PPRT: A HYBRID POINT AND POLYGON
RAY TRACER FOR MESHES

Liping Ye

A Thesis
n
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

March 2005

© Liping Ye, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-16256-9
Our file Notre référence
ISBN: 978-0-494-16256-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

iil

ABSTRACT

PPRT: A Hybrid Point and Polygon Ray Tracer for Meshes

Liping Ye

In this thesis, we introduce a simple but efficient hybrid ray tracing system for triangular
meshes. Different from the existing pure point or polygon ray tracing systems, the traced
models are represented and rendered by both points and triangles. We accept triangle
meshes as input, and hierarchically build up a multi-resolution tree structure with
intermediate nodes as points and leaf nodes as triangles. The trade-off between rendering
portions of a model with points or with triangles is made automatically based on the
screen contribution of each node. Our system balances the quantity of a mesh model with
its quality, reflects the level-of-detail representation and selection, maintains the
simplicity of the point primitive, and allows for producing high quality ray traced images

with more advanced illumination models and global illumination.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor Peter Grogono, my thesis
supervisor, for his valuable guidance and helpful suggestions, for his enthusiastic support
and generous help. Without Professor Peter Grogono, this work could not have been
completed.

I wish to thank my family for their continuous support.

Table of Contents

1 Introduction........... tettesssnessnntessssnntesntessaatessattasastnisssnasssanessntsssantessanessasesnas 1
2 Preliminaries and Previous Work . . 4
2.1 RAY TTACINZ .ottt et st s s n e e 4
2.2 Point-Based Modeling and Renderingcooccevvveninciiiiiiiiiniiiiecen, 7
2.3 Level-of-Detail Controlcccooiiimiiiiiiiiiiiieei e 9

3 PPRT SYSLEIM auccueirurirenrnrcsnrcsnesessensencssessnssssessenssssssesssssassssossassasssssssnssnssssesasssssssessasaas 11
3.1 Building up Data Hierarchyc.cccoociiiiimiiiiiicccccn 14
301 Bounding SPHEre HIErarehy ..o 14
312 Hierarchical Tree COnSIUCION ...iiiiieetteeiiieieerietiiiiree et reeree e e et sn e s saib s sannes 18
3.1.3 IMISCEITANEA ..ottt s s n 22

3.2 Finding First INterseCtionccociuviiiiiiiiiiiiiiii e 24
3.3 Maintaining the Heap........cccoooiiiiiii 28
3.4 Computing SPlat SIZ€ccoviiiiiiiiiiiiiiiiii i 31
3.5 ShAING coiiiiee 34

4 Performance Enhancement............iconeiiniseeiisnensneisssnesssnscssnsesisssisssnsesssnssnnsesssnens 39
4.1 SRAAOW .ot et 39
4.2 SOHA TEXIULE ...eeeiniiieeeriiieeeire ettt et e e bt e ettt e et eesaneeeeeemae e sennee s 41
4.3 ANUAASINZ .c.veeiiiiiiiiici e 42
4.4 Backface CUlling.......ccoooiiiiiiiiiiiiiiie e 43

5 Conclusions and FUuture Workiccinicnennicnieisiicinnsssesssseseiasssasesees 45

0 RELEIEIICES cuueciirerreesrnssessencesssssssansenssasesaseesssasassssssassassssssssssssesssenassssssesasssnsannssnnnessnosass 48

vi

List of Figures

Figure 1: Basic idea Of ray traCing........c.cccccveiiiiiiiiiini e 5
Figure 2: Ray tracing pIPEline.........coceviiiiiiiiiiiiiiiiece e e 6
Figure 3: Model is rendered by different number of points and trianglesc.c....... 13
Figure 4: Bounding spheres and hierarchy used by PPRT (figure from [7])ccccc...... 16
Figure 5: Two kinds of nodes in the hybrid BSH ..o 17
Figure 6: Pseudo code for creation of BVH using median-cut scheme............ccccoevevee. 19
Figure 7: Pseudo code for locating the partition point..........cccoceoeecieviiiiieniieieiecenn 21
Figure 8: Pseudo code of finding the first intersection for a given ray............coocoveevenenn. 26

Figure 9: Splat size computation. (a) Using a BS may be too conservative (figure from

[7]); (b) geometry for projecting a BS.cocoiiiiiiii 33
Figure 10: Pseudo code for shading calculationoccoeoveeieviiiiicceiic e, 35
Figure 11: A bunny is rendered at different threshold and time..............cccooveeiieicieennnnn. 37
Figure 12: A dragon rendered without or with shadowsc.ccoeviiiiiiiiiicic, 37

Figure 13: Solid texture. (a) A vase mapped with Perlin noise function; (b) a horrible

spider mapped with marble-like SOl teXtUIe.oovevuiiiiiieiiieccce e, 38

vii

List of Tables

Table 1: Performance comparisons between list and heap ... 29
Table 2: Performance comparisons between model renderings with and without backface

CULING tECANIGUE ...t s e 44

1 Introduction

In classical image synthesis, the most popular approach for presenting a
three-dimensional object has been triangle or polygon meshes, which are widely
supported by the graphics hardware. As geometry is getting more complex, the number
of polygons increases while their size decreases. This may result that many polygons
occupy only sub-pixel areas in image space. Processing these polygons leads to slow
rendering speed, so simpler primitives with less setup and rasterization cost become
appealing. A point represents one kind of simple primitive. On the other hand, the
emergence of affordable and accurate devices, such as digital cameras, three-dimensional
scanners and range finders, ease the acquisition of a dense point set. Therefore, point sets
are receiving a growing amount of attention as a representation of real objects in
computer graphics.

Starting in the mid 1970s’, several researchers have proposed to use points as display
primitives [5, 9, 24, 16]. Recently, Pfister et al. [32] introduced the Surfel system which
samples the model on multi-resolution rectilinear grids. Meanwhile, Rusinkiewicz and
Levoy [38] developed another point rendering system named QSplat, which uses a
hierarchy of spheres of different radii to model a high-resolution model. Both QSplat and
Surfel intend to use a uniform point representation and take advantage of their simplicity
to speedup the rendering.

Inevitably, these systems have some problems inherited from point representation [7].

First of all, an object’s resolution is fixed once they are represented by points. When
objects are viewed very closely, it may result in either a blocky image or an image with
artifacts due to the lack of connectivity information between points. Also, point rendering
becomes less efficient than polygon rendering for large flat surfaces. Thus, Chen and
Nguyen [7] introduced a hybrid system POP to produce a well-optimized balance of
performance and quality. Rather than seeking out a uniform representation, POP
seamlessly integrates polygon-based and point-based rendering. Similarly, Cohen et al.
[10] designed a hybrid simplification approach which combining multi-resolution
polygon and point rendering.

All of the above approaches account for local illumination and no global
illumination models can be applied to the geometry. It is therefore desirable to extend the
point rendering algorithms to the realm of photo-realistic image synthesis and
physically-based light transport. The straightforward ray tracing technique is no doubt a
good choice. Schaufler and Jensen [40] proposed to compute global illumination effects
directly on point-sampled geometry while Adamson and Alexa [1] exploited the ray
tracing method on reconstructed point-set surfaces. However, none of these point-based
ray tracing systems reflects the level of detail at which the point sampled geometry is
observed.

Inspired by the deficiencies of the previous point-based rendering methods, we
present a new ray tracing system, PPRT, in which mesh models are represented by a

multi-resolution hierarchy of both points and polygons. This hierarchy, built entirely as a

pre-process, may then be used to perform ray intersection test, level-of-detail selection,
and image shading. The screen contribution of each hierarchical node determines the
rendering choice between points or triangles.
Overall, PPRT system is an extension of previous point-based rendering systems
which makes four contributions by:
® designing and implementing a hybrid ray tracer comprising both point and
polygon representations to take advantage of the simplicity offered by points
and quality offered by triangles,
® sclecting automatically where and when a subset of a model is better rendered
with triangles or with points,
e realizing the level-of-detail control on a ray tracing system,

e cxtending the local-illumination point rendering approaches to more advanced

illumination models and global illumination.

