NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Large ABox Store (LAS):

Database Support for TBox Queries

Jiaoyue Wang

A Thesis
in
The Department
of
Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

September 2005
© Jiaoyue Wang, 2005

Library and
Archives Canada

Bibliotheque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10297-7
Our file Notre référence
ISBN: 0-494-10297-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Large ABox Store (LAS): Database Support for TBox Queries

Jiaoyue Wang

Large ABox Store (LAS) extends the DL reasoner Racer with a database. LAS stores the
given information about a TBox, a taxonomy, and ABox in a database, and answers most
TBox and ABox queries by combining SQL queries with DL reasoning. The main feature
of our system is that it can deal with ABox role assertions. Acting as a filter for Racer,
LAS speeds up the TBox and ABox queries. The main techniques exploited in LAS are
the pseudo model merging test technique, and the transitive closure algorithm

implemented by Oracle 9i.

This thesis presents the design, theories and implementation of the LAS system, and it
mainly addresses the database support for TBox queries in LAS. A user-friendly interface
is designed to facilitate users to implement many kinds of queries. More complex

querying functions can be integrated into this system in the future.

Acknowledgements

I would like to express my deepest sense of gratitude to my supervisor, Dr. Volker
Haarslev. Throughout my study period, he provided me with good teaching, sound advice,

encouragement, and lots of help. I really appreciate his patience, support and care for me.

I would like to thank my colleague Cuiming Chen in the LAS project for her cooperation

and help.

Also, I wish to thank all the colleagues in our lab for providing me a good and friendly

working environment to do my research.

Finally, I am forever indebted to my parents for their understanding, support and endless

love.

Table of Contents

List of Tables and Figures........................ooii e, v
Lo Introduction. ..o 1
2.Background ... 6
2.1 Description LOGICs. ..o 6
22 ALCH, Janguage................c..oooiiiiiiiiiiiiie e, 7
2% TR0 11> G 9
2.4 ABOX. 13
2 S OMEOlOZY .. e 15
260 Racer File.........o i 15
27OWLDLFile......ooo 15
3. Problem Statement and Current State of the Art............................. 17
B R AT . . e 17
3.20nstance Store (1S).o e 20
4. Design Decisions and Reasons............................. 24
4.1 Precompletion. 25
4.2 Pseudo Models Merging............cooviiiiiiiii i 26
4.3 Databases. ... e e 31
44 Racer Commands. ..ot e 33
5. System Implementation.......................... 34
5.1 System Architecture........... ... 34
5.2 0Peration. e 35

1i1

2. GO .. 35

5.2.1.1 Initialization.................... 35

212 L0ad. ... 51

B2 QUK Y. ..ottt e 52

5221 TBOX QUETY...coooiiiit i e 52

5.2.2.2 ABOX QUEKY. ..ottt 58

B3 GUI .o, 60

6. Conclusions and Future Work......................, 70
6.1, ConClUSIONS. i 70
6.2. Future Research..................o 71
ReferencCes. ..o 72
APPENIX.....oooi 76
ApPendiX A . 76
ApPendix B .. 79
Appendix € ..o 81
Appendix D ..o 85
Appendix E. ..o 87

List of Tables and Figures

Table 2.1. Constructor Semantics and Examples.................................. 8
Figure 2.1. Architecture of a DL System....................... 7
Figure 2.2. Racer File Format for the Ontology Smith-family........................... 10
Figure 2.3. Concept Hierarchy for the Family TBox..................................... 11
Figure 2.4. Role Hierarchy for the Family TBox............................... 11
Figure 2.5. Depiction of the Family ABox........................... 11
Figure 2.6. OWL File Format for Ontology “Cartoon_star”............................. 16
Figure 3.1. Completion Rules for the Logic ALCoc 18
Figure 4.1. the Precompletion Rules for SHFcccooeeii 25
Figure 5.1. LAS Architecture....................o 34
Figure 5.2. Start Window for Opening the Connection.................................... 62
Figure 5.3. Window for Load File, Connect to Racer and the Database............... 63
Figure 5.4. Dialog for Opening a File............................. 64
Figure 5.5. Window for Queries (TBox Part).......................... 65
Figure 5.6. Window for Queries (ABox Part) 65
Figure 5.7. Window for Querying ConceptParents..............................o 66
Figure 5.8. Window for Queries (Returning the Query Result).......................... 67
Figure 5.9. Window for Querying Individual Types.............................o 68
Figure 5.10. Window for Querying Role Parents................................... . 68
Figure 5.11. Window for Querying Predecessors......................c..ocoiii . 68
Figure 5.12. Window for Querying Fillers........................... . 69
Figure 5.13. Window for Querying Filled Roles..............................oo. 69

1. Introduction

Knowledge representation is one of the central issues in computer science, in particular in
Artificial Intelligence. It provides descriptions of the world that can be effectively used to
build intelligent applications, so that the systems can derive implicit consequences from

the explicitly represented knowledge.

Description Logics (DLs), as one of the important formalism for knowledge
representation, unify and give a logical basis to the well-known traditions of frame-based
systems, semantic networks, and KL-ONE-like languages, object-oriented
representations, semantic data models, and type systems. In more recent years,
Description Logics have become popular after more attention moved towards the
properties of the underlying logical systems {9]. They are introduced in Chapter 2 in

more detail.

Similar to Description Logics, databases are usually used to maintain models of some
domain of discourse [2] as well. However, in contrast to Description Logics which
express relatively complex information, databases provide simpler but more effective
management of data. Specifically, they are a collection of data in machine-readable form,
which can be manipulated by software to appear in varying arrangements and subsets. In
other words, the main difference between Description Logics and databases is that while
the former provide more supports for inference, which means finding the implicit
consequences from the model, the latter mainly manipulate large and persistent models of

relatively simple data.

As we can see, the relationship between Description Logics and databases is rather
strong. Therefore, there is research in the field of building systems which involve both
areas together. Doing so can make good use of their respective advantages: while
Description Logics can be used not only to represent some indeterminate information,
such as disjunctions, existential quantifications and number restrictions, but also to do
reasoning, such as: classification, satisfiability, subsumption and instance checking;
databases can be utilized to store a large number of concepts and individuals in order to
realize persistency, scalability, secure and concurrent transaction management, and some

reasoning and optimization can be done through processing SQL queries.

Concerning the research on combining Description Logics and databases, several
investigations have been carried out. In 1993, Borgida and Brachman considered two
possible ways to couple Description Logics Management System (DLMS) and databases
Management System (DBMS), namely loose coupling and tight coupling, and chose the
loose coupling approach to load database facts [1]. For checking inconsistency and
performing reasoning, they need to periodically insert the objects from a DB to a DL
reasoner. This approach may be well suited to already populated databases. However, it
might be too late to abort the insertion transaction when inconsistent information was the
input. Moreover, the DL language supported by it is much less expressive, and the
database schemas must be customized according to the given TBoxes. In 1995, Bresciani
adopted the tight coupling approach [19]. The basic idea of his approach is to extend the

traditional DL ABox with a DBox which is a connection between a DL system and a

database, and then one can make queries to this extended system directly. Its advantage is
that answers are given on the basis of the current state of the Description Logics and the
database without considering updates, but the disadvantage is that it suffers from lack of
automated translation between Description Logics and database schemes. Based on the
above two investigations, Mathieu Roger developed a set-oriented model with three kinds
of classes: abstract, concrete, and virtual classes [18]. This new approach realizes the

classification process with a more general constraint language by using Racer.

