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Abstract

Fault Diagnosis in Spacecraft Attitude Control System

Hamed Azarnoush

This thesis presents a method for fault diagnosis in spacecraft attitude control system.
The focus of this diagnosis problem will be on the actuator components. The considered
actuator is assumed to be a reaction wheel. Since the attitude model of the spacecraft to
be used is a coupled three-axis, three reaction wheels are required to provide actuation
signals in this system. A high-fidelity model of the reaction wheel is considered which
incorporates the effect of most disturbances involved in practice. A controller is designed
to guarantee the stability of the signals in the system. This controller is designed
according to nearly ideal model of the reaction wheel in a single axis system. The
performance of this controller is validated for the three-axis nonlinear model of the
spacecraft attitude control system using nonlinear model of the reaction wheel. The
contribution of this thesis is designing a nonlinear observer which can diagnose the faults
in the reaction wheel components. The nonlinear observer is designed based on a linear
observer obtained through linearization of the reaction wheel model. This nonlinear
observer serves as the fault diagnosis module which provides a model of the reaction
wheel. This module generates two residual signals which determine when the system is
under normal operating conditions and when the system is faulty. The residual signals
can detect three fault types in three different components of the reaction wheel. One of
these faults can be isolated from the other two as well. The behavior of the linear
observer subject to the same anomalies and faults is also investigated to justify the

development of the proposed nonlinear diagnosis module.
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Chapter 1

1 Introduction

1.1 Statement of the Problem

In this thesis, the problem of Fault Detectionand i‘ls‘olat_ion‘ (FDI) in a spacecraft
attitude control system is addressed. The attitude coi;trol system (ACS) is composed of
different components such as sensors (e.g. horizon sensors, sun sensors, magnetometers,
etc.) and actuators (e.g. momentum wheels, electromagnets, etc.). The problem of FDI
can be developed for different components of the ACS. The focus of fault diagnosis in
this thesis will be on the actuators of the ACS. Reagtjpn wheels play an important role i.n
the attitude control system. They are, on the other hand, very susceptible to faults. This is
the main motivating factor that the solutions to FDI problem in these devices are sought
in this thesis. Therefore, the problem will be that of constructing a fault diagnosis module
for the reaction wheel. This module will act as the supervising unit in the FDI scheme.
Any time that a fault or anomaly takes place this module is reSansib1¢ of generating a
warning signal to report the existence of a fault in the system.

Since the model of the reaction wheel employed here is a high-ﬁdelify model, this
module should be designed in a way that it can sense minor faults in different parameters

of this device. The ACS is also under the influence of various disturbances and noises.



The diagnosis scheme should not erroneously react to these disturbances or noises as if a
fault has occurred in the system. Therefore, there is usually a trade-off between
accurately detecting small faults or anomalies, and filtering the noises or disturbances in

the system.

1.2 Justification

The problem of fault detection, isolation and recovery (FDIR) has been a subject of
interest in recent years. Modern control systems are becoming more and more
complicated and control algorithms more and more sophisticated. As a result the issues of
availability, cost efficiency, reliability, operating safety and environmental protection are
of major significance. For safety-critical systems, the consequences of faults can be
extremely serious in terms of human mortality, environmental impact and economic loss.
Therefore there is growing need for on-line supervision and fault diagnosis to increase
the reliability of such safety-critical systems. Early indications confirming which faults
are developing in the system can help avoid system breakdown, mission abortion and
catastrophes. Space vehicles can be named as an example of safety-critical systems.

Advanced computers have allowed for more tasks to be accomplished onboard the
space vehicles. Ground activities such as navigation and maneuver planning, command
planning and sequencing, data summarization, and fault diagnosis and recovery can all be
done autonomously onboard the spacecrafts.

The distance may be the most significant factor that makes the existence of an
onboard autonomy essential. The farther the spacecraft is from the ground, the less

knowledge is available about its present environment. Also the distance causes huge



delays in communication between the ground and the spacecraft. For deep space probes
near planets like Pluto a radio signal may require five hours to accomplish its trip.

The importance of embedding fault diagnosis into goal oriented autonomous
spacecrafts has become critical. Future generations of spacecrafts need to show proper
reaction to unexpected events such as component failure or environmental interaction.
Most currently used controllers react in different situations according to their coded
routines. This is impractical when the spacecraft is facing an unexpected event.
Embedded planners make it possible for the controller to reschedule the mission. This is
sometimes called as the second generation diagnosis system, where the first generation is
identified by the fuzzy if-then rules. Model-based diagnosis (MBD) is a powerful method
of fault diagnosis. In MBD, a mathematical model of an aspect of the vehicle is generated
and its behavior is compared with that of the real system being observed. Fault is detected
according to observation of the difference between the model behavior and the real plant.

Onboard fault diagnosis can detect and isolate spacecraft faults in a very short period
of time. This ability to fulfill these tasks onboard allows the spacecraft to reschedule the
mission in presence of major anomalies and still maintain as many mission objectives as
possible.

The probability of fault increases with the time needed to accomplish the mission.
Hence there is growing need to have a health monitoring mechanism onboard. This need
for a self-healing autonomy has been the motivation to generation of different methods in
different fields including system identification, robust and adaptive control, and system

health monitoring.



In remote operations it is valuable from different aspects to have a system that
diagnoses and fixes unexpected problems. For operations that last for a long period of
time, functions such as navigation and subsystem management are much desirable to be
performed without intervention from a ground center. Some of the advantages are as
follows:

e Sometimes there is a short period of time available to establisﬁ communication
between the spacecraft and ground station, even under normal operation of the
system without having any fault present,

e Reduced cost of ground-based support during the long mission,

e Eliminating the long round trip delays bdvue to large distance between the
spacecraft and the ground, and

¢ Eventual loss of communication with the ground due to the existing unpredictable
environment around the space vehicle.

The main goal of an autonomous operation should be to maintain the spacecraft’s safety

and to perform the critical functions in priority.

1.3 Motivation for This Research

Reaction wheels play a vital role in spacecraft attitude control system. These wheels
are components that are vulnerable to faults. Therefore, it is of utmost importance to
develop a fault diagnosis algorithm for these sensitive components. Unfortunately there
are not a lot of references in which this problem is addressed.

In spacecraft three reaction wheels are needed to control the attitude in all directions.
However, four reaction wheels are usually mounted on the spacecraft. Three wheels

actively participate in the attitude control and the fourth wheel is a redundant device to be



applied during the time that one of the wheels is experiencing a trouble. A comprehensive
analysis on the behavior of the wheels and their sensitivity to faults, and reconfiguring or
healing the system according to type of the fault, may reduce the need for the use of the
fourth wheel as a redundant component.

In most of the literature the problem of FDI is discussed for actuators that have
simple models. The fault in the actuators is usually considered as unexpected variations
in the output signal of the actuator. In this thesis, faulty components are assumed to be in
the actuator model components. In other words, the problem of fault diagnosis at the
actuator level is discussed in more detail.

An observer-based method is applied as a model-based approach to solve the FDI
problem. This work may also motivate other researchers in applying other approaches to

fault diagnosis in this device.

1.4 Methodology

Development of fault detection, isolation and recovery (FDIR) algorithms has
received a lot of attention in the past two decades. During this time, numerous FDIR
approaches have been suggested by different researchers [1]-[51]. The traditional
approach to fault diagnosis is based on hardware redundancy methods in which multiple
redundant components are used to detect the fault when there is inconsistency between
the outputs of different components. Another approach known as analytical redundancy is
introduced to solve the problem of FDIR. In this approach analytical relationships
between different variables of the system are used for the purpose of fault diagnosis.
When these relationships are violated, it means that there is a faulty component in the

system. Since analytical redundancy approaches use the mathematical model of the



system as the point of reference to diagnose the fault, these approaches are usually called
model based approaches.

In this thesis a model-based approach is applied to fault diagnosis in the spacecraft
attitude control system. There is a variety of different model-based approaches suggested
by different researchers [8]-[17]. In this thesis an observer-based method is used as a
model-based approach to FDI problem. In this method, a linear observer is designed as a
conventional approach to solve the problem. The performance of this observer will be
evaluated and analyzed. Since the attitude control system is a nonlinear model, the linear
observer has some inefficiency in predicting the model behavior and consequently
solving the FDI problem. Hence a nonlinear observer is designed as an alternative to
compensate the weaknesses of the linear observer. Therefore, the performance of this
linear observer is used as a benchmark to evaluate that of the nonlinear observer.

When an observer is applied to monitor the performance of a system, the first step is
to determine which part of the system should be supervised. There may be different
components in any system that can be vulnerable to fault. Before the observer is
designed, it should be clarified that which components are fault-prone or which ones are
going to be monitored. The focus of diagnosis may be one component, a set of
components or the whole system.

In this thesis, the observer is designed to monitor the attitude control system (ACS).
This system is composed of different components. The FDI goal might be diagnosing the
fault in sensors, actuators or the spacecraft itself. It could also focus on a group of these

components. In this thesis, the FDI problem is centered on the actuator of the ACS. Thus



the observers will be designed to inspect the behavior of this component in the spacecraft
attitude control system.

In spacecraft, different devices may be used as actuators to control the attitude.
Reaction wheels are devices that are widely used in spacecraft as the actuators in the
ACS. These devices are vulnerable to faults. The model that is used for the reaction
wheel is a high-fidelity model that incorporates the effect of most disturbances and
details that are involved in practice. In this model it is assumed that three components are
subject to fault. The capability of the designed observers in diagnosing these faults will
be investigated.

Since the FDI problem is concerned with the attitude control system, to reach the
final goal of diagnosing the faults in the system the first step is stabilization of the ACS.
Thus, the first problem, to be discussed, deals with designing a controller for the ACS.
The spacecraft attitude control system is a fully nonlinear three-axis system with coupling
between different axes. Since it is too complicated to start designing a controller for this
system, a simplified version of this system is applied to determine the stabilizing control
law. In this prototype model, all nonlinearities are approximated by linear components.
The three-axis model will be reduced to a single-axis model. This is accomplished by
assuming that the spacecraft is symmetric. The reaction wheel model is also replaced by a
nearly ideal linear counterpart. After finding the simplified model, a controller can be
designed for this linear model according to classical control laws. The next step is to test
the performance of this control law and verifying if it satisfies the desired system
performance specifications. After validating the performance of this controller for the

linear model, it is used as the control module in the original nonlinear model. By



experimentally adjusting the parameters of this controller for the nonlinear model, this

controller can be optimized and then used satisfactorily in the fully nonlinear system.

1.5 Contribution of Thesis

In this thesis, a nonlinear observer is designed as the fault detection and isolation
module in a high-fidelity model of a reaction wheel in spacecraft attitude control system.
This module is applied to detect three types of faults in a nonlinear model of the reaction
wheel, used as an actuator in the spacecraft attitude control system. Since these devices
are very sensitive devices and they are very vulnerable to faults, a fault diagnosis
algorithm to monitor these devices is on high demand. To justify the use of complexities
involved in a nonlinear fault diagnosis module, the performance of the nonlinear observer
is compared with that of a linear one. In this comparative analysis, the advantages of the
nonlinear observer over the linear one are illustrated and emphasized.

Unfortunately not a lot of resources or previous published research on this specific
subject exists in the literature. Hopefully, this thesis will open a new sequence of future

work dealing with this problem.

1.6 Outline of Thesis

This thesis is organized as follows. Chapter 2 presents a comprehensive analysis of
different approaches used in fault diagnosis. Chapter 3 explains the spacecraft attitude
control system in which the fault diagnosis problem is defined. All component models are
explained in this chapter. In Chapter 4, the theory and design of state estimators and the

fault diagnosis architecture are described. Chapter 5 presents simulation results obtained



from applying the designed diagnostic scheme. Finally concluding remarks and future

work are included in Chapter 6.



Chapter 2

2 Fault Detection, Isolation and Recovery (FDIR)

In this chapter, various approaches to Fault Detection, Isolation and Recovery (FDIR)
are introduced. It starts by explaining the concept of fault tolerance and the role of FDI in
fault tolerant control systems. This follows by expressing desirable attributes of a
diagnostic system. Finally a comprehensive analysis of different approaches to FDI is

presented.

2.1 The Concept of Fault Tolerant Control Systems

It is significantly important for an operating system to continue performing
satisfactorily and fulfill specified functions when a fault exists in the system. However,
when there might be performance degradation in the system it should be capable of
maintaining the primary objectives as well as giving the operator sufficient time to find a
cure for the problem. Since a system needs to possess desired reliability, performance in
faulty conditions, maintainability and survivability, the fault tolerance concept has
received increasing attention in the past few years.

Some characteristics of a fault tolerant control are as follows [1, 2]:

10



Generality: The fault tolerant mechanism should be able to handle a variety of fault
sources and to handle both transient and permanent failures.
Appropriate response: the mechanism is supposed to respond to changes in the
environment, mission phases and system states within an acceptable period of time.
Versatility: The fault tolerant mechanism must be able to consider various modes of
adapting the system in response to anomalous behaviors. This adaptation for example can
be done in one of the following ways: (i) switching from one fault-handling mode to
another, (ii) modifying parameters of the currently used fault-handling mode, or (iii)
modifying service attributes.
Recent failure history: The basic idea is that if the recent failure history, informs that the
probability of fault in the near future is high, the fault tolerant mechanism should switch
from an optimist fault handling mode to a pessimist one. The reverse switching should be
executed when the probability is low.

In order to achieve the objectives of fabricating a fault-tolerant system, a powerful
fault diagnosis scheme is required. To explain the role of FDI in fault tolerant control

systems, first the FDI terminology is explained.

2.2 Fault Diagnosis Terminology

Although there is not a common terminology in all the literature, in this thesis we
tried to use the one that is consistent with most text books and articles [3].

