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ABSTRACT

Implicit Cube-Distance Fault Modeling for Verification and Functional Testing Applications

Lucas W. B. Lee

With device manufacturing entering the sub-micron technology while complexity of the circuits continues
to grow, the different types of design errors and manufacturing errors also spread in variety. It remains
important to have a fault model that properly emulates the large classes of problems which are most likely
to occur throughout the design cycle. The implicit cube error replacement modeling is proposed to satisfy
modeling of design errors, while maintaining a comparable or shorter fault list to current methods, such as
explicit gate replacement and gate replacements with MIGSE modules. The proposed error modeling is also
applied to functional testing of FPGAs, where the look-up table (LUT) based logic may contain an even larger
variety of functional errors which the implicit cube error replacement modeling is used to check. Simulation
techniques with random or upper-lattice layer vectors will be looked at, as well as incorporating satisfiability
(SAT)-based automatic test pattern generation (ATPG) algorithms from the s-a-v model into the new model.

A prototype implementation of the design-verification-testing flow of FPGA is also examined.
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CHAPTER ].

INTRODUCTION

omplexity of integrated circuits continue to grow with more assortment of cores to be integrated onto
Cthe common substrate. With design engineers continuing to compact more functionality in electronic
devices that are to operate at higher speeds, it poses challenges in verification and manufacturing testing, in
that more efforts are needed to guarantee proper operation and reliability. With circuits entering submicron
fabrication technologies, errors and defects are even more difficult to minimize to meet all functionality
requirements. The purpose of verification and testing in the product cycle is to provide confidence that
manufactured devices perform under promised specifications, and be able to identify defects and failures
should they occur. Unfortunately, a device failing a test may be due to a large range of errors. The problem
may originate from the fabrication process, design errors, poor specifications, temperature of the environment,
or the test itself. Challenges in testing are even more overwhelming during diagnosis when engineers look
for the problem source and find ways of improving the design-manufacturing process.

Failing products cause loss in the customer’s confidence and the company’s reputation, which may impact
the company’s selling volume and revenue in the longer run. Yet, in the time-to-market environment, where
devices are produced and sold in large volume, engineers require high quality of tests. Factors of test quality
are decided by the ability of detecting malfunctioning, the ability of locating the error, the duration of test, and
the manufacturing process technology affecting the likelihood of certain types of physical defects to occur.
As it is critical to maintain a reasonable cost in design verification and testing efforts, each of the factors need
to be regarded with care to deliver reliable products in the shortest amount of time. Typical measurement of
test quality is fault coverage, defined as “the ratio of the number of faults that can be detected to the total
number of faults in the assumed fault domain” [RT98].

As cited in [Haj03], verification takes up to 70% of the ASIC design cycle’s effort and time. Process
technology advancements allow large-scale manufacturing of smaller transistors, but may create more

chances and classes of failures. It is reported in [Mil04] that over 80% of devices fabricated under the



1.1. Design-Manufacturing Flow

0.18um technology, (the current mature process technology at the time of writing,) operate as expected. Just
over 60% function correctly with the devices fabricated under the 0.13um technology, while only 40% work

under the 90nm technology. Therefore, having verification and test strategies that effectively identifies device

failures are critical.

1.1 Design-Manufacturing Flow

Previously, design engineers and chip designers worked separately from test engineers in pre- and post-
production parts of the project respectively. As it remained much less affordable in cost and time to resolve
errors further down the design-manufacturing cycle, design flows needed to be adjusted by incorporating more
interaction in testing and verification of the design and test groups. Not only did this reduce costs and time
for the competitive time to market environment, but also accommodated the overly design complexities while
making designs easier to test. There is now the popular design for testability (DfT) notion which focuses on
the incorporation of special features that enables high quality of tests. Typical DfT elements include built-
in-self-test (BIST) and scan-based circuits. For BIST, additional circuitry is added into a circuit such that it
is capable of checking for unfavorable behavior by itself, independent of expensive tester equipment which
may cost thousands of dollars more than the device itself. In scan designs, all (full scan) or selected (partial
scan) design registers are modified to mimic pseudo primary I/Os for the purpose of easy testing of internal
elements. To goal of BIST is to ease testing efforts without adding significant area overhead and performance
degradation to the design.

While verification is checking the correctness of a design and is more associated with simulation,
hardware emulation for formal methods, ftesting checks the correctness of hardware. The testing process

consists of zest generation during the design cycle by software, and test application on the device hardware.

1.1.1 FPGA Emulation

A popular design methodology involves prototyping with a programmable device such as a field-
programmable gate array (FPGA). The main advantage is the flexibility, in that incremental mistakes and
errors can be rectified quickly by reconfiguration. Without the overhead manufacturing costs during each
reconfiguration, the use of FPGA implementations for prototyping therefore greatly reduces design costs.
The process, known as FPGA emulation, attempts to emulate the desired behavior of the final implemented
ASIC on a FPGA. As shown in Fig. 1.1, the FPGA [Xil] and ASIC design flows remain vastly similar.

The designer begins by writing description of the design in a hardware description language (HDL), which
is to be synthesized into actual gates, represented as a netlist. To ensure proper logic mapping, functional

simulation is performed on the netlist. The original design and synthesis processing scripts are adjusted

20f 89
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Figure 1.1: FPGA design flow

if necessary. The designer then executes place and route, also known as design layout, where the actual
physical placement of logic blocks and their wire interconnections are performed. Knowing the positions
of the logic gates, modules and precise wire locations, timing and delay information could be automatically
extracted. Verification is then performed with timing information back-annotated into the netlist. When this is
completed, the design is ready to be downloaded onto the FPGA. For ASICs the design is sent for tape-out for
fabrication. The implemented hardware is then tested for errors in the device. Throughout each stage of the
design flow, errors may be introduced as functional errors where the circuit is not operating as its intended
Boolean function. They may also be introduced as timing or delays errors. Because of the diversification
within each of these categories, the task of testing is highly complex. The scope of the thesis will focus on

verification and functional error modeling methodologies but will exclude timing and delay-typed faults.

1.1.2 Verification Techniques

Two main methods of verification are predominant: simulation and formal verification. Simulation is the
common classic method of exciting a circuit with series of vectors and monitoring the circuit’s output for
erroneous behavior. Formal verification uses a different approach by using formal proofs to show that the
circuit possesses certain desired properties. Although there have been large advances in formal verification
recently, simulation-based methods remains the common technique at the present time and are to be the focal

highlight in this thesis.
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1.1. Design-Manufacturing Flow

1.1.3 Simulations

Simulation requires defining an error model and generation of vectors targeting the model. The error
model is needed to emulate possible errors that may occur. A set of vectors are then injected into the design
under test (DUT) via simulation. The outputs of the DUT are examined for any erroneous response. In
many cases, simulation involves storage of large amounts stimulus and response data. This poses a problem
especially in BIST where all the test circuitry is along side with the device, and becomes infeasible when the
storage elements become larger than the device itself. One solution is response compaction, which takes the

set of response data for post-processing and compression [RT98].

1.1.3.1 Fault Modeling

A design with n inputs has a total of 2" possible input combinations. However, exhaustive simulation
would take up far too much time to be practically feasible in any time-to-market environment. As a result,
only a subset of test vectors is used, and a fault model is necessary to be defined to represent possible error
scenarios the DUT may suffer. Because of the seemingly large classes of errors possible in design and
manufacturing, there needs to be a method of classifying them into small, finite manageable classes to make
verification and testing easier. First, a fault list is created, which consists of every possible fault defined by
the model. After some prepossessing on the fault list to minimize its size, the verification routine traverses
each fault of the compact fault list and simulates the circuit. Discussions of fault modeling will be looked at
in Chapters 2 and 3.

Redundant faults are ones not detectable by test sets, as a circuit’s functional behavior is not affected
by their presence regardless of any vector input. Exhaustive simulations can determine whether a fault is
redundant, but with only a non-exhaustive subset, other methods must be applied to identify redundant errors.
These redundant faults may waste verification times, as applying a subset of test vectors may never truly
determine whether they are impossible to detect or simply difficult to identify. Therefore it is important to
remove redundancy from the fault list such that time is not wasted during testing. Methods of identifying

redundant faults are discussed in Sect. 4.3,

1.1.3.2 Test Vector Generation

In simulation, test vectors may be generated either deterministically or non-deterministically. Determinis-
tic vectors are created by targeting a particular fault of a fault list. Based on the circuit network topology, the
software verification algorithm traverses it and attempts to determine at least one vector capable of detecting
the fault of interest. Automatic test pattern generation (ATPG) is one of the most popular deterministic

methods. An alternative to deterministic methods is by vectors generated randomly or other algorithms such

40f 89



1.2. Functional Verification and Testing Relationship

as lattice layers. Unlike deterministic methods, these vectors are not targeted towards any particular fault of

a list. Both deterministic and non-deterministic methods will be discussed in Chapter 4.

1.2 Functional Verification and Testing Relationship

Of all faults, such as logical/ functional, clocking and cross-talk induced errors, logical and functional
errors leads the pack where 70% of designs fail first-silicon [Mil04](Table 1.1). Functional components on
silicon fail, and the problems are attributed to both design errors that are introduced before design tape-out
and manufacturing errors introduced during silicon processes. As it has also been reported in [SFO3] that the
success rate of first-silicon success rate has dropped from 50% to 39% between 2001 and 2002. The article
in [SF0O3] also suggests that 82% of design re-spins as attributed to design errors, meaning that these hard to
detect faults propagated unnoticed all the way into tape-out.

With such large efforts in time spent on finding vectors for verification as well as test vectors for
manufacturing faults, it would be wise to combine these two efforts and come up with a test set which can
cover both classes of errors in design and manufacturing faults. For that, an abstract functional fault model is

needed that could represent the faults in the most compact way.

Table 1.1: Percent of designs failing first silicon

| Error type | Percentage (%) |
Logic/functional 70
Tuning analog circuit 35
Slow path 26
Fast path 25
Mixed-signal interface 22
Clocking 20
Yield/reliability 16
Crosstalk induced 16
Firmware 14
IR drops 14
Power consumption 12
Other flaw 7
RET 4

1.3 Thesis Overview

The purpose of this thesis is to propose an implicit method of modeling functional errors in terms of
cube-distance errors. Then, the proposed fault model is applied to FPGA functional testing. Chapter 2

introduces the stuck-at-value (s-a-v) fault modeling techniques in manufacturing testing, as well as the other
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1.3. Thesis Overview

methods such as gate replacements and a method proposed by Hayes et al. [AAHS5] [BHY7], which cover
larger classes of design errors than what the s-a-v is capable of modeling. The chapter also further discusses
shortcomings of modeling these types of errors explicitly, and explains the need of an implicit model that
is not only able to cover larger classes of design errors, but is also capable of maintaining a compact fault
list. Details of modeling errors implicitly, specifically as cube-distance errors, are proposed in Chapter 3.
The implicit model is compared with other previously proposed modeling techniques. Chapter 4 presents
simulation with random and lattice vectors and looks at fault detection methods of various fault models by
satisfiability techniques (SAT) and automatic test pattern generation (ATPG). Chapter 4 also describes fault
redundancy identification of the cube-distance error model. Chapter 5 details experiments used with the
Berkeley SIS [SSL.+92] CAD tool, where customized routines are implemented to model implicit gate-level
errors in combinational designs. Details of implementation, including a way of mapping the error models to
original software routines targeting s-a-v faults are also discussed. Finally, Chapter 6 demonstrates modeling

of functional errors in look-up tables (LUT) and describes experiments used to perform functional FPGA

emulation testing based on the proposed model.
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CHAPTER 2

INTRODUCTION TO ERROR MODELING

or any digital system, the circuit may be viewed simply as a mapping of input ports to output ports
Fafter some propagation delay. The circuit can be looked at functionally through its Boolean mapping, or
behaviorally, by its functional properties with timing propagating information [ABF94]. The circuit, at any
level of abstraction, may be regarded by these mappings. At the gate-level, the functional model of the circuit
describes the logic outputs of gates based on the type of the Boolean gates the circuit has. At the register
transfer level (RTL), the functional model of the circuit describes the word level logic between registers and
larger circuit modules.

The purpose of error modeling is to emulate behaviors posed by different types of physical defects and
manufacturing errors as functional errors. Where the categories of errors in physical reality are broad and
copious, error modeling attempts to map the majority to a mathematical abstraction. Such a mapping is to
achieve 2 much smaller number of manageable types of functional errors. Like any mathematical model, as
is Boolean in this case, error modeling has limitations as to describing all the physical problems affecting
device operation. Creating a suitable model is therefore very important. Another challenge is to have a small
enough class of errors in the model such that the test time required to cover all of them is minimized. In
testing, this entire fault list of the design also has to be kept at a minimum for the test generation software

and ATE routines to operate at a smallest memory footprint.

2.1 Error Modeling in Testing: Stuck-At-Value Fault Model

The most popular model currently used in manufacturing testing is the stuck-at-value (s-a-v) model,
where manufacturing failures are categorized as one of two possible functional errors — wire connections
permanently tied to either logical "1’ (s-a-I) or logical *0’ (s-a-0). Its obvious attraction is its simplicity in

classifying all physical errors into two functional error polarities. Moreover, this type of modeling is very



2.1. Error Modeling in Testing: Stuck-At-Value Fault Model

C gate-source short

gate-source short

(a) Stuck short fault represented by Z:s-a-0 (b) Stuck short fault represented by Z:s-a-1 error
error

Figure 2.1: Stuck short faults represented by s-a-v faults

mature with various fast optimized test generation algorithms developed over the years (Chapter 4). Fig. 2.1
shows examples of circuits where stuck-shorts to the power supply and ground could be represented as s-a-v
faults. In Fig. 2.1(a), node Z is constantly tied to ground, without giving a chance for it to charge even when
the input A is °0’. In Fig. 2.1(b), the node Z is stuck-shorted to the power supply, making the node equivalent
to s-a-1.

Both s-a-0 and s-a-1 faults may also cover numerous cases of stuck-open faults. It can be observed in
Fig. 2.2 an inverter whose pMOS transistor has its gate-source stuck open. Despite the voltage level at node
A, the output Z never has a chance to charge up to logic level ’1’. Because of this, this pMOS stuck-open
case can be represented by Z:s-a-0. Another case is when stuck-open fault is located between the gate and
source of the nMOS circuit of the inverter. The output Z never has a chance of discharging, with only a

chance to charge when A is 0. The faulty circuit can therefore be represented as Z:s-a-1.

2.1.1 Fault Detection

Any method of fault detection requires a difference between the fault-free and faulty outputs of the circuit.
Let f be the fault in the circuit. If z and zy are the fault-free and faulty responses of a circuit respectively, the
Boolean difference between z and zy is defined as the functional difference between the two. Formally, the

Boolean difference of two functions is written as the exclusive-OR of the two: z & zy. Whenever a fault is
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pPMOS gate-source l
stuck open

nMOS gate-source
stuck open

Figure 2.2: Stuck open faults represented as s-a-0 and s-a-1 faults

x0 10

x1

x2 __]
x3 — t1: s-a-0

Figure 2.3: Stuck at fault example

detectable, the Boolean difference between the 2 and z; needs to be evident:

z2@zp=1 2.1

Hence, any test vectors capable of satisfying Eqn. 2.1 are ones that may detect the presence of fault z;.

Example 2.1.1. Fig. 2.3 shows a combinational circuit with 2 = (2o @ 1) + (za%3). Consider the error
s-a-0 introduced at node t;. This nodal error is modeled as per;;1anently tied 10 ground,: independent of
logical inputs at xo and 3. Let 24 be the erroneous function resulted by introduction of this stuck fault.
With t1: s-a-0, the output function has no dependence on the lower branch entering the OR gate. The
erroroneous function can thus be described-as 7y — xo @ x1. 1o find the vectors capuable of detecting

the fault, there needs to be a discrepancy between the fault-free and faulty owtputs, by Egn. 2.1. In this

example:

2®2p ={{zoDz1) + (2273)} D (2o D 11) = (Fo D T1)T2z3 =1 2.2)

Since (x5 & x1), w2 and s need to be 1, the set of vectors capable of detecting ti: s-a-0is given by:

\\ (330,561,.'1}2,113) = {(OalnLl)! (1701111)} (23)
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Various systematic techniques of fault detection exist, such as deterministic and simulation. These

methods shall be discussed in Chapter 4.

2.1.2 Limitations of S-A-V Modeling

While the s-a-v model attempts to simplify many classes of possible physical faults into two possible
functional errors, the obvious limitation is its over generalization of all possible failures into two possible
stuck polarities. As discussed recently in [Sal03] [SKG03] [THML04], while the s-a-v fault model may be
arguably sufficient in testing of current CMOS devices, the model is not good enough for circuits under sub-
micron technology. For nanotechnology-based integrated circuits, generally classified as even smaller than
sub-micron technologies, the sources of errors come in an even wider variety. For these reasons, strategies of
fault modeling of circuits of these technologies need to be updated.

Although arguably sufficient, many believe that the s-a-v model itself fails to cover the entire spectrum
errors fully, even in CMOS. Moreover, it also fails to model various types of design errors. For example, it
fails to model conditional stuck logical values, nor is it capable of representing gate substitutional errors. An

alternative of modeling such errors is by representing each gate replacement errors explicitly.

2.2 Design Functional Error Modeling

Design errors are errors introduced during the design process before layout. With the high dependence on
design automation for synthesis, these errors are not only attributed to human errors but also to the Computer-
Aided Design (CAD) tools. Although s-q-v faults remain appropriate in manufacturing testing this fault

model becomes insufficient to represent the variety of design error types.

