NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Using Semantic Web Technologies for Matchmaking Software

Agents Representing Web Service Description

Amer S. Al-Shaban

A Thesis
In
The Department
Of
Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August 2005

© Amer Al-Shaban, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10279-9
Our file Notre référence
ISBN: 0-494-10279-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Using Semantic Web Technologies for Matchmaking Software Agents Representing

Web Service Description
Amer Shaban Al-Shaban

The recent growth of using agents in representing web services is causing difficulties in finding
specific types of services. This problem usually arises because matchmaking techniques for
services are often based on string comparison and service providers might neglect to provide
enough or appropriate keywords for the matchmaking process. In this thesis, we report on an
approach that makes use of formal ontologies and automated reasoning services in order to
improve the matchmaking process. The suggested approach is based on the Ontology Web
Language (OWL), the OWL reasoner RACER, and the agent framework DECAF. The use of

OWL ontologies is twofold.

First, ontologies were used in order to express the particular knowledge of agents. These
ontologies are grounded by referring to a so-called common upper ontology providing the
necessary glue between the different agent domains. Second, with the help of OWL-S, a standard
OWL ontology designed for specifying service descriptions, agents describe formally their
offered web services. Our approach depends on a middle-ware agent called matchmaker, which
will be in charge of matching required services to proper provider agents. Due to the use of OWL
ontologies, the matchmaking process can be reduced to query processing and ontology reasoning
implemented by the RACER system. The suggested approach has been demonstrated using a
bioinformatics scenario, where several agents will take care of representing several web services.
These agents will be providing composite services that the biology scientists might need. The
communication protocol is based on OWL-S and allows seeker agents to adapt smoothly to

dynamically changed web service descriptions of provider agents.

I

Acknowledgements

I would like first to express my gratitude to my supervisor Professor Volker Haarslev for without
his inspiration, patience and vast knowledge and experience this thesis would not have been

possible. I owe a great deal to my supervisor Professor Volker Haarslev for his confidence in me.

I would like to extend my thanks to my family in general and my mother and father in specific,
who provided the item of greatest worth - opportunity. Words can not express my gratitude.

Thank you for always standing by me and being there to support me.

Finally, I would like to thank all my friends and especially Ali Haidar, Osama Abdel-Mannan and
Abdullah El Shazly for not only helping me in technical matters, but for their friendship and the

good times we shared. Thank you all.

Amer Al-Shaban

Concordia University,

2005

To my mother and father for raising the six of us and being the parents they are...

... with all my admiration.

Table of Contents

LIST OF FIGURES.....cccecereneee teesseesssssatenesssssssasaosessenstrarenesesssrantsesassnntessssares VIII
1. INTRODUCTION reesssereenesssusessessananres . 1
1.1. DESCRIPTION LLOGIC tveeseteseeeeeresssasesssanseserscsssosssesssssssssssssssssassssssssssserenases 2
1.2. SEMANTIC VWWEB tevetesecessssssescasoscsssssensssssssescsascsssssnsssssssassssssessssssssssssssssss 3

2. PROBLEM ...ooiiiiteeetioiescasessesesosessssossnsssssesssssasssssssssssssensstssssssasssssasssosssarass 5
D] DE C AT tittireensnsassesssescsensssssssssssssssssessssnsenssssssssnsssscessssssssosssasanssssosessnan 5

2 2 INTRODUCTION TO AGENTS teeeeerseeneesssersennsstssessssossssssssssssssssssssossssnsassassssss 6
2.3. EXISTING MATCHING TECHNIQUES «vveerereeeerasesssssssscssosssnstsssosasessssssessssssesaces 8
2.3.1. UDDI tevesescacscccssesosceccacescssassssssssssssssssssesssssoscsssssssssassssssssssssssssnses 8

2.3.2. CORBA/ODP tiiiteeteeeesacensscscasssssessssssassssssesesssssssssssesssssascssosssans 11

2.4. BOTTLENECK OF AGENTS WITH WEB SERVICES tecesteseescccascessssssssasscasscssscsces 13

R I 0 10) I R 15
3.1 . RACER titeteeseecesersssssssscessossassossstsssasssssassssssssssessessascssssscsossesosssssssssssse 15

B 2. WV veetereaesaesessessasssasasssssscsnssrassassasesnsssssssanssessesvesssosossncsssasosersssansosse 18
B.3. VWEDB SERVICES t1eseeeseseesecsossansoeseosesascessssssssstssstosssassassssossssssssassssssssassen 22
B . OWWL S tttertnecsesseasssasasssssssesssssessssssssssssssassssssssssssssesssssessssosrssasansontessans 24
B, DE C AF tittteterseassecocensssosasressesssssssssssssssasassssssssssssassessasssssssssssrcasssnssnsss 26

4. SEMANTIC WEB IN WEB SERVICESiiitteererettatrsrnstssrsssrsrssecssasessssosesassans 36
A. 1. ONTOLOGIES ttvenesssecssssssassassesssssessssssssssssasesssssssssssssssssssesssasssssssssssossssss 36
A.2 . MATCHMAKING tevsesessssssssosssseesesessssnnsssssssascsessssssssosssssssssssssssssassassssssssne 39

5. DESIGN AND IMPLEMENTATIONciuieeeecccictttststiorcossertensesssrsssessssssacsascess 45
5.1. INTRODUCTION TO PLAN FILES veeeerrereesreceecsscessssssssssssssassssassasssssossoassasssnsse 45
5.2 ROLE OF MATCHMAKER +evseeeeeeseacnsctsescscsansasssssesssrsassssssssssscsssasssssssanssssose 49
5.2. 1. ADVERTISEMENT 4evveecesacscenseecsessasessscsssacssssssssssosssossossssssseseasassssssns 53

5.2.2. ASKING sevserssssesesesessesssosasascesacacesssesssesssssssssnsessssesssssssssssossasassonas 54

5.2.3. DEEPER teveseessesscssssesosesssssessssasassesscsassssssssssesssssssssssassssassssesssssnse 56

5.3 . GROUNDING TECHNIQUE teveeseereessassacccsssccssosssssssasssssssosssssssssssssssssssssssssse 57
5.4. ROLE OF PROVIDER AGENT teeteeceeresccsrcccacsssesassocssetssasssesasssstssssssasssscsssssss 60
5.5 ROLE OF SEEKER AGENT tevvereeceecncecsccccsncssessssssctssssssssssssssssnsessssesssssssnases 63

5 8. SCENARIO 1 eeseenseesossseeasesssssssssesssnsssssssasesssssssssessonsssssssassseassssssssesssnsssse 66
5.7. QUERYING TECHNIQUE USING NRQL AND CONCEPTBASED QUERIES..cusssensseensd7
5.8, USE OF JAVA tereeeeesecsoossnssscassssssssossosssssesessssssssssssossntsssssssssssssmessssssssansse 71
5.9. USING AP] OF OWL-S FOR EXECUTION tevecussecccssncssescessssesssssssessasorssssssossons 71
5,10, JRACER tevereeereesseseecsssncsaesnstssssssessessssssssssssasossasensssasssssssarmnsonsansessssse 74

VI

6. FUNGAL WEB APPLICATION SCENARIO eeeeeareesora—reeeaareeearaaeraesraesanenene 71

5.1 . SCENARIO ttveeeseesesesonernercassssssesssssosessssssssssssssssssssansssssttsstsorssssssssssssssnon 77
7. RELATED WORK ...otiieiteettteraresnstecsarenstsosssssssssssssssssssssossrasesnssstsssssssssossnses 80
7 1. CONFIGURABLE MATCHMAKING FRAMEWORK FOR E-MARKETPLACES .ccicccaiesenes 80
7.2. DESCRIPTION LOGICS FOR MATCHMAKING OF SERVICES. teviectesencssssrsscsnsiescece 82
7 3. SOFTWARE FRAMEWORK FOR MATCHMAKING BASED ON S.W TECHNOLOGY......84
7.4. ONTOLOGY SUPPORTED INTELLIGENT INFORMATION AGENT «ecesttrsarstansassacssacee 86

7.5. INTELLIGENT SEARCH AGENT SYSTEM FOR SEMANTIC INFORMATION RETRIEVAL.87

8. CONCLUSION ..uctteierriereesonressecoranrsssstossssossssssassssssnssasansssssssasssasssssssrasssses 90
8.1 . CONCLUSION tttuueesesasessresersssosstssesssstsssssssssssssossssessssessssassssrssssssassassenss 90
8.2 FUTURE WORK . etereseesssesessaseoseosssssssssosesssssrssnsssssssssssssasssnssiossessssssssssssees 91

O, REFERENCES ...cctttttetteestetestssesetesnncsansisssssossstssseasssssnssssssssonsasssssssssossssoss 92

APPENDIX A: OWL-S APL....cieiiiiirrereresesressoncssssssenassssessssasesrssssssossssssnstssssnsssses 97

APPENDIX B: FUNGAL WEB APPLICATION SCENARIO.....ccccecittiiecencnncnsianines 100

VII

List of figures

FIGURE 1.1: DESCRIPTION LOGIC CONSTRUCTS. t1uiirettiitinieiiaiiiiii s eaiaie e e e e s nibienssessasna s 2

FIGURE 1.2: EXAMPLE TAXONOMY ...iiitiiiiiiiieeeeeaaee i riettietrt e s seransstnressasesssrsntnenesasessssensansen 3
FIGURE 2.1: UDDI'S CORE DATA TYPES ...vvviiiitiiteiiitieeieeerieeseseessetsssssnsesssanaessnnesessaesnnesessrseeas 10
FIGURE 2.2 SEQUENCE DIAGRAM OF CORBA MATCHMAKING.........ccooviniiiiiiniiie i 11

FIGURE 3.1: T-BOX AXIOMS ..veeeiiiotiiiieeeiiiiitiieeeesseiiereeeesensseesessnenese s itbnssessssnnnas s snabesessrssraaneaas 16
FIGURE 3.2 R EXAMPLE . 1titeeeiitttttiesietiieeereees e seassrteesanstneeessenentssiabarastessaaassessasabbaeaesarreeaeas 19
FIGURE 3.3 OWL CONCEPT EXAMPLE. ..eiiiiiiiittiietieetiirtressoninnreeesaianttesssnesesesssssesasnsssasasanns 20
FIGURE 3.4 OWL INDIVIDUAL EXAMPLE........0ietiirieeiaiertenmteeenenmoaiiiesssiessenasseinssessssensasssssssses 21
FIGURE 3.5: UNITING DISPARATE SYSTEMS VIA WEB SERVICES.........ciovvimmmiiiiiiiienccinieneees 24
FIGURE 3.6: TOP LEVEL OF THE SERVICE ONTOLOGY ..cettteriiiiiiiiiiiiinniieeeeneiiiessesiienssnaneenas 26
FIGURE 3.7: DECAF ARCHITECTURE VIEW.....uvttttitiiiiriieeesiennreeesioiiressssssnnnnessessssiessessnssssaess 30
FIGURE 3.8; EXAMPLE OF AN ANSQUERYcciictitrieeeeeitieeereer e aieeesesiisteseesseratsessesesntasesssnarnees 32
FIGURE 3.9 EXAMPLE OF A PLAN FILE .. 0tttttiictteteaiitereriiaesiiiiesiinessesiiessisssessnsesssssessssssssnnasees 33
FIGURE 3.10: EXAMPLE OF AN AGENT INITIALIZATION USING THE GUL......cocccovnnniiininnnnn, 34
FIGURE 4.1: EXAMPLE OF AN ONTOLOGY TAXONOMY....cciiiiiiiiiiirmiieiieriin i seeescennans 37
FIGURE 4.2; PROTEGE'S USER INTERFACE.cceiiciiuttttieaaiiitireeeeennneesssissesressennsseeasessessassens 38
FIGURE 4.3:; STRING COMPARISON MATCHMAKING SCENARIO........ccciciiiiiniiiiiiniinieiiiieeee e, 40
FIGURE 4.4; MATCHMAKING SCENARIO. . ..evvtiiitiieteeiiteriieresesiemrecassisistiessssesininaeaeessiiiaasasessssans 42
FIGURE 5. 1: PLAN FILE EXAMPLE. ...iiiiitiiieeiiitetessssrreeeateesessireeaeaitieisatsssinmanaseiaesassneseraneseesassnns 46
FIGURE 5.2 PLAN FILE FOR THE PRINTING EXAMPLE.ccccoiiiiiiiieaaiiiiiiiie s iiiiee e eiinens 47
FIGURE 5.3: SEQUENCE DIAGRAM ILLUSTRATING THE AGENT COMMUNICATION...........c.u.0.. 48
FIGURE 5.4 SKETCH OF AN UPPER ONTOLOGYuttiieiiireeeriitereniiiaaaietesiinsssinnaessnseseennnneaeens 52
FIGURE 5.5: PLAN FILE OF THE MATCHMAKER.......ciitiiiiiiiiiiii et e e s eeen e 53
FIGURE 5.6: SEQUENCE DIAGRAM FOR THE UPPER ONTOLOGY......cioiiiiiiiiiiriitieerrieie e 59
FIGURE 5.7 PLAN FILE OF PROVIDER AGENT. ...coiiiotittieeeeaaeiaiiiecresenaiiraeassessinnaseessenasssnsinseess 63

VIII

FIGURE 5.8 SEEKER’'S PLAN FILE ... i itttite ittt iiiiiiieeeeeeseetainseaseratsissseteeranseeeanatiaerestammiiaaaaaesssrsnnes 65

FIGURE 5.9: CONCEPTBASEDQUERY EXAMPLE.....ccciititteenrieeeeiiiiicnre e enisses e sa e sine s s s 69
FIGURE 5.10: DESCRIPTION LOGIC FORMAT OF THE QUERY.....ocoiiiiieiiiiiineeiiieanine e 69
FIGURE 5.1 1 NRQL EXAMPLE. ittt i ittteeeoteteesieeeseeeeeiieraaiissssianaaiteeanasaeesassbaassssessieesnnessanesis 70
FIGURE 5.12; OWL-S ONTOLOGY . uuiiiiiiiiiiiieeeeriintetsaateeeesessomnesesssinssnsesssatsinsassssanesssssenesens 73
FIGURE 5.13; EXAMPLE OF USING JRACER......ccotittetiriiiriree e ittt 74
FIGURE 5.14: EXAMPLE OF THE SEND METHOD IN JRACER......ccciiiiiiiiiiiiii i 76
FIGURE 6.1: THE SCENARIO OF THE FUNGAL WEB PROJECTootniiiiririaninsiens et 78
FIGURE 7.1: SCHEMA FOR TRADING INTENTIONS FOR CARS. ..ottt 81
FIGURE 7.2: EXAMPLE OF SEARCHING FOR A PRODUCT IN A CERTAIN TRADINGc.ocveene 82
FIGURE 7.3; SERVICE DESCRIPTION BRANCH OF THE SUBSUMPTION TREE.......cccccooviviiinannnn, 84
FIGURE 7.4 HIGH LEVEL SYSTEM ARCHITECTURE ...cc.eiiitiiiiiaiiiitiiiiee e e s sniiine st 88
FIGURE A. 1. EXAMPLE OF OWLFS AP L ..coiiiiiiiit ittt et 97
FIGURE B. 1. UPPER ONTOLOGY ...c.iciieitttrtrteeeeiirrateeeiasnerneeassisisannsessssoissssssssssessannsssssasnsrossss 100
FIGURE B.2: THE PROVIDER AGENT’'S ONTOLOGY. eeveeviiiiciiiiiieiiiieriiitnrnsessssniessrccsssceesonnnsans 102
FIGURE B.3: OWL-S APT TOOL . iiitiiiiieee e ctittee ettt e et i eaninssa e e s s e e et eas s sieeeeee e 103

1. Introduction

Web services have received massive attention in the internet world. The more web
services exist, the more it becomes harder to find the right web service for the right user
especially because web services are not centralized. That is why software agents were
used to help in finding the right web services. Yet, the matchmaking techniques used by

the current software agents could be improved.