2 Preliminaries and Previous Work

Our method builds upon previous work in three areas of research, ray tracing,
point-based modeling and rendering, and level-of-detail control. The previous work in
these areas is briefly surveyed next. Specially, we will give a concise review on the

preliminaries of ray tracing since our system is first a ray tracer.

2.1 Ray Tracing

Ray tracing is a global illumination based rendering method that generates high quality
images of virtual scenes in computer graphics. Modern research in ray tracing by means
of a computer was initiated by Appel [3] in 1968. Due to Whitted’s work [46] on
improving ray tracing performance, ray tracing has become popular and has been widely
adopted since 1980. During the 25 years since then, there has been an enormous amount
of research and many results have been published. Most of the work has focused on
efficient ray tracing, global illumination, and more recently interactive ray tracing [29, 42,
43, 44].

As points become increasing popular primitives for modeling and rendering, it is
natural to devise methods for using ray tracing to render the point-sampled geometry. For
ray tracing point-sampled geometry, one may choose between two generally different
approaches: either the point set is kept as unstructured or it is reconstructed into a surface.

Shaufler and Jensen [40] choose unstructured point-sampled data without having to

convert them to another representation. In their method, intersections with the
point-sampled geometry are detected by tracing a ray through the scene until the local
density of points is above a predefined threshold. Then, all the points within a fixed
distance of the ray are used to interpolate the position, the normal and any other attributes
of the intersection. In another approach, Adamson and Alexa [!]| exploit point set
surfaces, which are a smooth manifold surface approximation from a set of sample points,
for ray tracing. Their idea of computing ray-surface intersections is to converge
iteratively by projecting points from the ray onto the surface.

Since ray tracing is widely acknowledged as a straightforward yet powerful
technique for producing very realistic and beautiful images, many rendering systems are
developed based on this technique. PPRT also is a ray tracing system. We briefly review
ray tracing preliminaries, including the basic idea of ray tracing and the ray tracing

pipeline.

\)](light

ray

objects

screen

Figure 1: Basic idea of ray tracing

The basic idea of ray tracing technique is to simulate the path of a single light ray as
it would be absorbed or reflected by various objects in the scene. Figure 1 illustrates this
idea more specifically. For each pixel on the screen, a ray is cast from the eye through the
pixel and into the scene. Then the ray is tested against all objects in the scene to
determine if it intersects any object. If there are multiple objects in a scene, it is possible
that any given ray may intersect more than one object. For each ray, the intersection that
is nearest to the eye is the one that is visible to the eye. The intensity at that point reflects

the color of the pixel on the screen.

Scene
acquisition

Preprocessing Ray tracing

Figure 2: Ray tracing pipeline

Typically, the image rendering process in a ray tracing system involves four stages,
illustrated as a pipeline in Figure 2. The first step of the rendering pipeline is to acquire
data from a scene description file, which indicates all components of a visual scene, such
as objects, light sources and their characteristics, in a pre-specified format. After
collecting the scene information, a data structure that speeds up ray tracing is usually

constructed during the preprocessing procedure. Although this preprocessing step is

optional, it is often critical to the overall ray tracing performance. The third step, which
requires heavy calculation, involves using a ray traversal algorithm to search for the first
object hit by a given ray. In the final step of the ray tracing pipeline, the produced image
is displayed on the screen or is written out to an image file. The hybrid ray tracing system

presented here also follows this pipeline.

2.2 Point-Based Modeling and Rendering

Representing objects as collections of points has a long history in computer graphics. As
far back as 1974, Catmull [5] observed that the geometric subdivision may ultimately
lead to points. Particles were subsequently used for objects that could not be rendered
with geometry, such as fire, smoke, and trees [12, 36, 26]. Later, Levoy and Whitted [24]
used points as a display primitive for continuous, differentiable surfaces. In 1998,
inspired by advances in image based rendering, Grossman and Dolly [16] revisited point
rendering. Their aim was to develop an output sensitive rendering algorithm for complex
objects that would support dynamic lighting.

With the development of improved technologies for capturing points from the
surfaces of objects and the rapidly growing complexity of geometric objects, a real boom
of point-based rendering started in 2000. Two point based graphics systems, Surfel of
Pfister et al. [32] and QSplat of Rusinkiewicz and Levoy [38] for the digital

Michelangelo project [23], were published almost simultaneously. Pfister et al. improved

the work of Grossman and Dally with a hierarchical level-of-detail control and visibility
culling. They proposed alternative techniques for the sampling of the triangle mesh,
including visibility testing, texture filtering, and shading. The resulting system was
focused on high fidelity. Rusinkiewicz and Levoy, on the other hand, were more
interested in interactive display of massive meshes. They designed a new hierarchical
data structure that allowed lower resolutions to be displayed even while additional data
was still being read in, and they used splats for surface reconstruction. Rusinkiewicz and
Levoy [39] subsequently extended QSplat to be capable of streaming geometry over
intermediate speed networks.

Later, based on the observation that points are more efficient only if they project to a
small screen space area, otherwise polygons perform better, some researchers built
hybrid polygon-point rendering systems, which leave the idea of taking points as a
universal rendering primitive. Cohen et al. [10] introduced a simplification approach
which transitions triangles into points for faster rendering. A similar system, POP, has
been developed by Chen and Nguyen [7] as an extension of QSplat and Surfel to
facilitate high quality and efficient texture mapping.

Point based rendering techniques also have been explored recently by different
authors: Zwicker et al. [48] produced the method of Elliptical Weighted Average (EWA)
surface splatting that features anisotropic texture filtering, hidden surface removal, edge
antialiasing and order-independent transparency. The differential points rendering

method of Kalaiah and Varshney [21] renders a surface as a collection of local

neighborhoods. It requires the computation of the principal curvatures and a local
coordinate frame for each point. Alexa et al. [2] proposed a point-based surface definition
that builds on fitting a local polynomial approximation to the point set using moving
least squares (MLS). The result of the MLS-fitting is a smooth manifold surface for any

set of points.

2.3 Level-of-Detail Control

The level of detail (LOD) approach provides different representations of the same object,
with each representation varying in complexity, to improve the performance and quality
of graphics systems. For example, distant or small objects may be displayed in a coarser
approximation until a viewer zooms in for a closer look, when a more complex
representation is produced.

Two types of LOD techniques presently used are discrete and continuous LOD:s.
Discrete LODs are generated offline at fixed resolutions in a pre-process and can be
quickly interchanged at run-time. A proposal for storing entire objects at discrete levels
of detail was made as early as 1976 [8]. This practice has since become standard in
computer graphics systems [25, 33].

Differently, continuous LODs can adjust detail gradually and incrementally,
minimizing visual discontinuities, and often vary the level of detail throughout the scene

to compensate for the varying magnification of perspective projection. Examples of

10

continuous LOD techniques are progressive meshes and topology simplification.
Progressive meshes scheme encodes a base mesh together with a series of edge collapse
and vertex split operations [19]. Topology simplification algorithms seek to reduce
polygonal models in a structural manner as opposed to a geometric manner [13]. They
achieve this by gradually eliminating high-frequency features such as tiny holes, tunnels
and cavities [17].