2.2.1 Gate Replacement Error Modeling with Gates of Compatible I/O Count

Gate replacements are common design errors. Each gate in the netlist may have been erroneously
replaced by another gate with a different function but with the same number of inputs and outputs from
its design libraries. For example, let the circuit of Fig. 2.3 be synthesized with design libraries consisting
of the six standard 2-input gates (AND2, OR2, XOR2, NAND2, NOR2, XNOR?2) and six 3-input gates
(AND3, OR3, XOR3, NAND3, NOR3, XNOR3). Errors on the XOR2 gate in the original circuit may
be modeled as a replacement with either one of the five 2-input AND2, OR2, NAND2, NOR2 or XNOR2
gates. Likewise, errors on the AND2 gate may be represented by replacements with OR2, XOR2, NAND?2,
NOR2, XNOR?2 gates. Finally, the OR2 gate can be modeled as replacements with AND2, XOR2, NAND?2,

NOR2, XNOR2 gates. These errors can commonly occur by human intervention with post-synthesis netlists,
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for improvements such as critical path delays (by replacing existing gates with faster logic) or area/power

minimization.

2.2.2 Gate Replacement Errors by MIGSE Modeling Modules with S-A-V Faults

Although the basic concept of gate replacement errors is straightforward, modeling of such errors for the
purpose of their detection can pose a significant problem. The vast variety of possible replacement cases
to be considered makes the simulations prohibitively expensive. Several alternatives have been proposed to
overcome this difficulty. For example, in [AAH95][BH97] Hayes et al. applied s-a-v faults to represent
explicitly erroneous gates, specifically multiple input gate substitution errors (MIGSE). Instead of having
a set of gates from the synthesis library as candidate replacements, the model uses only one replacement
module for each type of gate in the library with s-a-v faults placed internally within each module to represent
errors. One of the main advantages of this approach is being able to use existing s-a-v testing routines (such

as ATPG) for error detection of gate replacement faults.

2.2.2.1 Construction of the MIGSE Fault Replacement Module

A MIGSE module is first constructed such that its Boolean logic is functionally equivalent to the one
of the original gate. Next, s-a-v faults are strategically placed within the module to represent the several
possible error types of the gate. These stuck faults are placed such that the complete set of vectors, classified
as Voull, Vail, Voda and Veyen are capable of detecting all these stuck faults. The four classes of 'V’ vectors
are defined as input combinations at the input of the gate. Specifically, each category describes whether the

input combinations are all zeros, ones, odd parity, or even parity:

o Vot All’0’s in input vector
e V,;: All’1’s in input vector
¢ V,4q: Odd parity input vector that is neither V,,,,;; nor Vy

e V.,en: Even parity input vector that is neither V,,,,;; nor Vi
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Figure 2.4: MIGSE module of the AND3 gate

Example 2.2.1. Fig. 2 4(a) shows an example of a 3-input AND gate (AN D3) within an arbitrary logic

network. A construction of the replacement module is made by interconnections of two XOR2 gates and

three NOR3 gates such that the overall module’s logic represents the same logic original AND3 function,

i, ToTizs = (wo & 21) + (51 D xa) + (w0 + 21 + 22). Next, three s-a-0 faults are placed at ty, t; and

zin Fig. 24(b). Fig. 2.4(c) lists all Boolean values at each internal node for edch s-a-v cases, as well as

the vector type capable of detecting the fault. zi,.._._o can be detected by inputs (1o, 71, 72) = (0,0,1)

and (1,1,0), which are V43 and V..., vectors respectively. zi,... .o can be detected by (0,0,0), the

Viull VECIOT. Zy:5-.q—0 can be detected by (1,1, 1), the Vay vector. Each of the four categories of vectors

is required to detect the three injected s-a-v faults.

The modules for AND2 (Fig. 2.5), OR2 (Fig. 2.6), XOR2 (Fig. 2.7), OR3 (Fig. 2.8), XOR3 (Fig. 2.9) are all
created in the similar fashion as described in Ex. 2.2.1. All marked stuck fault locations are candidate fault

locations within the module.
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0 —————t As-a-0
1

Z:s-a-0
z Inputs | internal | Fault-Free | Fauity Responses
AND2{10_ 1| A B Z 2(B520)] Z(Z:5a0)

XVouifO 0|1 0 o [ 0
X voad| o 1[0 1 0
X Vodd] 1 0|0 1 0

Bs-a-0 X val |1 1]l0 o 1

(a) AND2 gate Module (b) AND2 Module truth table

Figure 2.5: MIGSE module of the AND?2 gate
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(a) OR2 gate Module (b) OR2 Module truth table

Figure 2.6: MIGSE module of the OR2 gate
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(a) XOR2 gate Module (b) XOR2 Module truth table

Figure 2.7: MIGSE module of the XOR2 gate
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(a) OR3 gate Module (b) OR3 Module truth table

Figure 2.8: MIGSE module of the OR3 gate
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Figure 2.9: MIGSE module of the XOR3 gate

2.2.2.2 Detection of Faults Represented by Module Replacements

With module replacement modeling of gate errors, each faulty gate is represented by a small cluster
of interconnected gates with s-a-v faults within the module. Each of the s-a-v faults is executed with test
generation routines to determine whether the errors within the module could be detected as being part of the

entire circuit under test. More detailed description of errors by module replacement can be seen in Chapter 5.

2.2.2.3 Limitations of Module Replacement Modeling

For each gate used in the library, a module needs to be created to model its replacement. There may
be difficulties in finding descriptions of complex combinational gates — gates that are not part of the basic
{AND, OR, XOR, NAND, NOR, X NOR} categories. The problem would be most evident in FPGAs
when the fundamental logic block is no longer the gate but the look-up table (LUT). Since LUT implements
a variety of Boolean logic, there would be an unrealistic number of modules to create. Therefore, the module

replacement model would not be suitable for functional verification and testing of FPGAs (Chapter 6).

22,3 Other Fault Modeling Methods
2.2.3.1 Bridging Faults

With devices approaching sub-micron technologies, closely placed wires are more susceptible to crosstalk
effects. The bridging fault model, discussed in textbooks such as [BAOO] [ABF94] has been used to check

errors on the Pentium™4 processor [KMV01].

2.2.3.2 Error Modeling at RTL Abstractions

Obviously, fault models are not limited to the gate-level. Other methods have been proposed in [TAZ00]

[TAZ03] which abstracts faults at the register transfer level (RTL). Faults are injected at this level, specifically,
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Inputs
RTL Module

RTL Module

Inputs ATL Module
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Figure 2.10: RTL abstraction of a circuit

before synthesizing constructs at the RTL down into gates. Therefore, at the time of fault insertion, there is
no knowledge of the structural information of the circuit except the interconnections at the RT-level.

RTL modules created with detection probabilities similar to a collapsed gate fault list. Detection
probability is defined as the probability of detecting a fault by a random vector. For a complete test set
that has 7 test patterns that is capable of detecting the fault & times, the detection probability is defined as

Error modules at the RTL level have a fault list constructed in a similar way gate fault lists are constructed.
In s-a-v faults, wires are assumed to have constant error logical values at either 0’ or ’1’, while gates are
assumed error-free. The RTL method proposed by the authors of [TAZ00] [TAZO03] uses the same model
assumptions with the added property that the RTL modules are also assumed to be fault-free. At this level,
s-a-v faults are injected at the inputs and fan-outs, but not at the internal nodes as their information is not
available yet. For RTL constructs that are defined as Boolean operators, s-a-v faults are also injected within
the internal nodes as well, as the internal signals of these components are also available at the RT-level.
Fig. 2.10 shows an example of the design at the RTL abstraction. In most cases, the blocks represent functions
that are not mapped to logic gates yet. Stuck faults are injected at the wires surrounding the RTL block. In
other instances, logic information is available and faults could be injected into the inputs and outputs of these.

A technique known as stratified fault sampling is issued to create RTL modules for simulation. These
RTL modules are representative samples of the gate-level fault list, and the coverage results by simulations of
these modules are very close to what would be produced at the gate-level. The overall design fault coverage

is determined by a weighted sum of each individual RTL fault modules. The authors in [GSTT01] have also
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Table 2.1: Gate replacement errors with mux MCNC benchmark

MCNC benchmark: mux
2-Input Gates in synthesis library: AND2, OR2, XOR2,

NAND?2, NOR2, XNOR2
3-Input Gates in synthesis library: AND3, OR3, XOR3,

NAND3, NOR3, XNOR3
Number of gates in synthesis library: 6 (2-input) 46 (3-input) = 12
Number of gates in circuit: 18 (2-input) +58 (3-input) =76
Possible gate replacement errors (per gate): 6—-1=5
Total gate replacement errors: 5(76) = 380

attempted to improve the statistic measurement of these RTL modeling techniques.

2.3 Explicit and Implicit Error Modeling

2.3.1 Explicit Error Modeling

Definition 2.3.1. Guate error replacement is replacement of a correct gate with a gate of different Boolean

Sfunction, but with compatible number of /O ports.

Explicit design error modeling is widely used, due to its intuitiveness. One of the most popular examples
of explicit errors in manufacturing testing is a single stuck-at value (s-a-v) model representing defects in
transistors implementing digital gates. The fault list size is made up of all possible faults given by the
model at each wire. The list may be minimized only to some extent by fault collapsing and dominance
properties [BAOO][ABF94]. The strong point of s-a-v model is its ability to represent various manufacturing
defects in terms of an internal circuit connection stuck either to Vss (s-a-1) or ground (s-a-0). The analogue
explicit simple and uniform model is impossible to derive in the case of functional faults, where the diversity
of the design errors is hard to capture.

Due to the variety of types of functional faults, the straightforward explicit modeling would therefore not
be appropriate for representing errors in even moderate netlists. The appealing solution is to classify several

explicit faults by merely one implicit fault, such that its detection would guarantee detectability of all explicit
faults it represents.

2.3.2  Fault List Sizes Based on Explicit Error Modeling

2.3.2.1 Gate Replacement Error Modeling with Gates of Compatible I/O Count

Consider using the mux MCNC benchmark circuit as an example (Table 2.1), where the design is

synthesized and decomposed into gates of 2 and 3-inputs. 6 gates of each 2-input and 3-input gates from
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Table 2.2: Fault list size using replacement module errors with mux MCNC benchmark

MCNC benchmark: mux

2-Input gates in Synthesis Library: AND2, OR2, XOR2,
NAND2, NOR2, XNOR2

3-Input gates in Synthesis Library: AND3, OR3, XOR3,

NAND3, NOR3, XNOR3
Number of s-a-v faults in each replacement module: 3
Total number of gates: 76

Total s-a-v in replacement module errors: 76 x 3 =228

the synthesis libraries are as shown in the table, including functions of {AND, OR, XOR, NAND, NOR,
XNOR}, making the total number of gates in the synthesis library twelve. After decomposition, the netlist
consists of 18 and 58 2-input and 3-input gates respectively, for a total number of 76 gates. With 6 gates
for each 2-input and 3-input gate classes, the number of possible replacements for a gate in any class is 5,
because it is redundant to check for a gate-replacement by a gate with an identical Boolean function. Since
replacements are only performed on gates with compatible number of inputs and outputs, the total possible
number of gate replacements is 5 times the number of gates, i.e., 380. In general, a netlist with M gates
synthesized to the N-gate library, (assuming each the same number of j—input gates in the library,) has the
total number of explicit gate replacement errors equate to M x (N — 1). If the same gate libraries are used

as the one in the example, then the fault list size is 5M.

2.3.2.2 Gate Replacement Errors by MIGSE Replacement Module

Depending on the way the replacement modules are constructed for each corresponding gate used in
the design libraries, the number of s-a-v faults may vary. However, all standard gates of 2- and 3- inputs
previously derived in Sect. 2.2.2.1 have been derived to contain three s-a-v faults consistently.

Each module of negative polarity gate types, NAND, NOR and XNOR can be derived from the positive
polarity counterpart — AND, OR, and XOR, respectively. The modules are merely an added inverter at the
output, so the number of stuck faults in a module are made to be the same as one created for its opposite
polarity. Similar to the gate replacement example, the library of gates are assumed to be two and three-input
gates.

With 3 s-a-v faults in each replacement module, the mux MCNC benchmark, which has a total of 76 gates,
the fault list size (Table 2.2) is 228. In general, a netlist with M gates, with N- s-g-v faults in each gates’
replacement module, the total number of explicit gate replacement errors equate to M x (N — 1). If the same

replacement modules are used as the ones in the example, then the fault list size is 3M.
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2.3.3 Motivation of Implicit Error Modeling of Design Faults

As shown in Table 2.1 for gate replacements and Table 2.2 for module replacements with s-a-v faults, the
fault list sizes are large. These types of explicit fault modeling would therefore not be appropriate, because
with the variety of possible errors, it becomes even more difficult for the fault list to remain compact in
size. The most appealing solution to this problem would be to classify several explicit faults by merely one
implicit fault, such that detectability of such implicit fault would guarantee detectability of all explicit faults
itis representing. The fault list consisting on implicit faults would be much smaller in size. With this in mind,
each implicit fault can be used to describe and cover a broader range of errors, with fewer tolls on the fault

list size that what would have been with explicit modeling.

180f 89



CHAPTER 3

IMPLICIT ERROR MODELING METHOD BY CUBE

ERROR DISTANCES

‘ x ’ ith gate-level functional errors such as gate replacement errors, fault list sizes by these error

modeling methods result in fault lists that are large and more difficult to manage than the traditional
s-a-v faults. The issue is even more serious in error modeling of lookup tables (LUT) in FPGA since LUT
represents larger classes of Boolean logic as opposed to the standard Boolean gates in ASICs. This chapter
proposes a method of modeling errors implicitly as opposed to the explicit methods previously shown in
Chapter 2, with the purpose of not only shrinking the fault list sizes smaller to be more manageable, but also
be able to cover more functional errors than other gate-level modeling techniques. The proposed model is

to be capable of modeling all types of functional errors at the gate-level, as well as the basic LUT level in

FPGA:s.

3.1 Implicit Error Modeling of Gate-Level Errors

Definition 3.1.1. A cube (Fig. 3.1{a)) is a single product term in a sum-of-products representation, for

which a Boolean function is frue.

Definition 3.1.2. The cube-distance (Hamming distance) of two functions is the number of cubes thar
differ between them. |

Definition 3.1.3. An error function representing a cube-distance error 1 is one that differs in 1 cubes from

the original fault-free function. If c denotes the original ﬂmctioni then ¢; represents a function that has a

cube-distance error of 1.
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(c) Distance-1 cubes of the 2-input AND gate at n = 2

Figure 3.1: Illustration examples of cubes and cube distances

In a truth table, function ¢ would be the vector making up the “output column”, whose cube is represented
by sole product term when all inputs are 1. For example, function ¢ of a 2-input AND gate from Fig. 3.1(b)
is represented by (0,0,0,1)T whose entries correspond to input combinations (0,0), (0,1),(1,0),(1,1)
respectively. The final entry in ¢, corresponding to input combination (1, 1) implies the cube zox1.

From Fig. 3.1(c), a possible cube distance-1 function ¢; would be (1,0,0, 1)T, where the difference in
the output corresponds to input combination (0, 0). Another possible ¢; function is (0, 1,0, 1), where the
output difference corresponds to input combination (0,1).

Fig. 3.2 shows a comprehensive list of cube errors of distances one and two for 2-input and 3-input AND,
OR and XOR gates. The shaded areas mark location(s) of error cubes in the function. Each erroneous function
(column) of cube-distance ¢ would have ¢ shaded location(s). The class of distance-1 cubes (C;) implicitly
represents all possible ¢; replacements. C; correspond to all functional errors, which manifest themselves

as cube-distance-1. Similarly, C; implicitly represent all possible ¢z replacements, i.e., all functional errors

classified as cube-distance-2 errors.
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Figure 3.2: Distance-1 and Distance-2 Error Cubes for 2-Input and 3-Input Gates

3.1.1 Explicit Errors as Functional Cube-Distances

Faults modeled as cube-distances are suitable to describe explicit erroneous gate replacements (Ex. 3.1.1).

Example 3.1.1, Consider Fig. 3.3 where the original 2-input AND gate (AND?2) is replaced by a 2-input
XNOR (XNOR2) gate. Both gate functions are identical except for the entry corresponding to inputs
(0,0). Due to this single difference, the AND2 = XNOR2 gate replacement is functionally equivalent to

d ¢i1 (cube-distance-1 ), feplacement.

Fig. 3.4 shows the truth table of the original AND2 gate and all its functional replacements sorted by the
error cube-distances. The first table in the figure illustrates the complete set of sixteen two-input Boolean
functions, with the AND, OR, XOR, NAND, NOR and XNOR entries highlighted. The second table shows
each of the four possible cube-distance-1 c; errors with respect to AND2 (a correct gate). Note that the
XNOR?2 replacement discussed in Ex. 3.1.1 belongs to this category. Both AND2—OR2 and AND2—NOR?2
replacements are cube-distance-2 co errors, while AND2—XOR?2 is a c3 error. Similarly, AND2—NAND2
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Figure 3.3: AND2 — XNOR2 replacement as a c; cube error

is a sole c4 replacement. Additionally to gate replacements, cube-distance errors can model s-a-v faults.
In Fig. 3.4, a ¢, represents a s-a-0 at the output of AND2 ((0,0,0,0)7 entry of the second table), while a
c3 describes s-a-1 at the output of AND2 ((1,1,1,1)7 entry of the fourth table). As the figure shows, the
maximum possible cube-distance for the 2-input gate is 4, when all 22 possible outputs of the cube are faulty.

Likewise, the maximum possible cube-distance for a 3-input gate would be 23 = 8.

Lemma 1. Every gate replacement fault can be represented as. a‘ cube-distance fault.

Proof. Every gate replacement fault result in a change in the gate’s original function. The ON-set of their

difference constitutes a cube-distance error, by Def. 3.1.2 and 3.1.3. O

It is shown how implicit error modeling by cube distances can be used to represent gate replacement
errors. This model is even more powerful when considering design and mapping errors in FPGAs. Not
only are the typical gate replacement errors in ASIC reduced to Boolean functional errors, but the same
simplification can be applied to the Boolean implementations in each LUT. The notion of functional faults is

even stronger in this case than in dedicated ASIC designs.

