A method for aspect mining using production rules,

dependency graphs and two-level grammars

Amir Abdollahi Foumani

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

September 2005

© Amir Abdollahi Foumani, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-16254-5
Our file Notre référence
ISBN: 978-0-494-16254-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

A method for aspect mining using production rules,

dependency graphs and two-level grammars

Amir Abdollahi Foumani

Adopting aspect-oriented technologies requires revisiting and restructuring the entire
traditional software lifecycle in order to identify and represent occurrences of
crosscutting during software requirements engineering and design, and to determine how
these requirements are composed. In this research, we propose an aspect mining approach
to identify and model crosscutting concerns (aspects) by restructuring the meta-level at
the breakpoints of: requirements elicitation, analysis, design, and implementation
activities. The main purpose of this research is twofold: (1) “isolation” of crosscutting
concerns in the early steps of software life cycle (2) identification of crosscutting
concerns in legacy systems. The proposal outlined in this research illustrates a method to
reformulate existing object-oriented artifacts by mining and explicitly modeling
crosscutting concerns. In this method of restructuring we represent the semantics of UML
artifacts by using a set of production rules, which refer to object definitions and
relationships metadata. The result of our proposed restructuring process is an aspect-
oriented design whereby aspects may be introduced into the object-oriented design or

certain classes may be restructured as aspects.

il

Table of contents

L. INrOAUCHON c..eeeeieeeeeeeetetc ettt ere s sat s e b aebe e e 5
2. Problem and MOtIVAIONceecureiereeiereieeriereeeeeeeesee st sae s sae s 11
3. Related WOTKovvveieiiiiiceretcertctrcte sttt 12
4. Theoretical background..........ccccoecirvirireciiniiiiiiiri 13
4.1. Describing ASPECtS......ccoueeverruerrirrieruereieniiererererresnrsseesasssessaens e 13
4.1.1. Separation Of CONCEINScccviruiirrertinriiniiiiiiiiiniie e esesie e ereesbes e s e e s s 14
4.1.2. CrOSSCULHINEG.eeouerereereereeereeeieeeee et erecer et e sa s ar e s e e s e nessbseesbs s e staaes 15
4.2. What is Aspect Mining?.......cccccevvervcrmervcrrnernirenienennes et s 17
5. Proposal and methodologycccueeiiviniiiiiiiniiiiiiiice s 18
6. Strategies for aSpect MININEccovevmiriiiiiriennieiniierc e b e 20
6.1. VETtICAl ASPECL....ccevirrieiieriierreeteeieet e et s ee et eie s beesss s b ssas s an e aanssab e saneebe s 23
6.2. HOTIZONtal ASPECL.....cveiieeeiieeierecreeceieeet bttt ae s 23
6.3. Hybrid @SPECtcovieeieniieiiieteeirectcrentct et 24
6.4. Ambiguity in identifying aspectsccceveereerurcerreenectirnenent e 25
6.5. Dependency Sraphsccoceveevievincniiienienieieiine e e 28
6.6. Object dependency Sraph..........cocceceerievenercimenniiinicc e 30
6.7. DEPENAENCY LYPES ..couveueeeniiruririnientintieseierensistesses s sstsrt e se e s e sssesbsessssasassseaseans 31
6.8. Production rules and derivation SENtENCE......c..ccverrrvereririrereiniiiniininnineneeeeeeneeasees 36
6.9. Two-level grammar: a formal definition...........cccoeevveeveenvcniincninnicceenn 41
6.10. CrosSCUttings PALtEITSccueeveeeeeririeeriieriiierienree sttt erne e aesaessnenes 43
6.10.1. Rules for identifying composition patterns...........coceeervvvrueriiviinnnnsniinneneneennes 43
6.10.2. Observer-pattern: State-preserving CONCEIMNScoevveeereriertenieesiveseessesesisessees 44

iv

6.11. Identifying code duplication and scattering using production rules 49
6.12. Identifying code duplication and scattering using a transition matrix............... 51
7. Case study: Analysis of object-oriented artifacts metadata throughout the software
HEE CYCLE .ttt s sa bbb bbbt bbb bbb n e b b et 53
8. Case study: Reengineering object-oriented designs by analyzing dependency graphs
and production TUIES..........occecveeuerueeiieenciii it nens reeeeeeanes 63

9. Case study: Using dynamic syntax grammars for detecting crosscutting concerns.. 75

9.9. Using dynamic syntax grammar for identifying horizontal concemns....................... 76
9.10. Using dynamic syntax grammars for identifying vertical concerns.................. 86
10. Conclusion, Limitations, and Future Work......c....ccoeceevverrvernieenncierenneensncnniniennnenn. 89
11, RETEIEINCESuvievveeteeeeectteeie ettt e et ee s s s e st st et en s o nn s s sbseasseraseerbnees 91

Table of Figures

Figure 1. Restructuring of different object-oriented designs into aspect-oriented design .. 8

Figure 2. Restructuring requirements, analysis, and design artifacts in different stages of

aspect-oriented software life Cycle.......c.cocovriniini 10
Figure 3. Reengineering transformations..........ccceeviiiiviniinieniinecinierceeeseseeenes 14
Figure 4. Reasons for crosscutting phenomena.............ccoovvieeininieniiniinneeeiesseseenenens 16
Figure 5. Aspect mining methodologyccccccoiiiiiiiinininiiee e 19
Figure 6. Initial picture of CrossCutting...........cccccocviiininnnnniiinininicere e 21
Figure 7. Dependency graph ...ttt 29
Figure 8. Object dependency graph ..o 31
Figure 9. Different types of cyclic dependencies..........ccovviiiviiiniiniiiineirinnieeieniein, 34
Figurel0. Class C provides more functionality for Class B through CF1() method......... 43
Figurell. UML class diagram for the observer patternccoooeeevinviniiiininniinne 45
Figurel12. Dependency graph for the Observer design patterncocoeeeevvenreenniencinnnns 47
Figure 13. State-preServing CONCEIMScouriiruiiruirrriisieriiisieseeeeesesseessessesssessesssessasssess 48
Figure 14. State-preserving scenario and non-state-preserving SCENarioscoceeeruens 49
Figure 15. Transition matrix for class Cl and...........cocccciiiinininiiiinininenencrenreenes 52
Figure 16. Transition matrix for identifying aspects in C1.M1(), C2.M2().......ccceevenense. 53
Figure 17. Top level use case diagram for invoicing Syst€m.........cccevevevieneninnincnnennenenn 54
Figure 18. Main use cases of manage order functionalitycccccevevivveinininieniinnnnnns 55
Figure 19. Use case diagram after applying metadata analysis...........ccooeeveeiniieiinnnnnnnnens 56
Figure 20. Sales order domain modelc.cccooceeiiiiiiiiiiinie 57
Figure 21. SSDs for placing an order and making a payment...........ccccevvenrenrrnercnenennnnn. 58

vi

Figure 22. Component diagram representation of the system............coooreeiiniinnins 59
Figure 23. Class diagra.........cccoceviiiiiiniiniiiniiiicrieesereeae ettt enene 60
Figure 24. Composition pattern for modeling persistent objectscccoeivininnnnnnne. 62
Figure 25. Process $ale SCENArio........cocciiiiiiriiniiiineiiienicteeitetete s ss s 65
Figure 26. Domain model for the point of sale systemccccovveiiiniinnninieiinrenene. 65
Figure 27. Class diagram for sales SYStemccocvcviviiiiiiniiiiiininiccniecictree e 66
Figure 28. Processing a sale for the first design model...........ccocovvmiiiineniinnnniniin 68
Figure 29. Validator Patternc.cooceeviceiiciiiiiiiiiiiicen ettt 70
Figure 30. Dependency graph for the second design ..o 71
Figure 31. Observer pattern for contract checking..........c.coocvvvinniiinininiiniieieeenn, 72
Figure 32. Object dependency graph for contract checker observer design pattern.......... 73
Figure 33. Deployment of Visitor pattern.........ccccevueviiviiiiiinnininiciiiiccceecieeieereen 74
Figure 34. Dependency graph for the Visitor design pattern..........ccocoevniviiniiininnnn, 75
Figure 35. Class diagram for sales SyStemc.ccceevirciiiiniininiininiccneciieieiee e 76
Figure 36. Interaction diagram for PlaceOrder() and MakePayment() methods of
SAlESOTAET CIASSveeuveeereeereiereeee e riteretesteee e e seesiaestsaee st e saesaseaesnbesanessssansrnssanens 77
Figure 37.Parse tree for class SalesOrder method ..., 82
Figure 38. Parse tree for class SalesOrder method with using two-level grammar 86
Figure 39. Parse tree for SalesOrder methods illustrates that there is a vertical concern

defined by traceEntry() and traceExit() methods.ccccovevveveivinininnniiciiinneenn. 88

vii

1. Introduction

Despite the success of object-orientation in the effort to achieve separation of concerns,
certain properties in object-oriented systems cannot be directly mapped in a one-to-one
fashion from the problem domain to the solution space, and thus they cannot be localized
in single modular units. This is due to the fact that the decomposition of requirements is
performed along one axis (the notion of class). This tyranny of dominant decomposition
[16] dictates that the implementation of certain concerns would cut across parts of the
system. Such concerns are called crosscutting concerns or aspects. Requirements may be
implemented by a number of different design decisions and artifacts. Some object-
oriented design decisions decompose the problem domain into better modular units such
that the crosscutting phenomenon is minimized. However, the phenomenon may not be
totally eliminated from an object-oriented model. The symptoms imposed by this
phenomenon manifest themselves as (1) the scattering of concerns across the
decomposition hierarchy of the system and (2) the tangling of concerns in modular units.
As a result, developers are faced with low level of cohesion of modular units, strong
coupling between modular units, low level of reusability of code, low level of
adaptability and difficult comprehensibility resulting in programs that are more error

prone.

New software engineering technologies are emerging to allow richer specifications of
programs and better modularization of these specifications. Aspect-Oriented
Programming (AOP) originally proposed by [5] is a collective term that refers to a

growing family of approaches and technologies that provide solutions to separate and

implement crosscutting concerns by providing a second axis of decomposition that
enables the identification and separation of core functionality and crosscutting
requirements and thus a better modularization for the specified requirements. The
description of crosscutting leaves space for its manifestation in disciplines that precede
programming. Aspect-Oriented Software Development (AOSD) has extended AOP to
provide a systematic support for identification, separation, representation and
composition of crosscutting requirements as well as mechanism that make them traceable
throughout software development process.

The main purpose of this project is twofold:

1. Isolation of crosscutting concerns in the early steps of software life cycle

2. Identification of crosscutting concerns in legacy systems.

In this respect we try to define an aspect mining approach that uses the same rules and
techniques for aspect mining throughout the entire software life cycle. At the analysis
stage by analyzing “analysis artifacts” we distinguish potential aspects or aspect
candidates and then with applying the same techniques on “design artifacts” we trace
these aspects to the design level with different granularity. At the design level we may
introduce some more aspect candidates. Aspect mining can be continued to the
implementation stage for identifying missing aspect candidates from analysis and design
stages. For analyzing implementation artifacts we introduce a new method of parsing.
With this new method in addition to typical parsing of the source code we are able to
analyze the object relationships and definitions and also identify scattered and duplicated
codes. This approach also identifies aspect candidates from the source code. As a result

by just compiling source codes of a legacy system we are able to identify aspect

candidates. In Figure 1 we illustrate our proposal for a process of restructuring an object-
oriented design into an aspect-oriented design. According to this proposal for a single set
of requirements we may have different object-oriented designs and we show that by using
production rules and dependency graphs we are able to restructure these object oriented
designs to an aspect-oriented design. At the end of this restructuring process for each
object-oriented design we will have a corresponding aspect-oriented design with the same
set of aspects. According to this proposal any object-oriented design with any degree of
modularity can be restructured to a corresponding aspect-oriented design by analyzing
object-oriented design artifacts.

We define the following:

1. R: {rl, r2, r3, ..}, asetofrequirements.

2. D: {Dl1(ml), D2(m2), D3(m3), ..}, asetof object-oriented designs, where
ml, m2 and m3 constitute certain degree of design modularity. With degree of
modularity we mean a general metrics for evaluating the degree of cohesion of
modular units, degree of coupling between modular units, degree of reusability of
code, degree of adaptability and difficult comprehensibility. So if m1>m2 then we
evaluate D1 as a better object-oriented design than D2.

3. E: {e1, ez, es3 ..}, asetof entities where each member corresponds to an
object-oriented design Di which define real world applications.

