of closing daily prices (uniess specified
otherwise) for both the spot prices and the nearby futures prices for the world’s
most liquid and heavily traded oil futures contract, the NYMEX’s Light Sweet,
Crude Oil contract.* The data are obtained from the U.S. Energy Information
Administration and from Bloomberg.’ The data period extends from January
1986 to April 2005 (4819 observations), and embraces the recent subperiod of
extreme conditional volatility, that covers the onset of the Iraq war (March

2003) to the installation of the new Iraqi government (April 2005).

3.2 - Statistical Characteristics of the Data

Figure II plots the nearby contract prices and daily spot prices against time. As
noted in Figure I, oil returns experience volatility clustering around periods of

heightened uncertainty (Gulf War, Iraq War).

* This contract is also the world's largest-volume futures contract trading on a physical
commodity. These contracts trade on a 30 consecutive month basis.

3 The analyses presented use contracts that are rolled over at maturity. The contracts cease
trading at the close of business on the third business day prior to the 25th calendar day of the
month proceeding the delivery month. If the 25th calendar day of the month is a non-business
day, trading ends on the third business day prior to the business day proceeding the 25th
calendar day. We also constructed futures series with a roll over to the next contract one week
prior to maturity. The results are very similar to the ones reported here and are available upon
request.



Table 1 shows the distribution of the daily closing nearby futures contract
prices. As is evident, the price series indicate strong evidence of leptokurtosis
and skewness, which is consistent with a generalized error distribution GED

(Nelson (1988)) or a Student-t-distribution (Bollerslev (1987)).

- Insert Table I here -

4. Methodology
4.1 — Testing Speculative Market Efficiency

We conduct two sets of tests for speculative market efficiency. First we test
whether the futures contracts are unbiased predictors of future spot prices.
Second, we examine the nature of the cointegration relationship between spot

and futures contracts.

4.1.1 — Future Contracts as Unbiased Predictors, Monthly Horizons

To test for unbiasedness of futures prices, two approaches are taken. First, as
per West (1997) we look at how well futures and the spot prices on the day
immediately after the expiration of the contract are used as the best available
forecast fOf the coming month. Although this involves a sacrifice in usable
observations, it avoids problems associated with autocorrelation of overlapping

series.



We implement Fama’s (1984) regression approach to test whether the basis at
any period contains information about future spot prices or contains
information about the risk premium at the expiration of the future contract. Two

equations are estimated.

The first is:

S

M+

S, =a,+pB(F,-S)+e,, (3)
The second is:
Fi=Sa=a,+B(F-8)+&,, “4)
where (F, —S,) is the basis at time t,S,,, is the observed spot price at time t+1
and F, is the futures contract price at time t, and &,(t+1)ande,(t+1) are

residual terms.

If B, is significantly different than zero then we can deduce that (F,~-S,)
contains information about the changes in spot price. Moreover, if S, is

significantly different than zero then the premium, F, —§,,, has variations that

1+

shows up in the basis.

Estimation of (3) and (4) requires that the data series be stationary. In order to
test for stationarity, we use the Dickey and Fuller (1981), augmented Dickey

Fuller (ADF), and Phillips-Perron (PP) tests.

10



The results in Table II show that the basis, the premium, and the change in the
future spot prices are indeed stationary, and hence the regressions are well-

specified.

- Insert Table 11 here -

Table III reports the results of the estimation of (3) and (4). Based on the
estimates of (3), we can conclude that the basis at time t contains some
information regarding future changes in the spot market. Unbiasedness of the
futures as predictors of spot prices is supported, since the estimated constant
term is not significantly different from zero, and the slope coefficient is not
significantly from one. For regression (4), the results are consistent with a time
varying risk premium.

- Insert Table 111 here -

Table IV reports the Wald test results for both models in which we examine the
expectation hypothesis by restricting the coefficients «, =0, 4, =1 in (3) and
a,=0,6,=11n(4).

The results show that for both models the expectation hypothesis cannot be

rejected.

- Insert Table 1V here -

11



4.1.2 - Futures Contracts vs. Random Walk Predictors, Daily
Horizons

The previous tests for unbiasedness of futures prices are based on monthly
series. An alternative approach for testing market efficiency is to examine the
prowess of futures prices relative to random walk predictors using daily data.