In this thesis, existing matchmaking techniques are discussed and some of their issues are
explained. Then the suggested solution is presented and the implementation for that

solution is explained.

The structure of this thesis is as follows: First, an introduction of description logic and
semantic web is given in this chapter. Afterwards, a detailed explanation of the problem
is given in Chapter 2 along with an introduction of the agent’s framework (DECAF).
Chapter 3 introduces the tools used for the suggested solution. Later on, the contribution
of the thesis is explained in Chapter 4 after explaining the components of the semantic
web. In Chapter 5 the design and implementation of the contribution is explained in detail

and a real world implementation is presented in Chapter 6.

The major contribution of this thesis is the implementation of a semantic web
matchmaking system that uses description logics in order to match a seeker with a
provider agent that represents a web service. After finding the right provider agent, the

seeker agent executes the web service and returns the results.

1.1 Description Logic

Description Logics [13] are a family of knowledge representation languages which can be
used to represent the terminological knowledge of an application domain in a structured
and formally well-understood way. Description logics are based on the notion of concepts
(classes), roles (properties) and individuals (instances). These terms will be used
interchangeably throughout the text. Concepts describe the common properties of a
collection of individuals which are interpreted as sets of objects. Roles are interpreted as

binary relations between these objects.

In order to define new concepts and roles, a set of language constructs has to be defined
and used in each description logic language; some of these constructs are intersection,

union, negation...etc. as shown in Figure 1.1[13].

C n D (Intersection)

C u D (Union)

— C (Negation)

Figure 1.1: Description logic constructs. [13]

The main reasoning tasks are classification and subsumption. Subsumption, which is

written as C C D, represents the is-a relation. Determining subsumption is about

checking if the concept denoted by the subsumer (D) is considered more general than the
one denoted by the subsumee (C). Classification is the computation of a concept

hierarchy based on subsumption, see Figure 1.2.

A whole family of knowledge representation systems has been built using these
languages [13] and for most of them complexity results for the main reasoning tasks are

known. Description logic systems have been used for building a variety of applications

[13].
Organic Non_Organic
Animal Person
/\ House
Male Female

Figure 1.2: Example taxonomy

1.2 Semantic Web

"The Semantic Web is an extension of the current web in which information is given

well-defined meaning, better enabling computers and people to work in cooperation.”

-- Tim Berners-Lee [51]

The Semantic Web was suggested in order to have the information on the web related in a
way that it can be interpreted and used by machines. In this way this information will be
understandable by machines instead of the current limited demonstration purpose for web

uscers.

The Semantic Web can be thought of as an efficient way of representing data on the

World Wide Web, or as a globally linked database [50].

The main goal of the research on the Semantic Web is to move the web from being only

human understandable, to being both human and machine understandable.

The Semantic Web is generally built on syntaxes which use three URIs (Uniform
Resource Identifier) to represent data. For example, many triples of URI data that can be
held in databases, or interchanged on the web using a set of particular syntaxes developed
especially for the task. These syntaxes are called "Resource Description Framework”

(RDF) syntaxes [50].

Currently the information on the internet is considered as a series of characters and
symbols for the machine. But by applying the Semantic Web on the internet the ability of
having the computers “understand” the information while parsing it might become
available. This task can be facilitated by using a special mark-up language such as OWL

(Ontology Web Language).

2. Problem

2.1 DECAF

DECATF, Distributed, Environment-Centered Agent Framework [40], is a toolkit that

allows a well-defined software engineering approach to building multi-agent systems.

This toolkit offers a stable framework in order to allow users to design, rapidly develop

and execute intelligent agents in order to find a solution for complex software problems.

DECAF gives the user many services that make it possible to manage a large amount of
agents easily. The services are as follows: communication, planning, scheduling,

execution, and monitoring, which will be explained in Chapter 3.

DECAF could be considered as the internal operating system of the software agents
because it provides the services that are provided by any operating system to software

applications.

The user can control the behavior of an agent through a text based map called the plan-
file. The plan-file could be created using a GUI application provided by DECAF called
the plan-editor, which will also be explained in Chapter 3. The activities of these agents
could contain loops and if-then-else behavior. This part is an extension of the RETSINA

and TAEMS task structure frameworks [40].

The main goal of creating this architecture was to allow quick and easy development of
third-party domain agents. This will lead to full multi-agent solutions. DECAF is fully
based on Java and it took advantage of the object-oriented features of the language to

make it easier for the user to create, edit and manipulate agents’ behaviors.

What makes DECAF special is that it moves the development of software agents’ a step
higher; the philosophy of DECAF directs most of the effort on the behavior of the agent
rather than the underlying components such as the message formatting, communication

protocol and sockets creation.

Another advantage of DECATF is that it does not require from users a lot of Java network
programming knowledge in order to send messages between the agents, or to be a Java

database expert in order to deal with the knowledge-base of the framework. What makes
this possible is the fact that DECAF handles all these small low level details and presents
them by a high level definition so the user can handle the communication between agents

by using simple communication protocols provided by DECAF.

Further details of DECAF are discussed in Chapter 3.

2.2 Introduction to agents

Giving an exact definition of agents in general is a challenging task. Nevertheless agents
could be defined as entities that act on behalf of the user, have the capabilities of

following certain schema in order to accomplish a certain goal. In the case of mobile

agents, they are considered as software agents that can move between locations. This
definition implies that a mobile agent is also characterized by the basic agent model. In
addition to the basic model, any software agent defines a life-cycle model, a
computational model, a security model and a communication model [7]. In order for these
agents to run on a certain machine, that machine needs a standardized framework that
would include the capability of all the possible activities that the agent might need. These
services could be categorized into three facilities. First, the life-cycle facilities, which
include the services to create, destroy, suspend, stop and perform other related services.
Second, the computational facility, which takes care of the computations that the agents
might need such as data mining, database access, 1/0 action, etc. Finally, the
communication facilities are needed because agents communicate with each other and
with different services; therefore a framework that would allow certain agents to

communicate directly or indirectly without having any security problems is necessary [7].

The main characteristic of mobile agents is mobility. Mobility means that the agent can
move from a machine to another one. This facility could be achieved by any remote
object, but what makes agents a better solution is the efficiency of the agent framework in
the following aspects: The CPU consumption will be reduced with mobile agents, since
the agent object will be executed only at one machine when needed without having to
consume the CPU of the sender machine. Also the resources consumption will be reduced
because it works on one node only where, on the other hand, if multiple server method is
being used, then the functionality of the agent would be required to reside on both sides
until it is accomplished. Regarding the network traffic, using mobile agents will require a

small amount of data transfer because the agent’s code is usually smaller than the data

that it processes, especially while using KQML (which is explained in Chapter 3). Taking
into consideration the many causes of network failure, it will be clear that the robustness
and fault tolerance is an important issue when dealing with mobile objects. That is why
dealing with mobile agents would give the user the control on actions that the agents
would take to reduce the probability of failing the task, which means fault detection will
be improved by using mobile agents. One of the most important issues in the web is the
different platforms inconsistency. By using mobile agents, which are based mostly on
Java, all agents’ frameworks will actually work on any platform regardless of the lower
architecture. The last advantage would be the software upgrade. Upgrading a mobile
agent virtually is an easy thing to do. On the other hand trying to swap functionalities on
servers is difficult [11]. So these potential benefits show the importance of having mobile

agents in many categories instead of the regular server functionalities.

2.3 Existing Matching Techniques

2.3.1 UDDI

The main idea behind the web services revolution is that the web will be populated with
an assortment of small pieces of code, all of which can be published, found, and invoked
across the Web. One key technology for the service-based Web is SOAP [52], the Simple
Object Access Protocol. Based on XML, SOAP allows an application to interact with
remote applications. The main question is how these applications could be found in order

to be used.

One of the suggested solutions for that problem was the UDDI [41]. UDDI stands for
Universal Discovery, Description and Integration protocol. It is a protocol that provides

three essential functions. These functions are publishing, find and bind.

e Publish: This function allows a web service provider to register itself in order to
be searchable.

e Find: The find function allows an application to search for a particular web
service.

e Bind: It provides the ability for an application to connect and interact with a

known web service.

The UDDI categorizes the available information into three main categories, just like
telephone directories, white pages, yellow pages and green pages. The white pages
include contact information for a given business such as the name, address, telephone
number, fax ...etc. The yellow pages contain information that arranges business types

into different categories. The green pages contain the technical information of web

services.

businesskntity: information about the
party who publishes information about
a service

buginessEntiies contain
businessSerices

—

businessService: Descriptive
information about & partoular famity of
technical services

businessServicas contain
bindingTempiatas

4

and implementation specs

bindingTemplate: Technical
information about a service entry point

Model: Descriptions of specifications
for services or value sels. Basis for
technical fingerprints

bindingTemplates contain references ta
Models. These references designate the
interface specifications for a service.

Figure 2.1: UDDI’s core data types [42]

UDDI has four defined information types that could be used by users and applications in
order to use a web service. These types are shown in Figure 2.1 taken from [42] and they

are as follows:

o Business information: Contained in BusinessEntity object. It contains

information about services, categories, contacts, URLs, and other things necessary
to interact with a given business.
o Service information: It describes a group of web services. Service information is

contained in BusinessService object.

e Binding information: It describes the necessary technical details to call a web

service. This includes the address of the web service, method names, input

parameters and their types, and so on. And it is represented by the object

BindingTemplate.

e Services’ specification: It is metadata about the implemented specifications in a

given web service. It is represented by the TModel object.

2.3.2 CORBA/ODP

Another approach for solving the matchmaking problem is the ODP/CORBA [43, 44].
ODP/CORBA is used when the seeker does not know all the details of the server object,

but knows some of the properties that describe it.

In CORBA, the provided services are usually described through the properties that the
service uses. Properties have two types, either static or dynamic. Static properties are
fixed at advertisement time, while the dynamic properties are updated at runtime

whenever requested.

Service CORBA Trading Service Consumer

Advertise description !

Search requirement

>Matchmaking

Request the value of a dynamic property

o

Bind & Call

Figure 2.2: Sequence diagram of CORBA matchmaking

11

The procedure of the CORBA matchmaking is shown in Figure 2.2 and is explained as

follows.

First, the provider advertises its service to the Match Maker Engine (MME). Then,
whenever the consumer seeks a service, a search request is sent to the MME which
invokes a constraint expression. When the MME receives the search request it evaluates
the requirements. If the constraint expression included a dynamic property, then, a
request asking for an updated value of that dynamic property is sent to the service
provider. Then, the value is sent back to the MME in order to proceed with the evaluation
of the constraint expression. When the MME finishes the evaluation, the reply is sent
back to the consumer. Finally, the consumer has to choose a service provider in order to

bind and call the service.

The CORBA trading service provides [45]:

e Asymmetric matchmaking: Where the provider publishes properties that describe
the service and the consumer specifies constraint expressions in order to find the
required information.

e Limited language for creating properties: the CORBA trading service supports
five data types which are, integer, float, string, char and boolean.

e Language for writing constraints: The simple constraint expressions that return
either a true or false answer consist of logical expression (e.g. AND, OR, NOT,

<,>, ==, string ...etc) and arithmetic expressions (e.g. *, /, -, +).

12

2.4 Bottleneck of agents with web services

As mentioned in Chapter 1, the usage of agents for matchmaking in general and for
representing web services in particular is expanding. Unfortunately the matchmaking
techniques that are used for finding the right web service would follow one of the
techniques mentioned in the previous section. The problem with these procedures is that
they are all based on string comparison. Therefore, these strings do not contain any
meaning for agents. That might lead to incomplete and inaccurate results while the main
point of creating agents that represent web services is to improve the quality of searching.

An example will be given in order to clearly explain the problem.

Having a salesperson named John who wants to find Miss Cook that he met last year in a
conference. If John followed any of the existing matchmaking techniques then he will
most probably find irrelevant results. He will have information about cooking, cookies,
Miss Cook Islands. . .etc. And John might not even find the right piece of information that
will lead him to the right Miss Cook. This exemplifies the problem of string comparison.
On the other hand, if John uses a search technique based on the semantic web approach,
where he has to provide a concept definition for Miss Cook by stating that Miss Cook is a
female person who has the name “Cook”, who is not married .. .etc, then, the results will
be much more accurate and the searching agent will be able to avoid the irrelevant

information.

Beside the problem of search quality, using string comparison for searching might cause

a bottleneck. As an example, if a system has a thousand agent with 1000 keyword each

13

then in order to cover the thousand agents a procedure of comparing strings might be
called one million time which will slow down the matchmaking. The reason of such a
bottleneck is that the million keywords are not structured or pre-computed, therefore
every time an agent looks for a service it has to search through the list. Where in
Semantic Web the concepts are pre-computed and related with each other in a logical

way that would avoid going through all the concepts.

14

3. Tools

3.1 RACER

RACER, which stands for Renamed ABox and Concept Expression Reasoner, is a
description logic reasoner that provides a set of inference services. The most important

inference services are listed as follows [46]:

e Concept consistency w.r.t. a TBox: iff there exists a model of C that is also a

model of the T-Box containing C.

e Concept subsumption w.r.t. a TBox: Checks if there is a subset relationship

between the set of objects described by two concepts.

e Find all inconsistent concepts mentioned in a TBox.

e Determine the parents and children of a concept w.r.t. a TBox: The parents of a
concept are the most specific concept names mentioned in a TBox which subsume
the concept. The children of a concept are the most general concept names
mentioned in a TBox that the concept subsumes. Considering all concept names
in a TBox the parent (or children) relation defines a graph structure which is often

referred to as taxonomy.

In addition, RACER provides reasoning services for multiple T-Boxes and ABoxes [4].

15

A T-Box can be considered as a set of definitions of concepts that describe a domain
under certain restrictions. These definitions are based on logical meanings and they are
constructed using axioms as seen in Figure 3.1. The concepts are related with each other
by subsumption, so it would be possible to reason about the terminologies on the basis of

their logical meaning. [13]

Woman = Female [| Person

Man = Person|[] —Female

Figure 3.1: T-Box axioms

An ABox is a set of assertions about named individuals referring to defined concepts in
the T-Box. There are two kinds of assertions. The first kind is a concept assertion, where
one states that an instance a belongs to the concept C. The second kind is a role assertion,
where one states that an instance « fills the role R for the other instance b. For example, if

there is a woman called LAURA, then the concept assertion would be as follows.

Woman(LAURA)

This states that LAURA is an instance that belongs to the concept Woman. If LAURA
has a child called JOHN then there will be a relationship between each other using the

property hasChild, and the role assertion is:

hasChild(LAURA,JOHN)

16

The following inference services are defined according to [46]. Concept consistency of C
means iff there exists a model of C that is also a model of the T-Box containing C. An
ABox 4 is consistent w.r.t a T-Box T iff 4 has a model 7 which is also a model of T If an

ABox or a T-Box is not consistent then it is called inconsistent.

RACER also provides several features that help to keep description logic representations
consistent and reasonable. Whenever a T-Box states a subsumption relationship between
two concept terms RACER takes two actions. First, it checks if the concepts are
consistent with respect to the T-Box. Second, it determines the parents and children of the
concepts in the T-Box. Also, when an ABox is given, it checks the consistency of the
ABox with respect to the T-Box and confirms that they do not cause a contradiction. It
applies an instance test based on the given ABox and on the existing T-Box, and it also
computes the fillers of a role assertion referring to an individual. These are only the main
services that RACER offers. It has to be mentioned that there exist many other actions

that might be involved during successfully loading a T-Box and an ABox.

