Coarse-Grained Dynamic Predicate Slicing for
Message Passing Programs

Hai Hong Song

A Thesis
in
the Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

January 2006

© Hai Hong Song, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14336-3
Our file Notre référence
ISBN: 0-494-14336-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Coarse-Grained Dynamic Predicate Slicing for

Message Passing Programs

Hai Hong Song

Comprehending distributed systems is a challenging task because of interdependency and
non-determinability that exist in distributed systems. Program slicing, as a well-know
decomposition and reduction technique, has been extended to assist during the
comprehension of distributed application source code. Dynamic predicate slicing is a
relatively new slicing technique that adopts the notion of global predicates as slicing
criteria for distributed message passing programs. Dynamic predicate slicing focuses on
identifying all these states during an execution of a message passing program, in which a
particular predicate might be changed. In this research, a Coarse-Grained dynamic
predicate slicing algorithm is implemented by using instrumentation techniques to insert
extra instructions into applications for collecting and analyzing run-time information
during executions. Dynamic predicated slicing is accomplished by multi-thread parallel
computation utilizing both static information and dynamic information. An initial case
study is presented to validate the applicability of the approach and to explore the overhead

associated with collecting the dynamic information and the slice computation.

~ 1ii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Juergen Rilling, for his
support, guidance, encourage, and patience throughout my research work. Without his

guidance, this thesis would not have been possible.

I am grateful to all the members of the CONCEPT research group, and particularly to
Zhang, Yonggang, for his helps on the Java parser. I appreciatively acknowledge Cecile
Dupin and Charles Lewis for having proofread earlier versions of this thesis and provided

valuable comments and improvements.

Finally, I would like to thank my wife, my parents, and my family for their support, help,

and encouragement.

—1iv

Table of Contents

LIST OF FIGURES VIl
LIST OF TABLES VIII
CHAPTER 1 INTRODUCTION 1
CHAPTER2 BACKGROUND 4
2.1 PROGRAM COMPREHENSIONc.ocvviiimimiiiiisisisiiiieretstssssssssssasssss s sms e sessss s ses s sosssesessssessesssssons 4
2.1.1 Reverse Engineering and Program COMPreRensionccvcveniniivirnnesinieeniniesseesenanns 4
2.12 Difficulties in Program COMPIENENnSION..........ccccovcervivesrieaniieseincieesesirreseeeneearenstessressaesase s 9
2.1.3 Program CompreRension APPIOACRES...........c.cccoeivireenecoeeriirieeeaeiteceesteseaesae s sieaseesrens 11

2.2 DISTRIBUTED SYSTEM....ccctirerirmitiisteientiensiisesee ittt s ss s s stssss s ss s bssesassesssssssssesesesenseses 12
2.2.1 Definition and CRAFACIETISHICSc.cvveeiviviiiiiiiiniiiiiiirintiieesi ettt saenne 12
2.2.2 Concurrent, Parallel and DistriDuted SYSIEMS......c..ovvveveirevviiiiiniiniienienieenersnaiesesossrareaneees 15
2.2.3 MesSage PaSSING PrOGIAMISccceevvieiiereieierirererereseeesesesireseeesesareasssesestesestessssessaressssanss 17
224 Distributed Systen COMPIERERSIONccocreeeueereerieeniierteneeecteeeenarecre st eseesneeeeeearens 20

2.3 PROGRAM SLICING c..cucovtititetiniiiniresteretisrsst ettt ssesbe st s sbssass s sasasshssnesesrssss s ssesasssssssassnssssssssssrons 22
2.3.1 SEALIC STICIRG. c. ettt sttt sttt et re bt st e st e s bt e srears e eee e s e s aasssesneasaeansens 23
2.3.2 DYRAIIC SHICING o.ooeeeveeeeieceieecee st vttt et essas s eere s ae e e saesreesasesse e sasssassrnesasessnerseans 25
2.3.3 Distributed Program SHCINGcouc.coueerreeeeinesieneeresrsestee st seresesesssesseresssesesesessssssnses 26

2.4 INSTRUMENTATION AND PROGRAM TRACINGc.covvviniiiriietetirei sttt 29
24.1 Source Code INSrUMENIALION...........covevuriiiniiiiiiiicitei sttt st e re s s senene 31
24.2 Java Bytecode INSIFUMENIALIONc.cocveerervernieeiceeiie et ceeseressteesseennesras e senrassessnes 33
2.4.3 EXCOCUTION TIACING ...ttt ettt st ettt e b e en e s ms e s ranesare e s basesasesans 36
CHAPTER3 DYNAMIC PREDICATE SLICING 39
3.1 PREDICATE-BASED DYNAMIC SLICINGccovetenieieriieitntieetesisne sttt ssssns s 39
3.1.1 GlOBAL Predicate...........occeeceeeeiiieieneisiicseeenieseer ettt et s be s e 39
3.1.2 Partially Ordered Multi-SETccoouioveieriiiniiiiiriiiieitesetscrieeseeessreseesesaseesesenesanasanes 40
3.1.3 Dynamic Predicate SUCING..........coccooiiiiviiririiniiiiiiiniiine ettt et s eaeenean 44

3.2 COARSE-GRAINED DYNAMIC PREDICATE SLICING ALGORITHM........ccoevnmiuiinnnniiiniiinssinssninsnenas 48
3.2.1 NOTALIONS ANA ASSUIPLION.coirveiereriiieiesetescrerecteessereseresssieassseessessasseessatesatsessantesarasasseesns 49
3.2.2 AlLGOTTEIIN DESCHIDHION.ooceveeeiieieeieeeescae e e st esteestaesessteate s teasbssseesseateanreeabeensesanesseeenns 50

CHAPTER 4 CONTRIBUTIONS 52

4.1 IMOTIVATIONScovintemcee ettt bttt et b e bbb s b s st e s s e b e b s e bs s b e b e a s s e s s s e b e st n e et e e 52
4.2 HYPOTHESEScoeireriiiitiii ittt s b sttt b s s aa s s et e besssbatas 58
4.2.1 Dynamic Predicate Slicing for Distributed SYStEMs.............cccovvviiviiiiiiivnniiiiiiniiniiinenene 58
4.2.2 Capturing Program Executions and COMMUNICALIONS...........ccccrveeirieniiiriniensnnnennsoieerienns 60

4.3 RESEARCH GOALS......ocoiiiiniiiiitiiiti ittt s bbb s s s bbb e b e e e b a s e e n e e na s 61
4.4 SYSTEM OVERVIEWviiviuiitiiiisiiteiteeesrerinsseesetesteteatans et ss s ba st ass b sasas s atesssassasas e st et ancas e s aansseasensas 63
44.1 CONCEPT ERVITORMENLo.eoeveivirirircneniitiitiiseniiss st ess s s sssssssassnsssssssesnsssssanon 63
4.4.2 Dynamic Predicate Slicing OVerview.............ccccovevvvvniviniiniineniiiineeeesnsssssseons 65
CHAPTER5 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS 68
5.1 MESSAGE PASSING SAMPLE PROGRAMcoiiimiiiiiiiiinieiecictne i 68
5.1.1 Java Agent Development Platform (JADE)...........coooouvavvveivieireeeriniresiesessssssssssasssesssnes 68
5.1.2 Message Passing Sample Program for JADEcociriirieiicnenieineneceneneessiseseessnes 69

5.2 STATIC ANALYSIS .oooitiiiiiiiiiciiiin sttt a s b et e st sn s nnnas 70
5.2.1 Parsing AN DAIADASE.cvovivoeeeceireecieriinisiencresssessiiiessesasesssssssesssasssesssessseanesssesnsessees 71
5.2.2 Filtering QNnd FOFMALLINGcuveveveeecririventiaisesseecreseveseasssnsssesssessseansesnsasssenssessassssesssssnarane 73

53 DYNAMIC ANALYSIS ..ottt et e b e e r s es e n b bbb e s s s ebebe e 77
5.3.1 Source Code INStFUMENIALION.cocoovviiiniiiiniiiiiirie et et ae 78
532 Bytecode INSIUMERIALION.c..oocveceiiiiriiiiiniecriteeie sttt sttt et s e s er e eas e e e 83
5.3.3 Execution and Run-time Information COlleCtion............ccocvivvveiceincevnivvnnececiinnernnensaseeeseens 87

54 COMPUTATION OF COARSE-GRAINED PREDICATE SLICES........cccoeiiiieuiintiitcneineesesscsssenisseserenans 90
5.4.1 Message Passing Program In-Memory Model..................cccooniicviiiinieninininciiriiencnrenneenas 92
5.4.2 Dynamic Predicate STICING. ...ttt 94
5.4.3 Predicate SliCing RESUILS..............covcevviriiciniiiniiniiiiicintecsie ettt s 97

5.5 EXPERIMENTAL ANALYSIS....ccoivimimiiitiriiitiiiniii sttt bbb sa bt s s 98
5.5.1 Static INformation COUECHIONc.c.ccvciviiriiiiiiirieiietece ettt nesene et re s 98
5.5.2 Instrumentation ARA TrACINGcveevveeveeveereeerieeisesrrecteetessteesae e sstesssessteeseessaeesteeressnesane 101
553 Communication OVETREAd....................ccccvviniiiririiiniiniiiiiiteccir e e 104
5.5.4 Predicate SlCING PerfOrmarCeo.ooocoievueiciieeeeieciieiieiireeiestee e s aeranesesie s sesessaa e e 107
CHAPTER6 CONCLUSIONS AND FUTURE WORKS 109
REFERENCE 112
APPENDICES 117

—-vi

List of Figures

Figure 2.2.1 Distributed SYStEIMcccciriiriiiniiiiiiiiiiiiicre e 13
Figure 2.2.2 Message Passing Paradigm.........cccoccoovinininiiiinininniiii 18
Figure 3.2.1 Coarse-Grained Dynamic Predicate Slicing Algorithm ... 50
Figure 4.4.1 CONCEPT EnVirOnmentcccoiviriiiiiiiiiiiiiiiniiicienesreneene e 64
Figure 4.4.2 Dynamic Predicate Slicing OVErVIEWc..cccocvcviinininicnniiiiiinnnnnnnes 66
Figure 5.1.1 Message Passing Sample Programcccooviiviiiiniiiininnieniien, 69
Figure 5.2.1 Parsing and Filtering..........ccccevviviiiiniiniiniiiiciinnccennieenncens 71
Figure 5.2.2 Example of ASTccccociiiniiiiiniiiiiiiiie e 73
Figure 5.2.3 Object Oriented Model of the ASTccccovviiviiiniiininiie 74
Figure 5.2.4 Static Information File..........cccoooiiviniiiis 76
Figure 5.3.1 Instrumenting and TraCing.......ccccoovveeeiiniiiiniiiniiiiiiiiin s 77
Figure 5.3.2 Sample Program for Instrumentationccocveveriiiiiinnininiiicniinnininnen 80
Figure 5.3.3 Instrumented Sample Programcccevieeiniiininiiniinncniinienecneinennns 80
Figure 5.3.4 Execution Trace of Sample Program.........ccccooveviiiiiiniinnnicniccieeeeee 81
Figure 5.3.5 TTaCeT CIaSS ..c..eevvirienrieiieienieesierte ettt eee st e sbesan e saeesnesnesanesnnean 82
Figure 5.3.6 Excerpt of Instrumented Message Passing Programc..cccoceevinecnnene 82
Figure 5.3.7 Java Programming Agent Instrumentation Process.........ccccccovcrviiincncnnns 84
Figure 5.3.8 Dynamic Information Fileccccooiiiininiininiiniiiie e 88
Figure 5.3.9 Communication Dependencyc.cceevuieeecriniioiinncniinnniennnieneennenneseeas 90
Figure 5.4.1 Computing Dynamic Predicate SIice...........ccoovieniiviniiiniiinininniincnicnnins 91
Figure 5.4.2 Message Passing Program In-Memory Modelcccoviiviiiinninciiinnnen 92
Figure 5.4.3 Class Diagram of Dynamic Predicate SIicingc.cccecvnenniiiinnicnicniinnenns 95

Figure 5.5.1 Communication Overhead - Ping-Pong executed on a single computer.... 106

Figure 5.5.2 Communication Overhead - Ping-Pong executed on two computers......... 106

—vii

List of Tables

Table 5.5.1 Overhead Related to Static Information Collection..........ccecceevveriieeeienncnn. 100
Table 5.5.2 Overhead related to Source Code Instrumentationcccecceevvvreeenerennne, 101
Table 5.5.3 Overhead related to Execution Tracing - Elevator........ccccovveinieivennneninnn. 102
Table 5.5.4 Execution Overhead Tracing — Ping-Pong.......c.cccccccerieinnniicninnnenneeeen, 103
Table 5.5.5 Communication Overhead Caused by Instrumentationc.ccceceevereenen. 105

Table 5.5.6 Performance of Predicate Slicing Algorithmc.cocvevvievinniennnniiiennennnn. 108

— viii

Chapter 1 INTRODUCTION

Software systems need to evolve and be changed while external requirements and
hardware technology are updated. Before any change or evolution is made, software
engineers have to well-understand these original systems. Moreover, the majority of
software development effort is spent on maintaining existing systems rather than
developing new ones. Software maintenance is estimated to consume 50% to 75% of the
resources and time in the total software budget, and within software maintenance,
comprehension requires 47% and 62% of the total time for enhancement and correction
tasks respectively [Rug95]. Therefore, software comprehension/understanding plays a
significant role in software development and evolution. However, software comprehension
is a challenging task because it involves mapping different conceptual areas that makes it

much more difficult to achieve.

Distributed systems are a popular and powerful computing paradigm. They are
ubiquitous today throughout business, academia, government, and homes. The population
of distributed systems makes comprehension of distributed systems critical for the
development and maintenance of a system involving some distributed components.

Because of inter-dependency between processes caused by communication or

synchronization and non-determinability of executions of distributed systems,
comprehending distributed systems is more challenging than comprehending a traditional

single-process sequential system.

Slicing as a well-known program decomposition technique was first introduced by
Weiser [Wei81] into the software field in order to reduce the complexity of program
debugging. It has been widely used in the software comprehension field. Program slicing
technique is classified into two categories, static slicing and dynamic slicing, where static
slices are computed based on static information about program, and dynamic slices are
computed according to both static information and dynamic information about a particular
execution of program. Program slicing has also been extended for comprehending

distributed systems.

Rilling et al [Ril02a] introduced a novel dynamic predicate-based slicing technique for
distributed message passing programs. They defined a dynamic predicate slice as those
parts of a message passing program that are relevant to a global predicate during an
execution of the program. Li et al [LiH04] extended the dynamic predicate slicing to two
kinds of granularity-driven dynamic predicate slicing. Predicate slicing focuses on all
states, in which the predicate might be changed during an execution of a message passing

program, allows for more general slicing criteria, and supports more general

comprehension tasks for message passing programs.

In this research, we implement the dynamic predicate slicing algorithm presented by
Rilling et al [Ril02a] [LiHO4] as a part of work of the Comprehension Of Net-CEntered
Programs and Techniques (CONCEPT) project. Source code and bytecode instrumentation
techniques are used for collecting dynamic information about executions of a
message-passing program. The dynamic predicate slicing algorithm is then implemented
based on the static information of the program and the dynamic information collected by

instrumented code during an execution.

The outline of the thesis is as follows: Chapter 2 introduces some general background
related to software comprehension, message-passing programs, program slicing, and
instrumentation and program tracing techniques. Chapter 3 details the concepts about
dynamic predicate slicing, and the algorithm that will be implemented as part of this
research. Chapter 4 discusses the motivation and hypotheses of this research, and proposes
the research goal and a general overview of the implementation. Chapter 5 describes
implementation details of the predicate slicing algorithm, and presents results of a
preliminary experimental analysis. Chapter 6 finally provides conclusions and future

works.

Chapter 2 BACKGROUND

This chapter presents some of the technical background of this thesis. First, section 2.1
provides definitions of reverse engineering and program comprehension, discusses
difficulties associated with program comprehension. Distributed systems and message
passing programs are introduced and challenges in distributed system comprehension are
discussed in section 2.2. In section 2.3.both program slicing and distributed program
slicing techniques are reviewed. The last section in this chapter presents in detail the

dynamic analysis techniques used in the research.

2.1 Program Comprehension

“Programs, like people, get old.”

By D. L. Parnas [Par94]

2.1.1 Reverse Engineering and Program Comprehension

e Definition

Chikofsky and Cross [Chi90] indicate that the term “reverse engineering” originally
came from the hardware analysis field. During reverse engineering, engineers, other than
the developer, examine an existing product in order to obtain its design information

without the aid of any original drawings of the examined product. Applying the term to

—4-

software systems areas, reverse engineering is “the process of identifying software
components, their interrelationships, and representing these entities at a higher level of
abstraction” [Chi90] [Nel96]. Differing from traditional reverse engineering in the
hardware analysis field, the goal of software reverse engineering is most often to gain an
adequate understanding to help software maintenance, strengthen enhancement, or support
replacement rather than to reproduce the product or system [Chi90]. From its definition,
reverse engineering can be applied to any stage of the software development cycle, such as
requirements recovery, re-documentation, and design rediscovery, even recompile from
executable binary code. Virtually, all reverse engineering processes start from the source
code of a system. The software source code is usually available as the input to the reverse
engineering process [SomO01].

Reverse engineering by itself involves only analysis, not change. The program itself is
unchanged by the reverse engineering process. Sommerville [Som01] distinguishes
between reverse engineering and re-engineering. The objective of reverse engineering is to
derive the design or specification of a system from its source code; but the objective of
re-engineering is to produce a new, more maintainable system. Reverse engineering is
often part of the re-engineering process.

Program comprehension is an emerging interest area within the software engineering

field. Program comprehension or program understanding is a cognitive process that uses

existing knowledge (i.e. the source code of a software system) to acquire new knowledge
that meets the goals of a code cognition task. Rugarber gives the following definition:
“Program Comprehension is the process of acquiring knowledge about a computer
program” [Rug95]. As mentioned above, most software reverse engineering processes start
from the source code, and in most cases, the source code of a program is the only reliable
documentation of the behaviors of a software system. Therefore, to some degree, program
comprehension and program understanding are terms that are often used interchangeably
with reverse engineering [Nel96]. However, reverse engineering can widely be applied to
all stages of the software development cycle. Program comprehension main concern is

extracting information from the source code of a software system.

e Motivation

Software systems always need to be changed after they are delivered [Som01]. Once
software is put into use, new requirements emerge, and existing requirements change as the
business rules change. Parts of the software may have to be modified to correct errors that
are found in operation, or to improve its performance or other non-functional
characteristics. All of this means that, software systems evolve in response to demands for
change in the lifetime of software systems. Parnas [Par94] says that “programs, like people,

get old.” Programs age due to continuous software changes and changes of external

environmental factors, like changes in business requirements, hardware platforms etc.
Software change and software aging are becoming very important problems that
organizations must face because organizations are now completely dependent on their
software systems and have invested millions of dollars in these systems. Those old but
important systems are called “Legacy Systems”.