A fault is an unexpected change of system function although it may not represent
physical failure or breakdown. Such a fault or malfunction hampers or disturbs the
normal operation of an automatic system, thus causing an unacceptable deterioration of

the performance of the system or even leading to dangerous situations. The term “fault”

11



is used rather than failure to denote a malfunction rather than catastrophe. The term
failure suggests complete breakdown of a system component or function, whilst the term
fault may be used to indicate that a malfunction may be tolerable at its present stage. A
fault must be diagnosed as early as possible, even if it is tolerable at its early stage, to
prevent any serious consequences.

A monitoring system which is used to detect faults and diagnose their location and
significance in a system is called a “fault diagnosis system”. Such a system normally
consists of the following tasks:

Fault detection: to make a decision that either something has gone wrong or everything
is fine.

Fault isolation: to determine the location of the fault, (e.g. which sensor or actuator has
become faulty)

Fault identification: to estimate the size and type or nature of the fault.

After becoming familiar with the fault diagnosis concepts, the role of FDI in fault tolerant

control systems and desirable characteristics of a diagnostic system can be discussed.

2.3 The Role of FDI in Fault Tolerant Control Systems

Fault diagnosis in a system helps detect and isolate the fault. After detection of fault
and possibly locating the source of fault, the system can be reconfigured or restructured.
In this case healthy and non-faulty components are chosen to take role in system
operation. In some cases a pre-calculated controller is switched on or some parameters of
the controller are changed to fit the new situation. The main problem in fault tolerant
control is on-line reconfiguration or restructuring of the controller. Achieving this

objective requires a lot of detailed information about changes in the system operating
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point or different parameters caused by component fault or normal process changes. The
task of FDI unit is to acquire this information for fault diagnosis and the task of the
supervision unit is to choose the appropriate reconfiguration or restructuring strategies
according to the diagnostic information it receives from the FDI unit. In real applications,
the probability of occurrence of some faults is much smaller than that of the others.
However, there is no guarantee that those types of faults do not occur in the system.
Some approaches do not require all detailed information about the nature of faults, time
and location of their occurrence for online reconfigurable controller design. However, the
reliability of the system should be ensured by an FDI module. In these approaches the
reconfigurable control is only switched on when the FDI unit detects a fault. Next,

desirable attributes of a fault diagnosis system are described.

2.4 Desirable Attributes of a Diagnostic System

A desirable fault diagnosis system should meet some expectations. Some desirable
attributes of a diagnostic system are explained in detail:
Early detection and diagnosis: It is important that faults in the system be diagnosed
quickly and accurately enough. However this is conflicting with having tolerable
performance during normal operation of the system.
Isolability: Isolability is the capability of the diagnostic system in distinguishing the
source of fault. However there is a trade-off between having a high degree of isolability
and rejecting modeling uncertainties. A classifier with a high degree of isolability may be

weak in rejecting modeling uncertainty.
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Robustness: There should be some robustness to noise and modeling uncertainty in the
diagnostic system. Robustness precludes the deterministic isolability tests in which the
thresholds are very close to zero.

Novelty Identifiability: The diagnostic system’s ability to recognize novel malfunctions
in the system is known as novelty identifiability. The novel malfunctions in the system
should not be categorized as other known malfunctions or should not be treated as if the
system is under normal operation conditions.

Multiple Fault Identifiability: This is a very difficult requirement for a classifier to be
able to identify multiple faults. Due to nonlinearities and coupling interactions generally
existing in spacecraft models, it is very difficult to model the combined effect of faults.
Explanation Facility: A diagnostic system should be able to explain where a fault
originated and how it propagated in the system.

Adaptability: The operating conditions of the system change due to disturbances or
environmental changes. A diagnostic system should be adaptable to changes in the
system.

Reasonable storage and computational requirement: Less computationally complex
algorithms and implementations lead to faster decision makings. However they
necessitate high storage requirements. A reasonable compromise between these two

requirements should be made.

2.5 A Review of Different Diagnostic Approaches

The analysis of various diagnostic techniques starts with comparing and contrasting
different approaches from different aspects. First we start by categorizing the FDI

approaches based on hardware or analytical redundancy.
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2.5.1 Hardware versus Analytical Redundancy

One traditional approach to fault diagnosis is hardware redundancy. In this method,
redundant components are utilized in the diagnosed system. These redundant components
can be sensors, actuators, etc. By polling among these redundancies, any faulty
component can be located through inconsistent information that is being generated.
Although this approach has been widely applied, it has some major problems. Obviously
using extra equipments costs more and creates maintenance problems as well.
Furthermore, redundant devices need additional space to be accommodated.

Although benefiting redundant devices is a reliable way of detecting the fault,
replicating hardware may not be the best idea for solving this problem. One way to
inspire the idea of hardware redundancy without confronting its disadvantages is to use
analytical redundancy. In this approach, an analytical replica of the model is produced.
Since this model can be generated in the computer, the problems involving with a
hardware component are avoided. This analytical model is built according to the
relationships and rules that should hold between different variables in the system during
normal operating conditions. Anytime these rules are breached in the system, the fault
diagnosis scheme detects an inconsistency between the system variables and those of the
analytical model and consequently detects the fault. Since in the analytical redundancy
approach, a mathematical model is generated to inspect the behavior of the system, this
approach is usually referred to as model-based approach. The idea of usiné ahéfytical
redundancy was first suggested by Beard [4]. Subsequently, the geometric interpretation
of this approach was offered by Jones [5] and Massoumnia [6]. Other model-based

approaches were developed by a number of investigators that will be introduced later.
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Another way to classify the methods used in fault diagnosis is according to the form
of process knowledge required. The form of process knowledge divides current methods

into process model-based techniques and process history-based techniques [7].

2.5.2 Process-model-based Techniques

These methods mainly rely on causal or model-based knowledge. The source of
knowledge in these methods is a deep understanding of the process. The process model-

based techniques can be divided to quantitative methods and qualitative causal methods.

2.5.2.1 Qualitative Causal Methods

These methods rely on cause and effect reasoning about system behavior. Signed
digraphs and fault trees are among these methods. In fault trees [8], a primary root of the
fault is sought through backward chaining from the observed effects of the fault. In these
methods a lot of hypotheses are generated and a lot of qualitative ambiguities are
involved. This contributes to a more uncertain decision making. These methods are

inspired from human brain analytical reasoning which makes them more straightforward.

2.5.2.2 Quantitative Methods

These methods rely on the mathematical relationship between different variables in
the system. In these approaches a model gathers all the information about the system.
These models generate a signal called residual. Residuals are usually a criterion to show
divergence of the system variables from the mathematical model variables. Hence, they
can be used for the purpose of fault diagnosis. Different residual-based approaches have

been suggested by various researchers.
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The observer-based method, for instance, was investigated in depth by Frank [9].
Most of the nonlinear observer-based approaches assume that the faults can be decoupled
from modeling uncertainties and disturbances through a proper coordinate transformation
(Krener and Isidori [10]). While other approaches assume that the effects of modeling
uncertainties is less significant than that of faults. Since nonlinear systems are very
complex, numerous directly designing approaches have been developed. For example -
Besancon and Hammouri [11] studied the observer design problem utilizing the solution
of Riccati equation for Lipschitz nonlinear systems. High gain techniques have also been
used as in Praly et al and Khalil [12-14].

The parity relation approach was originally proposed by Mirnovsky [15]. In this
approach residual generator is generated through consistency checking on system input
and output data over a time window. Due to limited availability, this approach was later
independently proposed by Chow and Willsky [16]. Gertler [17] expressed this method in

the discrete time domain.

2.5.3 Process-history-based Techniques

In contrast to the model-based approaches in which a prior knowledge of the system
is required, process-history based approaches need a large amount of process history data.
There are different ways in which process data can be presented to the system. This is
known as feature extraction. The nature of this extraction can be either quantitative or

qualitative. Next, different feature extraction methods will be introduced [7].
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2.5.3.1 Qualitative Methods

Two major methods that apply qualitative history data are the expert systems and
trend modeling methods.
Rule-based methods

These methods are the primary focus of expert systems. An expert system is basically
capable of solving a problem in a very narrow domain. In these methods there is an
explicit mapping of known symptoms to root causes.

The main advantages of developing expert systems in fault diagnosis are: ease of
development, transparent reasoning, the ability to reason under uncertainties and the
ability to present explanation for the provided solutions.

Several papers have discussed the application of expert systems in fault diagnosis of
specific systems. Initial attempts applying these methods can be found in Henley [18],
Chester, Lamb and Dhurjati [19] and Venkatasubramanian [20]. The objectives pursued
by them were twofold. The system assigns the problem to either operator error,
equipment failure or disturbance. Second, the expert system finds a solution to return the
system back to normal operating conditions. Ideas on knowledge-based diagnostic
systems based on the task framework can be found in Ramesh, Davis, and Schwenzer
[21]. Basila, Stefanek, and Cinar [22] have developed a supervisory expert system that
uses object based knowledge representation to represent heuristic and model-based
knowledge.

Qualitative Trend Analysis
Another approach in qualitative feature extraction is the abstraction of trend

information. Trend modeling can be applied to provide explanations for the occurrence of
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different events in the system, diagnose malfunctions and predict future states. In this
analysis there are two steps: (i) Identification of trends, which should be robust to noise
and disturbance, and (ii) Interpretation of trends to perform the fault diagnosis.

A formal framework was built by Cheung and Stephanopoulos [23] for the
representation of process trends. Janusz and Venkatasubramanian [24] identified a

comprehensive set of primitives by which any trend can be represented.

2.5.3.2 Quantitative Methods

Methods based on quantitative feature extraction are discussed in this section. These
approaches solve the problem as a pattern recognition problem. In a pattern recognition
problem there are usually a set of predetermined classes. Data points should be classified
and assigned to one of those predetermined classes.

Statistical Techniques

In real process operation, systems are subject to random disturbances. In contrast to
deterministic systems, futute state of stochastic systems cannot be determined by past and
present states and future control actions. Since these systems are under random
influences, it might be logical to express these systems in a probabilistic setting. When
the system is not faulty, the probability distributions are the ones that are assigned to
normal operating conditions. Anytime an anomaly happens in the system, these
distributions change. This change might be considered in the parameters of probability
distribution. Hence the problem of fault diagnosis in these methods could be equivalent to
detecting the changes in the parameters of a static or dynamic stochastic system. The
design of on-line change detection algorithms was presented by Basseville and Nikiforov

[25].
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One of the first attempts to apply statistical approaches in on-line monitoring and
change detection was represented by quality control problems (Shewhart [26]).
Multivariate statistical techniques are used to compress data and reduce the
dimensionality to essential data for easier analysis.

Principal component analysis (PCA) was first proposed by Pearson [27] and has been
included in textbooks (Anderson [28] and Jackson [29]) and research papers (Wold [30];
Wold, Esbensen and Geladi [31]).

Originating from the work of Wold [32], partial least square (PLS) method, was
further developed in 1980s. PLS methods similar to PCA methods are useful in reducing
the dimensions of both process variables and quality control variables. PLS methods were
applied by Macgregor et al. [33] for process monitoring and diagnosis.

These methods approach the fault diagnosis problems as quality control problems.
They perform classification by using knowledge of a priori class distribution. For
example in Bayes classifier, density functions of the respective classes are used.

Neural Networks

Neural networks have become more popular in fault diagnosis recently. Because of
their learning and interpolation capability they have allowed for different
implementations over various processes. The applications of neural networks in fault
diagnosis can be classified into two dimensions: (i) the architecture of the neural network
such as back propagation, radial basis function, etc., and (ii) the learning algorithm such
as supervised and unsupervised.

Back-propagation networks are the most popular supervised learning neural networks.

Ungar, Powell, and Kamens [34] and Hoskins, Kaliyus, and Himmelblau [35] were
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among the researchers who applied these networks for the problem of fault diagnosis.
Fan, Nikolaou, and White [36] incorporate functional inputs in addition to normal inputs
to improve the performance of the neural network for fault diagnosis. Incorporation of
knowledge in neural network framework was discussed by Farrel and Roat [37] for better
diagnosis. Integration of feed-forward neural networks with recurrent neural networks
was proposed by Tsai and Chang [38]. Becraft and Lee [39] considered integration of

neural networks with the expert systems for fault diagnosis.

2.6 Intelligent and Learning-based Methods for FDIR

- Recently, intelligent methods have received increasing attention in the field of fault
diagnosis. The artificial intelligent methods such as fuzzy systems, neural networks and
expert systems have the potential to learn the plant model from the input-output data or
learn fault knowledge from past experience. These methods are an important extension to
the quantitative model-based approaches for residual generation. The learning-based
approaches to fault diagnosis are methodologies for detecting, isolating and
accommodating faults in nonlinear dynamical systems. The idea is to sense any
malfunction in the system by using online approximation structures and adaptive
nonlinear estimation methods. There are two main limitations in the use of learning
methods for fault diagnosis. The first limitation is computational complexity and the
second is derivation of analytical results on the performance properties of the fault
diagnosis scheme. The first problem is overcome by advances in computer technology.
However, derivation of analytical results on the fault diagnosis performance is difficult

due to nonlinear nature of the systems that are involved.
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A learning-based approach using neural networks for fault diagnosis was suggested in
[40] in which the stability properties of fault diagnosis scheme were investigated for the
restricted case of abrupt faults within modeling uncertainties. In [41], some robustness
and sensitivity properties of the fault diagnosis were investigated. Sensitivity refers to the
fault detection scheme ability to correctly determine the existence of a fault. Robustness
with respect to model uncertainty may result in less sensitivity to faults. Hence in general,
there is a tradeoff between robustness and sensitivity to fault. This tradeoff is usually
avoided by assuming that the effect of faults is decoupled from the effect of modeling
errors in the form of disturbances [42]. However, this assumption is not usually valid for
real practicall situations. Thus in some reports some priori known bounds are assumed for
modeling errors and the effect of faults are considered more significant than that of
modeling errors.

An input-output formulation for nonlinear fault diagnosis using learning-based

approaches was introduced in [43].