As per Park and Switzer (1997) we estimate:

Sy =ay+a,F)y +a,MAT +¢| 5)
where S). is the prevailing spot price for contract i that matures at time T; F,fT
is the futures price of contract i at time t; MAT is the number of days for
contract i to mature as of time t, and &, is the error term. If ¢, is found to be
significantly different than 0, then the current contract priées are good
predictors of future spot prices.
The above model is compared with the simple random walk model:

Sy =By +BSiy + BMAT] +¢, (6)
where S, is the spot price at time t that matures at T.

In the analyses, we examine the period from January 2000 to March 2005 (61
contracts), as well as a subset of this period, that focuses only on the period of
extreme conditional volatility, from March 2003 to January 2005 (25

contracts). The results are reported in Tables V and V1.

12



- Insert Tables V and V1 here -

Estimates of (5) and (6) for both datasets show that current future contracts as
well as spot prices are significant predictors of future spot prices. The futures

contract prices slightly outperformed the random walk although both «, and f,

are found to be significantly different than zero.® This result is consistent with
Moosa and Silvapulle (1999) who founda bi-directional causality or in simpler
words a changing pattern in leads and lags over time. The interpretation is that
both futures and spot prices play a significant role in price discovery including

during periods of extreme conditional volatility.

4.2 — Cointegration Tests

Our final set of tests of efficiency we examine the nature of the cointegration of
spot and futures prices spot during period of extreme conditional volatility.

We first test for the order of integration in each of the spot and the futures
series using various unit root tests. Based on detrended Dickey Fuller tests,

Augmented Dickey-Fuller tests, and Phillips-Perron tests, the results show that

¢ According to the Wald Test results, @, and B, are found to be significantly different than
zero with an F-stat of 12955 and 12479 respectively.

13



the series have a stochastic trend in their univariate time-series presentations

(non-stationary), while first differences are stationary.
- Insert Table VII here -

Based on the results derived from estimation of equations (3) and (4), futures
contract prices are found to be an unbiased predictor of future spot prices. This
implies that there exists a linear relationship between the spot and the futures
series that is expected to be stationary. In other words, a cointegrating

relationship is expected to exist between the two series as represented in (2).

Cointegration is considered as a necessary condition for market efficiency (Lai
and Lai, 1991). However, in order to conclude efficiency, we should also
examine whether futures contracts are unbiased predictors of futures spot
mafkets ie.a=20 ahd B = L. If the oil spot and futures contract prices are

cointegrated, then a long-run relationship must exist between these two series.

Johansen’s (1988) approach is employed in order to test for cointegration. We

consider a general VAR model of order k,

k-1
AX, =D+MIX,, + Y T AX _ +¢, (7)

i=1

where AX,= X,- X _,; D is a deterministic term; Il and T are matrices of

coefficients. The cointegration relationship is examined by looking at the rank
of the coefficient of matrix I. If II = 0, there is no cointegration vector, hence

no cointegration relationship.

14



If IT = 1, then the two series are cointegrated (Johansen and Juselius, 1990).

The trace and maximum statistics are used’.
- Insert Table VIII here -

Both test statistics give the same result and rejecting the assumption of no-
cointegration. Looking at the cointegrating vectors, we can see that there exist a
relationship between spot and futures prices that shows that one of the series

contains some information that can help predict its counterpart.
- Insert Table IX here —

Table X tests whether the futures contracts are efficient predictors of future
spot prices i.e. testing oil market efficiency by examine the joint hypothesis of
a =0and B = 1. Using Likelihood Ratio tests, we are unable to reject the null
that the cointegrating vector is given by (1,-1). Future contract prices are found
to be unbiased predictors of future spot prices, confirming the results from the
previous section and the theory of market efficiency. These results are
consistent with those of Crowder and Hamed (1993), as well as Peroni and

McNown (1998) who examined a less volatile period in the oil markets.

- Insert Table X here -

7 The trace statistic tests the null that the number of cointegrating vectors is less than or equal to
r against and unspecified hypothesis; whereas the maximum eigenvalue statistic tests the null
that the number of cointegrating vectors is r against an alternative of » +1, where r is the
canonical correlation coefficient between the two series. Both tests are formulated as:

g ~
Apore ()= =T ZLn(l ~A),

i=r+l

A (ror+1)==TLn(1- 1)

15



4.3 - Volatility and Hedging

Energy prices are characterized by high, time-varying volatility with
ARCH/GARCH features®. The symmetric GARCH model assumes that a
negative shock (&, < 0) and a positive shock (¢, > 0) have the same effect on
the conditional variance. To allow for asymmetric effects of shocks (i.e. that

depend on the sign of the shock) on conditional variance, Glosten et al (1992)

(GJR) introduced the asymmetric GARCH variant:

h=o+ae’, +Bh_ +re I, )
nere Le, 20 9

where =
o, <0 ®

The short-run persistence of positive shocks is given by o, and short-run

persistence of negative shocks is given by o, (o, +7,) .