4. C: {cl, c2, c3, ..}, asetofpotential crosscutting concerns.

5. A: {Al, A2, A3, ..}, a setof aspect-oriented designs that are the result of

restructuring D1, D2, D3, .. object-oriented designs.

Our proposal is based on the deployment of dependency graphs and production rules in
order to be able to restructure an object-oriented design say Di to an equivalent aspect-
oriented design say A1 such that:

E: {e’'1, e’,, e’3, ..} is a set of entities that together with Aspect: {al,
a2, a3, ..} asa set of aspects define the real world applications for the same set of
requirements. Our argument is that different restructurings from an object-oriented to an

aspect-oriented context would yield the same set of aspects.

(Requirement)

(OO design 1 (ml) @O design 3 (m3)

COO design 2 (mZ)

Q\pply dependency graphs and production rul@

@spects {al, a2, a3,...D

Degree of design modularity : m1 > m2 > mﬁ

Figure 1. Restructuring of different object-oriented designs into aspect-oriented

design

Adopting aspect-oriented technologies requires revisiting and restructuring the entire
traditional software lifecycle in order to identify and represent occurrences of
crosscutting during software requirements engineering and design, and to determine how
these requirements are composed. In this research, we propose an approach to detect and
model crosscutting concerns by restructuring object-oriented artifacts at the breakpoints
of:

1) Requirements elicitation,

2) Analysis

3) Design and

4) Implementation activities.

During software development, we move from requirements to implementation (forward
engineering) we incrementally refine the system. This is applicable to both the linear as
well as the iterative development process. Earlier work by the authors and others [13] has
demonstrated how we can identify crosscuttings at the requirements phase. Together with
possible initial crosscuttings, we believe it is possible that crosscutting concerns may
arise at different stages during development and at various levels of granularity. Our
proposal (shown in Figure 2) builds on earlier work on forward engineering and reverse
engineering [8, 9] and considers the set of artifacts produced at certain milestones during
forward engineering. By analyzing the artifacts, we are able to restructure each set of
artifacts in order to identify any possible “missing” crosscuttings. As a result, each stage
of development is enhanced with a corresponding restructuring activity that will deliver a

refined set of artifacts to the stage.

L Aspect-oriented software life cycle (forward engineering)

‘ (
Requirement "RequlrememJ Analysis Analysis Design Design

artifacts } i artifacts artifacts
Y J

|

Restructured Restru‘crured Restructured
reguirement analysis design
artifacts Analysis antifacts Design artifacts
. likly with more artifacts likly with more artifacts likly with more
Requ_lremem aspect aspect aspect
artifacts : pec .
candidates candidates candidates

Requirement Analysis Design
restructuring restructuring restructuring

Restructuring aspect-oriented metadata >

Implementation

Figure 2. Restructuring requirements, analysis, and design artifacts in different

stages of aspect-oriented software life cycle

The Thesis is organized as follows:
Section 2: Problem and motivation
Section 3: Related work

Section 4: Theoretical background
Section 5: Proposal and methodology
Section 6: Strategies for aspect mining
Section 7: Case studies

Section 8: Conclusion and recommendations

2. Problem and motivation

It is not always straightforward to identify aspects over a set of design artifacts. This
would be particularly true in applications of complex domains. A great deal of the
research in AOP has focused on identifying aspects over an implementation in legacy
systems (a set of code artifacts) and a number of automated tools [1, 2, 3, 4] are now
available to developers. However, less attention has been placed on identifying aspects at
the earlier stages of development. The motivation behind this project is:

1. To define a set of rules in order to identify aspects in a crosscutting object-oriented
design.

2. To define a set of principles by which we can migrate a crosscutting object-oriented
design to an aspect-oriented context.

3. To show that any crosscutting object-oriented design with any degree of modularity
can be restructured to a corresponding aspect-oriented design by analyzing object-
oriented design artifacts.

4. To define an aspect mining methodology that can be applicable in entire software life
cycle.

5. Apply this aspect mining approach to object-oriented compilers to identify aspect
candidates during parsing implementation artifacts. The result is a new method of parsing
that helps developers to develop code that follows the semantics defined in the design
level in addition to identifying potential crosscutting concerns and also it is applicable for
aspect mining in the legacy systems. This approach enables us to identify crosscuttings

behavior with considering all possible scenarios implemented by the source code.

3. Related work

Most of the current aspect mining approaches operate on source code. In [1] the authors
describe an automatic dynamic aspect mining approach. This approach uses program
traces that are generated in different program executions. These traces are then
investigated for recurring execution patterns based on different constraints, such as the
requirement that the patterns have to exist in a different calling context in the program
trace..In [2] the authors describe an automatic static aspect mining approach, where the
control flow graphs of a program are investigated for recurring executions based on
different constraints, such as the requirement that the patterns have to exist in a different
calling context. In [3] the authors introduce a concern graph representation that abstracts
the implementation details of a concern and it makes explicit the relationships between
different elements of the concern for the purpose of documenting and analyzing concerns.
In [4] the authors describe concerns based on class members. This description involves
three levels of concern elements: use of classes, use of class members, and class member
behavior elements (use of fields and classes within method bodies). Use of classes is
expressed by the class-use production rules. The rules specify that a concern either uses
the entire class to implement its behavior or only part of a class, as well as what parts of
the class participate in the implementation of the particular concern. In [12] the authors
use Abstract syntax tree to detect duplicated code (“clones”). In [17] the authors
introduce a general-purpose, multidimensional, concern-space modeling schema that can

be used to model early-stage concerns.

4. Theoretical background

In many situations developers work on software systems that other people have designed
and developed. In the literature, the term “reverse engineering” is defined as “[t/he
process of analyzing a subject system to identify its components and their
interrelationships and create representations of the system in another form, or at a
higher level of abstraction” [7]. Reverse engineering involves only analysis, not change.
The goal of reverse engineering is to obtain understanding (comprehension) of the
system. A related term, “restructuring” and its object-oriented equivalent “refactoring”,
refer to reformulating a program without first abstracting it to a higher level. Imperative
to the restructuring process is to maintain the same level of functionality and semantics of

the system.

These transformations are illustrated in Figure 3. To restructure (refactor) a set of object-
oriented implementation artifacts (code) into an aspect-oriented implementation would
also have to involve a propagation of backward activities in order to maintain the
synchronicity between design artifacts and implementation. Our proposal entails the
refactoring of a system at the design level and the deployment of forward engineering in

order to transform an object-oriented design to aspect-oriented.

4.1. Describing Aspects

In this section we describe the main concepts of this research such as “Separation of

concerns”, “Crosscuttings”, “Aspect”, “Aspect mining”.

Specification Restructuring

]

Forward Reverse
Engineering Engineering
Design - Restructuring
Forward Reverse
Engineering Engineering
Implementation Resthtuﬁng

Figure 3. Reengineering transformations

4.1.1.Separation of concerns

“Separation of concerns” is defined as realization of problem domain concepts into
separate units of software (Parnas, Dijkstra). There are many benefits associated with
having a concern of a software system being expressed in a single modular unit such as
better analysis and understanding of the system, easy adaptability, maintainability and
high degree of reusability. Although separation of concerns is crucial to software
development, but how to best achieve it is an open issue. Object-oriented programming

provides linguistic mechanisms to support functional decomposition along the notion of

10

class and allows us to view computation as a set of collaborating objects. Overall OOP
gets closer to the way we think and it has been a great success towards separation of

concerns.

4.1.2. Crosscutting

In OOP, decomposition (through mechanisms provided by current languages) is one-
dimensional focusing on the notion of a class. In large systems, interaction of
components is very complex. Current programming languages do not provide constructs
to address certain properties in a modular way. OOP cannot address the design or
implementation of behavior that spans over many modules (often unrelated). Certain
properties cannot be localized in single modular units, but their implementation cuts
across the decomposition hierarchy of the system. These properties are called
crosscutting concerns, or aspects. Two issues are of interest here. For these operations
code spans over many methods of potentially many classes and packages and
implementation of some operations do much more than performing some code
functionality, it means that these operations contain code for more than one concerns.
Crosscutting imposes two symptoms on software development:
1. Code scattering: implementation of some concerns not well modularized but cuts
across the decomposition hierarchy of the system.
2. Code tangling: a module may contain implementation elements (code) for various
concerns.
The origin of crosscutting is: there might not always be a one-to-one mapping from

problem domain to solution space and requirements space is n-dimensional, but

11

implementation space is one-dimensional (in OOP everything must belong to a class).

Figure 4 illustrates the reasons for crosscutting phenomena.

Scattering

Requirement Implementation

/\/m

Tangiing

Figure 4. Reasons for crosscutting phenomena

The fact that there is a single axis of decomposition has been termed “decomposition
tyranny”. Decomposition tyranny is the source of crosscutting. The decomposition
tyranny (and crosscutting) applies to artifacts across the life-cycle of software (not
confined to implementation).

As aresult of crosscutting, the benefits of OOP cannot be fully utilized, and developers
are faced with a number of implications:

1. Poor traceability of requirements: Mapping from an n-dimensional space to a single

dimensional implementation space.

12

2. Lower productivity: Simultaneous implementation of multiple concerns in one module

breaks the focus of developers.

3. Strong coupling between modular units in classes that are difficult to understand and

change.

5. Low degree of code reusability. Core functionality impossible to be reused without
related semantics, already embedded in component.

6. Low level of system adaptability.

7. Changes in the semantics of one crosscutting concern are difficult to trace among
various modules that it spans over.

8. Programs are more error prone.

9. Difficult evolution.

10. Crosscutting affects the quality of software.

4.2. What is Aspect Mining?

Identifying crosscutting concerns is an important part of a process referred to as aspect
mining. One of the goals of aspect mining is to identify opportunities for transforming
(parts of) the code of an application into aspect-oriented code. Since aspects are
specifically designed to deal with crosscutting concerns, aspect mining is naturally
focused on crosscutting concerns. Aspect mining is typically described as a specialized
reverse engineering process, which is to say that legacy systems (source code) are
investigated (mined) in order to discover which parts of the system can be represented
using aspects. A major problem in re-engineering legacy code based on aspect-oriented

principles is to find and to isolate these crosscutting concerns. The detected concerns can

13

be re-implemented as separate aspects, thereby improving maintainability and
extensibility as well as reducing complexity.

As a general explanation we can say that aspect mining is:

* New research area

* Identification of crosscutting concerns in legacy systems

* “Isolation” of crosscutting concerns

* Helpful for program understanding

* Useful for refactoring

* Applicable in entire software life cycle

In our aspect mining approach we analyze object-oriented artifacts in different ways
because we believe that there is no single rule or algorithm to identify all types of aspects
in object-oriented artifacts. We categorize aspects in different groups and for identifying
each of them we proposed different methods. In this section we introduce our aspect
mining methodology at the breakpoints of: requirements elicitation, analysis, design, and

implementation activities.

5. Proposal and methodology

Analyzing and restructuring of UML artifacts or in general object-oriented requirement,
analysis, design and implementation artifacts, in order to detecting potential aspects, are
based on the concepts of dependency graphs and production rules, and two-level
grammars. In this section we explain the methodology that we apply to identify aspect
candidates throughout software life cycle. The following steps are applied to identify and

detect aspect candidates in different activities of software life cycle:

14

(1) Defining dependency graphs in order to identify entities with an independent role in
a scenario.

(2) Defining semantics and metadata of UML artifacts by a set of production rules in
order to identify patterns of crosscuttings.

(3) Identifying code duplication and scattering by using object dependency graphs, and
(4) Parsing source codes by two-level grammars.

Figure 5 illustrates our aspect mining methodology in different activities of software

lifecycle.

Aspect mining methods for identifying aspect candidates with different granularity throughout software lifecycle activities

o,

Requirement | Requirement artifacts; Analysis | Analysis artifactsy Design | Design artifacts) Implementation | Source code
o .. (3) Identifying entities o

(1) Identifying (2) Identifying entities with an independent role, (4) Identifying aspect
. . with an independent role . candidates using two-

crosscutting behaviour . . crosscutting pattern, .
. in the secnarios as . . level grammars during
1 use cases aspect candidates duplicate sections as arsing source codes

pe aspect condidates p €

Figure 5. Aspect mining methodology

In each step of this methodology we identify aspect candidates in a crosscutting object
oriented artifacts such that a candidate aspect identified in requirement stage is traceable
in analysis, design, and implementation but with different granularity. We use
dependency graphs, production rules, and two-level grammars as our tools for aspect
mining. The following table illustrates the usage of these tools in different stages of

software life cycle.