3.1.2 Cube-Distance Fault List Reduction Using Dominance

Every n-input module can be wrongly represented in 22" — 1 ways. In consequence, the fault list
comprised of all possible errors attributed to all modules in a given design can be prohibitively large. However
the characteristics of cube-distance error modeling allow a simple but significant fault list reduction based on

the fault dominance principle.

Lemma 2. Detectability of all error cube replacement functions at a distance i implies detectability of all

cube-distance errors gredter than i.
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Figure 3.4: Gate replacement errors in terms of erroneous cubes
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Figure 3.5: C'y cubes of AND2 dominating cube of distance-2. Each distance-2 cube is sorted by which the
parent c; cube is spawned
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Proof. Let [¢] j be a cube that differs from the original gate by distance-i. Let C; represent the set of all

cubes that is distance-i from original function. i.e.,

2

Ci = y{[ci]j}; 0<j< (2.") Y 3.1

Using the AND2 gate as an example (Fig. 3.5), C; comprises of (1,0,0,1)7, (0,1,0,1)7, (0,0,1, )7
and (0,0,0,0)T. By definition, C;;; represents the complete set of cubes that possess distance-(i + 1)
from the original function. To further characterize the cubes, allow {Cii1]ci) jobea subset of Cii1
whose cubes also possess a distance of one from a [c;]; cube. Then, every cube in [Cit1]c;]; is spawned
from cube [¢;] ; by one cover difference. Fig. 3.5 shows each C; cubes categorized by the four possible
[ci]; cubes as [Ciyilci]; sets (0 < j < 3) . Using [a1]y = (1,0,0,1)T as an example, [C2 | c1], =
{(1,1,0,1)T,(1,0,1,1)T, (1,0,0,0)T}.

In general, each [C;11]¢;) ; sets may not necessarily be disjoint, but their union equates to the entire Cit1.

Specifically:

. . an
Ciy1 =|J[Cipaledl;;  Vi:0<5< <¢>‘1 (3:2)
Vi

Let T'(.) represent a test set of an error cube (or a set or error cubes). Using the same example for j = 0,
T(fc1]g) = {(0,0)}. The same test set also detects every cube in [C3 | c1],. This is true since all of the
higher distanced cubes may have its errors triggered by the same inputs. In general, all cubes in [C;1]c;) i
cube spawned by [c;]; may be detected by T'([c;];)-

For any set of cubes spawned by cube [c;];:

T({[cl;}) € T((Ciraleil;) (3.3)

Taking the union of all [¢;]; cubes and their spawned cubes:

T(Jlel;H) € T [Cisaleil;) (B4)
Vi Vi
By Eqn. 3.1 and 3.2:
T(Ci) € T(Citr) (3.5)

By induction, up to a maximum distance of 27:

T(C;) CT(Cip1) ST (Ciy2) - CT(Con) (3.6)
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3.1. Implicit Error Modeling of Gate-Level Errors

Table 3.1: Implicit cube-distance errors for mux MCNC benchmark

MCNC benchmark: mux
Number of gates in circuit: 18 (2-input) 458 (3-input) =76
Total implicit cube distance 76
errors with Cy:
Total explicit gate 5(76) = 380
replacement errors:

|

Qualitatively, the higher-distanced cube errors always dominate the lower-distanced ones (Eqn. 3.6).

Therefore, detectability of any lower-distanced directly implies detectability of their higher-distanced

counterpart.

Lemma 3. All explicit gate replacement errors are detectable if their implicit cube-distance-1 faults are

detectable.

Proof. According to Lemma 1, every explicit gate replacement error can be represented as an implicit cube-
distance fault, C;. Then, by dominance principle of cube-distance errors (Lemma 2), if a test set for C error
functions is sufficient to detect all error functions of cube distance greater than 1, there is no need to verify

errors with larger distances.

a

Note, that the if some C1 implicit faults, [¢;]; are not detectable (redundant), then it does not imply that
higher order cube-distance faults spawning from [¢;]; can also be declared as redundant.

The fault list size for implicit error modeling is calculated in Table 3.1. By lemma 3, the class of implicit
C) cubes is sufficient in representing all explicit gate replacement errors. Comparing the fault list size of

explicit gate replacement modeling of 380 (5M), the size based on C} is 76 (M), equaling to the number of

gates in the netlist.

3.1.3 Verification with Minimal Cube-Distance Errors

Ideally, the best case scenario is the detectability of all C errors. Recalling from Lemma 3, when all of
C; are detectable, there is no need to proceed with any errors with larger distances, since their detectability is
implied. Hence, the minimum number of required errors to be checked equates to 2". However, it is highly

possible and frequent to have replacement errors at distance-1 undetectable.
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Figure 3.6: Circuit with an undetectable cube replacement f — f_c;

Example 3.1.2. Consider a circuit in Fig. 3.06. The XOR? gate driving output [ is replaced with its
cube-distance-1 error, ¢1: f.cy = (0,1,1,1)7, which is excited if its inputs (10, 1) can be set to (1,1).
However, as the truth table of the same figure indicates, pn’nidry inputs xo, ri.and o are incapable‘ of
setting both of these intermediéte nodes to 1 at.the same tirﬁe,

In this case, only based on the fact that a ¢; of C; is undetected, it is impossible to conclude whether

the higher distance cube errors would be also undetected. Consequeéntly; all error ﬁmctianslat cube

distance’t + 1, Ciy1 must therefore be checked. In this example, since not all of the'C, are detectable,
s errors (next higher:in-distance) are investigdted. The set of considered errors includes in particular
[Calfci] : {(1,1,1,1)%,(0,0,1,1)7,(0,1,0,1)7}. Each of these errors can be detected by indirectly
setting (40, 61) 10 (0,0), (0, 1) aﬁd (1,0) respectively via 1o, 71 and x5,

3.2 Fault List Sizes with Explicit Error Modeling

3.2.1 Explicit Gate Replacements

The circuit in Fig. 3.6, can be verified by the following example (Ex. 3.2.1):
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Table 3.2: Erroneous cubes and detection vectors of circuit in Fig. 3.6

Gate (o) Vectors Cy Vectors
XOR2 | (1,1,1,00T (0,1,0) | (1,0,1,0)T (1,1,1)
(0,0,1,0)T (0,0,0) | (1,1,0,007 (0,0,0)
(0,1,0,)T (1,1,1) | (1,1,1,1)T  (0,1,0)
(0,1,1,1)T — 0,0,0,00T  (0,0,0)
(0,0,1,1)T  (0,1,0)

(0,1,0,1)7  (0,0,0)

AND2 | (1,0,0,1)T (0,0,0) — —
(0,1,0,DT  (0,1,0) — —
(0,0,1,1)T  (1,0,1) — —
(0,0,0,007  (1,1,1) — —

NOR2 | (0,0,0,0)T (0,0,0) — —
(1,1,0,0)T  (0,0,1) — —
(1,0,1,00T  (0,1,0) — —
(1,0,0,1)T  (1,1,1) — —

Example 3.2.1. Consider the 3 gare circuit in Fig. 3.6 as an: example. Starting at the gate closest
10 the output, XOR2, (0,1,1,0)” has four distance-1 cubes: XOR2¢, = {(1,1, 1,0)5", (0,0,1,0)7,
(0,1,0,1)T, (0,1,1,1)%} (Table 3.2). The first three cubes can be detected by vectors (zo,z1,%2) = »
(0,1,0),(0,0,0),(1,1,1) respectively. - However with the cube (0,1,1,1)7, there are no input

combinations that are capable of resulting in an output f that reflects discrepancies by the presence of this

Jaulry cube. Therefore this particular distance-1 cube is undetectable. To have a better portrayal of errors

at this gate, cubes with the next higher distance (Ch) is checked. At distance-2, the XOR2 gate has the
six cubes: XOR2¢, = {(1,0,1,0)7,(1,1,0,0)7,(1,1,1,1)%,(0,0,0,0)7,(0,0,1, )%, (0,1,0, )T}
Each C; cubes can be detected by (1,1, 1), (0,0,0),(0,1,0), (0,0,0), (0,1,0) and (0,0, 0) respectively.

The next gare to verify is the AND2 gate. Once again, starting at distance-1, all its Cy cubes can
be detected by (0,0,0);(0,1,0),(1,0.1), (1,1, 1). With all C, detectable, there is no need to verifying
cubes of higher distances (Lemma 2). The final OR2 gate has all C‘i cubes (Fig. 3.2) detectable by
0,0,0),(0,0,1), (0, 1,0),(1,1,1)

From Ex. 3.2.1, the total number of implicit faults that underwent verification includes two for the XOR2
gate and one each for the AND2 and NOR2 gates for a total of 4. The algorithm only accounts for highest
verified distances for each cube distances applied on each gate. For instance, only XOR2, cubes are
accounted for in the AND?2 gate since checking of the Cy cubes are essentially a more through check of Cy
cubes. Likewise, since C; cubes of both AND2 and NOR?2 gates’ C; cubes were detectable, these are the
ones in calculating the fault list size and coverage.

Despite of only partial detection of all Cy XOR2 cubes, full detectability of Cy cubes makes any results

in Cy insignificant. With XOR2¢,, AND2g, and NOR2¢, cubes fully detectable, the circuit is 100%
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3.2. Fault List Sizes with Explicit Error Modeling

detectable. Likewise, in terms of explicit faults, only higher-distanced cubes that are verified are accounted
for. The explicit fault list size includes 6 for XOR2,, and 4 each in AN D2¢, and NOR2, for a total of
14. The 14/14 coverage equates to 100%.

3.2.2 Gate Replacements with MIGSE Modules

Using the same example as Ex. 3.2.1, but except with MIGSE modules, the fault list size is 9, since each
of the three gate’s replacement module can be represented by 3 s-a-v faults. Although the number of explicit
cube replacement faults is over four times more than the number of s-a-v faults in the module replacements
with stuck faults, it seems the cube replacement implicit error models are able to represent a larger number
of errors. Additionally, simulating the circuit with the module replacement method shows a result of §8.89%,
compared to the higher coverage result by cube distance method at 100%. Other MCNC benchmarks are
also ran through various experiments, including ATPG and simulation. Their results, including fault list sizes

shall be further discussed in Chapter 5.
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CHAPTER 4

FAULT DETECTION BY SIMULATION AND

SAT-BASED ATPG

ircuits require a way of systematically generating a fault list and a method of finding a set of tests
Ccorresponding to these faults. Test vectors may be generated several ways, such as randomly, and
applied at the circuit’s inputs for simulation. The drawback of this technique is that there is no guarantee of
covering all possible errors defined by the model with a limited set of vectors over a limited period of time.
Automatic test pattern generation (ATPG) is a method of generating a list of tests/vectors targeting the fault
list. Satisfiability (SAT) -based ATPG is a method of determining an expression based on the overall Boolean
network structure and its fault location. By solving the SAT expression, suitable tests are found should
they exist or claimed redundant otherwise. Deterministic methods such as ATPG (or SAT-based ATPG) are
different when compared to simulation, as they generate vectors based on a targeting fault as opposed to
injections of vectors to the design’s inputs in hopes that at least one is able to detect the fault. This chapter
will first discuss simulation techniques by (pseudo-) random vectors and top-lattice layers and the final half

of the chapter will look at deterministic methods such as ATPG, specifically SAT-based ATPG.

4.1 Fault Detection by Simulation

Simulation is a method through injection by a set of vectors that are not generated deterministically from
any fault information. The naive solution would be to simulate the circuit with every possible input vector
combination. Unfortunately, any circuit with n inputs has a total of 2™ vector combinations. The number
of vectors, being exponentially related to the number of inputs is purely unacceptable. Simulating circuits
exhaustively is therefore largely infeasible as runtimes would be far too large and costly. To keep verification

and test times at more practical durations, only a subset of vectors are chosen in simulation. These must
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be chosen carefully for the highest test quality — large fault coverages in the shortest amount of time. Two

non-deterministic techniques will be discussed: random and upper lattice layer vectors.

4.1.1 Simulation Using Random Vectors

Random vector simulation is a common way of simulation. In software, these could be generated by
the random function, which depends on the CPU clock and/or some sort of seed value. In reality, the
numbers/ vectors generated are more pseudo-random, as they are generated based on some form of a complex
mathematical algorithm. These results generated are based on a probabilistic distribution. For example, in
terms of relative frequency (occurrence) of the vectors, they can be uniformly distributed, meaning every
vector has an equal chance of appearing, or they can also be Gaussian or Bernoulli distributed. Depending on
the network, the vectors can be generated with a probabilistic distribution that would have a higher chance of
detecting certain faults within the network.

In hardware, the same theory applies. A common form of pseudo-random vector generation is via
derivations of shift registers. The linear feedback shift register (LFSR) is one which is capable of generating
weighted or uniform distributed vectors. Essentially it consists of several flip-flops connected in series. A
subset of the flip-flop outputs form a feedback mechanism and are XOR’ed together. The outputs used for

feedback determine the characteristic function of the LFSR.

4.1.2 Simulation Using Lattice Structure

Lattice vectors are derived by a representation of vectors as a Boolean lattice. Each vector in the structure
possesses a partial order amongst each other. Fig. 4.1 shows the complete lattice structure for 4-bit vectors.
Vector 0000 is related to vector 0001, which is related to 0011, with only one bit different between each
relation. On the other hand, vector 0001 is not related to 1100 and is therefore not connected in the figure.
The lattice is organized by levels, where each level represents the weight (number of ones) of each vector.
Because of this, each n-bit lattice at level  has (7) vectors.

It has been proposed in {[RZ04] that with an n-variable function, at most [logz(n + 1)] — 1 upper layers
of the lattice are necessary to describe the function of the network. In other words, if the network has any
slight difference in functional properties, the response given by this set of upper lattice layers is sufficient to
reflect any difference. This is therefore the minimum number of vectors that are required to detect errors of
the circuit — which are essentially modeled as functional errors. For example, a 4-input circuit would require

simulation with the top 2 levels, which include vectors: {1111,0111,1011,1101,1110}
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Level 4
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Figure 4.1: 4-bit lattice vectors

4.2 Automatic Test Pattern Generation by Satisfiability

The ATPG method of test generation is based on a topological search given by a specific fault. The search
begins at the fault site and traverses forward towards the primary outputs and backwards towards the primary
inputs of the circuit. Algorithms for ATPG have been developed, optimized and matured substantially over
the years for manufacturing testing s-a-v faults. From the first D-Algorithm [RBS67] in 1966 to PODEM
[GR81] a decade and a half later, the recent fastest ATPG algorithms [TGH97] [HC00] have been shown to
have estimated speedups of 25000 compared to the original implementation [BAQO].

An ATPG variant is via satisfiability (SAT) where a Boolean expression is first derived based on the
fault of interest and information of the circuit network. This derived expression is then passed onto a SAT
solver to determine whether it can be set true, i.e., satisfied. If the expression is capable of ever being true,
then the SAT expression is satisfiable and the fault is detectable. There has been plenty of research on SAT

solver optimizations and the current fastest ones are known to be some of the fastest test pattern generation

algorithms available.

Definition 4.2.1. Boolean satisfiability (SAT) is a decision problem concerning whether a given expression

can be ever be true (or satisfied), when variables in the expression are assigned true or Jalse values. If the

entire expression can-be true, then the expression is satisfiable.

A SAT expression can be written in conjunctive normal form (CNF), otherwise also known as the product-

of-sums form. It may also be expressed in disjunctive normal form (DNF), otherwise also known as the

sum-of-products form.
In obtaining the SAT expression of the network, the first thing to do is to obtain the expressions for each

gate or any other type of Boolean logic in the network. The overall SAT is a combination of these expressions
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Figure 4.2: AND?2 Satisfiability

Table 4.1: CNF SAT expressions of basic 1 and 2-input gates

Gate CNF clauses

2z = BUF(x) Z+2){x+7%)
z=INV(z) (z+2)(T+72)

z = AND2(=z,y) (x+2)y+Z2)T+7+2)
z=O0R2(x,y) Z+2g+2)(z+y+32)

z = XOR2(z,y) E+y+2)z+T+2)z+y+2)E+T+2)
2= NAND2(z,y) | (x+2)(y+2)(T+7+7%)
z=NOR2(z,y) ZT+2)G+2)(x+y+2)
z=XNOR2(z,y) | @+7+2)@+y+2)(z+7+2)(z+y+2)

based on the way each Boolean logic is interconnected amongst each other.

4.2.1 Obtaining SAT Clauses of Boolean Logic

To first obtain clauses of each Boolean gate, one must realize that both inputs and outputs of the gates
need to be described in the clauses. To mimic the gate connections amongst the circuit, each of the clauses
containing such an information are combined together.

Let z = f(X) be the gate function on the set of inputs X. SAT requires gate output to agree with gate

inputs, i.e. output cannot be different from gate function. The following needs to be true:

2@ f(X)=0 @.1)
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The advantage of this method is the ability to obtain any SAT expression of any type of complex logic
gates, i.e., it is not limited to the standard AND, OR, XOR, NAND, NOR, XNOR functions. Because of this,

verification and testing of complex logical components such as lookup table (LUT) in FPGAs becomes most

convenient (Sect. 4.3, Chapter 6).

4.2.2 Complexity

If the number of terms (literals) in SAT clauses is two (2-SAT), then the clause can be solved in polynomial
time. However, if the number of literals is three (3-SAT) or greater, then the SAT solution needs to be solved
in exponential time (NP-complete) {Lar92] [BAQO]. Itis therefore always better to limit the number of literals

in SAT clauses to two when possible, although heuristic methods {I.ar92] may reduce solving time.