Now we narrow the problem domain to an application related to Racer, which is a DL
reasoning system [27]. Besides Roger’s research, a new DL application for performing
efficient and scalable DL reasoning over individuals named instance Store (iS) was built
by Daniele Turi [23]. iS relies on Racer to perform classification, subsumption, checking
consistency, and it queries databases by using SQL and the programming language Java.
They showed that iS performs much better than Racer when the number of individuals is
large [10]. Whereas, it has its limitations as well: it can only query role-free ABox, which
means the ABox must not include role assertions. iS is introduced in more detail in

Chapter 3.

To solve above problems and make the reasoning more optimized, we designed and
implemented a sound and complete DL application: the Large ABox Store (LAS) system
[6]. Similar to iS, our LAS system is mainly based on Racer. It realizes DL querying
(reasoning) by using a relational database: Oracle. LAS communicates with Racer to get

the ontology information first, and then stores the information into a database. Then the

system updates the tables. When a user queries LAS, the system will decide whether to
query the database, Racer or both. Finally, LAS includes complete TBox and ABox
information, effectively saves time to repeat large complex computations, and results in a
significant decrease of query processing time compared to Racer and iS. The evaluation
of test results is shown in [6]. LAS is sound because it always relies on Racer to retrieve
and test the result, and the Racer system is always sound. LAS is complete because it can
execute the queries through connecting to Racer and databases. In conclusion, to the best
of our knowledge, LAS is the first system that provides reasoning, and places no a-priori

restriction on the size or structure of the ABox and TBox.

Based on above advantages and features, the LAS system can be applied in many fields.
Firstly, since it can be viewed as a system extending a DL reasoner, LAS can inherit the
main features of Racer, which means it can be used in, e.g., semantic web, electronic
business, medicine, natural language processing, knowledge-based vision, process
engineering, knowledge engineering, and software engineering. Secondly, as a Java
application for performing efficient and complete DL reasoning over large numbers of
individuals, LAS is crucial in applications of ontologies in areas such as bioinformatics
(gene description) and web service discovery because these applications might require

vast volumes of individuals exceeding the capabilities of existing reasoners.

This thesis provides a thorough introduction of the TBox part of the LAS system,
covering all the related aspects, namely background, theories, and implementation.

Consequently, the thesis is divided into 6 chapters.

Chapter 1 narrows knowledge representation to Description Logics, analyzes the
relationship between Description Logics and databases, and addresses some of most
recent developments in combining Description Logics with databases.

Chapter 2 introduces the corresponding background knowledge, especially some
important terms related to Description Logics, TBox, ABox, ALCH, language,

Ontology, OWL file and Racer file.

Chapter 3 includes the problem statement and current state of the art. It emphasizes on
introducing Racer and instance Store.

Chapter 4 introduces our design decisions including the Precompletion and Pseudo
Model merging technique, application of Oracle database and the relevant Racer
commands.

Chapter 5 focuses on the implementation of LAS. It is the core part of the thesis. It covers
the system architecture, the specific operations and the GUI part.

Chapter 6 summarizes the current work we have done and mentions some future research.

LAS is a joint work with Cuiming Chen. We jointly designed LAS and worked on the
connection with the reasoner. This thesis reports on the TBox query part and the

graphical user interface. Details about the ABox query part can be found in [5].

2. Background

In this chapter, we introduce some concepts and definitions to set the stage for our work.

2. 1 Description Logics

The reader should have a basic understanding after the introduction of Description Logics
in Chapter 1, but we still need to explain some core terms and give some definitions

which will be frequently mentioned in this report.

As sketched in Chapter 1, Description Logics (DLs) is an important name for a family of
knowledge representation formalisms that represent the knowledge of an application
domain (the “world”) by TBoxes and ABoxes. As the name indicates, one of the
characteristics of these formalisms is that they are equipped with a formal, logic-based
semantics. Another distinguished feature of them is the emphasis on reasoning as a

central service. Figure 2.1 sketches the architecture of a DL system.

L7 TBox

™~ ABox

KB

Applicatio
pplication J [Rules

Programs

Figure 2.1. Architecture of a DL System [9]

In particular, a TBox is a collection of concept axioms, and composed of concepts which
denote sets of individuals, and roles which denote binary relationships between
individuals. An ABox is a collection of assertional axioms, and composed of concept and

role assertions.

2.2 ALCH, language

Table 2.1 shows the semantics of DL constructor for the ALCH, language. Though the
basic Description Language is ALC [22], the scope of our system is ALCH. . Its

definition is based on a standard Tarski-style semantics with an interpretation /=(A, ')

[28]. ALCI% extends ALC by adding role hierarchies and transitively closed roles.

Constructor Syntax Semantics Example
concept A Al <Al woman
individual 1 i eA! charles
Top T Al Top
Bottom L & Bottom
negation -C Al \cC! —female
conjunction CnD C’' nD' person Mfemale
disjunction CuD c’ uD'’ woman Uman
value restriction VR.C x eA’ | Vy.(x,y) | Vhas-child.parent
eR’' =yeC’ }
existential JR.C x eA’|Iy.(xy) Fhas-child.parent
restriction
eR’' AyeC’'}
role R R A X A’ Has-child
role hierarchy RcS R’ S’ has_brother
chas_sibling
transitive role Rt {(x,2) | (x,y) €R’ has_descendant
A(y,z) eR"}

Table 2.1. Constructor Semantics and Examples

2.3 TBox

A collection of concept axioms is called a TBox (Terminological Box) [9]. It states how

concepts and roles are related to each other.

Typical TBox axioms have the form: C ¢ D (Rc S) or C =D (R=S) where C and D are
concepts (R and S are roles). Axioms of the first kind are called inclusions (or
subsumptions), C is called subsumee, and D is called subsumer, while the second kind is

called equalities.

An equality whose left-hand side is an atomic concept is called a definition. Definitions
are defined as specific axioms because terminologies actually could be identified as sets
of definitions. Definitions are used to introduce symbolic names for complex
descriptions. For instance, the axiom father= man M3Jhas-child.person is called a
definition. The terms father, man, and person are called atomic concepts; the expression

man N3has-child.person is called a description (or complex concept).

As mentioned before, Description Logics not only have logic-based semantics, but also
offer powerful inference services. Since a DL knowledge base is divided into a TBox and
an ABox, DL inference services can be divided into TBox Query Answering (or

inference, reasoning) and ABox Query Answering.