15

ASPECT MINING TOOLS | SOFTWARE LIFE CYCLE ACTIVITY
Dependency graph 1,2,3

Production rules 1,2,3,4

Object dependency graph 3.4

Two-level grammar 4

6. Strategies for aspect mining

With UML we are able to model and visualize a real world system based on object
definitions and object relationships. The semantics and metadata behind the model can be
represented as a set of abstract rules, which we refer to as production rules. To identify
aspects in object oriented artifacts we need to analyze them from different dimensions.
The reason for our multi-dimensional analysis is that production rules do not have
vertical order of message passing sequence but they carry information about horizontal
order of message passing sequence. On the other hand, in the parse trees we do not have
horizontal order of message passing sequence but we have the vertical order of message
passing sequence. By extending the parse tree with production rules using two-level
grammars [11], we will have a vertical and horizontal order of message passing between
objects of a scenario and we are able to identify vertical and horizontal aspects.
We introduce the following two dimensions for our analyzing process:

a) Vertical analyzing

b) Horizontal analyzing
We also categorize aspects in three groups: vertical aspects, horizontal aspects and hybrid

aspects. Horizontal aspects are the aspects that can be identified by analyzing the

16

sequence of message passing between involved objects in the scenario or part of the
scenario in the different level of objects interaction relationships. Our strategy to detect
this kind of aspects is identifying objects with an independent role in scenarios and also
by detecting some crosscutting patterns in our design artifacts. In this case, part of a class
(some properties) or even a class itself can be modeled as an aspect.

Vertical aspects are the aspects that can be identified by analyzing sequence of message
passing between involved objects in the scenario or part of the scenario in a single level
of objects interaction relationship. Our strategy to detect vertical aspects is analyzing
object-oriented artifacts by using two-level grammars and detecting clones. In this case,
typically part of some classes are involved to define this kind of concerns, as we said we
can identify this kind of aspects by detecting scatted and duplicate codes (Figure 6).

Component Component Component

s s s s s g e o o et et P et

o s et o et ok Pk s s g e g g

Figure 6. Initial picture of crosscutting

17

Horizontal aspects are different from vertical aspects. The reason of having vertical
aspects in object-oriented systems is that OOP cannot address the design or
implementation of behavior that spans over many modules (often unrelated) and certain
properties cannot be localized in single modular units, but their implementation cuts

across the decomposition hierarchy of the system.

In object-oriented design, a system is modeled as a collection of cooperating objects, and
individual objects are treated as instances of classes within a class hierarchy. The result
of our proposed restructuring process is an aspect-oriented design such that aspects may
be introduced into the object-oriented design or certain classes may be restructured as
aspects. From this point of view, we categorize aspects in two different groups:
behavioral and business aspects.

1. Behavioral Aspects: They provide behavior/ability to objects. For example, a
behavior aspect is one that implements a synchronization policy or applies a contract
checking mechanism, or persistence (in database applications) to one or more objects.
In object oriented modeling we can use composition patterns to model this category
of aspects.

2. Business Aspects: They implement some business in the problem domain. As an
example, consider a sales software system where both the ordering and purchasing
subsystems make use of an accounting subsystem. In order to perform their tasks
correctly, both ordering and purchasing subsystems require the use of the accounting
subsystem. In this scenario, the level of coupling between the accounting subsystem

(the business aspect) and the rest of the system is high.

18

6.1. Vertical aspect

Vertical aspects are the aspects that can be identified by analyzing sequence of message
passing between involved objects in the scenario or part of the scenario in a single level
of objects interaction relationship.Listing 1 illustrates an example of vertical aspect.
Methodl () and Method2() both of them call C1.M1(), C2.M2(),
Method3 (), and also after doing some other business they call C1.M3 () . We can

define these sections of code as a vertical aspect.

Listing 1: Vertical aspect

Methodl () { Method2 () {
Cl.M1(); Cl.M1();
C2.M2(); C2.M2();
Method3 () ; Method3 () ;
// do something .. // do something ..
Cl1.M3(); Cl.M3():

} }

6.2. Horizontal aspect

Horizontal aspects are the aspects that can be identified by analyzing the sequence of
message passing between involved objects in the scenario or part of the scenario in the
different level of objects interaction relationships. Listing 2 illustrates an example for
horizontal aspects. Consider the derivation sentences for Methodl () and Method?2 ()

defined in listing 2:

Methodl () ::=[call]<Cl.M1>::=[call]::=<C2.M2()>::=[calll<C2.M3()>
::=<rest of Methodl>
Method3 () ::=[call]<Cl.Ml1>::=[call]::=<C2.M2()>::=[call]l<C2.M3()>

::=<rest of Method2>

19

According to these derivation sentences we can introduce a horizontal aspect defined by

the following section of derivation sentences:

[call]<Cl.M1>::=[call]::=<C2.M2()>::=[call]<C2.M3()>

Listing 2. Horizontal aspect

Methodl () { Method2 () {
Cl1.M1(); Cl.M1();
// do something // do something
} }
Cl.M1() { C2.M2() {
// do something // do something
} }

6.3. Hybrid aspect

Listing 3 illustrates a concern that we named it as hybrid concern that is the most popular
type of aspects in an object-oriented code. In Method1 () and Method2 () we identify
a vertical aspect that consists of C1.M1(), Method3(), and C1.M3(), on the
other hand C1.M1 () itself originate a horizontal aspect then we can define a hybrid

aspect with the following definition:

<Hybrid aspect>::=
<begin of aspect>::= <C1.M1{)>2>[call]<C2.M2()>>[call]<C2.M3()>
::=[call]Method3 ()

<end of aspect>::=[call]<C1l.M3()>

20

Listing 3. Hybrid aspect

Methodl () Method?2 ()
{ {
Cl.M1(); Cl.M1();
Method3() ; Method3 () ;
// do something .. // do something ..
Cl1.M3(); Cl.M3() ;
} }
Cl.M1¢() C2.M2{)
{ {
// do something // do something
C2.M2() ; M3();
} }

6.4. Ambiguity in identifying aspects

In the section 6.3 the example of hybrid aspects is an example of ambiguity to identify
aspects. In this example we define {C1.M1(), Method3(), C1.M3()} as an
aspect, such that C1.M1() and Method3 () execute before the main body of
Methodl () and C1.M3() executes at the end of this method. Our strategies to
identify aspects are based on detecting clones or duplicate codes, even if the duplicated
parts are completely unrelated. Although this strategy is useful for identifying aspects,
but defining a well-defined aspect is not always guaranteed.

For example If we just consider Methodl () and Method2 () then the hybrid aspect
defined in section 6.3 can be a valid aspect definition, regardless of C1.M1 (),
Method3 (), and C1.M3() are unrelated methods and modularizing them into an
aspect is not a good modularization. We may encounter to some other scenarios that
detecting correct aspects is not straight forward and is ambiguous or even can change our
aspect definition, for example we may have the following choices of aspects depend on
the code artifacts that we consider for analyzing.

1: Define all three methods as a single aspect

21

Aspect: {C1l.M1(), Method3 (), Cl1.M3()}
2; Define two aspects with the following definition
Aspect 1: {C1l.M1{(), Method3 ()}
Aspect 2: {C1.M3()}
3: Define two aspects with the following definition
Aspect 1: {C1l.M1(),C1.M3()}
Aspect 2: {Method3{()}
4: Define three aspects with the following definition
Aspect 1: {Cl.M1()}
Aspect 2: {C1l.M3()}
Aspect 3: {Method3 ()}
5:
Identifying a well-defined aspect in ambiguous situations needs to analyze the artifacts
with different strategies such as identifying objects with an independent role in a scenario
and detecting duplicated codes and clones may lead us to an ambiguous situation.
Consider the following example. In this example, authentication, contract checking and
logging are tangled with the core operation (methods) of the component (class). Two
issues are of interest here:

1. Implementation for authentication, contract checking and logging is not localized.
Code spans over many methods of potentially many classes and packages.

2. Implementation of someOperation () does much more than performing some

core functionality. It contains code for more than one concern.

22

Public class BusinessLogic {
. data members for business logic
. data members for authentication,
. contract checking and logging
public void someOperation {
// perform authentication
// ensure preconditions
// log the start of an operation
.. perform core operation
// authentication
// ensure postconditions
// log successful termination of operation

}

// more operations similar to the above

With using “identifying duplicate code strategy” we identify an aspect with the following

definition:

<Duplicated code aspect>::=
<begin of aspect> ::=<perform authentication>
::=<ensure preconditions>
::=<log the start of an operation>
<end of aspect> ::=<authentication>
::=<ensure postconditions>

::=<log successful termination of operation>

This definition is not a well-defined aspect since it still contains responsibility for more
than one aspect. By analyzing the dependency graph for BusinessLogic,

Authenticator, Contract checker, and Logger classes it is clear that

23

Authenticator, Contract checker, and Logger classes have independent
role in the scenario and can be defined as a separate aspects. The following aspect

definitions are well-defined:

<authenticator aspect>::=
<begin of aspect> ::=<perform authentication>

<end of aspect> ::=<authentication>

<contract checker aspect>::=
<begin of aspect> ::=<ensure preconditions>

<end of aspect> ::=<ensure postconditions>

<logger aspect>::=
<begin of aspect> ::=< log the start of an operation>

<end of aspect> ::=<log successful termination of operation ensure>

6.5. Dependency graphs

As their name suggests, dependency graphs illustrate dependencies between entities and
they can be deployed at different stages throughout development. In a dependency graph,
each vertex represents an object and each edge represents a dependency between a pair of
adjacent vertices signified by the direction of the edge. The arrow illustrates the sending
of a message from source to destination. As a message is sent in order to fulfill a
responsibility, we say that the source is dependent on the destination. We use dependency

graph to identify objects that play an independent role in a scenario but they complete

24

part of the scenario. This kind of objects in dependency graph can be identified by the
following rules:

(1) The in-degree of node representing the object is greater than one.

(2) There is no direct or indirect feedback from target node to the destination nodes.
Figure 7 illustrates classes C1, C2, and C3. In Figure 7.a, C1 depends on C2 implying
that C2 is required to fulfill one or more of the responsibilities assigned to C1. We also
define {D(Ci)} as the set of all classes that Ci is dependent on. In this figure, {D(C1) =
{C2, C3}. In Figure 7.b, however, there is no dependency of C1 on either C2 or C3. In a
directed cyclic graph, vertices that form part of a cycle do not pose crosscutting behavior
(see Figure 7.a). In Figure 7.b, even though C1 may delegate to another class (not
shown), we can regard Cl as a candidate crosscutting concemn because of the

unidirectional direct dependency from C2 and C3 on C1.

O
S

C3
NS

(a) (b)
Figure 7. Dependency graph

Existing a cycle between instances involved in a scenario is not a reason that they are not

crosscutting each other. For example in observer pattern in respect of existing a cycle we

25

will have crosscutting behavior (state-preserving concerns) [10]. In other words, first we
build dependency graph if we cannot find any independent instances then as a second
step we look for some crosscutting patterns and as a third step we build object-

dependency graph for finding duplicate or scattered sections.

6.6. Object dependency graph

We can extend the dependency graph to illustrate dependencies between instances. On
the other words, Class level dependency graphs at design level can be extended to
instance level dependency graph at implementation artifacts level to identify crosscutting
phenomena.

Consider the code on Listing 4 where introduce tracing to two methods,
Order: :placeOrder () and Invoice::assignInvoice () and consider the
corresponding dependency graph in Figure 8.a. We see that the behavior in object
Trace crosscuts methods order.placeOrder () and
invoice.assignInvoice ().Figure 8.b is a dependency graph defined for instances
of Order, Invoice, and Trace. Each node shows an instance and each directed
edge shows a method invocation. The numbers on an arc describe the level and order of
message passing. For example, message# 1.1 constitutes the first step in the scenario
and in the first level of message passing. Methods traceEntry () and traceExit ()

in class Trace are crosscutting methods Order::placeOrder() and

Invoice::assignInvoice ().

26

Listing 4.

Order: :placeOrder () Invoice::assignInvoice ()

{ {
Trace tracel; Trace trace2;
Inovice invoice; tracel.traceEntry();
tracel.traceEntry(); // do something
invoice.assignInvoice(); trace2.traceExit () ;
tracel.traceExit (); }

}

Trace2

1 1.traceEn ()

2.1.traceEntry() .

<jT}ace

Invoice

2.2.traceEXitO> N
e Trace2 \

(a) (b)
Figure 8. Object dependency graph

6.7. Dependency types

Suppose C1, C2, and C3 are three different entities (classes) associated with a scenario
defined by the dependency graph of (Figure 7). We define a scenario as a set of five

elements shown in Table 1.