To modulate an object’s LOD, some principle criteria are involved. One of the two
most common selection criterion measures the distance from the object to the viewpoint
(distance LOD) [35], i.e. lower detail models are employed for far away objects whereas
finer details for closer objects. Another popular criterion is to use the area of the
projected screen space of the object [45]. Compared with the distance LOD, this
size-based technique is more flexible and robust since it involves no arbitrary decisions
and is not affected by object scaling or display resolution [34]. Other major modulation
schemes include relating LODs to an object’s eccentricity or velocity [14, 28], or

degrading an LOD level to achieve a desired frame rate [14].

1

3 PPRT System

Taking triangles as leaf nodes and computing points as internal nodes, PPRT constructs a
tree hierarchy from a mesh input for ray intersection test, LOD selection, and image
shading. Points are used to accelerate the rendering, whereas triangles are utilized to
ensure the quality. During the ray tracing, a nearest intersection along each given ray may
be from points or triangles according to their contribution on the viewing screen. A
pixel’s displayed color is determined through shading calculation.

We implemented this hybrid ray tracing system in C++ with the support of OpenGL
on screen display. All traced images and statistic data presented throughout this thesis are
acquired using a PC with 2.4 GHz processor and 256MB memory.

To help the readers have some idea about PPRT, we present a group of traced images
of a hand model in Figure 3. This model is obtained from the Stereolithography Archive
at Clemson University and is composed by 654,666 small triangles. The three images,
which are rendered at an original screen resolution of 800 x 600, show that PPRT
chooses a different number of points and triangles (red for triangles; green for points)
based on the size of their screen projection for ray intersecting and rendering. As we can
see from those images, with the model coming closer and bigger, we intersect more
triangles than points, which brings us a superior and more complexity image but at the
cost of a significant increase in rendering time. On the other hand, with more points are

intersected than triangles, images are generated much faster but with lower richness

12

when the model goes further away and becomes smaller.

Following the procedure of ray tracing technique, we introduce this hybrid ray tracer
beginning with establishing of a hierarchical data structure during the preprocessing
stage in Section 3.1. Section 3.2 develops the algorithm for finding out the first
intersection hit by a given ray. Next, Section 3.3 details how to organize a heap as an
auxiliary data structure for assisting the tracing procedure. The simplified computation of
a splat size that is essential to control the ray traversal is discussed in Section 3.4. Finally,

we outline the method to determine the final color of a traced pixel in Section 3.5.

13

11579 point
intersections
700 triangle
intersections
6.25 seconds

rendering time

12322 point
intersections
10295 triangle
intersections
9.063 seconds
rendering time

2378 point
intersections
48836 triangle
intersections
17.516 seconds
rendering time

Figure 3: Model is rendered by different number of points and triangles

14

3.1 Building up Data Hierarchy

In this section, we emphasize the data hierarchy that is essential and fundamental to
PPRT. We first explain the data structure, and then we describe the construction of the
hierarchy in details. Finally, we mention some other aspects concerning the hierarchy

generation.

3.1.1 Bounding Sphere Hierarchy

Ray tracing is effective in generating photo realistic images, nevertheless, it involves
very high computational cost. To make ray tracing more efficient, many novel
acceleration data structures have been developed. One of the most popular data structures
for fast ray tracing is the Bounding Volume Hierarchy (BVH) [37]. Bounding volumes
(BVs) [8] allow us to change an expensive test for intersection to one that is much easier.
A BVH is a rooted tree in which each node is a BV. While the internal node represents a
BV enclosing all the BVs of its children, the BV of a leaf node encloses a primitive
object. Creating a hierarchy tree of the BVs can significantly reduce the number of
intersection tests by ignoring the uninteresting part of the tree and thus speed up the ray
traversal time substantially [6]. There are some commonly used types of BVs, including
axis-aligned bounding box (AABB) [47], oriented bounding box (OBB) [4], slab [22]
and sphere [46]. Because of its ease of acquisition, simplicity of representation, and

speediness of performing the intersection calculation, sphere is popularly chosen as the

15

BV to achieve fast ray tracing.

As a pretreatment before ray tracing, PPRT also utilities spheres to construct a
Bounding Sphere Hierarchy (BSH) as the data structure for both ray tracing acceleration
and LOD selection. Different from the traditional ray tracers, which use a much simpler
shape or extent instead of a more complicated original object to speed up the visibility
test and only the contained object not the BVs can be rendered, we regard intermediate
nodes in our BSH as point primitives while leaf nodes as polygon primitives. Thus,
derived from the idea of POP system [7], a hybrid of point and polygon representations is
used to represent and render arbitrary polygonal models. Selections between points and
triangles are determined on-the-fly by their screen footprint size. If they appeared small
on the viewing screen, a group of triangles is substituted by a point for presenting the
traced model to obtain speedup. However, they remain as triangles to ensure accuracy
when their projection on screen becomes large enough. This hybrid representation
facilitates not only high quality but also great efficiency to ray tracing. Figure 4 shows a

simple example of the hybrid BSH.

16

Figure 4: Bounding spheres and hierarchy used by PPRT (figure from [7])

Specifically, there are two kinds of nodes, leaf node and intermediate node, in our
BSH. By reading from a triangular mesh file, we construct a leaf node for each triangle.
Similar to the traditional BSH, this leaf node is a bounding sphere (BS) containing a
triangle primitive. In addition to the attributes about the triangle such as the coordinates
of three vertices, the normal, and optionally some other attributes, the information of its
surrounding sphere like center and radius is kept inside the node too. Gradually, the
internal nodes are created based on these leaf nodes. A higher-level middle node is a BS
that encloses all the bounding spheres of its lower-level children.

So far, our hybrid BSH does not look different from the traditional BSH. However,
the essential difference between them is that we define and treat the internal nodes as
point primitives rather than simple extents so that the hierarchy itself can act as the whole
model and be sent to rendering. Therefore, besides the information that is usually kept

along a traditional BS, such as the center and radius information of the BS, for each

17

internal node, a normal and other optional attributes such as color and material that are
computed by averaging from all its children are also stored as an inherent part of the
node. Consequently, each node of the hybrid BSH holds the information of the model in
a different extent: leaves contain the most refined representation of the model, interior
nodes contain coarser representation and the root contains the coarsest representation of
the model. With the assistance of this multi-resolution representation, we can freely
select a node at any level, no matter a bottom leaf or the top-level root, to adjust the

levels of rendering detail.

class TreeNode
{
Point center;
float radius;
Vector normal;
int numChild;
TreeNode** children;

/1 other optional attributes such as color and material

class TreeLeaf: public class TreeNode

{

Point vertex[3];

Figure 5: Two kinds of nodes in the hybrid BSH

18

In the implementation, we simply define the two kinds of tree nodes using two
classes, TreeNode and TreeLeaf, as shown in Figure 5. The TreeNode class generalizes
the information concerning an internal node. This information contains the location and
radius of the sphere, the normal vector, the total number of its children and the pointers
pointing to those children. Optionally, other attributes like color and material may also be
included along the class. Because a leaf node can be regarded as a unique internal node
with three extra triangle vertices, the TreeLeaf class which represents the leaf nodes is
inherited from the TreeNode class. Accordingly, the vertex information of the enclosed
triangle is added to TreeLeaf. Moreover, to a leaf node, the numChild member variable
that counts the number of children possessed by this node is assigned to zero because no

children are connected with a leaf node.

3.1.2 Hierarchical Tree Construction

After we have all the terminal nodes available, we start to build up a hierarchical tree in a
top-down fashion. In constructing a BV-tree from the top down on a set of elementary
BVs, first the entire set is bounded by one BV which corresponds to the root of the
hierarchy. After this the set is recursively decomposed into subsets that are bounded by
smaller BVs until we reach the leaves. The maximum number of branches for each
internal node is called the branching factor.