One of the most important features of RACER is the ability of querying ontologies that
are based on the RDF format, which is described in Chapter 4, in order to retrieve the
result of RACER’s reasoning. Since RACER acts like a TCP server, these queries can be
processed by opening a TCP port to the engine, streaming the commands, and then
getting the reply back after RACER has finished the reasoning on the set of assertions
already loaded in the RACER. The queries could query the ABox or the T-Box

depending on the type of query, which will also be discussed in Chapter 5.

17

3.2 OWL

The Semantic Web could be seen as a vision for a web where information is given
specifically with an explicit meaning associated with it. These meanings are represented
in a way that would make it possible for machines to understand these meanings and be
able to take actions based on them. In order for this information to be available with these
features, it has to be described by a language capable of reflecting the semantics along
with the concept names. Many languages were implemented for this purpose, and
recently OWL was introduced by the W3C as a standard for knowledge representation in

the Semantic Web.

OWL, which stands for Ontology Web Language, is a semantic markup language for
publishing and sharing ontologies on the World Wide Web [14]. It is an extension of the
growing standards of W3C which are RDF and RDFS. The Resource Description Format
(RDF) [15] and the Resource Description Format Schema (RDFS) [16] were considered
as the presenting language for description logics in the semantic web. They are based on
the structure of XML tagging as seen in Figure 3.2. This makes it easy for machines to
locate the required piece of information and simplify the parsing process. RDF/RDFS
came with several obstacles. RDFS is too weak to represent resources as concepts and
roles in adequate details. Further, it is difficult to provide reasoning support for the
language (i.e. RDFS), which is important in order for the user to use the language and

apply its capabilities. The basis for not supporting reasoning is that RDFS has a non-

18

standard semantics. Therefore, two languages were implemented that solve the problems

that RDF/RDFS had, and these languages are OIL and DAML [17].

<rdf:Description rdf:about="http://www.w3schools.com/RDF">
<si:author>Jan Egil Refsnes</si:author>
<si:homepage>http://www.w3schools.com</si:homepage>
</rdf :Description>

Figure 3.2: RDF example

Later, DAML and OIL’s features were combined into producing DAML+OIL.
DAMLAOIL was built from the original DAML ontology language DAML-ONT
(October 2000) in an effort to combine many of the language components of OIL [18].
Then, finally the WebOnt group, the World Wide Web's Semantic Web Activity Working group on
Web Ontology Language, made the effort of creating OWL based on the existing

DAMILA+OIL.

OWL has three sublanguages, OWL Lite, OWL DL and OWL Full. These sublanguages

are designed in order to be used by certain users and implementers [14].

e OWL Lite was designed for users that are mainly interested in classification hierarchies
and need simple constraints only. As an example of the simple constraints that OWL Lite
provides is the cardinality feature: it does not allow any value different than zero or one

in order to make reasoning as simple as possible.

e OWL DL was designed for users who are in need of expressiveness yet want to keep
computational completeness and decidability. According to [14], OWL DL includes all

OWL language constructs with restrictions such as type separation. This means that a

19

class can not be also an individual or property, a property can not also be an individual or

class. OWL DL was named due to its correspondence with description logic.

e OWL Full was designed for users who need the expressiveness and the freedom of RDF

without any kind of description logic constraints but with no computational guarantees.

In order to make ontologies easier for the user and the implementer, OWL adopted the
notion of classes and properties, which will be explained further in Chapter 4.
Consequently, if one wants to declare an instance of concept A that is related to an
instance of concept B, then simply a concept A would be declared as a class, and a
property that relates individuals of concept A with individuals of concept B would be
declared in an XML format, as mentioned before, like the example in Figure 3.3. Then,

an instance of Concept A and Concept B could be declared.

<owl:Class rdf:ID="ConceptA" />

<owl:Class rdf:ID="ConceptB" />

<owl :0bjectProperty rdf:ID="hasRelation">
<rdfs:domain rdf:resource="#ConceptA"/>
<rdfs:range rdf:rescurce="#ConceptB"/>

</owl:0bjectProperty>

Figure 3.3: OWL concept example.

20

As shown in the example, the tag <owl:class rdf:ID="ConceptA”> is actually declaring
the concept A as a class, the same for the concept B, afterward the <owl:ObjectProperty
rdf:ID="hasRelation” > declares the property that would relate both individuals of
concept A and individuals of concept B by specifying the domain, which is the left hand

side, and the range, which is the right hand side, of the property relating individuals.

By declaring the class in OWL, this means a concept in a T-Box has been declared in
terms of description logics. OWL also is capable of representing an ABox as well, and
this is achieved by creating individuals from the type of the classes. For example, in order
to create an individual “A” of “ConceptA”, create individual “B” from “ConceptB”, and

state the relation between them. The definition in OWL syntax is shown in Figure 3.4.

<ConceptB rdf:ID="B” />
<ConceptA rdf:ID="A">
<hasRelation rdf:rescurce="#B”" />

</ConceptA>

Figure 3.4: OWL individual example

Due to this method, a complete knowledge base scenario can be created based on both the
T-Box and the ABox and represented it in OWL, so it will be readable and
understandable by machines. Further, OWL is based on XML tag formats in order to be

transferred from one place to another.

21

3.3 Web Services

A Web service is a software system identified by a URI, whose public interfaces and
bindings are defined and described using XML. Its definition can be discovered by other
software systems. These systems may then interact with the web service in a manner
prescribed by its definition, using XML based messages conveyed by internet protocols

[19].

Many organizations and firms are using web services in their daily life. It has been
widely employed especially in the last two to three years. There are many practical and
commercial applications based on web services that are being used by either average
users or companies. At Xmethods, [20] they provide a free web service which gives a
stock quote. The users simply have to put it in the symbol code, the web service
processes the request, and returns the results in a XML format. As mentioned earlier, web
services in the commercial field are growing dramatically. GE Global eXchange Services
[21] are supporting e-commerce transactions for small and medium sized companies by
providing web services capabilities. These web services will assist those companies
economically by saving cost and time. Since these business documents will be sent
automatically via the internet without any delay, it confirms again how web services are
taking a big part of the business field. Finally, one of the most important users of web
services are agents. The main concept of web services is to allow the machines to
communicate with each other without any interaction from users. The combination of

web services with agents will be more reliable and applicable because web services will

22

act on behalf of regular services, and agents will act on behalf of humans.

After discussing some of the major implementations, a big shift toward an early
introduced technology, the first question that might come to mind is why web services?
Firstly, web services use the already familiar URI [22], Uniform Resource Identifier, to
perform endpoint mapping. Since web services are based on URI and XML, it gives it the
feature of accessibility, as a result, regardless of which platform is being used, a user can
simply issue a web service request and get the answer back via XML. Thus, this feature
makes the clients of web services machine independent and more universal than the
regular peer to peer application or server client architectures. The other advantage of
using web services is the machine load. Since the web service that is requested is actually
on another server, then the load of processing that service will not be on the user’s
machine. Consequently, if there are multiple tasks that might cause an overload, then
distributing them by requesting different web services from different locations will
resolve such an issue. Web services play a major role in software engineering
development. Web services help in developing software for big projects by allowing
software to use existing codes that are provided through web services instead of actually
writing the code from scratch. In software engineering, the ideal vision of creating
software is to be able to reuse as much as possible from existing programs and combine
them to create the required application with less time and effort. Finally, when it comes
to disparate systems that need to be united, web services could be used in order to
achieve this. What is usually achieved is a web service created for each system, and then
the other systems could access the services through the web. For example, in Figure 3.5,

system D is communicating with system A through the web service via the internet

23

without the need of translating the commands to the commands of system A.

System D

Web Setvice for
B

Web Service for
C

System C

Figure 3.5: Uniting disparate systems via web services

3.4 OWL-S

The Semantic Web, as mentioned before, is not only providing access to the contents of
the web but it also makes it possible to access web services that present certain tasks that

can be done automatically. Ideally users and agents should have the ability to find,

24

compose and monitor those web services under the control of the semantic web. If

desired, the agents should be able to execute these web services automatically too.

OWL-S is an OWL-based Web service ontology, which supplies Web service providers
with a core set of mark-up language constructs for describing the properties and

capabilities of their web services in an unambiguous, computer-interpretable form [23].

Web services are usually based on WSDL [24], which stands for Web Services
Description Language, and WSDL operations are all typed as strings. So, whenever a
user tries to search or execute a web service, he/she has to interpret the operations’ types,
input parameters, the description of the service and the returned type manually. The main
reason for this is that the machine, obviously, can not use the terms on the basis of their
semantics. On the other hand, OWL-S provides a language that specifies the function of
the operation and the semantic types for the input and output parameters of the service.
Therefore, if a software agent wants to deal with a web service, it would be able to
distinguish between the size of a banana as an input and the size of an apartment which
makes it possible to automatically search, execute and monitor the web services without

requesting any information from the user.

After discussing what OWL-S is and how it is used, the following will describe the
structure of it. OWL-S is an OWL ontology with three interrelated sub-ontologies; which
are called the profile, process model and grounding. These sub-ontologies provide three
essential types of knowledge about the service. The profile is mainly used to express and
describe what the service actually does. This would be used for advertising, constructing

service requests and for matchmaking purposes. The process model’s task is to describe

25

how the service works and that will allow composition, monitoring and recovery of the
service’s processes. Finally, the grounding handles the constructs of the process model by
mapping it onto the detailed specification of the protocol, which is normally expressed in
WSDL. The combination of the three ontologies and their relationships is shown in

Figure 3.6

p(ServiceProfile)

Figure 3.6: Top level of the service ontology [25]

3.5 DECAF

DECAF [26], as mentioned before, is a general purpose agent development platform
which allows a well-defined software engineering approach to build multi-agent systems.
DECATF provides a stable platform to design, rapidly develop, and execute intelligent

agents to achieve solutions in complex software systems. DECAF provides the necessary

26

architectural services of a large-grained intelligent agent communication, such as
planning, scheduling, execution monitoring, coordination, and eventually learning and

self-diagnosis. [1]

DECATF consists of well defined control modules which are responsible for initializing,
dispatching, planning, scheduling, execution, and coordination. These modules
coordinate with each other in order to control the life cycle of agents. Further, each of
these modules is executed as thread which makes it appropriate for applications that

requires multithreading.

In this section each module of DECAF is explained, elaborating on the use of that module

and how it functions [1]. Figure 3.7, gives a picture of the modules.

KQML, short for Knowledge Query and Manipulation Language, is a language and
protocol used for information and knowledge exchange between programs/agents. Agents

mainly use KQML for querying, stating, authenticating, requesting and subscribing.
The life cycle of agents in DECAF is explained in the following paragraphs.

a) Agent Initialization

As soon as an agent starts, the first module that will run is the initialization module in its
own Java thread. It will run only once for that particular agent. The initialization module
takes care of the plan file, which is explained in Chapter 5. It reads the plan file (as seen
in Figure 3.7 ‘al’), and adds each task reduction specified in there to the Task Templates
Hash table (plan library, ‘a3’) which is a definition of the capabilities of this particular

agent. Then it builds domain facts in a database or knowledgebase that might be needed

27

in the future by the agent (a2). It also adds the actions specified for that particular agent

in a tree structure format.

b) Dispatcher

After the initialization module, the control will be passed to the dispatcher. The
dispatcher will always be running in the background of the application waiting for an
incoming KQML (which is also explained later in this section). As soon as any KQML
message arrives, it will be queued in the /ncoming Message Queue (b1). The dispatcher
will take an action depending on the content of the KQML. First, if the KQML message
tries to communicate as part of an existing conversation then it gets recognized through
the in-reply-to field. In that case the dispatcher searches for the equivalent action in the
Pending Action Queue (b3), then, it proceeds with the rest of actions for that agent. The
second path shows that this KQML message initiates a conversation by not using the in-
reply-to field. If so, then the dispatcher takes care of creating a new objective and placing
it in the Objectives Queue (b2). Usually an agent has more than one active objective, but

they are not all necessarily achievable.

c¢) Planner

Since the tasks in the Objectives Queue are received (c2), then a module will monitor
them and attach new tasks to the existing task template stored in the plan library (c1). The

planner module takes care of that. The instantiated plan will be having a copy at the Task

28

Queue area in the HTN format corresponding to that task (c3), along with a unique ID
and any passed provisions from the KQML messages. If it happens that a request came
for the same goal to be accomplished, then automatically the plan template will be
instantiated in the task networks with a new ID. All the plans/goal structures that have to

be accomplished will always be stored in the Task Queue.

d) Scheduler

The scheduler’s main actions occur at the Task Queue. It stays idle until the Task Queue
contains tasks (d1). Then it starts scheduling the tasks deciding which will be executed
next, and in what order they should be executed. In order to do that the scheduler sends
the tasks to the Agenda Queue (d2). The task of the Agenda Queue is setting the actions
into executions. The execution part depends on the availability of the provisions for a
particular module. Provisions could be available either from an incoming KQML
message or, it could be given as an output from a different action. Therefore, what could
be concluded is that every time a certain provision is given, the Task Queue is checked
for any executable tasks. This part of the DECAF is capturing the attention of many
researchers, where they want to add reasoning abilities for scheduling in order to select

the optimal path for task completion.

¢) Executor

Finally, the executor module monitors the Agenda Queue and starts when it is nonempty

29

(el). As soon as an action is added to the queue, the Executor module executes the task.
After the execution two things can occur. First, the action executes successfully and a
result is returned which will be placed into the Action Result Queue (€3). The framework
will distribute the result to downstream actions which might be waiting in the Task
Queue. After this is accomplished, the executor will check the Agenda Queue searching
for any other executable tasks. The executor will deal with tasks by having a thread for
each action. The other path would be taken if the action is partially completed and
requires further actions. In this case, the task is placed into the Pending Action Queue
(€2) for further actions. If no such actions exist in the Pending Queue, an error message is

returned to the sender.

Pian File

DECAF Task and Control Structyres

AW

Agent Inttiakzation |

.

Domain Facts and

Figure 3.7: DECAF architecture view

30

DECAF manages the agents’ actions in a way that is very similar to operating systems
but with slight differences.

e The OS (operating system) handles jobs that have any type and any input where in
DECATF all the jobs are agent task requests and the input is limited to KQML
only.

e The OS must finish all the actions that are related to the required task but in
DECAF that is not necessary.

e The OS does not have the full details of the job execution profile but this is well
characterized in DECAF.

e The number and type of jobs are not known at start-up in the OS, while they are

clearly stated and declared with a plan file at start time.

In order to register an agent and consider it fully running, three basic things are needed:
ANS, Plan Files and the DECAF architecture itself. ANS, which stands for Agent Name
Server, is a major component for the communication part of agents. It functions almost
like the DNS, Domain Name Service, by resolving agent names to port addresses and
host names, and it is also referred to as the “white pages” for the agents’ world. In order
to see what is registered on the ANS, the user needs a component that reflects whatever is
happening at the ANS side. This component is called ANSQuery and provided by
DECAF, an example of how the ANSQuery represents the ANS can be seen in Figure

3.8.

31

f < ANS on localhost

mmTest
Seekerfgent
Matchmaker

{»

4

Unregister || Quit

Figure 3.8: Example of an ANSQuery

The Plan File is the map that tells an agent what it has to do and what kind of reaction
has to be created depending on the output of a certain task. Plan Files are explained in

more detail in chapter 5 but in order to give an idea, an example of a plan file is shown in

Figure 3.9.

32

‘File Edit Window

= Current Plan

¥ e _shutdown ;
o copker_getAnswer |}
o _startup B

Figure 3.9: Example of a plan file

Creating an agent requires certain parameters and can be done in two ways. The first
method of initializing an agent in DECAF is using a text based command that contains
the required parameters. The second method is running the GUI version of DECAF and
filling up the parameters through the GUI window as seen in Figure 3.10. The required
parameters are the ANS host address, the ANS port which is usually 6677 (default value),
Agent Name, Agent Host (which is the address of the local machine), Agent port (4000
as default value) and finally the plan file. After filling these parameters, the agent starts

by itself and follows the tasks that are described in the plan file.