Before introducing details of TBox Query Answering, we give an example that can help

introduce some terms. Below is a Racer file format for the ontology Smith-family.

(in-knowledge-base family smith-family)

(signature :atomic-concepts (human person female male woman man
parent mother father
grandmother aunt uncle
sister brother
only-child)

:roles ((has-descendant :transitive t)
(has-child :parent has-descendant
:domain parent
rrange person)
(has-sibling :domain (or sister brother)
:range (or sister brother))
(has-sister :parent has-sibling
:range (some has-gender female))
(has-brother :parent has-sibling
:range (some has-gender male))
(has-gender :feature t))
rindividuals (alice betty charles doris eve))

(implies person {(and human (some has-gender (or female male))))

(disjoint female male)

(implies woman (and person (some has-gender female)))

(implies man (and person (some has—-gender male)))

(equivalent parent (and person (some has-child person)))

(equivalent mother (and woman parent))

(equivalent father (and man parent))

(equivalent grandmother

(and mother
(some has-child
(some has-child person))))
equivalent aunt (and woman (some has-sibling parent))
equivalent uncle (and man (some has-sibling parent)))
equivalent brother (and man (some has-sibling person)))

)

(
(
(
(equivalent sister (and woman (some has-sibling person)))
(instance alice mother)

(related alice betty has-child)
(related alice charles has-child)
(instance betty mother)

(related betty doris has-child)
(related betty eve has-child)
(instance charles brother)

(related charles betty has-sibling)

Figure 2.2. Racer File Format for the Ontology Smith-family

Figure 2.3 and 2.4 show the concept hierarchy and role hierarchy for the family TBox,

and Figure 2.5 shows the depiction of the family ABox.

10

person

Figure 2.3. Concept Hierarchy for the Family TBox

has-descendant

|has-brother I

|ﬁs-child

Ihas-sister

Figure 2.4. Role Hierarchy for the Family TBox

alice: mother

O
has-sibl O

betty: mother 04 e

haS-chiI:/ \:as—child

doris O Oeve
Figure 2.5. Depiction of the Family ABox

charles: brother

i1

Considering Figures 2.3 and 2.4 for instance, TBox Query Answering includes:

Concept Satisfiability: Check whether the concept is non-contradictory, e.g., female
~male is not satisfiable.

Concept Parents: Get the direct atomic subsumers of the specified concept in the TBox,
e.g., the Parent of aunt is sister.

Concept Ancestors: Get all atomic concepts of a TBox which are subsuming the specified
concept, e.g., the Ancestors of aunt are sister, woman, person and human.

Concept Children: Get the direct atomic subsumees of the specified concept in the TBox,
e.g., the Children of woman are sister and mother.

Concept Descendants: Get all atomic concepts of a TBox, which are subsumed by the
specified concept, e.g., the Descendants of woman are sister, aunt, mother, and
grandmother.

Concept Synonyms: Return equivalent concepts for the specified concept in the given
TBox.

Role Parents: Get the roles from the TBox that directly subsume the given role in the role
hierarchy, e.g., the Parent of has-brother is has-sibling.

Role Ancestors: Get all roles from the TBox, that subsume the given role in the role
hierarchy, e.g., the Ancestors of has-brother is has-sibling.

Role Children: Get all roles from the TBox that are directly subsumed by the given role
in the role hierarchy, e.g., the Children of has-sibling are has-brother and has-sister.

Role Descendants: Get all roles from the TBox, that the given role subsumes, e.g., the
Descendant of has-descendant is has-child.

Role Synonyms: Get the synonyms of a role including the role itself.

Classification: the computation of the parents and children of every concept name is

called classification of the TBox.

Actually, computing Concept Parents, Concept Ancestors, Concept Children, Concept
Descendants, Role Parents, Role Ancestors, Role Children, and Role Descendants can be
reduced to checking subsumption; computing Concept Synonyms and Role Synonyms
can be reduced to checking equivalence. Meanwhile, we can see that both checking
equivalence and subsumption can be reduced to checking concept satisfiability. Because

C=D & CcD N DcC; DcC « (=CnD)= L.

2.4 ABox

A collection of assertional axioms is called an ABox (Assertional Box), which means

knowledge about individuals is asserted in terms of concepts and roles from a TBox [9].

One can make the following two kinds of assertions in an ABox: i: C and (a,b): R , where
i, a, b are individuals, C is a concept, and R is a role. The first kind is called a concept
assertion, which means i belongs to C. The second one is called a role assertion, which
means a and b are in the relationship R. Here, a is called the predecessor, b is called the

filler, (a,b) is called the related individuals of the filled role R.

Considering Figure 2.5 for instance, ABox Query Answering includes:

Consistency: Check whether the set of assertions of an ABox is consistent with the TBox,

that is, whether the ABox has a model.

13

Instance checking: Check whether the specified individual is an instance of the concept,
e.g., check whether betty belongs to woman, and the answer is “T"".

Retrieve: Get all individuals from an ABox that are instances of the specified concept,
e.g., the individuals of woman are betty and alice.

Individual Types (realization): Get all atomic concepts of which the individual is an
instance, e.g., Individual Types of betty are mother, woman, parent, person, and human.
Individual Direct Types: Get the most-specific atomic concepts of which an individual is
an instance, e.g., Individual Direct Type of betty is mother.

Individual Direct Predecessors: Get all individuals that are predecessors of a role for a
specified individual, e.g., alice is the predecessor of has-child for betty.

Individual Fillers: Get all individuals that are fillers of a role for a specified individual,
e.g., betty and charles are the fillers of has-child for alice.

Individual Filled Roles: This function gets all roles that hold between the specified pair of
individuals, e.g., has-child, has descendants are the filled roles that hold between alice
and betty.

Related Individuals: Get all pairs of individuals that are related via the specified relation,

e.g., (alice, betty), (alice, charles), (betty, doris) and (betty, eve) are related via has-child.

Here, Consistency, Instance checking, Retrieve, Individual Types, Individual Direct
Types are called concept assertion queries. Similar to TBox inference services, all these
services can be reduced to check ABox consistency. Individual Direct Predecessors,
Individual Fillers, Individual Filled Roles, Related Individuals are called role assertion

queries.

2.5 Ontology

Except DL inference services, the TBox and ABox are defined together by the term:
Ontology. This term was borrowed from philosophy, where an ontology is a systematic
account of Existence. For Al systems, “An ontology is an explicit specification of a
conceptualization” [26]. A definition will be “it is a document or file that formally
defines the relations among terms”. The most typical kind of an ontology for the web has

a taxonomy and a set of inference rules.

There are wide varieties of languages for describing ontologies, such as OIL, DAML,
DAMLA+OIL[7], OWL[17], etc. In the LAS system, we only considered and implemented
the methods for parsing OWL files and Racer files, so only OWL and Racer files are

briefly introduced below.