One of the most popular algorithms for top-down creation of BVHs is Kay and

19

Kajiya’s [22] median-cut scheme. The branching factor is two in this approach. Kay and
Kajiya’s idea is to build the hierarchy as follows: sort the objects within a group along
their X coordinate axis at each level, then partition them at their median into two disjoint
subsets; repeat the splitting process until there is at most one object in the subtree. The
final BVH is a balanced binary tree in which objects are clustered based on their nearness
to each other. This method is quite simple and fast. The pseudo code in Figure 6
summarizes the algorithm of generating a top-down BVH by employing the median-cut

scheme.

BuildBVTree (begin, end)
{
if (begin == end) /I only one primitive
return the BV of the primitive;
else
{
midpoint = PartitionAlongSplitAxis (begin, end);
leftSubtree = BuildBVTree (begin, midpoint);
rightSubtree = BuildBVTree (midpoint + 1, end);

return a BV covering leftSubtree and rightSubtree;

}

Figure 6: Pseudo code for creation of BVH using median-cut scheme

In PPRT, we generate a quad tree to represent the BSH, close to QSplat [38].

Rusinkiewica and Levoy, however, did not provide much detailed explanation on the

20

hierarchy construction algorithm in their paper. Consequently, we fill in some of the
details here.

The approach utilized in QSplat to build the BSH is similar to the median-cut [22]
scheme. It also involves some preprocessing on the leaves and recursive partitioning of
the objects set at a specified point into subsets. However, there are some differences
between the two methods. One of the differences is that Kay and Kajiya use two while
Rusinkiewica and Levoy choose four as their branching factor. By increasing the
branching factor, the number of interior nodes is reduced substantially. As a result, we
achieve a large saving of memory since the BSH is built up on the fly. The second
difference between Kay-Kajiya’s and Rusinkiewica-Levoy’s approach is the former
always sort the objects along X coordinate at each level, but the latter calculates the
longest axis of its bounding box for sorting the objects at each level. The last difference
is that sorted objects are partitioned at their median in Kay-Kajiya’s approach whereas
they are split at the midpoint along the dominant axis of their box extent in
Rusinkiewica-Levoy’s approach. If objects distribute unevenly along the dominant axis,
we may not get a balanced tree in QSplat since the dense objects may require a further
split. Therefore, the final BSH established in QSplat is a quad tree taking the proximity
of objects into account. Nevertheless, whether the BSH balances or not is up to the

objects’ distribution.

21

Partition (begin, end)
{
make a bounding box covering the range [begin, end) of the tree;
splitaxis = the longest axis of the bounding box;
splitvalue = the median along the longest axis;
left = begin;
right =end - 1;
while (true)
{
while (leaves[left]->center[splitaxis] < splitvalue) left ++;
while (leaves[right]->center[splitaxis] >= splitvalue) right --;
if left and right have crossed
return left;

swap (leaves[left], leaves[right]);

Figure 7: Pseudo code for locating the partition point

Let us examine carefully the procedure for locating the partition point in
Rusinkiewica-Levoy’s approach. As demonstrated in Figure 7, a bounding box covering
the given objects is made at the beginning. We then find out the longest axis of the
bounding box as the split axis and locate the median position along it. This median is
identified by the variable splitvalue. In a repeated loop, a left pointer marches from the
beginning of the leaves toward to the end. We compare the left pointer with splitvalue at

each pace. If the left pointer has a bigger value than splitvalue along the split axis, the

22

march stops. This triggers the movement of a right pointer, which moves similarly to the
left pointer but in an inverse direction. The movement also comes to an end in the case
that the corresponding value of the right pointer is less than splitvalue. If the left pointer
and the right one have crossed, we are done by returning the current position of the left
pointer as the partition point; otherwise, we swap them for making sure that all leaves
right to the median have bigger values than the left leaves along the split axis, and we

continue the pointers’ marches until they finally cross.

3.1.3 Miscellanea

In this section, we provide further illumination of two aspects concerning of the BSH
construction. One is the selection of input data files, and the other is the generation of

bounding spheres.

Data File: As we mentioned above, we create the leaf nodes from a triangular mesh
file. Starting with a mesh has some prominent superiority. First of all, beginning with a
triangular mesh makes it easy to compute normals by utilizing the three vertices of a
triangle. Secondly, as triangles maintain connectivity between vertices, color and other
attributes can be smoothly interpolated inside a triangle, therefore increasing the quality
of a final image. Next, constructing BSs based upon a connected mesh guarantees that no

holes are left during rendering. Last but also importantly, under the assistance of the

23

powerful internet, we can easily acquire a rendering model from diverse mesh files, such
as PLY (Polygon File Format) [20], without an expensive three-dimensional scanner.
Taking account to their straightforward representation and easy acquisition, we choose

the PLY files as the mesh input files in PPRT.

Bounding Sphere: During the course of forming a BSH, an important step is
computing tight BSs because the BSs are used to compute the termination condition of
the run-time tree traversal. Ideally a BS should closely fit around the children it is
enclosing. If a BS is overestimated, unnecessary intersection calculations will be done on
the lower-level branches. On the other hand, an underestimated BS that can not entirely
contain its child nodes may not guarantee the visibility of its children. Let us look at the
BS computation for both leaf triangle nodes and intermediate point nodes.

For triangular leaves, we classify all triangles into two sorts, non-obtuse triangles
and obtuse triangles while considering BS computation. If a triangle is acute or
right-angled, we have its BS coincided with its geometrical circumsphere, the smallest
sphere passing through each of the triangle’s three vertices. When a triangle has an angle
bigger than a right angle, we adopt the longest edge of the triangle as the diameter of the
BS and the midpoint of the longest edge as the center. For a leaf BS, other attributes are
assigned directly from corresponding attributes of its enclosed triangle.

For each intermediate node in the tree, the BSs are computed from their child nodes’

BSs. Simply, a parent node’s center is the average of its children’s centers. The

24

computation of its radius is also simple. We first calculate, to each child node, the sum of
the child’s radius and the distance from the parent’s center to the child’s center. The
maximum of the sums is then designated to the parent’s radius for making sure a parent
node covers entirely its child nodes. This process can be formulated as

p.r = max (c.r + distance (p.center, c,.center))
where p represents a parent node and c is a child node, i ranges from one to the branching
factor. Other attributes connected with an interior node such as normal and color are set

to the average of these attributes in the subtrees.

3.2 Finding First Intersection

In order to render a three-dimensional scene represented by a collection of hierarchical
nodes, like other ray tracers, we initially cast a primary ray from a virtual camera through
each pixel on the viewing screen into the scene, and then we determine which node is
first visible from the ray origin. The first node to be intersected determines the color of
the pixel on the screen.

For finding out this first intersection, the spherical hierarchy tree is traced down
from the top level only along those subbranches whose BV the ray enters. When a leaf
node is reached or the projected area of an intermediate node on the viewing plane (or
splat size) is less than a user-defined threshold, the hierarchy traversal is terminated.

Only if we cease at a leaf node, a ray-triangle intersection test is performed. We then

25

collect all the attributes such as position, normal and color from the first hit node for later
shading calculation. The splat size computation is described in Section 3.4 and the
shading calculation in Section 3.5.

Additional data structures are often required to assist the traversal in a BVH. A
priority queue is a commonly used auxiliary data structure. In PPRT, we implement the
priority queue using a heap [22]. If a node is intersected by a ray, it is pushed into the
heap. When we want to explore a node, it is extracted from the top of the heap. The heap
is maintained dynamically for each casting ray and is organized by the distance of the

spheres along the ray. We discuss the heap maintenance in Section 3.3.