4.2.3 Good, Faulty and Active Clauses with Presence of a S-A-V Fault

It is shown in [Lar92] techniques in obtaining the SAT expression of a circuit that include s-a-v faults
in CNF form. Satisfiability of an expression in this form requires all individual clauses to be satisfied. The

complete satisfiability expression to be solved in presence of a s-a-v fault involves four categories of clauses:

o Good Clauses

Faulty Clauses
o Active Clauses

e Fault Site and Goal Clauses
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B F
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e

Figure 4.3: Circuit with s-a-v fault to be solved by SAT

Good clauses are determined by the fault-free circuit. Faulty clauses are determined with presence of the
s-a-v fault. Active clauses are conditions required to active the fault and propagate it to an output. The clauses
are also conditions to make sure that each faulty logical values on the sensitization path to the output oppose
the unfaulted value and that the fault. The fault size/ goal clauses are mappings of the unfaulted, activated
fauit, and faulty values at the fault size to actual logical ’0’ and *1° values. The following are examples of

finding and solving finding a test vector of a full circuit by SAT.

Example 4.2.2 (Satistiability expression of circuit with a s-a-v fault). Consider the circuit shown in
Fig. 4.3 with s-a-0 fault at node d. The clauses from all the gates can first be determined from Table 4.1.

The good, faulty, active, fault site and goal clauses can be determined from the circuit structure.
AND2: (A+B+d)(A+d)(B+d)
NAND?2:(B+e)(C +e)(B+C +%)
OR2: (@+g)E+g){d+e+7)

XOR:6+0+20+C D0+ CH2G+0 L2 . 1

Example 4.2.3 (Good clauses). The good circuit clauses can then be derived from each gates’ expression

by AN Ding them together:

- (Z+"B‘+d)~(A+E)‘(B+Zi)-(b+e); (C;l-e)" (b+C+e)
({d+9)-E+9) (d+e+7) - G+C+2)9+C+2)(g+C+2)(G+C+7)

Example 4.2.4 (Faulty clauses). Faulty clauses are determined by splitting the faulty node into two
componenss. All clauses involving logic entering the Jaulty node retain its name d to represent the fault
free value, as the fault does not take into effect untilthe signal propagates past the fault site. The erroneous
value is denoted by dy and all logic from this point on up to the outpur is denoted by subscrip} f. The
faulty clauses are as follows: ' -
(A+B+d) (A+d) (B+d) (B+es)-(C+ep) (B+C +77)
(dr +95) (€+9s) (ds+e+T7)- @7 +C+Z5) (95 +C +2y) (95 +C+Zy) (G + C + Zy)
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Example 4.2.5 (Active clauses). Active clauses involve clauses describing conditions required lo sensitize

an "active” path to circuit ouwtputs. It also includes clauses which ensure discrepancy between the
unfaulted value with the faulty value whenever the sensitized path is active. The active clauses are as
follows: =

(@t dtdg)-(@o+d+dp) (Gt 0+07) (@t 7+97) Zat 2+ Z1) (Zat T4 Z7)- (Bt 90) @+ Za)
Each of the first three p’az"rs of cl;fuses describes coﬁditions on each of nodes on the Sensitizing path going
from d through g .to Z. The f‘irstpair states, "When d is active, the fault-free and faulty value of d cannot

be equal to show discrepancy:’ The next two pairs of clauses are similar but represent nodes g and Z. The

final two clauses represent activation between each node from the fault to the ouiput. Specifically, when d

is activated, g has to be activated. Likewise, when g is activated, output Z s also activated.

Example 4.2.6 (Fault site and goal clauses). The fault Size' and goal clauses are as follows:

(da)(d)@)‘(m z @.4)

The da clause is to explicitly activate node d. The d and dy clauses are there since the fault dy is 0 while
the original d is 1. The single Z, clause is 1o explicitly ensure this output port is activated such that any

discrepancies are visible.

Example 4.2.7 (Solve the SAT expressions determined in Ex. 4.2.3, 4.2.4,4.2.5, 4.2.6). Since all fault

size and goal clauses in Eqn. 4.4 are unary (1.SAT), there can be used as the starting point in solving the
entire overall expression to find sﬁitable vector(. s)’caqule of detecting the fault: d, =1, d =1 dy = 0,
Za 1

Fromd=1: . A+d)=A=1
(B+d)=>B=1
(g+d)=g=1

Fromd, =1: (a:-}-ga)%ga:l

‘ (@2 — Za=1

Withg=landgo=1: (GG+T+75)=>9gr=0

Withgr =0 : (e+gr)=e=0

With e = 0: (Cre)=>C=1

The set of vectors capable of detecting d :s-a-0.is therefore: (A, B, C) = {{1,1.1}}.
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4.3 Redundant Fault Identification Method for Cube Replacement

Errors

Often enough, faults in a circuit are either very difficult to detect or simply impossible to detect at all.
Unfortunately during simulation, a fault’s presence is not revealed until the very first vector that is capable of
showing differences is simulated. In the worst case, the fault remains undetected even after simulation with
the last vector when only a subset of vectors is simulated. In this scenario, it remains inconclusive whether
the fault would ever be detectable even if more vectors are used continue simulating it. Redundant faults are
known as faults that are impossible to detect. The term “redundant” suggests that the presence of the fault
does not have any affect on the circuit’s operation. Having the fault in the circuit is merely extraneous.

As can be seen in simulation, finding exactly whether a fault is redundant is not possible without at least
simulating the circuit exhaustively. The main concern in finding redundant faults is to be able to identify
them with pure confidence without declaring a fault that is not redundant, or even one that is difficult to
detect, as redundant. The Berkeley SIS tool [SSL*92] uses SAT-based methods in determining these with
exact accuracy. Methods of identifying redundant gate replacement faults have also been discussed previously
in [RZ01].

The proposed algorithm in this thesis begins with simulation by a set of vectors, either generated randomly
or predefined. If the set of vectors are unable to check for the fault’s detectability, a redundancy removal
routine is performed. The redundancy removal processes is merely discarding the redundant fault from the
overall fault list, such that the fault is not to be checked later during testing. This is to ensure to not waste any

valuable time checking for an error after already knowing that it is purely impossible to detect.

4.3.1 Redundant Faults Caused by Redundancy in Circuits

In combinational circuits redundant faults exists in circuits containing reconvergent fan-outs [ABF94].
This is when a node in the network branches out and reconverges back together at a node as the signal
propagates further. Looking at this logically, the fault is more tolerant when other parts (branches) of the
circuit are able to compensate and override errors and their propagations originating from the fault site. When
this happens, conditions on the faulty branch are essentially Don’t Care (DC) cases, meaning that despite any
problems in a faulty branch, another one would override the values to give the correct circuit output, masking

the presence of the fault.
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(a) Functionally equivalent circuit without redun- (b) Circuit with redundant s-a-v fault due to redundant
dant circuitry circuitry

Figure 4.4: Redundant s-a-v fault

Example 4.3.1 (Redundant s-a-v fault). A circuir with its Karnaugh map is shown in-Fig. 4.4(a). lts
Sum-OF-Products (SOP) form is realized by the product terms denotéd by a = xy and'b = Tz in the
figure. Consider .the case when product c = yz is included in the circuit realization, Fig. 4.4(b) is a

functiona?ly equivalent circuit of Fig. 4.4(a) with includes term.c is in its vealization. From the Karnaugh

nap; it:is clear that the additional product term highlighted by c Is a not necessary in the canonical form

of SOP. The AND gate on the bottom branch of Fig. 4.4(a) is the result of this added term.

Suppose a s-a-0 fault is injected in fo the circuit at ¢.. The output | is reduced to the logic produced
only by the upper two branches. Taking the logical outputs of nodes ¢ and b has noeffect on f, despite any
input combinations of x,'y and z. Fault ¢: s-a-0 is redundant because its functional owput is wnaffected
even with its presence in the circuit. ’

As far as the circuit’s functional operation is canceméd, vrealizing the extraneous product term
produced by node ¢ is advantagé of making it more fault tolerant to faults such as c: s-a—b, but the use of

redundant hardware makes the circuit more difficult to verify and test.

4.3.2 Impact of Don’t-Care (DC) Conditions on Redundant Cube Distance Replace-

ment Faults

Similar to s-a-v faults, DC conditions have a large impact on the detectability of error cube distance
errors. The origin of redundant faults is due to DC conditions in the circuit. In cube distance error or
gate replacements, when all input combinations corresponding to the cube differences are DC, the Boolean

difference between the fault-free and faulty networks may never be detected. The error replacements are
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Figure 4.6: Redundant cube distance replacement f — f_cl

therefore redundant. If DC conditions impair detectability of cube distance-i errors, cube distance-i + 1
errors are used for checking (Sect. 3.1.3).

To look at DC a little closer, a circuit environment’s over DC can be categorized into controllability DC
(CDC) and observability DC (ODC) (Fig. 4.5). CDC (or input CDC) is defined as input conditions that can
never be produced at the network’s inputs. ODC (or output DC) conditions “are input patterns that represent
situations when an output is not observed by the environment” [Mic94]. The CDC and ODC can be analyzed
as information of a subcircuit, or as a circuit part of a network. Ex. 4.3.2 shows an example of a redundant
cube distance replacement due to CDC conditions of a circuit. Ex. 4.3.3 shows an example where faults are

redundant due to ODC conditions.
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Figure 4.7: Circuit with observability DC

Example 4.3.2 (Redundant cube distance replacement and CDQ). Recalling from Ex. 3.2.1, the circuit
(shows again in-Fig, 4.6) is undetectable when the XOR gate near the ourput is replaced with the cube
distance-1 error function f; = (0,1,1,1)%. ‘

Let the subcircuit be defined as the lone XOR gate. The inj)ut CDC of the subcircuit is (té,_h) =
{ (1,1)}, because this is the (only) combination that is impossible to be produced at the local subcircuit's
inputs. The constraint is due to the logic that drives the subcircuit, "filtering’ out this input combination
possibility. CDC conditions impair the ability to “control”, or set the appropriate values to actiivate the
fault, Because of this local CDC, this replacement error fault can never be activated and woulid never
be detected when simulated with overall any input vector at (:'Eo, 1, 25). Hence, this réplacemeﬁi fault is

redundant.

Example 4.3.3 (Redundant cube distance replacement and ODC). Consider a similar circuit shown in

Fig. 4.7, where the subcircuit is defined by the bounding rectangular box. If the input p is set to U, output
g would always be 0. In this case, even if the XOR gate experiences any fault, the output g would remain
low. All vectors that has p = U are considered to be ODC conditions, since these are cases that forbid the

circuit from reflecting any sort of error even if the fault is activated.

4.3.3 Redundancy Identification of Cube Distance Replacement Errors

Exact gate replacement error identification had previously been proposed in [RZ01]. Techniques in
identifying redundant cube-distance errors are the basis of the approach proposed here. Let c represent the
original function, and let ¢; be one with cube-error of distance-:, as previously defined. Also, let function

Cquz De defined as the auxiliary (Boolean difference) function between c and ¢;:

Couz =CPC; 4.5

The detectability of ¢; is translated to the ability of monitoring any difference between the two cubes in

the output. Should there be the ability of setting cqyz to 1, fault ¢; is detectable.
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Figure 4.8: Cube redundancy check

Consider a cy replacement shown in Fig. 4.8, where the first two input combinations mark the cube
errors. The difference between the original gate AND?2 and ¢; is used to form caux. In the example, ¢4y =
(1,1,0, O)T. Notice that ¢, also marks the locations of all the error locations in ¢;. Any instances of *1’ in
the ¢4y, correspond to the input combinations that may trigger the fault.

The technique used for redundancy identification requires a generation of satisfiability (SAT) clauses via
the conjunctive normal form (CNF)[Lar92] of ¢,,,,. The purpose of these clauses is to describe a fault free
circuit, fault location as well as any restrictions imposed on the circuit by the given fault (observability and
controllability conditions). From the example in Fig. 4.8, the requirement is ¢4y, = Zo. Hence the SAT
clause: (2o + cauz)(To + Cauz ) 1s combined with the clauses that described the entire original network before
error injection. In practice the constraining SAT clauses could be constructed by taking the xor of both the
original and erroneous nodes. Since the requirement is to set the output of the XOR, i.e., cquz t0 1, 2 5-

a-0 fault can be inserted at the XOR output to force the ATPG-SAT solver into generating all redundancy

identification clauses automatically.
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CHAPTER 5

FAULT DETECTION OF COMBINATIONAL

DESIGNS WITH BERKELEY SIS

erkeley SIS is a logic synthesis and optimization tool developed at University of California at Berkeley
B [SSL*92]. Its source code is available online, which makes it convenient for people to modify and
add customized routines to tailor their research. Included are numerous built-in routines such as logic
minimization, netlist decomposition, SAT-based ATPG and equivalence checking. MCNC benchmarks in
SIS are also available and have been used countless number of times in publications. For these reasons, SIS
is the tool of choice for the experiment implementations for the thesis. All experiments are implemented
on top of the UCLA version (sis-1.3) [UCL] for Solaris, since it has all the unnecessary harmless compile
warnings removed from the original Berkeley version. Also, an unofficial Linux port [Cho] is used from time
to time to check for compatibility and memory leak issues. For runtime memory leak tracking, several tools
such as Electric Fence [Per] and Alleyoop [Ste] for Linux have been used during the development process.
Recalling the design flow discussion depicted in Fig. 1.1, this chapter concerns the first part of the flow as
shown in more detail in Fig. 5.1. This involves performing experiments involving initial synthesis followed
by SAT-based ATPG on benchmarking circuits. These parts are all added to the original SIS package (in C)

with numerous customizations.

5.1 Overview of Experiments with SIS

The SAT-based ATPG experiment flow in SIS is shown in Fig. 5.2. After reading the design, the netlist
undergoes decomposition to a maximum gate input limit and other pre-processing to emulate the synthesis
process before the experiments. Next, the netlist is traversed where each gate is analyzed and identified by

its Boolean function. The fault list consisting of erroneous cube-distance functions, gates or MIGSE faults
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To be
implemented
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Figure 5.1: Functional simulation flow

from [AAH95][BH97] (Chapter 2) are created to be substituted in place of the original node, depending on
the type of fault modeling of interest. Either simulation or (SAT-based) ATPG is used in attempt to detect
the error, and is repeated throughout the entire fault list. At the end of the experiments, the fault coverage,
execution time and fault list size is recorded for comparison. This section will first look at most relevant SIS

libraries that facilitated the programming part of the experiments. Afterwards, details of fault list generation

and detection of each error model will be looked at.

5.1.1 SIS Programming Libraries

SIS contains several categories of internal libraries that facilitate large parts of the programming process

used to set up the experiments.

5.1.1.1 Node

Each connection of a loaded netlist in SIS consists of nodes. Predefined node data structure and libraries,
are available. Hence, it is not necessary to tamper with graphs and manipulate binary decision diagrams
(BDD) of circuits. The node may carry any sort of Boolean function such as AND and OR, as well as any
type of complex functions that are not part of the standard Boolean logic library. In other words, the node

function is essentially a superclass of the standard gate function.
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Figure 5.2: SAT-based ATPG/ simulation flow for replacement model fault experiments

5.1.1.2 Network

The network library contains functions that may be used to manipulate the circuit in memory. Some
of these include functions for inserting and removing nodes from a network which becomes convenient in

gate/node/module replacement experiments.

5.1.1.3 Espresso

The espresso library contains data structures storing information of the node’s logical information. This
information is stored as ON-sets can be used to read and manipulate the “onset” of the node. This is extremely
useful when the ON-set of a node need to be changed to reflect the error the tool needs to verify for cube-
distance errors discussed in the thesis. Each ON-set of a node is stored as type pset, and the overall node’s
set of ON-sets are stored as type pset_family. The pset_family (complete set of cubes) is stored in the node_¢

structure defined in the node library.
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5.1.14 Sim

The simulation library takes any vector and generates a vector of outputs. Routines in this library are used

to apply vectors for each of the gate, MIGSE s-a-v module and cube distance replacement models.

5.1.1.5 ATPG

The ATPG library includes the routines which first generates a list of s-a-v faults. The list then undergoes
fault collapsing, followed by execution of SAT-based ATPG. The ATPG library is modified to perform

experiments on each of the gate, MIGSE s-a-v module and cube distance replacement models.

5.1.2 Design Preprocessing and Synthesis

Preprocessing is only necessary in experiments to be performed in SIS, as original ATPG for s-a-v faults
and simulation routines were written to perform on the network of nodes described in the .blif format, as
opposed to a netlist mapped to a specific technology and library of gates. Hence the design in memory
is decomposed into gates of maximum inputs of three to mimic the synthesis gate mapping process. This
constraint place on the gates is also to help maintain a relatively faster SAT execution than the time required

with gates of larger inputs.

5.1.2.1 Dealing with Negative Logic Gates

Internally, all the gates within SIS are represented in terms of nodes, whose cubes are merely a mapping
of the inputs to outputs via a look-up table. Depending on the ON-set table of the node, SIS has several types
of logical node function defined to which they are mapped, including NODE_AND (ex. A - B), NODE_OR
(ex. A + B) and NODE_.COMPLEX. NODE_COMPLEX represents all XOR-typed nodes as well as any other
complex logic types not part of the standard Boolean gate class. It is noteworthy that negative logic gates
are not defined as part of the enumeration. In fact, negative-logic nodes are mapped as existing positive
node _function types based on De Morgan properties. For example, a node with the function NAN D(a, b) is
seen as an OR(@, b) node. Because of this De Morgan equality, the node is recorded as NODE_OR as opposed
to NODE_AND (or its negative). As a result, this poses a challenge when doing gate replacement experiments
when it is imperative to properly detect the original gate type. Another small obstacle comes with the need
to distinguish gates such as OR(@, b) and OR(a, b) apart, where only a subset of all the inputs is inverted.
In this particular example, SIS records both node types as an NODE-OR. To mitigate these subtleties for the
sake of the flow of the experiment, a command is written to pre-process the circuit in memory so that ATPG/

simulation routines for error replacement fault model tests will properly identify these gates.
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Figure 5.3: Decomposing inverted inputs and fan-outs of nodes using split_neg

5.1.2.2 Isolation and Minimizing the Number of Inverted Inputs and Qutputs

The idea used in the pre-processing script is isolate all negative inputs and outputs from the node. All
the negative logic gates are decomposed to a single inverter attached to the output of the positive node. For
example, a NAND gate would be decomposed into an AND gate with an attached inverter at its output. Also,
all the inverted inputs are also isolated from the gate. Another rule is to keep the number of inverted inputs to
a minimum. If the number of inverted inputs exceeds half of the total number of inputs, De Morgan is applied
to the node. This allows the netlist to have a mixture of both positive and negative typed logic. Fig. 5.3 shows
an example of a gate of function @ - b - ¢ before and after the execution of this SIS script. In Fig. 5.3(a), the
intended structure is shown as the NAND gate with an inverted input at b. The gate function that SIS should
detect in the netlist should be a NAND gate. In Fig. 5.3(b), because of gates need to be represented as either
AND, OR or (XOR) COMPLEX, SIS shows the node as an OR gate with inputs a and c inverted, by De
Morgan properties. After performing the customized routine within SIS to formally isolate inverted inputs,
whenever SIS detects a node with an inverter tied to its immediate output, it realizes this as an negative-logic

gate of type NAND, NOR or (XNOR) Complex, as shown in Fig. 5.3(c).