2.6 Racer File

A Racer file is a kind of ontology description file based on the Racer system. An example

of the Racer file format for Ontology “Smith-Family” is shown in Figure 2.2.

2.7 OWL DL file:

The Web Ontology Language (OWL) recently became a W3C recommendation [8]. A
typical OWL ontology always begins with a namespace declaration, and it is always in
the format of URLSs, such as http://www.w3.0rg/2002/07/owl#. A concept, a role or an

individual name is always composed of the namespace and the value that follows the

symbol #. Even though the real meaning is the value, the value has to be expressed with
the name space together. For instance, in the following ontology, if one wants to query

Disney mouse, the input format must be http://www.w3.0rg/2002/07/#Disney_mouse.

Below is an example for a “Cartoon Star” OWL file ontology.

<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF
xmins="http://a.com/ontology#"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs=http://www.w3.0rg/2000/01/rdf-schema#
xmins:ow!="http://www.w3.0rg/2002/07/owl#"
xml:base="http://a.com/ontology">
<owl:Ontology rdf:about="" />
<owl:Class rdf:ID="Disney_cat">
<rdfs:subClassOf>
<owl:Class rdf:about="#Cartoon_cat" />
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Cartoon_mouse">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:SymmetricProperty rdf:about="#Is_cousin_of" />
</owl:onProperty >
<owl:allvaluesFrom>
<owl:Class rdf:about="#Disney_mouse" />
</owl:allValuesFrom>
</owl:Restriction>
< /rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class rdf:about="#Cartoon_star" />
</rdfs:subClassOf>
<owl:disjointWith>
<owl:Class rdf:about="#Cartoon_cat" />
</owl:disjointWith>
<owl:disjointWith>
<owl:Class rdf:about="#Cartoon_dog" />
</owl:disjointWith>
</owl:Class>
</rdf:RDF>

Figure 2.6. OWL File Format for Ontology “Cartoon_star”

16

3. Problem Statement and Current State of the Art

As mentioned in Chapter 1, the idea of combining Description Logics with databases is
not new. But we will narrow our subject to a more particular problem related to the Racer

system, namely that extending Racer with a relational database.

3.1 Racer

A brief introduction of the Racer system [29] is as follows. It is a first full-fledged DL
system, which is capable of reasoning ontologies by implementing a highly optimized

tableau calculus. SHIQ is a logic supported by Racer. It not only includes basic

ALC features, but also role hierarchies and transitive roles as in ALCI%.. Morecover,

Racer provides support for qualified number restrictions and inverse roles. This is the
reason why we say Racer is full-fledged. Besides, Racer offers reasoning services for
multiple TBoxes and ABoxes, and provides facilities for algebraic reasoning including

concrete domains.

By processing commands, Racer can manage ontologies directly, through loading,
deleting, mirroring, etc. An important function that Racer offers is its TBox and ABox

query answering functions which reflect inference services.

Checking ABox consistency is the key for ABox inference services as mentioned in

Chapter 2. Racer implements a consistency algorithm based on tableau methods, which

consist of a set of completion rules operating on constraint sets and tableau clash triggers
[30]. In particular, a procedure for checking satisfiability of a concept transforms all
concepts into negated normal form first, for instance, - (CND)——-C w-D, -3R.C—~
VR. —C. Then it applies completion rules in an arbitrary order as long as possible. But
applications of rules should terminate in case of a clash, or terminate if no completion

rule is applicable anymore. At last, the result is satisfiable if and only if a clash-free

tableau can be derived. This final result is called a completed ABox. Below are

completion rules for ALC'.

Clash trigger Role exists restriction rule
{aC,a~C}C i if 1. adRCe A and

2. -0 {{abiR bCITA
Conjunction rule then '= AU {(ab)R, b:C}
it 1.a.CND €4, and with b freshin ‘4

2{aC aD}gA
then 'A'= AU {a:.C, aD}

Role value restriction rule

Disjunction rule if1.avRCe4 and
if 1. a:CLD 4, and 2.3beO:{ab)R €A and
2{aCaDyNnia=g 3.{bCE A
then '=A0 {a:C} or then A'= AU {b:C}
‘A=A U {aD}

Figure 3.1. Completion Rules for the Logic ALC [30]

Meanwhile, some optimized search techniques are employed in order to improve Racer’s

average-case performance. For checking satisfiabilty, approaches such as dependency-

18

directed backtracking [21], DPLL-style semantic branching [15], model caching [31],
model merging [13], and processing qualified number restrictions with the simplex
procedure were used. For TBox reasoning, approaches such as transformations of general
axioms [14], classification order/ clustering of nodes, fast test for non-subsumption,
marking, propagation, and lazy unfolding [11] were applied; For ABox reasoning,
approaches such as graph transformation, fast test for non-subsumption, data-flow
techniques for realization and dependency-driven divided-and-conquer [27] for instance

checks were employed to improve Racer.

Though these optimization techniques effectively improved the speed of Racer, Racer is
still not fast enough under some circumstances, especially when applications might
require a large number of individuals which could exceed the capabilities of Racer. The
main reason for the above problems is that Racer stores all the concepts, roles and
individuals into the main memory, and the query answering speed depends on the tableau
algorithm. Furthermore, while one can assume that changes in a TBox are relatively
infrequent, changes of an ABox maybe more dynamic, frequent and possibly concurrent.
To solve this problem, Sean Bechhofer, Ian Horrocks and Daniele Turi at University of
Manchester developed a DL system called instance Store which combines TBox

reasoning and a database to perform a role-free ABox reasoning [24].

3.2 instance Store (iS)

As a starting point, iS requires that no role assertion (no binary role between individuals)
exists, i.e., the ABox is role-free. That means every individual is independent from
others, so reasoning about individuals can be simply reduced to reasoning about the
concepts they belong to. From an architectural point of view, the ontology of classes can
then be treated as a static schema, and loaded into the TBox reasoner Racer, while the
concept assertions are dynamically added to and retrieved from a database. This way,
they can exploit databases offering persistency, scalability, and secure and concurrent

transactions.

Relying on Racer, iS loads the ontology, meanwhile, it connects to a database and creates
the tables. The second step is storing concept assertions (an individual is an instance of a
concept) into the tables, together with additional information gathered through calls to
Racer, such as equivalent atomic concepts, description’s parents, children, ancestors, and
descendants. Based on these requirements, the following DB schema was created [10]:
Description (id, description)

Assertions (individual, id)

Types (id, atomicConcept)

Equivalents (id, atomicConcept)

Parents(id, atomicConcept)

Children (id, atomicConcept)

20

A value for id is issued by iS, and the Types table stores all the ancestors of the related
description. From the tables, we can see iS has to rely on Racer to classify the taxonomy
whenever one asserts a concept assertion so that iS can store the information to the tables

Types, Equivalents, Parents, and Children.