26

GetFirstHit (ray, root)

{
if (ray misses the root node)
return,
else
{
initialize a heap to contain only root;
while (heap is not empty)
{
candidate = closest-along-ray node of heap; //top node is popped
if (candidate is a leaf)
{
perform ray-triangle intersection test;
if (get a hit)
return hit information;
}
else /[candidate is not a leaf
{
if (candidate.splatSize <= threshold)
return candidate information; //candidate is the hit point
else
for (each child of candidate)
if (ray hits this child’s sphere)
insert this child node into the heap;
} // end else
} // end while
} // end else
}

Figure 8: Pseudo code of finding the first intersection for a given ray

27

Let us now discuss the algorithm for finding the first intersection in our ray tracing
system. Initially, from the root node, which represents the whole three-dimensional
model, we test whether the ray collides with it or not. If the ray misses the root, it will
miss the whole scene so that the test stops; otherwise, we create a heap structure
contained only the root node and advance our downwards search that is a repeatedly
executed loop. At each iteration, a candidate node, whose bounding sphere is known to
be the closest to the origin of the ray, but whose children have yet to be interrogated, is
extracted and removed from the top of the heap. This candidate might be a leaf node or
an intermediate node. A ray-triangle collision test for discovering the existence of a true
hit point is triggered only on condition that the candidate is a leaf. On the other hand, to
an interior candidate node, we evaluate its splat size instead. If the splat size is less than a
predefined threshold, this candidate is right the closest hit point we are searching for;
otherwise, ray-sphere intersection tests are fulfilled on all children nodes of this
candidate. A child node has to be inserted into the heap if it 1s hit by the ray. Thus, for a
missed child node, we safely reject the entire subtree of that child node from further
consideration. This process continues until a visible node is determined or the heap is
exhausted. The pseudo code in Figure 8 presents this finding first intersection algorithm
for a given ray.

Once we expose the closest visual node along the ray, we store up all the attribute
information, such as spatial coordinates, normal, color, material etc., from the hit node so

that we can make use of these attributes later to decide the final pixel color through

28

shading. In PPRT system, a point of closest intersection is achieved only from two cases:
either from a leaf triangle node or from an intermediate point node whose screen
projection is smaller than a predefined threshold. For the first case, if the intersection is
from a leaf node, which means this node has a closer look on the viewing screen, we
need to produce a high level of detail and good quality ray-traced image. It is therefore
desirable that we calculate the precise spatial position of the intersection. We can even
interpolate color and other attributes inside the triangle for better image quality. Things
become much easier if the visible node is an intermediate point node. Accurately
computing the hit coordinates and other attributes seems not only expensive but also
unnecessary in this case. Because the screen contribution of this node is tiny and can be
considered as unimportant, it may be displayed in a more simplified manner with less
complexity. Accordingly, we simply use the center of the bounding sphere, no matter
which part of the sphere is actually collided by the ray, as the final intersection
coordinates and assign all the node’s attributes directly to the intersection for lessening

the calculation and thus speeding up the rendering.

3.3 Maintaining the Heap

As mentioned in the previous section, additional data structures are often necessary to
support the hierarchy traversal algorithm. By choosing an efficient subsidiary data

structure, we can easily achieved a large saving not only on memory cost but also on

29

computation time. Being famous for its outstanding performance in rapidly and
repeatedly finding and removing the highest priority element from a collection of values,
a priority queue is widely imposed as a kind of supporting data structures in traversing a
BVH.

We also select the priority queue implemented as a heap to keep track of candidate
nodes for our ray tracing system. Referring to the context of algorithm, a heap is a
sequence organized like a binary tree and satisfies a condition that every comprised
element is less than or equal to its parent. This condition guarantees that the first element
in a heap is always the largest. The worst-case performance of heap for addition or
removal an element is O (log (N)), where N is the number of elements in the sequence
[41]. With this prominent performance in adding and removing elements, heap is
well-suited as an auxiliary data structure for resolving the ray’s intersection with a

hierarchical tree.

Hand model Bunny model Dragon model
List 9.016 s 9.812s 17.375 s
Heap 5734 s 6.343 s 9.938 s
I;e:fdivj‘glfg 36.4 % 354 % 42.8%
Table 1: Performance comparisons between list and heap

30

A performance comparison on using C++ standard library heap or list as the
auxiliary data structure under the same other conditions is showed in Table 1. All images
are rendering at a screen resolution of 400 x 300. Although list is a sequence optimized
for insertion of elements, the statistic proves that the heap definitely has a superior
performance than the list in PPRT.

In our finding first intersection algorithm, the heap is employed to pile up only the
nodes that are proved to be hit along a given ray. Those nodes are regarded as the
candidates for further ray-triangle intersection tests or next-level tree nodes exploration.
Considering that the majority of rendering time in our ray tracer is in the hierarchical tree
traversal and ray-node hit tests, we expect to organize this heap structure in a simple and
optimal way so that we can terminate the tree traversal early and reduce the ray hit tests
significantly.

Based on the idea that a nearest node has a greater potential to be or to enclose the
first intersection with a given ray, in PPRT, we maintain the heap dynamically so that it
guides the visible node search by selecting a candidate with the smallest nonnegative
distance along the ray. We require that the top node of the heap is always closer to the ray
origin than the other ones. In other words, the top node should have a smaller ray-sphere
hit time than that of the rest ones. Thus, we impose the first ray-sphere hit time, which is
already computed precisely during the ray-sphere intersection test, as the priority to
control the order in the heap, but we need to make sure that a node with the smallest hit

time will be extracted and queried first. However, by default, the heap class in C++

31

Standard Library simply compares elements using the < operator and the largest element
will get served first. This is contrary to our expectation. To solve the problem, an
alternative to the < operator for comparison is provided. In this replacement routine, we
compare the hit time values of the two input nodes using the < operator, but we return a
Boolean variable that inverses the result of the comparison. Specifically, if the result of
the less-than comparison is true, we return a false value instead and vice versa. Hence,
we assure that a node with the smallest hit time has the highest priority and will be
explored first.

By utilizing the ray-sphere hit time as a priority and creating an alternative routine
for elements comparison, we now organize an efficient heap relied on the distance

between the bounding spheres with the origin of a given ray.

3.4 Computing Splat Size

When tracing a ray to successfully locate the first visible object, a traditional ray tracer
always descends the BVH from the root node until it reaches a leaf that encloses an
original object. Differently from this conventional approach, in our hybrid ray tracer, we
may terminate the data tree traversal and then draw a visible node at any level of the
hierarchy even at the top-level root. The key point to control the tree traversal in PPRT is
the splat size used as in POP [7]. Splat size denotes the size of an object’s

two-dimensional footprint or projection on the image plane. Specifically, when we

32

extract an intermediate point node from the peak of heap which maintains all the nodes
intersected by the given ray, we impose the splat size of this node’s BS to determine a
traversal continuation or an early termination. The traversal will cease if this splat size is
satisfied with a predefined condition such as smaller than a specified threshold; otherwise,
it will advance to next lower subbranches.

Therefore, to evaluate the splat size in a simple and fast way is a new issue to PPRT.
Actually, as the BS itself is an approximation, it is not only expensive but also
unnecessary to precisely compute the splat size. This approximation sometimes appears
too conservative. A good example is given in Chen and Nguyen’s paper [7] and also is
shown here in Figure 9(a). A sphere surrounds a thin obtuse triangle that is oriented in the
viewing direction. Although the triangle’s projection size, the left line segment drawn
purposely off the viewing plane for clarity, is small, its BS has a big overestimated
projection shown as the right line segment. This overestimation will cause us to switch
point to triangle earlier than necessary. It may slow down the rendering somewhat, but
does no harm to the image quality. Furthermore, computing splat size based on a BS’s
precise location is still expensive. In their POP system, Chen and Nguyen proposed an
optimized approach to compute the splat size based only on a BS’s z coordinate in eye
space. We adopt the same result as that of POP, but our analytical method is much easier

and more intuitive.