2.6.1 Fault Diagnosis using Neural Networks

Neural networks can be used for the purpose of fault diagnosis to avoid difficulties
involved with mathematical models. However these methods have their own
inadequacies and shortcomings.

Neural networks model the system as a black box. They do not demonstrate rules that
are governing the operation of the system and do not provide an understanding of the
system.

They also do not predict the behavior of the system under uncertain circumstances.

The required training time and complexity of training algorithm are further limitations to
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these approaches. Neural networks in which neurons are used as membership functions,
such as radial basis functions (RBF) and B-spline do not generalize satisfactorily when
they are presented with data outside the training space. On the other hand multilayer
perceptron (MLP) tends to do a better generalization. These networks should be updated
through online training. The neural network is not valid when an unknown fault condition
appears, because it is not trained to classify this type of fault. In systems requiring online
training, adaptive training algorithms should be used. Acquiring all faulty data for neural
network training is not usually possible. Thus, unsupervised learning which uses a
Kohonen network and the counter-propagation network [44] is necessary in order to

classify the faults not known a priori.

2.6.2 Fault Diagnosis using Fuzzy Logic

Fuzzy systems are useful in situations in which measurements are not precise or their
interpretation depends strongly on the context or human opinion. Supporting the direct
integration of the human operator into the fault detection and supervision process is the
main advantage of using fuzzy approach. Fuzzy decision makings are very similar to
expert systems and supervisory control. The issue that remains a challenge is to express
the nonlinear model by a number of linear models. The number of these linear models
should be minimized. Since the identification method using fuzzy logic depends on a
large number of variables, this optimization is not easy.

Recently, applications of fuzzy logic to fault diagnosis approaches have received
increasing attention. Observers can be used to generate symptoms based on the
estimation of the output from the system. The first methods applied fuzzy set theory to

express cause-effect relations in expert systems. The introduction of fuzzy logic can
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provide reliable fault diagnosis for industrial applications through improving the decision
making. However, the difficulty arises in training of the algorithm in the inference
ﬁechanism where knowledge is hidden in large amounts of data and knowledge is
embedded in trained neural network. A fuzzy feedforward neural network is used to
extract rules from an existing data base. [45] uses fuzzy logic for residual generation
which can be an important way of considering modeling uncertainty at decision making

rather than residual generation.

2.7 Al-based Fault Diagnosis

Design of fault diagnosis schemes for spacecraft operations is a complicated
procedure. In the last two decades, Artificial Intelligence (AI) techniques have been
applied to the above problem to simplify design procedures and improve the reliability of
space systems. Al systems can be classified to two groups: (i) rule-based (model-free) (ii)
model-based. Rule-based systems are designed according to statistical intuition, and
experience and knowledge of the experts encoded as a set of rules. However, gathering
these rules according to which the system is working and ensuring the completeness of
the set of these rules might be a difficulty in applying these methods. These techniques
are suitable for decision making and planning as an advisory role. On the other hand,
model-based diagnosis systems are more reliable and predictable. [46] outlines some

approaches to residual generation using methods of integrating quantitative and

qualitative system knowledge based upon Al techniques.
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2.8 Discrete Event System (DES) Approaches to Fault Diagnosis

In most model-based approaches to fault diagnosis, a continuous variable model in
the form of differential or difference equations is needed. However, in a lot of cases these
detailed models are not needed. In these cases, discrete event system approaches provide
enough information for fault diagnosis as well as convenience in the procedure. Discrete-
event systems are expressed by two featurés: (i) a discrete state set and (ii) an event-
driven state transition mechanism. Among DES-based approaches the fault-tree approach
seems to be the most popular [47]. In these approaches an illustrative display of the
system is provided which is easy to understand. However they have some shortcomings.
In these approaches the timing and order of the fault cannot be determined. Furthermore,
it is difficult to analyze the systems that go through more than one phase of the operation.
In [48] the timed event sequence was generated by the DES under supervision is
compared with a set of specifications for normal operation, called templates. Finite-state
automata have also been used for fault diagnosis. Using finite-state automata simplifies
the design of diagnostic systems. It is also straightforward to capture the ordering of
events using finite-state automata.

State-based approach is another method used for fault diagnosis [49]. In this approach
it is assumed that the state set of the system can be partitioned according to the failure
status of the model. The problem is to use sensor measurements and determine the block
of the normal/faulty partition that the state belonged to at the time the last measurement
was received. In [50], [51] and [52] passive online diagnosis was studies using an event-
based framework. Failure diagnosability is addressed in [51]. In this reference a failure is

called diagnosable if it can be detected and isolated after a finite number of events
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following the time it has occurred. In [53] the detectability of failures and design of
“minimum alphabet observers” are studied. There are other discrete-event based
approaches to fault diagnosis, such as using causal networks and relational models that

are not mentioned here.

2.9 Methodology Chosen in This Thesis

In this thesis a model-based approach is chosen for the problem of fault diagnosis. An
observer-based method is applied to solve this problem. In this observer-based method,
residual signals are generated to provide information about the status of the system as
being faulty or not.

In the next chapter the spacecraft attitude control system to be monitored by the FDI

system, will be introduced.
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Chapter 3

3 Spacecraft Attitude Control System

In this thesis, the fault diagnosis problem is defined in the spacecraft attitude control
system. The establishment of the Attitude Control field goes back to the late 1950s. On
October 4th, 1957, the first satellite, Sputink I, was launched into earth orbit. This field
has remained a topic of interest for a number of researchers ever since.

Attitude control of a spacecraft is control of the angular motion to impart a specific
angular position with respect to celestial bodies, the lines of force of magnetic or
gravitational fields, called standard or baseline reference system [54]. The control system,
which brings the spacecraft to the desired angular position, is called the attitude control
system.

One of the main factors in choosing a control system in a spacecraft is the required
accuracy for the attitude control system. A system, whose accuracy is several degrees, is
obviously less complicated and less expensive than the one with several hundreds of a
fraction of a degree.

In certain cases, the control system should be able to provide attitude control in more
than three directions, when different systems with different degrees of accuracy are

present on the spacecraft, or when more degrees of freedom are required on the
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spacecraft. For example when the solar panels need to be oriented toward the sun, but the
spacecraft has to be angularly positioned towards a certain point on the planet earth.

There are two ways to control the spacecraft attitude: 1) spin stabilization where the
gyroscopic stiffness against external disturbance torques is provided through rotation of
all or parts of the spacecraft, and ii) three axis control through which all rotational
degrees of freedom are controlled by using one actuator for each axis. In the second case
there is always some coupling present between different axes due to dynamic effect or
control torque actuator misalignment. This thesis is concerned with a three-axis control
scenario.

Spacecraft attitude control using angular momentum wheels. as actuators has been
studied extensively [55]. Flywheels have also many applications in the field of energy
storage systems for the production of electrical power. They provide energy as an excess
to the energy provided by solar panels in the spacecraft and can be used when the satellite
is in an eclipse period. The alternative role that these wheels can play makes them even
more popular to be used in spacecraft control field.

In this chapter, the structure of the spacecraft attitude control system is described. The
reference systems to be used are briefly explained. This follows by describing the
spacecraft dynamics and related equations of motion in the chosen reference system.
Based on the obtained spacecraft dynamics, a control system will be designed to stabilize

the system as well as satisfy the desired performance specifications.

3.1 Attitude Reference Systems

A reference system must be used in order to investigate the spacecraft dynamics.

However any reference frame could be valid to achieve this purpose, choosing an
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appropriate reference frame can simplify the whole process. Finding a convenient
reference frame simplifies the calculations and reduces algebraic transformations. Four

reference frames are defined here [56].

3.1.1 Spacecraft Fixed/Body Reference Frame

The origin of this frame is located at the spacecraft center of mass. The directions of
the axes are determined according to the spacecraft geometry. The x-axis and y-axis are
along the solar panels and the z-axis is along the height. This reference frame is shown in

Figure 3-1.

Figure 3-1: Spacecraft Fixed Reference Frame

3.1.2 Spacecraft Principal Axes Reference Frame

This reference frame is a body-fixed reference frame. Its origin is located at the
spacecraft center of mass. The directions of the axes are along principal directions of the
satellite body. The principal directions are the eigenvectors of the spacecraft inertia
matrix. The dynamic equations can be expressed more conveniently in this reference

frame [56].
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3.1.3 Orbital Reference Frame

In this earth pointing reference system, the x-axis (Roll) is along the satellites velocity
vector, the z-axis (Yaw) points towards the center of the earth and the y-axis (Pitch)
completes the right-hand triad. As could be seen in the Figure 3-2, the angular position of
spacecraft does not change the direction of the axes in this reference frame. The only
factor that determines the direction of the axes is the position of the spacecraft’s center of

mass.

Pitch Axis

Pitch Axis

y

Figure 3-2: Orbital Reference Frame

3.1.4 Inertial Reference Frame

This earth-fixed inertial frame has its origin located at the earth’s center. As is shown
in Figure 3-3, in this reference frame, the x-axis points to the common point of
Greenwich Meridian and the Equator, the z-axis in the same direction as the Earth’s

rotation axis, and the y-axis completes the right-hand triad.
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Greenwich
Meridian

Equator

Figure 3-3: Inertial Reference Frame

The next step in the analysis of spacecraft attitude control system is the derivation of

mathematical formula governing equations of the spacecraft body motion.

3.2 Spacecraft Dynamics

According to Newton’s second law in a non-rotating coordinate system, the
relationship between the torque 7 and the angular momentum H is:
F=H
If the body reference is rotating with angular velocity @ as observed from the inertial
reference frame, then this equation becomes:
T = 1—7 +oxH
In this equation the cross product is due to change in magnitude of the components of H .

By definition of cross product:
oxH=(o,H -0.H)i +(0,H, -0 H)]+H, -o,H)k
This yields:

T=(H,+o,H -0.H) +(H, +0 H, -0 H)j+(H, +o H, ~o,H)k
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This could be rewritten in Euler’s moment equations form as below:

r,=H +oH -0,H,

7,=H,+o,H -0 H,

r,=H,+o H -0 H,

The angular momentum components and the angular velocity components could be

related in the form below:

H=10-10-10,

H, =-1 o+ 0 -1 0,

H =-10-1,0+] 0,

If the spacecraft body frame is considered aligned with the principal axes, the products of

inertia become zero and this yields:

T, =0l +a)ycoz(1” —-Iyy)

r, =0l +o,0(,-1,) 3.1
T.=0,1_ +o,0, (Iyy -1.)

where x, y ,z now represent the principal axes of inertia. As can be seen in the above set
of equations, there is coupling between different axes. The effect of this coupling
becomes more significant when the angular speed values are large. After deriving the

mathematical expressions for the equations of motion of the spacecraft dynamics the

closed loop three-axis attitude control system can now be introduced.

3.3 Three-axis Attitude Control System

The main objective in this thesis is fault diagnosis and supervision rather than control.
Hence, a classical controller which is able to stabilize the system and provide the desired
output is satisfactory. In this section, first the closed loop attitude control system is

described, which is shown in Figure 3-4. The model of the spacecraft is obtained
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according to equations (3.1). The objective is to design a classical PD controller for this
system. The actuator used to control the attitude of the spacecraft is a reaction wheel. In
the upcoming section, reaction wheels are introduced in detail.

In Figure 3-4, the controller outputs pass through a saturation block. This is due to the
fact that the reaction torque does not accept torque commands outside the interval [-5v,
5v]. The disturbances that affect the system before the model of the satellite are the
combination of all external disturbances (namely, gravity-gradient, solar radiation,
magnetic field, etc.). According to [57] all external disturbances have a magnitude of less

than 10™. In this thesis, an aggregate representation of these disturbances is considered by

a random signal with the magnitude of 107>,

Desired Extemal Disturbances

Roll Angle *,? , Reaction | )\
Controller NG
> Wheel | N

Desired Extemal Disturbances

Pitch Angle :
: +'/\\j:‘/ {Controller R\;ava;:(:;(::'n '——’é—-' Spacecraft
Desired ) Extemal Disturbances
Yaw Angle IO Reaction

!
g Controller Wheel —]

Figure 3-4: The three-axis stabilized spacecraft attitude control system

To design the controller, it is first assumed that there is no coupling between different
axes. This is equivalent to assuming that the spacecraft is symmetrical around all the
axes. This assumption eliminates the coupled terms in the set of equations (3.1) in page
32. Another assumption that is made in designing the controller is that the reaction wheel
model is assumed to be a linear model which will be introduced later. When the
performance of the PD control law in the single axis system with the simple reaction

wheel model is guaranteed, then its validity for three-axis case and the nonlinear reaction
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wheel mode] will be investigated. Figure 3-5 demonstrates the single axis control of the

spacecraft.
External Disturbances
Desired Pitch Controller Reaction Wheel Spacecraft
Angle +
%’(TH FG) ) Fu(9) £y (s) T

F() K

Figure 3-5: Spacecraft Single-axis Control

The transfer function from the input (desired angle) to the output (actual angle) will be:

R A OV MOIAG)
1+ F,(5)F,, (s)F, (5)F, (s)

where the transfer functions F,, F,,, F} and F are defined according to Figure 3—5. In this

system, F,(s)is the part that should be designed. Next, the models that will be used as

the actuator, spacecraft dynamics and sensor will be specified explicitly.

3.4 Actuators

As was indicated earlier, the reaction wheels are assumed to be devices which provide
the actuation signals for the spacecraft. In the next section the reaction wheels are

introduced as the actuators employed in the ACS.

3.4.1 The Reaction Wheel

In this section, the model used for the reaction wheel is described. This model is a
very accurate and detailed mathematical model that takes into account the effects of most

disturbances which contribute to the spacecraft pointing jitter.
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Reaction wheels are momentum exchange devices which provide reaction torque to a
spacecraft and store angular momentum. A reaction wheel consists of a rotating flywheel,
typically suspended on ball bearings by an internal brushless DC motor. A motor driver
delivers commutated current to the motor proportional to an input voltage commanded by
the user. Newton’s laws can be used to model the reaction wheel mathematically. An
almost ideal model for the reaction wheel is shown in Figure 3-6 [58]. In this

fundamental block diagram the only loss that is considered is the friction torque.