The above two steps can be viewed as the management of the ontology. About reasoning,
iS only offers two ABox query answering: Retrieve and Individual types. As for retrieval,
the first step is to check whether the query description is consistent. Then whether the
description is stored in the DB is checked. If yes, then there is no need to classify this
description. If no, then iS has to classify this description by using Racer, and store the
corresponding information into the tables. After classification, if the description has an
equivalent atomic concept, then iS simply returns the individuals of this atomic concept.
Otherwise, it will invoke more complex operations: It has to check whether the
conjunction of the parents of the query description is just equal to this description. If yes,
it just returns the intersection of the individuals of its each parent, and union of the
individuals of all its children. If no, it has to get the candidates which are the descriptions
corresponding to individuals of parents which are not also individuals of children first,
then, asks Racer to compute the subset of the candidates which are subsumed by the

query description. At last, it returns the individuals of this subset [24].

From the above description, one can see iS relies on Racer not only for the ontology

management, like classification, but also on the reasoning, like checking consistency,

classification, and checking subsumption. The main point of iS is to use Racer but only

21

when necessary. Meanwhile, iS takes advantage of the features of databases, because
databases are well suited to handling large amounts of data and optimized for operations

such as joins and intersections.

However, though iS can be used in some applications, including web services discovery
and genes classification, it has some limitations. The most severe and obvious restriction
is that compared with a fully fledged DL ABox, iS can only deal with a role-free ABox.
This means it can not be applied to ontologies that contain any axiom asserting role
relationships between pairs of individuals. The reason why it can not contain role
assertions is because, to a concept assertion a: C, where a is an individual and C is a
concept, if C is consistent, the individual a can only cause a contradiction through a role
assertion. So the iS system needs only to check TBox consistency by using a TBox
reasoner, and check ABox consistency through checking TBox consistency, which means
avoid using an ABox reasoner. Secondly, iS completely relies on Racer to classify the
whole taxonomy, including the parents, children, ancestors and descendants. But the fact
is databases can solve the problem of transitive closures directly, that means the system
could only ask Racer to get the parent-child pairs, and then rely on databases to compute
the ancestor-descendant pairs. This process can reduce Racer’s computing time. Finally,
iS stores all the description assertions into the table Assertions. Of course when the
queries for retrieving these descriptions are processed, it does not need to classify the
query descriptions again. But for example, as we know that CnD= DNC, in the iS

system, both the descriptions need to be stored and classified, and one of them is

22

redundant. So, in some cases, it does not make sense to store complex description

assertions.

Compared with iS, our system LAS is a fully-fledged DL system. It can store essential
and sufficient ontology information into a database, and executes sound and efficient
algorithms such as the merging test to query the ontology. It makes use of the Oracle

database to compute the transitive closure and exploits some optimizations.

23

4. Design Decisions and Reasons

First, for eliminating the limitation of Racer that it currently does not efficiently deal with
large ABoxes, we should find the reason. Because the ontology information must be
stored and all the query algorithms must run in the main memory, it is obvious that the
efficiency will be affected. So exploiting a database to store ontology will be a very
suitable solution. Storing the necessary information of a TBox and ABox, and then
querying the database by executing SQL, that’s the basic idea of our system. As
mentioned, classification is the core inference service, so LAS must rely on Racer to get
it. However, since our task is to reduce complex computation of Racer as much as
possible, LAS will only rely on Racer to retrieve basic classification which means only
parent-child pairs, while it obtains all the ancestor-descendant pairs by exploiting a
transitive closure algorithm which the Oracle DB offers. Thirdly, and most importantly,
merging techniques for so-called pseudo models were applied in our system. Actually,
“optimizing TBox and ABox reasoning with pseudo models” is known as an optimization
technique and data structure for Racer [20]. This technique was applied to check

consistency of the TBox and ABox, once Racer runs, and it was known to speed-up TBox
and ABox reasoning for the description ALCNH. Based on the above theory, LAS just

stores the pseudo models into the DB without recomputation, and exploits the merging
test algorithm to check non-subsumption between descriptions and concepts, in order to

answer TBox/ABox queries.

24

4.1 Precompletion

At the beginning, we tried to design a complete system extending iS by adding role
assertions. This could be achieved by applying some form of precompletion to the ABox

[4, 25].

The main idea behind a Precompletion is to ecliminate ABox axioms specifying
relationships between individuals by explicating the consequences of such relationships.
Once these axioms have been eliminated, the assertions about a single individual can be
independently verified using a standard TBox reasoner. For example, if (a, b): R, and a:
VR.B, we can conclude that b: B. In this way, role assertions can be transformed to
concept assertions. Then checking individual a’s satisfiability can be transformed to

checking description 3R.B ’s satisfiability by using TBox reasoning.

Below are the Precompletion rules [25] which can eliminate role assertions and make
individuals become independent of one another, where A means an ABox, o, 0’ are

individuals, C, C,, C,, D are concepts, and R, R’, S, T are roles.

A oA R R
Pecdw i W T ey T 1 et ", [y in 4.
] e b et iy L D et ioey ot I (4 in o4,

A . :4'1["' A A L{HJI(": CoA
[T AR R ST PN TR TR A TTTE B TR PRI R R
e [T ioc 2 shate i (00 fE v Y —u [
o i e Oy ey e A b o e e A »

A e A A ey 4
R U S E S T T RS PPN T
FOECN and oT ee i AL N EITE B S SRR RS B ANY S T SR P I SR

Ao e e 4
S IFETEN Y S VPR DENPINIIEE M S SR
FINTTS RN BOTRTNIN. Y b TR e S - - T

TIRTEE AETUNEAY £V SRR T SYOTIE FR

Figure 4.1. the Precompletion Rules for SHF [25]

25

As proven in [25] for the DL SHF', the precompletion algorithm will always terminate
no matter which of the applicable rules is chosen first. Although different strategies for
the priority of rules to be chosen can lead to different computing complexities, as long as
disjunctions of concepts exist, the worst case of the computing complexities will be
exponential. For instance, to a: (CluD1) n (C2uD2) N... (CnuDn), we have to check
the satisfiability of the description (CluDI)n (C2uD2) M... (CnuDn). That means
there are 2 " possibilities. Whenever there is a clash, we have to try another possibility.

So the best case will be 1, and the worst case will be 2” times.
4.2 Pseudo Model Merging

Another solution to reasoning with ABoxes containing role assertions is called pseudo
model merging technique [3]. For the initial TBox satisfiability test, when Racer checks a
description, Racer only computes one completion and caches it as a pseudo model.
Finally, all descriptions can be represented as the models only composed of conjunctions.
For example, concerning description (A\UBMNC), Racer will cache its model as (ANC) or
(BMC). Such kinds of items that compose of a set of concepts representing a conjunction
are called concept pseudo models [3]. The main goal of this strategy is to avoid a

consistency test which relies on the “expensive” tableau technique. This idea was first

143

introduced in [13] for the logic ALCH,, . A model merging test is designed to be a

cheap” test operating on cached concept pseudo models. It is a sound but incomplete

non-subsumption test for a pair of concepts. The achievement of minimal computational
overhead and the avoidance of any non-determinism are important characteristics of such

a test.