A /
S
R
Os
A’
(A ;
eye d z
screen screen
(a) (b)

Figure 9: Splat size computation. (a) Using a BS may be too conservative (figure

from [7]); (b) geometry for projecting a BS.

Let’s assume the projection of sphere S on the viewing plane is A’B’, as illustrated in

AB_OB _d

Figure 9. According to the primary geometry, we have an equation 5 OB
Z

2

where d is the distance between the eye (O) and the viewing plane; z is the Z coordinate
. . . 3 b d

of sphere S. By transforming the equation, the splat size A’B’=— X AB . Because the
z

length of AB causes extra computation to figure out, in our system we choose to use the

diameter of the sphere to approximate AB, i.e., A’'B’=— X 2R, where R is the radius of S.

Z

As 2R is smaller than AB, we actually underestimate the splat size. One consequence of

this underestimation is that we may compromise the overestimation caused by the BS.

Another consequence derived from this underestimation is that we terminate the tree

traversal earlier than when it should be, resulting in sending larger points for display. The

error increases as sphere § moves further away from the Z axis. However, as the nodes

34

move away from the projection plane, they become less important, therefore our error
tolerance increases.

After we evaluate the splat size of an interior candidate node, we then compare it
with a user defined threshold. If the splat size is smaller than this threshold, we stop
searching at this node and send it for shading; otherwise, we extend the search to the
children nodes of this candidate node. Obviously, this threshold is critical for the
hierarchical tree traversal and is also essential to the generated image. When the
threshold value increases, similar to underestimate the splat size, we terminate the tree
traversal earlier. Accordingly, the rendering speed is accelerated significantly since we
choose many larger points instead of smaller points and leaf triangles. However, this
acceleration necessarily results in the sacrifice of complexity and detail. Furthermore,
some artificiality may appear in the final image. For example, the surface of the
ray-traced model may be bumpy and blur. To eliminate that artificiality and to ensure the
image quality, we conservatively specify the splat size threshold as one pixel. Figure 11
presents four different images in which the Stanford bunny model is rendered at a
threshold of 16, 8, 4, and 1 respectively. It is obvious that as the threshold decreases, the

bunny becomes clearer and more realistic, but it requires more patience.

3.5 Shading

In a complete ray-tracing sequence, once intersection information about the first visible

35

node is available, we are ready to determine what color that node appears. Shading is the

procedure for color determination.

Shade (ray)
{
if ('getFirstHit(ray, root))
return background color;
Color color;
color.set (the emissive color of the node);
color.add (ambient contribution);
for (each light source)
{
if (hit is in shadow)
{
// add texture contribution if applicable
continue;
}
color.add (diffuse contribution);
// add texture contribution if applicable
color.add (specular contribution);
}
/I add reflection and refraction contribution if applicable

return color;

Figure 10: Pseudo code for shading calculation

A simplified pseudo code for shading calculations that is passed a ray and returns the

color of a single pixel is given in Figure 10. If no object is visible for the ray origin, this

36

pixel’s color is simply set as a background color specified by the scene artist. On the
other hand, if the ray did hit an object, the pixel’s color is accumulated by various
contributions, including the color emitted by the object if it is glowing, the ambient,
diffuse, and specular components that are part of the classical shading model [18].
Optionally, texture, reflection, and refraction components can also be integrated to the
final color of the pixel for producing images of exquisite realism.

In practice, the above principle of shading fits well for our hybrid ray tracer too.
Following we discover the nearest ray-visible point, no matter it is from a leaf triangle
node or from an intermediate point node, along with all its attached mandatory attributes
and optional attributes, the same flow of shading computation as the aforementioned
pseudo code is carried out to figure out the real color of the hit point, which is also
regarded as the pixel’s color. The journey of tracing a ray is completed at this point. We
then cast a new ray from the camera through another pixel and trigger the same tracing
journey beginning from the visibility test. After we assign a color to each pixel of the
viewing screen, a traced image is ready for displaying on the screen or writing into an

image file such as a bitmap file.

37

(b) threshold = 8§ pixels, time = 11.71s

(c) threshold = 4 pixels, time = 13.39s (d) threshold =1 pixels, time = 14.89s

Figure 11: A bunny is rendered at different threshold and time

Figure 12: A dragon rendered without or with shadows

38

(a)

(b)

Figure 13: Solid texture. (a) A vase mapped with Perlin noise function; (b) a
horrible spider mapped with marble-like solid texture.

39

4 Performance Enhancement

Given the approaches described in the previous section, we have designed a novel hybrid
ray tracer with basic features for rendering realistic scenes. Nevertheless, since ray
tracing handles many realistic effects like shadows and solid textures in a very
straightforward manner, we would like to strengthen our hybrid system by integrating
more advanced features. In addition, we try to develop some optimizations on PPRT for
better performance. Therefore, in this section, we introduce our improvements to PPRT

in the following aspects: shadow, solid texture, antialiasing and finally backface culling.

4.1 Shadow

Shadows occur when an opaque object blocks light rays and prevents them from reaching
their destination. The presence of shadows adds a great deal of realism to
computer-generated images. Unlike OpenGL, ray tracing produces shadows with very
little programming effort. By sending a shadow ray [15] from a given point towards each
light source and check the existence of a ray-object intersection before the light, it can be
determined if the point is shaded from any light source, hence shadow generates. If a
point is in shadow with respect to a light source, then that light source provides no direct
color contribution such as diffuse and specular to it. This principle of yielding shadows
also works well in PPRT although it consists of point and polygon representations.

Following the basic principle, we devise our own policies to generate shadows

40

accurately. First of all, after we achieve the nearest visible node along a primary ray cast
from the camera, we spawn a shadow ray, often called a shadow feeler, for each light
source. Emanating from the nearest visible node, this shadow feeler extends along the
direction to a light source and ends up right at the source. To see if the feeler hits
anything, the hierarchical data tree is scanned from the top down, and each node is
examined for an intersection. If any intersection exists within the journey of the shadow
feeler, we hence announce that this nearest visible node is in shadow. The procedure of
intersection test with the shadow feeler is similar to the finding-the-first-intersection
algorithm presented in Section 3.2. Note that only the triangle leaves and the
intermediate point nodes whose screen projection are less than a specified threshold are
qualified to be considered as an intersection.

Shadow rays originate from a previously found intersection point. Due to the
imprecision of floating-point representation, an intersection test may incorrectly report
that a ray intersects the point from which it is leaving. This is known as the thorny
problem of “self-shadowing.” This problem is prominent in PPRT. Since we directly use
its BS’s center as the intersection point for the sake of acceleration when an interior node
is chosen, a shadow feeler that originates from such a start will inevitably collide with the
BS itself, which is clearly wrong.

To solve this self-shadowing problem, a strategy that works efficiently sends an
adjusted shadow feeler. Specifically, the start point of the shadow feeler is shifted toward

the camera by a small amount. This shadow offset puts the starting point slightly in front

41

of the object that is hit by the ray, so the wrong ray-geometry intersections can be
avoided. In our hybrid system, as an intersection may come from a triangle leaf or a point
intermediate, we adopt two different offsets accordingly. For an intersection from
triangles, the offset is a small positive constant. Meanwhile, for an intersection from
point nodes, we use an offset based on the radius of the hit node instead. We have found a
shadow offset of 1.2-2 times radius works well in practice. Figure 12 shows a Stanford

dragon with or without the shadows effect.

4.2 Solid Texture

Computer-generated images can be made much more lively and realistic by incorporating
textures on various surfaces. Solid texture, sometimes called “three-dimensional texture”,
is a principal kind of texture commonly used.