33

£ Agent Intialization Options
fngem Name Server Host:
JEN-FAZBESA1912

ANS Port;

BGT7

Agent Name;

IBM-FA28854191 2Ag4000
-Agent Host:

IBM-FA288521912
,’«ngem T —
4300

EanNkamxe:'

Plan File:
agentlsp

| Log File:

startAgent || Readpianfite |

E Register HExlt }

Figure 3.10: Example of an agent initialization using the GUI

Since DECAF is a multi-agent architecture kit that monitors and manages several agents,
definitely the user has to face cases where an agent is looking for another agent to
accomplish a certain task. That service is already provided by DECAF through the
middleware agent Matchmaker [27]. Matchmaker is a client-driven agent that is
provided by DECAF to facilitate client agents to find other agents with specified
capabilities. In order to accomplish this, it stores the capabilities of the agents. When an
agent provides a service for other agents, it advertises itself at the Matchmaker side by
stating its capabilities in keywords as if it is creating a profile for its service. Matchmaker

stores this information in its database, which is a text file named “advertisementDB.txt”.

34

The Matchmaker only deletes the agent from that database when it requests a un-
advertisement later on. Hence, other agents can issue queries for Matchmaker in order to
find the agent with the required capabilities. Afterward, Matchmaker responds by
providing the name of the agents. The only agent in the current DECAF architecture that

requires a unique name is the Matchmaker, so it can be recognized by other agents.

35

4. Semantic Web in Web Services

4.1 Ontologies

Recently, the term ontology started to spread and became more commonly used; many
questions were raised about the meaning of this terminology. The term ontology has
many different definitions depending on the context. In this case, an ontology [2] is a
formal explicit description of concepts in a domain of discourse (classes (sometimes
called concepts)), properties of each concept describing various features and attributes of
the concept (slots (sometimes called roles or properties)) and restrictions on slots (facets
(sometimes called role restrictions)). The combination of an ontology and a set of

instances of its classes make up a knowledge base.

The most important component of the ontology is the set of classes. Classes in ontologies
describe sets of similar individuals in a certain domain, and they are the equivalent to a
T-Box in description logics as mentioned in Chapter 3. For example, a class of THESIS
represents all theses, but when it comes to a specific existing thesis then this would be an
instance from the class THESIS. Consider having a class COMPUTER SCIENCE
THESIS, then the thesis that you are reading right now would be considered as the
instance of that class. These classes could be divided into subclasses, which were already
used, by dividing the thesis into more specific ones, by having COMPUTER SCIENCE

THESIS which is a subclass of the class THESIS.

36

Slots give the description for the properties of the classes. So, the COMPUTER
SCIENCE THESIS is written by a computer science graduate student. This means that the
slot that describes the thesis in this example is the slot “written by” and it has the value
“computer science graduate student”. By having the combination of these three basic

components (classes, instances and slots) a complete ontology can be defined.

In practice, in order to develop an ontology it should include the definition of classes in
the ontology, the definition of slots and setting the type of their values and finally the
value of these slots. Figure 4.1 shows a brief example of the ontology of thesis that will

make the picture a bit clearer.

THESIS

COMPUTER. SCEHCE THESIS

GRADUATE COMPUTER SCIEHCE STUDENT

Figure 4.1: Example of an ontology taxonomy

Ontologies are used for different reasons. They can be used in order to share common

understanding of the structure of information among software agents. By having this

37

shared infrastructure, queries between agents will be more specific and related to the

domain with less sources of misunderstanding.

For this reason, and with reference to the problem described in Chapter 2, it is possible to
indicate that using ontologies in such a field will be a great asset for solving this problem.
In order to create these ontologies a tool called Protégé [28] was used. Protégé is one of
the most popular ontology and knowledge-base editors because it provides powerful
functions to design and implement ontologies. Protégé allows authors to create and

import contents. It also allows authors to edit both the original and the imported contents

using a GUI (see Figure 4.2) [29].

520cl5ad .
e FulkOependentTertion
ey

et i
i indegendend coualy.

1Cs OccupiedTatilen
£ UnitaimaaleTemfiory

‘EExamme: Chrigias island i a 12rntory of Ausialis, adninistered by the
4 Austatian Lepartmand of Transpan and Regional Benices. Chistmas 1stand
4 idoes ol (sav2 1ha B to mowe b Tult indep2andence by undaless: aclion.

E vieplivhreredTaniton

Aswnriet
R } annexedTeritony
6] aseocialedTenilowor

[0] chaliengesSurereigntOf
counivCacaIS03166AIENs2
%énmwﬁmsosmwmﬂ

: Q(}qmlr{
=1 dependentTarttonOf= 1

countryCodalINNimenc3

| nameg

couniyNamel30I1EBOMalNam2
:cumryrénmeiso31l§$$hm
(D] creationTimastamp
{b} detelionTunestaing
depenearfTerilenl

Al
A SinameLotailong £1

effacliveFrom
hasdararedVeniiary
[B nasassaciszacTenilery
10} nasDepencartTenilory

hasOctupiedTersilony
nmdtcatienTimasiamp
-

T BecupiedTentiory
| 15} LinclasmabteTerrdary

tusllytanieretTerntnry :
AualTsrilcry t
i

Figure 4.2: Protégé’s user interface.

38

4.2 Matchmaking

Matchmaking, in general, is the process by which parties that are interested in the

exchange of economic value are put in contact with potential counterparts.

The matchmaking process is usually carried out by toning together features that are
required by a party and provided by another. In the traditional way of accomplishing that,
this process is achieved either by brokers, where they continuously seek counterparts in

directory services such as the yellow pages, or by looking at advertisements on media.

With the possibilities opened by e-commerce on the internet, the number of potential

counterparts dramatically increased [30].

As mentioned before most of the existing matchmaking techniques, such as UDDI and
CORBA/ODP are based on string comparison; so if service providers neglect to provide
sufficient or appropriate terms for the matchmaking process, the search techniques will
return incomplete results as seen in Figure 4.3, which will be described in detail in

Chapter 5.

39

Seeker

Returns: Miss World,
Cooking Procedures, Miss
World cooking for
dinner...etc

Search Engine {(Regular MatchMaker)

Figure 4.3: String comparison matchmaking scenario

In order to avoid these problems, the main issue that will lead to such a problem has to be
located. From the previous example we can conclude that the problem is caused by the
string comparison technique. The problem is that the advertised terms at the Matchmaker
side are treated as a combination of letters in a certain format without any meaning for
the machine. But if the concepts were loaded in a way that carry their definition or
meaning with them in a certain format, then by looking for Miss Cook, the machines will
understand that the user is looking for a person, who is a female, who is not married and
has the name Cook. This example shows that the best idea for avoiding such dilemma is

using semantic web techniques.

As defined before, the ontologies are used to define concepts in a semantic way that
would make them machine understandable. To avoid the problem of irrelevant and

missing results, concepts could be represented in an ontology with a concept definition

40

based on other relevant concepts. In order to create an ontology a user has to use the
standardized Ontology Web Language (OWL) with the help of a tool such as Protégé

[20].

Having these concepts represented in ontologies requires an assistant from a third party.
In order to avoid having human interference, software agents could be used in order to
make it as automated as possible. The overall picture could be to have an agent for every

web service, and these web services are described by an ontology represented in OWL.

The described scenario is shown in detail in Figure 4.4. It shows how the seeker agent
communicates with the Matchmaker who, in turn, communicates with RACER in order to
query the ontologies and communicate with the provider agent, who is representing a web
service through OWL-S. The communication between the agents is based on KQML due

to the architecture of DECAF.

41

KQML

Pravidgr Agent

User JRacer

RACER

OALS L—p| .D [~ Web serioe |
in

RACER

0

Service Profle (Senice Grounding

RACER

Figure 4.4: Matchmaking Scenario

As also shown in Figure 4.4, the scenario includes three major parts: the seeker, the
Matchmaker and the provider agent. The seeker agent searches for the right provider
agent with the right service, by sending the request to the Matchmaker in an ontology
based query format. The provider agent is the agent that provides the services that the
seeker agent is looking for. The provider agent communicates with the Matchmaker by
advertising itself under the right category in an upper ontology (which will be explained
further in Chapter 5). It supports the web service using OWL-S. Finally, the Matchmaker,
which is the most important part of the scenario, provides the matchmaking service in
order to allow the seeker agent find the right provider agent using ontological definitions

and queries.

42

That was a brief description of those components, a detailed description of their

functionality and services is explained in Chapter 5.

The matchmaking procedure is divided into two main steps: filtering and confirming.
The filtering part is based on a concept-based query, a query that will query the T-Box of
the upper ontology, and the result of this query will be a number of agents that are related
to the required service by subsumption. The main reason of doing this filtering part is to
narrow down the number of provider agents in order to speed up the querying part for
each one of them. If in a certain scenario 100 provider agents are advertising their
services at the Matchmaker side, and a seeker agent is requesting a certain service, then,
without the existence of the filtering step, the Matchmaker has to create and send 100
query commands to the 100 agents. On the other hand, by having the filtering procedure,
it might help in decreasing the number of related agents. After cutting down the number
of provider agents the next phase is confirming. This phase is based on nRQL (Racer
Query Language) which can be used to mainly query the A-Box of the provider agent.
The Matchmaker searches for a specific and detailed service and gets back the instance of
that service if that agent satisfies the query, otherwise it would discard it and move on to

the next agent, and so on.

The reason for not only employing a concept-based query or a nRQL query alone is that
in case of using the concept-based query alone, then the agent will get all the agents that
are related to the required service regardless if these agents are what the user required or
not, because by querying the T-Box the reasoner is dealing with the taxonomy of the

ontology and using the subsumption facility, so by getting up one level in the taxonomy

(e.g. querying for the concept-parents), the range of agents will increase dramatically,

43

where on the other hand having the nRQL it becomes very specific, so if the user missed
a slight property of the required service, this might lead into missing the agent that the
user really wants at the Matchmaker side. In other words, using the suggested solution
will allow combining the general range search in the beginning, which acts like agent

filter, then the specific search to eliminate the unnecessary agents.

44

5. Design and Implementation

This chapter discusses in detail the design and implementation phase of the complete
system. First an introduction of Plan Files is discussed and how they are used in the
system. Then the role and implementation of each objective in the system is explained in

detail.

5.1 Introduction to Plan Files

Agents in DECAF are controlled by an ASCII file that is called the Plan File. The plan
file is written in the DECAF programming language as shown in Figure 5.1, where an

example of the advertisement service provided by the Matchmaker agent is provided.

These plan files can be created easily using a Graphical User Interface tool called Plan
Editor. Plan editor is provided with the DECAF kit. In the plan editor, everything can be
built by dragging objects from a toolbar and dropping them into the panel. Actions are
treated similar to building blocks, where one simply drags an action element and connects
it to another action to achieve larger and more complex tasks. The structure of these
actions is a hierarchical basis, and it is based on the style of HTN (Hierarchical Task

Network) [53].

45

(defaction
:name (“loading_ontology”)
:parent (“Matchmaker_advertise”)
:children (“*NONE”)
:parameters (“NOPROV”)
:provisions (“keywords” “ontology”)
:outcomes (“fail” :behaviour_profile
(:cost “0” :quality “0”
:duration “0” :density *“0")
“OK” :behaviour_profile
(:cost “0” :quality “0~”
:duration “0” :density “07)
)
:deadline (*0")
:earliest_start_time(“0")
:caf ("AND")
:utility function (“NONE”)
)

(provides :from(“Matchmaker_advertise.ontology”)
:to(“loading_ontology.ontology”)

)

Figure 5.1: Plan file example.

Items in the plan file are divided into three categories: task, action and non-local task.
Tasks are the upper level of the actions, so, if an user, for example, wants to print a paper,
the task will be to print the paper in general regardless of the little details afterwards.
Actions are listed under the task most of the time. If a set of actions is satisfied that
means their task is done, so, considering the example of printing the paper, the actions
would be to get the text, confirm the format and send the text to the printer. By satisfying
these actions the task is accomplished. Finally, the non-local-task communicates with

other plan files that belong to other agents. Of course this part will require extra

46

information leading to the right agent and the right task at that agent, so in the example of
printing, the text could have been received from another agent that provides news
articles, and afterwards, when the text has been received it get passed on to the next
action. The printing example is shown in Figure 5.2 with a plan file defined and created

using the plan editor.

Figure 5.2: Plan file for the printing example.

47

After having explained the used tools and the main problem, the suggested solution, as
shown in Figure 5.3, is discussed. The main scenario that was described as solution
basically consists of agents that represent different parties, where a seeker informs his/her
agent to seek for a certain product or service. Using the task of “reading apartments ads”
as an example, the seeker’s agent will be able to find the appropriate provider agent, if
available in the market, through certain techniques and procedures that are explained later
in this section. In general, the presented solution can be divided into three main steps: an
agent providing Web services (Provider Agent), an agent requesting Web services
(Seeker Agent) and an agent which takes care of matching the seeker agent to correct

provider agents (Matchmaker).

Seeker Agent Provider Agent MatchMaker{MM) Mi's RACER Provider's RACER

{ i i I
: 1 Adverdises - i
| H
] f
| _ _Confmethe | | !
| 1 advertisemnent i |
l Asks for 2 senics ol :

i

b Seends the Query
Sends the resulls ! !
H
the names of the |
Agenlpfrom a DB :
t

L Checks if the provider has the servi
¥
ISR Sendsithereply __ _ _ _ _ l l

R Returns thejagents’ names

. and $ervices
Communicaies

Using OWL-S8

Retumns the
<

Figure 5.3: Sequence diagram illustrating the agent communication

48

5.2 Role of Matchmaker

As mentioned before, description logics are a family of knowledge representation
formalisms. description logics are based on the notion of concepts and roles, and they are
characterized by building complex concepts and roles from atomic ones [47]. This
feature, that allows one to define complex concepts based on atomic ones using
subsumption, is what makes description logics a good choice for matchmaking. Because
of subsumption detection, when a certain concept is being looked for using description
logics, one could get as result:

e Concepts with an equivalent definition.

e Concepts that are directly subsumed by the definition searched for, in case the

exact concept could not be found.

Those results, in general, can not be achieved with the string comparison search
techniques since the string-based definition of concepts is not based on subsumption in a
hierarchical model. Therefore, in case the exact concept that the user is looking for does
not exist, but a concept that is very similar to the search concept exists, it can not be

found using the string comparison search technique.