26

A pseudo model M for a concept term C is defined as the tuple <MA, M—A, M3, MV>
of concept sets using the following definitions [3] where A’ is a completed ABox as
mentioned in Section 3.1, a is an individual, A and D are concepts, and R is a role:

MA = {Ala:A € A’}

M—-A={Alaa—-A e A’}

M3={Rla:3R.D e A’}

MV ={R|a:VR.D e A’}

A simple example will be helpful to describe the definition of a concept pseudo model:
concept Con=(AUB)"—-Cn3R. D ~NVS. E, so Racer will cache Mcon

<{A}L{C},{R},{S}> or Mcon <{B},{C},{R},{S}>.

Why and how can we apply the concept pseudo model technique in our system? In TBox
reasoning, checking subsumption is one of the most important issues, such as querying
concept ancestors and descendants. LAS relies on Racer to get the atomic concept
taxonomy, and store it into the database, so looking up the relevant tables will help the
system to retrieve the results directly. But concerning descriptions (complex concepts), it
does not make sense to classify them into the taxonomy and store them into the database
whenever a new description is encountered because the possibility for reusing the
description is very low. Under these circumstances, using concept pseudo model merging
techniques to check non-subsumption is a good solution. In fact, querying description
ancestors means to find all the atomic concepts that subsume this specified description,

and querying description descendants means to find all the atomic concepts that are

27

subsumed by this specified description. A subsumption test: whether CcD where C and
D are descriptions (or atomic concepts), can be transformed to a satisfiability test:
whether Cn —D is not satisfiable. Then we begin to apply the pseudo model merging
test. The procedure is that after computing the pseudo models of C and —D, namely M1
and M2, we compare their four sets of the model tuples separately. If M1A has a non-
empty intersection with M2—A , or M1—-A with M2A, or M13 with M2V, or M1V with

M23, we say the two models are interacting.

Now we have to analyze their interaction results: If they don’t have any interaction after
we check all these four sets, then these two pseudo models are mergable, i.e. their
corresponding concepts are conjunctively combined, and Cn —D is satisfiable, so we can
draw the conclusion that CgD. For example, checking whether concept Con=
(AUB)N—-CNIR.DNVS.E < atomic concept F, we transform it to checking the
satisfiabilty of Con mn —F. By comparing the pseudo model of Con: <{A},{C},{R},{S}>
and the pseudo model of —F: <{&},{F },{},{J}>, we can seec there is no any
interaction among the corresponding sets. So we can conclude, these two models are

mergable and Con ¢ F.

Conversely, if the two pseudo models have interactions, can we conclude that these two
models are not mergable and CcD? The answer is no, because it is a sound but
incomplete test for checking subsumption and satisifiablity as mentioned before. There
are two reasons causing the incompleteness. One reason comes from the Racer’s way of

caching. As mentioned, Racer only caches one of the completions, so for instance,

28

checking whether ACANB, we compare pseudo model of A, M1: <{A },{J},{J},{T}>
and pseudo model of —(AnB)=—-AuU—-B, M2: could be <{J},{ A },{T},{D}> or
<{D},{B },{J},{Z}>. If Racer cache M2 as <{J},{A},{},{Z}>, we can see there is
an interaction between MIA and M2 —A; however, if Racer cache M2 as
<{},{B},{},{d}>, there is no interaction among M1 and M2. So we conclude these
two models are mergable and A ¢ AnB. The other reason comes from the incompletion
of the merging algorithm. In our algorithm, if M13 has the same factors as M2V has, or
M1V has the same factors as M23 has, we say two models have an interaction, and they
are not mergable. But this is due to the flat model merging technique. For example, if we
check whether VR.CcVR.D, we compare pseudo model of VR.C, MI:
<{D},{D},{D},{R}> and pseudo model of —(VR.D) =3R-D, M2:
<{@},{2},{R},{J}>. We can see there is an interaction between M1V and M2 3, but
we can not say M1 and M2 are not mergable. Even though they have the same set R, we
have to see the successors of R, which are C and —D. Actually C and —D are mergable,
so VR.C and 3—D are mergable and ¥YR.C not cVR.D. That comparing the successors is
called deep model merging. However, the deep merging test is only correct for trees not
for graphs, so it is only applicable for concept pseudo models, not individual pseudo
models. Since we considered the efficiency of the system first; moreover, it is
inconvenient to store the successors in the DB, we did not apply the deep merging test to

LAS.

Though checking subsumption by applying the merging (flat model merging) test is

incomplete, we can exploit it to implement part of the checking, which means since non-

29

subsumption checking by applying the merging test is sound, we can get the subsumption
candidates by subtracting non-subsumption concepts from all named concepts in the
given TBox. After that, we can call Racer to test the limited candidates and finally return
the complete results. Note that the merging test is just implemented by a collection of

SQL queries. By using this approach, it keeps the final results complete.

Because an individual can always be represented as the format of a: C, where C is a
description, individuals can be described by pseudo models as well. These kinds of
models are called individual pseudo models. Racer creates individual pseudo models
from the initial ABox satisfiability test and exploits them for various ABox reasoning
tasks. Similar to checking concept subsumption, checking whether a:C holds can be
transformed into checking whether Au{a:—C} is unsatisfiable where A is an ABox, and
consequently, it is preceded by a check whether the pseudo model of a and the one of —C
are mergable. So the individual pseudo model technique can be used in retrieving
individuals of the given description by removing concepts that do not instantiate the

individual a.

In conclusion, both the precompletion and pseudo model merging technique can relax the
limitations of the iS system. But the precompletion approach may involve an exponential
number of computations which might be very expensive, and affect Racer’s optimization
algorithms. On the contrary, the pseudo model merging technique can be applied not only

in ABox queries, such as retrieving individuals, but also in TBox queries, like querying

30

description ancestors, descendants, and synonyms. So in our system, we exploited the

pseudo model merging technique instead of the precompletion technique.

4.3 Databases

Though there are many databases that can be exploited, we chose Oracle 9i for its
performance, reliability and security. Moreover, we could use Oracle9i Database tools:
CONNECT BY PRIOR operator and SYS CONNECT BY PATH function for the
computation of the transitive closure [16]. Transitive closure means to compute all
descendants of a node in a directed graph. The detailed algorithm will be introduced in
Chapter 5. However, the limitation of applying transitive closure by Oracle is that the top
or bottom of the hierarchy must be known at the beginning. Fortunately, LAS can get all
concept parent-child pairs, role parent-child pairs, top and bottom through Racer, so it
can compute all ancestors-children pairs with the Oracle DB. On the other hand, LAS
uses the transitive closure to implement role assertion queries as well. The detailed

description of the implementation is discussed in [5].