The concept of solid texture was first introduced simultaneously by Perlin [31] and
Peachey [30]. With solid texture, the object appears to be carved out of a block of some
textured material such as marble and wood. Instead of wrapping a 2D texture around a
parameterized surface, solid textures determine the color of a surface based on the (x, y, z)
values of each point on the surface. Integrating solid textures with a ray tracer is
extremely simple because one can take the hit points as the values of the texture
functions.

We implemented the marble-like solid texture based on Perlin’s noise function [31]

42

and the three-dimensional checkerboard solid texture [I18] in PPRT to extend its
functionality. Figure 13 presents two models, vase and spider, mapped with solid

textures.

4.3 Antialiasing

Note that ray tracing is inherently a point-sampling process. We sample a continuous
image in world coordinate by shooting individual rays through each pixel. It is therefore
not surprising that ray tracing systems, like all point sampling algorithms, suffer from the
aliasing problem that is manifested in computer graphics by jagged edges or other nasty
visual artifacts. Usually, we can try to reduce aliasing artifacts by sampling more often
than one sample per pixel. This antialiasing technique is called supersampling. In the
context of ray tracing, the core idea of supersampling is to fire more rays into the scene
to determine a better shade for each pixel.

In PPRT, we adopt regular supersampling approach to smoothing out aliasing
images. Considering the extra computation and overhead cost caused by supersampling,
we attempt to make some trade-off between the antialiasing effects and the additional
cost. We cast rays through the four corners of a pixel to trace the scene, and then we take
the average of the four return intensities as the final intensity of this pixel. Meanwhile, as
the four corner intensities may be required for the intensity calculation of a neighborhood

pixel, we keep the information of those intensities so that they can be extracted

43

immediately when needed. Hence, we achieve antialiasing somewhat at negligible
overhead cost.

Better antialiasing effects can be realized by casting more rays into the scene or
performing some sophisticated techniques, such as adaptive supersampling [46] and
stochastic sampling [11]. However, it seems we are going to add more calculations and

overhead expenditure.

4.4 Backface Culling

Backface culling is an accelerating technique that removes or culls away portions of the
model that are invisible with respect to a particular viewpoint. By removing those
unnecessary portions early in the rendering process, we can substantially reduce the
required workload.

Typically, the backface test involves calculating the dot product between a polygon’s
normal and the vector formed from the viewing point to any point on the polygon. If the
result is negative, then the polygon is facing towards the viewer, however, if the result is
positive, then the polygon is facing away from the viewer and is considered to be
backfacing.

Before we begin the ray-triangle intersection test in our hybrid ray tracer, we employ
the backface test explained above. If this examined triangle is facing toward to the viewer,

we continue the complex intersection computation; otherwise, we determine that this

44

triangle is backfacing to the viewer and will not have contribution to the generated image.

Obviously, it is meaningless to find an exact intersection point at this case, so we finish

our work early and head for tracing another ray.

. . p——

Total t1.mes of BE Culling .Rende?rmg .enderllng Culling
ray-triangle Cullin save time without | time with save
test & BF culling | BF culling

Hand 1019548 92222 | 9.1 % 79.328 s 77.625s | 2.2 %

model

Bunny 1379225 103270 | 7.5 % 87.250 s 85016s | 2.6%

model

Dragon 1943581 145424 | 7.5 % 147.031s | 143484s | 24 %

model

Table 2: Performance comparisons between model renderings with and without
backface culling technique

Experimentally, we rendered three models under two cases, with or without

backface culling technique, at a screen resolution of 800 x 600. The performance

differences are described in Table 2. To these experimental models, it seems that we can

reduce from 7.5 up to 9.1 percentages on the total performing times of ray-triangle

intersection test by first culling backface triangles. Due to the computation cost of

backface tests, however, the actual rendering time we can retrench from culling is less

but still acceptable.

45

5 Conclusions and Future Work

In this thesis, we have presented a hybrid ray tracing system, PPRT, which
simultaneously adopts both points and polygons for representing and rendering. Taking
advantage of the simplicity of points as well as the quality of triangles, PPRT features a
good compromise between speed and accuracy according to objects’ screen contribution.
Meanwhile, using a reformative bounding-sphere hierarchy as PPRT’s data structure
facilitates not only the raytracing acceleration but also the level-of-detail selection. In
addition, building the data hierarchy directly on triangles makes PPRT applicable to any
arbitrary triangular models.

To our knowledge, PPRT is the first ray tracer combining with point and polygon
primitives. So far, we have focused on the basic frame of PPRT and have explored some
performance improvement at present. Nevertheless, by integrating the PPRT approach
with different kinds of techniques and algorithms, we believe that PPRT will be a
powerful tool to yield ray-traced images. The following are some potential areas of
further work and future research:

e Currently, PPRT recognizes only one file format, the PLY mesh, for model
reading. However, other than the PLY format, a mesh can be expressed by a
variety of file formats, such as the 3DStudio mesh file, the WaveFront object
file, the AutoCAD DXF format, and so on. If we enlarge PPRT to support more

input file formats, the applicability and popularity of PPRT will be enhanced

46

greatly.

Present PPRT renders based on traversing a bounding sphere hierarchy that is

built up on-the-fly during reading from a mesh file. Unfortunately, for storing
these hierarchical tree nodes and the connecting pointers among nodes, we have
to sacrifice lots of memory space, which may cause a lower rendering
performance or even worse an out-of-memory problem when we render a huge
mesh model. For example, our experiments show that our 256MB-ram home PC
is insufficient to render the Stanford Lucy model, which consists of 14,027,872
vertices and 28,055,742 triangles, by using PPRT. Although this problem can be
easily solved by increasing the computer system memory, to make PPRT
practical for rendering large meshes in a small memory, we might incorporate
the QSplat techniques into the present PPRT framework. QSplat uses a compact
in-memory and on-disk representation to support huge mesh models. During
preprocessing, QSplat encodes and quantizes all of the properties at each node
into a special representation that is later laid out in breadth-first order on disk.
While rendering, data is loaded progressively as it is needed from lower
resolution to greater details, and the properties of each node are decoded
on-the-fly. Therefore, this data structure requires less memory and is suitable for
massive data sets. Potentially, we can design a similar compact representation

for PPRT. However, one thing should be given more attention, that is, since both

47

points and polygons are used in PPRT, we should figure out some ways to

represent them respectively and to distinguish each other.

Being a system based on the elegant and powerful ray tracing technique for
generating photo-realistic images in computer graphics, the present PPRT could
be incorporated with various approaches to make itself support more advanced
features and sophisticated effects for different need. For instance, in the case
that more realistic images are requested, we may perform distributed ray tracing
[11] approach for soft shadow, reflection and refraction, depth of field and
motion blur. Furthermore, we can exploit Monte Carlo ray tracing based
methods [27] to simulate global illumination. If we desire a better antialiasing
effect, adaptive supersampling [48] and stochastic sampling [11] are good

choices.

48

6 References

(1]

(2]

[3]

(4]

[5]

(6]

(71

(8]

A.Adamson and M. Alexa. Ray Tracing Point Set Surfaces. In Proceedings of the
Shape Modeling International 2003, page 298.

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C.T. Silva. Point Set

Surfaces. In Proceedings of IEEE Visualization, pages 21-28, 2001.

A. Appel. Some Techniques for Shading Machine Renderings of Solids. In AFIPS

Joint Computer Conference Proceedings, volume 32, pages 37-45, Spring 1968.

J. Arvo and D. Krik. A Survey of Ray Tracing Acceleration Techniques. In A.S.
Glassner, editor, An Introduction to Ray Tracing, pages 201-262. Morgan
Kaufmann Publishers, Inc., 1989.