According to [Som01], legacy systems are the software systems that organizations still
rely on. These systems may be more than 10 or 20 years old, but they are still
business-critical. The business relies on the services provided by the software and any
failure of these services would have a serious effect on the day-to-day running of the
business. These legacy systems are not necessarily the systems that were originally
delivered because of inevitable software changes. External and internal factors, such as the
state of the national and international economies, changing markets, changing laws,
management changes and structural reorganization, cause businesses to undergo continual
changes. Consequently, software requirements and software itself change. For a legacy
system, a complete specification of the legacy system is rare. Important business rules may
be embedded in the software and may not be documented elsewhere. Moreover its system
documentation is often inadequate and out of date. In some cases, the only reliable
documentation is the system source code. These situations make maintenance and

migration of these legacy systems particularly expensive and difficult. Sommerville

[Som01] says that a key problem for organizations is implementing and managing change
to their legacy systems so that they can continue to support their business operations.
Software maintenance, architectural transformation, and software re-engineering are main
strategies to resolve the software change and aging problems for legacy systems.

Additionally, as currently practiced, the majority of the software development effort is
spent on maintaining existing systems rather than developing new ones. Rugaber [Rug95]
records that the estimates of the proportion of resources and time devoted to maintenance
range from 50% to 75%. The greatest part of the software maintenance process, in turn, is
devoted to understanding the system being maintained. Fjeldstad and Hamlen report that
47% and 62% of time spent on actual enhancement and correction tasks respectively, are
devoted to comprehension activities. These involve reading the documentation, scanning
the source code, and understanding the changes to be made [Rug95] [Nel96]. The
implications are that if we want to improve software development, we should look at
maintenance, and if we want to improve maintenance, we should facilitate the process of
comprehending existing programs.

Software engineering itself is concerned with improving the productivity of the software
development process and the quality of the systems it produces. In contrast, program
comprehension involves acquiring knowledge about a computer program. Increased

knowledge enables such activities as bug corrections, enhancements, reuse, and

documentation. Program comprehension and reverse engineering play prominent roles in
the software development, and therefore are key factors in software maintenance and

evolution, legacy system change and migration.

2.1.2 Difficulties in Program Comprehension

Program comprehension is not an easy task in the software engineering field. In this
section, we discuss some general comprehension challenges. A more focused discussion on
the specific challenges of program comprehension for distributed systems is present in
section 2.2.4. Program comprehension involves mapping different conceptual areas that
makes it much more difficult to achieve. Rugaber [Rug95] and Nelson [Nel96]

summarized the different conceptual areas that correspond to the following five gaps.

o The gap between a problem from some application domain and a solution to the
problem in some programming language

A programming language is just a model environment to solve some real problem.

While tools exist to assist in understanding what the code is doing from a code

perspective, there is little to assist the reverse engineer in determining what is

occurring with the code from a domain perspective.

e The gap between the concrete world of physical machines and computer programs and

the abstract world of high level design descriptions

—9_

Simple, abstract concepts quickly become lost in the trivial detail of programming.
Computer science education is largely about mapping from the abstract to the detailed

implementation, but there is little to assist in the reverse mapping.

The gap between the desired coherent and highly structured description of a system as

originally envisioned by its designers and the actual system whose structure may have

disintegrated over time.
Even when good documentation is available for a system, maintenance over time
causes the structure to drift from the original specification. The reverse engineer must
be able to reconcile and synchronize the documented design and the current

implemented design.

The gap between the hierarchical world of programs and the associational nature of

human cognition
Computer programs are formal, hierarchical expressions. Humans think in

associative chunks of data. A reverse engineer must be able to build up correct

high-level chunks from the low-level details evident in the program.

The gap between the bottom-up analysis of the source code and the top-down synthesis

of the description of the application

Code analysis is by its nature a bottom-up exercise. It requires, simultaneously,

-10 —~

higher level meaning to be extracted from code fragments, and higher-level concepts

to be mapped to lower level implementations.

2.1.3 Program Comprehension Approaches

There are varieties of approaches for automated assistance that are available for program
comprehension. Rugaber [Rug95] presented a full list of program comprehension

approaches. Some of the more prominent approaches include:

o Textual, lexical and syntactic analysis — these approaches focus on the source code
itself and its representations. These include the use of UNIXs lex, lexical metrics and

even automated parsing of the code searching for clichés.

e Graphing methods — there is a variety of graphing approaches for program
understanding. These include, in increasing order of complexity and richness: graphing
the control flow of the program, the data flow of the program, and program dependence

graphs.

® [Execution and testing — there is a variety of methods for profiling, testing, and
observing program behavior, including actual execution and inspection walkthroughs.
Dynamic testing and debugging is well known and there are several tools available for

this function.

—11 -

2.2 Distributed System

Distributed systems are a popular and powerful computing paradigm. They are
ubiquitous today throughout business, academia, government, and homes. Various

definitions of distributed system have been given in literature.

2.2.1 Definition and Characteristics

Tanenbaum and Steen define a distributed system as “A distributed system is a collection
of independent computers that appears to its users as a single coherent system” [Tan02]. In
their definition, they focus on two aspects of the distributed system: the hardware - the
independent machines, and the software - users think they are dealing with a single system.

Attiya and Welch provide another definition that is “A distributed system is a collection
of individual computing devices that can communicate with each other” [Att04], which
gives attention to the communication of the distributed system. In the distributed system,
each semi-dependent machine communicates with others in order to cooperate to
accomplish a task.

Coulouris et al’s [Cou01] definition is the one that is adopted for this thesis. A
distributed system is one in which hardware or software components located at networked
computers communicate and coordinate their actions only by passing messages. The

definition indicates that machines or components in a distributed system cooperate with

-12 -

each other only through passing messages, although there is still the Distributed Shared
Memory (DSM) architecture existing for distributed systems. In fact, the DSM is
implemented based on a message passing system. A DSM is a simulation of an
asynchronous shared memory model by the asynchronous message passing model, which
runs on top of the message passing system providing the illusion of shared memory [Att04].
In the same way, Andrews describe the distributed system as distributed-memory
multi-computers, in which each processor has its own private memory, and the
interconnection is achieved by message passing [And00]. The processors communicate
with each other by sending and receiving messages. In the following part of the thesis, the
distributed system will be mentioned same as message passing system for our purpose.

Figure 2.2.1 illustrates a distributed system.

Communication network

Figure 2.2.1 Distributed System

Mullender summarized in [Mul93] the following primary characteristics and important
issues related to a distributed system:

13-

Multiple Computer — A distributed system contains more than one physical computer,
each consisting of CPUs, some local memory, possibly some stable storage like disks,
and I/O paths to connect it with the environment.

Interconnections — Some of the I/O paths will interconnect the computers. If they
cannot talk to each other, then it is not going to be a very interesting distributed system.
Shared State — The computers cooperate to maintain some shared state. Put another
way, if the correct operation of the system is described in terms of some global
invariants, then maintaining those invariants requires the correct and coordinated
operation of multiple computers.

Independent Failure — Because there are several distinct computers involved, when
one breaks, others may keep on going. Often users want the system to keep on working
after one or more have failed.

Unreliable Communication — Because, in most cases, the inter connections among
computers are not confined to a carefully controlled environment, they will not work
correctly all the time.

Insecure Communication — The interconnections among computers may be exposed to
unauthorized eavesdropping and message modification.

Costly Communication — The interconnections among the computers usually provide

lower bandwidth, higher latency, and higher cost communication than that available

—14-

between the independent processes within a single machine.

The canonical example of a general-purpose distributed system today is a networked
system, a set of workstations/PCs and servers interconnected with a network. Networked
systems allow the sharing of information and resources over a wide geographic and
organizational spread. They allow the use of small, cost-effective computers and get the
computing cycles close to the data. They can grow in small increments over a large range
of sizes. They allow a great deal of autonomy through separate component purchasing
decision, selection of multiple vendors, use of multiple software versions, and adoption of
multiple management policies. Finally, they do not necessarily all crash at once. Thus, in
the areas of sharing, cost, growth, and autonomy, networked systems are better than
traditional centralized systems as exemplified, by timesharing. On the other hand,
centralized systems do some things better than today’s networked systems. All information
and resources in a centralized system are equally accessible. Functions work the same way

and objects are named the same way everywhere in a centralized system.

2.2.2 Concurrent, Paralle] and Distributed Systems

In most cases, concurrent, parallel or distributed program or system are similar terms,
and often people usually use these terms interchangeably, but there are still some subtle
differences between them, and the terms are also confusing.

The word concurrent means that certain actions happen at the same time, thus a

~15-

concurrent program consists of a number of execution units (either processes or threads)
that work together by communicating with each other to perform tasks at once [Spi99].
Communication is programmed using shared variables or message passing. Concurrent
programs are typically written for one of two reasons: to improve performance or to satisfy
an inherently concurrent specification [And00]. Concurrent programs can be executed on a
single processor (by interleaving process execution) or on a multiple instruction stream,
multiple data stream (MIMD) multiprocessor. Andrews also points out that the term
concurrent program refers to any program that contains multiple processes.

Parallel programs are a different subset of concurrent programs. It refers to solving a
task faster by employing multiple processors simultaneously [LeoO1]. The distinguishing
attribute of a parallel program is that it is written to solve a problem in less time than that
would be taken by a sequential program [And00]. In other words, the main goal of parallel
programs is to reduce execution time. One reason for writing parallel programs is to solve
larger problems in the same amount of time. Another reason is to solve more instances of
the same problem in the same amount of time. In the same way, a parallel program can be
written using either shared variables or message passing.

As defined above, a distributed system is a collection of autonomous computers that are
interconnected with each other and cooperate, thereby sharing resources such as printers

and databases. The distributed system and parallel system have many common

-16—

characteristics: multiple processors are used in both systems, the processors are
interconnected, and multiple processes are in progress at the same time and cooperate with
each other. Leopold distinguish parallel and distributed computing: parallel computing
splits an application into tasks that are executed at the same time, whereas distributed
computing splits an application into tasks that are executed at different locations, using
different resources [Leo01]. For parallel programs, an application is split into subtasks that
are solved simultaneously, often in a tightly coupled manner. The programs are usually run
on homogeneous architectures, which may have a shared memory. In contrast, a distributed
system uses multiple resources that are situated in physically distant locations, and
distributed systems are often heterogeneous, open and dynamic. In addition, distributed

systems do not have a shared memory, at least not at the hardware level.

2.2.3 Message Passing Programs

As noted in the previous section, in distributed systems, the basic approach to
inter-process communications is message passing, the most fundamental paradigm for
distributed applications. In this paradigm, data representing messages are exchanged
between two processes, a sender and a receiver. A process sends a message representing a
request. The message is delivered to a receiver, which processes the request, and sends a
message in response. In turn, the reply may trigger a further request, which leads to a

subsequent reply, and so forth. The message-passing paradigm has been widely used in the

17~

development of applications, including well known Internet services such as the Hypertext
Transfer Protocol (HTTP, commonly known as “the web”) and file transfer protocol (FTP).

Figure 2.2.2 illustrates the message-passing paradigm.

Process A Process B

A Message

Figure 2.2.2 Message Passing Paradigm

In a message-passing model, several processes run in parallel and communicate with one
another by sending and receiving messages. The processes do not have access to a shared
memory. Hence, in message passing, the processes operate on disjoint address spaces, and
all communication is accomplished through explicit message exchange. The central
communication routines are “send” and “receive”. In order to exchange information for
two processes, one of them must invoke a send, and the other must invoke a matching
receive. It is always exactly two processes that are involved in such a communication. The
functions send and receive exist in several variants, and practical message passing systems
add further functions [LeoO1].

Message exchange may serve different purposes. The most obvious purpose is the

~18—

exchange of data between a sender and a receiver that know each other and whose
interaction was planned in detail by the programmer. A second purpose is the establishment
of a connection between a sender and a receiver whose interaction was not planned in
advance. A connection can only be established if the receiver is prepared for an eventual
request: it must have posed an anonymous receive, and it must occasionally check whether
a message has arrived or not. An eventual sender will use the initial message to transmit to
the receiver details about the desired transaction. For instance, it can state the length of a
message to be sent or the location of requested data. A third purpose of message exchange
is synchronization. A process may send a message in order to indicate that it has reached a
certain point of program execution. Note that synchronization is just a special case of
communication. Separate synchronization routines as in shared-memory programming are
not needed, since each communication implicitly induces synchronization between sender
and receiver.

The message-passing model closely follows the architecture of distributed memory
machines. Therefore it is easy to implement, but it operates on a low level. In consequence,
message passing imposes a heavy burden on the programmer, who is responsible for
managing all details of data distribution and task scheduling, as well as of the
communication between tasks. Particular responsibilities include load balancing, data

replication, and the maintenance of coherency. Message passing is therefore

19—

time-consuming and error-prone and the programs are hard to maintain and debug.
However, the primary argument for message passing is efficiency. Since everything is
under the programmer’s control, the programmer can achieve close to optimum
performance if the programmer just spends enough time in performance tuning. Efficiency
is the major reason for the predominance of message passing in computer-intensive

application domains.

2.2.4 Distributed System Comprehension

The previous section described characteristics of distributed systems that make
distributed applications inherently more complex and harder to understand. Mullender, for
example, notes that “all [problems] exist in all computer systems, but they are much more
apparent in distributed systems; there are just more pieces, hence more interference, more
interconnections, more opportunities for propagation effect, and more kinds of partial

failure.” [Mul93]

e Interdependencies Caused by Synchronization and Communication

Dependability is one of the key factors that affects the design and implementation of
distributed control systems. In general, a parallel and/or distributed program consists of a
number of processes, and therefore, it has multiple threads of control flows and multiple

threads of data flows. These control flows and data flows are not independent because of

—20-—

the existence of inter-process synchronization among multiple control flows and
inter-process communication among multiple data flows in the program. Synchronization
is used for concurrent control, which might introduce synchronization dependence (a kind
of control dependences) between concurrently executed statements. By accessing shared
memory, inter-thread data dependences (communication dependence) occur.

The comprehension of large software systems consisting of many processes/threads is a
challenging task due to the timing related interdependencies among processes that
influence the comprehension process. Consequently, the task of developing a mental
representation for comprehending parallel programs is more difficult, and it is critical that
techniques are developed to automate and support the analysis and comprehension of

distributed programs.

® Non-Determinability and Non-Reproducible

Another challenge is the potential of non-determinism in distributed programs.
Distributed programs often make non-deterministic decisions; the order in which
concurrently sent messages are received is time dependent and thus may vary from one
execution to the next. It follows that repeated executions of a program on the same input
may result in the execution of different program paths. However, when debugging, the

programmer is interested in the exact execution that exhibits the error. Thus, unlike

-21 -

re-executing sequential program slices, a slice for re-execution of a distributed program
must be based on dynamically collected information. In order to precisely reproduce the
original behavior, all nondeterministic decisions that are made during execution must be
recorded, and program replay must be instrumented to reproduce the recorded decisions.

Moreover, a process in a parallel and/or distributed program may non-deterministically
select a communication partner among a number of processes ready for communication
with the process.

Communication delays among cooperating devices in a distributed computing system
make it difficult to determine the system’s state at any given time. The kinds of
confederations being proposed seem to be inherently asynchronous, and therefore
non-deterministic. There is no way for two executions to produce anything but different
orderings of events, both of which may be valid at the time they occur. Therefore it is

difficult to reproduce errors and to test possible, but not likely, situations.

2.3 Program Slicing

Program slicing first was introduced by Weiser into the software field in order to reduce
the complexity of program debugging [Wei81]. A slice is the abstracted programs that keep
the same specified subset of the original program’s behavior. The process of getting a slice
based on a specified request (slicing criterion) is called program slicing. Weiser [Wei82,

WeiB4] defines a slice as a reduced, executable program that preserves the original

—-22 -

behavior of the program with respect to a subset of variables of interest at a given program
point. That is, a program slice consists only of these parts of a program that can potentially
affect the values computed at a point of interest. Such a point of interest, that combines a
program location and a subset of program variables of interest, is called slicing criterion.
Slicing is a method of program decomposition, and is applied to programs after they are
written, therefore is useful in maintenance. Working on actual program text allows slicing
to be specified precisely and performed automatically. The process of slicing deletes those
parts of the program that can be determined to have no effect upon the semantics of interest.
Program slicing enables programmers to view subset of program by filtering out code that
is not relevant to the computation of interest. Slicing has applications in testing, debugging,
reengineering, program comprehension, and software maintenance [Tip95] [DelL01]

[Har01] [XuBO05].

2.3.1 Static Slicing

The program slicing approach originally defined by Weiser is of a static nature. For
static slicing, only statically available information is used for computing slices, hence this
type of slice is referred to as a static slice. The result of static slicing is independent from
the program input. The behavior of a static slice remains the same as the original programs
for any given input.

According to the definition given by Weiser [Wei82], a static program slice S consists of

—23_

all statements in program P that may affect the value of variable v at some point p. In a
more formal way, the slice is defined for a slicing criterion C = (x, V), where x is a
statement in program P and V is a subset of variables in P. A static program slice on the
slicing criterion <x, V> is a subset of program statements that preserves the behavior of
original program at the program point p with respect to the program variables in V, i.e. the
values of the variables in V at program point p are the same in both the original program
and the slice.

In Weiser’s approach [Wei84], static slices are computed by finding consecutive sets of
indirectly relevant statements, according to data and control dependencies. Date
dependence and control dependencies are defined in terms of the Control Flow Graph
(CFG) of a program. A CFG contains a node for each statement and control predicate in the
program; an edge from node i to node j indicates that the possible flow of control from the
former to the latter. A CFG also contains special nodes labeled Start and Stop
corresponding to the beginning and the end of the program respectively. Ottenstain
presents a different algorithm to compute slices as backward traversals of the program
dependence graph (PDG) [Ott84]. PDG is another program representation where nodes
represent statements and predicates, while edges carry information about control and data
dependences. Horwitz et al. [Hor90] extended the PDG based algorithm to compute

inter-procedural slices on the System Dependence Graph (SDG). Many different

-24 -

extensions of static slicing approaches have been proposed in the literature [XuB0S5].

2.3.2 Dynamic Slicing

Although static slicing can assist the program comprehension effort by simplifying the
program under consideration, the static slices tend to be rather larger, especially for
well-constructed programs, which are typically highly cohesive. In addition, a static slice
may very often contain statements that have no influence on the values of the variables of
interest for the particular execution in which the anomalous behavior of the program was
discovered. In order to reduce the size of a slice and get more accurate slice concerning a
particular execution, Korel and Laski [Kor88] originally introduce dynamic slicing.
Dynamic program slicing refers to a collection of program slicing methods that are based
on program executions. It may significantly reduce the size of a program slice. This slice
reduction is possibly due to run-time information collected during program execution. This
information can be applied to resolve some of the conservative assumptions that have to be
made by static slicing regarding the control flow.

A dynamic program slice is this part of a program that affects the computation of a
variable of interest during program execution on a specific program input. Formally, a
dynamic slice is taken with respect to a set of variables V, input I, and point P in the
execution history. The execution history of the dynamic slice is equivalent to the execution

history of the original program after removing the occurrences of statement not in the

—25~

dynamic slice. The set of variables V and the point of interest within the program are just
the same as these in static slicing. However, a dynamic slicing criterion specifies the input,
and distinguishes between different occurrences of a statement in the execution history.