In order for a seeker agent to find a certain service from a provider agent, there should be
a third party which takes care of that specific issue. That third party is called the
Matchmaker. The Matchmaker, as mentioned before, is a middle-ware agent that is
provided with DECAF. It is considered as a middle-ware agent because it acts as a

coordinator between the seeker and the provider agent. The Matchmaker is in charge of

49

matching requested services to proper provider agents. The current version of the
Matchmaker has a problem, its search technique is based on string comparison which, as
mentioned before, can cause performance problems and produce incomplete results for
seeker agents. So the main part of the provided solution in this thesis is to design and
implement a new Matchmaker by replacing string comparison with reasoning based on
ontologies. The new Matchmaker offers several new features. The main feature of the
new Matchmaker is the ability to distinguish between the different domains agents belong
to. That feature was accomplished by having an upper ontology, which will be explained
in detail in this Chapter. It is an ontology that includes everything related to the different
agent domains and connects them in a reasonable way. This ontology is basically
universal. All the Matchmaker agents have to attain one in order to ground their domains
and make the matchmaking procedure easier for the Matchmaker agents. Thus it will be
easier for the seeker and provider agents to find their category without any conflicts or
arising problems. That upper ontology acts as make-shift glue which connects all the
agents’ domains. For example, Figure 5.4 shows a sketch of a part of an upper ontology
that basically emphasizes on the “apartment” concept. The connection between the
apartment and the other concepts can be seen in a very general way. It also shows the
location of the apartment in the hierarchy of the ontology. And by having the apartment
in such a general ontology, it would be possible to relate it to other existing concepts in
the ontology even if they are not directly related. This means under this upper ontology
the related and non-related concepts can be distinguished. As a result, when a seeker
searches for a service, the upper ontology is used as grounding for communication and

for getting only the related agents. What makes the general ontology a better technique

50

than a regular database, which includes all the concepts of all the domains and relates
them to the agents, is its ability to reason with ontologies. Another feature that was
improved in the new Matchmaker is the use of a database to store information about
agents (e.g. their names and offered services), which will be discussed in Chapter 5. In
comparison, the past models used to store the information in a text file instead of a
database. The database is used also to keep track of requests while performing the search
for matching agents. For each request there is a unique ID number that is passed with the
on-going event that is made to satisfy the seeker agent’s request. At the end when the
events are terminated and the results are returned to the Matchmaker, the Matchmaker

will point out the seeker agent, who sent this request.

51

TOP

Mot Physical

Kind{ A Transaction |

-

LS

-

Figure 5.4: Sketch of an upper ontology.

Three basic services are provided at the Matchmaker in order to communicate with other
agents. These services are advertisement, asking and deeper, as seen in Figure 5.5, and

they are explained as follows.

52

quétying RACER. [Exsi-y

Figure 5.5: Plan file of the Matchmaker

5.2.1 ADVERTISEMENT

The provider agent has to register at the Matchmaker side and advertises itself in order to

allow other agents to use its services, and to be known in the e-market. For that reason

the service Advertisement was provided, and it expects two parameters. The first one is a

set of concepts, which includes all the related concepts for that particular service. These

53

provided concepts must occur as concepts in the upper ontology (e.g., if an agent is
providing apartments, and the upper ontology includes housing as a concept name, then
the agent will provide housing as a concept for that service in order to register under it).
The concepts provided by the provider agent will be the key to the appropriate place in
the taxonomy. The second parameter is the category which will be used exclusively by

DECAF, usually the category is the same as the agent’s name.

5.2.2 ASKING

The second service is asking, which fundamentally addresses the search part in the
Matchmaker. Whenever a seeker agent starts searching for a certain service, it calls the
asking service at the Matchmaker. The asking service expects two parameters. The first
parameter is ConceptBasedQuery which is a general query that will be used as a filter
on the upper ontology at the Matchmaker’s side to get all the related provider agents.
This query does not actually deal with the A-Box of the ontology; it basically queries
only the T-Box. The Matchmaker executes the query based on subsumption, so if the
exact request was not available in the upper ontology it will return the parent concept of
the existing term in the T-Box. In this way the system can usually guarantee not to reach
to the top of the ontology. By these means the Matchmaker will have a general picture of
the request since the upper ontology is being dealt with at the Matchmaker side only. The
second parameter is named nRQL (new Racer Query Language) which contains a more
specific query that will be used at the provider agent’s side to check whether the filtered

agents truly provide the requested service. What makes the nRQL special is the ability of

54

representing complex OWL queries, which is not possible in the case of regular queries
or keyword matching techniques. The nRQL deals directly with the instances in the A-
Box, therefore, the results of the query return the exactly wanted service at the agent’s
side which satisfies all the requirements, if available. On the other hand, using the
ConceptBasedQuery might return the agents that do not match the exact requirements
that the seeker agent was primarily seeking for. However, at least it will return to the
originator all the agents that could serve those services. In other words the
ConceptBasedQuery can be considered as a filter that retains only the related agents
regardless of the details. Thus the solution will be more efficient since the number of
agents that have to be checked will decrease to the related agents only. Then, the nRQL
can be considered as the main query that retrieves only the exactly matching agents with
all the details since it is more specific than the ConceptBasedQuery and furthermore

because it deals with the A-Box at the agent’s side.

Precision and recall are the basic measures used in evaluating search strategies. These
terms will be used for evaluating the two query techniques used in matchmaking.
Precision is the ratio of the number of relevant records retrieved to the total number of
irrelevant and relevant records retrieved. It is usually expressed as a percentage. Recall is
the ratio of the number of relevant records retrieved to the total number of relevant
records in the database. It is usually expressed as a percentage.

By using the ConceptBasedQuery, the solution is guaranteeing a precision of 100% at all
cases because the ConceptBasedQuery is querying the T-Box of the ontology and no

irrelevant concepts would be retrieved from the concepts in the T-Box. Regarding the

55

nRQL query it will improve the search done by the ConceptBasedQuery. The estimated
recall percentage based on the nRQL query was not calculated in this research because of

the required resources of populating a big number of agents with ontologies.

5.2.3 DEEPER

As mentioned above, the Asking procedure has two parameters, one for the general filter,
and another one for the specific search. In order to accomplish a more specific search, the
Matchmaker has to take the list of agents from the first query and communicate with each
one of them, and confirm the existence of that service based on the second query (i.¢. the
nRQL). This procedure makes use of the service deeper. This service in particular will
never be called by any agent but the Matchmaker itself. The parameters of this service
are:

¢ count (which contains the number of the agents to be checked).

e AgentsNames (the list of filtered agents from the first query).

e nRQL (which will be used in order to query the specific services in the search).

e Answer (is what will be returned from the provider agent that the Matchmaker

was checking in the first place).

¢ origiSender (the name of the agent that made the search request).

¢ ID (which will be the unique ID that will be explained later in this section).
The deeper service takes the list of filtered agents from the asking service and sends the
nRQL query to each of them and obtains the answer from them. Since the deeper search

procedure is being requested from the Matchmaker only, and since more than one agent

56

can initiate the service at the same time the deeper request that is initiated from the
Matchmaker has to be kept track of because the deeper service deals with more than one
agent at the same time. Therefore, it has to be known which request belongs to which
agent. In order to solve this problem, a database is used that keeps track of the requests
by giving each of them a unique number. It also provides a service that activates each
time a service returns with an answer from a filtered provider agent. The answer will be
saved in the database in the same field of that unique number and the number will be
passed on to the next agent. After checking on all the filtered agents, it returns the

matched agents’ names with their offered services to the seeker agent.

5.3 Grounding Technique

One of the major problems encountered in implementing this system was the
performance of the matchmaking. If the search technique were left to be peer-to-peer,
meaning that the Matchmaker acts as a redirector only, then, whenever a seeker agents
starts searching, it asks the Matchmaker for all the advertising agents and communicates
with each one of them and checks whether it offers the provided service. But of course
this is time consuming and not feasible in general. Also, if the matchmaking technique
were left the way it was provided by DECAF, then it will be based on keywords, so that
will lead back to the problem of string comparison which is the main issue that has to be
avoided in the first place, and the semantic web concept will be lost in the first place.

Therefore, it was decided to create an upper ontology that will handle the grounding

57

between the agent domains.

The upper ontology (Figure 5.4) is a representation for the general (upper) concepts that
can be used in a certain domain, and it can contain many general concepts if it has to be
generalized, so it can be also considered as an indexing system and a categorizer. Since
the upper ontology contains concept names only without instances, it is represented by a

T-Box only.

As mentioned before, the upper ontology acts like a categorizer. It categorizes the
provider agent into the corresponding subcategory of the general concepts, €.g., in the
apartments scenario if some provider agent has apartments or accommodation that it
wants to sublease, rent, sell, ...etc, then the provider agent would be listed by
subsumption under the concept apartments. Another feature of the upper ontology is that
it illustrates the relationships between different concepts. If two concepts are subsumed
by common concepts, it will be logically shown in the upper ontology through
subsumption (e.g. Accommodation and Facility, they are both Physical therefore they are
both subsumed by Physical), and if they are not related then it will also show the
common ancestors (e.g. KindOfTransaction and Location yet they do not have a direct
subsumption relationship between each other). In this way the categorizing feature will
not mislead the provider or the seeker agent because the Matchmaker will be able to

distinguish subsumption between related and non-related concepts.

58

Provider Agent MatchMak er with Upper Ontology DataBase { Seeker Agent

Concept Definition . Query to get the
(for advertising) o concept

Caoncept
+ Provider's Name

, Queries Concept-Based Query

the
concept !
— Concept——

Provider Name (if any)

Query

Figure 5.6: Sequence diagram for the upper ontology

After describing the upper ontology and its functionality, this section describes how the

upper ontology functions according to the sequence diagram in Figure 5.6.

The upper ontology is used in two different ways. The first way is when a provider agent
advertises its service, and the second way is when the seeker agent searches for a service.
When the provider agent advertises its service it sends a concept-based query, which is
usually the concept definition of the service, to the Matchmaker in order to categorize
itself. So the Matchmaker receives the query, sends it to RACER, and returns the most-
specific subsumer concept for that definition in the upper ontology. Afterwards the
Matchmaker sends the returned concept name along with the provider’s name to the

database. Then the database binds both the concept with the provider name for future use.

59

If a seeker agent wants to find an agent with a service that satisfies its requirements then
it sends the Matchmaker a concept-based query for the service that it is looking for. Most
of the concept-based queries are in the format of retrieving either the (concept-ancestors)
or (concept-descendants) for the definition of the required concept. In this format the user
will be able to narrow or widen the number of filtered agents depending on the
requirements. The Matchmaker, in turn, queries RACER in order to get the most related
concepts, which lead to the right category, from the upper ontology. After it gets these
concepts, it queries the database looking for the provider agents that are advertising their
services under those categories. Next, the database returns the provider agents, if any,

back to the Matchmaker in order to proceed with the rest of the matchmaking technique.

5.4 Role of Provider Agent

As mentioned before, Web services are software systems identified by URIs. And most
of the web services advertise themselves like any other website, using a regular search
engine, so in this way, finding the web service will not be as easy as required. That is a

reason why web services are usually represented by agents.

A provider agent represents a web service and makes it available for any seeker agent
that seeks for a web service matching the specified requirements. It can be considered as
the supplier in the real market, but in this situation the agent is the supplier in the e-
market and the web services are the resources for the market, where it can be used by any

other agent as long as it satisfies the seeker’s requirement. This agent was implemented

60

with two main features, deeperSearch and activateService, one is used in order to make it
searchable and the other one to make it directly executable (as seen in Figure 5.7). The
deeperSearch service is the service that communicates with the Matchmaker only, and, to
be more specific, with the deeper service at the Matchmaker side. The main function of
the deeperSearch is to confirm whether the required service actually offered by this agent,
the filtering and the confirming, and this part is the confirming. If the Matchmaker
communicates with a provider agent and poses a nRQL query to it, that means the agent
already matches some of the seeker’s requirements, but by applying the deeperSearch it

verifies whether the service is exactly what the seeker is looking for.

The provider agent takes the nRQL query, which queries its ABox, and poses it to
RACER by referring to the corresponding ontology. Afterwards it replies back with the
service name, if available, or with none if no matching services could be found on the
basis of this ontology. There are four parameters for this service:

e The first parameter is count, which as previously explained will be used when it
sends the reply back to the Matchmaker, in order to keep track of how many other
agents are left in the deeper search procedure before termination.

e The second parameter is AgentsNames which contains the names of the other
provider agents that might satisfy the requirements and offer the right service as
well.

e The third parameter is ID which is the identifier for this specific search.

e The fourth parameter is origiSender which contains the name of the seeker agent.

The other service, activateService, is used by the seeker agent after receiving the results

61

from the Matchmaker. This service makes use of OWL-S by representing the existing
web service in an ontology format, so that a seeker agent can retrieve the parameter
profile of the service and executes the web service call. Using OWL-S makes the
representation of web services more flexible and dynamic because the interface of an
agent might change at any given time. The service description is compatible with WSDL
and agents can adapt to changed services at runtime without the need to code any of the
involved agents or to even temporarily shutdown any service in order to change any kind
of parameters. This procedure is done automatically as soon as the WSDL is changed
from the provider’s side. The OWL-S description specifies a communication protocol
between the seeker and provider agent for executing the web services successfully. In
order to make the changes refreshable at run time an API of OWL-S was used which
translates the WSDL file into OWL-S, so whenever a change occurs in the web service

that API is applied and as a result the newest web service will be active online based on

OWL-S.

62

_Startup: | OK:

| mmTest_deeper [OK]

e

E!

* mmiestStartup [0K]

Figure 5.7: Plan file of provider agent.

5.5 Role of Seeker Agent

Presently, when a user wants to use a web service, he/she searches for it using a search
engine, which is most probably based on string comparison. Afterward he/she checks the
input parameters manually, writes an application that would use a certain protocol to
communicate with the web service based on the WSDL and then executes the web
service. This means that whenever one wants to use a web service he/she has to dedicate
a professional programmer that has to create the interface if an online interface was not

provided by the webservice provider. In order to avoid this problem a third party, which

63

replaces the programmer, would be the software agent and it could be called the seeker
agent.

The seeker agent in this scenario acts as the consumer in the real market, where it has two
main functionalities according to its plan file in Figure 5.8. The first function is the need
to communicate with the Matchmaker, in order to retrieve the names of the matching
provider agents that have the required service. In this service it passes the required
parameters at the Matchmaker side, which are the nRQL, Racer Query Language, and the
ConceptBasedQuery, and it expects the answer back through another service called
getAnswer. GetAnswer takes one parameter only which is the parameter named answer.
The other feature is named activateService, which communicates directly with the web
service of the matching agent in order to activate that specific service. The special
characteristic about this is its use of OWL-S. By using OWL-S, it is guaranteed that the
input parameters of the web service are captured instantly as soon as it needs to activate
the service. It asks the user to fill in the missing information, noting that if there is
already provided information, the seeker agent can use it without requesting any further
information from the user. In the case of missing parameters it will ask the user to fill
them in, and after that the service will be executed and it will return a reply confirming
that the request went through or an error if something went wrong. Therefore, thisis a
regular activity of an agent using web services, but with the ability of instant and

immediate changes on the web service, and a better matchmaking procedure.

64

Figure 5.8: Seeker’s plan file

The seeker agent should be knowledgeable of the upper ontology at the matchmaker
agent in order to be able to register under the right concept. Also the seeker agent should
have a general idea of the concepts at the provider agent in order to get a more precise
results when the A-Box query occurs. Notice also that the ontologies at the matchmaker,
provider and seeker agents should be designed and created by expert ontology designers

not by amateurs.

65

5.6 Scenario

To make the picture clearer, a real world example will be explained, based on the
scenario in Chapter 2, which has already been implemented in Java with the mentioned
tools and framework. The scenario is about an agent providing a web service for renting
out apartments (apartment_Agent). It is providing apartments in the Downtown area of
Montreal city, and there exist two types of apartments: a one and half and a two and half.
Another agent is providing a web service that sells bananas (banana_Agent).

Finally there exists a seeker agent that is searching for a one and half apartment for rental
in downtown Montreal. Initially the two provider agents register their web services with
the Matchmaker agent. They provide a concept based definition of the concepts that are
the guide for the Matchmaker in order to fit this service in a certain category of the upper
ontology with the same concepts. Along with the concept definition the provider agents
provide an ontology, which is a term that is used for DECAF, in order for agents to be
able to communicate with each other. After the registration and advertising procedure, the
seeker agent will start communicating with the Matchmaker by sending two parameters:
nRQL and ConceptBased (see Figure 5.5 for the plan file of the Matchmaker agent). The
Matchmaker will send the ConceptBasedQuery, which requires apartments in general, to
RACER which contains the upper ontology. RACER will query the T-Box returning all
the registered agents that are related (by subsumption) to apartments in general, which is
apartment_Agent in the scenario.