Reaction Torque
-1 —>7,
Torque T 1 ) Angular Momentum
Command —» Gk, (3 — » J —>H
Voltage T, Js z
Ta

Figure 3-6: Nearly Ideal Reaction Wheel Model

The angular momentum stored in the flywheel, H, is the product of the flywheel
inertia J and the wheel speed w, that is
A -Jo
According to Newton’s third law, the reaction torque applied to the spacecraft is equal
and opposite to the net torque,r,, which accelerates or decelerates the flywheel. Also
Newton’s second law can be used to obtaint_, the reaction torque, that is

OH __0(Jo) __do

71T, =—T7T =————=———-=

: " ot ot dr

This yields:

1
o(t)=— |t dt
) 7%
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According to Figure 3-6 the relationship between the net torque and the motor torque is:

T, =T, —T,

The transfer function of this nearly ideal model will then be given by:

_JGks
Js+1,

T(s)

Although studying the linear model of the reaction wheel is helpful in understanding
and predicting its behavior, it cannot be a valid representation of the reaction wheel,

applied in practice. Next, a more detailed model of the reaction wheel is introduced.

3.4.2 A High-Fidelity Model of the Reaction Wheel

In the previous subsection, a nearly ideal model of the reaction wheel was presented.
Now a more detailed block diagram will be introduced to correspond to a better and more
realistic model of the reaction wheel. This is shown in Figure 3-7 which relates to both
ITHACO?’s standard Type A and Type B reaction wheels [58]. In this model additional
blocks are included to model the performance beyond the nominal speed range, and as a

function of temperature and bus voltage.
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Figure 3-7: The High-fidelity Model of the Reaction Wheel [58]

The values of the parameters for different components and their units in this mode] can
be found in Table 3.1. The constants in this table are considered for ITHACO’s Type A

reaction wheel [58].
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Table 3-1: The Reaction Wheel Parameter Values [58]

Variable Nomenclature Units Type A RWA
G, Driver Gain AV 0.19
o, Driver Bandwidth Rad/sec (Hz) 2000 (318)

(-3dB)
k, Motor Torque N-m/A 0.029
Constant
k, Motor Back-EMF V/rad/sec 0.029
k, Overspeed Circuit V/rad/sec 95
Gain
o, Overspeed Circuit Rad/sec (rpm) 690 (6600)
Threshold
T, Coulomb Friction N-m 0.002
J Flywheel Inertia N-m-s” 0.0077
N Number of Motor - 36
Poles
B Motor Torque N-m 0.22
Ripple Coefficient
C Cogging Torque - Zero
Amplitude
" Input Resistance Q 2.0
P, Quiescent Power W 3.0
R, Bridge Resistance Q) 2.0
Torque Command v 5
Range
k, Voltage Feedback VIV 0.5
Gain
6, Torque Noise Angle rad (degrees) 0.05 (3)
Deviation
o, Torque Noise High rad/sec 0.2
Pass Filter
Frequency
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Motor Torque Control
The motor driver is essentially a voltage controlled current source with a gain G, . It
provides a motor current directly proportional to the torque command voltage. The motor

has a torque constant, k,, which delivers torque proportional to the input current, 7, .

Speed Limiter

A speed limiter circuit is applied to keep the speed of the flywheel in the safe range.
This speed limiter measures the speed and provides it as a high gain negative

feedback, &, into the torque command once a threshold for the speed, @, is exceeded.
The Heavyside function H_, enables the negative feedback when the wheel speed is
larger than @, .

EMF Torque Limiting

When a low bus voltage occurs, the motor torque may be limited at high speeds due

to increasing back-EMF, k,, of the motor. /,, is a nonlinear function of /,, » and
V.- In case no power is being drawn from the bus, for instance during a deceleration
when the energy is being removed from the flywheel, the Heavyside function H,

eliminates the voltage drop. In addition a reverse polarity protection diode drop of 1V

dependent on H, is included. The following formula [58] indicates how the bus current

is affected by motor current, wheel speed and bus voltage.

I, = (V 1_J(1,,,ZRB +0.04/1, [V, + P, +®1,k,)
bus
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Friction Model
The friction in the reaction torque is broken down into viscous friction,z,, which
varies with temperature and speed, and coulomb friction, z,, which is a constant and its

polarity varies depending on the wheel direction of rotation. The viscous friction is due to
bearing lubricant. The lubricant viscosity is dependant on the temperature and this makes
the viscous friction dependant on the temperature. The following formula [58] shows
how the viscous friction is affected by the temperature:

7, =049- 22 (7 430"y N =m
°C rad/sec

The coulomb friction is caused by rolling within the bearings. This friction is independent
of wheel speed. The polarity of this friction changes by the direction of wheel rotation.
Torque Noise

Torque noise is the very low frequency variation from the bearings, due to lubricant
dynamics. This noise can have the most significant effect on the spacecraft pointing. It is
largely a function of the lubricant behaviour. The torque noise can be approximated by
the following formula [58]:
T, = Jﬁaa)a2 sinw,t
Motor Disturbances

The torque motor in a reaction wheel can be a source of very high frequency
disturbances due to the motor excitation and the magnetic construction. Brushless DC
motors that are recently used in reaction wheel generate torque ripple at the commutation
frequency, and cogging at a frequency corresponding to the number of poles and rate of

rotation.
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In the analytical model used in this thesis, all discontinuities have been replaced by one
or a combination of sigmoidal functions in the form given below:

1

1+e*

sigmoid(x) =

In the model shown in Figure 3-7, the Heavyside functions H, and H + could be

expressed as follows:

1
", = 1+ exp(-al)
T 1+ explal)

The Sign and Absolute Value functions can be expressed as:

_ 1—exp(-al)
sen(l) = 1+ exp(—al)
abs(l) = L=,

1+ exp(—al)

And finally the Heavyside function, H_, can be written in the form shown below:

1 1

H (0)= +
: l+exp(-a(w—~m,)) 1+exp(a(w+w,))

A formal mathematical representation of the reaction wheel model used in this fault
diagnosis and isolation (FDI) problem may now be expressed as follows (for definition of

states refer to Figure 3-7):

= —}[fl @)+ k1L, (@) +1]-7,0 -7, f,(@) + 7]

I, =G0, f\(,1,)- f{(@)]-0,], +G,0,r

(3.2)

in which:
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- —ak
U qer,,)-moxeCeke)
1+exp(—al,,,) 1+exp(—ak,w)

Vied,,V,,) =k V,,—6 o}

filw)= Csin%w

fo(@) =Bsin3Ntw

€X _aV a)alm’Vus
J(@,1, V) =~V (@1 Vi)
1+exp(—aV(@,1,,,V,,))

V(iw,1,,V,,)

_1-exp(—aw)
fu@)= 1+ exp(—aw)
f) = ks[w%;sﬁ(w)] 1 1 + 1
+exp(—a(w-w,)) 1+expla(o+,))

where f, and f, are functions due to the motor disturbances, f; is derived from the
EMF torque limiting block, f, is a sigmoidal function replacing the sign function in the
Coulomb friction, f; represents the speed limiter block, n is the torque noise, and r is

the reference signal or torque command.

3.5 The Reaction Wheel Model used in Control Design

For the purpose of designing a control law, the nearly ideal model of the reaction
wheel is applied. The transfer function for the wheel is given by:

JG ks

F_(s)=
() Js+1,

Once the desired performance specifications are satisfied, the controller is tested for the
closed loop system consisting of the high-fidelity and nonlinear model of the reaction

wheel.

3.6 Body dynamics

Assuming a decoupled system for the spacecraft, the body dynamics transfer function

for each axis will be;
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I.s?

yy

Fy(s)=

Here it 1s assumed that the controller is designed for the pitch axis. This could be done for

all other axes as well.

3.7 Sensor

The sensor is supposed to measure the spacecraft angle with respect to the associated
axis. For simplicity the transfer function considered for this block will be considered as a
unity gain.

F,(s)=1

3.8 Controller

Designing the controller for the spacecraft could be a very complicated process.
However, since the main purpose in this thesis is to design a fault diagnosis system, the
satellite is assumed to be in normal operating conditions, namely Earth pointing. This
assumption will eliminate complicated spacecraft maneuvers from the scope of this
section and a classical PD controller can become an appropriate candidate. Hence the
transfer function for the controller will be:

F.(s)=k,+k;s
Therefore, the problem will be that of finding the proper controller gains which will be
discussed next.

Control Design

Using the models discussed earlier, the closed loop transfer function is obtained as

given bellow:
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JGks 1

k, +k,s
( )J+ I s JG k k. s+JG k k
T(S)_ d™vt™d d™t™p (33)
JG, ks 1 TSP+ (el +JGkk,)s +IG kK '
1+ (k, +k,5)—= w Sy atitd ae
s+2'd1 s?

The reaction wheel parameters may be found in Table 3.1. The moments of inertia are

assumed to be:

I, =182
rad/s
Nm

I =16
» rad | s®
[ =2 M

i rad |/ s’
Diffel;ént values are assumed for the moments of inertia with respect to different axes in
order to take into account the nonlinear effects of the spacecraft due to the coupling
terms. However, the controller is first designed only for a single axis and then its
performance is subsequently evaluated when generalized to the three-axis model.
The steady-state error for a step input with amplitude 4 and the transfer function in (3.3)

is given by:
: A
e, () = hng sE(s) = IIIIOI[S —(A-=-T(s)1=0
s 5= S

The desired percentage overshoot and settling time are considered to be 20% and 200
seconds, respectively. The characteristic polynomial in the transfer function (3.3) can be
expressed in the standard second order form as:

gy Colo IGkRD  JGukky _ o
JI JI

Yy pid
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The parameters k,andk, are chosen in such a way that the above desired system

performance specifications are satisfied. The PD controller that is chosen to meet these
criteria is now obtained as:

F (s)=k,s+k,=1000s+100

Since the PD controller is guaranteed to solve the above design problem for a linear
model, the performahce result is only shown for the application of this control to the
system including the nonlinear model of the reaction wheel.

Figure 3-8 shows the pitch angle for a single axis spacecraft system to demonstrate
the achieved a_cg:eptable performance of the controller. Since the input reference signal,
applied to each axis, represents the desired variation in the angle in that specific direction,

it is limited to the interval of [-z,7](rad) . If the reference command is zero, it means

that no change in the angle around the associated axis is required and if 7 or -7 is
applied, it implies that the spacecraft should rotate 180 degrees around that axis in
positive or negative direction, which is the maximum change in the angle variation.

In Figure 3-8 the desired variation in angle in the pitch direction is assumed to be
lrad . As could be seen the settling time for the output of the system is less than
200sec and the overshoot is less than 20%, which means that the desired performance

specifications are satisfied. The final value of the actual pitch angle is 1.002.
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time(sec)

Figure 3-8: The simulated output of a single axis system with a linear control applied to a linear
spacecraft model.

After validating thé performance of the controller for a single-axis system, this
controller is tested for the coupled 3-axis model. The results are shown in Figure 3-9. The
maneuver that is considered for simulation in this case consists of rotations around
different axes. The set of reference commands for this maneuver is assumed to be

{2, 7,1} rad around roll, pitch and yaw axes respectively. Figure 3-9 demonstrates that all

the desired angles could be achieved within the first 160 seconds. The final values of the

actual roll, pitch and yaw angles are 2.005, 3.138 and 0.994, respectively.
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Figure 3-9: The simulated outputs of the three-axis system with linear control applied to nonlinear
spacecraft model.

The next step in testing the designed control is to investigate its robustness against
small changes in the system parameters. For instance the motor torque gain and the
viscous friction gain are assumed to be subject to a 10% change at times 170sec and
180sec respectively. Figure 3-10 shows the simulated outputs for this scenario. As can be
seen from this figure, the controller can compensate the effects of the disturbed
parameters and force the outputs to converge to their desired values. As a result no
deviation is seen in the outputs due to the uncertainty in the parameters. The final values

of the actual roll, pitch and yaw angles are 2.006, 3.137 and 0.993, respectively.
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Figure 3-10: The simulated output of the three-axis controel system in presence of parameter
uncertainty

The final stage of our validation procedure is to verify the controller performance
during different maneuvers. Figures 3-11 and 3-12 show the set of reference commands
and the corresponding outputs when the angular position of the spacecraft changes
several times. In Figure 3-11, the first desired spacecraft angular position is [2,2,1] (rad).
This position is achieved in less than 150 seconds as shown in Figure 3-12. After 200
seconds, the spacecraft is required to change its angular position to [3,1,2] (rad). This
time, the maneuver is performed in less than 100 seconds. Finally, the spacecraft is
commanded to be situated in the new angular position of [1,0,3] (rad) which can be

reached in less than 150 seconds as depicted in Figure 3-12.
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Figure 3-11: The set point reference commands to schedule different maneuvers for the spacecraft
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Figure 3-12: The actual outputs of the spacecraft following the desired reference commands
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3.9 Conclusion

Now that the required spacecraft control is achieved, the problem of fault diagnosis
can be investigated. Specifically, the spacecraft control system that is introduced in this
chapter provides the framework in which the fault diagnosis algorithm will be tested and

simulated in the following chapters.
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Chapter 4

4 The FDI Architecture Design

The traditional approach to fault diagnosis is “hardware redundancy”. In this
approach multiple sensors, actuators and computers are applied and by polling from the
hardware redundant components the decision about whether a fault in the system has
occurred is made. However this approach is not economical, and in addition, more space
and resources are required to accommodate the redundant components.