In [Kor88], Korel and Lasky proposed an iterative algorithm based on dynamic data
flow dependences relations between statements. The dynamic slice computed by Korel’s
algorithm is executable. Agrawal and Horgan [Agr90] present another algorithm to
produce dynamic slices that are not executable. Dynamic Dependence Graphs are used in
their slicing algorithm. The algorithms presented by Korel and Agrawal’s are both
backward approaches. In order to compute a dynamic slicing, an execution trace has to be
recorded first, and then this trace is traversed backwards to derive data and control
dependencies to compute the dynamic slice. Korel and Yalamanchili [Kor94] present a
forward algorithm that computes dynamic slices during program executing without major
recording of the execution trace. Different extensions of dynamic slicing have also been

proposed [XuBO05].

2.3.3 Distributed Program Slicing

Program slicing, is an important and efficient software analysis technique that has also
been widely applied in the distributed software field. The comprehension of a distributed
program is a major challenge due to timing related interdependencies among processes and

to the potential for non-determinism for a distributed program, that add complexity to the

—26—

comprehension process (detailed discussion was presented in section 2.2.4). By
eliminating irrelevant portions and providing some level of abstraction of the program,
program slicing can significantly reduce the required analysis effort for distributed
program comprehension.

Most of the existing methods for slicing concurrent programs are based on the notion of
graph reachability. One of the earliest approaches to static slicing of threaded programs
was presented by Cheng [Che93]. He extended the notion of slicing for concurrent
programs and presented a graph-theoretical approach to slicing concurrent programs based
on a program representation, named Program Dependence Nets (PDN). A PDN includes
new types of primary program dependences in concurrent programs, named the selection
dependence, synchronization dependence, and communication dependence. Zhao et al.
[Zha96] proposed a new program dependence representation named the System
Dependence Net (SDN), which extends previous dependence representations to represent
concurrent object-oriented programs. The system dependence net of a concurrent
object-oriented program can be used to represent not only object-oriented features but also
concurrency issues in the program, and allows us to compute slices of the program
efficiently. Zhao [Zha99a] [Zha99b] addresses static slicing of Java multithread programs
using thread dependence graphs (TDG). Those approaches can handle method calls and

synchronized methods, but not synchronized statements. Krinke [Kri98] considers in his

~27

work static slicing of multi-threaded programs with shared variables and focuses on issues
associated with interference dependence. In his approach however, there is no explicit
synchronization mechanism.

For dynamic slicing of distributed programs, Duesterwald et al. [Due92] introduced an
execution trace representation, called the Distributed Dependence Graph (DDG) for
distributed programs, and showed a parallel algorithm to compute dynamic slices of a
distributed program based on its distributed dependence graph representation. The
algorithm computes a slice for a particular slicing criterion using static control and data
dependencies refined by dynamic communication dependencies. A parallel algorithm
extracts program slices from the DDG in a fully distributed fashion, where each process
identifies its local portion of the global slice. Korel and Ferguson [Kor92] proposed a
method to compute dynamic slices of a distributed Ada program by analyzing influences in
and between multiple executed paths of the program. For a distributed program, the
execution history is recorded as a distributed program path. The slice is only guaranteed to
preserve the behavior of the program if the rendezvous in the slice occurs in the same
relative order as in the program. Kamkar and Krajina [Kam95] introduced a program
presentation, called Distributed Dynamic Dependence Graph (DDDG) that represents
control, data, and communication dependences in a distributed program. The graph is built

at run-time and it is used to compute dynamic slices of the program.

28—

Because of the existence of inter-process synchronization among multiple threads of
control flow, inter-process communication among multiple threads of data flow, and the
potential for non-determinism in the distributed system, the approaches above have
different limitations. Although Cheng [Che93] and Duesterwald [Due92] use static
dependence graphs for computing dynamic slice, the computed slice is not proved to be
precise. In addition, the computed slices in Cheng [Che93] are not executable programs.
For Zhao [Zha99a] and Krinke‘s [Kri98] approaches, there is no explicit synchronization
mechanism. Korel and Ferguson [Kor92] and Duesterwald [Due92] compute slices that are
executable programs, but deal with non-determinism in a different way. In addition, the
algorithm presented by Kamkar [Kam95], Duesterwald [Due92] and Korel [Kor92] only

supports a structured programming language subset.

2.4 Instrumentation and Program Tracing

Dynamic analysis evaluates a software system or components based on their behavior
during execution. It takes advantage of the more detailed and precise (compared to static
analysis) information available based on some program inputs [Bal99]. Dynamic analysis
plays a significant role in software comprehension. Instrumentation and program tracing
both are important approaches to collect information relevant to dynamic analysis.

Instrumentation, typically inserts additional instructions into the application under

investigation to allow for collecting and analysis of certain run-time states and aspects of a

—29_

system. The collected information is then applied for dynamic analysis tools, such as
profilers, instruction trace generators, monitors, test tools, etc. For Java applications, there
are three types of instrumentation techniques; one approach is to instrument at the source
code level. The second approach instruments the byte code generated for an existing
system. The third approach is interfacing with the Java Virtual Machine through the Java
Debugger Interface (JDI). The third approach is not covered in this research due to the
limited applicability of this approach. Interfacing with the virtual machine can provide
detail run-time information, however the performance penalty using the JDI is so
significant that its applicability is limited only for very short program executions.
Depending on the level of analysis (variable, statement, function or class level) the
overhead associated for extracting run-time information using the JDI is between 10 —
1000 times of the original execution time. Furthermore, there would be an additional
overhead for storing the information. Therefore, we do not cover this approach in detail in
our literature review. Sections 0 and 2.4.2 discuss in more detail both, source code and byte
code instrumentation. Recording of dynamic information (run-time information) requires
some type of tracing support. Program tracing can be described as the process of recording
program executions and has been applied in debugging, testing, monitoring, and
comprehension etc. Instrumentation is usually used to generate trace information. Section

2.4.3 discusses in more detail challenges related to program tracing and their applicability

~30-

in dynamic program slicing.

2.4.1 Source Code Instrumentation

During source code instrumentation, extra instructions are inserted directly into the
original source code. After the instrumentation, the modified source code has to be
recompiled in order to be able to execute the instrumented application and obtain dynamic
information. Therefore, the source code of an application must be available and moreover,
there is an additional overhead for recompiling the instrumented source code. On the other
hand, the first advantage of the source code instrumentation is that no specialized runtime
environment is required. After the instrumented source code is recompiled, it can run
within the same program environments as the original programs, i.e. the same JVM and the
class loader. The second advantage of source code instrumentation is its support for
statement level source code analysis, such as source code coverage tools, statements and
branch coverage [Clo05]. The statement level information is available for the source code
instrumentation because it operates directly on the original statements of source code.
Several source code instrumentation tools and applications are discussed below.

“Clover” is a commercial code coverage analysis tool, developed by Cenqua Pty Ltd.
[Clo05]. It is used to discover the sections of code that are not being adequately exercised
by unit tests, and then used to measure testing completeness. Cover utilizes source code

instrumentation. It copies and instruments a set of Java source files. The output

-3 -

instrumented java source will then be compiled by a standard Java compiler. Clover
measures three types of coverage analysis: statement, branch and method coverage.
Moreover, Clover provides fully integrated plug-ins for many popular integrated
development environments, such as Eclipse, NetBeans, JBuilder and JDevelope, and
works seamlessly with JUnit.

“Daikon” is a dynamic invariant detector, developed by the Program Analysis Group in
Massachusetts Institute of Technology [Dai05]. An invariant is a property that holds at a
certain point or points in a program. Invariants are often seen in assert statements,
documentations, and formal specifications. Daikon dynamic invariant detector runs a
program, observes the values that the program computes, and then reports properties that
were true over the observed executions. Daikon can detect properties in Java, Perl, C, C++,
and /OA programs, in spreadsheet files, and in other data sources. Daikon provides a
plug-in for eclipse, which instruments Java source code, obtains trace information,
analyzes those traces, and creates appropriately annotated Java source code to represent the
invariants found by Daikon while running the instrumented program.

“query and instr” are Java test coverage and instrumentation toolkits developed by Glen
McCluskey & Associates LLC [McCO05]. They are used for parsing, querying, and
instrumenting Java source programs, and are ideally suited for applications, such as test

coverage, metrics, instrumentation, extraction of information, documentation tools,

-32-

program tracing, and so on. The toolkits have two packages: query and instr. The query
package is used to parse Java source programs into an internal tree form. It also contains
classes and methods for querying the parse tree. The tree may be annotated; that is it may
have information added to it which could be dumped out at a later time. This is the basis for
program instrumentation. The instr is a test-coverage and instrumentation package, which
is built on the query package [McCO05]. It supports method and statement source
instrumentation, and test coverage. These can be used as actual end-user programs to

instrument code, or as the basis for customized applications.

2.4.2 Java Bytecode Instrumentation

The Java Virtual Machine (JVM) known as a runtime interpreter is the cornerstone of
the Java platform. It is the component of Java that is responsible for its hardware and
operating system independence. The JVM is an abstract computing machine. Like a real
computing machine, it has an instruction set, known as JVM bytecode [Lin99]. The Java
source code is normally compiled in a binary format to a bytecode instruction set (i.e. the
class file) as an intermediate format. The Java bytecode is hardware independent and
operating system independent. So the high level meaning of Java source code is first
transformed by the Java compiler to this intermediate representation before execution.

Java bytecode instrumentation, also called bytecode injection, bytecode insertion or

class file transformation, is the process of directly inserting or manipulating Java bytecode.

-33 -

The instrumentation of Java bytecode generally inserts a special, short sequence of
bytecode at the designated points in a Java class file. This transformation process must be
strict and should adhere to the constraints imposed by the JVM Specification on the Java
class file format, so any modification of JVM bytecode should be reflected on all other
JVM bytecode within a Java class file.

The bytecode instrumentation can be performed either statically at the compile time or
dynamically at the runtime. The static instrumentation of bytecode can occur during or
after compilation of a Java source file. The instrumented bytecode is saved in a class file,
like typical Java classes files, and then executed later by the JVM. The dynamic bytecode
instrumentation takes place at runtime. A typical way to perform runtime instrumentation
is to insert bytecode into a Java class when the bytecode of the class is being loaded into the
JVM. The dynamic bytecode instrumentation can also be applied at runtime to redefine a
loaded class or create a new class from scratch [Dah01].

The Java bytecode instrumentation allows researchers or software developers to perform
dynamic analysis of those instrumented classes, mostly for debugging, testing, profiling,
monitoring, or other introspection purpose. Several projects deal with instrumenting
bytecode. Some existing works in this area are presented below.

The Java Object Instrumentation Environment (JOIE) [Coh98] is a framework for safe

Java bytecode transformation, developed in Duke University. It provides both low-level

—34 -

and high-level functionality to extend or adapt compiled Java classes. The low-level
interface allows manipulation of the bytecode itself, whereas the high-level interface
provides methods for inserting new interfaces, fields, methods or whole code slices. JOIE
extends Java class loaders with load time transformation. The JOIE class loader allows the
installation of bytecode transformers. A transformer can insert or remove bytecode
instructions and alter the class file being loaded.

The Bytecode Instrumentation Tool (BIT) [Lee97], developed in the University of
Washington, is a collection of Java classes that allows users to insert instructions to
analysis methods anywhere in the bytecode, so that information can be extracted from the
user program while it is being executed. BIT was successfully used to rearrange procedures
and to reorganize data stored in Java class files. An application, called ProfBuilder [C0098],
was built on BIT, and it allowed for rapid construction of different types of Java profilers.

The Bytecode Engineering Library (BCEL) [Dah01] developed by the Apache Software
Foundation is a toolkit for the static analysis and dynamic creation or transformation of
Java class files. It enables developers to implement desired features on a high level of
abstraction without handling all the internal details of the Java class file format. Unlike
other bytecode manipulating tools, the BCEL is intended to be a general purpose tool for
bytecode engineering. It gives full control to the developer on a high level of abstraction,

and it is not restricted to any particular application area [Dah0O1]. BCEL is already being

-35—

used successfully in several projects such as compilers, optimizers, obfuscators, code
generators and analysis tools.

The Java programming assistant (Javassist) [ChiO3] is a reflection-based toolkit for
developing Java bytecode translators. It is a powerful class library for transforming Java
bytecode, and it enables Java programmers to modify a class file before the JVM loads it,
and to define a new class at runtime. The main feature of this bytecode operating library is
that it allows users to access Java bytecode in the high source code level, instead of in the
low bytecode instruction level. Unlike other similar tools, programmers can modify a class
file with source-level vocabulary. Users do not have to have detailed knowledge of the Java
bytecode and the internal structure of class file. Javassist can compile a fragment of source
text on line, for example, just a single statement, and then inserts it into the Java bytecode.

This ease of use is a unique feature of Javassist compared to other similar tools.

2.4.3 Execution Tracing

Program tracing is an important program dynamic analysis technique, which is often
used in program debugging, testing, monitoring, verification and comprehension.
According to the IEEE standard 610.12 [IEE90], a trace is a record of the execution of a
computer program, showing sequences of instructions executed, names and values of
variables, or both. Its types include execution trace, retrospective trace, subroutine trace,

symbolic trace, variable trace. An execution trace is a record of instructions executed

—36—

during the execution of a computer program [IEE90]. It often takes the form of a list of
code labels encountered as the program is being executed.

According to the definition of dynamic slicing in section 2.3.2, a statement level
execution trace is required to compute dynamic slices. In order to obtain a statement level
execution trace, users need to produce a record to show the exact statements that were
executed and the execution order of the statements during a particular run. The original
programs need to be instrumented at the statement level. When a statement is executed, the
instrumented instructions are triggered, and generate a record for the statement. It is
common that a trace, once generated, is stored in a file. A trace file contains therefore a
series of events where one is an execution of a statement.

The main challenge of tracing realistic sized programs is to resolve the size explosion
problem. A long execution may generate a huge trace file, and creating these huge traces
leads to additional overheads. Furthermore, operating on a huge trace file is inefficient and
time-consuming. Hamou-Lhadj and Lethbridge [HamO1] classify the techniques used to
reduce the amount of trace information into two categories, trace exploration and trace
compression. The first one is concerned with the ability to browse the content of trace
efficiently, and the second one directly focuses on reducing the size of the trace by
removing or hiding some of its components. They summarize that the data collection

techniques, pattern matching, sampling, hiding components and filtering are used in tools

-37 -

to reduce the size of traces [HamO1].

When tracing a distributed system, users typically obtain separated trace records from
various processes. Communication and synchronization information must be captured in
order to match trace records from different processes. In message-passing based distributed
systems, communication information is traced by recording each send and receive methods
when they are invoked. A message-passing system is first instrumented at the method level
to be able to trace send and receive methods. When the methods are called, the
instrumented code will generate communication records. Logical clocks or timestamps are
typically used to accomplish synchronization between processes. When a communication
record is generated, a timestamp label is attached to the record. According to the
timestamps of all communication records, these records can be ordered and connected
between a send record and its corresponding receive record. Since extra instructions have
to be instrumented to record the communication and synchronization information in a
distributed system, tracing a distributed system is much more difficult than tracing a
traditional sequential program. Moreover extra instructions mean that tracing a distributed
system will result in an additional overhead compared to tracing a sequential program. It
has to be noted, that instrumentation of the source and byte code may modify the program
behavior and the non-deterministic behavior of these systems can cause situations where

the recorded traces will not correspond to the non-instrumented program executions.

—38—

Chapter 3 DYNAMIC PREDICATE SLICING

Rilling, Li and Goswami [Ril02a] first presented a novel predicate-based dynamic
slicing for message passing programs. According to their definition, a dynamic predicate
slice contains all statements that are relevant to a global predicate during a run of message
passing programs. They [LiHO04] also extended the dynamic predicated slicing to two kinds
of granularity-driven dynamic predicate slicing, coarse-grained and fine-grained dynamic
predicate slicing. This chapter presents relevant notations, the predicate-based dynamic

slicing, and the algorithm implemented in this thesis.

3.1 Predicate-Based Dynamic Slicing

3.1.1 Global Predicate

A global predicate is defined on variables that are typically located in different processes
or channels in a distributed system. It may be viewed as an abstract state of a distributed
system, and used to represent properties of a distributed system. Due to the state-explosion
problem of executions of distributed systems, engineers meet challenges when maintaining
or analyzing distributed systems. Global predicates can be used as filters to abstract

behaviors of a distributed system and to capture some requirements of the distributed

-39 -

system. In this context Rilling et al extended the notion of program slicing to be applicable
in identifying these statements (executions) that have an influence on the predicate within

the distributed environment.

Li et al [LiHO04] give the following formal definition for a global predicate.

« Definition: A global predicate (F) is a Boolean valued function defined on either

local or global variables distributed among processes and channels.

In a distributed system, x; represents a local variable associated with process i, and ¢,

represents a message in the channel from process i to process j. Some example global
predicates given by Rilling et al [Ril02a] are shown below.

& X, AXy A AX,

) f(xl,xz,...,xk) <t where fis a linear function.

o xl/\x2/\(c12 =O)

3.1.2 Partially Ordered Multi-SET

Lamport [Lam78] introduced the concept of one event happening before another event
in a distributed system, and defined a partial ordering of the events. This distributed event

model is adopted by Li et al [LiHO4] in the predicate-based dynamic slicing. They use the

—40 -

model to represent an execution of a message passing system. The computation of a

predicate slice is based on the distributed event model.

The following are some definitions and notations used in the analysis of execution of a

message passing system.

= Action: an action is a statement in a message passing program P. It is an atomic
component in the program. According to this notation, the action set A is the set of
statements in a program. A = {s,} s, is a statementin B i=1 ... k.

= Event: .an event is an instance of an action corresponding to the execution of a
statement. An event is labeled with its execution order and its associated action.

= Qutput variable: a variable modified by a statement is an output variable of the
statement.

« Input variable: a variable referenced by a statement is an input variable of the
statement.

= Data dependency orders two statement events if an output variable of one of the
statements is an input variable of the other statement.

= Control dependency orders a block predicate statement that must be evaluated

before another statement within the scope of that block can be executed.

—41 -

« Communication dependency orders a send event before a receive event in two
different processes whenever the message received in the latter comes from the

former.

Li et al [LiHO4] use the Partially Ordered Multi-SET (POMSET) model to represent an
execution of message passing programs. They present the following formal definition of a

POMSET.

» Definition: a Partially Ordered Multi-SET (POMSET) <E, A, D, L> represents a
run of message-passing programs such that:
E = set of events,
A = set of actions (program statements),
D = (control/data/communication) dependency ordering among the events,

L = labeling function: E — A.

A POMSET is visualized by a labeled directed acyclic graph. After a message passing
system is executed, each event in the execution forms a node in the corresponding
POMSET. A node is labeled with its corresponding action in A. The dependencies in D are
represented by arrow-headed edges that connect relevant notes where the three different

types of dependencies are drawn by using different line styles in the graph.