The design of the database schema must support implementation of various TBox and
ABox reasoning services. TBox reasoning includes Concept Parents, Concept Ancestors,
Concept Children, Concept Descendants, Concept Synonyms, Role Parents, Role
Ancestors, Role Children, Role Descendants, and Role Synonyms. Concepts have to be
considered in two situations: If the concepts are atomic concepts, because their possibility

for reuse is high, LAS stores their taxonomy into a database during the initialization.

31

From Racer LAS gets the parent-children pairs and synonym pairs which are then stored
in tables DesParents and DesSynonym. Afterwards the table DesAncesors is computed as
the transitive closure. It is the same situation for roles, so LAS needs tables Rparents,
RSynonyms and RAncestors. If the concepts are complex descriptions, LAS does not store
them in the database. Only when a query is posed, LAS parses the query description’s
pseudo model obtained from Racer. So LAS needs the table TempDesPM to store this
temporary model. When answering the query Ancestors, Descendants or Synonyms, LAS
gets the candidates by exploiting the merging test on the temporary model and all the
atomic concept pseudo models or negated concept pseudo models. So LAS needs tables
Description and DescriptionPseudoModel. However, for the query Parents or Children,
even though LAS can execute the merging test to get the subsumption candidates, Racer
does not offer a command such as “(concept-parents +ConceptName+
+CandidatesConceptName+)” or “(concept-children +ConceptName+
+CandidatesConceptName+)” to test only the specified candidates. Therefore LAS has
to rely on the Racer commands (concept-parents +ConceptName+) or (concept-children

+ConceptName) to get the query result directly without dealing with databases at all.

ABox reasoning includes Retrieve, Individual Types, Individual Direct Types, Individual
Direct Predecessors, Individual Fillers, Individual Filled Roles, and Related Individuals.
For the query Retrieve, LAS neceds the table /ndssertion. If the query concept is an
atomic concept, LAS can get its negated pseudo model from the table Description and
DescriptionPseudoModel directly; otherwise, LAS stores its temporary negated pseudo

model obtained from Racer in the table TempDesPM. LLAS gets the candidates by

32

exploiting the merging test on the above mentioned negated model and all the individual
pseudo models. So it needs the tables Individual and IndividualPseudoModel. For the
query Individual Types and Individual Direct Types, LAS relies on Racer to return the
final results directly without a need to query the DB. For the other role assertions queries,
LAS needs the table Roledssertion to store role assertions obtained from Racer, and
computes the final results by exploiting the tables RoleType, RoleTransitive and

RAncestors.

4.4 Racer Commands

LAS can be considered as an extension of Racer, so most functions are implemented by
relying on Racer. The Racer commands [16] that are used by LAS are listed in Appendix

A,

33

5. System Implementation

This chapter introduces the implementation of our system LAS in detail. It includes the
introduction of the system architecture which gives readers an intuitive impression of
LAS, the system operation which is described by the implemented components, and the

GUI (Graphical User Interface).

5.1 System Architecture

The LAS system consists of:
® an ontology
@ such as an OWL file or RACER file.
® areasoner
€ Racer (accessed through JRacer).
® a database

€ Oracle 9i (accessed through JDBC).

Ontolog
Load
Query A 4
JRacer «——— Racer
Connect
LAS Return final result
< ::) (Java)
User Query Retrieve tables, store

tuples

Candidates

Database
{Oracle)

Figure 5.1. LAS Architecture

34

A user can access LAS through a GUI, which includes two main operations: Connect and
Query. The Connect operation connects to Racer at first, and then reads the ontology file
into the system. Finally, the user decides to initialize (create and store tables) or load the
Oracle DB. The Query operation is the core part of LAS. By entering concept, role or

individual names in the GUI, the user can query the Tbox and Abox.

5.2 Operation

5.2.1 Connect

Before a user starts to write a query, the system needs to connect to Racer and a database,
load the ontology, and store the necessary information into the tables. This preparation

process is called Connect operation.

5.2.1.1 Initialization

If it is the first time for a user to load a new ontology, the system will execute the
initialization operation: firstly, LAS assigns a new DB name and password, and then
creates 12 empty tables in the DB. After that, our system will load the OWL or Racer file
into Racer, and then query Racer to get all the atomic concepts, individuals and their
pseudo models, roles and transitive roles, concept parent-child and role parent-child pairs,
concept synonyms and role synonyms, individual assertions and role assertions. After
parsing Racer’s output, LAS stores this data into the corresponding tables. Meanwhile, it
generates two extended tables: DesAncestors and RAncestors by computing the transitive

closure of the tables DesParents and RParents respectively. Therefore, in the initialization

35

step, LAS’ task is to store the basic required information about the TBox, the ontology's

taxonomy, and the ABox.

Connect to Oracle DB

As we know, JDBC is a set of classes and interfaces written in Java to allow other Java
programs to send SQL statements to a relational database management system. We
applied one of the categories of JDBC drivers which are provided by Oracle: JDBC Thin
Driver [34] to connect our system to Oracle DB because this driver uses Java sockets to
connect directly to Oracle and provides its own TCP/IP version of Oracle's Net8
(SQL*Net) protocol. This driver developed with pure Java is platform independent and

can also run from a Web Browser (applets).

The command for connecting LAS to Oracle is shown below.

ConnectDB():
Connection ¢ = DriverManager.getConnection(jdbc:oracle:thin:@

machineName:port:SID, userid, password);

Assign DB Name and Password

If a user wants to create a new database in Oracle for a new ontology, he must assign a

DB name and password for this ontology first.

36

Below is the relevant algorithm:

Algorithm CreateDB()

CREATE USER \""+DBname+"\" PROFILE \"DEFAULT\" //assign DB name
IDENTIFIED BY \""+password+"\" DEFAULT TABLESPACE \"USERS\"
//assign password

ACCOUNT UNLOCK; // assign users account unlocked.

GRANT UNLIMITED TABLESPACE TO \""+DBname+"\" // assign sort space
After creating a new DB, required privileges are assigned:

GRANT \"CONNECT\" TO \""+DBname+"\"

GRANT \"DBA\" TO \""+DBname+"\" //make a user a DB Administrator

Create Tables

For system requirements, LAS needs to create the main tables listed as following:

1. Description (DescriptionName, DesPseudoModellD, NegationDesPseudoModellD,
DesComplete): This table is used to store all atomic concepts in the ontology.
DescriptionName: Store the atomic concept names.

DesPseudoModelID: Store the atomic concepts’ pseudo model IDs, which are
assigned by the system.
NegationDesPseudoModelID: Store the pseudo model IDs of the negated atomic

concepts.
DesComplete: Indicate whether all the individuals belonging to the atomic concepts

are stored in the table.

37

2. DescriptionPseudoModel (DesPseudoModellD, DesA, DesNotA, DesExistence,
DesUniversal, Unique): This table is used to store the atomic concepts’ pseudo
models and the pseudo models of the negated atomic concepts.

DesPseudoModellD: Store the atomic concepts’ pseudo model IDs, which are
assigned by the system.