27

Table 1. A scenario as a set of elements

S (Entities): Set of all entities that cooperate and play a role in the
{e1, 2, e3, €1, ...} scenario.
S (Associations): Set of all associations between entities in S (Objects)
{a1, a2, a3, as, ...} set.
C (Postconditions): The types of postconditions ére:
{p1, P2, p3, P4, ...} 1.Creation or deletion of an instance of an entity S
(Entities).
2.Formation or breaking of an association between two
entities S (Associations).
3. Modification of one or more attributes of an entity.

We can say that C1 has an independent role in the scenario if the following requirements

are met:

R1: C1 7 C2 (entities): C1 belongs to entity set defined by C2, or C1 is visible by C2
as an attribute, then we say C2 depends on C1 to fulfill some part of its responsibility
[direct dependency from C2 to Cl1], on the other words, A direct dependency from C2
to C1 exists when C2 makes a reference to C1. and

R2: C2 1?7 C1 (entities): C2 doesn’t belong to entities set defined by C1, or C2 is not

visible by C1 directly [no direct dependency from C1 to C2] and

R3: if we define {D1 (C1)} as a set of the first level entities the C1 depends on them

then C2 1? {D1 (C1)}.

28

o R4: if we define {D2 (C1)} as a set of the second level entities the C1 depends on
them then C2 12 {D2 (C1)}.
e R5: In general if we define {Di (C1)} as a set of the i-th level entities the C1 depends

on them then C2 !? {Di (C1)}.

According to the requirement R1 there is a direct dependency from C2 to C1 which forms
the starting point for a dependency graph. In R2, object C1 does not refer to C2, implying
that there is no direct dependency from C1 to C2. R3 implies that objects defined in C1
do not refer to C2. In R4, objects defined in dependent objects of C1 do not refer to C2.
RS implies that objects which are visible by objects defined in the dependent objects of
C1 do not refer to C2 and so on. This implies that there is not a direct or indirect feedback
from C1 to C2.

Figure 9 illustrates different possibilities of cycles between entities by using a
dependency graph. We distinguish between different types of cyclic dependencies: The
dependency is bidirectional if the converse is also true. Direct cyclic dependency from c1
to 2 exists when c1 makes a reference to c2 and c2 makes a direct reference to c1. An
indirect dependency with direct feedback (or direct dependency with indirect feedback)
from c1 to c2 exist when c1 uses a reference, c3, which in turn makes a reference to c2
and c2 makes a direct reference to c1, and also with the same concept we can define
multi-level indirect dependency with direct feedback (or direct dependency with multi-
level indirect feedback), and multi-level indirect dependency with multi-level indirect

feedback.

29

oO=C .

Figure 9. Different types of cyclic dependencies

Example 1: Dependency by message sending
This kind of dependency can be defined as direct (between two classes) or indirect

(between more than two classes) where the classes are defined as [C2>B->A->C][Cycle].

An example with class definitions is given below:

class C {
B b; // declares an instance of B
CF (){
b.BF (); // sends a message to B
}
}
class B {
A a; // declares an instance of A
BE () {
a.AF (); // sends a message to A
}
}
class A {
C c; // declares an instance of C
AF () |
c.CF (); // sends a message to C

}

Example 2: Dependency by message sending

In this kind of message passing dependency, class A is visible inside the function BF () of
class B and not as an attribute. The classes are defined as [c>B (BF) 2a->c][Cycle]. An

example of class definitions is given below:

class C {
B b; // declares an instance of B
CF () {
b.BF (); // sends a message to B
}
}

class B {
.. // A is not visible in B as an attribute

BE () {
A a; // declares an instance of A
a.AF (); // sends a message to A

}
}
class A {
C c; // declares an instance of C
AF () {
c.CF (); // sends a message to C

}

Example 3: Dependency by message sending

This message passing dependency is similar to dependency defined in example 1 with
this difference that class C sends a message to class B through its parent class. The classes

are defined as [c>B->a->C][Cycle]. An example of class definitions is given below:

class P {
B b; // declares an instance of B
PF () |
b.BF (); // send a message to B
}
}
class C extends P {}
class B {
A a; // declares an instance of B
BF () {
a.AF (); // sends a message to A
}

31

class A {
C c¢; // declares an instance of C
AF () {
c.PF {); // sends a message to C

}

Example 4: Dependency by parameter passing

In this type of dependency a class will be visible by another class through parameter
passing. For example, class ¢ is visible to function BF () in class B as a parameter. The
classes are defined as [B>C and B>a->C][No Cycle]. An example of class definitions is

given below:

class C {
Public int attrl;
CF () {1}
}
class B {
A a; // declares an instance of A
BF (C c) {
a.AF (); // sends a message to A
c.attrl = 1;
}
}
class A {
C c; // declares an instance of C
AF () |
¢.CF (); // sends a message to C

}

6.8. Production rules and derivation sentence

With UML we are able to model and visualize a real world system based on object
definitions and object relationships. The semantics and metadata behind the model can be
represented as a set of abstract rules, which we refer to as production rules. By definition,
production rules must be finite, implying that in order to represent semantics of UML

artifacts we need a limited number of production rules. As a consequence, our

32

knowledge, as incorporated in the production rules, must also be finite. It is the process of

using this knowledge that will be “productive”. In effect, the production rules can define

an infinite set of scenarios. We use a set of production rules to represent use cases and

objects relationships. By analyzing these production rules we can identify crosscutting

concerns in this case by building derivation sentences we can identify classes with

independent roles in a scenario. In other words, production rules complement dependency

graphs for identifying cycles in the graphs at different phases of the development process.

In addition, by using production rules we define some patterns that define crosscuttings

behavior in general and identifying similar patterns in the UML artifacts lead us to

detecting potential crosscuttings. Table 2 defines different transformations for production

rules.

Production rules can define an infinite set of scenarios, derivation sentences are the way

that we use these production rules for generating a scenario.

Definition. Semantics of object-oriented artifacts, G, can be defined in terms of a set of

five elements, each of which is finite. Lete = (¢, A, M, P, R), such that

6.9. cisasetof classes

6.10. Ais a set of attributes

6.11. wMis a set of methods

6.12. P is a set of transformation rules. These rules not only define the structure of a
class but also they can be used for defining all the system scenarios in terms of
message passing between involved objects in the scenarios. The left hand side of

these rules can be a class or a method of a class and the right hand side of a

33

transformation is a member of set R

—-that defines the semantics of the

transformation- and a class, a method of a class, or an attribute of a class.

6.13. Rris set of relationships and concepts defined by object-oriented methodology we

define this set as {[declare], [has], [call], [extend], [declare/receive], [set],

[supplement]}.

Table 2. Transformation definitions in production rules

Transformation Definition
<C> C class.
<C>::=[declare] C declares an instance of B as an attribute.

<C>::=lhas]<CF()>

C has a cr () method.

<C.CF()>::=[call] <B.BF()> Method c.cF () calls method B.BF () .
<C>::=[extend]<P> C class extends/inherits class P.
<C.CF()>::=[declare/receive] | ¢ cr() method receives B class as a parameter.

<C>::=[declare}<a> C declare a as an attribute.
<B.BF()>::=[set]<C.a> B.BF() sets the valueof c.a

<C>::=<supplement>

C class supplements some behavior or
functionality for B class. For example we can
define the semantics of a Composition pattern by

supplement transformation.

Production rules for dependency graph of example 1

For this example g, the object-oriented semantic, can be defined as:

34

Q
Ii

{aA, B, C}

»
Il

{C.b:B, B.a:A, A.c:C}

M = {A.AF(), B.BF(), C.CF(}}

P = {<C>::=[declare],
<C>::=[has]<CF{() >,
<C.CF()>::=[call]l<B.BF>,
::=[declare] <A>,
::=[has]<BF()>,
<B.BF()::=[calll<A.AF()>,
<A>::=[declare]<C>,
<A>::=[lhas]<AF{()>,
<A.AF()>::={calll<C.CF{()>}
R = {[declare], [has], [call], [extend], [declare/receive], [set],

[supplement]}

The derivation sentence when c.cF () is called, is defined as follows:

{call C.CF()} =2 <C.CF()>::=[call] <B.BF()>::=[call] <A.AF()>

t:=[call] <C.CF()> = cycle

Production rules for dependency graph of example 2

Cc = {A, B, C}

>
I

{C.b:B, A.c:C}

K9
I

{A.AF(), B.BF(), C.CF()}

P = {<C>::=[declare],
<C>::=[has]<CF{()>,
<C.CF()>::=[call]<B.BF{()>,
::=[has]<BF()>,

<B.BF{()>::=[declare]<A>,

35

<B.BF()>::=[call]<A.AF()>,

<A>::=[declare]<C>,
<A>::=[has]<AF () >,
<A.AF()>::=[call]<C.CF()>}
R = {[declare], [has], [call]l, [extend], [declare/receive], [set],

[supplement]}

The derivation sentence when C.CF () is called, is defined as follows:

{call C.CF()} = <C.CF()>::=[call] <B.BF()>::=[call] <A.AF()>

::=[call] <C.CF()> 2 cycle

Production rules for dependency graph of example 3

Q
|

= {A, B, C, P}

A = {P.b:B, B.a:A, A.c:C}

M = {A.AF(), B.BF(), P.PF{()}

P = {<P>::=[declarel,
<P>::=[has]<PF{)>,
<P.PF()>::=[call]<B.BF()>,
<C>::=[extend]<P>,
::=[declare]<a>,
::=[has]<BF{()>,
<B.BF{(})>::=[call]l<A.AF{()>,
<A>::=[declare]<C>,
<A>::=[has]<AF()>,
<A.AF()>::=[call]<C.PF{)>}

R = {[declare], [has], ({call], [extend], [declare/receive], [set],

[supplement] }

The derivation sentence when c. pr () is called, is defined as follows:

36

{call C.PF()} > <C.PF{)>::=[call] <B.BF()>::=[call] <A.AF()>

::=[call] <C.CF()> > cycle

Production rules for dependency graph of example 4

Cc = {p, B, C}

A = {C.attrl:int, B.a:A, A.c:C}

M = {A.AF(), B.BF(), P.PF()}

P = {<C>::=[declare]<attrl>,
<C>::=[has]<CF{()>,
::=[declarel<A>,
::=[has]<BF{()>,
<B.BF()>::=[declare/receive]}<C>,
<B.BF()>::=[calll<A.AF () >,
<B.BF()>::=[set]<C.attrl>,
<A>::=[declare]l<C>,
<A>::=[has]<AF(}>,
<A.AF()>::=[call]<C.CF{()>}

R = {[declare], [has], [call], [extend], [declare/receive], [set],

[supplement] }

The derivation sentence when B. BF () is called, is defined as follows:

{call B.BF{)} <C.PF()>::=[call]<A.AF()>::=[call]<C.CF()>

r:=[set]<C.attrl>

6.9. Two-level grammar: a formal definition

We can apply our aspect mining approach to the object-oriented compilers such that we

are able to identify candidate aspects during compiling implementation artifacts or source

37

codes. The result is a new generation of compilers that help developers to develop code
that follows the semantics defined in the design level in addition to identify potential
crosscutting concerns. The main idea is to design an intelligent compiler that regenerate
programming language grammar according to the semantics defined in the design
artifacts, that is by modifying design artifacts the semantics beyond the design will be
added to the programming language grammar as a set of rules and generate a new
grammar that can be used for parsing and analyzing source codes. In effect, what has
been referred to as “semantics” reintroduce as part of the syntax. What is particularly
important is that we will use the idea of a two-level grammar and the related idea of
dynamic syntax such that the programming language grammar could in part define its

own grammatical (syntax and semantics) rules [11].

Each two-level grammar (TLG), W, can be defined as a 4-tuple
W=(Gm, G, G, $)

Where Gm is the meta-grammar that extends G by adding semantics rules defined by G’
and results a new grammar G that contains syntax and semantics rules, G is the
grammatical form of any object oriented language grammar for example Java language
grammar, G’ is a set of rules that define semantics of UML artifacts for a specific design
and $ is the uniform replacement rule for completing the instantiation of the grammatical
form.
In turn, the meta-grammar is itself a 3-tuple consisting of

(1) Nm, a set of meta-variables which are assigned values to be transmitted to the

grammatical form.

38

(2) T, a set of terminal symbols to be transmitted to the grammatical form; these are
“terminal” only with the respect to the meta-level analysis;
(3) R, a set of meta-rules for rewriting of the meta-variables. These have the form

a—=>b for a in Nm and b in (Nm U T)*.