42

The dependency ordering relationships in D have the transitivity property. In a POMSET,
if e; is ordered before e; and e3 is ordered before e, ¢; is transitively ordered before e3. D*
is used to refer to the transitive closure of the dependencies in D, which order any two

events in the POMSET.

Li et al [LiHO04] also give a definition of a prefix of another POMSET as follows.

= Definition: a POMSET Py = <Eg, Ay, Dy, Lp> is a prefix of another POMSET P =
<E, A, D, L> if the following hold:
a. ifeisin EgtheneisinE and Lo(e) = L(e)
b. ife’isin Eg and (e, e’) is in D* then e must also be in Ey, and

c. fore, e’inEy, (e, e’)is in Do* iff (e, e’) in D*.

Where a POMSET P stands for an execution of a message passing system, a prefix Py of
P presents a possible partial execution of the message passing system and consists of
exactly those statement events in the partial execution. Therefore, each prefix represents a
distinct global state of the execution. The global state is formed by the values of all

program variables that can be determined precisely after executing those events in the

prefix.

—43 -

When one dynamically slices a distributed system, the resulting slice includes a set of
events selected in the execution because of their relevant to the slicing criterion. The set of

events can be represented by a prefix of the POSET of the original execution [LiHO04].

3.1.3 Dynamic Predicate Slicing

Rilling et al [Ril02a] first introduced a dynamic predicate slice. Given a global predicate
as the slicing criterion, a dynamic predicate slice is an executable part of a message-passing
program that can reproduce the same behavior with respect to the predicate as the original
program. As discussed in section 2.3, traditional slicing criteria focus on those parts of a
program that influence variables at a chosen position in the program. A predicate criterion

focuses on all states in a run where the predicate might be changed.

The dynamic predicate slicing aims to identify the parts of a message passing program
that potentially change the global predicate in the run, consequently modified a program
property, rather than a set of variables in traditional slicing. Therefore, Rilling et al [Ril02a]

state a dynamic predicate slice as a superset of traditional slices allows for a more general

slicing criterion and supports more general comprehension tasks than traditional slices.

Li et al [LiHO4] extend the dynamic predicate slice to two granularity-driven dynamic

predicate slices. The original slice is renamed the coarse-grained dynamic predicate slice,
which identifies the relevance of a statement with respect to a predicate in a run. They also
present a fine grained dynamic predicate slice, which is computed based on the detailed

occurrences of a statement that are relevant to a predicate.

Coarse-Grained Dynamic Predicate Slicing

Coarse-Grained dynamic predicate slicing, which corresponds to the basic dynamic
predicate slicing presented by Rilling et al [Ril02a], identifies those statements whose
executions may affect the state of a global predicate. For a message passing program, a
POMSET P = <E, A, D, L> presents an execution of the program. The global predicate
used as a criterion is denoted by F(X), which is defined on the set X of variables distributed
among processes. An event in E is a predicate event if one of its output variables is in X, i.e.
the event can change the state of the predicate. Li et al [LiH04] give the following

definition of a coarse-Grained dynamic predicate slice.

» Definition: Given a run P of a message-passing program, a coarse-Grained
dynamic predicate slice is a subset of the statements (actions) of the program that
satisfies the following requirements:

a. the subset is executable, and

— 45~

b. there exists at least one run P’ of the subset such that for every global
state of P satisfying the predicate, there exists a distinct global state of P’

that also satisfies the predicate, and vice versa.

The coarse-grained dynamic predicate slicing allows identifying the relevance of a
statement with respect to a predicate. Its usefulness is associated to the knowledge of action
relevance instead of event relevance. The coarse-grained slicing is adequate for knowing
the portion of code relevant to a global predicate. It is limited in knowing more precisely

the relevance of events.

Fine-Grained Dynamic Predicate Slicing

In order to achieve more precise relevance of a particular event with respect to a global
predicate, Li et al [LiH04] present a fine-grained dynamic predicate slicing for message
passing programs. The following notations introduced by Li et al [LiH04] are used to

define the fine-grained predicate slicing.

= 1/0-state: A global state is a I-state of a predicate if the value of the predicate is true
in the state; a global state is a 0-state if the value of the predicate is false in that state.

= Precede: consider two global states § and S’ associated with two prefixes P and P’

—46 —

respectively. S precedes S’ iff P is a proper prefix of P’.

» Next: if a proper prefix P of P’ differs from P’ in only one event, then §’e next(S).

= Dominate: S dominates S’ iff both are 1(/0)-state and there exists a sequence of

1(/0)-state Sj ... S; such that §; € next(S), S2€ next(Sy)...and S’€ next($;).

« Dominant state: a state S is a dominant state if it is not dominated by another state.

» Dominant 1/0-state: a dominant state is a dominant 1-state if the predicate holds in

that state; otherwise, it is a dominant 0-state.

The prefix associated with a dominant state is a minimal partial execution that just turns

the predicate. Removing a single event from the partial execution will change the state of

predicate. Therefore, dominant states can be used to identify those critical events that

switch the global predicate. Based on the preceding notations, a fine-Grained dynamic

predicate slice is defined by Li et al [LiHO4] as follow.

= Definition: a fine-grained predicate slice is a prefix of the run P that contains all the

dominant states of the run. Hence it contains all critical changes of the predicate in

the given run.

Li et al [LiHO4] also give a proof that the minimal prefix P* of P that contains all

predicate events is a fine-grained predicate slice. The computation of a fine-grained

—47 -

predicate slice is accomplished through including all predicate events and their dependent
events in the dynamic predicate slice. In that way, the resulting slice contains all events that
can change and consequently affect the predicate. According to the preceding discussion of
the fine-grained predicate slicing, it is apparent that predicate slices are useful to reveal all

critical events that switch the predicate.

3.2 Coarse-Grained Dynamic Predicate Slicing Algorithm

The dynamic predicate slicing algorithm implemented in the current research was first
presented by Rilling et al [Ril02a]. The algorithm was refined and renamed coarse-grained
dynamic predicate slicing contrasting with fine-grained dynamic predicate slicing by Li et
al [LiHO04]. This algorithm is a kind of forward dynamic slicing algorithms. The notion of
dynamic forward computation was originally introduced by Korel and Yalamanchili
[Kor94]. The forward slicing algorithm computes dynamic slices for all variables at
run-time based on a removable block notion. The dynamic predicate slicing algorithm
presented by Rilling et al extends the forward dynamic slicing algorithm to distributed
systems. Not only data dependency and control dependency, but also communication
dependency is considered in the computation. The algorithm compresses the dynamic

composite dependency graph into dependency sets, one per statement, as the execution

—48 —

unfolds forward. The following section 3.2.1 first presents the notations and assumption of

the algorithm and the detailed algorithm is described in section 3.2.2.

3.2.1 Notations and Assumption

Predicate variable: A global predicate P=F (x; A x, A...AXx,) where x; is a local

variable that belongs to process i. The variable x; is called a predicate variable.

Depend(S) = Dependency Set of the statement S.

In(S) = Set of input variables that are needed in the execution of the statement S, i.e.
S references these variables.

Out(S) = Set of output variables modified by the statement S.

Recent (v) = The statement on that the most recent value of variable v is assigned
during the run.

Control(S) = The control statements, if any, on which statement § has control
dependency.

P(X) = Global predicate defined on variable set X.

S(P) = Set of statements each of which influences a variable in the global predicate P.

PS(P) = Predicate slice corresponding to the global predicate P(X).

The assumption of the algorithm is that In(S) = In(S’) if S is a receive statement that

—49 —

receives a message sent by the send statement S’ during a run. This assumption implies that
communication dependencies are considered during the computation. That also gives a

prerequisite for the algorithm, matching a receive event with its corresponding send event.

3.2.2 Algorithm Description

Initialization part:
1 Depend(S) = {S} for all S in the processes;

2 Recent(v) =0 for all variables v in the processes,

The main routine:

3 repeat

4 Upon executing statement S do:

5 Depend(S) = Depend(S) (Uy y ¢ 1n¢sy Depend (Recent (v))
' Depend (Control(S));

6 for each v € Out(S) do: Recent(v) =S;

-J

until program terminates;
SPy={S|IveOu(S)adv € X};
PS(P) = U g ¢ g gy Depend(S),

o X

Figure 3.2.1 Coarse-Grained Dynamic Predicate Slicing Algorithm

The Coarse-Grained dynamic predicate slicing algorithm shown in Figure 3.2.1 is

executed for each process being analyzed. The algorithm computes the dependency set for

each statement as the execution proceeds forward. The final dynamic predicate slice is

computed by taking the union of the dependencies of all statements that appear as predicate

—50—

events.

In the initialization part, the first step (step 1) is to set up Depend(S) for all statements in
the processes of message passing programs. The initial value of Depend(S) includes only S

itself. Recent (v) for all variables in the processes is initialized with @ (step 2).

The main routine includes two parts, one executes repeatedly for each executing
statement, a.k.a. event, until program terminates (step 3 to step 7). The other part as final
computation gets the predicate slice for a given predicate (step 8 and step 9). When a
statement is being executed, Depend(S) is computed by considering two kinds of
dependencies, data dependencies and control dependencies. In step 5, Depend (Recent (v))
for each v belongs to In(S) stands for all statements on which S data depends, and Depend
(Control(S)) gets all statements have control dependency relationship with S. Moreover, if
statement S modifies a variable v, i.e. v belongs out(S), the Recent(S) needs to set up to
statement S (step 6). Step 8 finds out all statement influences the predicate P, i.e. if
statement S modifies a predicate variable of P, put S into S(P). The final step (step 9)
computes the resulted slice fqr predicate P, which is the union of all Depend(S) for each

statement S belongs to S(P).

—51—

Chapter 4 Contributions

In this chapter, the contributions of this research are presented. Section 4.1 introduces
both the motivations of this research and dynamic predicate slicing. The hypotheses of the
research are presented in section 4.2. The research goals are listed in section 4.3. The

system overview is presented in the last section of this chapter.
4.1 Motivations

» Slicing for Distributed Systems

Distributed systems have been applied so widely that almost all applications and
systems, nowadays are utilizing some distributed elements. Therefore, the comprehension
of distributed system has become critical in the software comprehension field. Program
slicing has been established in the last decade as a program analysis technique, and has
been used broadly in the program comprehension of sequential systems. There have been
many different program slicing algorithms presented in literature. Most of the algorithms,
focusing on traditional sequential programs, aimed at their specified application, and have

succeeded in different program analysis tasks.

Even though there are some program slicing algorithms already presented for concurrent

52—

or distributed systems, they have limitations or deficiencies with respect to their slicing
precision, the detail of the analysis level, and their language paradigm support. Moreover,
there is a need for providing a more powerful and efficient slicing algorithm for distributed
systems in order to enhance the distributed program comprehension. Distributed programs,
unlike sequential programs, run on different processes or even different machines and one
has to deal with the required communication among these processes. For that reason,
slicing distributed programs is much more difficult than slicing sequential programs. The
information from several processes and the communication between processes must be
taken into account in a distributed program slicing algorithm. In addition, computation of
distributed program slices is usually implemented either concurrently in different

processes, or simulative in different threads in order to achieve efficiency.

= Predicate Slicing Criteria

The slicing criterion as originally defined by Weiser [Wei82] is a 2-tuple <x, V>, where x
is a statement in a program, P, and V is a subset of variables in P. A static program slice
based on the slicing criterion <x, V> is a subset of program statements that preserves the
same behavior of the original program at the program point p with respect to the program

variables in V. The criterion defined for dynamic slicing by Korel and Laski [Kor88]

53—

includes a set of variables V, input Z, and point P in the execution history. These criteria of

the static and dynamic slicing were first introduced for traditional sequential programs.

They worked efficiently for helping to understand sequential programs.

Kamka and Kranjina [Kam95] applied the dynamic criterion to distributed programs.

They defined a distributed slicing criterion as a non-empty set of selected statements in

processes with a test case. Cheng [Che93] extended also the notion of slicing to concurrent

programs. He redefines the static and dynamic slicing criteria for a concurrent program.

The criterion he defines is almost the same as criteria for sequential programs. The only

difference is that the dynamic criterion for concurrent programs includes not only variables

V and input Z, but also an execution history of concurrent programs, H. There are also many

other extensions of either static or dynamic slicing criteria for distributed programs in the

literature [XuBO0S5]. Most of them are very similar with the criteria defined for sequential

programs. The major characteristic of distributed systems, a global state machine, is not

taken into account.

Global predicates are used to describe the abstract state of a distributed system in order

to help developers to obtain design requirements or analysis, and understand the behaviors

of a distributed system. The use of global predicates in program slicing comes rather

—54 -

naturally. Predicates can be useful filters to abstract the behaviors of distributed programs.
A global predicate can be defined on program variables distributed among processes and
channels. It is often related to some requirement or suspected error properties of the
program. Unlike traditional slicing criteria that focus only on those parts of the program
that influence a Véﬂable at a chosen position in the program, a predicate slicing focuses on
all states of an execution in which the predicate might be changed. The motivation of the
dynamic predicate slice is to identify these program parts that might potentially modify a

program property, rather than modify a set of variables.

» Capturing Interdependency

The majority of existing slicing algorithms in literature are based on some type of
dependencies between statements to compute either static or dynamic [Tip95] [XuB0S5].
There are two kinds of dependencies that exist in sequential programs, data dependence
and control dependence. They are defined in terms of a Program Dependency Graph (PDG)
[Tip95]. Li et al [LiHO4] formally redefine the data dependency by using the notations of
output variables and input variables of a statement. A variable that is modified by a
statement is an output variable of the statement, and a variable that is referenced (used) by

a statement is an input variable of the statement. If an output variable of one statement is an

—55-

input variable of the other statement, there is a data dependency between them. The control

dependency is between a predicate statement and the statements within the scope of that

block. Data dependencies and control dependencies have been widely used to draw

different graphs, such as the Control Flow Graph, the Program Dependence Graph, and the

System Dependence Graph. These graphs represent a program, and are used to compute

various slices.

However, for distributed programs, because of the synchronization and communication

between processes, there are not only data dependency and control dependency in each

process, but also interdependency among these processes themselves. For computing a

slice for a distributed system, data dependency and control dependency alone are not

enough. In order to achieve a precise algorithm for slicing distributed programs, the

interdependency between processes must be obtained as well. Li et al defined [LiHO04] the

communication dependency for message passing programs. A communication dependency

orders a “send” event before a “receive” event in two different processes where the

message received in the latter comes from the former. Communication dependencies are

detected at runtime.

—56—

» Tracing Program Executions

A dynamic slicing criterion specifies an input, for which the program will have a unique
execution. Different from static slices, a dynamic slice is constructed with respect to the
particular program execution based on the input specified by the dynamic slicing criterion.
Dynamic slice resolves some imprecision of static approaches with respect to control flow.
Therefore, dynamic slicing can compute smaller program slice, than static slicing.
Moreover, statements included in a dynamic slice have direct bearing on the program
behavior occurring during that particular program execution and captures that particular

behavior.

However, distributed programs often make non-deterministic decisions because of the
communication delay between distributed processes running on different machines. The
communication delay is time dependent. Consequently, the order in which messages sent
and received are time dependent, and may vary from one execution to the next. It follows
that repeated executions of a program on the same input may result in different program
paths. However, in the case of dynamic slicing of distributed programs for debugging,
testing, or comprehending purposes, programmers are interested in the exact execution that

exhibits an anomalous behavior. Dynamic (predicate) slicing is based on the assumption

—-57 -

that execution traces that capture the particular program behavior are available and

therefore allow for a replay and re-analysis of that particular execution scenario.

4.2 Hypotheses

4.2.1 Dynamic Predicate Slicing for Distributed Systems

Global predicates have been widely used for the comprehension of distributed systems,
representing and capturing program properties and abstract behaviors of systems. While
distributed systems become more and more popular and wide-spread, a rather straight
forward extension to program slicing has been to apply it also to distributed programs and
their comprehension. In order to reflect the essential characteristic of a distributed system,
one can apply global predicates in conjunction with program slicing to enhance the
comprehension of distributed program [Ril02a]. The result is a new type of slicing for
distributed programs, dynamic predicate slicing. A predicated slice is computed based on a
predicate criterion that is defined on variables distributed among processes and even in
channels. The dynamic predicated slicing computes all relevant statements that will affect

the value of the global predicate (see for more details in the section 3.1.3).

Hypothesis 1. Coarse-grained dynamic predicate slicing can captures global

~58—

requirements or suspected error properties of a distributed program to support the

comprehension of distributed systems

NULL Hypothesis 1. Dynamic predicate slicing can not capture properties of a

distributed system and therefore does not support the comprehension of these systems.

Unlike traditional sequential programs, the states of a distributed system are described
by the variables distributed among processes and even in channels, and the behaviors of a
distributed system are depended on the global states instead of the local variables values.
Capturing the change of the global states of a distributed system plays a key role in
understanding distributed programs or debugging an error happening in an execution of the
distributed programs. A global predicate is a Boolean valued function defined on either
local or global variables distributed among process and channels. The global predicate
reflects the global states of a distributed system, and captures the principal properties and
behaviors of the distributed system. Unlike traditional slicing criteria that focus only on
those parts of the program that influence a variable of interest at a specific position in the
program, a predicate slice contains all states in the program run where the global predicate
changes its value, thus the predicate slicing can provide a better support to understand

distributed programs than traditional criteria slicing. Therefore, the hypothesis 1 will hold

-59_

and the null hypothesis 1 can be rejected.

4.2.2 Capturing Program Executions and Communications

Dynamic slicing is defined on user-specified inputs, and a dynamic slice is based on a
particular execution history of programs. Thus tracing of program executions is required to
computing a dynamic slice. Because of the inter-dependency and non-determinability of
distributed systems, tracing each execution of processes alone is not enough to obtain an
accurate execution history of distributed programs. The communication between processes
has to be captured properly also. The instrumentation technology either in source codes or
in bytecodes has been applied widely in the program analysis field in order to obtain

runtime information.

Hypothesis 2: Instrumentation either at the source code or the bytecode level can provide
the ability to trace the execution of programs and capture the communication between
processes; therefore, the dynamic predicated slicing can be implemented by using the

instrumentation to achieve the dynamic analysis.

Null-Hypothesis 2: Executions and the communication between different processes can

not be captured and therefore the dynamic slicing algorithm cannot be implemented.

— 60—

With the support of instrumentation probes can be inserted into programs at either the
source codes or the bytecode level. These probes will collect the runtime information, and
produce the necessary record for the later analysis purpose. As we mention in section 2.5,
the source code instrumentation benefits the statement level analysis, and the execution
history for dynamic slicing is a record of the statement that are run exactly in the execution.
So, the source code instrumentation can fulfill the tracing requirement. To capture the
communication information, we need to focus on method level analysis. The bytecode
instrumentation is more efficient and has less impact on original programs than the source
code instrumentation. It works sufficiently for the method level analysis. The tracer
inserted through the bytecode instrumentation can monitor the occurrence of the “send”
and “receive” methods in message-passing programs. The tracer collects the related
dynamic information, and then produces a record for the communication. Therefore

hypothesis 2 will hold and the null-hypothesis 2 can be rejected.