DesA: Store MA sets.

DesNotA: Store M—A sets.

DesExistence: Store M3 sets.

DesUniversal: Store MV sets.

Unique: Indicate whether this is the only possible pseudo model.

3. Individual (IndividualName, InPscudoModellD, IndComplete): This table is used to
store all the individuals in the ontology.
IndividualName: Store the individual name.
InPseudoModelID: Store this individual pseudo model ID, which is assigned by the

system.

IndComplete: Indicate whether all the atomic concepts that this individual belongs to

are stored in the table.

4. IndividualPseudoModel (InPseudoModellD, InA, InNotA, InExistence, InUniversal,
Unique): This table is used to store the individual pseudo models.
InPseudoModellD: Store the individual pseudo model ID.

InA: Store MA sets.

38

InNotA: Store M—A sets.
InExistence: Store M3 sets.
InUniversal: Store MV sets.

Unique: Indicate whether this is its only pseudo model.

RoleType (RName): This table is used to store all the role names in the ontology.

RName: Store the role name.

. RoleTransitive (RName): This table is used to store the transitive role names.

RName: Store all the transitive role name.

DesParents (DesParents, DesChildren): This table is used to store the atomic concept
parent-child pairs.
DesParents: Store the atomic concept names.

DesChildren: Store the children concept names.

RParents (RParents, RChildren): This table i1s used to store the roles parent-child
pairs.
RParent: Store the role names.

RChildren: Store the children role names.

DesSynonyms (Descriptionl, Description2): store the synonym concepts pairs.

Descripitonl: Store the atomic concept names.

39

10.

11.

12.

Descripiton2: Store the synonym concept names.
Rsynonyms (RNamel, RName?2): This table is used to store the synonym roles pairs.
RNamel: Store the role names.

RName2: Store the synonym role names.

InAssertion (IndividualName, DescriptionName, MostSpecific): This table is used to
store concept assertions in the ontology.

IndividualName: Store the individual names.

DescriptionName: Store the atomic concept name which the individual belongs to.
MostSpecific: Note whether this concept is the most specific concept which the

individual belongs to.

RoleAssertion (IndividuallName, Individual2Name, RoleName, Completel,
Complete2, RoleComplete): This table is used to store role assertions in the ontology.
IndividuallName: Store the predecessors.

Individual2Name: Store the fillers.

RoleName: Store the role names.

Completel: Note whether all the predecessors of individual2 and role are stored in the
table.

Complete2: Note whether all the fillers of individuall and role are stored in the table.
RoleComplete: Note whether all the filled roles of individuall and individual2 are

stored in the table.

40

Besides these main tables, LAS needs to create some supplementary tables to assist in

executing the propagation operation and merging test.

13.

14.

15.

16.

Tmp DesParents (DesParents, DesChildren): This table is used to store the temporary
parent-child concept pairs.

DesParents: Store the atomic concepts which replace / in the table DesParents with
i~

DesChildren: Store the children concepts which replace ‘/° in the table DesParents

with “*’.

Tmp DesAncestors (DesAncestors, Descendants): This table is used to store the
temporary ancestor-descendant concept pairs.
DesAncestors: Store the atomic concepts propagated from the table Tmp_DesParents.

Descendants: Store the descendants propagated from the table Tmp_DesParents.

Tmp_Rparents (Rparents, Rchildren): store the temporary parent-child role pairs.
Rparents: Store the roles which replace ‘/’ in the table RParents with **’.

Rchildren: Store the children roles which replace ‘/’ in the table RParents with “*’.

Tmp RAncestors (RAncestors, RDescendants): This table is used to store the
temporary ancestor-descendant role pairs.
RAncestors: Store the roles propagated from the table Tmp Rparents.

RDescendants: Store the descendant roles propagated from the table Tmp Rparents.

41

17. TempDesPM (InPseudoModellD, InA, InNotA, InExistence, InUniversal, Unique):
This table is used to store the pseudo models of a temporary description or an

individual.

InPseudoModelID: Store the description or individual pseudo model IDs, which are
assigned by the system.

InA: Store MA sets.

InNotA: Store M—A sets.

InExistence: Store M3 sets.

InUniversal: Store MV sets.

Unique: Note whether it is the only possible pseudo model.

There are two tables created for storing the propagation.

18. DesAncesors (DesAncestors, Descendants): This table is used to store the final
ancestor-descendant atomic concept pairs.
DesAncestors: Store the atomic concepts which replace ‘*’° in the table
Tem DesAncestors with ‘/°.
Descendants: Store the descendant concepts which replace ‘*° in the table

Tem DesAncestors with “/’.

19. RAncestors (RAncestors, RDescendants): This table is used to store the final

ancestor-descendant role pairs.

42

RAncestors: Store the roles which replace “*’ in the table Tem_RAncestors with /.
RDescendants: Store the descendant roles which replace ‘*’ in the table

Tem RAncestors with /.

Connect to Racer

The Racer Server can be executed both under the Linux and Windows operating systems.
A user can simply run it from a shell or double click the program icon in a graphics-based
environment. If the user supplies an ontology and a query file, he can directly get the
query results by typing commands in the shell. But for our system requirement, we need
to connect to Racer with our Java-based system. The good thing is, Racer also offers an
extensible Java client interface: JRacer [16], making it straightforward to implement
interactions between the reasoning engine and the Java-based user interface. The main
idea of JRacer is to execute the Racer commands using Java codes, and then return the
query results with string formats. The following algorithm expresses how to send a query
“(all-individuals)”’running at ip: 127.0.0.1 under port: 8088 to the Racer Server, and get

the query result: racerResult.

Algorithm Get racer queryResult()
RacerSocketClient client=null;

client = new RacerClient("127.0.0.1", 8088);
client.openConnection();

racerCommand="(all-individuals)";

43

racerResult = client.synchronousSend(racerCommand);

return racerResult;

Parse Racer’s Output

In general, a Jracer’s output is a simple string, and it can not be stored in the database
directly. Therefore it must be translated into a vector, which is a stack filled with
elements. Each element can be an atomic concept, a role or an individual. After getting
the vector, LAS can store its elements into the related tables. Hence, parsing Racer’s
result is actually a process of applying the Java class String. There are some crucial
methods we applied in our program:
® charAt (int index) to return the character at the specified index of the string.
® indexOf (char ch) to return the index location of the first occurrence of the
specified character.
® substring (int beginlndex, int endIndex) to return a new string that is a
substring of the string.
@® length () to return the number of characters in the string.
The other important approach we used in our program is the Pattern class which is a
compiled representation of a regular expression [12]. In order to apply it a regular
expression, specified as a string, it must be compiled into an instance of this Pattern class
at first. The resulting pattern can then be used to create a Matcher object that matches
arbitrary character sequences against the regular expression. All of the state involved in
performing a match resides in the matcher, so many matchers can share the same pattern.

A typical invocation sequence is:

44