5.1.2.3 New SIS command: split_neg

The new SIS command splir_neg applies the De Morgan equality to limit the number of inverted inputs
to a minimum and isolates all negative inputs and fan-outs from a node. For now, the script works for all
AND, OR and XOR nodes, but only works for a maximum number inputs of 3, since all the experiments are

checked with this maximum constraint. It is recommended that this command be executed after applying
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void original_atpg() {

1
2
3 /* Fault list generation: */

4 foreach node in network {

5 faultlist = append(s-a-0, node, faultlist);
6 faultlist = append(s-a-1, node, faultlist);
7 }

8
9

fault_collapsing(faultlist);

10 foreach fault in faultlist{

1 clauses = setup_sat_clauses(fault);

12 [vector, isDetectable] = solve_sat(clauses);
13

14 /* Other optional routines such as: */

15 reverse_simulation{vector);

16

17 tally_coverage_statistics {(isDetectable);
8 }

19

20 report_results();

21}

Figure 5.4: Original ATPG algorithm in SIS

decomposition of the netlist using decomp or tech_decomp to satisfy the maximum input limit.

Since all three types of replacement models represent logic in both polarities, only the node, excluding
the inverters attached at the inputs and outputs attached, needs to be replacement. As long as performing error
replacement models do not touch the attached inverters, the experiment shall be able to check for replacements
in both polarities. For example, in an NAND isolation (AND in series with NOT), checking for AND — {OR,
XOR, NAND, NOR, XNOR} replacements is the same as checking for the intended NAND — {NOR, XNOR,
AND, OR, XOR} replacements.

5.2 Fault List Generation and Modifications to ATPG Routines for

Gate-Level Replacement Error Models

It is necessary to modify the ATPG routines targeting single s-a-v faults for manufacturing testing to
accommodate the various models that need to be checked. The unmodified abridged SAT-ATPG algorithm
(pseudo-code) in SIS is shown in Fig. 5.4.

For the most part, the original fault list routine traverses the netlist and first generates a fault list. During
the traversal, it stores information including the fault site location (node pointer reference), as well as the
s-a-v fault value associated with the node for each fault. This is followed by s-a-v fault collapsing on the
fault list, The first task was to modify the fault list generation routines to contain more information from the
type of fault modeling technique being used. With the appended information for each fault, the latter part of

ATPG routines apply added constraints expressed as additional SAT clauses for the solver.
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Table 5.1: Output functions of AND2 and OR2

o X1 ANDZ(.’L‘(),.’L‘l) ORQ(flto,iL‘l)
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

5.2.1 Gate Replacement with Gates of Compatible I/O Count

Before generating the fault list for gate replacement modeling, the first task was to create hard coded
table lookup for all standard 2- and 3-input Boolean gates (AND, OR, XOR, NAND, NOR, XNOR).
Contents of this table lookup include cube mappings for all input combinations. The software routine then
traverses the netlist gate by gate, and determines the function of the gate. Despite limited enumeration of
the NODE_FUNCTION type, the gate function can be determined easily with the netlist pre-processed and
formalized before execution of the ATPG routine as discussed in Section 5.1.2.

With the gate function extracted, the routine goes though all five candidate gate replacements and checks
the table lookup for input combinations that trigger a difference in the gate output. Whenever such a
difference is found, the routine stores information including the original gate, the replacement gate, the input
combination that triggers the error, as well as the fault-free/ faulty gate output. For each difference in the
table lookup, the information is stored as one s-a-v fault. Therefore, each explicit candidate gate replacement

may map to more than one s-a-v fault in the s-a-v fault list.

Example 5.2.1 (Fault list from AND2 — OR2 replacement). Consider the AND2 — ORZ2 replacement.
From the table lookup in the routine, the data in Table 5.1 can be found. Two rows mark the input patterns

that may excite the output difference are stored as individual stuck faulis as follows:

Subfault I: inpur: (0,1} correcto/p: 0 wrongo/p: 1 original: AND2  replacement: OR?

" Subfault 2: inpur- (1,0)  correctofp: 0 wrongo/p: 1 original: AND2  replacement: OR2

Upon completing the fault list, each fault in the fault list can be executed by the ATPG-SAT solver to
determine whether the fault can be detected. This is achieved by adding 1-SAT clauses corresponding to
each input that corresponding to the stuck fault. If the input variable z corresponding to input is 1 for the
stuck fault, then the unary clause (z) is appended to the list of clauses. Otherwise, if the input variable
is 0, the unary clause (%) is added instead. More details of setting up SAT clauses for pure s-a-v have been
previously discussed in Section 4.2. The default SAT routines can be reused within SIS for this purpose. As a

reference, explicit gate replacement fault identification using ATPG has been previously described in [RZ01].
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The technique is essentially identical here for cube distance replacement errors. Ex. 5.2.2 traces how unary

clauses are created from Ex. 5.2.1.

Example 5.2.2 (ATPG on gate replacement fault list). Using Ex 3.2.1, each row of error.can be each

analyzed as follows:

Subfault I: Can gate be satisfied such that vo = 0, 1 = 1 with s-a-1@output?

o Step l: Add stuck at fault s-a-1 @ outpui to be checked by ATPG

& Step 2: Reference fault size to the gate’s outpur

o Step 3:Set up good, faulty, active, faull site/goal by original SIS ATPG routine
o Step 4: Append SAT clauses: (Zp) - (1) to list of SAT clauses created by Stép 3.

Subfault 2: Can gate be satisfied such that 2o =1, 21 = 0 with s-a-1 @outpur?

e Step I: Add stuck at fdub‘ sa-l @ output to be checked by ATPG

o Step 2: Reference fault size to the gate's output

o Step 3: Set up good, faulty, active, fault site/goal by original SIS ATPG routine
o Step 4: Append SAT clauses: (xo) - (1) to list of SAT clauses created by Step 3.

Despite two separate errors represented in the fault list in Ex. 5.2.1 and 5.2.2, the combination of the two
is necessary to represent the AND2-OR2 gate replacement. It is up to the modified routines to take this into
account and count each gate replacement as one single error when calculating the coverage, as opposed to
the number of stuck faults needed to represent the error. The rule is that as long as at least one error (row) of
the gate replacement is detectable, then the gate replacement is irredundant as there is at least one satisfied
vector capable of detecting the replacement fault. The updated overview of the customized ATPG routine for
gate replacement error is shown in Fig. 5.5.

Compared to the original algorithm for s-a-v faults, the fault collapsing routine is purged as this is no
longer applicable in gate replacement error modeling when the stuck fault errors are only limited to a subset
of input combinations, which are depending fully on the functions involved in the gate replacement.

Another subtle detail is that the modified ATPG routines do not involve actual gate replacements. The
gates in the netlist are left untouched, as the unary SAT clauses that constrain the inputs together with the
s-a-v for output differences are sufficient to represent the error. Explicitly performing a node replacement
at the fault site may have negative effects, possibly causing the s-a-v at the gate output not being able to
be activated. Using Ex. 5.2.1 and 5.2.2, if the gate is explicitly replaced by the OR gate, the fault size and

activation clauses would need to be updated to accommodate the OR gate. It is therefore much simpler to

leave the gates unchanged.

480f 89



5.2. Fault List Generation and Modifications to ATPG Routines for Gate-Level Replacement Error Models

1 void gate_replacement_atpg() {

2

3 /* Fault list generation: */

4 foreach node in network {

5 get_node_£function(node);

6 get_node_num_fan-in(node) ;

7

3 /* foreach gate in library */

9 for (replace=AND; replace<=XNOR; replace++) {

10

1 /* make sure the replacement is not the same as the original */
12 if (node_function(node) != replace) {

13 /* Look up table and find differences between each gate */
14 gate_diff_list = gate_diff(node, replace);

15 foreach diff in gate_diff_list {

16 faultlist = append(gate_diff_list(s-a-v), gate,

17 replace, node, inputs, faultlist);
18 }

19 }

20

21

22 } // fault list generated

23

24 foreach fault in faultlist {

25 clauses = setup_sat_clauses(fault, gate_diff);

2% [vector, isDetectable] = solve_sat (clauses);

27

28 /* Other optional routines such as: */

29 reverse_simulation{vector);

30

31 /* update number of tested/redundant faults for next iteration */
32 tally_ coverage_statistics (isDetectable, gate, gate_diff);

3 } // foreach fault

34

35 report_results();

Figure 5.5: ATPG algorithm for gate replacement errors

5.2.2 MIGSE Module Replacement

ATPG experiments using the MIGSE module replacement with s-a-v faults are different compared to the
explicit gate replacement model where substitution of gates of compatible I/O count could be represented by
introduction of a stuck fault with input constraints by unary SAT clauses. When modeling replacement errors
with MIGSE modules, each module needs to be explicitly replaced into the netlist. Several candidate s-a-v
faults in the MIGSE module constitutes as part of the fault list, but each stuck fault in the module represents
one type of error in the gate, with a one-to-one mapping. Since each s-a-v fault is embedded within the
MIGSE module, there is no way of referencing the actual location of the s-a-v fault prior to insertion and
after removal of the module. Thus, an individual fault list is created with each MIGSE module replacement,
followed a local ATPG execution to check only for the specific s-a-v faults internal to the module. Fault
coverage statistics are accumulated with each replacement at each node throughout the netlist.

Similar to the gate replacement mode, each fault in the fault list representing the module replacement also
requires knowledge of the fault site by a node reference. Fig. 5.6 shows the algorithm of performing ATPG

on a synthesized netlist based on this model.
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5.2, Fault List Generation and Modifications to ATPG Routines for Gate-Level Replacement Error Models

void MIGSE_with_sav_atpg()
foreach node in network {
find the node function (AND, OR, etc)
get the number of node fan-ins
replace node with replacement module
from the replacement module, get list of s-a-v within module
set the list of stuck faults in module to be the fault list
run ATPG with module inserted
record/update number of tested and redundant faults
restore network by replacing module with original gate
}

report overall results

e R T o

=3

IS

Figure 5.6: ATPG algorithm for MIGSE module replacements

Table 5.2: Output functions of AND2 and its C; cubes

To X ANDQ(:EQ, Il) C1 C1 C1 Ct
0 O 0 1{010]O0
0 1 0 0|l1]0(0O0
1 0 0 o0 |10
1 1 1 1{1)1]0

5.2.3 Cube Distance Error Replacement

Modifications of s-a-v ATPG routines for cube distance replacement error modeling are similar to the
gate replacement method discussed in Section 5.2.1 for the most part. Instead of having several candidate
gate replacements of compatible I/O count for each gate throughout the netlist, the routine generates a list
of candidate error functions based on the gate’s function. Starting at distance-1, if all error functions at this
distance (C) is detectable, then the checks at this node is complete. Otherwise, it checks for error functions
at one distance higher (Cz). ATPG on the node is complete as soon as all errors of any distance are detectable,
or until a maximum distance is reached.

For example, an AND2 gate in gate replacements involve considering all five candidate gates for
replacements. In cube distance replacement, the set of (4) distance-1 cubes are generated (Table 5.2). If all
are detectable, then verification on this AND?2 gate is complete, by Lemma 2 and 3. Otherwise, it generates
the set of (6) distance-2 cubes to be verified. The process is repeated as necessary for this gate until it reaches
a maximum distance threshold. In the experiments, the maximum distance is arbitrarily set to 3.

Since all candidate error functions of the standard Boolean gates are always fixed and the netlist consists
of multiple instances these gates, a hard coded table is created associating each gate in the library with its
list of cube distance replacement candidates. This is to speed up verification time. Unary ATPG clauses are
added the same way as gate replacement errors to constrain inputs targeting the differences represented by

s-a-v faults. Fig. 5.7 shows the ATPG algorithm on designs with minimal implicit cube distance replacement

model.
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5.2. Fault List Generation and Modifications to ATPG Routines for Gate-Level Replacement Error Models

void cube_atpg()

generate lookup table for error functions from standard gates

find the node function (AND, OR, etc)

1

2

3

4

s foreach node in network {

6

7 get the number of node fan-ins
8
9

for (distance=1; (distance<=max_distance); distance++) {

11 get error replacement list (cube distance error lookup table)

12 for each replacement error {

13 /* perform ATPG */

14 generate SAT clauses by default ATPG routine
15 append SAT clauses for input constraints

16 set faulty clauses to stuck fault given by erroneous output
17 run SAT solver

18 record statistics

19 }

20 update coverage statistics

21

22 record/update number of tested and redundant faults
23

2% }

25}
2% report overall results

Figure 5.7: ATPG algorithm for minimal cube distance error replacements

5.2.3.1 Fault Coverage Calculation

Example 5.2.3. Consider the following examples (Ex. 5.2.3 and Ex. 5.2.4 ) where the fault coverage of a

3-input gate is calculared. The total number of possible of functional faults is 92° = 256 and represented
by 2% = 8 implicit cube distance faﬁlts: 1,09, C’7, Cs. With the arﬁitrﬁ)y maximt?m distance set at
3, only Cy, C3 and C3 will be checked.

If none of the implicit faulis aré Jully detected, 1.e. Cy: 7 of 8 detected, Cs: 20 of28 életected, C5: 55
of 50 detected, ‘ : - ‘ ‘ ‘

Fault coverage of the 3-input gate: 53355 — 89.13%

Example 5.2.4. If one implicit fault fully detected, i.e. Cy: 7 of 8 detected, Cy: 28 of 28 detected, Cs:
Untested, :

; | 7428456
Fault’coverage of the 3-input gate: g=o2s = 98.91%

In the Ex. 5.2.3, as none of the implicit faults can be fully detected, all C;, C2 and C3 need to be
tested. Calculation of fault coverage merely takes the ratio of all the detectable faults to the total number of
replacements. In Ex. 5.2.4, as Cs faults are fully detectable, it is unnecessary to check C3 errors as detection
is implied. Fault coverage needs to take into account of all of these 56 unchecked C's replacement errors. This
maintains an equal weight of all the gates’ testability when calculating the overall coverage of the network.
Since only a subset of all implicit faults are verified, the coverage results should be a lower bound estimate

of what the coverage would be at higher distances. This is because higher distanced cube replacements are
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5.3. ATPG Experiments

.model redund

.inputs x1 x2 x3 x4

.outputs £

.subckt and3 w=xl x=x2 y=x3 z=t0

.subckt xor3 w=x1l x=x2 y=x3 z=tl
ty .subckt or3 w=t0 x=tl y=x4 z=f
.end

£

3

.model and3
.inputs w x y

)

L
_BX\ t, f .outputs z

HL/

.names w X y 2z
111 1

4 .end

.model xor3
.inputs w x y
.outputs z
.names w X y z

001 1

010 1

100 1

111 1
.end

.model or3
.inputs w x y
.outputs z
.names w x y z

000 0

.end

Figure 5.8: Circuit test case to be executed in customized SIS routines

easier to detect than lower distanced ones (Sect. 3.1.3).

5.3 ATPG Experiments

5.3.1 ATPG Test Case Execution

Consider the circuit shown in Fig. 5.8 with its blif circuit description. Fig. 5.9, Fig. 5.10 and Fig. 5.11 are
ATPG execution results based on gate, MIGSE module and cube distance error replacement fault models.

With only 3-input AND, OR and XOR specified in the blif description, design preprocessing routines

discussed in Section 5.1.2 are not executed.