4.3 Research Goals

The presented research and implementation of the Dynamic Predicate Slicing is a part of
work of the Comprehension Of Net-CEntered Programs and Techniques (CONCEPT)

project, which is a continuation of a previous project, Montreal Object Oriented Slicing

—6l -

Environment (MOOSE) [Ril01]. The CONCEPT project addresses the current and future

challenges in the comprehension of large and distributed systems by providing

programmers with novel comprehension techniques [Ril02b]. These techniques are based

on a variety of source code analysis, visualization, and application approaches. The project

is also currently in the process of expanding current approaches for distributed and client

server based systems [Ril02b].

The more specific goals of the present research are the following:

(1) To study the application of dynamic program slicing for the comprehension of

distributed systems,

(2) Review and select an appropriate instrumentation technique(s) for dynamic

program analysis, and

(3) To implement the presented coarse-grained dynamic predicate slicing algorithm.

(4) Provide an initial experimental analysis of the algorithm with respect to its time

and space complexity.

The programs analyzed by the predicate slicing algorithm are coded in Java. The Java

language is very popular in the network programming environment. The distributed system

paradigm we focused on is the message-passing pattern, which is the most fundamental

-62 -

paradigm for distributed applications, and which also can be said to be synonymous to a
distributed program, as we indicated in the section 2.2, the definition of a distributed
system given by Coulouris et al [Cou01] is adopted in this research. We assumed that the
“send” function is non-blocked and the “receive” function is blocked in the
message-passing paradigm in order to reduce the complexity of message-passing programs.
We adopted the Java Agent Development Framework (JADE) as the message-passing
platform. Agents built on JADE communicate through “send” and “receive” message

methods.

4.4 System Overview

4.4.1 CONCEPT Environment

The CONCEPT environment provides a framework to facilitate and enhance both
visualization and source code analysis techniques [Ril02b]. It allows programmers to apply
various cognitive models during the comprehension of large distributed systems to
generate different levels of visual abstraction. The program slicing technique is used to
reduce the amount of information displayed to the users and further enhance these

visualization techniques. The CONCEPT environment is illustrated in Figure 4.4.1.

—63 —

Comprehension| | Reengineering | | Refoctoring| |Debugging | | Testing

Applications

ﬁ?

UML Class Model| | UML Sequence Dingram UML Coiluborations Dingramm | 3D UML

Meta Bolls | |Visual City | | Tree Map | |Hyperbolic Tree Map || Connnents

Visualization

Stavie Slicing Dexign Recovery | |Coupling Meusurement

Feature Analysis| |Aspect Analyyis| |Concept Analysis

cee ene

Analysis

Extraction

1T

Repository

Figure 4.4.1 CONCEPT Environment

The CONCEPT environment assists users in achieving various tasks such as program
comprehension, reengineering, refactoring, debugging, and testing. The knowledge about

programs is first extracted from source code, which always reflects the current application

correctly, and is stored into the repository, either a database or intermediate files. The
original rough information is processed by various calculation or analysis algorithms. The
result data may be stored into the repository too, or provided to be visualized directly. The
extracted and processed knowledge and data are visualized by using a visualization model

suitable to various purposes.

4.4.2 Dynamic Predicate Slicing Overview

The presented research on predicate slicing, as a part of work of the CONCEPT project,
focuses on dynamically slicing distributed systems (i.e. message-passing programs in this

research) based on novel criteria, predicate criteria.

The gray components in Figure 4.4.1 are involved in this research, with a focus on
dynamic predicate slicing, which falls in the category of dynamic slicing extended to
message passing programs. The source code component are message passing programs,
from which we extract static information through a parser provided by Zhang [Zha03], a
member of the CONCEPT project, and collect dynamic information through the
instrumentation mechanism described before. Both extracted information (static and

dynamic) as well as resulting predicate slices are stored into the central repository.

— 65—

In Figure 4.4.2 the details of the dynamic predicate slicing architectures are illustrated.

Parsing Fiiltering
Intermediate
Stafic Analysis : Files
Instrumenting Tracing -

Database

Dynamic Analysis

Computing Predicate Slice <_____‘_'> Repository

Figure 4.4.2 Dynamic Predicate Slicing Overview

As described earlier in section 2.4, an execution of message passing programs is
represented by the POMSET model, and the computing of predicate slices is based on the
POMSET model. The POMSET model represents data dependency, control dependency
and communication dependency between events, which are occurrences of statements in an
execution. The data dependency and control dependency are calculated from the static
information obtained in the static analysis step. The static analysis component is similar to
the corresponding component of the other slicing algorithms provided by the CONCEPT
project. The component reuses a Java parser, which is developed by another member of
CONCEPT group, with a specified filtering component to obtain necessary static

information for the dynamic predicate slicing. The static information extracted by the static

- 66 —

analysis is stored into the repository, which is an intermediate file in the current research.

As defined in section 3.1.2, the dynamic part of a POMSET model includes the set of

events in an execution of a message passing program (i.e. occurrences of statements in the

execution), and communication dependency between processes. The dynamic analysis

component achieves the runtime information collecting task. In the dynamic analysis, the

instrumentation technique is used for tracing the execution of a message passing program

and collecting communication information. In order to obtain execution trace and

communication information, a message passing program is first instrumented, after then

the instrumented program is recompiled, and is executed. The instrumented code will

collects dynamic information about the execution of original program, and output the

information into repository.

The dynamic predicate slice is finally computed by the computing component. The

component retrieves the static information and dynamic information from the repository,

and forms an in-memory model for the message passing programs. The computation then

is performed on the in-memory model. The result slice based on a specified predicate is

shown to the user, and stored into repository.

—67

Chapter 5
IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

5.1 Message Passing Sample Program

5.1.1 Java Agent Development Platform (JADE)

The Java agent development framework (JADE) developed by TILAB provides a
software development environment for the distributed multi-agent applications based on
the peer-to-peer communication architecture [BelOO] [Bel03]. JADE is compliant with
FIPA (the Foundation for Intelligent Physical Agents) specifications, which are a collection
of standards, intended to promote the interoperation of heterogeneous agents and the

services they can represent. JADE is fully implemented in Java language.

The JADE agent platform provides flexible and efficient message-passing
communication architecture. The communication between agents is performed through
message passing, where FIPA ACL (Agent Communication Language) is the language
used to represent messages. JADE creates and manages a queue of incoming ACL
messages for each agent. A queue is private to each agent. Agents can access their queues

via a combination of several modes: blocking, polling, timeout [Bel0O]. In the current

— 68—

research, we use the JADE communication architecture to simulate a message passing
platform. Message passing sample programs used in the current research, are implemented

based on the JADE environment.

5.1.2 Message Passing Sample Program for JADE

For this research, the sample program, presented by Li et al [LiHO04] is adopted as a basic
message passing example, and is re-implemented using JADE. The original sample

program is shown in Figure 5.1.1.

Processo:
int threshold®, r = 0,
1) input(threshold0);

(@) send(thresholdo, 1); fgend value of thresholdO to process whose pid =1
(3) send(thresholdo, 2);
4) receive(r); fireceive new value of r from any process

G output(*The largest element below threshold is °, 1);

Processl: Process2:

int thresholdl, n, x, a[10], p= 0, sumnl= 0; int threshold2, m, y, b[10], ¢= 0, sumn2=0;
) input(n, a); (16) input(m, b);
() receive(thresholdl); (17) receive(threshold2);
(8) while a[n] > thresholdl { (18) while b[n] > threshold2 {
©) { suml = suml +a[n]; 19 { sun2 = sum2 + b{m];
10} n:=n-1; } } 20) m=m-1; } }
11y p=a[n] 21) q="b[m];
(12) wend(suml, 2}, //send to process2 (22) send(sumz, 1);
(13) send{p, 0); (23) =end(q, 0);
(14) receive(x, 2); {freceive firom process2 24) receive(y, 1);
(15) suml =suml +x; 25) sum2 = sum2 +y;

Figure 5.1.1 Message Passing Sample Program

This message passing example is implemented by defining each process as a JADE

—69 -

agent that runs on the agent platform across different machines. A JADE agent is a class
extending from the jade.core.Agent class. The Agent class represents a common base class
for user defined classes, and accomplishes basic interactions with the agent platform and a
basic set of methods (e.g. send/receive messages). When an agent is created, it is given an
identifier by the JADE platform, which is a globally unique name, and then its setup()
method is executed. The setup() method is the point where the agent’s activity starts, and

users should add at least one behavior to the agent in the body of this method.

The functionality of each process is implemented as one behavior of the corresponding
agent. The behavior is defined as a subclass of jade.core.behaviours.SimpleBehaviour
class. An instance of the behavior is added to its agent in the serup() method by invoking
the addBehaviours(Behaviour) method. The main routine of each process is located in the
method Behaviouraction() of the behavior class. Finally, a behavior calls the
Agent.deDelete() method to stop the execution of an agent when the task has completed.

The Agent.takeDown() method is executed when the agent is about to be deleted.

5.2 Static Analysis

The static analysis carries out the extraction of static information from message passing

programs. The output information is filtered and formatted to match the required input for

~70 -

the dynamic predicate slicing algorithm. The workflow for the static analysis step is

illustrated in Figure 5.2.1.

Java Message I
Passing Programs

Parsing Filtering o |iiiiiii|
Script

L2 [3) 15

h Y

Static
Information
Files

Figure 5.2.1 Parsing and Filtering

PosigreSQL
Database

5.2.1 Parsing and Database

The CONCEPT environment supports Java source code parsing through a modified
version of the standard Java compiler, javac from the Java Development Kit (JDK). The
modified parser was developed by Zhang [Zha03], a member of the CONCEPT project.
The javac is a fully implemented java language compiler. It not only performs lexical
analysis, but also semantic analysis, which facilitates the identification of the relationships
between the entities in source code And its source code is available from Sun Micro’s
website. These are the reasons why the javac is selected as a parser for the program static

analysis purpose in the CONCEPT environment.

71—

The modified Java compiler extends the original compiler from the standard JDK. It

reads Java source code, and compiles it into bytecode files. During the compilation, after a

symbol table is created by the original compiler, the javac extension will be invoked. It

transfers the symbol table into a predefined Abstract Syntax Tree (AST) structures for all

compiled classes. These ASTs are partially normalized and stored within a PostgreSQL

database [Zha03].

PostgreSQL is adopted as the database management system in the CONCEPT

environment. PostgreSQL is a SQL compliant, open source object-relational database

management system, which is released under the BSD (Berkeley Software Distribution)

license [Pos05]. The most important thing for the CONCEPT project is that PostgreSQL

supports multiple queries and views.

As illustrated in Figure 5.2.1, Java message passing programs first are compiled by the

parser, the modified javac (@®). Then the AST Trees are generated for all compiled classes

from the symbol tables of each program. After that, the AST trees are normalized, and

stored into the database (@). Figure 5.2.2 shows an example of the result AST.