After filtering the registered agents and getting agents which provide the most compatible
web services to the requested one, the Matchmaker will send the nRQL query to the

apartment_Agent which will query the A-Box of the apartment_Agent returning the name

66

of the web service that exactly supports what the seeker agent is asking for. By having
the name of the web service, the Matchmaker returns the name of the service to the
seeker agent. Afterward, the seeker agent communicates directly with the provider agent
through the OWL-S interface for the web service, by getting the required parameters for
activating the service, filling up these parameters from the user, then finally executing the

web service.

5.7 Querying Technique Using nRQL and Concept Based Queries

As mentioned before, the main problem was that seekers might miss matching providers.
The main reason of that problem is the existing search techniques were based on string
comparison. That is why the main contribution is to improve those search methods along
with using agents in representing web services. Therefore two main querying techniques
that fit in the semantic web model were used. Those methods are nRQL and
ConceptBasedQuery. These two methods were briefly discussed in Chapter 4. In this
section the reason for using nRQL and ConceptBasedQuery will be explained, how they

work and what is the format of their syntax.

It was already mentioned that the ConceptBasedQuery queries the concepts in the T-Box
of the ontology and the nRQL queries the instances of the ABox. It was also stated that
the ConceptBasedQuery is used as a filter for provider agents trying to retrieve as many
agents related to the query as possible, where the nRQL gets the specific agent that is

being searched for from the filtered provider agents.

67

ConceptBasedQuery is best used at the Matchmaker side, the center of the search. The
main reason of choosing the ConceptBasedQuery as the first filter is for the flexibility
that can be achieved from using the ConceptBasedQuery. It provides the ability of
alternating between the levels of the taxonomy; ConceptBasedQuery is based on
subsumption, so it does not actually search for a specific instance. On the other hand it
tries to fit a posed query to the closest concept that exists in the taxonomy. Therefore, if a
user wants to get more specific or more general results, this could be achieved by slightly
changing the query in a way that retrieves a concept in a lower or higher level of the
taxonomy is retrieved. For example, if the target was a one and a half apartment located
in downtown Montréal, then, the ConceptBasedQuery could have been very general by
retrieving a concept name in a high level of the taxonomy like “residency” or it could
have been more specific, if some properties were added leading to a concept name in a

lower level like “apartments”. This will depend on the need of the users.

On the other hand, it was decided to utilize the Racer Query Language at the provider’s
side. The service of deeperSearch as seen in Figure 5.7 will be the confirmer of whether
the required exact service exists. Since the nRQL is based on ABoxes the user will either
get the right answer, which is the name of the required service if it exists, or NULL,
meaning there is no such service in this agent, although the service is most probably
related to the query that the provider agent is looking for. So, in the scenario where the
seeker agent looks for the apartment, the Matchmaker will find out by seeking in the T-
Box with the ConceptBasedQuery that the apartment agent is in the required category.
When the Matchmaker sends the nRQL query to the apartment agent, the apartment agent

sends the nRQL query to Racer, checks the existence of the service, and returns the name

68

of the web service to the Matchmaker. The nRQL query is very precise in results, and it

can guarantee to the seeker agent that the apartment agent is the one it is looking for.

After explaining how and why the ConceptBasedQuery and the nRQL query are used, the
following part illustrates a couple of examples that show the syntax of both queries and

what they exactly mean.

Since the ConceptBasedQuery’s syntax is flexible, the user could choose whatever is
convenient. For example, in the query shown in Figure 5.9 the command of concept-
ancestors was used. concept-ancestors returns all atomic concepts of a T-Box, which

subsume the specified concept [4].

(concept-ancestors (SOME |has_Location| [Montreal Downtownl))

Figure 5.9: ConceptBasedQuery example.

The query in Figure 5.9 is in ConceptBasedQuery format, the equivalence of it in the DL

is shown in Figure 5.10.

Jhas _Location.Montreal DownTown

Figure 5.10: Description logic format of the query

nRQL is a standardized semantic web query language that is provided by RACER. nRQL

Consists of a query head and body, for example, in Figure 5.11 the query head is (?x) and

69

the query body is (AND (?x [DownTownOfMontreal| (has_Location|) (?x
|AirConditioner| |has_Facilityl))). It returns all the, mother-child, pairs from the A-Box
which is queried. Complex and simple nRQL queries can be generated. Simple queries
are basic conjunctive queries (e.g. (and (?x Woman) (?x ?y has-child))) and complex
queries are a combination of simple conjunctive queries connected using the boolean
constructors and, neg and union [5]. As seen in Figure 5.11, the query is retrieving any
instance that has a property called “has_location” which is related to an instance called
“DownTownOfMontreal” and has a second property called “has_Facility” which is also
related to an instance called “AirConditioner”. In other words, retrieve an instance that is
located in Montreal, specifically downtown, and has air conditioning as a facility. What
distinguishes nRQL from the ConceptBasedQuery is that if there exist no apartment with
both of those options then nothing will be returned by nRQL. On the other hand, by using
an equivalent query in ConceptBasedQuery then the result might contain an apartment
that has one of the two options or both. That is why the nRQL is more specific than the

ConceptBasedQuery.

(retrieve (?x) (AND (?x |DownTownOfMontreal| |has_Location|)

(?x |AirConditioner| jhas_Facility|)))

Figure 5.11: nRQL example.

70

5.8 Use of Java

Java is the main language that is used in the implementation of the suggested solution.
DECAF is, as mentioned before, based on Java. All the components such as ANS,
Matchmaker, agents, even the interface is based on Java. The main API that makes it
possible to communicate easily and directly with Racer is called JRacer and it is also
based on Java, JRacer will be described in this chapter. Finally most of the web services

that were used in the implementation are Java based.

5.9 Using the API of OWL-S for execution

As mentioned before, OWL-S is a service description language for web services based on
OWL. Represented web services are specified semantically by defining the web service,
the type of it, the input parameters and their types. Therefore in order to deal with such
web services OWL-S has to be parsed, the right concepts have to be categorized and the
method of using the web service has to be determined. These tasks can be applied using

OWL-S APL

The OWL-S API is, from its name, an Application Programming Interface used to

interact with OWL-S. OWL-S API was implemented by mindswap [32].

OWL-S API provides a Java API for programmatic access to read, execute and write
OWL-S service descriptions. Many versions of the OWL-S descriptions are supported by

this APL such as OWL-S 0.9 and OWL-S 1.0. One of the most important services

71

provided by this API is the ability of executing the web service. That is accomplished
through the ExecutionEngine which is included in the APL The ExecutionEngine invokes

the Atomic Processes which have WSDL groundings.

Mindswap takes into consideration the data structure of the existing OWL-S ontology.
That is why Mindswap implemented the APIs in a way that matches the definition of

OWL-S’s data structures.

Mindswap also takes into consideration the name of the packages, interface and methods
in the Java implementation to match the names of ontologies, classes and properties of

OWL-S ontology with slight differences as shown in Figure 5.13.

72

Described by

(what does it do)

" m@sﬁn{s
ServiceModel @ v
hasProcess
ProcessModel

realized by

Atomic Process Simple Process

reafizes

IS
Q}&

hasGrounding

Composite Process

Figure 5.12: OWL-S ontology

A description of the usage of the OWL-S API is explained in Appendix A where an

example of a web service that is already translated into OWL-S is presented. Then, the

code is explained step by step showing what are the important factors, how are they

initialized and how to use them at the right time.

73

5.10 JRacer

Racer has APD’s for languages such as C-++, Common Lisp and Java. Since the main
programming language was Java it was decided to choose the Java API which is called

JRacer. JRacer is a TCP-based API for RACER. It is implemented in Java.

The functionality of JRacer is straightforward. It simply opens a TCP port to the specified

communication port of Racer and starts streaming the commands that are created. What
makes JRacer special is that since it is based on Java all the commands are object
oriented. Therefore it categorizes the regular Racer commands into different objects and

uses object oriented features such as inheritance.

RacerClient Relient = new RacerClient("127.0.0.1",8088);

try {
Rclient.openConnection();

try {
Rclient.owlReadFile(filename);

}

catch(RacerException €) {
this.message(e.getMessage());

}

Rclient.closeConnection();

}catch(Exception €) {
this.message(e.getMessage());

}

Figure 5.13: Example of using JRacer

In Figure 5.13 an example on how to open a connection with Racer and load an OWL file

is shown. First of all a variable from type RacerClient is created which is a class that

74

provides a full Racer client. It provides Java methods that help accessing Racer primitives
and perform simple parsing of the results from Racer. The constructor of RacerClient
takes two variables, the IP address of the Racer engine and the port where Racer is
expecting the communication. After opening this port and establishing the
communication, the OWL file is loaded into Racer using the method owlReadFile which
is part of RacerClient. owlReadFile is equivalent to the Racer command “owl-read-
document”. It loads and represents a file in OWL format as a T-Box and an ABox with

the appropriate declarations.

The rest of methods are used in the same way that owlReadFile method was used. For
example, in order to get the concept definition of a certain concept, the method
getConceptDefinition is used which is equivalent to the Racer command get-concept-
definition. In case the user can not find the requested command, then the method send
which is part of the class RacerSocketClient can be used. The user passes the command
line, which he/she wants to send to the Racer engine as a parameter to this method and
get the answer as a string without parsing. Afterwards, the user can parse the answer as

shown in Figure 5.14.

75

try {

Rclient.openConnection();

try {
Answer = Rclient.send(nRQL_Query);

}
catch(RacerException €) {
this.message(e.getMessage());
}
Rclient.closeConnection();
}catch(Exception €) {

this.message(e.getMessage());

}

Figure 5.14: Example of the send method in JRacer

76

6. Fungal Web Application Scenario

The Bioinformatics research field is having a lot of attention and effort spent toward it.
That is why the suggested solution was applied to a Bioinformatics field. A proof-of-
concept was realized by building the provider and seeker agents based on the required

tasks that the biologists would need.

6.1 Scenario

The main user who will be using this system for this scenario is the biologist. The
scenario will contain an agent that provides a service that represents two different web
services. This provider agent would provide the protein sequence in a SRS format [48]
for a protein from a specified database. Afterwards it would use that retrieved protein
sequence by supplying it to another webservice in order to get the rest of information
about that protein sequence in Blastp algorithm format [49]. Finally the provider agent
returns both, the SRS and Blastp, to the seeker agent. The sequence of the scenario is

shown in Figure 6.1 and is described as follows.

77

Ag

Biology

Sciantist 4,6

MatchMaker

ent

Blostp Ao Webardce

@0

1

Seekar Agent

RACER

Figure 6.1 The scenario of the fungal web project

As mentioned before, the main user for the scenario will be the biologist’s agent. The

seeker agent will be passed two queries of the formats ConceptBasedQuery and nRQL, as

shown in the Figure 6.1 (1). The ConceptBasedQuery will be taking care of filtering the

number of nominated seeker agents. The nRQL will confirm the existence of the required

service. Both of the queries will contain the name of the protein about which the

scientists requests the information. Afterwards, the secker agent will pass those queries to

the Matchmaker agent (2). Next, the Matchmaker will check the upper ontology using the

ConceptBasedQuery (3) where it will return the name of the provider agent.

Subsequently, the Matchmaker confirms the existence of the required service in the

provider agent by passing the nRQL query to the provider agent (4). The provider agent

78

poses the nRQL query to RACER that includes its specific ontology (5) and sends the
name of the service back to the Matchmaker (6). The Matchmaker then finishes by
sending the seeker agent both the name of the provider agent and the required service.
Next, the seeker agent starts communicating with the provider agent by requesting the
required input parameters for the service (8). The seeker agent sends the required
parameters to the provider agent (8), which are the name of the protein and the database
in this specific scenario. After the provider agent receives the parameters it sends the
name of the protein and the database to the web service (9) and it returns the protein
sequence. Afterwards, the provider agent uses the retrieved protein sequence by sending
it as an input parameter to the second web service (10). The second web service returns
the information about the required protein sequence in a BlastP algorithm (10). Finally,
the provider agent sends back the protein sequence and the information in BlastP to the

seeker agent (11).

The whole scenario was successfully implemented. The two webservices were found and
their web service description language, WSDL, was translated into OWL-S. The upper
ontology and the specific ontology for the provider agent were implemented based on
what the provider agent does as mentioned before. It took a lot of effort structing the
ontologies for the very specific task implemented in the solution, and a lot of help was
requested from biologists in order to create the logical structure of the ontologies. Finally,
the provider agent’s actions and responses were programmed under DECAF’s protocol.

A detailed description about the implementation of this scenario is shown in Appendix B.

79

7. Related Work

7.1 Matchmaking for Electronic Marketplaces

In [34] an implemented prototype for matchmaking, done using Java language, is
presented that can be used in the e-marketplace. It uses the technology of web services
for the communication part between agents. The server that takes care of the
matchmaking procedure, which will be explained later at this section, runs as a web

service on top of a SOAP-enabled application server.

These web services use WSDL to describe their operation. The approach that is used to
design such a framework, is to declare concepts and functionalities that are common to
different types of matchmaking servers, and to define a reference model capturing these
commonalities. The developer specifies and creates a set of entity types and relationships,
and by combining them the developer gets the mentioned reference model. The reference
model is created to fit the matchmaking modalities of a given e-marketplace. Beside the
reference model, a processing model is created that defines the sequence of steps that the

Matchmaker will follow when it receives a trading intention.

The authors took in consideration that each different e-marketplace domain has different
schemas and complexities. In order to support that, they categorized the configurable
matchmaking framework into trading domains. Each of them defines a given set of

matchmaking modalities. To make the scenario complete it is suggested to have roles and

80

actors in the trading domain. The roles of the trading domain decide the rights of the

actors registered in the domain.

Fach trading domain comes with a different schema. Figure 7.1 [34] shows a schema for

trading intentions for cars.

Price‘«\ = R . .)
7 Cologr 1\ White,
{ (Name) | Silver,
//'_.«- R— - 5 . //‘ Red.
{Sedan. “BodyStyle ™ S e
Conpe, \ (Name) -~
Canvenibig;“m e
3
T CarModel [
Year made in has model | ismodel of —-—1:‘/ M_OGEI)
N {(Name)
"/ { Cevie,
| g S Falcon,
e Z A Pulsar,
make ’ \ made - e }
make
of 5
7 {(Honda. Civic),
e {Honda, Legend),
¢ Accessory (Honds. ~ Make . (Ford, Falcon).
{Code) Ford, . (Name) (Ford, Mustang)}
Nissan, o .
.

:
/

;/

Figure 7.1: Schema for Trading Intentions for Cars [34].

In order to express certain products, or to search for one, expressions are used. Those
expressions are built using literal values, properties and the following operators:
e Arithmetic operators (+, -, X, /). Expressions must be linear in the sense that a

property cannot be multiplied or divided by another property.

81

e The “dot" operator which allows us to access the attribute values. This allows one
to write path expressions when the schema involves tuple types such as Contact
Information or Address. An expression that involves a sequence of applications of
the “dot” is called as traversal path (e.g. contactInfo.address.streetName).

e The “includes" operator which tests for set membership.

For intance, Figure 7.2 shows an example of how a trading intention lodged by a buyer

can be associated.

(Model = “Toyota Corolla" or model = “Nissan Pulsar") and year > 1995

and price < 3000 and accessories includes “CD player"

Figure 7.2: Example of searching for a product in a certain trading

7.2 Description Logics for Matchmaking of Services

The authors of [35] based the solution on Semantic Web technologies. The language used
to apply the semantic web was the DAML+OIL. It was used to express service
descriptions using description logic reasoners such as RACER and FaCT. The concept of
match was based on using subsumption in order to find the general description matches,
the more specific description matches and the compatible services. This means that the

approach is totally based on T-Boxes of ontologies either in RACER or FaCT. The

82

matches for service description S are:
¢ Equivalent concepts to the service description (S)
e Sub-concepts of S
e Super-concepts of S

e Sub-concepts of any direct super-concept of S.