5.3.2 Benchmark Results

Table 5.3 compares fault coverage of the proposed method (listed as cube) with two other modeling
methods previously proposed in explicit gate replacement errors (listed as gate) and gate-replacement error

modeling by MIGSE modules (listed as module). In ATPG, the proposed model shows equal or better
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5.3. ATPG Experiments

sis> read_blif thesis_testcase.blif
sis> repl_atpg -gg

GATE_ALL

node_name: {f}
--->VECTOR: 0010
--->VECTOR: 1110
-~~>VECTOR: 0000
-~->VECTOR: 0000
--->VECTOR: 0000
node_name: tl1
-~-->VECTOR: 1000
--->VECTOR: 1100
--->VECTOR: 0000
~-->VECTOR: 0000
--->VECTOR: 0000

node_name: tO0

--~>VECTOR: 1100
--->VECTOR: 0000
--->VECTOR: 0000
--->VECTOR: 0000

Total simulation time: 0.00s
Fault coverage
(14/15) : 93.33%

Figure 5.9: ATPG execution output by gate replacements

Table 5.3: ATPG results on MCNC benchmarks

ATPG
Fault List Size Coverage (%) Time (s
Test case
Cube | Gate |Module| Cube Gate |Module| Cube| Gate |Module
9symml 15885] 895 537 | 98.16 90.84 82.87 | 64 24 7
cmi38a 615 | 125 75 100 100 100 0 1 0
decod 750 | 250 150 100 100 100 0 1 0
f51m 16140} 1300 780 | 98.49 95.77 92,18 | 44 35 10
i1 28351 145 87 99.79 98.62 97.70 0 1 0
mux 15540] 380 228 | 93.92 95.26 85.09 | 32 4 2
my_adder |21840] 880 528 | 97.22 85.45 7917 | 137 26 6
parity 675 | 225 135 | 93.33 80.00 66.67 2 3 1
z4ml 12945} 1035 621 98.73 95.85 9291 | 25 23 5
alu2 45390] 2570 | 1542 | 93.96 90.00 81.13 | 622 64 67
C432 9780 | 980 588 | 97.40 90.82 8469 | 26 15 10
C499 8010 2030] 1218 | 95.73 83.94 73.23 | 100 48 43
€880 10695| 15651 939 { 99.01 93.23 88.71 | 29 21 20
C1355 9570 | 2550 | 1530 | 95.34 83.14 71.90 | 192 88 85
C1908 177301 1990 | 1194 | 97.73 87.04 78.39 | 166 50 46
C2670 36645] 3015 1809 | 98.19 87.83 80.65 | 354 97 131
6288 35280]11760| 7056 | 95.32 85.99 76.64 | 4556 | 2327 | 6020
ripple8 1005 335 201 94.83 84.48 74.13 2 2 0
ripplet2 |23490] 515 309 | 97.08 84.47 74.11 6 4 1
ripple16 20851 695 417 94.82 84.46 74.10 10 8 2
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5.3. ATPG Experiments

sis> read_blif thesis_testcase.blif
sis> hayes

SAV faults in replacement model: 3
3 total faults

0 faults covered by RTG

S_A_1 NODE: [4] OUTPUT
Tested

fault simulation covered 0

2 faults remaining

S_A 0 NODE: [5] OuUTPUT
Tested

fault simulation covered 0

1 faults remaining

s Al NODE: [6] OUTPUT
Tested

0 faults remaining

SAV faults in replacement model: 3
3 total faults

0 faults covered by RTG

S A 1 NODE: (7] OUTPUT
Tested

fault simulation covered 0

2 faults remaining

S_A_O NODE: [8] OUTPUT
Tested

fault simulation covered 0

1 faults remaining

S_A 1l NODE: [11] OUTPUT
Tested

0 faults remaining

SAV faults in replacement model: 3
3 total faults

0 faults covered by RTG

S_A_O NODE: [12] OUTPUT
Tested

fault simulation covered 0

2 faults remaining

S_ A0 NODE: [14] OUTPUT
Tested

fault simulation covered 0

1 faults remaining

s_Aa_l NODE: [15] OUTPUT
Redundant

0 faults remaining

module replacement atpg time:0.00
fault coverage:88.89 (8/9)

Figure 5.10: ATPG execution output by MIGSE module replacements
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5.4. Simulation Experiments

sis> read blif thesis_testcase.blif
sis> repl_atpg -dd

DISTANCE_ALL

node_name: {£f}

[distance=1]

[distance=2]

[distance=3]

Detected: 252, Redundant: 3
node_name: tl

[distance=1]

[distance=2]

Detected: 506, Redundant: 4
node_name: t0

[distance=1]

[distance=2]

[distance=3]

[distance=4]

[distance=5]

Detected: 746, Redundant: 19

Total simulation time: 1.00s
Fault coverage
(746/765) : 97.52%

Figure 5.11: ATPG execution output by cube distance error replacements

coverage over the other two methods with for all benchmark circuits. The gate replacement technique
itself shows better coverage for all benchmarks when comparing to the MIGSE module replacement method.
Looking at fault list size of the proposed model, the numbers represent the number of actual functional
replacements, as opposed to the implicit classes of cube-distance faults checked. Due to the nature of the

proposed model, the number of actual replacements is larger resulting in larger fauit list sizes.

5.4 Simulation Experiments

5.4.1 Simulation Test Case Execution

Fig. 5.12, Fig. 5.13 and Fig. 5.14 are simulation execution results based on gate, MIGSE module and
cube distance error replacement fault models. The test case is based on the circuit shown previously in

Fig. 5.8. With only 3-input AND, OR and XOR specified in the blif description, design preprocessing routines

discussed in Section 5.1.2 are not executed.

5.4.2 Simulation Results with Random Vectors

In the simulation experiments, each replacement is checked with an arbitrarily number of random vectors
set to as 25 times the number of primary inputs. The first two columns of Table 5.4 show the proposed
minimal cube-distance replacement method. The first of these shows the compact implicit cube-distance

fault list size, i.e., the number of distance increments, and the second column shows the actual number
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5.4. Simulation Experiments

sis> read_blif thesis_testcase.blif

sis> repl_sim -gr

GATE

RANDOM

Simulating fault-free circuit

Random Simulation

Simulating faulty circuit

* Total number of nodes: 3

* Each fault is simulated with AT MOST 100 vectors

--->VECTOR: 1001
--->VECTOR: 1001
~-~~>VECTOR: 0000
--->VECTOR: 0000
--->VECTOR: 0000

Detectable: 5 of 5
Detected: 5, Redundant: O
Nodes remaining: 2

--->VECTOR: 0100
~-->VECTOR: 1100
--->VECTOR: 0000
--->VECTOR: 0000
~~-->VECTOR: 0000

Detectable: 5 of 5
Detected: 10, Redundant: 0
Nodes remaining: 1

~-->VECTOR: 1100
Running redundancy identification...
-~-->VECTOR : 0000
--->VECTOR: 0000
-—-->VECTOR: 0000

Detectable: 5 of 5
Detected: 15, Redundant: 0
Nodes remaining: 0

Total simulation time: 0.00s
Fault Coverage

(15/15): 100.00%
Implicit Faults: O

Figure 5.12: Simulation execution output by gate replacements

of functional replacements performed in the experiments, implied by the faults in the first column. In all
cases, the implicit cube-distance fault list uses a smaller fault list size than the other two models. Similarly,
when looking at fault coverage, cube-distance error replacements show slightly lower coverage compared to
gate replacements. This can be explained that most gate replacements are generally higher-distanced cube
replacements, which are easier to detect. Also, the redundancy removal routine for gate replacements are run
whenever the set of random vectors fail to detect the fault. For the proposed model, the fault redundancy
identification is only executed when the set of maximum distance cube replacements fail detection. Despite
this, with the exception of the smaller 9symuml circuit, the coverage of the proposed model is comparabie to
gate replacements. Slight discrepancies exist between simulation and ATPG results for the MIGSE module
replacement model, as fault redundancy removal is not implemented for this model.

The duration of each simulation is shown in Table 5.4. On average, cube distance replacement modeling
requires longer times, with the exception smaller circuits such as parity. The longer average simulation times
are because of the number of explicit faults all the cube distance faults imply. In implicit cube distance

replacement, there are far more erroneous functional faults to be simulated, even if the number of implicit
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5.4. Simulation Experiments

sis> read_blif thesis_testcase.blif
sis> repl_sim -hr

HAYES

RANDOM

Simulating fault-free circuit
Random Simulation

Simulating faulty circuit

* Total number of nodes: 3

* Each fault is simulated with AT MOST 100 vectors
Simulating Hayes replacement error
Creating S-A-1 faulty node
~-~>VECTOR: 0100

Creating S-A-0 faulty node
--->VECTOR: 0000

Creating S-A-1 faulty node
--->VECTOR: 1001

Detected: 3, Redundant: O
Nodes remaining: 2
Simulating Hayes replacement error
Creating S-A-1 faulty node
--->VECTOR: 0000
Creating S-A-0 faulty node
—-->VECTOR: 0100
Creating S-A-1 faulty node
--->VECTOR: 0000