Considering the disadvantages of hardware redundancy, one may try to detect the
fault in the system by data reconciliation or using the dissimilar measured values to cross
check against each other. In other words, the diagnosis task could be achieved by using
functional or analytical relationships between different measured variables in the system.
This procedure is called “analytical redundancy”. Consistency checking of measured
variables in this scheme results in generating a signal called residual signal. This signal is
supposed to be close enough to zero when there is no fault present in the system, and
should distinguishably diverge from zero when a fault occurs in the system. A residual
signal is usually obtained through a comparison between a signal in the system and its
estimation in the mathematical model. Since analytical redundancy uses the mathematical

model of the system to be monitored, it is referred to as model-based approach to fault
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diagnosis. Thus model-based fault diagnosis can be defined as the determination of faults
of a system from the comparison of available system measurements with a priori
information represented by the system’s mathematical model, through generation of
residual quantities and their analysis [3].

The prominent advantage of the model-based approach to the hardware redundancy
approach is the replacement of additional hardware with additional storage capacity and
possibly greater computer power. Figure 4-1 depicts the concepts of analytical and

hardware redundancy.

Hardware Redundanc

Extra Set
of Sensor
y
Inpu 1 Set of Outpu Diagnosti Alar
——>| Process > > . >
Sensor Logi
I e
t "h - Y '
: FDI Algorit ms using Diagnosti | 1 Nar
i a Mathematical > Loai - —
! Model 9 '

Analytical Redundanc

Figure 4-1: Hardware versus Analytical Redundancy

In model-based fault diagnosis, a threshold, either fixed or variable, is defined
corresponding to the residual signal. When a sufficiently large fault occurs, the residual
signal éxceeds this threshold and the fault is detected. Usually there is more than one
residual signal in the system and each of them is sensitive to a particular source of fault.
Hence, the next concept of interest is to isolate the fault through monitoring the

associated residual signals.
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A model-based fault diagnosis system comprises of two stages of residual generation
and decision making. Figure 4-2 shows this structure which was first suggested by

Wilsky [16]. The description of these two stages is as follows:
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Figure 4-2: A two-stage procedure for fault diagnosis

1) Residual Generation: The purpose of this stage is to generate an auxiliary fault-
indicating signal, called residual, which according to its value the faults could be
detected. This signal should be normally close to zero when there is no fault and different
than zero when a fault happens.
2) Decision-Making: The residuals are tested to determine the likelihood of existence of
the fault in the system. This test could be based on a threshold test for the residuals or
their moving averages.
Fault Diagnosis Structure

Figure 4-3 shows the relationship between the fault diagnosis and the control loop.
Depending on the fault diagnosis objective, the supervised part of the system can be

changed.
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Figure 4-3: Fault Diagnosis and Control loop

In this thesis the faults considered are due and present in the actuator level. Hence,
the supervision module is fed by the input and output of the actuator. The model-based

approach that is chosen to address the problem of FDI is an observer-based method.

4.1 Observer-based Approaches

Observer-based techniques are quite popular model-based approaches to fault
diagnosis. An observer is in fact an estimation of the model of the system to be monitored
for the purpose of fault diagnosis. The outputs of this observer are estimations of the
states of the system. The difference between the estimates of the system states and the
actual states can be considered as an appropriate candidate for the residual vector.

In this section, the theory of state estimators will be briefly explained. A linear state
estimator will be designed for the nearly ideal model of the reaction wheel. The

performance of this observer will then be simulated as a fault diagnosis module.
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4.1.1 State Estimators

In a lot of processes values of state variables are not available either because they are
not directly reachable to be measured or there is a shortage of sensors to measure them.
Since state vectors are needed for different purposes such as state feedback, it is
fundamentally important to face this problem. What is going to be discussed in this
section is how to estimate the unknown states by using the inputs, outputs and the
relationship between them in a process. To achieve the objective of estimating the states
of a system, a system is used which is called a state observer. State observers utilize the
inputs and outputs of a system and as their outputs they generate an approximation of the
system states. State observers could be classified into two groups in terms of the ratio of
the states that they approximate. If in a process none of the states is available then a full-
dimensional observer is needed. If only some states are unavailable a reduced-order

observer is applied.

4.1.2 Full-dimensional State Estimator

Let us consider the following state and output representation of a system,

x=Ax+Bu ,xeR",ueR"
4.1
y=Cx ,yeR1

where matrices 4, B and C are the system matrices of appropriate dimensions, 7 is the
number of states, m is the number of inputs and g is the number of outputs. In this system
it is assumed that none of the system states is available for measurement. However, the
matrices A, B and C are assumed to be known matrices. In other words, the system model

is available but the states are not.
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For this problem the first approach that may come to mind is to duplicate the system
and provide it with the same input that is injected to the original system. In this case if the
initial states of the original system are forced on the duplicate model, then the states of
the estimator will follow the same trajectory as the original model. Hence, the problem
will be how to determine the initial states of the system. Since the duplicate model does
not use the output of the original model, this type of estimator is called the open-loop

estimator. Figure 4-4 shows this type of estimator.
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| § |
l___--_._______”________Estim_ator

Figure 4-4: Open-loop state estimator

The open-loop estimator has some disadvantages. First, as was described earlier, the
initial states should be computed every time the observer is switched on. Second, in real
processes states and outputs are usually affected by noise and disturbances. This is not
predicted in the open-loop observer and will cause at some occasions differences in the
values of the system states and observer states. If the matrix A has an eigenvalue with a
positive real part, this error will grow with time. All in all, it could be said that the open-

loop observer is not a good choice.
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Another way to build this observer is to convert the system state equations (4.1) to
input-output differential equations. However, this approach is not an appropriate choice
either. Because it is not easy to build differentiators of the input and output and even if
that is not the problem, presence of differentiators makes the system very vulnerable to
noise.

By taking a closer look at Figure 4-4 one may suggest to use the output of the original
system as a source of information to improve the performance of the observer. This could
be done by finding the error between the system output and the observer output and
providing a feedback to the observer resulting in a closed-loop observer. This feedback
has to go through the observer by a matrix gain L. The matrix L has to be found in a way
such that the new observer becomes stable. Figure 4-5 illustrates the schematic of a
closed-loop observer. It could be shown that if the state equations shown above are
observable then the initial states can be found by the input and output of the original
system. Thus if the system is observable its states could be estimated through this

approach.
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Figure 4-5: The closed-loop state estimator

The set of differential equations for the new observer according to Figure 4-5 is as
follows:

X =A%+ Bu+ L(y—C%) (4.2)
This vector equation could be rewritten as:

x=(A=LC)%+ Bu+ Ly (4.3)
Since the objective in designing an observer is to minimize the error between the states of
the process and their estimates, an error vector is defined as:

e=x—Xx (4.4)
Using the above definition can result in expressing the vector equation (4.3) in the form

below:
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e=(4-LC)e 4.5)

If the location of the eigenvalues of the matrix 4 -LC can be controlled through proper
choice of the matrix gain L, then the error vector can be controlled. If these eigenvalues
are all forced to lie in the left-half plane, then the error vector converges to zero
asymptotically. In this case even if there is an instantaneous discrepancy between the
state and its estimate, due to disturbances or differences in initial state, the state estimate
still follows the actual state by reducing that difference. Since in this closed-loop
observer the error tends to zero asymptotically, this type of observer is called asymptotic
state observer.

Since observers can estimate the states of a system, the difference between these
estimations and the real values of the system states can be used to verify if the system is
performing normally. However, there might be cases in which the system is under normal
operating conditions but is affected by disturbances or model uncertainties. In these cases
the observer should not classify the situation as an abnormal behavior of the system.

As described in the previous chapter, different observer-based approaches can be used for
the purpose of fault diagnosis. In observer-based approaches the discrepancy between the
system states and observer estimations can be a good criterion for detecting the presence

of a malfunction in the system.

4.2 Fault Diagnosis using State Estimators

In this section a fault diagnosis algorithm is suggested for the spacecraft attitude
control system. A state estimator plays the role of diagnosing the faults.
Figure 4-6 depicts the closed-loop attitude control system of a spacecraft together

with the fault diagnosis scheme. The responsibility of diagnosing an anomaly or a fault is
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played by three residual generators. Each residual generator monitors the performance of
one of the reaction wheels and decides if that wheel is operating normally or if an
anomaly or a fault has occurred in one of the components of that wheel. After detecting
the occurrence of an anomaly or a fault, the source of the fault should be identified.

In this thesis, three common fault sources are considered for the reaction wheel. The

first component, vulnerable to fault is the motor torque gain (%,) which converts the
current [, to torque 7, the second is the viscous friction gain (7,), that is sensitive to

temperature variations and the third source of fault is considered to be the bus voltage,
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Figure 4-6: Spacecraft attitude control system and the FDI architecture

The first step in solving the FDI problem is to determine if a linear observer can be
applied as the fault diagnosis module. To achieve this objective, the nonlinear model of

the system is linearized. Then a linear state estimator is designed for the resulting
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linearized system. The convergence properties of this observer are investigated. If the
observer is convergent for some domain in which the system is operating, its performance
will be evaluated as the fault diagnosis module. This performance becomes the
benchmark for the nonlinear observer to be designed. Since a nonlinear observer has a
higher degree of complexity, it is expected to execute the task of fault diagnosis better
than the linear one. The advantages of using a nonlinear observer will be discussed in the

following subsections.

4.2.1 Linear Observer Design

One way of designing a nonlinear observer is through designing a linear observer for
the linearized model. Parameters of this linear observer can then be used to design a
nonlinear observer.

In this thesis, a linear observer is first designed for the linearized version of the
model introduced by the set of equations (3.2) in page 41. After designing the linear
observer, the linear observer gain is used to design the nonlinear observer.

For the sake of simplicity the set of equations (3.2) in page 41 is rewritten in the form
below:

o=¢(o,1,)+n
I, =¢,(w,1,)+G,0,r (4.6)

an

Based on the linearized state equations, the dynamics of a linear observer would be:

Y= A5+ L(y~%)

p=i
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n

@
where x = L } . The matrix 4, , is the Jacobian matrix of the vector function [¢] ] with
2

m

respect to the states w, 1, at the operating point Q,, namely

%, 99
ow 0I,
99, o,
ow oI, ||1Q,

4.7

and where L, , is the observer gain. The matrix L is chosen in such a way that the

observer converges for the linear version of the model. In other words A—L be a

Hurwitz matrix.
An important point in this linearization is that the functions f, and f, should be ignored.

These functions are modeling the motor disturbances and have the form shown below:
J1 =Csin(3Nat)

f, = Bsin(=2)

As can be seen the above two are time varying functions that will not allow for a simple
way for linearization of the system. Hence, in the process of linearization the effects of

motor disturbances in this design should be neglected. We have

op _ 1 [-r, - exp(—aw)
ow J 7 ° (1 +exp(—aw))®
o9 _k

o, J

o0p, o, 9

2 _qG 3 s

ow a@d (6a) 6(0)

a& — de %_ — a)d

ol, al,
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where

o v

ow 0OV dw

& _ W2

== = 2a exp(—aw) /(1 + exp(—aw))

ow

O kg Yo h 1

ow 2 oo 1+exp(-~a(w—w,)) 1+exp(a(w+w,))

aexp(-a(w-w,)  aexpla(@+a,)
(1+exp(-a(w-®,))* (1+exp(a(o+a,))’

k
5 @- @, fo (@)

o, o, oV o,
oI, ovaél,, ol

of;  exp(-al) aexp(—aV )V

oV l+exp(—aV) (1+exp(-aV))’

oV k- Ryl k, _(+Ry 1, )M, kaexp(-al,,) iy 1 —exp(—ak,w)

dw 7 (¥, -D(+exp(—al,,) (+exp(—al,, )’ ° 1+ exp(—ak, )
ak,’ o exp(—ak,)

 (+a(-ak,w))’

]

oV _ R,y _aexp(-al,, )1+ Ryl,,)
6Ibus (1 + exp(_albus ) (1 + exp(_albus ))2
1—exp(—al
e -1 of g, +0.0ar, 2PCAL)
o, V, -1 1+exp(-al,)

The error vector generated by the observer is defined as the difference between the actual

states and their estimates, that is

e w — @

e= = . (4.8)
el Un—1,

The following differential equation gives the error vector dynamics:

é=(A—-L)e

By proper choice of L, the elements of the vector ¢ can be made to exponentially

converge to zero. Since these variables are sufficiently close to zero when there is no
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fault present, they could be used as criteria for checking if there is a fault in the system.
Hence, the above error vector will be used to generate the residual vector.

However, convergence of an observer is not a sufficient condition to justify its
capability for fault diagnosis. In addition, in this thesis, the objective is to design a fauit
diagnosis algorithm for the nonlinear model as the linear observer estimates are less
likely to converge to states of a nonlinear model. With this in mind, a nonlinear observer

is designed to improve the possible inefficiencies of a linear fault diagnosis observer.

4.2.2 Nonlinear Observer Design

Since the linear observer does not have sufficient complexity to provide detailed
information on the health or anomaly of the nonlinear reaction wheel, a nonlinear
observer will also be designed.

The nonlinear observer could be obtained using the linear observer gain in the form

shown below:

m Lis @) +k 1, 11,(8) +1)- 1,6 — 7, f, ()] {w—aﬁ}
=|J +L

G,0,1,(@.1,)- fi(D)]-o,d, " (4.9)

Using notations in (4.6), the set of equations (4.9) can be rewritten in a compact form

shown below:

w {wz{m) }LLH
I, $,(0,1,) €
. @D

y= im

(4.10)
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With appropriate definitions for ¢, and ¢,, subtracting the state equations of the observer

in (4.10) from the state equations of the system in (3.2) and using the notations in (4.6)

and (4.8) yields:
l:e:l :| :{ $(@,1,)-¢(-e +w,~e, +1,) :I_L{el :| 4.11)
€, ¢ (0,1,)-9,(—e, +w,—e, +1,) €

" Next, the convergence of this nonlinear observer is investigated.