Estimates of the GARCH (1,1) model and for the GJR-GARCH model for spot
and futures prices are reported in Tables X1 and XII respectively, using a
Student t- distribution of the error terms. Both models appear to provide a good

explanation for both series. The Student ¢ distribution is found to be appropriate

8 Autocorrelation of the variance of daily returns is reflected in the significant Box-1jung
statistic Q statistic of 142.93 (for j=36). The Lagrange Multiplier statistic for ARCH/GARCH
effects in spot returns also has a highly significant value of §1.88.

16



in all the cases with a highly significant degree of freedom coefficient. Both
series exhibit statistically significant conditional heteroscedasticity. Table XI

also reveals strong evidence for the presence of persistence in volatility

(Integrated GARCH) where the sum of ¢, and f3, is close to one.

- Insert Table X1 here —

Table XII displays estimates of the aéymmetn'c GARCH model. Significant
positive asymmetry ih the futures series is found: positive prices shocks are
associated with greater volatility increases than negative price shocks. This
contrasts with typical results for equity markets, where negative asymmetry is
observed — i.e. volatility increases more on price declines due to leverage
effects (e.g. Glosten et al (1993)). In contrast, for oil, price increases are often
associated with production shocks and /or during periods of growing demand.
Recent volatility shocks have occurred during periods in which demand has
increased at a faster pace than production from existing sources and from new
discoveries of oil.’

- Insert Table XII here -

° From the U.S. Energy Information Administration estimates, we note that world demand for
oil has grown consistently from 2001-2004, with excess world demand appearing in 2003-04.
See: http: //www.eia.doe.gov/emeu/ipsr/t21.xls.

17



4.4 — Hedging During Periods of Extreme Conditional Volatility

How effective is hedging during periods of extreme volatility? To address this
issue, we examine the performance of several hedging procedures.

The return on an unhedged portfolio can be written as:
Ru :St+l _St (10)
while the return on a hedged portfolio is:

R, =(S.,—S)-HE

H _F; ) (1 l)
where Fland S, are the futures and spot prices at time ¢, and A' is the hedge

ratio. R, is the return generated when going long on one unit of spot and short

on /' units of futures at time z.
Similarly, the variance of an unhedged portfolio is:
Var (U)=02, (12)

and the variance on a hedged portfolio is :

Var(H)=0’ +h* o> —2Ha,,, (13)

where 0,0, represent the standard deviation of the spot and futures prices

and o, represent the covariance of both series.

f

18



Following Ederington (1979) and Park and Switzer (1995), hedging
effectiveness can be measured by the percentage reduction in variance of the
hedge portfolio to the unhedged portfolio:

_Var(U)—Var(H)
B Var(U)

HE (14)

We assume a weekly horizon for the hedging, and focus on Friday closing
prices for the extreme conditional volatility period March 2003 - April 2005.
For the futures contracts, the price of the nearest contract is used and rolled
over to the week prior to expiration. The sample consists of 102 observations.
We examine four alternative hedge ratios:

a) Naive or 1-1

b) OLS

¢) Symmetric bivariate GARCH:
The model for the first two conditional moments for the bivariate distributions
of spot and futures series is:

St =, + IBO(Sz»l _ﬂ’Fr—l)_’_gst
F, =a +pB,(S,_,—AF,_)+ £y

where
fa 1o~ NO.H d H YL 15
£ [ (©.5,),an o hi, hy, (1)

19



The term (S, , —AF,,) is the error correction term that accounts for the

cointegration between the spot and the futures series with 1 as the

cointegration parameter. The terms ¢, and &, represent the residuals obtained

from the spot and futures mean equations. The conditional covariance dynamics
are modeled with the BEKK parameterization, which ensures a positive semi-
definite conditional variance-covariance matrix. The distribution of the

residuals is:

&~ N(O: Ht)7

Ht =C'C+ A'Ht-]A + BISQStIB (16)

where H; is the 2x2 variance-covariance matrix, A and B are matrices of
coefficients, and C is an upper triangular matrix of intercept coefficients. g is
the vector of residuals with conditional mean O and conditional variance-

covariance Hy
d) Aymmetric bivariate GARCH :