The suggested matchmaking service provides three basic functionalities.

The first one is advertising. It basically publishes the service description (as seen in
Figure 7.3 [35], or the advertisement, into a matchmaking service. A check on all the
concepts, confirming that all the concepts are satisfiable, has to be done before including
the advertisement in the knowledge base. That action is taken in order to avoid realizing a
non satisfiable service later on. When the advertisement occurs, a new set of concepts are

added to the subsumption tree representing the advertised concepts.

The second functionality is querying. The querying functionality is very similar to the
advertising functionality. The only difference is that the description submitted to the

Matchmaker is not persistent; it is only used to check existing similar concepts in the tree.

The last functionality is browsing. It is a simple functionality that allows parties to
explore the published advertisements. This functionality helps parties to modify and tune
their advertisements or queries before they submit them in order to maximize the

probability of matching.

83

Isemlce-osscmpﬂoml

-

computer
=1 haskemoary OVER256

computer
3 hasCD.(or 8900CI 960050

computer
=1 hasMemory OVER256
=1 hasPrinter

computer
3 hascD.CD9600S]

computer

=1 hasPrinter

=1 hasD¥VD.DVD-3001|
3 hasCD.CDIG00SI

computer
=1 hasMenory OVER256
=1 hasPrinter
=1 hasDVD.D¥D-3001I
3 hasCD.CDIG00SI

Y

€Da300C!

(servi07 CDIBO0S!

SERVS

@ computer
3 hasCD.CDI900CI

computer

=1 hasMemory OVER25E

=1 hasPrirter

3 hasCD.(or 9900C| 960030

compLier

=1 hasMemory OVER256

=1 hasPrinter

=1 hasD¥D.DYD-3001I

3 hasCD (or 9900C| 9600SI)

Figure 7.3: Service description branch of the subsumption tree [35].

84

7.3 Framework for Matchmaking Based on Semantic

In [37] service matchmaking in e-commerce is introduced, the requirements for a service
description language and ontology is assessed, and the idea that DAML+OIL and
DAML-S fulfill these requirements is argued. The design and implementation of the
prototype Matchmaker is based on a DL reasoner to match service advertisements and

requests based on the semantics of ontology based service descriptions. By representing

the semantics of service descriptions, the Matchmaker enables the behaviour of an
intelligent agent to approach more closely the behaviour of a human user trying to locate
suitable web services (assuming that a suitable ontology has already been developed and

deployed.)

The suggested matchmaking technique was fully based on subsumption reasoning; the T-
Box is queried based on the concepts of each advertising agent without querying the
ABox. Therefore the level of matching had to be divided into five levels. The first level,
exact, occurs when the advertisement A and request R are equivalent concepts. Second
level, plugln, occurs if the request R is a sub-concept of advertisement A. Third level,
subsume, occurs when the request R is super-concept of advertisement A. The fourth
level is intersection, which means that the intersection of advertisement A and request R
is satisfiable. Finally the fifth level is disjoint, which is the opposite of intersection; if the

intersection of advertisement A and request R is not satisfiable.

The design of the prototype Matchmaker revealed a problem with the use of DAML-S in
matchmaking: DAML-S service profiles contain too much information for effective
matching. This problem was solved by separating various components of the description;
in particular the description of the service being provided was separated from the

descriptions of the providing and requesting “actors”.

Finally, the performance of the prototype implementation was evaluated using a simple
but realistic e-commerce scenario. This revealed that, although initial classification of
large numbers of advertisements could be quite time consuming, subsequent matching of

queries to advertisements could be performed very efficiently. On the basis of these

85

preliminary results, it seems possible that DL reasoning technology could cope with large

scale e-commerce applications [37].

7.4 Ontology Supported Intelligent Information Agent

The authors of [38] also try to combine the power of semantic web technique in general,
and ontologies in specific, in order to make the web services semantically approachable.
The techniques are based on knowledge base and machine learning approaches; the agent
is given a minimum of background knowledge, and the agents count on learning the
appropriate behavior from the user in the long run. Another benefit from the learning
approach is that it allows the agent to provide explanations for its reasoning and behavior

in a familiar lJanguage for the user.

The agent in the suggested solution is also based on the mechanisms of observation,
training and feedback. The observation mechanism keeps track of the documents or web
services that the user usually visits in order to be used later on. The training mechanism
trains the agent by inserting the subjects that the user is interested in. Those two
mechanisms could make it possible for the agent to create a user profile that matches the
user’s request. The feedback mechanism basically takes care of directing the feedback
from the user to the agent either directly or indirectly and collects the data that the agent

needs to learn.

The agent records the data into a knowledge base. This knowledge base is organized

86

based on an ontology so it could be used for further requests.

The main implementation of the system is based on Java and OIL. It was taken in
consideration that the most common way of developing a system with web services is via
the Common Gateway Interface, in which procedural code is written to invoke various
functions of the web protocols. Based on that, it is known that the feature of a web site
that contains a CGI entrance has an “action” tag in the HTML document. In case no CGI
entrance was found the suggested solution may check if that web page has a hyperlink
that points to another web page. The feature of a hyperlink is having a tag that consists of

“<A” and “href” attribute and ends with a closure tag “" in the HTML document.

Each HTML document could have a different format from the other. Therefore it might
be difficult to find the appropriate CGI entrance since some CGI programs could add
different attributes such as “?keyword="and so on. That is why the authors are still

working on that problem.

7.5 Search Agent Systems for Semantic Information Retrieval

The paper [39] describes a system that retrieves information over the internet. The main

idea is to be able to search the web semantically and syntactically at the same time.

Figure 7.4 [39] shows the high level architecture of the proposed prototype.

87

User r_"@—|_> Search Engine

Interface Wrapper

‘

p
Pre-Processed

X WEB-Pages | ¢ Links
r— Web Splder f
Document
Preprocessor #

Post-Processed

WEB-Pages

r__
Miner
I—b Results I

Figure 7.4: High level system architecture [39].

The architecture is based on intelligent agents. It consists of four agents, the Search

Engine Wrapper (SEW), Web Spider, Document Preprocessor and the Miner.

The user submits a query to the system, using the graphical interface, apart from the
keywords and the sentences that would be searched for as a whole. The user also states
the depth of which each site has to be searched along with the type of language and the
search area too. This query will be translated in order to be applied to many search

engines through the search engine wrapper. These search engines are queried and the

88

required results collected and parsed in order to have the required links. Afterward the
web spider downloads the collected pages, checks the links of each found web page in
order to find the pages, if any existed, in case if the pages were not found by the search
engines. This task continues until the search reaches the user depth specified by the user.
After this step the downloaded pages are submitted to the document preprocessor where
they are processed by extracting the useful data within a single document. Afterward the
miner agent rates the retrieved pages with respect to their semantic similarity based on
the definition of context that was retrieved from the user using a semantic knowledge

base. Finally it returns the results to the user.

Each of the described works has its own unique approach. All of them follow the same
principle of using the semantic web in order to improve the Matchmaking technique. In
the same way, the suggested solution in this thesis has its own unique method. The
suggested solution uses the combination of querying both the T-Box and A-Box at two
different levels. The advantage of doing so is increasing the quality and the performance
of the Matchmaking. Because by querying the T-Box and using the benefit of
subsumption of concepts the solution is filtering the number of candidate agents, instead
of having to ask every agent advertised in the Matchmaker. Beside that, since the T-Box
is a set of definition of concepts structured in a logical way then the query does not need
to have the concept being looked for as part of the query, the query can have the logical
parents and features of the service and the T-Box will return the relevant concept.
Querying the A-Box is an action of confirming if the candidate agent is what the seeker
agent is looking for. Since querying the A-Box retrieves instances of the ontology the

results will be more accurate than those retrieved from the T-Box.

89

8. Conclusion

8.1 Conclusion

In this thesis, a bottleneck of using web services with agents based on the existing
matchmaking techniques was explained in section 2.4. The main problem of the current
matchmaking techniques is that most of them are based on string comparison, which
might lead to incorrect and inaccurate results. The proposed solution was to use
description logic, OWL in specific, in the matchmaking procedure. By using OWL, the
searching technique will not be based on string comparison; it will be based on the
semantics of concepts and the relationships between concepts (i.e. if it was a subsumption

relationship or a role-based relationship).

The suggested solution was fully implemented under the architecture of DECAF in Java.
The description logic part was implemented in OWL using Protégé. Moreover, RACER

was used for querying the designed ontologies both in the T-Box and ABox.

A real world scenario was implemented for the fungal web project. A provider agent
(agent A) represented two web services and provided a service that takes a protein name
as an input and returns the SRS sequence of that protein and the BlastP algorithm
information. A seeker agent was searching for such a service, and by using the

implemented Matchmaker, the seeker agent was able to find agent A among several other

90

agents based on the query and retrieved the results by executing the web services using

OWL-S.

Based on the implementation that was done and from the results that were made, it makes
the concept of using semantic web and description logic along web services and agents

for matchmaking purposes promising.

8.2 Future Work

There are two points that could be considered as future work for this thesis. First a
friendly user interface that functions as nRQL and ConceptBasedQuery generator based
on simple user input taken from that interface. In that way the user would not need to
have an advanced knowledge in these query languages, therefore, the solution will be

easier to use and the number of users that can use it will increase.

The second point is adding the ability for the Matchmaker to use the common search
engines, such as Google or Yahoo, to search for the required service in case the
Matchmaker was not able to find any registered provider agent that provides that service.
The queries for the common search engines could be automatically generated from the

ConceptBasedQuery and nRQL query.

91

9 References

[1] Tools for Developing and Monitoring Agents in Distributed Multi Agent Systems. J. R.
Graham, Daniel McHugh, Michael Mersic, Foster McGeary, M. Victoria Windley,
David Cleaver, K. S. Decker. University of Delaware Newark, DE, 19716, USA,
publisher: Springer-Verlag London, UK, 2000.

[2] Ontology Development 101: A Guide to Creating Your First Ontology.
Natalya F. Noy and Deborah L. McGuinness. Stanford Knowledge Systems
Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical
Report SMI-2001-0880, March 2001.

[3] Creating Semantic Web (OWL) Ontologies with Protégé. Holger Knublauch, Mark A.
Musen, Natasha F. Noy. Sanibel Island, Florida, USA, October, 2003. Appeared in
2" International Semantic Web Conference (ISWC2003).

[4] RACER User's Guide and Reference Manual Version 1.8. Volker Haarslev and Ralf
Moller. Available at http://www.racer-systems.com/ (last accessed August 14, 2005).

[5] 4 High Performance Semantic Web Query Answering Engine. M. Wessel and
R. Méller. In 1. Horrocks, U. Sattler, and F. Wolter, editors, Proc. International
Workshop on Description Logics, 2005.

[6] Java-based mobile agents. Wong, D., Paciorek, N., and Moore, D. Communications
of the ACM Volume 42, Number 3 Pages 92-102, Mar. 1999.

[7] Mobile Agents for Network Management .A. Bieszczad, B. Pagurek, and T. White
IEEE Communications Surveys, vol. 1, no. 1, pages 2-9. 1998.

[8] Concordia. Koblick, R., Communications of the ACM (CACM), Vol 42, Issue 3, pps
96-97, March 1999.

[9] An HTTP-based Infrastructure for Mobile Agent. Anselm Lingnau, Oswald Drobnik,
Peter D6mel. Fourth International World Wide Web Conference, December, 1995.

[10] Network Modeling for Management Applications Using Intelligent Mobile Agents
White T., Pagurek B, and Bieszczad A. Journal of Network and Systems
Management, September 1999.

[11] Software Agents: A review, Technical Report. Green, S. et al., Department of
Computer Science, Trinity College, Dublin, Ireland. May 1997.

[12] Real-Time Scheduling in Distributed Multi Agent Systems, John Graham, Ph.D.
thesis. Dissertation, University of Delaware, January, 2001.

92

[13] An Introduction to Description Logics. D. Nardi, R. J. Brachman. The Description
Logic Handbook, edited by F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi,
P.F. Patel-Schneider, Cambridge University Press, 2003, pages 1-40.

[14] OWL Web Ontology Language Overview. Mc Guiness D. & ZSPLITZvan Harmelen
F. (2004). W3C Recommendation http://www.w3.org/TR/owl-features/ (last
accessed August 14, 2005).

[15] Resource description framework (RDF) model and syntax specification. O. Lassila,
and R. Swick, W3C Recommendation, World Wide Web Consortium
http://www.w3 .org/TR/REC-rdf-syntax, 1999.

[16] RDF vocabulary description language 1.0: RDF Schema. D. Brickley and R. V.
Guha. W3C Recommendation 10 February 2004, 2004. available at
http://www.w3.0rg/TR/rdf-schema/. (Last accessed August 14, 2005).

[17] The DARPA Agent Markup Language. J. Hendler and D. McGuinness. In IEEE
Intelligent Systems Trends and Controversies, November/December 2000.

[18] DAMLAOIL (March 2001) Reference Description. Connolly, D., van Harmelen, F.,
Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., und Stein, L. A.: 2001.
http://www.w3.org/TR/daml-+oil-reference. (last accessed August 14, 2005).

[19] Web services glossary of W3C. W3C Web Services Architecture Working Group.
working draft 14 November 2002. Available at "http://www.w3.0rg/TR/ws-gloss/".
(last accessed August 14, 2005).

[20] XMethods , http://www.xmethods.net/. (last accessed August 14, 2005).
[21] GE Global eXchange Services, http://www.gxs.com.(last accessed August 14, 2005).

[22] Universal Resource Identifiers in WWW. T. Barners-Lee. A Unifying Syntax for the
Expression of Names and Addresses of Objects on the Network as used in the
World-Wide Web. Internet Requests For Comments (RFC) 1630, June 1994.

[23] OWL-S: Semantic Markup for Web Services, version 1.1 D. Martin, M. Burstein, J.
Hobbs, O. Lassila, D. McDermott, S. Mcllraith, S. Narayanan, M. Paolucci, B.
Parsia, T. Payne, E. Sirin, N. Srinivasan, K. Scycara: available at
http://www.daml.org/services/owl-s/1.1/overview/ (last accessed August 14, 2005).

[24] Web Service Description Language (WSDL) Moreau, J.-J.; Schlimmer, J.: Version
1.2: Bindings. W3C Working Draft 11 June 2003. World Wide Web Consortium,
Boston, USA, 2003.

[25] OWL-S Semantic Markup for Web Services (Version 1.0), Ankolenkar, A., Paolucci,
M., Srinivasan, N., Sycara, K., Solanki, M., Lassila, O., McGuinness, D., Denker,
G., Martin, D., Parsia, B., Sirin, E., Payne, T., Mcllraith, S., Hobbs, J., Sabou, M.,

93

and McDermott, D.: OWL Services Coalition. 2003.

[26] DECAF - A Flexible Multi Agent System Architecture, John R. Graham, Keith S.
Decker, and Michael Mersic. Autonomous Agents and Multi-Agent Systems,
7(1/2):7— ACM publication. 27, July-September 2003.

[27] Requirement Specification for the DECAF Matchmaker, Mikko Laukkanen, Jukka
Eskelinen, May, 1999 Updated by Foster McGeary, June, 2000,University of
Delaware, Department of Computer and Information Science

(28] Creating semantic web contents with Protege-2000, Noy NF, Sintek M, Decker S,
Crubzy M, Fergerson RW, Musen MA. IEEE Intelligent Systems. 2001;16(2):60-71
(March/April 2001). Available from: http://computer.org/intelligent .