E. Catmull. A Subdivision Algorithm for Computer Display of Curved Suraces.
Ph.D thesis, University of Utah, 1974.

A.Y. Chang. A Survey of Geometric Data Structures for Ray Tracing. Technical

Report TR-CIS-2001-06. CIS Department, Polytechnic University. 2001.

B. Chen and M.X. Nguyen. POP: A Hybrid Point and Polygon Rendering System
for Large Data. In Proceedings of Visualization 2001, pages 45-52. IEEE, 2001.

J.H. Clark. Hierarchical Geometric Models for Visible Surface Algorithms.
Communications of the ACM, 19(10), pages 547-554, October 1976.

49

[9]

[10]

[11]

[12]

[13]

[14]

[15]

H.E. Cline, W.E. Lorensen, S. Ludke, C.R. Crawford, and B.C. Teeter. Two
Algorithms for the Three-Dimensional Reconstruction of Tomograms. Medical

Physics, 15(3): 320-327, May 1988.

JD. Cohen, D.G. Aliaga, and W. Zhang. Hybrid Simplification: Combining
Multi-Resolution Polygon and Point Rendering. In Proceedings of IEEE
Visualization, pages 37-44, October 2001.

R.L. Cook, T. Porter, and L. Carpenter. Distributed Ray Tracing. In SIGGRAPH
1984, pages 137-145.

C. Csuri, R. Hackathorn, R. Parent, W. Carlson, and M. Howard. Towards an
Interactive High Visual Complexity Animation System. Proceedings of

SIGGRAPH 1979, pages 289-299.

J. El-Sana and A. Varshney. Topology Simplification for Polygonal Virtual
Environments. IEEE Transactions on Visualization and Computer Graphics, pages

133-143, 1998.

T.A. Funkhouser and C.H. Séquin. Adaptive Display Algorithm for Interactive
Frame Rates During Visualization of Complex Virtual Environments. Proceedings

of SIGGRAPH ’1993, 27, pages 247-254.

A.S. Glassner. An Overview of Ray Tracing. In A.S. Glassner, editor, An

Introduction to Ray Tracing, pages 201-262. Morgan Kaufmann Publishers, Inc.,
1989.

50

[16]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

J. Grossman and W. Dally. Point Sample Rendering. Proc. Eurgraphics Rendering
Workshop, pages 181-192, 1998.

T. He, L. Hong, A. Varshney, and S. W. Wang. Controlled Topology Simplification.

IEEE Transactions on Visualization and Computer Graphics, pages 171-183, 1996.

E.S. Hill, Jr. Computer Graphics Using OpenGL. Hall, 2001

H. Hoppe. Progressive Meshes. Proceedings of SIGGRAPH 1996, pages 99-108.

http://www-graphics.stanford.edu/data/3Dscanrep/#file_format. Stanford
University, 2004.

A. Kalaiah and A. Varshney. Differential Point Rendering. In Proceedings of the

12th Eurographics Workshop on Rendering, August 2001.

T.L. Kay and J.T. Kajiya. Ray Tracing Complex Scenes. Computer Graphics, 20(4),
pages 269-278, November 1986

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton,
S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The Digital Michelange

Project: 3D Scanning of Large Statues. Proceedings of SIGGRAPH 2000, pages
131-144, July 2000.

M. Levoy and T. Whitted. The Use of Points as a Display Primitive. Technical
Report TR 85-022. University of North Carolina at Chapel Hill, 1985.

51

[25]

[26]

[27]

[28]

(29]

[30]

(31]

[32]

[33]

D.P. Luebke. A Developer’s Survey of Polygon Simplification Algorithms. IEEE
Computer Graphics and Applications, pages 24-35, 2001.

N. Max and K. Ohsaki. Rendering Trees from Precomputed Z-Buffer Views. In

Proc. Eurographics Workshop on Rendering, June 1995.

Monte Carlo Ray Tracing. In SIGGRAPH 2003, course 44.

T. Ohshima, H. Yamamoto and H. Tamura. Gaze-Directed Adptive Rendering for
Interacting with Virtual Space. Proceedings of the IEEE Virtual Reality Annual
International Symposium (VRAIS), Santa Clara, CA, pages 103-110, 1996.

S. Parker, W. Martin, P.P. Sloan, P. Shirley, B. Smits, and C.Hansen. Interactive

Ray Tracing. In 1999 ACM Symposium on Interactive 3D Graphics, pages 119-126,
April 1999.

D.R. Peachey. Solid Texturing of Complex Surface. In SIGGRAPH 1985, pages
279-286.

K. Perlin. An Image Synthesizer. In SIGGRAPH 1985, pages 287-296.

H. Pfister, M. Zwicker, J.van Baar, and M.Gross. Surfels: Surface Elements as

Rendering Primitives. In Proceedings of SIGGRAPH 2000, pages 335-342.

M. Reddy. A Survey of Level of Detail Support in Current Virtual Reality Solutions.

Virtual Reality: Research, Development and Application, pages 95-98, 1995.

52

(35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

M. Reddy. Perceptually Modulated Level of Detail for Virtual Environments. PhAD

thesis, Division of Informatics, University of Edinburgh. 1997.

M. Reddy. Specification and Evaluation of Level of Detail Selection Criteria.

Virtual Reality: Research, Development and Application, 3(2), pages 132-143,
1999.

W.T. Reeves. Particle Systems — Technique for Modeling a Class of Fuzzy Objects.
In Proceedings of SIGGRAPH 1983, 17(3), pages 359-376, July 1983.

S.M. Rubin and T. Whitted. A 3-Dimensional Representation for Fast Rendering of

Complex Scenes. Computer Graphics, 14(3), pages 110-116, July 1980.

S. Rusinkiewica and M. Levoy. QSplat: A Multiresolution Point Rendering System

for Large Meshes. In Proceedings of SIGGRAPH 2000, pages 343-352.
S. Rusunkiewica and M. Levoy. Streaming QSplat: A Viewer for Networked
Visualization of Large, Dense Models. In Proceedings 2001 Symposium for

Interactive 3D Graphics, 2001.

G. Schaufler and H.W. Jensen. Ray Tracing Point Sampled Geometry. Rendering

Techniques 2000: 11th Eurographics Workshop on Rendering, pages 319-328, June
2000.

B. Stroustrup. C++ Programming Language. Addison-Wesley, 3rd edition, 1997.

I.Wald, C. Benthin, and P. Slusallek. Realtime Ray Tracing and Its use for

53

[43]

[44]

[45]

[46]

[47]

(48]

Interactive Global Illumination. In Eurographics State of the Art Reports, 2003.

I. Wald, P.Slusallek, and C. Benthin. Interactive Distributed Ray Tracing of Highly
Complex Models. In Rendering Techniques 2001: 12th Eurographics Workshop on
Rendering, pages 277-288. Europrahics, June 2001.

I. Wald, P.Slusallek, C. Benthin, and M. Wagner. Interactive Rendering with
Coherent Ray Tracing. Computer Graphics Forum, 20(3), pages 153-164, 2001.

J. Wernecke. The inventor Mentor: Programming Object-oriented 3D Graphics

with Open InventorTM, Release 2. Addison-Welsley. 1994.

T. Whitted. An Improved Ilillumination Model for Shaded Display.
Communications of the ACM, 23(6), pages 343-349, 1980.

S. Youssef. A New Algorithm for Object Oriented Ray Tracing. Computer Vision,

Graphics, and Image Processing, 34, pages 125-137, 1986.

M. Zwicker, H. Pfister, J.V. Baar, and M. Gross. Surface Splatting. In Proceedings
of SIGGRAPH 2001, pages 371-378.