This approach differs from the symmetric bivariate GARCH approach in that

the covariance matrix (21) is replaced by:

Ht =C'C+ A’Ht_]A + B'Stgt'B + G'T]t_]’l'h_llG (17)

20



where and G is a matrix of coefficients, and 1 is the additional quadratic form
of the vector of negative return shock. H; is a linear function of its own past
values as well as of values of squared shocks. The inclusion of 1, in the above
form not only accounts for asymmetry in the conditional variances but also
allows for an asymmetric effect in the conditional covariance. Because this
methodology implies no restriction of constant correlation between the futures
and the spot series, it allows us for time variation in the correlations across the

two series over time.

Parameter estimates are obtained by maximizing the log-likelihood function.

Conditional log-likelihood functions are computed as:

Ly(B) = - log 211 - %2 log [H{ - 2 &/(0)H..1(8)e(6) (18)
where 0 1s the vector of all parameters B for 1 = oil spot and futures series, and
j = 1 or 2 whether it is variance or covariance respectively. To maximize this

log-likelihood function, we use the simplex and Berndt, Hall, Hall, and

Hausman (1974) algorithms.

Table XIII shows the estimates of the symmetric and asymmetric Bivariate
GARCH models for the entire period. The likelihood ratio statistic comparing
the asymmetric vs. symmetric model is 19.996, which is exceeds the * critical

value with three degrees of freedom at the 1% level (11.3). This demonstrates

21



that the asymmetric model provides significant improvement over its

symmetric counterpart.
-Insert Table XIII here-

Hedging effectiveness is then measured in an out of sample setting. We use
rolling windows of 70 observations for both bivariate GARCH models, to
ensure sufficient data for the estimation of the parameters. Out of sample hedge
ratios are thus computed for observations 70-102, and are displayed in Figure
1)

-Insert Figure I here-

As with the naive 1-1 hedge, the OLS hedge ratios are constant, and are based
on the first 70 observations of the sample. For the symmetric bivariate
GARCH and asymmetric bivariate GARCH models, the estimated parameters

are based on rolling windows as described above.
The time-varying hedge ratios, 4, , can be obtained from the variance estimated

of models (16) and (17).

h: _ hs% (19)

12 The first out of sample hedge ratio uses the first seventy observations to compute the seventy
first hedge ratio. The second out-of-sample hedge ration uses observations two to seventy one,
and so forth.
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As is evident, the asymmetric bivariate GARCH hedge ratios are higher than

their symmetric counterparts.

As shown in Table X1V, the time-varying asymmetric Bivariate GARCH hedge
ratios outperform the OLS and naive counterparts. This is consistent with
previoué work for commodity and financial markets (e.g., Baillie and Myers
(1991), Park and Switzer (1995)). Given the reaction of financial markets to
news and the corresponding need to adjust off-setting hedges, this result should
be obvious.'"  What is a novel and intuitive finding is that the asymmetric
bivariate GARCH hedge model for in which positive prices shocks are
associated with greater volatility increases than negative price shocks are
shown to provide the best performance. This result is also consistent with
recent work by Brooks et al. (2002) who demonstrate that or asymmetriés in
time-varying hedge ratios perform well for financial instruments.

- Insert Table X1V here -

5. Conclusion

This paper examines the efficiency of the oil market over the past two decades,
and focuses on periods of extreme volatility in the markets, particularly from

the onset of the Iragi war in 2003 to the formation of the new Iraqi government

"' We would like to thank the referee for this point.
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in 2005. We also analyze the performance of alternative hedging models

during periods of extreme conditional volatility.

The results are consistent with market efficiency, even during the recent
episodes of extreme conditional volatility. Crude oil futures contract prices
behave as unbiased predictors of future spot prices; in addition, the
cointegration relationship between the futures and the spot series is consistent

with efficiency.