6.10. Crosscuttings patterns

6.10.1. Rules for identifying composition patterns

A composition pattern is a design model that specifies (1) the design of a crosscutting
requirement, independently from any design it may potentially crosscut, and (2) how that
design may be reused wherever it may be required. Composition patterns are based on a
combination of the subject-oriented model for decomposing and composing separate,
potentially overlapping designs, and UML templates. In this example, we define a pattern
that simplifies the composition pattern. In Figure 10, suppose that class B defines a set of
objects that will be persistent through method cr1() of class c. Class ¢ provides

persistence for class B or even for another class D through different methods.

B
+BF()
C
+CF1(in b : B) D
+CF2(ind : D)
+DF()

Figurel0. Class C provides more functionality for Class B through CF1() method

The model in Figure 10 can be defined by the following production rules:

39

<P>::=[has] <PF{()>

<C>::=[extend] <P>
<C>::=[has] <CF{)>
<C.CF()>::= [declare/receive]
::=[has] <BF()>

The rules are defined as follows:
1. R1: Cisnot visiblein B.
2. R2: B is only visible in C via parameter passing (class B is visible in class C
through function CF ()).
In this médel class C defines a new behavior for class B, and in this case we can define

the following rule:

<C>::=<supplement>

::=<inherit> C.CF{()

The above implies that we can define class C as an aspect to declare a super type for class

B. This type of pattern (composition pattern) can be implemented as a behavioral aspect.

6.10.2. Observer-pattern: State-preserving concerns

Consider the Observer design pattern that defines a one-to-many dependency between
objects [6]. The key objects in this pattern are the subject and the observer. A subject may
have any number of dependent observers. All observers are notified whenever the subject
undergoes a change in state. In response, each observer will query the subject to
synchronize its state with that of the subject’s. Consider the UML class diagram of the

observer pattern illustrated in Figure 11.

40

Notify()

{
for all o in observers { o->update()}
}
Subject
Observer
+attach(in observer : Observer)
+detach(in observer : Observer)| 1 1 [update()()
+notify() JAN
ConcreteSubject ConcreteObserver
-subjectState -observerState
+getState() 1 1
+
+setState() update()0)

observerState = subj ect->getState()B’

getState()
{

}

return subjectState;

Figurell. UML class diagram for the observer pattern

The corresponding production rules for the observer pattern are defined as follows:

<QObserver>::=[has]<Update()>
<ConcreteObserver>: :={extend] <Observer>
<ConcreteObserver>::=[declare] <observerState>

41

<ConcreteObserver>::=[has]<Update()>
<ConcreteObserver.Update () >::=[set] <ConcreteObserver.observerState>
<Subject>::=[has] <Attach()>

<Subject>::=[has] <Detach()>

<Subject>::=[has] <Notify()>

<Subject>::=[collection] <Observer>
<Subject.Attach()>::=[declare/receive] <Observer>
<Subject.Detach()>::=[declare/receive] <Observer>
<ConcreteSubject>::=[extend] <Subject>
<ConcreteSubject>::=[declarel<subjectState>
<ConcreteSubject>::=[has]<GetState()>
<ConcreteSubject>::=[haéj<SetState()>
<ConcreteSubject.SetState()>::=[call]<Subject.Notify()>
<ConcreteSubject.SetState()>::= <set><ConcreteSubject.subjectState>
<Subject.Notify()>::=[call]<Observer.Update()>

Consider a scenario that corresponds to a call to ConcreteSubject.SetState():

<ConcreteSubject.SetState()> ::=
[set]<ConcreteSubject.subjectState] &&
[call]l<Subject.Notify()>
::=[call]<Observer.Update()>
::=[call]<ConcreteObserver.Update()>
::=[call]<ConcreteSubject.GetState()> &&

[set]<ConcreteObserver.observerState>

Figure 12 illustrates the above scenario by a dependency graph. To create the dependency

graph we use the following two rules: (1) each class in the scenario represents a node in

42

the graph, where objects related by inheritance are merged into one node, and (2) each

function call represents an edge from the caller object to the object that the called method

belongs to.
CO.update()
co
CO.notify()
CS.getState()
. CO.update()
CO.notify()— P
CO
CS.getState()
CO.notify()
Leged: CS.getState()
CS:ConcreteSubject
CO:ConcreteObject
CO.update()

Figurel2. Dependency graph for the Observer design pattern

The dependency graph in Figure 12 shows a cycle between ConcreteSubject and
ConcreteObserver, where cs «calls co.Notify() and co calls
cs.GetState(). In this example, in spite of the existence of a cycle between
concerns, we can still define an aspect. Suppose C1 and C2 are dependent class instances

according to Figure 13. This scenario refers to state-preserving if S1 = S1’ (S1: set of

43

Cl.states before calling C2.Fx () and S1’:set of C1.states values after calling
C2.Fx()). This implies that the state of C1 before and after calling C2.Fx () remains
the same. In the observer pattern when ConcreteSubject calls
ConcreteObserver.Notify(), then after ending this call the state of
ConcreteSubject does not change. For this reason the scenario is considered state-
preserving. As a result, if no cycle exists in the concerns dependency graph, then
according to the rules R1, R2, R3, R4, and R5 defined in section 4.8 we will have
crosscutting concerns and we can define an aspect, and if there is a cycle in concemn
dependency graph but concerns are state-preserving then the target concern, can be
defined as an aspect. In the Observer design pattern, observer preserves the state of
subject and it is considered as state-preserving concern. It can, therefore, be defined as

an aspect.

C2.FX() > 2

Figure 13. State-preserving concerns

Figure 14 illustrates two different scenarios for state-preserving and non-state-preserving
cases. In some situations the receiver concern may not be a state-preserving concern, but
we still may have crosscutting. To identify this type of crosscutting concerns we use a set

of production rules and a transition matrix.

44

Clstatel=a Cl.st:tel -
(a] [e] [a] L] e| [o]
C2.Fx() C2.Fx()
| C3.Fy() C3.Fy()
C1 .setSftate() Cl. get!State()
| C2F2() C2.Fz() I
Cl.statel =b Cl.statel =a
(a) (b)

Figure 14. State-preserving scenario and non-state-preserving scenarios

Figure 14.a illustrates a non-state-preserving scenario, in this scenario the state of C1 will
change after calling C2.Fx (). Figure 14.b illustrates a state-preserving scenario it
means the state of C1 after calling C2. Fx () does not change

6.11. Identifying code duplication and scattering using

production rules

Consider the following code segments, where methodl () creates a sale order item and
inserts its corresponding accounting transaction. Further, method2 () creates a purchase

order and inserts its corresponding accounting transaction.

45

// creating an invoice order

methodl () {
AccountingSystem acc = AccountingSystem();
OrderItemBilling orderItem = OrderItemBilling();
orderItem.setSalesOrderId(sid);
orderItem.setSalesInvoiceId(sid);
orderItem.setQuantity(quantity);
orderItem.setAmount (amount) ;
if (orderItem.insert()){

acc.insert ();

}

method2 () {
AccountingSystem accountTransaction = AccountingSystem();
OrderItemPayment orderItem = OrderItemPayment () ;
orderItem.setPurchaseOrderId(sid);
orderItem.setPurchaseInvoiceld(sid);
orderItem.setQuantity{quantity);
orderItem.setAmount (amount) ;
if (orderItem.insert()) /{

accountTransaction.insert () ;

We can define the following production rules that describe the algorithm for

methodl () and method2 (). The underlined code cuts across methodl () and

46

method2 () . By using production rules we can identify concerns that are cutting across

other concerns.

Methodl ::=[declare] <AccountingSystem>
Methodl ::=[declare] <OrderItemBilling>
Methodl ::=[call] <OrderItemBilling.SetSalesOrderId()>
Methodl ::=[call] <OrderItemBilling.insert()>
Methodl ::=[call] <AccountingSystem.insert()>
Method2: :=[declare]<AccountingSystem>
Method2::=[declare] <OrderItemPayment>
Method2::=[call]<OrderItemPayment.setPurchaseOrderId()>
Method2::=[call]l<OrderIltemPayment.insert ()>
MethodZ2::=[call]<AccountingSystem.insert ()>

6.12. Identifying code duplication and scattering using a
transition matrix

A transition matrix is a two-dimensional matrix where in each row and column we can
place classes and their methods and each cell of this matrix will be set to the values of 1
or 0. A value of 1 implies that [class.function] in ith row will call [class.function] in jth

column. Figure 15 illustrates a transition matrix defined for classes C1 and C2.

47

Cl C2

fl f2 3 f4 f5
f1 1
C1 f2 1
f3
f4
C2
f5 1

Figure 15. Transition matrix for class C1 and
C2: Cl.£f1()-> C2.£4(); Cl.£2()>c2.£5() and C2.£5()>Cl.f1()

Consider the following methods:

Cl.M1{() C2.M2()

{ {
authenticator.authenticate(); authenticator.authenticate();
logger.log(); logger.log();
contractChecker.precondition():; contractChecker.precondition();
do some business. do some business.
C3.M3(); C4.M4 () ;

} }

Figure 16 shows an associated transition matrix. From the table, we can observe that
methods logger.log{), contractChecker.precondition{() and
authenticator.authenticate() cut across c1.M1() and c2.M2(). These three

methods can be considered as separate aspects.

48

(@]
» | 8
=3
s | 8
a
= (]
5B |2
=3 7 |
a 8 a Q1 §|8 |73
A
g | 8
=4 =]
e | B _
£ S g £ 5 &R
Ml 1 i
Ci
M2 el
C2 L .
M3
C3
C4 M4
Authenticator authenticate
Contract checker precondition
Logger log

Figure 16. Transition matrix for identifying aspects in C1.M1(), C2.M2()

7. Case study: Analysis of object-oriented artifacts metadata
throughout the software life cycle

This section illustrates how we have applied our aspect mining methodology in the
context of a case study throughout the software life cycle. The case study we have chosen

is a sales order system.

49

Requirements

The system is capable of receiving multiple orders requests at the same time. The system
requires its users to have certain level of privileges to access any of the above
functionalities. The privileges are granted automatically upon a successful authentication.
Considering the top-level use case diagram (Figure 17), we can define this use case by

the following production rules:

«USCS» «USCS»

User

Figure 17. Top level use case diagram for invoicing system

<User>::=[use]<ManageOrders>

<User>::=[use] <ManagePayments>
<ManageOrders>::=[assoclate]<ManagePayments>
<ManageOrders>::=[use]<ManageBAuthentication>

<ManagePayments>: :=[use]<ManageAuthentication>

50

Using the production rules we can deduce certain derivations which illustrate that
ManageOrders and ManagePayments use cases are dependent on
ManageAuthentication, but ManageAuthentication is independent from these two

and can therefore be considered as a crosscutting use case.

<User>::=[use]<ManageOrders>::=[use] <ManageAuthentication>

<User>::=[use]<ManagePayments>::=[use]<ManageAuthentication>

ManageOrder use case can be modeled as two main use cases placeOrder and
makePayment. Figure 18 illustrates next level of sales order system use case that extends

ManageOrder use case defined at the top level use case.

«uUScs»

Place order

Customer Manage payment

«USES»

Make payment

Figure 18. Main use cases of manage order functionality
Production rules corresponding to this use case are as follow:
<Customer>::=[use]<Place order>
<Customer>::=[use]<Make payment>
<Place order>::=[use]<Manage payment>
<Make payment>::=[use]<Manage payment>
We see that Manage Payment poses a concern which crosscuts use cases Place Order

and Make payment. We choose to note this knowledge on a refined use case diagram

(Figure 19) even though we have to stress that at this stage we do not have enough

51

knowledge on the exact nature of crosscutting, until these use cases will be further

refined into their constituent components.

«USCS»

Place order

<<Candidate crosscutting use case>>

Customer

«uses»

Make payment

Figure 19. Use case diagram after applying metadata analysis.

Analysis

We model each top level use case in a domain model (Figure 20). A customer can be
related to one or more sales orders. When items have been ordered, it is critical for the
enterprise to make sure that it requests payments; this is done through invoices. In this
simplified model order items have a one-to-one relationship with invoice items. Invoices
are issued to request payment. Order transaction and invoice transaction affect the
accounting of the organization. The creation of an invoice will result in a related
accounting transaction, namely a sales accounting transaction. The creation of a payment
also will result in a related accounting transaction [11]. The interaction between an actor
and the system as captured in a use case scenario can be illustrated in a system sequence
diagram (SSD) where the system is viewed as a black box. We may also view the entire
system as a group of black-box subsystems. Figure 21 illustrates the system sequence

diagrams for the success scenarios of placing an order and making a payment.