4.2.3 Convergence Properties of the Nonlinear Observer

In order to apply the nonlinear observer for the purpose of fault diagnosis, first
convergence properties of this observer are investigated. Let’s assume the matrix L is

obtained through linearization of the system around the operating point:

The Jacobian matrix of the vector function

¢, (—e, +w,—e, +1,)

{@(—el+ag—e2+1h)}

withrespectto @, e, I, and e, is given by:

O, 04, 0¢ 994,
Ow Oe, 0I, Oe, .
A, = D=0
op, 06, 0, 0, | | _,
ow 0Oe, oI, oe, | |
Im =1m*
e, =0

Now the set of equations (4.11) can be approximated as:
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l:éljlz[¢l(a)71m):l+ -$(a',1,) +|:_An1]2 ”An114}[31:|+[“"4n111 _Anll3} o-o
&, $,(@,1,) -¢2(60*,1m*) = Ay = Ay | € — Ay = Ay |1, -1,

Considering the definition in (4.7), this yields:

’:e:l]z (A_L)[% :l_'_ ¢1(w51m)_¢1(a)*:1m:) +I:-Anlll _An113} 0~ * (4.12)
e2 e2 ¢2(w>lm)_¢2(a) ’Im ) _A"121 _A"123 ‘Im —Im
Let us write the equation (4.11) in the form shown below:

él
l:. :lz g(a)?el:lmaez)
ez,

in which ¢ = [? } .

2
According to (4.12) in a close neighborhood of the operating point Oy, the function ¢ can
be approximated as:

¢ =(A-L)e+0(w,e,l,,e,)

where:
A—L=§£
Oe
»=w
e =
I1,=1
e, =0

and 9=|:¢1(a)’1’")_¢1(w*’1m*)}_’_l:_Anm _Annﬂ[:w_w* :|

¢2(a),lm)-¢2(co*,lm*) — Ay — A |1, -1,
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Since the observer gain L is chosen such that 4—L be a Hurwitz matrix, then for any
positive definite symmetric matrix Q, the solution P of the Lyapunov equation:
P(A-L)+(4-L)"P=-Q

is positive definite. Now we introduce ¥ = e’ Pe > 0 as the Lyapunov function candidate.
The derivative of this function along the trajectories of the error dynamics is:

V=e"Pe+é"Pe=e"Pl +("Pe
=e' P[(A-L)e+0)+[(4—-L)e+ 6] Pe
=e [P(A-L)+(A—-L)" Ple+2e" PO
=—e"Qe+2e" PO

Now it can be assumed that in some region Q (where(w,e,,1,,e,) € Q) of the operating

point we have the following condition:

|61, < 7lel, (4.13)
where y is a constant. Therefore according to (4.13) for (w,e,,1,,e,) € Q:

7 <—e"ges 2yl M

But ¢'Qe> A e 2, where A . is the minimum eigenvalue of the matrix Q. Note
‘min 2 ‘min g

that A, is real and positive since Q is symmetric and positive definite. Thus for

(w,e,,1,,e,) € we have:

V <A (@ =27, 1]l
Choosingy < (1/2)A_,. (Q) /"P“2 , ensures that V is negative definite. Therefore, the origin

of the error vector is asymptotically stable. In other words, the observer states converge

asymptotically to system states.
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After constructing linear and nonlinear observers and investigating their convergence
properties the next steps will be to define the residual signals and determine the fault

decision making scheme. These steps will lead to addressing the fault diagnosis problem.

4.3 Fault Detection

The vector e generated by both linear and nonlinear observers has two components,
namely:e, =w—dand e, =1, —I,. In the case of convergence of observers these

components converge to zero when there is no fault present in the system and the model
of the system is close to the model of the observer. When the actual model is affected by
faults, the observer estimates will have some discrepancy from the system states.
Therefore, these non-zero error signals can represent good candidates for diagnosis of the
faults. However, one may need to perform some refinements on these signals before
using them as residual signals. These components may have very high frequency
oscillations that will make the fault detection procedure quite difficult. To overcome this
problem, the high frequency components of the error signals are removed by passing

them through a low-pass filter. Therefore, the residual signal will be denoted as:

where 7, and r, are the low-pass filtered versions of ¢, and e,, respectively.

After generating the filtered residual signals, the performance of the model is
simulated for a large number of non-faulty scenarios to determine a threshold for each
residual signal. The upper and the lower threshold bounds will be the maximum and
minimum values that each residual signal can achieve respectively under normal

operating conditions of the system. When the residual signals are within this interval, no
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fault or anomaly is detected to be present in the system. Whenever at least one of the
residual signal thresholds is exceeded, the FDI scheme issues a flag about the existence

of a fault.

4.4 Fault Isolation

Basically for the purpose of fault isolation each residual signal in the residual vector
should be decoupled from all the sources of fault but one. In our proposed approach, only
two residual signals are available while there are three fault sources in the system.
Therefore, it is not possible to uniquely identify all sources of faults correctly by simply
observing the two residual signals. Because even in the best case that each type of fault
triggers one residual signal, there is one residual signal which is sensitive to two faults.
Thus further signal processing techniques should be applied to resolve this ambiguity.

This problem is not pursued in this thesis.

4.5 Conclusions

In this chapter linear and nonlinear observers are designed to be applied as the fault
diagnosis module. The convergence properties of these observers are formally
investigated and the behavior of the nonlinear fault diagnosis scheme is described.

In the next chapter the performance of the nonlinear observer is investigated in the
closed-loop ACS through simulation. The sensitivity of the residual signals to different

types of faults will also be investigated.
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Chapter 5

S Comparative Analysis and Simulation Results

In this chapter, the performance of both linear and nonlinear observers as fault
diagnosis modules are investigated and'evaluated. Two cases will be considered. In the
first case the degree of nonlinearity in the system is “low” and the linear observer is
shown to be convergent. Therefore, this linear observer is tested to verify if it is a good
candidate for solving the ACS fault diagnosis problem. The performance of this observer
is investigated through simulations for different fault scenarios and is compared to that of
a nonlinear observer. The advantages and motivations for selecting a nonlinear estimator
are investigated. In the second case the degree of nonlinearity is “high” and the linear
observer is shown to be non-convergent. Importantly enough, the nonlinear observer is
shown to be convergent and be able to perform the fault diagnosis task. The performance
and capabilities of applying this observer under this scenario will also be investigated.

We remind that in the following experiments, a random signal represents the external
disturbances in Figure 3-4. The magnitude of this signal is assumed to be less than 107
Nm. According to table 3-1 the torque noise in Figure 3-7 is considered to be a sinusoidal

signal in the form given below:
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7, =1.54*107 sin 0.2¢

5.1 The Performance of a Linear Observer as a Diagnosis Module

The performance analysis of a linear observer is divided into two cases. Choosing the
nominal bus voltage as 12v places the system in a “less” nonlinear area. This ensures that
a linear observer is able to estimate the original nonlinear system. However, it will be
shown that nevertheless it does not usually provide accurate information about the state
of the system during the presence of faults. In other words, although it provides rather

accurate estimates of the system states; it is not a good candidate for fault diagnosis.

5.1.1 First Scenario: High Bus Voltage, V,, =12V

The first necessary condition that an observer should satisfy to be chosen as a fault
diagnosis candidate is convergence. Figures 5-1 and 5-2 show the convergence of the

error signals obtained by the linear observer corresponding to different initial states.
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Since this observer is clearly convergent for a high bus voltage, it could be tested for
the fault diagnosis task. The first step in applying the linear observer as a fault diagnosis
module is to define the residual signals.

As was pointed out in the previous chapter the components of the error vector
generally contain some high frequency signals due to external noise and disturbances.
Hence in order to use them as residual signals, as stated earlier, these signals are passed
through a low-pass filter. The next step in the fault diagnosis algorithm is to define the
“safe” (that is healthy) boundaries or intervals on the residual signals. This could be
achieved by conducting different experiments in which the system is immune to any
fault. These experiments can result in obtaining an upper and ab lower boundary for the
residual signals. After performing numerous simulations, the boundaries for the residual
signals are obtained. In order to be somewhat conservative, the bounds are considered 5%
farther from the maximum and minimum obtained from these experiments.
Consequently, the residuals detect the presence of a fault whenever they exceed either
their upper or lower boundary.

After determining the “safe” boundaries for the residuals, we investigate if these
boundaries are violated when the system is faulty. Three types of faults will be

considered. These faults occur either in the gain k,, the gain 7, or the bus voltage.

5.1.1.1 Faults in the Motor Torque Gain (%,)

In this section, the performance of the linear observer is simulated for faults in the

gain k,. Figures 5-3, 5-4 and 5-5 show the residual signals # andr, for three different

sizes of faults in the gain k,. All the faults are assumed to occur at time 400sec and

73



persist thereafter (permanent fault). The simulations are conducted for fault sizes of 10%,
40% and 70%. The dashed lines depict the “safe” or “healthy” boundaries that constrain
the residual signal when there is no fault in the system. As could be seen in Figure 5-3 the
residual signals are not sensitive enough to violate the safe band when a 10% fault occurs
in the gain k,. However, the residual signal » shows some sensitivity to this fault.
Figures 5-4 and 5-5 demonstrate the cases for 40% and 70% faults respectively. These
faults are significant enough to push the residual signal » out of its no-fault region.
However, this residual signal does not stay outside this region for any of these cases.
Returning of the residual signal # to its no-fault zone implies that the fault is no longer

present in the system which is a wrong conclusion of the situation presented by the linear

observer. In all these cases the residual signal 7, remains insensitive to these faults.
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Figure 5-3: The residual signals due to a 10% fault in the gain k,
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Figure 5-5: The residual signals due to a 70% fault in the gain kt
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5.1.1.2 Faults in the Viscous Friction Gain (z,)

The second source of fault that is considered in this analysis is the viscous friction
gain. Figures 5-6, 5-7 and 5-8 depict the residual signals # and 7, for faults of different
magnitudes in this gain. The time of occurrence of faults is assumed to be 400sec and the
fault is assumed to persist thereafter (permanent anomaly). The fault sizes in these
simulations are considered to be 20%, 50% and 80%. As could be seen in Figure 5-6, the
residual signal 7 is excited after the 20% fault happens. However, it does not cross any
of the boundaries and settles down after about 100 seconds. Figures 5-7 and 5-8 depict
the behavior of the residual signals for faults of 50% and 80% in the viscous friction gain.
It can be seen that similar to the case of fault in the gain k,, the residual signal #, breaks
its boundaries but does not remain outside the no-fault zone to ensure persistence of the
fault. In all these cases the residual signal 7, is not disturbed by this fault. Therefore, the

linear observer is not successful in detecting the faults in the viscous friction gain.
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Figure 5-7: The residual signals due to a 50% fault in the gain 7,
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Figure 5-8: The residual signals due to an 80% fault in the gain 7,

5.1.1.3 Fault in the Bus Voltage

The last source of fault discussed here is the bus voltage. In this section, the
performance of the fault diagnosis algorithm confronting the linear observer is tested.
Figures 5-9, 5-10 and 5-11 demonstrate the diagnostic signals when a fault happens in the
bus voltage at 400sec and it remains thereafter (permanent fault). The fault sizes are 30%,
40% and 50% respectively. In this case both residuals escape from their safe region after
a fault occurs in the bus voltage. It was seen in the two previous fault scenarios that the

residual signal 7, is not sensitive to faults in the gains %, and 7, . Hence, we can conclude

that the excitation of the residual signal 7, is equivalent to occurrence of a fault in the bus

voltage. This implies that the linear observer can identify the faults in the bus voltage, no

matter if it is the only fault affecting the system or if there are multiple faults present in
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the system. The reason is that the residual signal 7, is exclusively sensitive to faults in the

bus voltage. In the next section the performance of the linear observer is investigated

when an intermittent fault is present in the bus voltage.
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Figure 5-9: Detection of the 30% fault in bus voltage by the residual signals at time 414sec

79



-0.05

0.1

residual signal r1

-0.15 |

_0-2 1 1 1 i 1 H
300 350 400 450 500 550 600

[=)

residual signal r2
)
o
T

8 &

350 400 450 500 550 600
time(sec)

W
o
o
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Figure 5-11: Detection of the 70% fault in bus voltage by the residual signals at time 409sec
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5.1.1.4 Intermittent Fault in the Bus Voltage

Since the linear observer can detect the fault in the bus voltage, its performance
should be validated when the faults in the bus voltage are not persisting. In other words, it
should be investigated if the residual signals can still establish and determine when the

fault vanishes. Since the linear observer cannot detect the faults in the gains 7z, and %,,

there is no point in investigating the case of intermittent faults in thesé gain.

Figure 5-12 shows the case when a 40% percent fault occurs in the bus voltage and
this fault vanishes after 100 seconds. The residual signals both move out of their no-fault
boundaries after the fault occurs. Interestingly enough, when the fault is removed these
signals return to their no-fault zone. Therefore, the linear observer is still able to properly

detect a fault when the fault in 7, is temporary.
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Figure 5-12: The residual signals due to an intermittent 40% fault in the bus voltage
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In the next section the possibility of using the linear observer for low bus voltages is

examined.

5.1.2 Second Scenario: Low Bus Voltage, V=6V

Since the linear observer was convergent for a high bus voltage, its performance
capability as a diagnosis module was investigated in the previous subsections. However,
the estimates provided by a linear observer do not converge to the states of the original

system when the system is working under the operating condition ¥, =6V . Thus, the

linear observer cannot be used as an appropriate choice for diagnosis in the low bus
voltage scenarios. Figure 5-13 shows the error signals produced by this observer under
this scenario. It can be seen that these error signals do not converge to zero and as a

consequence the linear observer cannot be proposed to perform the fault diagnosis task.
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Figure 5-13: Divergence of the error signals under low bus voltage operating scenario
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Next, the performance of a nonlinear observer, as designed in the previous chapter,

will be investigated.