-72-

f} (&l finally [103] (line:42, offset1190)
9~ body [412) (line:0, offset0)
Tty [101] (line:42, offset1190)
? - hody [392] (line:0D, offset0)
6-\@{} [105] (line:42, offset:1194)
?«Ej catch [102] (line:1 38, offset 5B6Y)
0 (3 expr [402] (ine:D, offset.0)
¢~ 10Exception [60] (line:1 38, ofiset5876)
D =grror [161] {line:0, offset13)
i D refer [502] {line:0, offset:0)
\\\\\\ “ Y impl [504] (line:0, offset0)
> [- parameter [404] {ine:0, offset0)
6* i0e. 18697845 [185] (line,138, offset.5868)
o (el biosdly [406] (line:0, offset.0)
¢ (20 [105) (line:1 38, offset5893)
o = expr stat [106] (line:139, offset5912)
¢ [final [414] (line:0, offset0)
2~ [l {} [(108] Qine:140, offset 5958
¢ [l expr stat [106] (ine:l 41, offset5977)
= = [1] (ine: 141, offset:5986)
Y boolean [161] ine:0, offset:0)
0—@ left [583] (line:0, offset:0)
o~ 2 right [560] (line:0, offset.0)
~~~~~ [ impl [503] (line:0, offset.0)
9 ‘ expr stat [106] {ine:142, offset:6011)
- S -doDeIete [47] (line:142, offset.6027)
Y void [161] Qine:0, offset11)
- [ right [560] (line:0, offset.0)

Figure 5.2.2 Example of AST

5.2.2 Filtering and Formatting

The parsing process generates the static knowledge about programs and their structures.
Even though the resulting data has been normalized, it still contains much more
information than we need for dynamic predicate slicing. For example, the dynamic
predicate slicing may not be performed on all classes; instead it may only focus on specific
classes or methods. Moreover, in order to improve the performance of the dynamic

predicate slicing, the static information needs to be simplified and formatted to suit the

73—



need of the dynamic predicate slicing in the current research.

The CONCEPT environment provides an easy way to access the static information

stored in the database, through an Object Oriented model [Zha03]. The static data in the

database is first retrieved into memory. Then an object-oriented model is formed so that the

complexity of extracting information can be reduced. The OO Model also provides APIs to

traverse the AST and basically analyze the raw static information. The Object Oriented

Model of an AST is showed in Figure 5.2.3.

JA
\\
PackageDef ImportDef ClassDef
l | |
lInplementDefl [ ExtendDef I | MemberDef ]
lBodyElement] ——{LocalVariablel I ThrowDef ]
l Statement [ 1 Expression l

T

Figure 5.2.3 Object Oriented Model of the AST

From the database, each Java file in a project is loaded into a JavaFile class. In a

JavaFile class, PackageDef class represents the package definition; ImportDef class

— 74—



indicates the import list; ClassDef class represents the definition of a class in the java file.

The ClassDef class contains ImplementDef classes, which refers to the implement interface

list, an ExtendDef class, which represents the super class, and MemberDef classes, which

may be attributes, constructors, methods, or inner classes. If a MemberDef class refers to a

constructor or a method, the MemberDef class may contain BodyElement classes, in which

Statement classes and Expression classes may be defined. The filtering process operates the

OO model of the AST trees to obtain necessary static information for the dynamic

predicate slicing.

According to the dynamic predicate slicing algorithm described in section 3.4, control

and data dependencies are computed through the input variables, output variables, and

control statements for each statements. Thus, the filtering process extracts this information

from the raw static information obtained through source code parsing. For each statement

in message passing programs, if a variable is modified by the statement, the variable is put

into the Out set of the statement; if a variable is referenced by the statement, the variable is

inserted into its In set. All control statements are put into the Control set of the statement.

As shown in Figure 5.2.1, the filtering process retrieves raw static information from the

database (®), extracts additional data according to the requirement script (@) that indicates

—75—



the focused classes and methods, formats the data, and then generates static an information

file (®). The XML is adopted as the format of the static information file. Figure 5.2.4

demonstrates the result of the static analysis, the partial static information XML file, which

indicates input variables, output variables, and control statements for statements in the

message passing programs.

<?xml version="1.0" encoding="UTF-§" 7>
- < StaticInformation:
- «Project Name=""MessagePassing'" =
- «<JavaFile Name="D:\conceptMessagePassing'srciProcessO java'
- <ControlDependencies>

- <Line Number="91">
<ControlLine Number="40" />
<ControlLine Number="41" />
<ControlLine Number="86" />
<ControlLine Number="88"
<ControlLine Number="90" /-

</Line>

«/ControlDependencies>
- «DataDependecies=

- «Line Number="50"">
- <in
<Variable Line="49" Name="1r" Offset="1336" /-~
<An>
- <guts=
<Variable Line="50" Name="streamTokenizer" Offset="1427"
e
<fomt>

<{DataDependecies:>
<{JavaFilex>
+ «JavaFile Name="D:'\concept\MessagePassing'src\Processl java":
+ <JavaFile Name="D:'conceptMessagePassing'src\Process2 java'>
</Project=
«/StaticInformation>

Figure 5.2.4 Static Information File

—-76 —



5.3 Dynamic Analysis

Through the dynamic analysis, we obtain runtime knowledge of the message passing
programs. For dynamic predicate slicing runtime information that has to collect during the
execution includes execution trace and communication trace. Source code instrumentation
technique is used to accomplish the execution trace collection. The Java bytecode
instrumentation is adopted to fulfill the communication trace gathering. The workflow of

the dynamic analysis step is illustrated in Figure 5.3.1.

[

Reguirement
Seript

Jave Message
. Passing Progroms
JlEve

Soitrce (‘mle Recompiting Byttecode‘ ® . Trm:ii.tg
Instrirmenting Instramenting (executing)

Instrumenited
Object Files

.class

Figure 5.3.1 Instrumenting and Tracing

-77 -



5.3.1 Source Code Instrumentation

The source code level instrumentation inserts extra source code artifacts, which we

called tracing statements into the original source code of the message passing programs.

Such tracing statements are inserted for each statement in the programs. When a statement

is being executed, the corresponding tracing statement is activated, and a trace record for

the executing statement is generated and stored into the trace file.

The whole source code instrumentation process as illustrated in Figure 5.3.1 is

performed by the following steps: the Java source code of the message passing programs is

first instrumented (@), according to the requirement script (@), and then the instrumented

programs are generated (@®); the instrumented source code is then recompiled (@)

into .class files. (@)

The instrumentation toolkits, “query and instr”, introduced in section 2.5, are used in

this research for the source code instrumentation. In these toolkits, query provides the

function to parse Java source code into an internal tree structure. The instr package, which

is based on the query package, operates on the tree representation of a program, and adds

information to the tree. The instr package originally supplies several instrumentation

functions [McCO05]. instradd_counts performs test coverage, which counts how many

~78 -



times each statement is executed. instr.instr_trace provides statement level instrumentation

used to trace individual source lines. instr.instr_meth instruments each methods at the point

of entry to generate an record for each call of the method.

The instr.instr_trace instruments the Java source code at each statement line so that the

instrumented code generates traces that are outputted to the console or a file at run-time.

Each trace includes the Java file name, the line number, and the source code in this line.

This statement instrumentation is accomplished by means of the following steps. First, the

source file is read and parsed into a tree. Then the parse tree is annotated with the

instrumentation, used to trace each executed statement. The annotated tree is written back

to a file. The file contains original source code and some additions. The instrumented file

then needs to be re-compiled. The annotations have to be removed before execution in

order to show correct original source code. Otherwise, the displayed source lines by the

instrumented code will have the annotations in them. The last step is to execute the compile

instrumented program to show the execution traces.

Figure 5.3.2, Figure 5.3.3, and Figure 5.3.4 demonstrate the process of the

instrumentation, and show respectively a sample program, instrumented program and the

execution trace generated by the instrumented program. In the Figure 5.3.3, the code

—79 —



between /*_I*/ and /*I_%*/ is the instrumented code that is inserted by the instr_trace. In
this example, the instr_trace inserts a method call of instr.InstrUtil.showLine(), which is a
static method of the class InstrUtil. The method has two arguments, the first one is the file

name, and the second one is the line number.

1 public class Loop {

2 public static void main(String args[]){
3 mtn=1;

4 for (inti= 1;1<=10; i++)

5 n=n*i

6 System.out, println(n),

703

8 }

Figure 5.3.2 Sample Program for Instrumentation

public class Loop {
public static void main(String args[ D{/*_I*/instr.InstrUtil showLine("Loop.java", 2)./*T_*/
£ _I¥instr.InstrUtil. showLine("Loop java”, 31 *intn=1,
A _T¥{instr. InstrUtil. showLine("Loop.java", 4);/*1_*/for (int i = 1; i <= 10; it++)
A& T instr IngtrUtil. showLine("Loop.java®, 5),/*1_*m=n * i/ _T¥/}/RT ¥//* /1T */
& _T*{instr. InstrUtil. showLine("Loop.java", 6);/*1_*/System.out.println(n);/* _T*/}/*1_*/
}
}

Figure 5.3.3 Instrumented Sample Program

-80 -



[Loop.java 2] public static void main{String args[ ]){
[Loop.java 3] mtn=1;

[Loop.java 4] for (inti=1; i<=10; i++)
[Loop.java 5] n=n%*i

[Loop.java 5] n=n%i

[Loop.java 5] n=n#%f

[Loop.java 5] n=n%*i

[Loop.java 5] n=n%*j

[Loop.java 5] n=n%i

[Loop.java 5] n=n%*f

[Loop.java 5] n=n%*i

[Loop.java 5] n=n#j

[Loop.java 5] n=n%*i

[Loop.java 6] System. out.println{n);
3628800

Figure 5.3.4 Execution Trace of Sample Program

Although the instr_trace can generate execution traces, there are still some problems

existing for our dynamic predicate slicing. First, the execution trace is only shown on the

console, and the trace includes the source code for each line which is not required for the

predicate slicing. So we need to build our own customized tracing instrumentation.

First, we design a Tracer class, which is used in both source code level and bytecode

level instrumentations. The class Trace is shown in Figure 5.3.5. Its method recordTrace()

is used in the source code level instrumentation in order to generate our customized trace,

where each trace record consists of the name of a executing class and the line number of a

executing statement.

—81 -~



® Tracer

a8 MSGSguence: int

o Tracer(}

& recordTrace()

@ recordSend()

as recordReceivel)

& addSequenceCfMessage()
eﬁ getSequenceOfMessage()

eﬁ remaoveSeguenceOfMessage()

Figure 5.3.5 Tracer Class

The instr_trace class is modified in order to instrument our tracer.recorderTrace()
method instead of the original instr.InstrUtil.showLine() method for each statement line.
Figure 5.3.6 shows an excerpt from the instrumented message passing programs. The
Tracer.recordTrace(), which is in the package, concept.predicateSicing.dynamicAnalysis,

is instrumented for each statement in the message passing programs.

public void action() {/* [*/concept predicateSlicing dynamicAnlysis Tracer recordTrace("Process0.java", 40);/*_¥/

* */concept. predicate Slicing dynamicAnlysis. Tracer. recordTrace("Process0.java®, 45),/*1_*fint threshold0=0,r =1,

f*_I*f{concept. predicateSlicing dynamicAnlysis. Tracer.record Trace(*ProcessD.java®, 80),/*1_*/send{msg),/* I*/}/*1_*/

Figure 5.3.6 Excerpt of Instrumented Message Passing Program

_82 -



5.3.2 Bytecode Instrumentation

Bytecode instrumentation provides efficient support for Java runtime dynamic analysis,
especially for method-level dynamic information collection. As a result, bytecode level
instrumentation is used to trace the communication between processes in the message
passing programs. The communication is performed by send() and receive() methods.
During the bytecode instrumentation, a tracing statements are inserted for each send() and
receive() methods. When the message passing program is being executed and the methods
are invoked, the inserted tracer is activated to generate a communication record for each
send() or receive(). The bytecode instrumentation is performed during the loading time of a
Java class. As shown in Figure 5.3.1, the recompiled bytecode is instrumented (®) just
before being loaded into the Java virtual machine. The requirement script indicates the
object of the instrumentation (@). After then, the instrumented bytecode (®) is ready to be

executed in order to generate execution and communication traces.

For the bytecode level instrumentation, we use a Java programming agent to access
bytecode when a class is loaded into the JVM. The Java 1.5 has the new package
java.lang.instrument, which provides services that allow java programming agents to

instrument programs running on the JVM. A Java programming agent is a special class that

—83 -



implements a public static premain method similar in principle to the main application

entry point.

public static void premain(String agentArgs, Instrumentation inst);

An agent is launched by indicating the agent class through the -javaagent option when

the JVM is started. After the JVM is initialized, each premain method will be called in the

order the agents were specified, then the real application main method will be called.

Figure 5.3.7 illustrated the instrumentation process through an agent. The dashed line is the

common Java class loading process, and the real line shows the instrumenting process

through a java programming agent before a class is loaded into the JVM.

.class

Java Virtual Machine |q---==-memmaca e e o101

A

Load ) Instriment
Java Programming Agent J=

Figure 5.3.7 Java Programming Agent Instrumentation Process

The first parameter of premain() method, agetnArgs, is used to pass agent options. Via
the second parameter, inst, an agent is passed an instance of the Instrumentation interface,

which provides the services needed to instrument Java programming language code. The

~ 84—



addTransformer(ClassFileTransformer transformer) method of the interface is used to

register a transformer. All class definitions will be transformed by the transformer. We

define a transformer class, ClassFileTransformerlmpl, to accomplish the bytecode

instrumentation.

Through the Java agent class, we get access to all class definitions, that correspond to

sequences of bytes in the Java class file format as defined by the JVM specification. The

Javassist, introduced in section 2.5, is used to manipulate these bytecode sequences. It

provides a class library for modifying the java bytecode in a high level, the source code

level instead of the low bytecode instruction level.

In the Javassist, the class javassist. CtClass is an abstract representation of a Java class in

bytecode format. An object of this class is a handle for operating the bytecode of a class.

The object must be obtained from a ClassPool object, which is a container of CtClass

objects, in order to keep the consistency. From a CtClass object, we can get CtField objects,

which stand for the attributes of the class, and CtMethod objects, which represent the

methods defined in the class, including constructors.

The CtMethod class is a subclass of the CtBehavior class, which is an abstract super

class of the CtMethod and CtConstructor. The CtBehavior provides the methods to carry

— 85—



out the instrumentation, including insertBefore(), insertAt(), insertAfter(), instrument(),

setBody() etc. The instrument() is used to fulfill our instrumentation task.

The instrument() method takes an instance of the ExprEditor class as a parameter. The

ExprEditor class is a translator of method bodies, which actually do the modification. In

order to customize how to modify a method body, we need to define a subclass of the

ExprEditor class. For the tracing the communication purpose, the defined ExprEditor

subclass replaces all send() and receive() method calls.

As shown in Figure 5.3.5, the Tracer class is also used for the bytecode level

instrumentation. The Tracer.recordSend() and Tracer.recordReceive() methods trace the

communication between processes. The two methods are respectively instrumented into

programs after send() and receive() method calls. When the send() or receive() method is

invoked completely, the corresponding trace method will be activated, and generate a

communication trace, which is saved into a trace file for each process.

In order to match a send() method with the receive() method that receive the message

sent by the send() from a different process, the Tracer class creates a sequence number for

each message that will be sent, and attaches a tag to the message. The tag shows the sender

and the sequence number of the message. Then the message will be sent with the tag. After

— 86—



a message is sent, the sender, the line number where the send() method is called, and the

message sequence number will be passed to the tracer. The tracer then generates a send

record, which consists of the sender, the line number, and the message sequence number.

When a process receives a message, the tracer detaches the tag of the message, reads the
information, and then generates a receive record, which consists of the receiver, the line
number, the sender and the sequence number of the received message. The sequence
number and the sender identify each message, and work together as a sort of logical
timestamp for the communication. At the sender side, the sender and message sequence
number are recorded. On the receiver side, the tracer also gets the sender and the message
sequence number for the message it receives. In this way, a receive() method call may be
matched with the corresponding send() method call from the sending process. We obtain

the communication independency between processes in the message passing programs.

5.3.3 Execution and Run-time Information Collection

After the message passing programs are instrumented, as shown in Figure 5.3.1, the last

step of dynamic analysis is to execute the instrumented code (®). While the instrumented

programs are being executed, the dynamic information is generated by the inserted code

—87 -



and stored into the dynamic information files (@). The execution trace and communication

trace will be saved in the same trace file for each process. The tracer instrumented in the

source code level generates the execution trace for each statement, and the tracer

instrumented in the bytecode level generates the communication trace. Figure 5.3.8 shows

the part of dynamic information file for the process0.

<Trace» <Runner>Process0.java</Runner> <LineNumber>78</LineNumber></Trace>

<Trace> <Runner>Process0). java</Runner> <LineNumber>80</LineNumber> </Trace>

<Send><Sender>process0@workstationsong: 1099/JADE</Sender><LineNumber>80</LineNumber>
<MSGSequence>1 <MSGSequence></Send>

<Trace> <Runner>Process0.java</Runtier> <LineNumber>3 1 </LineNumber></Trace>

<Trace><Runner>Process0.java</Runner> <LineNumber»85</LineNumber></Trace>

<Trace><Runner>Process0.java</Runner> <LineNumber>1 00</LineNumber></Trace>

<Trace> <Runner>Process0.java</Runner> <LineNumber>102</LineNumber></Trace>

<Send><Sender>process) @workstationsong: 1099/JAD E</Sender><LineNumber>102</LineNumber>
<MSGSequence>2</MSGSequence></Send>

<Trace> <Runner>Process0.java</Runner> <LineNumber>103</LineNumber></Trace>

cue

<Trace><Runner>Process(. java</Runner> <LineNumber»109</LineNumber ></Trace>

<Receive><Receiver>process0@workstationsong: 1099/JADE</Receiver><LineNumber>109</LineNumber>
<3ender>process | @workstationsong: 109 9/JAD E</Sender>< MSGSequence>2</M SGSe quence></Receive>

<Trace><Runner>Process. java</Runner> <LineNumber>1 1 0</LineNumber ><fTrace>

<Trace><Runnet >Process0.java</Runner> <LineNumber>1 1 1</LineNumber></Trace>

e

Figure 5.3.8 Dynamic Information File

In the trace file, a record is surrounded by <Trace> and </Trace> to indicate begin and
end of the record in the execution trace. The record contains information about the process,

filename and the statement number of an executed statement. These execution traces are

— 88 —



sorted in the execution order. A preceding execution trace indicates the statement line is

executed before all statement lines shown in the succeeding traces.

There are two kinds of communication traces, the send record and the receive record. A

send record is surrounded by <Send> and </Send>, and a receive record is surrounded by

<Receive> and </Receive>. In Figure 5.3.8, the first send record indicates that processO

sends the first message on line 80, and the second send record indicates that process0 send

the second message at line 103. There is only one receive record in the file, which indicates

that processO receives a message at line 109, the message is sent by processl and the

message sequence number is 2.

For the message passing sample program, we get three trace files for the three processes.

The trace files include execution traces and communication traces. For a receive trace, we

can easily follow back to the corresponding send() method. From the receive record, we

know where the message comes from. In the sender process, we find out which send()

method sends the message with the same sequence number of the received message. We

consequently match the send() method with the receive() method. According to the

communication traces in the three files, we can build a communication dependency graph

for the execution of the message passing program, as shown in Figure 5.3.9.

—89 -



Processd Processl Process2

N N e i
N i
+ | Line: 80 Line: 83 Line: 83 !
t | Send Message(1) Receive Message(l) Receive Message(2) !
] from processt frot processt !
¥
t A i
: | ‘

- : 1
: ISJ::T& Izlloezssa e(2) Line: 115 Lane: 115 i
' g Send Message(1) Send Message(1) !
i |
! 1
! i
i . : .

- Line: 124 Line: 124 !
! | Line: 109 i
; Receive Message(2) v ' Send Message(2) Send Message(2) :
1 | from processl : ] :
; b !
' v 1 | Line: 130 Line: 130 '
H H i | Receive Message(1) Receive Message(1) | !
! ' ! | from process2 from processi '
i P i
¥ i {4 i

- e e e - o o o v - o N -

Figure 5.3.9 Communication Dependency

5.4 Computation of Coarse-Grained Predicate Slices

Finally, the predicate slices are computed based on the static information obtained
through parsing and filtering, and the dynamic information generated by the instrumented

code. The workflow of the computing predicate slice is illustrated in Figure 5.4.1.

—-90—



Requirement
Script
[l —
Static
Information L 1)
Files

1

Loading © | Computing