Detected: 6, Redundant: 0

Nodes remaining: 1
Simulating Hayes replacement error
Creating $-A-0 faulty node

~~~>VECTOR: 1100
Creating S-A-0 faulty node
--->VECTOR: 0000

Creating S-A-1 faulty node

Detected: 8, Redundant: 1
Nodes remaining: 0

Total simulation time: 0.00s
Fault Coverage

(8/9): B88.89%

Implicit Faults: 0O

Figure 5.13: Simulation execution output by MIGSE module replacements

time while keeping a low number implicit faults.

5.4.3 Simulation Results with Upper Lattice Layer Vectors

faults is far smaller. For some larger circuits, such as C499, C880, C1355, C2670 and C6288, simulation time
is comparable or lower than the other two models in some cases. For the three self-created ripple adder test

cases (ripple8, ripplel2, ripplel6), the cube-distance modeling shows higher coverage and shorter execution

In each simulation routine programmed in SIS for this thesis, the lattice is set to simulate with at most

onto the next fault in the fault list.

[loga(n+41)] — 1 upper layers. As soon as a vector from the lattice layers detects a fault, the simulator moves

Similar to fault coverage by random vectors in Table 5.4, lattice simulation in Table 5.5 also shows higher
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5.4. Simulation Experiments

sis> read_blif thesis_testcase.blif

sis> cub_repl -r

{f} = £0 + t1 + x4

£0 = x1 x2 x3
tl = x1 x2 x3 + x1 x2' x3' + x1’ x2 x3’ + x1' x2' X3

Simulating faulty circuit

* Total number of nodes: 3

* Each fault is simulated with AT MOST 100 vectors

node_name: {f}
Distance 1: Detected: 6, Redundant: 2
Distance 2: Detected: 27, Redundant:
Distance 3: Detected: 56, Redundant:
Total [Detected: 89, Redundant: 3]
Nodes remaining: 2

node_name: tl
Distance 1: Detected: 7, Redundant: 1
Distance 2: Detected: 28, Redundant: 0
Total [Detected: 180, Redundant: 4]
Nodes remaining: 1

node_name: t0
Distance 1: Detected: 4, Redundant: 4
Distance 2: Detected: 22, Redundant: 6
Running redundancy identification...
Running redundancy identification...
Running redundancy identification...
Running redundancy identification...
Distance 3: Detected: 56, Redundant: 0
Total {Detected: 262, Redundant: 14]
Nodes remaining: 0

O =

Primary Inputs: 4
Arbitrary max distance: 3

Fault Coverage: (262/276)= 94.93%
Total simulation time: 1.00s
Implicit Faults: 8

Figure 5.14: Simulation execution output by cube distance error replacements

coverage is 99.60% for z4ml. With gate replacement error, 9symml, parity and the ripple-adders are below
90%. With the module replacement model, only cmi38a, decod, f51m and z4ml have fault coverages above
90%. Comparing fault coverage numbers with simulation by random vectors, the cube distance replacement
error model shows better correlation as compared to the other models. It shows that lattice simulation suits
well for cube distance replacement detection, and possibly easier to find.

As Table 5.5 shows, implicit cube distance replacement errors take more time to simulate than the other
two models, particularly in i/ and mux benchmarks. For the same reason as random simulation, the number
of replacements each implicit fault implies is larger than the other two models. Between the gate and module

replacement modeling, the latter generally requires a longer time to simulate, most notably in f5.1m, il, mux,

ripple8 and ripplel6.
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Table 5.4: Results of simulation by random vectors

Simulation (Random)
Fault list size Coverage (%) Time (s)

Test case | Cube

(Impl) Cube | Gate | Module] Cube | Gate | Module] Cube | Gate |Module
9symml 442 6796 | 895 537 | 85.77| 97.54 | 73.56 | 5052 907 874
cm138a 25 428 | 125 75 100 100 100 4 3 3
decod 50 700 | 250 150 100 100 | 97.33 7 6 9
f51m 388 7618 | 1300 780 | 96.09] 98.62 |} 90.90 | 1589 438 699
i1 44 1186 | 145 87 97.13| 98.62 | 9425 | 106 12 27
mux 155 5744 | 380 228 | 93.33]| 9895 78.95 | 1877 169 333
my_adder| 384 8704| 880 | 590 | 93.75] 92.73 | 90.91 | 4867 | 1558 | 836
parity 90 630 | 225 135 | 92.86] 93.33 ] 66.67 39 54 73
z4ml 326 6096|1035 621 | 96.06] 98.36 | 88.89 | 945 270 410
alu2 1162 19442| 2570 | 1542 | 89.08 | 97.43 | 77.11 | 27244 | 4255 | 5257
C432 334 3992 | 980 588 1 95.39] 98.06 | 84.35 | 1987 | 1301 | 1514
C499 754 6308 2030 | 1218 | 94.10] 94.58 | 72.74 | 9302 | 8903 | 10492
C880 470 6332] 15651 939 | 97.14] 97.19 ] 85.41 | 4966 | 4328 | 5156
C1355 977 7764 2550 | 1530 ] 93.44] 87.53 | 71.37 | 15603 | 17490 | 19452
c1908 773 9394 1990 | 1194 | 93.09)] 95.08 | 75.88 | 17209 | 7999 | 8622
C2670 1209 17412 2668 | 1809 | 90.00] 93.18 | 66.33 |416814| 603714|201970
C6288 4002 32928|11760] 7056 | 94.98] 86.11 | 76.64 | 172625] 337051]267579
ripple8 116 938 | 335 201 | 94.46} 84.48 | 74.13 90 112 124
ripple12 183 1442 | 515 309 | 94.45| 84.47 | 74.11 309 390 371
ripple16 247 1946 | 695 417 | 94.45] 84.46 ] 7410 | 740 946 990

Table 5.5: Results of simulation by top lattice layer vectors

Simulation (Lattice)

Fault list size Coverage (%) Time (s)
Test case (?r:z; cuve | Gate | Module | cuve | Gate | Modue | cube | Gae | Module
9symml 510 6796 895 537 75.16 97.54 43.39 2441 345 217
cm138a 75 428 125 75 60.28 100 32 2 2 1
decod 131 700 250 150 68.71 100 50.67 5 4 2
f51m 676 7618 1300 780 80.78 97.85 55.67 676 407 295
i1 64 1186 145 87 85.75 98.62 70.11 1375 264 220
mux 195 5744 380 228 89.75 98.95 69.30 13265 1111 995
my_adder 384 8704 880 528 93.75 92.73 90.91 373802 137847 52176
parity 90 630 225 135 92.86 93.33 66.67 75 167 129
z4ml 617 6096 1035 621 62.84 98.36 22.71 378 148 71
alu2 1431 19442 2570 1542 77.87 97.43 49.68 1431 3465 2440
C432 330 3992 980 588 95.34 98.06 83.67 116096 98680 104503
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CHAPTER 6

IMPLICIT FAULT MODELING OF FPGA ERRORS

‘ x ’ ith FPGA devices now fabricating under deep submicron manufacturing (DSM) technologies,

transistor density continues to increase while wafer sizes are also getting larger. The inherent
unreliability of DSM FPGA devices demands more testing methodologies. Errors of FPGA prototyping
designs not only originate from manufacturing, but also from environmental factors, such as temperature and
radiation [WIRT03]{GCWT03]. In mission critical applications such as space and avionics, it is important
to realize such problems and be able to reconfigure the circuitry on the fly. Another probable error source
comes as design errors introduced by the designers and the CAD tools they use. Testing and verification of
the FPGA designs becomes a very challenging problem.

Numerous issues regarding design error modeling are involved in FPGA. With large circuits often needed
to be mapped into the very limited space of the FPGA, the process usually incorporates algorithms attempting
to optimize the design hardware implementation. Specifically, one of the largest problems comes during
the mapping of the function into lookup table (LUT) blocks under the hard-pressed area constraints. As a
result, the originally intended function could be inadvertently modified, and therefore needs to be verified
afterwards. If simulations are used to check the design correctness, then it is required to specify a fault model
that represents LUT mapping errors.

This chapter concentrates on functional error modeling of logic blocks. As discussions will only be on
combinational and not sequential logic designs, errors associated with flip flops in the CLB will therefore
not be irrelevant. Also interconnect errors and detection techniques such as [MZ02] will not be looked at,
although the proposed method can be extended to handle these cases in future work.

An error modeling of LUT by the implicit cube distances is proposed in this chapter. The discussion of a
similar design error representation in ASIC (Chapter 3), where netlists are represented by combinational
logical gates is extended to FPGAs with LUTs as atomic blocks. With each LUT representing a large

spectrum of logic functions, the number of potential errors could be larger than in the case of gate replacement
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6.1. Previous Work

faults in ASIC. Therefore, the explicit consideration of design errors in FPGAs can become even more
difficult than what is already challenging in ASICs. The appealing alternative is to model implicitly the variety
of complex Boolean LUT errors, as such an approach results in a more compact fault list. In consequence,
a unified test procedure addressing versatile explicit faults can be derived. First, the cube distance error
model will be defined, followed by a discussion of the overall testing algorithm including LUT function
extraction, fault injection and mapping of cube distance faults to original s-a-v verification routines. Finally,
fault redundancy identification and fault coverage calculations will be looked at. Experiments are based on

several modifications of the Berkeley SIS tool [SSL¥92].

6.1 Previous Work

6.1.1 Error Modeling of the Gate

Gate replacement fault models have been looked at in Chapters 2 and 3. These models are compatible
with s-a-v manufacturing faults, in that methods for their detection can take advantage of existing automatic
test pattern generation (ATPG) and simulation algorithms for s-a-v faults [BAOQ]. For example, in [AAH95]
and [BH97], s-a-v faults are injected into modules that represent erroneous gate replacements. Each gate in
the design library has a corresponding fault module. Then satisfiability- (SAT-) based ATPG algorithms are
used for the fault detection [BH97][RZ01]. The model in Chapter 3 categorizes all potential functional errors
based on their cube distances from the error free function. Due to the fault dominance, only faults with the
smallest error distances need to be checked. The deterministic method used in this case is also based on the

SAT-based ATPG.

6.1.2 Error Modeling of the FPGA Faults

_—

Authors in [MSM98] mimic s-a-v faults at output of the LUT by modifying the implemented functions.
Either all LUT input combinations are mapped to 0 (for s-a-0) or are mapped to 1 (for s-a-1). In [PTS03], a
variation of the s-a-v model named combinational stuck-at (CSA) is proposed. Here, errors are injected into
the LUT, based on the input combination. Unlike [MSMO98], the stuck values in this case are conditional.
This solution, similar to the one presented in this thesis, modify the functionality of a LUT as opposed to

modeling a mere stuck value at a LUT output wire.
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6.2. Cube Distance Replacement Error Modeling

6.1.3 Online Testing via Partial Reconfiguration

Authors in [SMSP97] and [PTS03] present ways of testing a device in real time, i.e., while it remains
under operation. The algorithm allocates testing cells (column of logic blocks). Columns of logic cells are
then moved or copied temporarily to a column adjacent to the test cells for checks and restored afterwards.
Although basic unit is a column, the same concept may be extended to real-time testing of LUTs. The
functional fault model proposed in this thesis represents an erroneous Boolean function stored in a LUT.
Simulations under similar fault models often require FPGA to be partially reconfigurable [Xil04][SMSP97].
In this thesis a testing scenario is presented, where a design under test is simulated in software instead of
mapping it first into hardware. However, partial reconfiguration, which allows altering the contents of specific
cells in a device without touching remaining cells, is applicable. For example, the Xilinx Virtex-family
permits on maintaining operation while the LUT or column is reconfigured. In [MUPRS03], authors describe
specifics of using partial reconfiguration by direct manipulation of a configuration bitstream given a precise
location of the target component or cell to be modified. The JBits API for Xilinx devices in [GI.S99] also

allow ways of manipulating the bitstream directly.

6.2 Cube Distance Replacement Error Modeling

Each LUT can be viewed as an equivalence of a complex multi-input (single/multi)-output hardware
ASIC gate. This can be further simplified, with the LUT regarded as an element implementing a Boolean
equation in this thesis. It is then natural to implicitly represent potential LUT mapping errors in terms of
differences between the intended and resulting erroneous functional implementation. One way of describing

such differences is in terms of the number of cubes to distinguish the two Boolean functions.

Examplé 6.2.1. Consider a circuit illustratéd in Fig. 6.'1 . The logic is mapped into two 3-input LUT

(LUT3) whose outputs are controlled by input signal w. Assume that the top LUT3 whose fault -free
function is: ¢ = LUT(z,y,2) = (0,1,1,0,0,0,1,1)* = 2'y/2 + yz' + zy. A possible error cube
replacement of distance-1is¢x = (0,1,1,0,0,0,0, 1)F = 2'y/2 + 2'yz' -+ xyz. The error is excited when

(z,y,2) = (1,1,0) as shown in its truth table in Fig. 6.1,

In the above example (6.1), neither the original function nor its replacement constitutes a regular Boolean
gate function, such as AN D, OR and XOR. With larger LUT sizes, at typically four or five, the range of
functions is even wider. Thus considering every possible case of explicit LUT replacement error would be
highly impractical.

The implicit model categorizes all possible functional faults of the cell by their appropriate Hamming

distance from the original function. It is also proven in Chapter 3 that if all replacement faults at distance-2
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Figure 6.1: Basic mapped circuit with error in one of its LUT

(C;) are detectable, then it is implied that all faults at distances larger than 4 will also be detectable. Therefore
the detection of minimal cube distances errors automatically guarantees the detection of all LUT functional

replacements with larger distances from the original fault-free function.

6.3 Fault Insertion

Simulation based methods are unique in the case of FPGA testing, not only due to the unique nature of
the hardware structure but also because of its programmability, which directly affects fault insertion specifics
during testing. As the proposed fault model represents the error as functional errors in the LUT, testing
of the device would require repeated configuration of the LUT. Unfortunately programming the device is
generally a large bottleneck in time. Numerous Xilinx devices support partial reconfiguration [Xi104], which
can be used to solely modify the LUT function without changing the other LUT components in the circuit.
Furthermore, the rest of the device would remain in operation, which is particularly useful for simulation
purposes. Another feature of the dynamic reconfiguration of the LUT is that the bitstream used to reprogram
the device depends only on the LUT difference, and thus speeds up the implementation. However with the
number of candidate cube-distance replacements (Chapter 3), the overhead required to generate a difference
bitstream and to reprogram still remains costly.

Without a safe methodology of manipulating a bitstream, without the risk of tampering the design,
performing simulation experiments on FPGA would be meaningless. However, for the purpose of showing
the test quality of the proposed error modeling of the LUT, software simulations can be used. The proposed
algorithm is implemented in the Berkeley SIS tool platform [SSL.*92]. If however, the ease of the FPGA
reprogramming can be guaranteed to be efficient and easily executable, then the emulations of the error

functions on FPGA would be the final goal.
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Figure 6.2: Simulation flow of LUT verification with cube distance errors
6.4 Functional Simulation Experiments

The cube-distance fault simulator is implemented in SIS. Instead of using concrete designs for test
purposes random functions with primary inputs of 8, 12, 16 and 24 are generated. The function then
undergoes LUT mapping to Xilinx-like LUT architectures [SSL"92]. After the initial mapping, the netlist
is ready for simulation. The circuit is traversed, where each node’s function is extracted from its LUT data-
structure. From this, cube distance errors could be generated, injected and simulated.

Fig. 6.2 presents a basic overview of the simulation algorithm within the modified SIS platform. For each
extracted LUT function, the routine starts with the set of cube distance errors of the smallest distance, i.e.,
one (C1). If all candidate replacements could not be detected, the algorithm proceeds with the higher cube
distance errors. All errors are subjected to random vector simulations, and as soon as one vector is capable
of detecting the error, the verification routine moves onto the next error replacement. However, if at least one
LUT replacement ¢; at distance ¢ is undetected, then all errors at the level i 4+ 1 (C;41) spawned from this ¢

are considered. In this thesis an arbitrary maximum distance of 3 is set for all the experiments. Therefore, a
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Figure 6.3: 5-LUT decomposition of random combinational network

set of undetectable LUT replacements at this distance, i.e., C3 will undergo a deterministic fault redundancy

identification to confirm their detectability.

6.4.1 Random Combinational Circuit Generation

Experiments involve checking of numerous random combinational circuits. Fig. 6.3 shows a random
combinational network generated by random minterms. A 16:1 function is created based a random selection
of four minterms (out of a possible maximum of 216). The example shows one generated given by the relation
flinputs) = 5T m{18443,18494,23844,50626). After the network is created, it undergoes synthesis
and decomposition into 5-LUT components within SIS. This is done by built-in Xilinx ”xI” (“xl_ao”,
”xl_partition -tm -n5”") functions. A sweep is then done to remove extraneous inverters in series with the
sweep command. The resulting network from the example shown in Fig. 6.3 is comprised of interconnections

between thirteen 5-LUT components — nodes 1 to 12 and node f.

6.4.2 Extraction of the LUT Function

Determining the cube-distance errors requires finding first the complete ON-sets of the Boolean function
of a LUT node, i.e. combinations of inputs that would give an output of 1. This can be done through data

structures defined in the espresso library. In most cases, these ON-sets also incorporate don’t care (DC)
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Figure 6.4: Generation of 3-LUT Cube Distance-1 Error Functions

conditions. For each ON-set, inputs with DCs are expanded into a O-case and a 1-case. The verbose ON-set

information is then sorted by the minterm order to mimic a truth table. With the complete table, one may

generate the cube distance errors.

6.4.3 Generation of LUT Cube-Distance Errors

Generation of LUT cube-distance errors involve determining the cube difference auxiliary function cgyz,
which is defined as the Boolean difference between the LUT function ¢ and its distance-i replacement ¢;

(Eqn. 6.1), as previously defined by Eqn. 4.5:

Cauz = CD ¢ 6.1)

An input vector which sets ¢, to 1 is one that detects fault ¢; [BAOO][ABF94]. The set of all auxiliary
functions, Cy,; represents all functions that have ¢ cubes in its ON-set. In other words, all ¢,,¢ Of Cyyys have
a weight (number of 1s) of ¢. The ¢, functions also have no relationship to the LUT Boolean function.

The inverse in Eqn. 6.1 can be used to create the list of candidate replacement errors from the original

LUT function:

¢ = CD Caux (6.2)

With the LUT function ¢ extracted, all needs to be done is generating the list of Cy,,, functions and

XOR-ing them with the fault-free function c.
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Example 6.4.1. Assume thar an angmal ﬁmtzon ¢ zmplemented in a given LUT is deﬁned as:

(0,1,1,0,0,0,0, )%, Let C‘aw be the complete set of Caus. at dzstance 1. The entire set of cous Is

therefore
O {(10000000)T (0,1,0,0,0,0,0,0)",(0,0,1,0,0,0,0,0),
(OOOIOOOO)T (00001000)T(00000100)T
(00000010)T(00000001)T} L
Fig. 6.4 shows ci error LUT funcrions derived from the set of C.,,... For the figure’s stmplzczty, only
tige Jirst 3 and the final ¢, functions are shown. By Eqn. 6.2, edch ¢: can be generated by toggling c at
ti;e locations where Cqyz Is marked true. The entire C set of c1vi§ thus:
Ci = {(1,1,1,0,0,0;1, 1)%,(0,0,1,0,0,0,1,1)7,(0,1,0,0,0,0,1,1)7,
(0,1,1,1,0,0,1,1)%,(0,1,1,0,1,0,1,1)%,(0,1,1,0,0,1,1, )%,
(0,1,1,0,0,0,0,1)%,(0,1,1,0,0,0,1,0)7}.

6.4.4 Mapping of Cube-distance Faults to S-A-V Faults

To allow the SAT-based algorithm to constraint the input conditions for fault activation, unary clauses are
appended to the good, faulty, active and fault site expressions that describe the circuit (Sect. 4.2). Each cube
difference is mapped to one s-a-v fault with input conditions determined by SAT clauses. For faults with

larger cube distances 4, the fault is mapped to ¢ s-a-v faults with the corresponding unary SAT clauses.

Example 6.4.2. Assume thar a fault-free LUT function c from Ex. 6.4.1 (Fig. 6.4) is replaced by oneof its

O element: c; = (1,1,1,0,0,0,1, ). If input variables are defined as To, T1 and 5 the additional

constraining SAT clauses will be: (Tp), (T1) and (T3).

6.4.5 Fault Redundancy Identification

A fault ¢; is undetectable if there is no Boolean difference between itself and fault-free ¢, by Eqn. 6.1.
Hence a cube-distance fault c is redundant, when there is no such an input setting which would set cqyy.
In practice, redundant fault identification is executed when simulations are unable to detect the fault at the
maximum distance (of 3, in this thesis).

In the SIS experiments, the outputs of both nodes: the original and an inserted erroneous one are XOR-ed
representing a cqy; node, by Eqn. 6.1. In order to force the ATPG-SAT solver to look for the conditions
satisfying the above Boolean difference, and to generate a test vector detecting a cube-distance fault c, a s-a-
0 fault is injected at the XOR output (Fig. 6.5). After running the modified ATPG-SAT solver, the program

reverts any changes to the network by removing the auxiliary XOR gate, and the duplicated original node is

backed up in the memory.
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Figure 6.6: Random network generation and LUT-5 mapping

A primary difference in redundancy identification is with the larger number of inputs in the LUT over the
average of the 2- and 3-input gate. As a result, performing exact redundancy check yield to longer run times,
because clauses derived by the larger input logic modules have larger number of terms.

6.4.6 Simulation Execution Output

A randomly generated combinational circuit of 16 primary inputs is synthesized to LUT of size 5

(Fig. 6.6). Simulation execution is shown in the Fig. 6.7.
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Figure 6.7: Output of LUT simulation by lattice vectors
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Table 6.1: FPGA functional simulation results by random vectors

Primary inputs . Fault list size # of Fault coverage
in circuit LUT size #0ofLUTs (implicit) Configurations (%)
3 30 79 2682 94.22
8 4 20 60 13316 94.51
5 13 39 66552 97.51
6 11 32 437454 92.48
3 30 136 4416 84.31
12 4 20 108 25056 87.46
5 13 45 77528 90.62
6 11 36 486672 91.95
3 84 252 7728 76.85
18 4 18 54 93992 89.91
5 20 60 104968 89.74
6 16 48 661648 96.46
3 156 468 14274 63.89
o4 4 119 357 82220 81.99
5 118 140 247656 88.11
6 104 80 267766 90.55
32 3 256 768 23474 63.27

Table 6.2: FPGA functional simulation results by lattice vectors

Primary inputs . Fault list size # of Simulation |Fault coverage
in circuit LUT size #of LUTs (implicit) Configurations time (s) (%)

3 25 74 2300 186 69.91

8 4 18 54 11846 726 85.17

5 10 30 49484 1734 94.43

6 9 27 393696 9774 88.79

12 3 47 141 4246 1125 68.75

4 36 108 25056 6021 82.16

3 77 231 7084 35883 65.46

16 4 57 171 39672 131459 82.09

5 52 156 280584 968211 89.74

24 3 154 462 14090 507210 62.32

4 119 357 82220 1995829 81.30

6.4.7 Functional Simulation Results

Simulation results based on functional simulation within SIS are shown in Table 6.1. The actual number
of LUT functional errors is the number of configurations that would be needed. The size of the LUT also
directly impacts the number of functional faults. Larger randomly generated circuits mapped to smaller LUT
sizes also tend to have smaller coverage. Looking at the number of implicit cube distance faults, which equal
to total number of distance increments in the algorithm, the numbers are generally small, and within a small
multiple of the number of LUTs in the circuit. Majority of the fault coverage percentages are above 80%,
with the exception of 16-, 24-, and 32-input random circuits mapped to LUT sizes of 3.

Simulation results using top layers of the lattice are shown in Table 6.2. In all cases, the lattice simulation

the fault coverages are lower with lattice vectors, with higher execution time.
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6.5 FPGA Functional Testing

With the repetitiveness of changing the cube of the LUT function, the time used to program the FPGA
device needs to be short. A feature known as partial reconfigurability [Xil04] is the ability to re-program
a module or LUT while the rest of the circuit maintains its operation. It enables reconfiguring hardware
without downloading the entire bitstream as long as the one that is used to implement the original design.
The advantage is that it saves time in the device loading overhead. This section proposes a methodology and
issues of functional testing of cube-distance errors based on the software emulation discussed in Sect. 6.4.

From [Xil04], there are two methods of pursuing partial reconfiguration of the FPGA device —
module based or difference-based. The module based technique requires knowledge of all the candidate
reconfigurations and proves to more complicated than the difference-based counterpart. The difference-
based method looks at the changes necessary to the bitstream used for a configuration and generates another
marking only the differences. Because of the smaller in size in this new difference bitstream, reconfiguration

time targeting a specific LUT specified by this model is considerably faster.