[29] W3C Offices’ Overview Slides, http://www.w3.org/Consortium/Offices/Presentations
(last accessed August 14, 2005)

[30] 4 Semantic Web Approach to Service Description for Matchmaking of Services.
D. Trastour, C. Bartolini, and J. Gonzalez-Castillo: In Proceedings of the Semantic
Web Working Symposium, Stanford, CA, USA, July 30 - August 1, 2001.

[31] JavaBean-Based Simulation with a Decision Making Bean. Miki Fukunari,
Yu-liang Chi, Philip M. Wolfe. Department of Industrial and Management Systems
Engineering Arizona State University U.S.A. Proceedings of the 30th conference on
Winter simulation, 1998.

[32] OWL-S API, Maryland information and network dynamics lab semantic web agents
project (mindswap) available at http://www.mindswap.org/2004/owl-s/api/, last
accessed (August 14, 2005).

[33] Class overview of OWL-S-1.0.1 . (mindswap) available at:
http://www.mindswap.org/2004/owl-s/api/doc/javadoc (last accessed August 14,
2005)

[34] A Configurable Matchmaking Framework for Electronic Marketplaces. Dumas,
Marlon and Benatallah, Boualem and Russell, Nick and Spork, Murray (2004).
Electronic Commerce Research and Applications 3(1):95-106.

[35] Description Logics for Matchmaking of Services. Gonzalez-Castillo, J., Trastour, D.,
Bartolini, C.: In: Proc. of the Workshop on Applications of Description Logics at
KI-2001, Vienna, Austria (2001)

[36] Semantic Description of Location Based Web Services Using an Extensible Location
Ontology. Lemmens, R.L.G. and de Vries, M. (2004). In: Proceedings of Miinster
Gl-days, 1-2 July 2004 : Geoinformation and mobility. pp. 261-262.(IfGI prints ; 22).

[37] 4 Software Framework For Matchmaking Based on Semantic Web Technology. Li,
Lei and Horrocks, Ian (2003). In Proceedings International WWW Conference,

94

Budapest, Hungary.

[38] Ontology Supported Intelligent Information Agent. L. Weihua. In Proceedings on the
First Int. IEEE Symp. on Intelligent Systems, pages 383--387. IEEE, 2002.

[39] An Intelligent Search Agent Systems for Semantic Information Retrieval on the
Internet. Carmine Cesarano, Antonio d’Acierno, Antonio Picariello.In Proceedings
of the 5th ACM international workshop on Web information and data management
November 7-8, 2003, New Orleans, Louisiana, USA. Copyright 2003 ACM 1-
58113-725-7/03/0011

[40] Towards Distributed, Environment Centered Agent Framework. John Graham and
Keith Decker, Appearing in "Intelligent Agents IV, Agent Theories, Architectures,
and Languages," Springer-Verlag, 2000, Nicholas Jennings, Yves Lesperance.

[41] UDDI4J: Matchmaking for web services Doug Tidwell, UDDI4J:
http://www-128.ibm.com/developerworks/library/ws-uddi4j.html, IBM
Developerworks, January 2001. (Last accessed August 14, 2005)

[42] Introduction to UDDI: Important Features and Functional Concepts, October 2004,
Oganization for the Advancement of Structured Information Standards. Available at:
http://uddi.org/pubs/uddi-tech-wp.pdf (last accessed August 14, 2005).

[43] CORBA Trading Object Service. OMG, Object Management Group and X/Open
Standard, Document orbos/96-05.6, 1996.

[44] ODP, Open Distributed Processing Reference Model. RM-ODP. International
Standard 10746-2/ITU-T Recommendation X.902.

[45] Web services and matchmaking. Simon Field, Yigal Hoffner. Matching Systems
Ltd., Zurich, Switzerland. IBM Zurich Research Laboratory, Zurich, Switzerland
Journal: International Journal of Networking and Virtual Organisations 2003 -
Vol. 2, No.1 pp. 16 —32.

[46] RACER System Description. Volker Haarslev, Ralf Méller. Proceedings of
International Joint Conference on Automated Reasoning, IICAR'2001, R. Goré, A.
Leitsch, T. Nipkow (Eds.), June 18-23, 2001, Siena, Italy, Springer-Verlag,
Berlin,pp. 701-705.

[47] Practical reasoning for expressive description logics. 1. Horrocks, U.Sattler and S.
Tobies. Proceedings of LPAR’00, vol. 1705 of LNAI, Springer, 1999

(48] EBI Workshop for Health and Life Sciences Online. University of Nottingham
Medical School at Derby, 18/03/04 Taken from The Joint Information Systems
Committee.

[49] Basic local alignment search tool. S. F. Altschul, W. Gish, W. Miller, E. W. Myers,
and D. J. Lipman. Journal of Molecular Biology, 215(3):403--410, October 1990.

95

[50] The Semantic Web: an introduction. Sean B. Palmer,2001-09. Article available at:
http://infomesh.net/2001/swintro, last accessed (August 14, 2005).

[51] Tim Berners-Lee, James Hendler & Ora Lassila: "The Semantic Web".
Appeared in: Scientific American 284(5):34-43 (May 2001) available at
http://www.lassila.org/publications/2001/SciAm.shtml
last accessed (August 14, 2005).

[52] Simple Object Access Protocol (SOAP) 1.1, Don Box, David Ehnebuske, Gopal
Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Frystyk Nielsen, Satish
Thatte, Dave Winer, Editors. World Wide Web Consortium, Note 08 May 2000.

Available at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ last accessed
(August 14, 2005)

[53] Semantics for hierarchical task-network planning. Kutluhan Erol, James Hendler,
and Dana S. Nau. Technical Report CS-TR-3239, Computer Science Department,
University of Maryland, 1994.

96

APPENDIX A: OWL-S API

public class RunService {

Saenice sernvice,

FProcess process,

String outValue,

ValueMap values,
OWLEReader reader;
FracessExecutionEngine exec;

publlc Ru nSenrloe() {

gl SrY S

o R

exec oW LSFactow createExecuuonEnglne(}

Spract & s ey EpE e i ST
exec addExecutnoni_tstener(new ProcessExeCLmanLlsiener(¥
String TAB=" ™
alring indent =™

pubdlic void setCurrentExecuteService(Process p) {
System.out. printin(indent + "Start executing process " + p),
indent += TAB; }

public void printMe g Strmg message) {
ifimessage.equals("[DON
indent = indent. substnng(indent.length()3-TAB length{}}.
System.out. printin{indent + message) }

public void finishExecution{int retCode) {
System.out prirtin{"Finished execution™. } 1, }

public void executeService() throws Exception

service = readerread{UR} create{"http./ivebServiceServer.comiService. owl™)).

process = sarvice.getProcess(),

Himoe (e o 7 Pag el

ﬁatues = OWLSFaéf ry'creaieVaiueMap{

S v Smus e Sud o e el param R
values setValue(pro-cess getinputs(} parameterAt 0}, Heilo Wodd“)

GhEmsLday e Serege E00 IR RN

values = exec. exec:ute(process va!ues)

i OO arEEEg
) outValue va!ues getValue(process getOulputs{} outputAt O} to8tring();

public static void main{String(] args) throws Exception {
RunService Service! = new RunSenace(),
Servicet.executeService();

1}

Figure A.1: Example of OWL-S API

97

As seen in Figure A.1, first of all a variable for Service, Process, ValueMap,
OWLSReader and ProcessExecutionEngine has to be created [33]. The Service variable
represents the OWL-S service as seen in Figure A.1. The process variable is acting as the
Process in the regular OWL-S and it takes its value from the Service. ValueMap is the
interface that provides a way to assign values to OWL-S parameters. When a certain
process needs to be executed the values for the input parameters are specified using this
interface. Also the result of that execution is given by ValueMap. OWLSReader is an
interface which takes its value from the OWLSFactory, it has several methods but the
most important one is the read method. The read method in OWLSReader reads the
OWL-S description of the service from the given URL It is better to have one service for
every file in order to avoid any inconsistency because if the OWL-S file has more than
one service the read method will randomly return the service description of one of them.
In case the user wants to retrieve all of the services in a file then the method returnAll has
to be used. ProcessExecutionEngine has only two methods, one is addExecutionListener
where it gives the user the chance to add a certain behavior whenever an execution is
done. The other method is execute which executes the OWL-S process with the given
input value bindings. In case the user did not specify a ValueMap, the default value of the

processed will be used if it exists.

In case of having a web service that has to be translated it into OWL-S, the user can use
an existing method in OWL-S API where it takes the WSDL description of the web
service and the user specifies which service he/she wants to translate, in case of having
more than one service in the same WSDL file, then it automatically creates an OWL file

with the OWL-S service description.

98

This section will show how to execute the web service based on OWL-S using the OWL-
S API by explaining the simple code in Figure A.1. First of all an OWLSReader and a
ProcessExecutionEngine is initiated using the OWLSFactory interface by creating a
generic OWL-S reader and an execution engine. Afterward the execution listener that
gets attached with any kind of execution is specified. This behaviour will occur whenever
an execution command is sent. After that the service description of the OWL-S is read
using the method read in OWLSReader as seen in Figure A.1, passing the location of the
OWL-S OWL file. The processes are obtained from the service and specified in the
process variable. By declaring these variables the users have initialized the service. What
has to be done next is to initialize the input values by creating a value map that can bind
an input value with the input parameter using the method setValue. Finally the service
gets executed by sending the process along with the ValueMap which includes the input

values with the corresponding input parameter.

99

APPENDIX B: FUNGAL WEB APPLICATION SCENARIO

Upper Ontology At Matchmaker

Class
Thing = ubClassOf—m—
subClassOf
subClassOf
Class
Class ————— Service
Input_Types subllassOf
-]
rarge
subClassOf
oS subClassOf
Sequence |= subGlassOf
Class Class Class
AcCcessionNumber WebService DataBase Service
Class
subClassOf KeyWords
range—
Ciass subClassOf
ProteinSequence T CbisctFropeny
dormal < Takes_as_input
ShinciFona Y
ojecTriopenty Class
- 4’9“”9’?}5““ —domain-»l " MyWebService

Figure B.1. Upper ontology

Figure B.1 shows the Upper ontology that was used for the Fungal Web application

scenario. It shows the structure of the used concepts. The most important concept used is

100

“MyWebService”. “MyWebService” is the concept that the advertised agent will reach
when advertising at the Matchmaker. The reason is that it subsumes the concepts that the
provider agent is seeking. When the Matchmaker queries the ConceptBasedQuery
,provided by the seeker agent, it will retrieve “MyWebService” concept. Afterwards, the
Matchmaker will check in its DataBase any provider agent advertising its service under

that concept, which will be the SRS provider agent in our example.

101

Specific Ontology At Provider Agent

Class
Thing |e ubClassOf
accessionnumber | cubCissGT
/' subClassOf
/ b
Class Class o
i Blast
AccessionNumber p TGS subCSsOL \ - uRlassOf Class
i /3 ; Fasta » SWISSPROTRELEASE
e
[blastp }
range Class Class
ProteinSequence Class WebService
3 SRS
7|
. srs e — /
kb ClassOf
W/ o
rangrenge ;
ldomain———— T — g Class range
omain————————f i MyWebService 4 domai
g —
3
domain
domain
‘OvjectProperty Gijectproporty OoiectProperty |
“opplles —f——— | amn Roioves | —————_fom.08 |
{7 ObjectProperty

i My webservice ! “ProteinType

‘OojectProparty

Figure B.2. The provider agent’s ontology.

Figure B.2 shows the provider agent’s ontology, notice the existence of instances in this
ontology since the querying in this ontology will be based on the A-Box. In our scenario
when the Matchmaker finds the provider agent advertising under the web service

retrieved from the previous Figure. Matchmaker will send the nRQL query to the

102

provider agent. By its turn the provider agent will send the nRQL query to the RACER

that contains this ontology and will retrieve the instance “My webservice”.

OWL-S

OWL-S is generated automatically using the API provided by mindswap. It is basically a
Graphical User Interface that takes the WSDL of the web service as an input, shows the
user the available web services in that WSDL file, the user chooses the required web

service, and the API tool automatically generates the OWL file that represents the web

service in OWL-S. Figure B.3 shows the API tool.

.ac.jp/wsdi/SRS.wsdl

earchSimpleAsync
_lsearchParam

i searchParamAsync
lsearchSimple.

rdfs hitp:itwaww w3.0rg/2000/01/rdf-schema
“isoap_enc hitpdfschemas.xmisoap.orgfsoapiencading/
1ijxsd htp:fwww.w3.0rg/2001XMLSchema

Hsoap-eny hitp:ff'schemas xmlsoap.orgisoapfenvelopes

Figure B.3. OWL-S API Tool

103

Web Service Used

The web services that were used to achieve the required tasks were:

1) http://xml.nig.ac.jp/wsdl/SRS.wsdl

The SRS web service takes as an input the SRS query and returns the protein sequence.

2) http://xml.nig.ac.jp/wsdl/Blast.wsdl

The Blast web service takes the output of SRS web service and returns the information of

the protein sequence in BlastP format.

Results Format

The format of the results is shown in the following two pages. This output is a result from
an input of Accession Number = “P56547” to the agent “Fungal”. Note that the output

format is only part of the complete results for demo purpose.

104

Beginning of Output Format

| Provider executeWebservice Starting |

Creating a Generic OWL-S Reader
Creating an Execution Engine
RECIEVED PARAMETERS == P56547
searchParam

Start executing process Process

[DONE]

Executed service 'searchParam’

The Result is : nullI>AZUR1_ALCXX Azurin [(AZN-1). 129
bpAECSVDIAGNDGMQFDKKEITVSKSCKQFTVNLKHPGKLAKNVMGHNWVLT
KQADMQGAVNDGMAAGLDNNYVKKDDARVIAHTKVIGGGETDSVTFDVSKLA
AGEDYAYFCSFPGHFALMKGVLKLVD

Sending the sequence to Blastp...

searchSimple

57:49

Start executing process Process

[DONE]

The Results is : BLASTP 2.2.6 [Apr-09-2003]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs", Nucleic Acids Res. 25:3389-3402.

Query=

105

(4 letters)
Database: swiss_all.seq
188,477 sequences; 68,230,664 total letters

Searchingdone

Database: swiss_all.seq
Posted date: Aug 16, 2005 5:32 AM
Number of letters in database: 68,230,664

Number of sequences in database: 188,477

Lambda K H

0.328 0.154 0.395

Gapped
Lambda K H

0.267 0.0410 0.140

Start executing process Process

[DONE]

The Results is : BLASTP 2.2.6 [Apr-09-2003]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs”, Nucleic Acids Res. 25:3389-3402.

106

Query=
(150 letters)

Database: swiss_all.seq

188,477 sequences; 68,230,664 total letters

SEArChING....coveveeeneereriereriereree s done

Score E

Sequences producing significant alignments:
sp|P56547|AZUR1_ALCXX Azurin I (AZN-1).
sp|P00279]AZUR_ALCSP Azurin.
sp|POA320|AZUR_BORPE Azurin precursor.
sp|P0A322|AZUR_BORPA Azurin precursor.
sp|POA321|AZUR_BORBR Azurin precursor.
sp|P00283|AZUR_PSEDE Azurin.
sp|P00282|AZUR_PSEAE Azurin precursor.

sp|P00280JAZUR_ALCDE Azurin precursor.

spP56275|AZUR2_ALCXX Azurin Il (AZN-2).

sp|P00286|AZUR_PSECL Azurin.
sp|P00285|AZUR_PSEFC Azurin.

sp|P80546|{AZUR_PSEFA Azurin.

End of Output Format

107

(bits) Value
266 2e-71

263 2e-70
214 8e-56
214 8e-56
214 8e-56

199 2e-51
197 6e-51
189 2¢-48
186 2e-47

183 1le-46

180 1le-45

177 7Te-45