5.2 The Performance of a Nonlinear Observer as the Diagnosis Module
In this section a similar procedure as in the previous section is followed to analyze the
performance of the nonlinear observer. This analysis comprises of two cases: (i) high bus
voltage ¥, =12V and (ii) low bus voltage V, =6V .
Figures 5-14, 5-15 and 5-16 show the error signals provided by the nonlinear

observer. Since these signals converge to zero the observer is convergent and it may be

used as a potential candidate for the purpose of fault diagnosis.
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Figure 5-14: Convergence of the nonlinear observer for high bus voltage with initial states ¢;(0)=-70
and e,(0)=-12.

83



N
[~}
1

° 40t
]
5
.§ 20-\
(=]
§ of
_20 1 L 1 3
0 0.05 0.1 0.15 0.2
time(sec)
2_
o
[}
s 7
=
2
o
g Or
[
_1 1 1 1 3
0 0.5 1 1.5 2
time(sec)
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Figure 5-16: Convergence of the nonlinear observer for low bus voltage with initial states ¢;(0)=70

and ¢,(0)=-10.
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The first step in applying the nonlinear observer as a fault diagnosis module is to
define the residual signals. Similar to the linear observer the error signals generated by
the nonlinear observer carry high frequency signals which can be eliminated by a low-
pass filter. The next step is to define the “safe” or “healthy” boundaries on the residual
signals. These boundaries are found by extensively simulating the system without having

any faults affecting the system. These experiments lead one in obtaining a band for the

residual signals #, and r,. However, in the case of high bus voltage in all non-faulty
scenarios, the residual signal r, remains very close to zero. Hence, in the case of a high
bus voltage the signal # detects a fault whenever it exceeds either its upper or lower

boundary and the signal r,, generates a warning message whenever it diverges from

Z€r0.

5.2.1 First Scenario: High Bus Voltage, V,, =12V

It was shown earlier that the linear observer is convergent for high bus voltages.
However, it could not detect the faults in the viscous friction and the motor torque gains.
In this section, the capability of the nonlinear observer for compensating the

shortcomings of the linear observer is investigated.

5.2.1.1 Faults in the Motor Torque Gain (%,)

The first scenario considered here is to examine the performance of the nonlinear
observer when a fault occurs in the gain %,. Figures 5-17, 5-18 and 5-19 show the
residual signals r andr, for three different fault sizes in the gain k,. All faults are

assumed to happen at time 400sec and remain thereafter (permanent faults). The
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simulations are conducted for fault sizes of 10%, 40% and 70%. The dashed lines depict
the boundaries that constrain the residual signal when there is no fault in the system. As
can be seen the residual signal 7, exceeds the boundary, after the fault happens at
400sec. On the other hand, the residual signal », shows no sensitivity to this type of fault.
In these figures, it is obvious that when the fault becomes more significant, the residual
signai r, goes farther away from its safe or no-fault region.

Another important point about the residual signal # is that it can show the persistence

of the fault as long as the fault is present. It was seen in Chapter 4, that the residual signal
~of the asymptotic observer for the nearly ideal model was sensitive to fault but it was not
capable of ensuring the presence of the fault by a change in its steady state value. As a

result of these experiments it could be stated that the faults in the gain %, can be detected

by the residual signal # .
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Figure 5-17:
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Figure 5-18: Detection of the fault at time 413sec by the residual signals generated due to a 40% fault

in the gain £,
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Figure 5-19: Detection of the fault at time 413sec by the residual signals generated due to a 70% fault

in the gain £,

5.2.1.2 Faults in the Viscous Friction Gain (z,)

The second source of fault that is considered is the gain 7, . Figures 5-20, 5-21 and 5-22

depict the residual signals # andr, for faults of different magnitudes in this gain. The

time of occurrence of the faults in these simulations is 400sec and the faults are
permanent. The fault sizes in these simulations are considered to be 20%, 50% and 80%.
As can be seen in Figure 5-20, in some cases faults of as much as 20% cannot be
detected. However Figures 5-21 and 5-22 show that faults of 50% and 80% can be
detected by this observer. In these figures, after the fault occurs the residual signal
crosses the lower boundary and consequently declares that a fault is present in the

system. However, similar to the previous fault scenario in the motor torque gain, the
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residual signal 7, is not disturbed by the fault in the gain 7, . Thus when a fault occurs, in

the gain 7, it is expected that only the residual signal », generates an alarm signal.
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Figure 5-20: The residual signals due to a 20% fault in the gain 7,
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Figure 5-22: Detection of the fault at time 417sec by the residual signals generated due to an 80%

fault in the gain 7,

90



So far it could be noted that the residual signal r is sensitive to both faults in the
gains k, and 7,. That is, can detect both faults individually but it cannot identify the

source of fault as it is excited by both. In other words, it cannot isolate these two types of

fault from each other.

5.2.1.3 Faults in the Bus Voltage:

The last source of fault discussed is the bus voltage. In this section, the performance
of the fault diagnosis algorithm confronting the fault in the bus voltage is tested. Figure
5-23, 5-24 and 5-25 demonstrate the residual signals when a fault happens in the bus
voltage at 400sec and when it is permanent. The fault sizes are 30%, 60% and 90%
respectively. In this scenario, it could be seen that both residuals are sensitive to the fault
in the bus voltage. It was seen in the two previous fault scenarios that the residual

signalr, is not sensitive to the faults in the gains &, and 7,. Therefore, the fault

excitation of the residual signal r, can be considered to be equivalent to occurrence of

fault in the bus voltage. This implies that the observer can identify the fault in the bus
voltage, no matter if it is the only fault affecting the system or if there are multiple faults

present in the system.
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Figure 5-24: Detection of the fault at time 407sec by the residual signals generated due to a 50% fault
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Figure 5-25: Detection of the fault at time 407sec by the residual signals generated due to a 70% fault
in the bus voltage

5.2.1.4 Performance of the Fault Diagnosis Scheme in Presence of

Intermittent Faults

A desired FDI algorithm is the one that maintains the alarming signal as long as the fault
is present and persists in the system. In the last three sections, it was shown that the
proposed FDI algorithm can achieve this objective. However, an alarm when there is no
fault in the system is a false expression of the system state. A valid FDI scheme should
stop all the warning signals when the faulty components return to their healthy mode. In
this section, the performance of our proposed FDI scheme is investigated for the faults

that are affecting the system in a finite duration of time.

As the first case, it is considered that there is a 40% fault in the gain %, for a period of

100 seconds. Figure 5-26 shows this scenario. As expected, after a fault happens in the
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gain k,, the residual signal » moves out of its no-fault zone and the signal », remains
unaffected. After the fault is removed from the system, it can be seen that the residual
signal 7, returns back to its no-fault interval while the residual signal r, is not excited
again. Figure 5-27 shows a similar scenario for a fault in the gain z,. After 400sec the
residual signal 7, exceeds the safe band to identify the presence of a fault and it starts to

return back to the safe band, 100 seconds after, at 500sec. The residual signal r,, is

unaffected during this time interval. Figure 5-28 demonstrates the behavior of the
residual signals for a temporary fault in the bus voltage. Following the time that fault
happens, both residuals are excited to show the presence of fault in the bus voltage and
after the fault is no longer present in the system the residuals return to their normal

operating condition.
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Figure 5-26: The residual signals due to an intermittent 40% fault in the gain k,
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Figure 5-27: The residual signals due to an intermittent 50% fault in the gain 7,
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Figure 5-28: The residual signals due to an intermittent 60% fault in the bus voltage
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5.2.1.5 Fault Isolation

So far the performance of the nonlinear observer as an FDI module has been
investigated and studied for single faults. It was shown that all three types of faults can be
detected using this fault diagnosis module. It was also shown that this module is capable
of detecting the presence and absence of intermittent faults as well. In this section, the
ability of this scheme is verified for isolation of faults. As was indicated in the previous

section, residual signal # is sensitive to all types of fault. On the other hand, the residual
signal r, is only sensitive to the faults in the bus voltage. Therefore, any time that 7, is

triggered, it implies that a fault has occurred in the bus voltage. Whenever it is in its no-

fault region, it is perceived that the bus voltage is not faulty. Consequently, when r, is
not triggered and # has exceeded one of its boundaries, it will be concluded that a fault
in either gain %, or the gain 7, or both has occurred. However, since these two types of

fault are recognized through one residual signal, it is not possible to isolate them from

one another using our proposed scheme without further processing of the signal # .

5.2.1.6 Performance of the Fault Diagnosis Algorithm in Presence of
Concurrent Faults

All cases that have been discussed so far were dealing with scenarios in which the
system is vulnerable to only one type of fault. In this section, the algorithm will be tested
when multiple faults are present in the system. In order to evaluate the performance of the
observer in presence of concurrent faults, different cases will be considered. In each case,
the system is simulated when two sources of fault are affecting the system

simultaneously.
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(a) Presence of Concurrent Faults in the Gains %, and 7,

The first scenario that is considered is concurrency of faults in the gains %, and z,. In
the first case it is assumed that a 30% fault happens in the gain &, and 100 seconds later
an 80% fault happens in the gain 7,. As can be seen from the Figure 5-29, the residual
signal # first exceeds the upper boundary to detect the occurrence of fault in the gain £, .
When a large 80% fault happens in the gain 7,, it crosses through the no-fault band,

passes the lower bound and remains outside the no-fault boundary thereafter. The
residual signal r,, on the other hand remains undisturbed during the entire time. Even
when both faults are present after 500sec, this residual signal is not affected. In this case
the warning system truly announces the presence of the fault from the beginning of the
first fault and during the pursuit of the second fault. However, it cannot determine and

specify the detailed information on how the system was affected by these faults.
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Figure 5-29: The residual signals due to concurrent faults in the gains &, and 7,
Note that in some cases a fault in viscous friction gain can cancel the effect of fault in

motor torque gain and vice versa. Figure 5-30 shows that the residual signal 7, detects a
30% fault in the gain £, after its occurrence at 400sec. After a 30% fault happens in the
gain 7, at time 500sec, the residual signal returns to the no-fault zone. The residual
signalr,, on the other hand remains unaffected. The behavior of the signalr, after
occurrence of fault in the gain 7, , incorrectly indicates presence of no fault, while there

are two faulty components in the system. In fact, the FDI scheme behaves as if there is a

temporary fault in the gain %,. Hence, this case shows that proposed nonlinear observer

algorithm is not reliable when there are concurrent faults in the gains %, and 7, .
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Figure 5-30: The residual signals due to concurrent faults in gains k, and 7, which leads to wrong

diagnosis

(b) Presence of Concurrent Faults in the Gain £, and the Bus Voltage

In this section, the behavior of the FDI algorithm is simulated when the gain %, and

the bus voltage are subject to faults. Figure 5-31 shows the residual signals generated by

the observer when a 70% fault happens in the gain %, at 400sec and a 30% fault happens
in the bus voltage at 500sec. The observer first detects the fault in the gain k,. This is
achieved when the residual # crosses its upper bound. When a fault happens in the bus
voltage, both residuals are excited. If the fault in %, is removed at some point, the
observer cannot detect it. The reason is that due to the presence of a fault in the bus

voltage, the signal # remains far away from its no-fault zone. Therefore, the results from

this simulation indicate that when a fault in the bus voltage occurs after a fault in the gain
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k,, it can be detected. Although after detection of the fault in the bus voltage, the proper
detection of presence or absence of the fault in the gain %, cannot be ensured any longer.

In other words, if the fault in the motor torque gain is removed during the presence of

fault in the bus voltage, it cannot be established.
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Figure 5-31: The residual signals due to concurrent faults in the gain k, and the bus voltage

Following to the above scenario, let us assume that the fault in the bus voltage is
removed at time 600sec, while the fault in the gain %, is still present. Figure 5-32
demonstrates the residual signals for this scenario. As can be seen, after the time that the
fault in the bus voltage is removed, the residual signal r, returns to zero while the
residual signal » remains outside its no-fault zone. Therefore, the residual generator

correctly interprets this as disappearance of fault in the bus voltage and presence of fault

in either gain %, or 7, .
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Figure 5-32: The residual signals due to concurrent faults in the gain k, and the bus voltage
Figure 5-33, on the other hand, shows the residual signals when a fault happens in the
bus voltage prior to a fault in the gain k,. When a fault happens in the bus voltage both

residual signals produce an alarm. This makes a motor torque gain fault insignificant to

the observer. The reason is that this type of fault should be detected through divergence

of the residual signal # which is already in its faulty mode.
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Figure 5-33: The residual signals due to concurrent faults in the bus voltage and the gain kt

(c) Presence of Concurrent Faults in the Gain r, and the Bus Voltage

The last case of evaluating the effects of concurrent faults, involves the situation

when the faults in the gain 7z, and bus voltage are considered. This case is very similar to
the previous case, when the faults in the gain %, and the bus voltage are overlapping.
Figure 5-34 illustrates that the residual signals detects the fault in the gain 7,. When a
fault happens in the bus voltage after the occurrence of a fault in the gain 7, , the residual

signals remain in the faulty mode as long as the bus voltage fault is present. In this case

the FDI scheme is not able to ensure if the fault in the gain 7, is still disturbing the
system. When the fault in the bus voltage happens before the one in the gain 7, a fault in

gain 7, can no longer be detected. This is shown in Figure 5-35.
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Figure 5-34: The residual signals due to concurrent faults in the gain 7, and the bus voltage
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Figure 5-35: The residual signals due to concurrent faults in the bus voltage and the gain 7,
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5.2.2 Second Scenario: Low Bus Voltage, V=6V

It was shown that a nonlinear observer can outperform the linear observer in the case

of high bus voltages by detecting the faults in motor torque and viscous friction gains.

Next the case of low bus voltage is considered.