Univariate GARCH models of the distribution of the spot and futures series
reveal evidence of long-term volatility persistence and volatility clustering.
When GIR-GARCH models are examined, significant volatility asymmetries in
the futures and spot series are also fouﬁd. Such'asymmetries are incorporated in
an asymmetric multivariate GARCH hedging model that is estimated for the
first time, to our knowledge, for oil futures contracts. Out of sample tests
demonstrate the superiority of this model relative to alternative models,

including the symmetric bivariate GARCH model.
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Figure I - Daily GARCH Variance Series of Log Futures Contract Prices
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Figure II - Daily Futures Contract vs. Spot Prices
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Figure III — Out of Sample Hedge Ratios, OLS, Bivariate Symmetric
GARCH (SYMMETRIC), and Bivariate Asymmetric GARCH
(ASYMMETRIC)
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Table I — Distribution of Daily Contract Prices (in Logarithms)

Series: Jan. 1986

Jarque-
— April 2005 Mean Maximum Minimum Std. Dev. Skewness Kurtosis Bera
Futures Prices 3.067 4.0477 2.3437 0.305 0.679 3.431 408.457
Spot Prices 3.068 4.0476 2.327 0.305 0.675 3.409 399.89

Table II - Unit Root Test Statistics for Fama Model Variables

Series: Jan. 1986

— April 2005 ADF DF-GLS PP
Change in Spot -6.233685* -1.100388 6.17111*
Basis 6.348805" -6.363539* -8.80031*
Risk Premium -5.955168* -1.082402 -5.95517*

Note - ADF, DF, and PP denote augmented Dickey Fuller, Dickey Fuller and Phillips
Perron respectively. The values reported in the table represent the t-statistics for the
ADF and DF test and the adjusted t-statistic for the PP test. The asterisk denotes
significance at a 1% level. Critical values at a 1% level are -3.458719, -2.575189 and -
3.74 for ADF, DF, and PP respectively from MacKinnon (1996).
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Table I1I - Results of Fama’s Model

Estimation Period: January 1986

— April 2005 @, by F-Stat
Regression (3):
S=S =, +[(F, -S)+£,, 0.000281 0.649067* 6.596267*
[0.00704] [0.28355]
a, B, F-Stat
Regression (4):
Fi=Su=a+B(F-5)+6,, -0.00346 1.129062*  21.73576*
[0.00675] [0.2615]

Note - Robust standard errors are reported inside parentheses. * denotes significance at

a 5% level

Table IV - Wald Test Results of Fama Model

Estimation Period: January

1986 — April 2005 a,=0,p =1 b =1 @, =0
N 2.107178 1.928274 0.00165
Regression (3): [0.3487] [0.1663] [0.9676]
S-S, =a,+p(F,-8)+¢,,
a,=0,p,=1 B, =1 a,=0
Regression (4): 0.37826 0.28401 0.272439
F =S, =0,+B(F-5)+&,, [0.6855] [0.5946] [0.6022]

Note - F values reported. p-values reported in parentheses.
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Table V - Oil Futures Contracts as Predictors of Futures Spot: Daily Data

Panel A: OLS Estimates of
Sy =ay+a Flp +a,MAT; + &,
Estimation Period: January 2000 - March 2005

Independent Variable Coefficient t-statistics
Fiy 0.978101* 98.83

[0.0098]

MAT 0.000983* 4.5

[0.000218]

* 0.064752 1.87
' [0.0345]
F-statistic 6257.005

Prob(F-statistic) 0

Panel B: OLS Estimates of S; = o, +o,F,, + a,MAT, +¢,

Estimation Period March 18, 2003 till March 31, 2005

Independent Variable Coefficient T-statistics
Fy 0.9477* 55.361
[0.017]
MAT 0.001071* 2.856
[0.0132]
a, ; 0.17578 2.787
[0.586]
F-statistic 2071.60
Prob(F-statistic) 0

Note - * denotes significance at a 5% level or better. Robust standard errors are reported in
parentheses. Sj. is the prevailing spot price for contract i that matures at time T; F,',. is the

futures price of contract i at time t; MAT is the number of days for contract i to mature as of

time t, and & is the error term.
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Table VI - Random Walk Model Estimates: Current Spot Market Prices as
Predictors of Future Spot Prices: Daily Data

Panel A: OLS Estimates of
Sr = Bo+BiSip + BMAT] + ¢,
Estimation Period: January 2000 - March 2005

Independent Variable Coefficient T-statistics
Sir 0.9676* 83.927
[0.0115]
MAT 0.0236* 3.334
[0.007]
Bo 0.8115 2.367
[0.3428]
F-statistic 6443.92
Prob(F-statistic) 0.0000

Panel B: OLS Estimates of
Sr = Bo+ BiSir + BMAT/ +¢,
Estimation Period: March 2003-March 2005

Independent Variable Coefficient T-statistics
Sir 0.944* 54.898
[0.0172]
MAT 0.0288* 2.1587
[0.01334]
Po 1.7767 3.048
[0.582]
F-statistic 1873.547
Prob(F-statistic) 0.0000