’y Datn "| Predicate Stice

i M—————
Dynamic (5

Information
Dynamic
Predicate
Slices

Fileg
i

L.

Figure 5.4.1 Computing Dynamic Predicate Slice

In order to enhance computation performance, static information (@) and dynamic

information (@) are loaded into the computer’s memory first. The static and dynamic

information are merged, and a model representing the message passing programs is created

in the memory. The later computation then will perform totally in the memory. After the

static and dynamic information has been loaded into the memory, dynamic predicate slices

are computed based on the in-memory mode of the message passing programs (®). The

requirement script indicates the process of computing (@), and the result predicate slices

are stored into files (@), which may be used by further analysis and visualization.

—-901 -~



5.4.1 Message Passing Program In-Memory Model

i

EventOfMP
theStatementOfMP

T

SendEventOfMP ReceiveEventOfMP
sendEvent

Figure 5.4.2 Message Passing Program In-Memory Model

Figure 5.4.2 shows the class diagram of a message passing program in-memory model.
The model is used to present a message passing system in-memory in order to enhance the
performance of the computation of dynamic predicate slices. It integrates both static and
dynamic information, where, static information is loaded into the gray classes in the figure,

and the other classes are used to loaded dynamic information.

A message passing system is modeled by the class MessagePassingSystem, which may
contain several processes represented by the field, processOfMPs. A process in a message

-92



passing system is modeled by the class processOfMP, which has fields, processName,

allStatemements, allVariables, and runTrace. The allStatements and allVariables fields

represent the static information. The runTrace filed represents the dynamic information.

Each statement in a process is represented by the class StatementOfMP. The class has

fileds Control, In, and Out. All static information is loaded into these fields. The Control

field is a vector of StatementOfMp. All control statements are put into the vector. The In

and Out fields both are vectors of VariableOfMp. The In vector contains all input variables

of the statement, and the Out vector contains all output variables.

The class VariableOfMp stands for a variable in the message passing system. In order to

identify each variable, the class has fields, name, line, and offset. These three fields work

together to resolve the name duplication problem. The class VariableOfMP has a recent

filed, which is an instance of the class StatementOfMp. The recent field is used to record

the statement, on which the variable was assigned the most recent value. The value of this

field is changed dynamically during the computation of the algorithm according to the

execution trace of the message passing system and the out set of the preceding statements.

Each process has the runTrace filed, which is a vector of EventOfMP instances. The

runTrace represents an execution of the process in the message passing system. The

—93—



EventOfMp class stands for an event in the message passing system. As defined in the
section 3.2, an event is an occurrence of a statement in the message passing system. The
EventOfMp class has the eventNumber and theStatementOfMp fields. The theStatemOfMp

field links the event to its corresponding statement.

The communication dependency in the message passing system is represented by the
SendEventOfMp and ReceiveEventOfMp classes in the model. When trace files are being
loaded, if a send record is found, the event for the occurrence of the statement is instanced
as a SendEventOfMp instead of an EventOfMp. In the same way, if a receive record is met,
the event is instanced as a ReceiveEventOfMp. After all trace records are loaded, a
ReceiveEventOfMp object will be connected to its corresponding SendEventOfMp object.

In this way, the communication dependencies are represented by the model.

5.4.2 Dynamic Predicate Slicing

After the static information and dynamic information are collected and loaded into the
memory, the PredicateSlicer class implements the computation of a dynamic predicate

slice for a message passing system. The class diagram of PredicateSlicer is shown in

Figure 5.4.3.

—94—



PredicateSlicer Message}’ass ingSystem

theMessagePasgsingSystem

thePredicatieOfMp brocessOfMPs

theSlitersForProcess(]

PredicateQfMP PredicateS]icerForProcess theProcessOfMp ProcessOfMP

|

Figure 5.4.3 Class Diagram of Dynamic Predicate Slicing

Based on the predicate slicing algorithm described in section 3.2.2, the main routine of

the algorithm is executed for each process upon its execution trace concurrently. Thus, the

algorithm naturally is implemented by a concurrent multi-thread computation model.

The PredicateSlicer class, which implements the Runnable interface, is responsible for

the computation of the whole message passing system. The PredicateSlicer starts the main

thread for the computation of the algorithm. In the main thread, the initialization part is

executed first, and then, the main thread starts one thread for one process. After the

completion of the computations for all processes, the main thread computes the result

predicate slice according to the result of computations in each process, and the provided

predicate criterion.

When a PredicateSlicer is initialized, the message passing system is specified first. The

-95 —



static and dynamic information is loaded into memory, and an in-memory model is created

for the message passing system. In a next step, the PredicateSlicer class will generate the

same number of instances of the PredicateSlicerForProcess class as the number of

processes in the message passing system.

Each PredicateSlicerForProcess instance implements the computation on a process in

the message passing system. Like the PredicateSlicer class, the PredicateSlicerForProcess

class implements the runnable interface too. It executes the main routine in the algorithm

for each process. An instance of the class has a link to its corresponding process. As

described in section 5.4.1, when the message passing system model is formed, the

execution trace of a process is loaded into the model. The PredicateSlicerForProcess will

compute the slice for every statement based on its execution trace. The result slice will be

put in the Slice field of each StatementOfMP object, which stands for a statement in the

message passing system.

The dynamic predicate criterion is represented by the PredicateOfMP class. When a

PredicateSlicerOfMP object is initialized, the criterion is specified through an instance of

the PredicateOfMP class. The class has a predicateString field, which stores the original

predicate as a string. Its variableInPredicate field stores all variables in the predicate. The

~96—



final computation of a predicate slice is based on the class.

According to the algorithm, the final slice is the union of all Depend(S) for each
statement S belonging to S(P), in which the Depend(S) is the Slice field of each statement
and S(P) is the set of statements whose output variables contain a predicate variables (i.e. a

variable in the field variableInPredicate).

5.4.3 Predicate Slicing Results

Based on the implementation described before, an initial experiment was conducted for
the sample message passing program shown in Figure 5.1.1. As elaborated in the last
section, the static information and the dynamic information are first loaded into the
memory. The final computation is completed on the in-memory model of the message
passing system. We give several various global predicates of the message passing system
as dynamic slicing criteria, and compute the resulting slices for each predicate. The

resulting slices are the following:

= For Predicate criteria only include variable, threthod0:

The final result of Predicate Slice for thresholdO is:

< process0(37) process0(31) process0(39) process0(41) process0(40) process0(32)

¢ Iy



process0(33) process0(36) >
» For Predicate criteria only include variable, threthodl:

The final result of Predicate Slice for thresholdl is:
< process1(33) process0(31) process1(32) process1(70) process0(32) process0(48)
process1(71) process1(34) process1(66) process1(65) process0(66) >

» For Predicate criteria only include variable, threthod2:

The final result of Predicate Slice for threshold?2 is:
< process0(31) process2(66) process2(32) process2(72) process0(32) process0(48)
process2(65) process2(33) process2(34) process0(85) process2(70) >

» For Predicate criteria include variables, threthodl and threshold?2

The final result of Predicate Slice for thresholdl, threshold?2 is:

< process1(33) process1(32) process0(31) process2(66) process1(70) process2(32)
process2(72) process0(32) process2(65) process1(71) process2(33) process2(34)
process1(34) process1(65) process0(85) process0(48) process1(66) process0(66)
process2(70) >

5.5 Experimental Analysis

5.5.1 Static Information Collection

As described in section 5.2, the static information collection is accomplished through

—08 —



two steps. The first step is parsing source codes and loading the resulting AST structures

into a database. The second step is extracting necessary information from the database and

forming static information files. Parsing and Loading source codes into database is

implemented by Zhang [Zha03], and he also gave a basic measurement of this step in his

research. Thus, we just measure the overhead of retrieval information from the database

and the overhead of extraction of static information.

The experiments are performed on a PC with Pentium IV 2.40G CPU, 1 Gigabytes of
main memory, and 120 Gigabytes hard disk. The operating system is Windows 2000 SP4.
The DBMS we used is PostgreSQL. 8.0, which is installed locally. The Java environment is

the standard JDK 1.4.2 from Sun Microsystems.

The programs used in the experiments include an elevator program, which simulates an

elevator in a building and are used in CONCEPT as a basic testing unit, the sample

message passing programs described in section 5.1.2, and the concept.java package that is

part of CONCEPT project.

Table 5.5.1 shows the overhead of static information collection. From the table, it is
evident that the overhead of static information collection is directly related to program size.

Analyzing a larger program consumes longer time than analyzing a small one. The

—99



overhead of information retrieval is relatively low, compared to the overhead of

information extraction.

Table 5.5.1 Overhead Related to Static Information Collection

levat Message Passing concent
clevator Sample Programs P
Lines of Code (LOC) 261 370 14,768
Number of Classes 4 6 201
Number of Methods 15 12 2,621
Overhead of Information Retrieval 656ms 813ms 4,141ms
Dverhead of Information 12,422ms 59,453ms 178,031ms
xtraction
Number of Exceptions Thrown
During Extraction 52 282 772

When we extract static information from in-memory AST models loaded from the
database, the AST structures is traversed entirely in order to find out all dependencies
between program elements. However, only AST models for the classes defined within the
program is stored into the database when a program is parsed and its corresponding AST
structures are stored into the database. All imported classes used in the program are not
stored into the database. Consequently, when we traverse AST models, if an imported class
is met, a ClassNotFoundException exception is thrown. Table 5.5.1 also gives the statistic
numbers of exceptions thrown during extraction. Those exceptions cause the relative huge

overhead of information extraction.

- 100 -



5.5.2 Instrumentation and Tracing

First, we use the same programs used in the previous section to measure the overhead
caused by the instrumentation at the source code level. Table 5.5.2 shows this overhead and
provides a comparison between the original source code file size and the instrumented

source file size.

Table 5.5.2 Overhead related to Source Code Instrumentation

Message Passing
elevator concept

Sample Programs
Lines of Code (LOC) 261 370 14,768
Number of Files 3 3 132
Overhead of Instrumentation 250ms 282ms 1360ms
Size of Original Source Files | 9.64KB 16.6KB 222KB
Size of Instrumented Files 24.7KB 38.7KB 581KB

The time overhead used to instrument source codes depends on the size of the programs.
When the size of the program increases, the time consumption for instrumentation will
increase accordingly. During the source code instrumentation, an extra instruction is
inserted for each statement in the programs. Thus, the size of instrumented files increases
according to the LOC of the original files, and the size of instrumented files is

approximately twice the size of the original files.

-101-



We use two programs to measure the overhead caused by tracing program executions

One is an enhanced elevator example, in which, an elevator will run automatically many

times, and for each operation, a random number will direct which floor it will go. In order

to test different execution lengths, we introduced several loop iterations that correspond to

several elevator moving cycles. Table 5.5.3 shows the overhead of execution tracing based

on the elevator’s executions.

Table 5.5.3 Overhead related to Execution Tracing - Elevator

Elevator

Loop Iterations 10 20 50 100

Original Programs
Execution Time
Instrumented Programs
Execution Time

Size of Execution (Number
of Events in the Execution)

Size of Trace Files 555KB | 970KB | 2.31MB | 4.52MB

31ms 62ms 172ms 422ms

2,375ms | 4,250ms | 9,672ms | 19,578ms

7,447 14,454 | 34,284 66,952

From the table, it can be observed that the time consumption and the size of the trace

files are directly related to the size of the execution.

The other example program is Ping-Pong, which is a typical program used to measure
the round trip delay of a message between two message-passing processes [Mor02]. In our
implementation of Ping-Pong the program is based on JADE, the message consists of a

string where the length of the string varies as a function 2%, where x is from 0 to 15. The

-102 ~



smallest message is a string containing one char (1 byte) and the largest message is a string
containing 32,768 chars (32 Kilobyte). In the Ping-Pong program used in this section, each
message is sent 2* times between process0 and process1, where k is from O to 4, in order to
produce execution traces in different size. Table 5.5.4 shows the statistics of the overhead

of execution tracing based on the executions of the Ping-Pong program.

Table 5.5.4 Execution Overhead Tracing — Ping-Pong

Ping-Pong

Loop Iterations 16 *2 16 * 4 16 * 8 16 * 16

Original Program
Execution Time
Instrumented Program
Execution Time 3,019ms 3,609ms 4,531ms 6,031ms
(bytecode level)

2,906ms | 3,484ms | 4,125ms | 5,390ms

Instrumented Program
Execution Time 20,969ms | 21,719ms | 22,578ms | 24,281ms
(source code level)

Instrumented Program
Execution Time 21,375ms | 22,204ms | 23,329ms | 25,121ms
(both levels)

Size of Execution
(Number of Events in the 66,027 66,0243 66,666 67,512

Execution)
Communication Events 72 144 288 576
Size of Trace Files 4.60MB 4.62MB 4.66MB 4.74MB

The above table shows the loop iterations, the execution time of the original programs,

the execution time for the instrumented versions of the programs at the bytecode, source

code and both levels respectively. The execution size is expressed by the number of events

in a particular execution, which includes execution trace events collected by source code

-103 -



instrumentation, and communication trace events captured by the bytecode
instrumentation. The number of communication events is also provided. From the above
table, we can see that the total overhead caused by tracing the program executions can
mainly be attributed to the execution of the extra codes added through source code

instrumentation.

5.5.3 Communication Overhead

In this section, we use the Ping-Pong program to measure the additional communication
overhead caused by the instrumentation. We modified the original Ping-Pong program as
follows. The message consists of a string where the length, L, of the string varies as a

function:

2* where x=0..13
L=qL+2" if 2" <L<2"
L+2% if 2 <L<2"
Using this function, we send 23 different size messages. The smallest message is a string
containing one char (one byte) and the largest message is a string containing 57,344 chars

(57 Kilobytes). Each message is sent a total of 64 times between two processes. The

processO records the round-trip time for each message and produces an average round-trip

- 104 -



time for each string.

Table 5.5.5 Communication Overhead Caused by Instrumentation

Round-Trip Time of the Message (ms)
Mgsiiige Run on a single computer Run on two computers
Original Instrumented Original Instrumented
Program Program Program Program
1 5 7 7 8
2 4 6 6 8
4 4 6 6 8
8 4 6 6 8
16 4 6 6 7
32 4 6 6 7
64 4 5 6 8
128 4 5 6 7
258 4 6 6 7
512 5 8 7 9
1024 4 5 6 -
2048 4 6 6 8
4096 5 7 7 10
8192 7 11 10 15
12288 11 16 16 20
16384 16 24 22 31
20480 21 30 27 38
24576 32 38 37 45
28672 38 47 50 54
32768 42 53 55 66
40960 53 66 68 80
49152 75 95 85 112
57344 96 106 126 129

- 105 -




Round-Trip Time (ms)

Round-Trip Time (ms)

120

100 /

80

;
60 J/

40

20

w

0 T T T T T T - T T T T T v T T T T v T T T
N T P R S R, N S P ST . s @ AV . & & >
3 L SF I ST
Size of Message (Bytes)

ITI— Original Program —&— Bytecode Instrumented Program I

Figure 5.5.1 Communication Overhead - Ping-Pong executed on a single computer

140

120

Q%

100

: /}

60 /4

. L

20 e

e

0 T T T T T T T T T T T e S — T v : T T

A A R RN T " G P N LG SR - I LIPS .- o CREF LR - SR G
N 3 & F S F WP N\ R
v N R A P

Size of Message (Bytes)

[—!— Original Program —&— Bytecode Instrumented Program |

Figure 5.5.2 Communication Overhead - Ping-Pong executed on two computers

- 106 -



Table 5.5.5 shows the observed communication overhead during the execution of the
Ping-Pong program (instrumented and non-instrumented). Figure 5.5.1 and 5.5.2 illustrate
these differences of the round-trip communication times between the original program and
the instrumented program. In Figure 5.5.1 the Ping-Pong program runs on a single
computer whereas in Figure 5.5.2 the program runs on two computers connected via a fast
Ethernet network. The message round-trip time between two processes running on a single
computer is shorter than the round-trip time between two processes running on two
separated computers. The comparison from the table and the two figures shows that the
bytecode-level instrumentation causes a slight communication overhead compared to the

non-instrumented version. The typical communication overhead is in the range of 5-10%.

5.5.4 Predicate Slicing Performance

According to the algorithm presented in section 3.2, the overhead for the computation of
a dynamic predicate slice depends on the size of the recorded execution trace because the
main routine of the algorithm is executed upon every executing statement, i.e. each event in
a trace. In order to measure the performance of the predicate slicing algorithm, we compute

predicate slices based on the executions of the message-passing sample program with

-107 -



different iterations. Table 5.5.6 shows the time consumed to computer predicate slices.

Table 5.5.6 Performance of Predicate Slicing Algorithm

Message-Passing Sample Program

Iterations 1 5 10 20 50 100

Number of Events 250 620 1,089 2,017 4,890 9,459

Time Consumed for
Loading Static and 390ms | 407ms | 422ms 438ms | 469ms 516ms
Dynamic Information
Time Consumed for

Computing Dynamic 169ms | 673ms | 1,132ms | 2,200ms | 4,899ms | 8,146ms
Predicate Slice

As we described earlier in section 5.4, the predicate slicing algorithm requires that all
static and dynamic information about the message passing program and its execution are
first load into the memory to form an in-memory model, and then the computation is
performed based on the in-memory model. In table 5.5.6 the overhead for loading this
static and dynamic information is shown. One can observe an almost linear correlation
between trace size and loading time; the time consumed for computing dynamic predicate
slices increases linearly according to the number of events recorded in the executions,
where the computation is performed by several threads concurrently in memory, and each

thread computes slices for one process in the message passing program.

— 108 —



Chapter 6 CONCLUSIONS AND FUTURE WORKS

As distributed systems are ubiquitous today, the comprehension of distributed systems
becomes critical to the development or maintenance of a system involving some distributed
components. Due to the complexity of distributed systems, comprehending a distributed
system is more challenging than comprehending a traditional single-process sequential
system. Slicing as a well-known program decomposition technique has been widely used
in the software comprehension field and adopted to support the comprehension of

distributed systems.

Global predicates are used as filters to abstract behaviors of a distributed system, or to
capture some requirements of a distributed system. Rilling et al [Ril02a] first applied the
notion of global predicate into criteria of dynamic slicing for distributed message passing
programs, and presented a novel predicate-based dynamic slicing. They also presented two
kinds of granularity-driven dynamic predicate slicing [LiHO4]. Traditional program slicing
techniques focus on those parts of a program that influence a variable at a chosen position.
Predicate slicing focus on all states of an execution of a message-passing program, in

which the predicate might be changed. Therefore, the predicate slicing allows for a more

-109 —



general slicing criterion and supports more general comprehension tasks.

In this thesis, we presented an instrumentation-based approach to implement the coarse
grained dynamic predicate slicing algorithm presented by Rilling et al [Ril02a] [LiHO04].
The approach is based on the instrumentation at both source code and bytecode levels.
Through the source code instrumentation, we achieve execution tracing, and by using the
bytecode instrumentation we accomplish communication tracing. For the coarse grained
predicated slicing algorithm, we analyze both the execution and communication traces, and
also use static information obtained through an existing source code parser. The combined
dynamic and static information is used to create an in-memory model to abstract the
message-passing program and its execution. The final coarse-grained dynamic predicate
slicing algorithm is implemented based on this in-memory mode by parallel computation
among threads, where each thread stands for the execution of a process in the

message-passing program.

Although, the implemented algorithm can compute coarse — grained dynamic predicate
slices for the sample message-passing program, there are still implementation limitations.