5.2.2.1 Faults in the Motor Torque Gain (%,)

Figures 5-36, 5-37 and 5-38 depict the diagnostic signals for faults of 10%, 40% and

70% in the gain k,. It can be seen that after the fault happens at 800sec, both residual

signals pass through their no-fault boundaries to detect the presence of a fault. Therefore,

in low bus voltages, even very small faults in the motor torque gain can be detected.
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Figure 5-36: Detection of the fault at time 954sec by the residual signals generated due to a 10% fault
in the gain k,
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Figure 5-37: Detection of the fault at time 954sec by the residual signals generated due to a 40% fault
in the gain &,
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Figure 5-38: Detection of the fault at time 958sec by the residual signals generated due to a 70% fault
in the gain &,
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5.2.2.2 Faults in the Viscous Friction Gain (z,)

Figures 5-39, 5-40 and 5-41 depict the diagnostic signals for faults of 20%, 50% and

80% in the gain 7, . It can be seen that after the fault happens at 800sec, both residual

signals are sensitive to this type of fault and the alarm signal is activated by both signals.

Hence this type of fault can be detected using the nonlinear observer.
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Figure 5-39: Detection of the fault at time 963sec by the residual signals generated due to a 20% fault
in the gain 7
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Figure 5-40: Detection of the fault at time 959sec by the residual signals generated due to a 50%
fault in the gain 7,
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Figure 5-41: Detection of the fault at time 958sec by the residual signals generated due to an 80%
fault in the gain 7,
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5.2.2.3 Faults in the Bus Voltage

Finally the performance of the nonlinear observer is investigated for faults in the bus
voltage. Figures 5-42, 5-43 and 5-44 demonstrate the residual signals , and r, when a

fault takes place in the bus voltage at time 800sec. Similar to the case of high bus voltage,

both residual signals are sensitive to this type of fault. However, in this case as was seen

in the previous sections, the residual signal », was sensitive to the faults in the gains £,

and 7, as well. Therefore, there is no possibility of isolating this type of fault in the low

bus voltage case.
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Figure 5-42: Detection of the fault at time 827sec by the residual signals generated due to a 10% fault
in the bus voltage
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Figure 5-43: Detection of the fault at time 825sec by the residual signals generated due to a 40% fault
in the bus voltage
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Figure 5-44: Detection of the fault at time 824sec by the residual signals generated due to a 50% fault
in the bus voltage
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5.2.2.4 Performance of the Fault Diagnosis Scheme in Presence of

Intermittent Faults

Having inspected the performance of the nonlinear estimator for permanent faults, in this
section the performance of the diagnosis module is investigated corresponding to
intermittent faults. Figures 5-45, 5-46 and 5-47 demonstrate the residuals for intermittent
faults all injected at time 800sec and removed at time 900sec. The residual signals all

deviate from their no-fault regions when the fault is present and return to them when the

fault is removed.
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Figure 5-45: The residual signals due to an intermittent fault in the gain k,
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Figure 5-46: The residual signals due to an intermittent fault in the gain 7,
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Figure 5-47: The residual signals due to an intermittent fault in the bus voltage
Since in the low bus voltage case both residuals are sensitive to all types of faults,

investigating the performance of our proposed nonlinear observer for the presence of

concurrent faults is trivial.
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5.2.3 Presence of Fault in Reaction Wheels in Different Axes in
Spacecraft Attitude Control System

In this section we investigate if the occurrence of a fault in the reaction wheel of one
axis can have any effect on the residual signals corresponding to other axes. Since each
diagnosis module in each axis is only supervising the reaction wheel associated to that
axis, it is not expected that a fault in one reaction wheel influences a diagnosis module in
another axis. However, different scenarios are simulated to show that the occurrence of
faults in each reaction wheel does not disturb the residual signals corresponding to other
reaction wheels. The faults in the following scenarios are considered to be very
significant in order to show that even large faults cannot affect residual signals associated
to other axes.

As the first scenario, it is assumed that an 80% fault occurs in the viscous friction
gain in the reaction wheel associated to the yaw axis in the high bus voltage case. Figure
5-48 demonstrates the residual signals for the three axes in this scenario. As can be seen
the residual signals associated to the yaw axis detect the presence of fault in the yaw axis.
On the other hand, the residual signals of the other axes are not affected by this fault.

The second scenario is that of occurrence of a 70% fault in the bus voltage in the
reaction wheel associated to the pitch axis in the high bus voltage case. Similar to the
previous case Figure 5-49 shows that the diagnostic signals of the pitch axis detect this
type of fault while those of the other axes remain in their no-fault zone.

The third scenario deals with having a 70% fault in the motor torque gain of the

reaction wheel in the roll axis in the low bus voltage case. Figure 5-50 illustrates the
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residual signals for this scenario. As can be seen the residual signals of the roll axis warn
about presence of a fault while the residual signals of the other axes are not disturbed.
The last scenario to be considered is that of having a 50% fault in the bus voltage in
the reaction wheel of the yaw axis in the low bus voltage case. Figure 5-51 demonstrates
the residual signals for this experiment. It can be seen that the residual signals
corresponding to the yaw axis detect the fault while the ones related to the other axes are

not excited.
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Figure 5-48: The three-axis residual signals for the high bus voltage case with fault in the yaw axis
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(c) The undisturbed residual signals associated to the yaw axis

Figure 5-49: The three-axis residual signals for the high bus voltage case with fault in the pitch axis
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Figure 5-50: The three-axis residual signals for the low bus voltage case with fault in the roll axis

116



0051

=
-
s T T
3
1§
2 . . . . . ,
%000 1050 1100 1150 1200 1250 1300
time(sec)
x10°
5

5 , .
1000 1050 1100 1150 1200 1250 1300
time({sec)

(a) The undisturbed residual signals associated to the roll axis

0.05
S
e
% )]
% ____________________________
1000 1050 1100 1150 1200 1250 1300
time(sec)
5
5:_(10
L
3 [+]
i ____________________________

5
1000 1050 1100 1150 1200 1250 1300

(b) The undisturbed residual signals associated to the pitch axis

residual signal ri

residual signal 12
-
[

>

2
&

1050 1100 1150 1200 1280 1300
time(sec)
(c) Detection of a 50% faultin V. by the residual signals associated to the yaw axis

Figure 5-51: The three-axis residual signals for the low bus voltage case with fault in the yaw axis
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5.3 Discussion

In this chapter the performance of a linear observer versus the nonlinear observer was
investigated and evaluated.

Table 5-1 shows the performance of a linear observer used as the FDI module. As
was mentioned earlier this observer can only detect the faults in the bus voltage in the
high bus voltage scenario. It does not detect faults in the motor torque and the viscous
friction gains. In addition this linear observer is not convergent in low bus voltage
scenario. The fault injection time, fault detection time and the delay in fault detection are

indicated in this table.

Table 5-1: The performance of a linear observer for FDI

Bus Fault Fault Delay in
Voltage Type of Fault Injection | Detection Fault
\%) Time Time Detection
(sec) (sec) (sec)
12 10% fault in the motor torque gain 400 - -
12 40% fault in the motor torque gain 400 - -
12 70% fault in the motor torque gain 400 - -
12 20% fault in the viscous friction gain 400 - -
12 50% fault in the viscous friction gain 400 - -
12 80% fault in the viscous friction gain 400 - -
12 30% fault in the bus voltage 400 414 14
12 50% fault in the bus voltage 400 411 11
12 70% fault in the bus voltage 400 409 9

Table 5-2 shows the performance of a nonlinear observer used as the FDI module.

This observer is able to detect faults in the motor torque gain, viscous friction gain and
the bus voltage in both high bus voltage and low bus voltage scenarios. Similar to Table
5-1, the fault injection time, the fault detection time and the delay in fault detection are

indicated in Table 5-2.
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Table 5-2: The performance of a nonlinear observer for FDI

Bus Fault Fault Delay in
Voltage Type of Fault Injection | Detection Fault
) Time Time Detection
(sec) (sec) (sec)

12 10% fault in the motor torque gain 400 458 18
12 40% fault in the motor torque gain 400 413 13
12 70% fault in the motor torque gain 400 413 13
12 20% fault in the viscous friction gain 400 - -
12 50% fault in the viscous friction gain 400 420 20
12 80% fault in the viscous friction gain 400 417 17
12 30% fault in the bus voltage 400 407 7
12 50% fault in the bus voltage 400 407 7
12 70% fault in the bus voltage 400 407 7

6 10% fault in the motor torque gain 800 954 154
6 40% fault in the motor torque gain 800 954 154
6 70% fault in the motor torque gain 800 958 158
6 20% fault in the viscous friction gain 800 855 155
6 50% fault in the viscous friction gain 800 845 145
6 80% fault in the viscous friction gain 800 843 143
6 10% fault in the bus voltage 800 827 27

6 40% fault in the bus voltage 800 825 25

6 50% fault in the bus voltage 800 824 24

Finally, Table 5-3 shows a comprehensive analysis and comparison between the two

observers’ performances. As can be seen the linear observer is successful in detecting the

fault in only one fault scenario while the proposed nonlinear observer can detect the

faults in all scenarios.
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Table 5-3: The performance of a linear versus a nonlinear observer for FDI
Bus Voltage Source of fault Detected by the Detected by the
Linear observer Nonlinear observer

Motor torque gain X v

6v Viscous friction gain X v

Bus Voltége X v

Motor torque gain X v

12v Viscous fn'cﬁon gain X v

Bus voltage 4 v

5.4 Conclusion

In this chapter the performance of a linear observer as the fault diagnosis module was

simulated. Since this type of observer was not successful in detecting all types of faults

under all operating conditions of the system, the performance of a nonlinear observer

designed in the previous chapter was investigated as an alternative. It was shown that this

observer can outperform the linear observer and detect all types of faults under different

operating conditions of the system.
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Chapter 6

6 Conclusions and Future Work

In this thesis, an observer based approach was considered and analyzed as a fault
diagnosis module in spacecraft attitude control system. A reaction wheel was considered
as the actuator in the system. Reaction wheels are sensitive devices that are vulnerable to
different sources of faults. The important role that is played by these wheels and the lack
of any published research dealing with fault diagnosis of these devices have provided us
with the motivation to develop a solution for this problem. A control law was first
designed to stabilize the spacecraft system and to provide a framework for implementing
the fault diagnosis algorithm.

First a linear observer was used as the fault diagnosis module. This observer could
not asymptotically estimate the states of the system when the spacecraft was working
with low bus voltages. In addition even in high bus voltages that it could yield proper
state estimates, it could not detect the faults in the motor torque and viscous friction
gains. The linear observer failure to solve the FDI problem has provided us with
sufficient reasons to develop and obtain an alternative solution.

At the next step, a nonlinear observer was designed based on the parameters obtained

from the linear observer. First, the state estimate convergence of this observer was
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ensured analytically. Following the convergence verification, the proposed solution was
applied as the fault diagnosis module in the nonlinear model of the spacecraft. It was
assumed that the reaction wheel was prone to three different types of faults, namely faults
in the motor torque gain, viscous friction gain and the bus voltage. The nonlinear
observer generates two residual signals. Depending on the bus voltage operating
condition, the performance of the nonlinear observer is investigated according to two
cases.

In the first case a high bus voltage scenario was considered. In this case, one of the
residual signals was only sensitive to one source of fault. On the other hand, the other
residual signal was sensitive to all the three faults. Therefore, it was concluded that when
there was only one type of a fault present in the system, it could be detected successfully.
It was also shown that since one of the residual signals was only sensitive to faults in the
bus voltage, this fault type could be isolated as well. Following the performance analysis
of the proposed FDI scheme in presence of single faults, its performance was also tested
for the concurrent fault scenarios. Given that both residual signals were excited by the
presence of faults in the bus voltage, appearance or disappearance of a fault in the gains

k, and 7, cannot be detected when there is a fault present in the bus voltage. When there
is an overlap in the time of occurrence of faults in the gains %, and z,, the FDI scheme

can yield false information. As shown in Chapter 5, when one of these fault types is
present in the system, occurrence of the other may be perceived as disappearance of the
first fault. This is due to the fact that in this situation the residual signal returns to its

normal operating mode when the second fault occurs.
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In the second case a low bus voltage case was considered for examining the
performance of the nonlinear observer. In this case both residual signals were susceptible
to all types of faults. Therefore, all faults were detected but isolation was still not
possible.

We can briefly list the contributions of this thesis as follows:

1. In this thesis we developed a fault diagnosis algorithm to diagnose the faults in a
high-fidelity model of the reaction wheel in a fully nonlinear three-axis spacecraft
attitude control system.

2. The developed algorithm can successfully detect all three types of fault in the
reaction wheel. These three fault types are faults in the motor torque gain, viscous
friction gain and the bus voltage.

3. This algorithm can isolate the faults in the bus voltage in the experiments dealing

with high bus voltage, V3, =12V.

Future Work

Future work can be directed towards achieving the following objectives:

1. Isolation of all types of fault: As shown in this thesis, the FDI scheme was
not capable of isolating all faults. In an idealistic approach, three residual
signals should be considered to isolate three sources of faults. Ideally each of
these residuals should be affected by one and only one fault. In that case each
fault will be associated to one residual signal. If such a residual generator is
constructed, all types of fault can be clearly isolated. However this is not a

necessary condition for isolating the faults. In our considered fault diagnosis
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scheme two residual signals are generated. Since three sources of faults were
defined in the FDI problem, the effects of at least two types of fault appear in
one residual signal. Therefore, there are at least two fault sources that cannot
be isolated. Future work may develop other signal processing methods to
extract features that are uniquely identifiable to different faults. Development
of these techniques which lead to isolating all sources of fault is worth
investigation.

Detection of concurrent faults: Although for achieving the objective of
isolating the faults there is no need to have a one to one matching between fault
types and the residual signals, having such a relationship between residuals and
faults can make the diagnosis valid even during concurrent faults. In this case
the residual generator can distinguish all the existing faults from the others.
Reducing the delay in fault detection: Future work may attempt to develop
techniques to decrease the delay in fault detection.

Fault diagnosis in other components of the ACS: Fault diagnosis schemes
can also be developed for other components in the spacecraft attitude control
system. This could be done for sensors (e.g. sun sensors, magnetometers, etc.)

or other actuators such as electromagnets.
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