52

Product

-description
-price

Customer
-name
-address
(Authenticator 1
1 1 *
" SalesOrder
Invoice
— -Date
-invoiceDate
. J 1 [|-status
-quantity .
-time
-amount 1
+makePayment()
+placeOrder()
1 1
1 1
AccountingTransaction Payment

-transactionDate

-amount
-description 1 1

Figure 20. Sales order domain model

Based on the two system sequence diagrams, we can define a sequence of production

rules, one for each system operation. From the production rules, we observe that the

subsystem for Authenticate()

placeOrder () and makePayment () methods the main system operations. As you
can see there is a traceability of crosscuttings behaviors in different steps with different

granularity from requirement to analysis, design and at last to the implementation.

-amountApplied
-effectiveDate
-paymentMethod

method of Authenticator

class

-- Place Order production rules

<User>::=[call}<ManageOrder.placeOrder()>

::=[calll<manageBAuthentication.authenticate()>

::=[call]<managePayment.insert ()>

::=[call}l<manageAuthentication.authenticate()>

53

—-- Make payment production rules
<User>::=[call]l] <manageOrder.makePayment ()>
::=[call]l<manageAuthentication.authenticate()>
::=[call]l<managePayment.insert ()>

::=[call]<manageAuthentication.authenticate()>

ManageOrder ManagePayment

placeOrder() E

authenticate()

insert()

authenticate()

———————— e Y

—————— e ¥]

ManageOrder ManagePayment

I
t

makePayment()

1
]
t
1
i
1
1

authenticate()

insert()

authenticate()

e ¥ ¥

e ¥]

Figure 21. SSDs for placing an order and making a payment

54

Design

As top level uses case can be modeled as components with a well-defined interface
(Figure 22). The interface corresponding to ManageAuthentication component is
defined as an aspect that will contain functions to implement the interface and advice
definitions. Our design is illustrated in Figure 22 and the rationale behind certain
important design decisions is described next:

(1) As the system would require maintaining history information on any modifications of
Order, Invoice and Payment instances, we can deploy the Observer design pattern to
implement this requirement. Request for instance modification would initially notify
History Observer to produce a copy of the instance, before the modification takes place.
(2) The synchronization policy and persistency can be implemented by the Composite

design pattern.

|
ManageAuthentication |

spectinte
rface

Capture jointpoints

__

EFInterface
5:':, ManagePayment

Figure 22. Component diagram representation of the system

ManageOrder

55

[l
Product
[PersistentObject] i —|-description
.- ' -price
| . ' 1
! ' «bind»(,,,) !
! ! i HistoryManager j
E E ! 3 HistoryObserver
i i i +attach(in ho : HistoryObserver)
H E ! prdetach(in ho : HistoryObserver)| Hupdate(in subject : HistoryManager)
| ! ! Hnotify() .
| | } VAN |
i i bind(,,,) ! : Customer
) ! ' «bind»(,,,)) -name
E ! N S S i -address
: i - | [SalesOrder
i ! Invoice | Dot T
i ! -invoiceDate 1 ! © .
| R : AR 1 _f-status 1
i «bind»(,,,) ~-quantity Rk ¥
1 g-time
i -amount 1 i *
' {+makePayment()|
l: \t-placeOrder()
1
i 1 ! 1
: 1 1 1
! l 1
: H Authenticator]
E |
' i H+authenticate()|
1]
. 1 . H
' ¥
|AccountingTransaction, Payment
-transactionDate -amountApplied
-amount -effectiveDate
-description 1 1 |[paymentMethod

Figure 23. Class diagram

Accounting Transaction

We implement each system operation from an SSD, as an interaction diagram (Figure
34), illustrating how the responsibilities can be implemented. In the corresponding
interaction diagrams of placeOrder () and makePayment () system operations, we can
observe the following dependencies: Both Invoice and Payment are dependent on
Accounting Transaction (but not vice versa). Based on these semantics, we can formulate
the following production rules. From the rules we can identify the behavior of
Accounting Transaction as crosscutting which is initiated by the calls to

invoice.insert () and payment.insert (), both of which can be considered candidate

56

joinpoints. In this case study, we will see the traceability of crosscuttings from the

requirement to design but with different granularity.

-—- insert invoice
<invoice.insert()> ::=[calll<invoice.insert ()>::=

fcall]<accountingTransaction.insert ()>

-—-insert payment
<payment.insert()>::=[call]<payment.insert()>::=

[call]<accountingTransaction.insert ()>

accountingTransaction has an independent role in these two scenarios and then can
be defined as an aspect.

PersistentObject

In this model we use a composition pattern PersistentObject that is used for
supplementing persistency behavior for all business objects such as product, customer,
sales order, invoice, payment, and accounting transaction. In Figure 24, class
PersistentOrder is a parameterized class that supplement persistency for class Order
through the insert () method. This implies that we can define class PersistentOrder

as an aspect to declare a super type for class Order.

fm——— ———
1

order:Object }
SalesOrder «bind»(SalesOrder) PersistentOrder
tinsert() +_insert()
+insert()

57

Figure 24. Composition pattern for modeling persistent objects

Class PersistentOrder adds more functionality (persistency) to Class Order through

_insert () method

<PersistentObject>::=<supplement><Customer>
<PersistentObject>::=<supplement><Product>
<PersistentObject>: :=<supplement><SalesOrder>
<PersistentObject>: :=<supplement><Invoice>
<PersistentObject>: :=<supplement><Payment>
<PersistentObject>::=<supplement> <AccountingTransaction>
<Customer>::=<inherit>PersistentObject.insert ()
<Customer>::=<inherit>PersistentObject.update()
<Customer>::=<inherit>PersistentObject.delete()
<Product>::=<inherit>Persis£entObject.insert()
<Product>::=<inherit>PersistentObject.update ()

<Product>::=<inherit>PersistentObject.delete()

Observer design pattern: History manager

Consider the Observer design pattern that defines a one-to-many dependency between
objects [8]. The key objects in this pattern are the subject and the observer. A subject may
have any number of dependent observers. All observers are notified whenever the subject
undergoes a change in state. In response, each observer will query the subject to
synchronize its state with that of the subject’s. In [1] we demonstrated how the Observer
design pattern can be regarded as a crosscutting concern. In the current case study we can
use the Observer pattern to model a History Manager that will maintain information on

modifications of Order, Invoice, Payment, and Accounting transaction.

Implementation

58

In case study 3 we will show how to use dynamic syntax grammars to identify aspect

candidates by parsing code artefacts.

8. Case study: Reengineering object-oriented designs by
analyzing dependency graphs and production rules

To illustrate our approaches we will adopt the case study of a point-of-sale system,
described in [6]. The success scenario of the Process Sale use case and the corresponding
system sequence diagram are illustrated in Figure 25, and the domain model is illustrated
in Figure 26.

Use case: Process sale (Successful scenario)

Pre conditions:

1. An Instance of customer c exists.

2. An Instance of product p exists.

3. Number of available product p is greater that the order quantity.

Post conditions:

1. An instance of sales item si for each purchase item was created.

2. Customer ¢ was associated with an on hold sales order so.

3. Product p was associated with sales item order si.

4. Quantity of sales item si deducted from number of available product p.

5. An instance of payment pt associated with sales order so was created.

6. Status of sales order so set to paid.

Steps:

1. The Customer arrives at a POS checkout with items to purchase.

59

2. The cashier records the identifier for each product item.

3. The system determines the item price and adds the item information to the running
sales transaction.

4. On completion of item entry, the Cashier indicates to the POS system that item entry
is complete.

5. The System calculates and presents the sale total. The Cashier tells the customer the
total.

6. The Customer gives cash payment (“cash tendered”) possibly greater than the sale

total.

Cashier

:Cashier :System
makeNewSale()

addLineltem(itemID, quantity)()

——— e NN

description, total()

endSale()

total with taxes()

makePayment(amount:long)

change due, receipt()

[A L I A R R B

60

Figure 25. Process sale scenario

haY Thad 1
I N] CSCToCa-0y
SaleLineIte‘ﬁ'ﬂ_}]
-quantity * ProductSpecification|
ProductCatalog] Contains -description
-price
1.% 1 * -itemID
1
1
Used-by)
Desaribes
Contained-in * .
Logs-completed Store Stocks — 1.1*
) -address | |
-name *
1
ﬁo ses
1 *
1.*
Sale
-Date Captured-on POS Started-by Manager
-time
1 1 1 1
Initiated-by
1
l;ai -by Recordsi{sales-on
1 1
Payment Customer
Cashier
-amount

Figure 26. Domain model for the point of sale system

We design four models for applying data consistency and integrity and contract checking
mechanism in this system. We categorize this contract checking or validation mechanism
in two levels (1) Instance level (in terms of object invariants), (2) scenario level (in terms
of preconditions and postconditions). The designs are described in the following

subsections.

61

4.1 Design 1: Contract checking in each class: Figure 27 illustrates the first design for
applying contract checking mechanism. In this model, each class is responsible to make
sure to validate rules for invariants, and also validate preconditions and post-conditions

of its operations.

ProductSpecification
Contains |-description

-price

-item!D
+isValidProduct()

SateLineliom ProductCatalog
-quantity - -
 GotSubEE 1 +getSpecification()
+isValidSaleLineltem() Used by
[1
1
1 Store
-address
-name
Contains
Date Sale Logs-completed 11 I;Iouses
-status)
_time 1 Captured on Register
-+becomeCompIete()j 1
1 Paid-by| [+makeLineltem() +endSale()
+makePayment() +addLineltem()
+getTotal() +makeNewSale()
+isValidSaleOrder()

1 Records-sales-on

1 Initiated by 1
1
1
Customer; i
Payment u Cashier
-amount
+isValidPayment()

Figure 27. Class diagram for sales system
e Method Product::isvalidProduct () validates that the unit price of the product is
greater that zero, the productCode is unique, and availableQuantity is not

negative.

62

® Method SalesLineItem::isValidSaleLineItem() validates that quantity
of sale item is greater than zero and that there is enough available quantity of

requested product.

¢ Method Payment::isValidPayment () validates that the payment amount is

equal to corresponding sale order total price.

e Method SalesOrder::isvValidSaleOrder () is used for placing and order
and it checks that order date is correct date format and not empty, the order status is
not completed.

The following sequence diagrams (Figure 28) illustrate placing an order by a cashier.

According to this sequence diagram when placing an order the following validations are

done:

1. Date of order is correct and a unique sales order ID is exists.

2. For each valid sale item (sale item with quantity greater than zero) a valid product
with unitPrice value greater than zero and enough quantity must be available.

According to these sequence diagrams contract checking methods such as

isValidSaleOrder () are scattered all over the code and then can be implemented

as an aspect. The production rules in Listing 5 show the scattering of
isValidSaleOrder () method in the three different scenarios.

Further, if we consider some other scenarios then we will see that other contract checking

methods are scattered too.

63

R
makeNewSale() ;
-

T
'
¢
(
t
0
(
|

— 5

> IsValidSaleOrder()
new sale order created() g

£
¢

endSale()

A becomeComplete() i
[> IsValidSaleOrder()
Sale becomes completed()

[S

[Regiser] [PotueGoalog] [sue | [Satestinelien]

addLineltem()

getSpecification()

return product specification()

K mmmmmmmm oo

makeLinéItemO

U

[> isvalidSaleOrder()

Create()

{

> isValidSaleLineltem()

isValidProduct()

Figure 28. Processing a sale for the first design model

64

Listing 5.

{call Register.makeNewSale({)}
-> <Register.makeNewSale{)>
::=[call]l<Sale.Create()>

::=[call]<Sale.isValidSaleOrder () >

{call Register.endSale()}
-> <Register.endSale()>
::=[call]l<Sale.becomeComplete () >

:=[call]<Sale.isValidSaleOrder ()>

{call Register.addLineltem()>

-> <Register.addLinelItem()>
::=[call]<ProductCatalog.getSpecification()>
::=[call]l<Sale.makeLineItem>

::=[call]<Sale.isValidSaleOrder ()>

::=[call]<SaleLinelItem.Create()>

4.2 Design 2: Contract checking in a single class: In this second design, we adopted a
separate class to validate the contracts defined for each object and each scenario (Figure

29). An alternative design would use the composition pattern.