The implemented algorithm is limited by the several factors. Firstly, there is a need to adopt

the parser to different version of Java. At the current stage, the parser is limited to Java

-110-



version 1.4 and does not support Java 1.5. Secondly, both the instrumentation of the source

and byte code can lead to change in the program behaviour due to the instrumentation.

Thirdly, scalability with respect to recording execution traces and modeling these traces in

the memory will become a major issue.

Because of the major limitations of the presented implementation, we expect as part of

the future work that the static analysis will have to be extended, so that all static

dependencies can be resolved, and more precise coarse-grained dynamic predicate slices

can be computed. Secondly, there is a need to address the scalability issue related to tracing

and analyzing these traces. Potential solutions might include more selective tracing,

improved filtering of recorded information. Another future approach could be to minimize

the trace complexity be investigating the possibility of using run-time information rather

than recorded information to compute the coarse-grained slices.

- 111 -



REFERENCE

[And00]

[Agro0]

[Att04]

[Bal99]

[Bel00]

[Bel03]

[Car92]

[Che93]

[Chi90]

[Chi03]

[Clo05]

Andrews, Gregory R., Foundations of Multithreaded, Parallel, and Distributed Programming,
Addison-Wesley, 2000.

Agrawal, Hiralal and Joseph R. Horgan, “Dynamic Program Slicing”, Proceedings of the ACM
SIGPLAN'90 Conference on Programming Language Design and Implementation, New York,
USA, June 1990, pp.246-256.

Attiya, Hagit, and Jennifer Welch, Distributed Computing Fundamentals, Simulations, and
Advanced Topics, Second Edition, John Wiley & Sons, 2004.

Ball, Thomas, “The Concept of Dynamic Analysis”, ACM Conference on Foundations of
Software Engineering, Toulouse, France, September 1999, pp.216-234.

Bellifemine, Fabio, Agostino Poggi, Giovanni Rimassa, and Paola Turci, “An Object Oriented
Framework to Realize Agent Systems”, Proceedings of WOA 2000 Workshop, Parma, Italy,
May 2000, pp.52-57.

Bellifemine, Fabio, Giovanni Caire, Agostino Poggi, and Giovanni Rimassa, “JADE — a White
Paper”, the Special issue on JADE of the TILAB Journal, EXP - in search of innovation, vol. 6,
no. 3, September 2003, pp.6-19.

Carriero, Nicholas, David Gelernter, How to Write Parallel Programs: a First Course,

Massachusetts Institute of Technology Press, 1992.

Cheng, Jingde, “Slicing Concurrent Programs - A Graph-Theoretical Approach”, Proceedings
of the First International Workshop on Automated and Algorithmic Debugging, Linkoping,
Sweden, May 1993, pp.223-240.

Chikofsky, Elliot J., and James H. Cross II, “Reverse Engineering and Design Recovery: A
Taxonomy”, IEEE Software, vol. 7 no. 1, January 1990, pp. 13-17.

Chiba, Shigeru, and Muga Nishizawa, “An Easy-to-Use Toolkit for Efficient Java Bytecode
Translators”, Proceedings of the Second International Conference on Generative Programming

and Component Engineering, Erfurt, Germany, September 2003, pp.364-376.

Clover, ‘“Frequently Asked Questions”, http://www.cenqua.com/clover/doc/faq.html, retrieved
September 2005.

- 112 -



[Coh98]

[Co098]

[Cou01]

[Dah01]

[Dai05]

[Del01]

[Due92]

[Fac04]

[Fre02]

[HamO1]

[HarO1]

[Hor90]

Cohen, A. Geoff, Jeffrey S. Chase, and David L. Kaminsky, “Automatic Program
Transformation with JOIE”, Proceedings of the USENIX Annual Technical Symposium, San
Antonio, USA, January 1998, pp.167-178.

Cooper, Brian F,, Han B. Lee, and Benjamin G. Zorn, ProfBuilder: a Package for Rapidly
Building Java Execution Profilers, Technical report, University of Colorado, April 1998.

Coulouris, George F., Jean Dollimore, and Tim Kindberg, Distributed systems: concepts and

design, Third Edition, Addison-Wesley, Pearson, 2001.

Dahm, Markus, Byte Code Engineering with the BCEL API. Technical Report B-17-98,
Technical Report B-17-98, Freie Universit at Berlin, Institut fur Informatik, April 2001.

Daikon, “Daikon User Manual”, http://pag.csail.mit.edu/daikon/download/doc/, retrieved
September 2005.

De Lucia, Andrea, “Program Slicing: Methods and Applications", the First IEEE International
Workshop on Source Code Analysis and Manipulation, Florence, Italy, November 2001, pp.
144-151.

Duesterwald, Evelyn, Rajiv Gupta, and Mary Lou Soffa, “Distributed Slicing and Partial
Re-execution for Distributed Programs”, Proceedings of the fifth Workshop on Language and
Compilers for Parallel Computing, New Haven, USA, August 1992, pp.497-511.

Factor, Michael, Assaf Schuster, and Konstantin Shagin, “Instrumentation of Standard
Libraries in Object-Oriented Languages: the Twin Class Hierarchy Approach”, Proceedings of
the nineteenth Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Vancouver, Canada, October 2004, pp.288-300.

Freitag, lix, Jordi Caubet, and Jests Labarta, “On the Scalability of Tracing Mechanisms”,
Proceedings of the eighth International Euro-Par Parallel Processing Conference, Paderborn,

Germany, August 2002, pp.97-104.

Hamou-Lhadj, Abdelwahab, and Timothy C. Lethbridge, “A Survey of Trace Exploration Tools
and Techniques”, Proceedings of the 2004 conference of the Centre for Advanced Studies on
Collaborative research, Markham, Canada, October 2004, pp.42-55.

Harman, Mark, and Robert M. Hierons, “An overview of program slicing”, Software Focus vol.

2, no. 3, 2001, pp.85-92.

Horwitz, Susan, Thomas W. Reps, and David Binkley, “Interprocedural slicing using
dependence graphs”, ACM Transactions on Programming Languages and Systems, vol. 12, no.

1, 1990, pp.26-60.

~113~



[IEE90]

[Kam95]

[Kor88]

[Kor92]

[Kor98]

[Kor94]

[Kri98]

[Kun94]

[Lam78]

[Lee97]

[Leo0l]

[LiHO4]

{Lin99]

ANSVIEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering

Terminology, the Institute of Electrical and Electronic Engineers, 1990.

Kamkar, Mariam, and Patrik Krajina, “Dynamic Slicing of Distributed Programs”, Proceedings
of the International Conference on Software Maintenance, Opio, France, October 1995,

pp.222-229.

Korel, Bogdan, and Janusz W. Laski, “Dynamic program slicing”, Information Processing

Letters, vol. 29, no. 3, October 1988, pp.155-163.

Korel, Bogdan, and Roger Ferguson, “Dynamic Slicing of Distributed Programs”, Applied
Mathematics and Computer Science Journal, vol. 2, no. 2, 1992, pp.199-215.

Korel, Bogdan, and Juergen Rilling, “Program Slicing in Understanding of Large Programs”,
Proceedings of the Sixth International Workshop on Program Comprehension, Ischia, Italy,

June 1998, pp.145-152.

Korel, Bogdan, and Satish Yalamanchili, “Forward Computation of Dynamic Program Slices”,
Proceedings of the 1994 International Symposium on Software Testing and Analysis, Seattle ,
USA, August 1994, pp.66-79.

Krinke, Jens, “Static slicing of threaded programs”, Proceedings of the 1998 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
Montreal, Canada, June 1998, pp.35-42.

Kunz, Thomas, “Reverse Engineering Distributed Applications: An Event Abstraction Tool”,

International Journal of Software Engineering and Knowledge Engineering, vol. 4 no. 3,

September 1994, pp.303-323.

Lamport, Leslie, “Time, Clocks, and the Ordering of Events in a Distributed System”,
Communications of the ACM, vol. 21, no. 7, July 1978, pp.558-565.

Lee, Han Bok, and Benjamin G. Zorn, “BIT: A Tool for Instrumenting Java Bytecodes”,

USENIX Symposium on Internet Technologies and Systems, December 1997, pp.73-83.

Leopold, Claudia, Parallel and Distributed Computing: A Survey of Models, Paradigms, and
Approaches, John Wiley & Sons, 2001.

Li, Hon Fung, Juergen Rilling, Dhrubajyoti Goswami, “Granularity-Driven Dynamic Predicate
Slicing Algorithms for Message Passing Systems”, Automated Software Engineering, vol. 11,
no. 1, January 2004, pp 63-89.

Lindholm, Tim, and Frank Yellin, the Java Virtual Machine Specification, Second Edition, Sun

Microsystems Inc., 1999.

114 -



[McCO5]

[Mor02]

[Mul93]

[Nel96]

[Nul03]

[Ott84]

[Par94]

[Pos05]

[Ril01]

[Ril02a]

[Ril02b]

[Sno92]

[Rug95]

McCluskey, Glen, Java Test Coverage and Instrumentation Toolkits, Glen McCluskey &

Associates LLC, http://www.glenmccl.com/instr/index.htm, retrieved September 2005.

Morin, Steven, Israel Koren, and C. Mani Krishna, “JMPI: Implementing the Message Passing
Interface Standard in Java”, Proceedings of the 16th International Parallel and Distributed

Processing Symposium, Fort Lauderdale, USA, April 2002.
Muliender, Sape, Distributed Systems, Second Edition, Addison-Wesley, 1993.

Nelson, Michael L., “A Survey of Reverse Engineering and Program Comprehension”, ODU

CS 551 — Software Engineering Survey, April 1996.

Nulkar, Atul U., and Roger T. Alexander, “An Instrumentation Engine for Dynamic Program
Analysis”, Fast Abstracts of International Symposium on Software Reliability Engineering,

Denver, USA, November 2003.

Ottenstein, Karl J., and Linda M. Ottenstain, “The Program Dependence Graph in a Software
Development Environment”, Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, vol. 19, no. 5,

Pittsburgh, USA, May 1984, pp.177-184.

Parnas, David Lorge, “Software Aging”, Proceedings of the 16th international conference on

Software Engineering, Sorrento, Italy, May 1994, pp.279-287.

PostgreSQL, PostgreSQL Technical Documentation, http://www.postgresql.org/, retrieved
September 2005.

Rilling, Juergen, Ahmed Seffah, “MOOSE: A Task-Driven Program Comprehension
Environment”, Proceedings of 25th International Computer Software and Applications

Conference, Chicago, USA, October 2001, pp.71-76.

Rilling, Juergen, Hon Fung Li, and Dhrubajyoti Goswami, “‘Predicate-based Dynamic Slicing
of Message Passing Programs”, The Second IEEE International workshop on Source Code

Analysis and Manipulation, Montreal, Canada, October 2002, pp.133-143.

Rilling, Juergen, Ahmed Seffah, Christophe Bouthlier, “The CONCEPT project - applying
source code analysis to reduce information complexity of static and dynamic visualization
techniques™, Proceedings of the Ist International Workshop on Visualizing Software for

Understanding and Analysis, Paris, France, June 2002 pp.90-99.
Snow, C. R., Concurrent Programming, Cambridge University Press, 1992.

Rugaber, Spencer, “Program Comprehension,” Encyclopedia of Computer Science and

Technology, Draft -- to appear, April, 1995.

-115-



[Som01]

[Spi99]

[Tan02]

[Tip95]

[Wei8l1]

[Wei82]

[Wei84]

[XuB05]

[Zha96]

[Zha99a]

[Zha99b]

[ZhaO3]

Sommerville, Ian, Software Engineering, Sixth Edition, Addison-Wesley, 2001.

Spilipopoulou, Eleni, Concurrent and Distributed Functional Systems, University of Bristol

Press, 1999,

Tanenbaum, Andrew S., and Maarten van Steen, Distributed Systems Principles and Paradigms,

Prentice-Hall, 2002.

Tip, Frank, “A Survey of Program Slicing Techniques”, Journal of Programming Language,

vol. 3, no. 3, 1995, pp.121-189.

Weiser, Mark, “Program Slicing”, Proceedings of the 5th International Conference on Software

Engineering, San Diego, USA, March 1981, pp.439-449.

Weiser, Mark, “Programmers Use Slices When Debugging”, Communications of the ACM, vol.

25, no. 7, July 1982, pp.446-452.

Weiser, Mark, “Program slicing”, IEEE Transactions on Software Engineering, vol. 10, no. 4,

July 1984, pp.352-357.

Xu, Baowen, Ju Qian, Xiaofang Zhang, Zhonggiang Wu, and Lin Chen, “A Brief Survey of
Program Slicing”, ACM SIGSOFT Software Engineering Notes, Vol. 30, No. 2, 2001, pp.1-16.

Zhao, Jianjun, Jingde Cheng, and Kazuo Ushijima, “Static Slicing of Concurrent
Object-Oriented Programs”, Proceedings of the 20th Computer Software and Applications
Conference, Seoul, Korea, August, 1996, pp.312-320.

Zhao, Jianjun, “Multithreaded Dependence Graphs for Concurrent Java Programs”,
International Symposium on Software Engineering for Parallel and Distributed Systems, Los

Angeles, USA, May 1999, pp.13-23.

Zhao, Jianjun, “Slicing Concurrent Java Programs”, Proceedings of the 7th International

Workshop on Program Comprehension, Pittsburgh, USA, May 1999, pp.126

Zhang, Yonggang, Automatic Design Pattern Recovery, Thesis of Master, Concordia University,
Montreal, Canada, 2003.

~ 116 -



APPENDICES

Message Passing Sample Program on JADE
*  Processs(.java

import jade.core.*;

import jade.domain.*;

import jade.lang.acl.*;

import jade.core.behaviours.SimpleBehaviour;

import jade.domain. FIPAAgentManagement. AMS AgentDescription;

import java.io.*;

public class Process0 extends Agent {
// Put agent initializations here
protected void setup() {
// Add the behaviour
addBehaviour(new MyBehaviour());

// Put agent clean-up operations here

protected void takeDown() {
// Printout a dismissal message
System.out.println("Process0 " + getAID().getName() + " terminating.");
System.exit(AP_DELETED);

/**

* Inner class Mybehaviour.

*/

private class MyBehaviour extends SimpleBehaviour {

private boolean finished = false;

public void action() {

try {
int threshold0 = 0, r = 0;

// input(threshold0);
Reader 1r = new BufferedReader(new InputStreamReader(System.in));
StreamTokenizer streamTokenizer = new StreamTokenizer(rr);
System.out.print("Enter threshold0 , a integer please: );
while (true)
if (streamTokenizer.nextToken() == StreamTokenizer. TT_NUMBER) {
threshold0 = (int) streamTokenizer.nval;

-117-



System.out.println("User input threshold0 = " + Integer.toString(threshold0));
break;

} else
System.out.print("Error Reading from user! \nEnter threshold0, a integer again please: ");

AMSAgentDescription template = new AMSAgentDescription();
ACLMessage msg = new ACLMessage(ACLMessage. INFORM);

// send(threshold0, 1);
template.setName(new AID("process1”, false));
try {
AMSAgentDescription{] result;
if ((result = AMSService.search(myAgent, template)).length == 0) {
System.out.println("Waiting for begining of processi!!!");
while ((result = AMSService.search(myAgent, template)).length == 0)
doWait(100);
System.out.println("process1 has begun!!");
}
} catch (FIPAException fe) {
fe.printStackTrace();
}
msg.reset();
msg.addReceiver(new AID("process1”, false));
msg.setContent(Integer.toString(threshold0));
send(msg);
System.out.println("send(threshold0, 1)");

// send(threshold0, 2);
template.setName(new AID("process2", false));
try {
AMSAgentDescription[] result;
if ((result = AMSService.search(myAgent, template)).length == 0) {
System.out.println("Waiting for begining of process2!!!");
while ((result = AMSService.search(myAgent, template)).length == 0)
doWait(500);
System.out.println("process2 has begun!!!");
}
} catch (FIPAException fe) {
fe.printStackTrace();
1
msg.reset();
msg.addReceiver(new AID("process2", false));
msg.setContent(Integer.toString(threshold0));
send(msg);
System.out.println("send(threshold0, 2)");

// receive(r);

MessageTemplate msgFromProcess! = MessageTemplate.MatchSender(new AID("process1”, false));
MessageTemplate msgFromProcess2 = MessageTemplate.MatchSender(new AID("process2”, false));
ACLMessage msgReceive = blockingReceive(MessageTemplate.or(msgFromProcess1, msgFromProcess2));
System.out.println("receive(r) from " + msgReceive.getSender().getName());

r = Integer.parseInt(msgReceive.getContent(});

/foutput("The largest element below threshold is ", r);

- 118-



System.out.println("The largest element below threshold is " + Integer.toString(r));
} catch (IOException ioe) {
ioe.printStackTrace();

} finally {
finished = true;
myAgent.doDelete();

public boolean done() {
return finished;

»  Processsl.java

import jade.core.*;

import jade.domain.*;

import jade.lang.acl.*;

import jade.core.behaviours.SimpleBehaviour;

import jade.domain. FIPAA gentManagement. AMSAgentDescription;

import java.io.*;
public class Process1 extends Agent {

// Put agent initializations here
protected void setup() {
// Add the behaviour
addBehaviour(new MyBehaviour());

// Put agent clean-up operations here

protected void takeDown() {
// Printout a dismissal message
System.out.printin("Process1 " + getAID().getName() + " terminating.");
System.exit(AP_DELETED);

ook
* Inner class Mybehaviour.

*/

private class MyBehaviour extends SimpleBehaviour {

private boolean finished = false;
public void action() {
try {
int threshold1 =0, n =0, x, a[], p=0, suml = 0;

a =new int[10];

-119-



// input(n,a);
Reader readerln = new BufferedReader(new InputStreamReader(System.in));
StreamTokenizer streamTokenizer = new StreamTokenizer(readerin);
System.out.print("Hom many integer will be input: n =");
while (true)
if (streamTokenizer.nextToken() == StreamTokenizer. TT_NUMBER) {
n = (int) streamTokenizer.nval;
System.out.println("User input n = " + Integer.toString(n));
break;
} else
System.out.print("Error Reading from user! \nEnter n, a integer again please: ");
System.out.printin("Please input " + Integer.toString(n) + " integers, a[0] to a["
+ Integer.toString(n - 1) + "] !");
for (inti =0, errorlnput = 0; i < n; i++) {
while (true)
if (streamTokenizer.nextToken() == StreamTokenizer. TT_NUMBER) {
a[i] = (int) streamTokenizer.nval;
break;
} else
errorlnput++;
if ((errorlnput != 0) & (errorlnput +i==n- 1))
System.out.println("Error Reading from user! \nEnter " + Integer.toString(errorInput)
+ " more integer(s) again please!");
}
for (inti =0; i <n; i++)
System.out.println("a[" + Integer.toString(i) + "] =" + Integer.toString(a[i]) + ";");

AMSAgentDescription template = new AMSAgentDescription();

MessageTemplate msgFromProcess0 = MessageTemplate. MatchSender(new AID("process0", false));
MessageTemplate msgFromProcess2 = MessageTemplate. MatchSender(new AID("process2”, false));
ACLMessage msg = new ACLMessage(ACLMessage. INFORM);

// receive(thresholdl);

ACLMessage msgReceivel = blockingReceive(MessageTemplate.or(msgFromProcess0, msgFromProcess2));
threshold1 = Integer.parseInt(msgReceivel .getContent());

System.out.println("receive(threshold1) from " + msgReceivel.getSender().getName());
System.out.printin("threshold1 = " + Integer.toString(threshold1));

11 (8)to(11)

while ((a[n - 1] > thresholdl) && (n > 1) ) {
suml = suml +a[n - 1];
n=n-1;

}

p=a[n-1];

// send(suml, 2);
template.setName(new AID("process2", false));
try {
AMSAgentDescription(] result;
if ((result = AMSService.search(myAgent, template)).length == 0) {
System.out.println(""Waiting for begining of process2!!!");
while ((result = AMSService.search(myAgent, template)).length == 0)
doWait(500);

-120-



System.out.println("process2 has begun!!!");
}
} catch (FIPAException fe) {
fe.printStackTrace();
}
msg.reset();
msg.addReceiver(new AID("process2", false));
msg.setContent(Integer.toString(sum1));
send(msg);
System.out.println("send(sum1, 2)");

/Isend(p, 0);

msg.reset();

msg.addReceiver(new AID("process0", false));
msg.setContent(Integer.toString(p));
send(msg);

System.out.printin("send(p, 0)");

/lreceive(x, 2);

MessageTemplate msgOfINFORM = MessageTemplate. MatchPerformative(ACLMessage. INFORM);
ACLMessage msgReceive2 = blockingReceive(MessageTemplate.or(msgFromProcess2, msgOfINFORM));
System.out.println("receive(x, 2) from " + msgReceive2.getSender().getName());

x = Integer.parseInt(msgReceive2.getContent());

System.out.println(" x = " + Integer.toString(x));

//suml :=suml + x;
suml = suml + x;

} catch (IOException ioe) {
ioe.printStackTrace();

} finally {
finished = true;
myAgent.doDelete();
}

public boolean done() {
return finished;

* Processs2.java

import jade.core.*;

import jade.domain.*;

import jade.lang.acl.*;

import jade.core.behaviours.SimpleBehaviour;

import jade.domain. FIPAAgentManagement. AMS AgentDescription;

import java.io.*;

-121-



public class Process2 extends Agent {

// Put agent initializations here
protected void setup() {
// Add the behaviour
addBehaviour(new MyBehaviour());

// Put agent clean-up operations here

protected void takeDown() {
// Printout a dismissal message
System.out.println("Process2 " + getAID().getName() + " terminating.");
System.exit(AP_DELETED),

/**

* Inner class Mybehaviour.

*/

private class MyBehaviour extends SimpleBehaviour {

private boolean finished = false;

public void action() {
try {
int threshold2 =0, m =0, y,b[], q =0, sum2 = 0;
b =new int[10];

// input(m,b);
Reader readerIn = new BufferedReader(new InputStreamReader(System.in));
StreamTokenizer streamTokenizer = new StreamTokenizer(readerIn);
System.out.print("Hom many integer will be input: m=");
while (true)
if (streamTokenizer.nextToken() == StreamTokenizer. TT_NUMBER) {
m = (int) streamTokenizer.nval,
System.out.println("User input m = " + Integer.toString(my));
break;
} else
System.out.print("Error Reading from user! \nEnter m, a integer again please: ");
System.out.println("Please input " + Integer.toString(m) + " integers, b[0] to b["
+ Integer.toString(m - 1) + "] !");
for (int i = 0, errorlnput = 0; i < m; i++) {
while (true)
if (streamTokenizer.nextToken() == StreamTokenizer. TT_NUMBER) {
bli] = (int) streamTokenizer.nval;
break;
} else
errorInput++;
if ((errorlnput = 0) & (errorlnput +i==m- 1))
System.out.println("Error Reading from user! \nEnter " + Integer.toString(errorInput)
+ " more integer(s) again please!");
}
for (inti=0; i <m;i++)
System.out.println("b{" + Integer.toString(i) + "] = " + Integer.toString(b[i]) + ";");

-122 -



AMSAgentDescription template = new AMSAgentDescription();

MessageTemplate msgFromProcessO = MessageTemplate.MatchSender(new AID("process0", false));
MessageTemplate msgFromProcess1 = MessageTemplate.MatchSender(new AID("process1”, false));
ACLMessage msg = new ACLMessage(ACLMessage. INFORM);

// receive(threshold2);

ACLMessage msgReceivel = blockingReceive(MessageTemplate.or(msgFromProcess0, msgFromProcess1));
System.out.printIn("receive(threshold2) from " + msgReceivel.getSender().getName());

threshold2 = Integer.parselnt(msgReceivel.getContent());

System.out.println("threshold2 = " + Integer.toString(threshold2));

/7 (18) to (21)

while ((b[m - 1] > threshold2) && (m >1)) {
sum2 = sum2 + b[m - 1];
m=m-1;

}

q=blm-1];

// send(sum2, 1);
template.setName(new AID("process1", false));
try {
AMSAgentDescription(] result;
if ((result = AMSService.search(myAgent, template)).length == 0) {
System.out.println("Waiting for begining of process1!!!");
while ((result = AMSService.search(myAgent, template)).length == 0)
doWait(500),
System.out.printIn("process1 has begun!!!");
}
} catch (FIPAException fe) {
fe.printStackTrace();
}
msg.clearAllReceiver();
msg.addReceiver(new AID("process1", false));
msg.setContent(Integer.toString(sum?2));
send(msg);
System.out.println("send(sum2, 1)");

/Isend(q, 0);

msg.clearAllReceiver();

msg.addReceiver(new AID("process0", false));
msg.setContent(Integer.toString(q));
send(msg);

System.out.printIn("send(q, 0)");

/freceive(y, 1);

MessageTemplate msgOfINFORM = MessageTemplate. MatchPerformative(ACLMessage.INFORM);
ACLMessage msgReceive2 = blockingReceive(MessageTemplate.or(msgFromProcess1, msgOfINFORM));
System.out.println("receive(y, 1) from " + msgReceive2.getSender().getName());

y = Integer.parseInt(msgReceive2.getContent());

System.out.println(" y = " + Integer.toString(y));

//sum2 := sum2 +y;
sum?2 = sum?2 +y;
} catch (IOException ioe) {

-123-



ioe.printStackTrace();
} finally {

finished = true;

myAgent.doDelete();
}

public boolean done() {
return finished;

124 -