Note - * denotes significance at a 5% level or better. Robust standard errors are reported in
parentheses. S} is the prevailing spot price for contract i that matures at time T; MAT is the

number of days for contract i to mature as of time t, and 8: is the error term.
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Table VII - Unit root test statistics for futures and spot series

Part A: Price Levels

Series ADF DF-GLS PP
Futures -0.99711 0.238519 -0.96049
Spot -1.13615 0.064633 -1.07128
Panel B: First Differences of
Prices
Futures 22.76708  -8.739519 -22.76708
Spot 22.45641 -2.187894 -22.47778

Note - The values reported in the table are the t-statistics (Adjusted t-statistics for PP). The 5%
critical levels for ADF (Augmented Dickey Fuller), DF — GLS (Dickey Fuller detrended
residuals), and PP (Phillips Perron) are -2.876, -1.94, and -2.87 respectively(MacKinnon
(1996)).The AIC criterion was used (Max Lag Specified is 17).
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Table VIII — Johansen Cointegration Tests

Panel A: Johansen Cointegration Tests (Trace Statistics)

Hypothesized No. Trace 0.05 Critical
of CE(s) Eigenvalue Statistic Value Prob.**
r=0% 0.204361 107.7532 15.49471 0.0001
r<l 0.002123 0.992570 3.841466 0.3191

Panel B: Johansen Cointegration Tests (Max Statistics)

0.05
Hypothesized No. of Max-Eigen Critical
CE(s) Eigenvalue Statistic Value "Prob.**
r=0% 0.204361 106.7606 14.26460 0.0001
r<l 0.002123 0.992570 3.841466 0.3191

Note — Trace test indicates 1 cointegrating equation at the 0.05 level. *denotes rejection of the
hypothesis at the 0.05 level. **MacKinnon-Haug-Michelis (1999) p-values. Max-eigenvalue test

indicates 1 cointegrating equation at the 0.05 level.
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Table IX— Cointegrating Vector

Log Spot Log Futures
1.000000 -0.997281
(0.00341)

Note - Normalized cointegrating coefficients (standard error in parentheses).

Table X — Test of Cointegration Restrictions

Hypothesized No. of Restricted Log-
CE(s) likehood LR Statistic Probability

1 -806.9715 0.310966 0.577088
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Table XIII- Bivariate GARCH Models Output: March 2003-April 2005

Panel A

Bivariate GARCH with positive definite parameterizations:

Ht = CC+ A'Ht-lA + B'St_lgt-]'B

Variable Coefficients T-Stat Significance

Cn 65.41765 6745.191 0
[0.0096]

Cau 65.36872 55253.82 0
[0.00118]

Cx 65.12832 37447.04 0
[0.0017]

Ap 0.051703 440.9789 0
[0.0001]

Az 0.049301 1228.81 0
[0.00004]

A 0.04786 733.1889 0
0.00006]

Bi 0.050571 1154.162 0
[0.00004]

By 0.049586 1988.179 0
[0.00002]

B2 0.051787 467.85 0
0.00011] ’

Log Likelihood -1777.548

Note — Robust standard errors are reported in parentheses
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Panel B

Asymmetric Bivariate GARCH:

Ht =CC+ A'HHA + B'SHSH'B + G'T]t_]nt_]’G

Variable Coefficients T-Stat Significance
Cn 65.558386 1002.90863 0
[0.0653]
Cy 66.278058 6852.98009 0
[0.00967]
Cz; 65.698383 1448.8802 0
[0.04534]
An 0.0535357 270.41279 0
[0.00019]
Az 0.0500588 1660.01114 0
[0.00003]
A 0.0473983 241.14175 0
[0.00019]
B 0.0529187 171.19364 0
[0.0003]
By 0.0466974 188.60973 0
[0.0002]
By 0.0593932 104.9803 0
[0.0005]
Gn 0.0006852 7.10489 0
[0.00009]
Gy -0.001441 -2997.14118 0
[0.00000048]
Gx, -0.002374 -379.6871001 0
[0.000062]
Log Likelihood -1767.55

Note — Robust standard errors are reported in parentheses
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Table XIV. Out-of-Sample Hedging Results: Hedging Effectiveness as
measured by % of variance reduction relative to unhedged position.

Naive OLS BV-GARCH GJR-GARCH

Hedging Effectiveness 0.8170 0.8097 0.8699 0.8732
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