65

ValidatorPattern

ProductSpleciﬁcaﬁon +isValidProduct(in p : ProductSpecification)
description +isValidSaleOrder(in so : Sale)
g"celo i-3+isValidPayment(in p : Payment)
Ll I [HsValidSaleLineltem(in sli : SaleLineltem)
— — S F)
| Contains ; f
: : |
1 1
| E i [ProductCatalog
SaleLineltem| | O —):\—
) I
-quantity I ! 1! [+getSpecification()
+getSubtotal() |)
S S E Used by
1 : 1
i 5 1 Store
1
Payment! ________ : i -address
-amount ! -name
Contains t
e e —
: 1 Houses
1 Sale Logs-completed N
-Date 1.
-status
time 1 Captured on 1 Register
. +becomeComplete()
T ey reicneteny
+makePayment
+getTotal() +makeNewSale(),
1 Initiated by 1 Records-sales-on
1 1
Customer Cashier

In this model the Validator pattern has different functions for each class or even each
scenario. Method isvalidCustomer () accepts a customer objects and apply contract
checking defined for the customer class to this object. For example it checks the customer
object has a unique ID and a non empty name. Method isvalidpProduct () validates that
the unit price of the product is greater that zero, the productCode is unique,

availableQuantity is not negative. We can define the following production rules for

Figure 29. Validator pattern

this model, shown in Listing 6.

66

Listing 6.

<Validator>::=<supplement><Product>
<Validator>::=<supplement><SalesOrder>

<Validator>::=<supplement><Payment>

<Product>::=<inherit>Validator.isValidProduct ()
<SalesOrder>::=<inherit>Validator.isValidSalesOrder ()

<Payment>::=<inherit>Validator.isValidPayment ()

By using these production rules we can define the corresponding dependency graph
(Figure 30) which implies that class validator can be defined as an aspect with the

responsibility to validating all other objects.

Contract
Checking
Visitor

Product

~_

SaleLineltem

Figure 30. Dependency graph for the validator pattern

67

4.3 Design 3: Deploying the Observer design pattern for validation: The third
developer uses the Observer pattern (Figure 31) to consider a status for each object and
defines four different levels: “uncommitted”, “committed”, “invalid”, and “valid”. When
an object of any type is created its status set to “uncommitted” that means the object can
be an invalid object but no contract checking mechanism is applied to it yet to identify if
it is invalid or not. Whenever in the scenario we need to validate an object and apply
appropriate contract checking mechanism, we change the object’s status to “commited”
in this moment an observer notify about this modification and apply appropriate contract

checking mechanism that at the end it sets the status of the object to “valid” or “invalid”.

Subject

-subject -observer |Observer|

+Attach()

+Detach()) 1 ¥ +isValid()

+Notify() 7A
AN

Product
-description
-price
-itemID
+getStatus()
+setStatus()

ProductContractChecker|

1 1 |+isValid()

Figure 31. Observer pattern for contract checking

68

In this model the observer can be modeled as a crosscutting concern such that whenever
method Product: :setStatus() is called to change the status of the object from
‘uncommitted’ to ‘committed’, the aspect will be activated and apply contract checking
defined for the object and change the status of the object to “invalid” or “valid”. Figure
32 illustrates the object dependency graph for this scenario with different instances of
Product and ProductContractChecker. According to this dependency graph
a similar interaction will take place for each Product instance whenever its status

changes to “committed” by calling Product.setStatus () method.

G

1.1.notify()

—1.0.setStatus() ° 1.2.getStatus() @

1.3.setStatus()

be

1.1.notify()

—1.0.setStatus() @ 1.2.getStatus() @
1.3.setStatus()
Leged:

p: Product
pc:ProductContractChecker

G

Figure 32. Object dependency graph for contract checker observer design pattern

69

4.4 Design 4: Deploying the Visitor design pattern for validation: In this design we
deployed the Visitor design pattern [6] to apply contract checking mechanisms (Figure
33). When an element accepts a visitor it sends a request to the visitor that encodes the
corresponding class. The visitor will then execute the contract checking for that element

(as opposed to the operation being part of the class of the element as in the first design).

SaleLineltem

+Accept(in v : ContractCheckingVisitor)|

- A

-SalelLineltem* -SaleLineltem

1 -Sale 1 -Product

Sale Product

+Accept(in v : ContractCheckingVisitor) +Accept(in v : ContractCheckingVisitor)

1 -Sale

1 -Product

Payment

+Accept(in v : ContractCheckingVisitor)

ContractCheckingVisitor]

+isValid(}

I
-

K=

PaymentContractCheckingVisitor| ProductContractCheckingVisitor]

[+isvalid() [+isValid(in p : Product)
SaleContractCheckingVisitor| SaleLineltemContractCheckingVisitor
+isValid() [*isValid()

Figure 33. Deployment of Visitor pattern

In this model, the developer has tried to separate contract checking mechanism from the

rest of the algorithms and business logic. By analysis of the dependency graph of this

70

model (Figure 34) one can identify that the visitor classes are providing and
supplementing contract checking mechanism without effecting the main functionality of

the scenarios, that can be considered as an aspect.

RN

Sale \

. //_\\;
Contract \
Product Checking Payment |
Visitor /
’ AN . ’,

KSaleLineltem
\\/
Figure 34. Dependency graph for the Visitor design pattern

9. Case study: Using dynamic syntax grammars for detecting
crosscutting concerns

This section illustrates how we have applied dynamic syntax grammars to identify

crosscutting concerns.

71

9.9. Using dynamic syntax grammar for identifying horizontal
concerns

Example 1: Sales system: identifying horizontal concerns

Figure 35 illustrates a class diagram for sales system.

SalesOrder Invoice
-salesOrderld -invoiceld
-orderDate -quantity
-quantity -amount
-unitPrice 1 1 invoi
- ocOnderd -invoiceDate|

aceOrder i

+

+makePayment() nser)

1 1

1 1

o AccountingTransaction

— gntId -transactionld
payme -transactionDate
-effectiveDate .-description
-amountApplied y
-paymentMethod| ! B v
p -debitCreditFlag
+Insert() -+Insert()

Figure 35. Class diagram for sales system

Figure 36 illustrates interaction diagrams for placeOrder() and makePayment ()

methods of Salesorder class.

72

SalesOrder Invoice AccountTransaction
[]

PlaceOrder() E

Insert()

Insert()

[2

SalesOrder Payment AccountTransaction
ayment

MakePayment()

Insert()

Insert()

e e e W

Figure 36. Interaction diagram for PlaceOrder() and MakePayment() methods of

SalesOrder class

We implement our design by using Java language (Listing 7):

Listing 7: Implementation of Sales system by Java language

public class SalesOrder {
String salesOrderId;
String orderDate;
String quantity;
int unitPrice;

Invoice invoice;

73

Payment payment;

/...

public int placeOrder () ({

int errorCode = 0;
//e..
invoice.insert();
/...
return errorCode;
}
public int makePayment ()
int errorCode = 0;
/... |
payment.insert ();
//...

return errorCode;

{

public class Invoice {
String invoiceId;
int quantity;
int amount;

String invoiceDate;

AccountingTransaction accountTransaction;

/...

public int insert() {
int errorCode = 0;
/...

accountTransaction

.insert ();

74

/...

return errorCode;

}

public class Payment {
String paymentId;
String effectiveDate;
int amountApplied;
int paymentMethod;

AccountingTransaction accountTransaction;

[

public int insert() {
int errorCode = 0;
/7.

accountTransaction.insert{();
/7. ..

return errorCode;

public class AccountingTransaction {
String transactionId;
String transactionDate;
String description;
int amount;

int debitCreditFlag;

public int insert () {

int errorCode = 0;

75

/...

return errorCode;

First we use a top-down parsing strategy to show the parse tree for makePayment ()

and placeOrder () methods. Listing 8 illustrates BNF rules of java language.

Listing 8. BNF rules of Java

class_declaration ::= "class” identifier “{" <field declaration> "}"
field declaration ::= (method declaration | constructor declaration |
variable declaration)

method declaration ::= < modifier > type specifier identifier " ("
[parameter list] ™))" statement_block

modifier ::= "public" | "private" | "protected” | "static" | "final”
type specifier ::= "boolean”™ | "byte" | "char” | "short” | "int" |
"float" | "long" | "double" | class_name

class name ::= identifier

constructor declaration ::= < modifier > identifier " (" |
parameter list] ")" statement block

statement block ::= "{" < statement > "}"

variable declaration ::= < modifier > type identifier ";"

parameter list ::= parameter < "," parameter >

parameter type identifier
statement ::= variable declaration | (expression ";") |
(statement _block) | (if_ statement) | (do_statement) | (while statement)

| ("return” [expression] ":;") | (":™)

if statement ::= "if" " (" expression ")" statement ["else" statement]

76

do_statement ::= "do" statement "while" " (" expression ")" ";"

while statement ::= "while" " (" expression ")" statement

expression ::= numeric_expression | logical expression |

string expression | casting expression | creating expression | "null"™ |
"super" | "this" | identifier | ("(" expression ")") | (expression
(("(" [arglist] ")") | ("." expression)))

numeric expression ::= (("-" | "++" | "--") expression) | (expression
("++" | "==") | (expression ("4+™ | "4=T | M= | M= | mmo) whowm
Tt T/="] """ | "%=") expression)

testing expression ::= (expression (">" | "<" | ">=" | Wg=" | "=z
"!=") expression)

logical expression ::= ("!" expression) | (expression ("ampersand” |
"ampersand=" | "{" | "|=" | "~V | "A=" | ("ampersand”"ampersand") |
"Ij=" | "8" | "%=") expression) | "true” | "false"

string_expression ::= (expression ("+" | "+=") expression)

bit expression ::= ("~" expression) | (expression (">>=" | "<<" | ">>"

| ">>>") expression)

casting expression ::= "(" type ")" expression

creating_expression ::= "new" classe name

arglist ::= expression <"," expression>

integer literal ::= "1..9"

float_literal ::= decimal digits "." [decimal digits]

decimal digits ::= "0..9"

character ::= "based on the unicode character set”

string ::= "''" <character> "''"

identifier ::= "a..z,$, " <"a..z,$, ,0..9,unicode character over 00CO">

77

Figure 37 illustrates a partial parse tree for class SalesOrder

placeOrder () and makePayment () methods.

class-declaration

—d

modifier Class identifier { field_declaration 3
//
. SalesOrder .//
public 7 . .
method_declaration method declaration (-)
modifier e identifier () statement_block
}
public int o
{ statement }
placeOrder() / \\
AN
(...) expression ; (...)
—
e
,/
i : \\
expression . expression
identifier ideniiﬁer
invoice insert()

class-declaration

modifier Class identifier { field_declaration }

public SalesOrder
ul

method_declaration method_declaration)

_

modifier YYTC identifier () statement_block
public int
statement }
makePayment()
(...) expression ; (.)
expression . expression
identifier identifier
payment insert()

Figure 37.Parse tree for class SalesOrder class

78

and

The grammatical form of Java language dose not have any design semantics information
to analyze the code, we inject design semantics to the grammatical form with using
design level production rules and defining a two-level grammar.

We can define the following production rules to present the design semantics for sales
system (Listing 9):

Listing 9. Sales order semantics.

<SalesOrder>::=[has]<MakePayment () >
<SalesOrder>::=[has]<PlaceOrder ()>
<SalesOrder>::=[declare] <Payment>
<SalesOrder>::=[declare]<Invoice>
<SalesOrder.MakePayment () >::=[call]<Payment.Insert ()>

<SalesOrder.PlaceOrder()>::=[calll<Invoice.Insert ()>

<Payment>::=[has]<Insert()>
<Payment>::=[declare]<AccountTransaction>

<Payment.Insert ()>::=[call]<AccountTransaction.Insert ()>

<Invoice>::=[has]<Insert()>

<Invoice>::=[declare] <AccountTransaction>

<Invoice.Insert()>::=[call]<AccountTransaction.Insert ()>

<AccountTransaction>::=[has]<Insert ()>

Meta-variables for two-level grammar are defined as:

79

CLASS SET = {SalesOrder, Invoice, Payment}

METHOD SET = {SalesOrder.placeOrder(),
SalesOrder.makePayment (), Invoice.insert(),
Payment.insert (), AccountingTransaction.insert(), ..}

Then for two-level grammar we need to modified java grammatical form with using

Meta-variables. Listing 9 illustrates java grammatical form with using meta-variables:

class_declaration ::= "class" CLASS SET “{" <field declaration> "}"”

field declaration ::= (method declaration | constructor declaration |
variable declaration)

method declaration ::= < modifier > type_specifier METHOD_ SET " ("
[parameter list] ™)"
statement block

modifier ::= "public" | "private" | "protected”" | "static" | "final"
type specifier ::= "boolean" | "byte" | "char" | "short" | "int" |
"float" | "long" | "double" | CLASS SET

class_name ::= CLASS SET

constructor_declaration ::= < modifier > CLASS SET " (" [

parameter list] ")" statement block

(...)

exXpression ::= numeric expression | testing expression

| logical expression | string expression

| bit expression | casting expression

| creating expression | literal expression
|

!

f

"null™ | "super" | "this" | identifier
("(" expression ")")
(CLASS SET "." METHOD_ SET) | (METHOD_SET)
(..)
identifier ::= "a..z,$, " <"a..z,$, ,0..9,unicode
character over 00CQO"> | CLASS SET
| METHOD_SET

Steps for building a parse tree with using two-level grammar are defined as:

e Start building the parse tree from start symbol of the grammar class_declaration.