6.5.1 Tool Flow

A test flow shown in Fig. 6.8 is repeated throughout, with the LUT function modified during each iteration.
To accommodate partial reconfiguration, each time a LUT is changed during functional simulation in SIS,
as depicted by the top loop in the figure, a new netlist with the new error is exported in the equation (eqn)
format. After completion of functional simulations, each exported eqn circuit, along with a VHDL wrapper
on the circuit, are processed by Synopsys Design Compiler. The Synopsys tool inserts appropriate input
and output buffer to the netlist, and assigns the appropriate user defined pin mappings on the development
board. A synthesized edif netlist is then exported and used by Xilinx tools for implementation via generating

a bitstream (bir) file. The place and route is purely automated by the Xilinx design tools.

6.5.2 Changing of LUT Equations

The Xilinx bitgen utility is used to compare the new netlist with the one used to program the FPGA at the
present state. With the utility, the difference bitstream is then generated, which could then be loaded onto the
FPGA to modify only the LUT equation.

The proposed tool flow illustrated in Fig. 6.8 poses several issues. Recalling the functional simulation
results from Sect. 6.4.7, that the number of necessary configurations is large. The first problem is the large
bottleneck involved in re-synthesizing and re-implementing the all the error cases. An option would be to
implement an edif netlist exporter such that it would bypass dc_shell. The problem with this is that the cell

libraries available in dc_shell are unavailable under SIS. Thus implementing an edif exporter is not feasible, as
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Figure 6.8: FPGA design flow

the exported circuit will contain no information on the LUT mapping. Bypassing the commercial tool would
not resolve the issue. Furthermore, SIS primarily exports equations as opposed to netlist formats bounded
to cells. The equation format is considered to behavioural with the commercial tools, and any slight change
at this hierarchy is likely to reflect more changes than the sole single LUT. The final problem is related to
the methodology described in [Xil04], where manipulating LUT requires interaction with the FPGA Editor
GUI tool before generating a difference bitstream. This procedure can become tedious considering the high
number of cube distance replacements and the repetitiveness required. Without a method of automating the
LUT functional tweaking, the quality of the test is potentially bounded by more undesirable human errors.
The solution to these problems is to have a program or script is capable of systematically modify the bitstream
information. In other words, it needs to be able to replace the two-part "FPGA editor to bitgen” process. The

test algorithm needs to generate an initial fault-free bitstream via the design flow, and to use JBits API to
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Figure 6.10: Workstation-FPGA communication via RS-232 for testing

directly manipulate a single bistream. With this method, the SIS circuit is only exported and synthesized with
commercial tools once, reducing a large part of the original bottleneck. Although details of JBits is beyond
the scope of this thesis, the interested reader may refer to [GL.S99] and [MUPRSO5] for detailed techniques

involving direct bitstream manipulation.

6.5.3 Test Circuitry and DUT on FPGA

Vectors such as top-lattice layers may be generated by on-chip logic for simulation in testing, but the
module would use up a large number of logic cells, which are generally scarce in FPGA with designs
occupying majority of the cells. A 16-input DUT requires log2(16) = 4 layers of the lattice. The test
vector generator has been designed and synthesized to the Xilinx Virtex Pro™II technology, using 2849 nets
and 2808 cells.

Another common technique is by generating the vectors off-chip by the workstation. The data is
transmitted through the serial port, using the RS-232 protocol to the FPGA and back to the PC using the
same protocol. Transmission and reception of data at the FPGA is managed by an Universal Asynchronous
Receiver Transmitter (UART) module. The transmission convention in the thesis uses the standard 8N1,
which comprises of 1 start bit, 8 data bits, and 1 stop bit (Fig. 6.9). The N in 8N1 denotes that no parity bit

is used. The less significant data bits are always transmitted before the more significant ones.
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Figure 6.11: UART module

The FPGA receives serial data at the UART receiver and converts it into parallel (Fig. 6.10). Additional
logic is then designed to process this parallel data for simulating the DUT. The circuit response is transmitted

back through the serial port to the workstation.

6.5.3.1 UART Interface on FPGA

UART cores are available under the Xilinx’s application note [Cha] and are also available as part of its
embedded microprocessor cores, such as PicoBlaze™and MicroBlaze™. As the cores are heavily depended
on Xilinx libraries, a basic UART module is implemented from scratch. To keep the module at a minimal
area, the modules do not have any FIFO buffering capabilities. Also, unlike the implementations in serial
modems, there is no interpretation of any read data as a control characters, as input data is only interpreted as
vector data in simulation.

Fig. 6.11 shows the UART module with its ports. Ports serial_in and serial_out are data input and outputs
on the RS-232 serial line. Other lines are used to interface between the UART module with the simulation
controller used to test the DUT. Ports read_rq and transmit_rq requests the UART module to read and transmit
data. Lines din and dout are parallel data presentation of data of serial_in and serial_out, respectively. Status
registers in read_error, read_done, tx_busy marks whether the read data is invalid, has been completed, or
that serial transmission is taking place. The UART interface consists of a clock frequency division unit, a

receiving unit and a transmission unit.

6.5.3.2 Clock division - Data synchronization

Serial data reception and transmission rate is at the standard 9600bps, and it is the responsibility of the
FPGA to scale down a clock rate to synchronize to this speed. For the 50MHz clock used for the FPGA, if
each received bit is sampled once, then the clock would need to be divided (slowed down) 50Mhz/9.6kHz
= 520.83 times. In reality, data could get out of synchronization after a while, so each bit of data should

be sampled more times, and close to the middle of the received bit for better accuracy. Each data would be
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Figure 6.12: UART clock divider waveform
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Figure 6.13: UART clock divider state diagram

sampled 16 times, where the 8th sample would be interpreted as the received data. The sampling clock rate
is therefore 9.6kHz x 16 = 153.6 kHz. The clock frequency scaling factor from the system clock is then:
50Mhz/153.6kHz = 325.521 ~ 326 times. Frequency divisions are implemented by counters based on the
system clock. The waveform in Fig. 6.12 demonstrates the multiple clock domains and samples generated by
the component.

With streams of received data entering the serial line at relatively random times, the clock division unit
also needs to resynchronize the sampling clock with each new set of input stream. A finite-state machine is
used to manage this with the two states: IDLE and GENERATE (Fig. 6.13). During IDLE, the block waits
for a read request (read_rq) pulse and then the serial input line is monitored for "0’ , signifying the start bit of
the 8NI convention. As soon as the bit is detected, sampling clock signals are generated in the GENERATE
state. As soon as the receiver unit finishes receiving data, it triggers a stop_gen_clk signal to stop generating
clock sampling. The process repeats itself each time a new stream of inputs enters the serial data, giving the
sampling clock a chance to synchronize with the new input data. For the transmission clock, there is no need

to re-adjust the clock as long as transmission is synchronization to the slower clock at the baud rate.
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Figure 6.14: UART receiver state diagram

6.5.3.3 UART Receiver

The core function of the UART receiving unit is a serial to parallel conversion by sampling the input serial
data stream. From the clock generating block pulse samples are generated for the receiving block to sample
data in the middle of each incoming serial bit. Knowing that the samples are always synchronized to every
input stream, the receiver is handled by 3 states: IDLE, RD_DATA and RD_ERR (Fig. 6.14).

During IDLE, the receiver waits for the sample pulse to be high and checks to see if the serial line is set
low. If it is, the state moves onto RD_DATA when upcoming data bits are read. Otherwise, it moves into
the error state RD_ERR, knowing that the start bit can never be high by convention. In RD_DATA, each of
the next 8 bits are sampled and shifted in a register. The bit after this is expected to be the stop bit and
RD_DATA is expected to be high. If it is true, the block latches the shift register into the parallel output din,
sends a pulse on read_done and returns to IDLE to wait for the next input stream. Otherwise, it enters the
RD_ERR state, as the stop bit can never be low. All data processing is synchronized to the system clock,
with the exception of sampling of input data. The waveform in Fig. 6.15 shows two error-free input serial
sequences of 0,1,0,1,0,1,0,1,0,1and 0,1,1,1,1,0,0,0,0, 1. The receiver performs two successful reads

and converts the data into parallel at din[7..0] as 01010101 and 00001111.

6.5.3.4 UART Transmitter

The UART transmitter is a parallel serial conversion of data from dour. This block is managed by three

states: IDLE, LOAD and SHIFT (Fig. 6.16). During IDLE, the transmitter waits for a request pulse on
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Figure 6.15: UART receiver simulation waveform
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Figure 6.16: UART transmitter
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Figure 6.17: UART transmitter simulation waveform

=

transmit_rq and enters the LOAD state. It is assumed that the data is already present at dour at this time.
During LOAD, a start bit of "0’ is loaded into a shift register, along with the data byte and the stop bit of *1°.
It then moves onto the SHIFT state when the data is ready to be shifted out on each transmission pulse at the
baud rate. Throughout LOAD and SHIFT, tx_busy is set true to prevent other blocks of requesting new data to
be sent out, as it is not ready. After transmission is complete, it returns to the IDLE state when zx_busy is set
low until a new transmission request. In Fig. 6.17, dout is set to 00101010 and shifted out during the SHIFT
state. The LOAD state occurs before the SHIFT state, but occurs within 1 system clock cycle and thus could

not be seen in the waveform at the current zoom view.
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Figure 6.18: Simulation controller module
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Figure 6.19: Simulation controller state diagram

6.5.3.5 Simulation Controller

The simulation controller (Fig. 6.18) has the responsibility of processing any incoming data from the
processor via the UART (din bus) for DUT vector simulation (vector bus). The controller reads the 8-bit
vector from the UART when the read_done signal is asserted by the UART. The vector is concatenated with
the necessary number of reads to match the input width of the design. For instance, a circuit with 16-inputs
would require two 8-bit reads from the UART. The response of the test circuit is then processed in this
controller and sent back via the UART to the processor first by signaling transmit_rq to request transmission.

If the UART is not busy performing another transmission, as dictated by #x_busy, the response is transmitted.
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Figure 6.20: Top-level simulation with all component instantiations

The simulation controller is designed to have 5 states: START, READING, SIM, WAIT_TX _START and
WRITING (Fig. 6.19). Beginning in the START state, the controller requests a read on the read_rq line for
the UART receiver to send it data. With only a byte of data per payload in the 8 N1 convention, a 16-bit
input DUT would require two successive reads to make up a matching simulating vector size. Therefore, in
the READING state, it waits for two successful reads from the UART (by monitoring read_done) to construct
the 16-bit simulation vector. Next, the vector is applied to the DUT’s inputs for simulation in the SIM state.
The controller requests transmission on transmit_rq line to the UART and loads up a shift register with the
appropriate start, data and stop bits in the WAIT_TX_START state. As soon as the UART responses that it
is busy sending the data back to the PC with tx_busy, the controller waits in the WRITING state until the
transmission is complete when tx_busy is set low before starting over again for the next vector in the START
state.

The waveform in Fig. 6.20 is a simulation with all the UART components instantiated with the controller.
A 16-bit simulation vector 0000111101010101 is constructed by two consecutive reads issued by the
controller in the READING state. The data is captured during which the read_done signal issued to the
controller by the receiver.. The SIM state then latches the vector into the DUT model. The model is
represented by a 16-bit XOR parity function, and is given an even parity output by the vector. The expected
simulation output of "0’ is returned as part of dout and is returned serially during states WAIT_TX_START and

WRITING. After the transmission, the state controller returns to the START state.
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Logic Utilization:

1
2 Number of Slice Flip Flops: 99 out of 47,232 1%

3 Number of 4 input LUTs: 137 out of 47,232 1%

4 Logic Distribution:

5 Number of occupied Slices: 94 out of 23,616 1%
6 Number of Slices containing only related logic: 94 out of 94 100%
7 Number of Slices containing unrelated logic: 0 out of 94 0%
8 *See NOTES below for an explanation of the effects of unrelated logic
9 Total Number 4 input LUTs: 139 out of 47,232 1%

10 Number used as logic: 137

11 Number used as a route-thru: 2

12

13 Number of bonded IOBs: 5 out of 692 1%

14 IOB Flip Flops: 3

16 Total equivalent gate count for design: 1,650
17 Additional JTAG gate count for IOBs: 240
18 Peak Memory Usage: 149 MB

Figure 6.21: Area usage of UART and simulation controller

Table 6.3: Serial port device mapping in UNIX and Linux

System Port 1 Port 2 Virtual Term N
Solaris/SunOS  /dev/ttya  /dev/ttyb -
Linux /dev/ttySO  /dev/ttyS1 /devitty N

6.5.3.6 Test Circuitry Area

With limited space on FPGA devices, it is imperative to limit the amount of test circuitry to a minimum.
The circuitry is implemented on Virtex II Pro device (part number XC2VP50) on the FF1152-5 board. In
Fig. 6.21, the Xilinx ISE/Impact implementation tool reports less than 1% of area usage required for both the

UART and simulation controller modules.

6.5.4 Test Vector Transmission from Workstation

Test vectors are generated by the workstation and transmitted via the RS-232 serial protocol to the FPGA.
Table 6.3 lists the available serial ports available under SunOS and Linux. Virtual terminals, (which could
be triggered by CTRL+ALT+FN on the workstation,) emulate serial terminal behavior, may be accessed to
by /dev/tty N, where N is an integer. With the 8N1 serial convention, the 8-bit data is merely transmission of
a character. Unfortunately, not all vectors constitute 8-bits and only a small subset constitutes alphanumeric
characters. A program in C based on the standard termios.h C POSIX libraries is written to handle these
situations. Specifics of the protocol settings, such as baud rate and protocol (8N1) were set based on functions
in this library. Routines for port initialization are based on the guides in [Swe05][Fre01]. Then functions are
written to assign each 8-bit partition to its ASCII equivalent character and each character is concatenated to
form a string. With all data being as part of a test vector, there is no need of identifying any standard escape/

control characters, such as ones implemented in modem terminal applications, such as minicom. Using the
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“write” system call the program sends the characters to the port via the proper protocol specified in the

program. For the 16-bit input DUT, each string transmission consists of two characters.
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CHAPTER 7

CONCLUSION

‘ x rith all the recent technology advancements and complexity in hardware, testing and verification

remains as the essential ingredient in the design-manufacturing flow of ensuring that the final
product works and behaves as desired. This thesis has placed emphasis on these topics, particularly in fault
modeling, test generation, simulation methods and fault redundancy identification.

One of the major challenges is having a fault model that can represent the abundant classes of design
errors while maintaining a relatively small manageable fault list. The size of the fault list directly affects
the performance of the simulator, and having a large fault list would only adds more burden in resources.
Simulation time would take longer and slower, which is obviously undesirable in any time-to-market
environment.

Gate-level faults may be represented by models such as gate replacements with another gate of matching
1/0 count and with MIGSE module [AAH93] [BH97]. The thesis has shown the shortcomings of these
techniques in that fault lists are large and difficult to manage. In particular, the latter model requires
constructing a replacement module for every gates in the synthesis library used in the design. When it
comes to FPGA applications, the classes of errors are even larger, as the LUT is capable of representing more
functionality than the general standard Boolean gate class found in ASIC. In this case, the demand of using a
mode] capable of representing more functional errors compactly is even higher.

Erroneous gate replacement by cube distances is then proposed, which is capable of representing larger
classes of functional errors. Each gate error function is represented by the Hamming distance from the
original fault-free gate. Also, all of the possible 22" functional errors of the n-input gate is then naturally
classified by their Hamming distances. Each of these implicit category represents a group of faults such that
detectability of each implicit fault implies detectability of all faults it represents. By fault dominance, it is
shown that smaller distances are able to represent higher distanced ones, and therefore only minimal distanced

errors are needed to be checked. From this, a minimal cube distance algorithm is derived where ATPG and
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simulation routines begin checking errors at the lowest distance of 1 and progress to higher distances as

required. The fault dominance property has allowed the fault list size to be dramatically reduced.

7.1 ATPG and Simulation

The background of ATPG and simulation has been covered in that ATPG are deterministic algorithms
that target a particular fault and finding a test capable of detecting it, should one exist. Specifically, an ATPG
variant, known as SAT-based ATPG has been looked at, which first sets up clauses based on the network
structure, followed by solving the clauses with a SAT solver. Simulation on the other hand involves injection
of vectors and monitoring the output for any erroneous responses, while each fault of the fault list is in turn
introduced into the network.

In this thesis, implementation techniques of accommodating the error modeling techniques have been
discussed. Specifically, ways of incorporating these into existing ATPG and simulation routines originally
designed for the widely popular s-a-v has been looked at. This is to take full advantage of the speed and
maturity in the ATPG-SAT algorithms available for s-a-v faults.

Redundant faults exist due to the nature of fault modeling such that its presence is undetectable. At the
test generation cycle, redundant faults need to be recognized and removed from the fault list. The cause
of these faults has been looked at and techniques in identifying them have been discussed closely for the

cube-distance error replacement model.

7.2 FPGA Functional Testing

A testing algorithm based on the implicit cube-distance model has been proposed for modeling LUT
errors in the FPGA. The overall algorithm includes simulation and fault detection by deterministic methods
to identify redundant faults. The deterministic methods are based on a mapping of the proposed model to
the classical s-a-v model. The purpose of such a mapping is so that existing routines for the s-a-v may be
reused. This is executed when errors at the maximum cube distances cannot be detected by random simulation
vectors. Berkeley SIS is used to emulate the mapping and testing process in hardware.

The thesis looked at checking for the netlist’s correctness before bitstream generation and downloading
the design onto the FPGA device. The FPGA chapter then looks at methods of integrating functional testing
into the design flow. It is concluded that the most practical solution for the cube distance model would be
to use the JBits API for Xilinx devices. The API allows direct manipulation of the bitstream. With partial
reconfiguration, the API generates a bitstream, which only reflects the change and errors within the LUT.

Test circuitry is introduced on the FPGA which uses less than 1% of the Virtex IT Pro device area. Partial
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reconfiguration would also allow functional testing while the FPGA is in operation.

7.3 Summary of Results

7.3.1 Cube Distance Model on Designs Mapped to Boolean Gates

The cube-distance error replacement model is adequate to represent explicit gate replacements, as well
as s-a-v errors. The fault list sizes of the proposed implicit model have shown to be smaller than the explicit
gate replacement model, and the MIGSE model proposed in [AAH95][BH97]. Finally, a technique of
adjusting standard ATPG-SAT s-a-v routines for the detection of the cube-distance fault model has been
proposed. The proposed cube-distance implicit fault model significantly reduces a fault list compared to the
explicit representation of the same class of functional faults. Additionally, the proposed model is capable of

representing any complex logic to complex logic replacement.

7.3.2 Cube Distance Model on LUT Mapped Circuits

The cube-distance error replacement model is adequate to represent explicit gate replacements, as well
as s-a-v errors. The fault list sizes of the proposed implicit model have shown to be smaller than the explicit
gate replacement model, and the MIGSE module replacement model. Results have shown that the number
implicit faults are low and are able to represent a large number of actual functional errors. The number of
these functional errors is proportional to the size of the LUT, but is high considering that it is the number
of configurations that would be needed to test the hardware. Also the larger circuits mapped to the smallest

LUT size of 3 has relatively low coverage.

7.3.3 Simulations with Lattice Vectors

Simulations with lattice vectors have shown lower fault coverages than with random vectors in many
cases. Also, even with loga(n) layers for an n-input network, fault coverages are often lower than with

random vectors, while simulation takes a longer time.

7.4 Future Work

74.1 FPGA Testing

As all experiments on FPGA testing are implemented in Berkeley SIS to emulate the functional operation
on hardware, a migration of the software emulation proposed for this fault model into real time online FPGA

testing will be desirable for future work.
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7.4.2 Algorithm Optimization and Diagnostics

In any software implementation, particularly simulators and SAT-ATPG, algorithms could be optimized
further to shorten execution times. As such, an interesting element would be to have better diagnostics
should errors occur. At the present time in the proposed functional FPGA testing method, the erroneous LUT
information is retained. Having more statistical data on the type of functional errors on the LUT would be a
useful hint for the designer to use alternative synthesis methods to achieve better error-free functional designs

as well as having better testability results in the implementation.

7.4.3 Application of the Proposed Method to Other Device Technologies

With devices entering the submicron era of manufacturing, various nanotechnology methods have
undergone research as alternatives to the current CMOS technology. These include alternatives to silicon,
DNA manipulation techniques and the use of quantum dots (QD) in quantum cellular automata (QCA). At
the present time formal fault modeling techniques is in a relatively early stage. Because of the way implicit
cube-distance errors’ ability of categorizing all functional errors into a compact fault list, this can be applied
to newer technologies as well, where the categories of errors are even larger and varied.

The model may be used in reversible logic and computing, where the fundamental logic is more complex
than the Boolean gate. Logical elements in reversible logic is to consume no (or minimal) power as charges
maintain in within the circuit, as opposed to charging-discharging cycles in standard CMOS. Although there
is a large assortment of realization technologies for reversible logic, such as CMOS (adiabatic circuits),
nano-mechanical and quantum, the model will be sufficient in covering functional faults at the reversible

logic level.
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