80

e Continue building parse tree with top-down method with extending Non-terminal
symbols to the next level of the tree

e [If the Non-terminal is a meta-grammar, continue parsing by using meta-variable
definition that is coming from production rules (semantics of object-oriented design).
for example when we encounter a CLASS-SET meta-variable that defines the classes
defined in our design, we mark the main class for the parse tree, in this example the
main class for the parse tree is SalesOrder that we mark it with a *,

At METHOD SET meta-variable node we mark the method that we suppose to build its

parse tree and then we continue parsing by using production rules related to the marked

method. For example in Invoice. insert () node of the parse tree we extend the tree

the following by production rule.

<Invoice.Insert ()>::=[call]<AccountTransaction.Insert ()>

Figure 38 illustrates pares tree corresponding to the two-level grammar:

class-declaration

T TS

modifier Class CLASS_SET { field_declaration }
*SalesOrder
Invoice
ol Payment
public
Trace method_declaration method_declaration)
modifier type METHOD_SET () statement_block
| | *placeOrder()
public int makePayment()
{ statement }
(.) expression H (..)
CLASS_SET
smo,de, MRS
*Invoice]
Payment
Trace
DECLARE
[accountTransaction] [msen()] [account’l‘mnsacnon insert()]

81

class-declaration

TN

modifier Class CLASS_SET { field_declaration }
*SalesOrder
Invoice
Payment
public Tmy:
method_declaration method_declaration ()
modifier type METHOD_SET () statement_block
I | placeOrder()
public int *makePayment()
{ statement H
(..} expression ; ()
(S:;ASCS dir METHOD SET
Invoice v ()
‘Paymem
Trace
DECLARE CALL
[accountTransaction] [""MO] [accountTransaction.insert()]

Figure 38. Parse tree for class SalesOrder method with using two-level grammar

This pars tree illustrates the accountingTransaction.insert () method is

crosscutting invoice.insert () and payment. insert () methods:

<SalesOrder.placeOrder ()>::=[calll<Invoice.insert ()>

::=[calll<accountTransaction.insert ()>

<SalesOrder.makePayment ()>::=[call]<Payment.insert ()>

::=[call]l<accountTransaction.insert ()>

9.10. Using dynamic syntax grammars for identifying vertical
concerns

We modify placeOrder () and makePayment () methods such that we add tracing
mechanism to these methods (Listing 10):

Listing 10. SalesOrder class with tracing mechanism

82

Public class SalesOrder

{
String salesOrderId;
String orderDate;
String quantity;
int unitPrice;
Invoice invoice;
Payment payment;
Trace trace;

/...

public int placeOrder ()
{

trace.tracekEntry();

int errorCode = 0;
// ...
invoice.insert ();
/7. ..

trace.traceExit ();
return errorCode;

}

public int makePayment ()
{

trace.tracekEntry();
int errorCode = 0;

/7. ..
payment.insert () ;
/...

trace.tracekExit () ;
return errorCode;

Figure 39 illustrates the parse tree for these two methods by using two-level grammar:

&3

class-declaration

modifier Class CLASS SET { field_declaration }

public method_declaration method declaration (...
modifier tyP¢ METHOD_SET () statement_block

| | /\
" %IMN}

CLASS SET METHOD SET CLASS SET -METHOD_SET C - METHOD_SET

DECLARE HAS CALL

[accountTransaction()]

class-declaration

modifier Class CLASS SET field_declaration }

public method_declaration method_declaration (...

=

modifier typeé METHOD_SET

expression H (...) expression ; (...) expression

) statement_block

N %)

- METHOD SET

. . CLASS SET
CLASS SET METHOPjSFT CLASS_SET -METHOD_SET

DECLARE HAS CALL

laccountT: ransaction()]

Figure 39. Parse tree for SalesOrder methods illustrates that there is a vertical

concern defined by traceEntry() and traceExit() methods.

84

10. Conclusion, Limitations, and Future work

Software design is an important activity in the development lifecycle but its benefits are
sometimes not realized. Scattering and tangling of crosscutting behavior with other
elements cause problems with comprehensibility, traceability and reusability. A single set
of requirements may be implemented by a number of different object-oriented design
decisions and artifacts. Some object-oriented design decisions decompose the problem
domain into better modular units such that the crosscutting phenomenon is minimized.
However, the phenomenon may not be totally eliminated from an object-oriented model.
Achieving a well modularized design in a complex software system involves, among a
number of activities, the identification and modeling of crosscutting concerns (aspects).
By analyzing the semantics behind any object-oriented design with any degree of
modularity we can restructure object-oriented design into a corresponding aspect-oriented
design.

Several proposals in the literature are addressing this problem in the programming
domain but the problem has not been addressed effectively at earlier stages in the
lifecycle. This text discusses an approach to addressing this problem throughout software
life cycle activities with restructuring object-oriented artifacts into aspect oriented
artifacts. There is no single rule or algorithm to identify all aspects in object-oriented
software life cycle. Since aspects are associated with different types (behavioral,
business, vertical, and horizontal), different mining rules and algorithms are required to
identify each type.

This text outlined how to define a concern dependency graph and how to analyze it by

using a set of production rules that can be used to identify aspect candidates. We have

85

proposed a categorization of aspects into behavioral and business types. To identify the
former we need to look for a composition pattern, and to identify the later we need to
look into dependency graphs, production rules and the transition matrix. As a result, if no
cycle exists in the concerns dependency graph we will have crosscutting concerns and we
can define an aspect. Furthermore, if there is a cycle in concern dependency graph but
concerns are state-preserving then the target concern can be considered as an aspect. In
some situations the receiver concern may not be state-preserving, but we still may have
crosscutting. To identify this type of crosscutting concerns we use a set of production
rules and parsing with two-level grammars. By analyzing the semantics of a crosscutting
object-oriented design with any degree of modularity we can restructure it into a
corresponding aspect-oriented context as a result:

* No single rule or algorithm to identify all types of aspects.

» With dependency graph we identify objects with an independent role in
scenarios.

* With representing object-oriented artifacts by production rules we are able to
identify aspect by detecting clones and crosscutting patterns.

* With using two-level grammar we inject semantics of object-oriented design to
the syntax of object-oriented language, and then by analyzing implementation
artifacts during parsing we are able to detect aspect candidates.

Limitations: In this research we analyzed the behavior of some of the *Gang of Four’
(GoF) design patterns such as observer design pattern and visitor design pattern for
identifying crosscutting design patterns. We believe that there are other design patterns

that can be modeled as an aspect. The definition of production rules for representing

86

object-oriented concepts can be extended to cover more semantics defined at design level

such as defining constraints in terms of invariants, post-conditions, and preconditions.

Future work: In our opinion, In fact, there is a significant amount of work to do in the

direction addressed by this research. As a further research and study we suggest the

following areas:

Define methods for detecting well-defined aspects in ambiguous situations.

Validating restructured aspect-oriented context such that it maintains the same
level of functionality and semantics of the object-oriented model.

Define metrics and measurements that evaluate the process of proposed
restructuring from object-oriented to aspect-oriented context and compare the
original object-oriented design and restructured aspect-oriented context.

Using data mining techniques for identifying aspects.

Using natural language processing algorithms for detecting well-defined aspects.
As a further development for this proposal, we would like to automate the
activities described here and build tool that will use semantics of UML artifacts

and also an object-oriented source code and identify aspect candidates.

11. References

1.

S. Breu and J. Krinke. Aspect mining using event traces, Proceedings of the 19th
International Conference on Automated Software Engineering, (ASE 2004), Linz,
Austria, September 20 - 24, 2004, pp. 310-315.

J. Krinke and S. Breu, Control-flow-graph-based aspect mining, Proceedings of
the First Workshop on Aspect Reverse Engineering at Working Conference on

Reverse Engineering (WCRE 2004), Delft, November 9, 2004.

87

. M. P. Robillard and G. C. Murphy, Concern graphs: Finding and describing
concerns using structural program dependencies, Proceedings of the 24th
International Conference on Software Engineering (ICSE 2002), May 19 - 25,
Orlando, Florida, 2002, pp. 406-416.

. M. P. Robillard and G. C. Murphy, Analyzing concerns using class member
dependencies, Workshop on Advanced Separation of Concerns in Software
Engineering at the International Conference on Software Engineering (ICSE
2001), Toronto, Canada, May 15, 2001.

. G. Kiczales, J. Lamping , A. Mendhekar, C. Maeda, C. V. Lopes, J-M. Loingtier,
and J. IrVing, Aspect-oriented programming, Proceedings of the 11th European
Conference on Object-Oriented Programming, Jyviskyld, Finland, June 9-13,
1997, pp. 220-242.

. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: Elements of
reusable object-oriented software, Addison Wesley, 1995.

. M. Nelson, A survey of reverse engineering and program comprehension, 1996.
Cornell University Library e-Print Archive No. CS-0503068.

. C. Constantinides and T. Skotiniotis, Providing multidimensional decomposition
in object-oriented analysis and design, The IASTED International Conference on
Software Engineering (SE 2004), Innsbruck, Austria, February 17-19, 2004.

. 8. Clarke and R. J. Walker, Composition patterns: An approach to designing
reusable aspects, Proceedings of the 23rd International Conference on Software

Engineering (ICSE 2001), May 12-19, 2001, Toronto, Canada, pp. 5-14.

88

10.

11.

12.

13.

14.

15.

16.

Amir Abdollahi Foumani and Constantinos Constantinides, Aspect-Oriented
Reverse Engineering, Proceedings of the 9th World Multiconference on
Systemics, Cybernetics and Informatics (WMSCI 2005), Orlando, Florida, USA,
July 10-13, 2005.

Gilbert K. Krulee, Computer processing of natural language, Prentice-Hall, 1991
Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, Lorraine
Bier, Clone Detection Using Abstract Syntax Trees, the Proceedings of ICSM’98,
November 16-19, 1998 in Bethesda, Mayland.

Mohamad Kassab, Constantinos Constantinides, Olga Ormandjieva, Specifying
and separating concerns from requirements to design: a case study, The IASTED
International Conference on Software Engineering (ACIT-SE 2005), Novosibirsk,
Russia, June 20-24, 2005.

Barrett R. Bryant, Two-Level Grammar as an Object-Oriented Requirements
Specification Language, Proceedings of the 35th Annual Hawaii International
Conference on System Sciences (HICSS'02)-Volume 9 - Volume 9, Page: 280,
Year of Publication: 2002, ISBN:0-7695-1435-9

Amir Abdollahi Foumani and Constantinos Constantinides, Reengineering
Object-oriented designs by analyzing dependency graphs and production rules,
Proceedings of the Ninth IASTED International Conference on Software
Engineering and Applications, Phoenix, Arizona, USA — November 14-16, 2005
P. Tarr, H. Ossher, W. Harrison, S. M. Sutton Jr., N degree of separation: Multi-

dimensional separation of concerns, Proceedings of the 21% International

89

17.

18.

19.

20.

21.

Conference on Software Engineering, Los Angeles, CA, USA, May 16-22, 1999,
pp- 107-119.

T. Elrad, R. E. Filman, A. Bader, Aspect-Oriented Programming — introduction.
Communications of the ACM 44(10):29-32(2001).

R.E. Filman, T.Elrad, S. Clarke, and M.Aktis, Aspect-oriented Software
Development, Addison Wesley Professional (October 6, 2004).

C. Larman, Applying UML and Patterns; An introduction to object-oriented
analysis and design and the Unified Process; Second edition, (Upper Saddle
River, NJ: Prentice Hall Inc. 2002).

S. N. Sutton Jr., Early-stage ébncern modeling, Proceedings of the AOSD 2002
Workshop on Early Aspects: Aspect-Oriented Requirements Engineering and
Architecture Design, Ensschede, The Netherlands, April 22, 2002.

Siobh’an Clarke, Robert J. Walker, Separating Crosscutting Concerns Across the
Lifecycle: From Composition Patterns to AspectJ and Hyper/J, Technical Report

TCDCS200115 and UBCCSTR200105.

90

