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ABSTRACT

Assessing Power to Detect Gene-Environment Interactions Using

Surrogate Outcomes: A Simulation Study

Tamanna Howlader

The low power of gene-environment (G x E) interaction studies is of major concern in
genetic-epidemiolgic research. Past research involving binary outcomes has focussed
mainly on the development of efficient study designs to address this problem. This the-
sis explores an alternative strategy that uses quantitative “surrogates” of the “clinical”
binary outcome to improve power to detect G x F interactions.

Efficiency of the quantitative “surrogate” outcome X versus the binary outcome
Y is assessed for three hypothetical models of the relationship between the outcomes,
and their relationships to genetic susceptibility, exposure, and other risk factors. In
the first scenario, X is a risk factor of disease, and a mediator for the effect of G x E
interaction. In the second scenario, X is considered a marker of disease outcome.
Finally, repeated measures of the disease marker X are used to define alternative
binary and quantitative outcomes.

Simulations are used to estimate the power to detect G x E interaction in models
using these alternative outcomes. Some variation of such parameters as prevalence of
the genetic factor and exposure, strength of the underlying G x E interaction effect
on the binary outcome and surrogate, measurement errors in the outcomes, etc., is
introduced to assess their impact on the power. Results indicate that under certain
situations and combinations of relevant parameters, higher power can be achieved by
replacing the binary outcome by a quantitative “surrogate” outcome. For example,
the quantitative outcome provides higher power (36%) than the binary outcome (28%)
when the effects of G x E and F on Y are transmitted mainly through X. The use
of quantitative outcomes based on repeated measures, such as the average increase
in X per year, also results in higher power (100%) for detecting strong to moderate

interaction in the data relative to alternative binary outcomes { < 82%).
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Chapter 1

Introduction

1.1 Overview of genetic epidemiology

Traditional epidemiology has focussed largely on the role of environmental factors ( i.e.
infectious, chemical, physical, nutritional, and behavioral factors) in the etiology of
disease. However, studies suggest that most diseases are caused not by environmental
factors or genetic factors alone, but by a complex interplay of both these factors
[86],{109]. This recognition, coupled with the rapid development of molecular biology
and completion of the human genome project, have given impetus to investigations of
the effects of genes, and their interactions with environmental exposures. Such gene-
environment (G x E) interaction studies create specific analytical challenges including
issues of study design, analysis and statistical power.

Genetic epidemiology studies the role of inherited causes of disease in families
and populations. It is a hybrid discipline that integrates the research tools of epi-
demiology and human genetics [103]. Central to genetic epidemiology is the study
of gene-environment interactions (G x E), first considered by Haldane [44]. Accord-
ing to Ottman[87|, gene-environment interaction is defined as “a different effect of
an environmental exposure on disease risk in persons with different genotypes,” or,
alternatively, “a different effect of a genotype on disease risk in persons with different
environmental exposures.” Figure 1.1 illustrates the scope of genetic epidemiology as

the interface of genetic and environmental interaction in a process leading to a disease.
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Figure 1.1: Scope of genetic epidemiology.

1.2 Overview of the basic concepts of human ge-
netics

Genetic factors contribute to the variation of a trait. For example, individuals with
specific genotypes might be predisposed towards hypertension or may have a weaker
immune system which is not able to deal with a virus efficiently. To understand the role
of genetic factors in the occurrence of disease in human populations, it is important
to have a basic knowledge of the structure and function of genetic material, as well as
of the principles underlying its transmission in families and populations.

The genetic material of higher organisms is the DNA (deoxyribonucleic acid). It
is the constituent of the 23 chromosomes in the nucleus of the human cell and forms
the building block of life. Each DNA molecule has a sequence of bases along it, most
of which have no known function. About 3% of the bases are functional and code for
polypeptide chains or molecules of ribonucleic acid (RNA) [27]. The gene is thus a
working subunit of the DNA that contains the code for a specific product, typically a
protein such as an enzyme. It occupies a fixed position on a chromosome called the
locus and occurs in pairs at each of the loci along the pairs of chromosomes.

Different forms of a gene or DNA sequence that can exist at a single locus are
called alleles. The two alleles at each locus of the chromosome comprise the genotype
for that locus. If the two alleles are the same, the genotype is called homozygous,

otherwise, it is called heterozygous. The set of visible or measurable (i.e., observable)



characteristics of an individual is called the phenotype.

1.3 Importance of G x E interaction studies

Genetic factors contribute to most human diseases, conferring susceptibility or re-
sistance, or interacting with environmental factors [17], [87]. There is accumulating
evidence that allelic variations of many gene loci play important roles in determining
individual susceptibility to cancer [19], [101] and other chronic diseases [24]. In the
case of cancers, although environmental agents are responsible for initiation and sub-
sequent progression of the oncogenic process, genetic differences amongst individuals
in one or more of the effectors (e.g. enzymes, receptors) involved serve as predisposing
or susceptibility factors. Thus, many people exposed to a particular carcinogen (e.g.
cigarette smoking) will not develop cancer even if their exposure was high while other
highly susceptible individuals will develop cancer even if their exposure was low. Such
differences in response among individuals exposed to the same environmental factors
is observed for other diseases as well. For instance, some health conscious individu-
als with acceptable cholesterol levels may suffer myocardial infarction at age 40 while
others might seem immune to heart disease in spite of smoking, poor diet, and obe-
sity [45]. This suggests that manifestation of any disease, especially those chronic in
nature, is very likely to be the result of an inextricable interplay of biological as well
as environmental factors.

There are numerous examples of gene-environment interactions. For instance, syn-
ergy exists between variation in the lipoprotein lipase (LPL) gene and smoking on risk
of coronary heart disease [109]. The relation between the recessive gene for phenylke-
tonuria (PKU) and dietary phenylalanine in mental retardation provides another ex-
ample [112]. Gene-environment interactions have also been reported for alcoholism
[81], asthma [117], hypertension [66] and lung cancer [128]. Studies show that most
common defects such as neural tube defects, oral clefts, and congenital cardiovascular
malformations are explained not by environmental factors or genetic factors alone, but
by the interaction between gene variants at multiple loci and environmental exposures
[57]. When such interactions exist, the combined action of genes and environment

can increase or decrease disease risk beyond that due to purely genetic and purely



environmental actions.

The goal of gene-environment studies in epidemiology is to learn how the risk of
a disease changes as a joint function of genotype and exposure. They also promise
the eventual capability to tailor interventions more precisely, whether at a clinical
level, where the therapeutic agent prescribed or its dose may be chosen in light of
an individual’s genetic makeup, or at a public health level, where programs may be
targeted at high-risk subpopulations [113]. From a statistical standpoint, ignoring an
existing G x E interaction in an analysis can, erroneously, make the main effects of the
gene and/or the environmental factor appear nonsignificant [85], so that important risk
factors for the trait may be overlooked. Finally, failing to model a G x E interaction in
a segregation analysis can lead to incorrect conclusions with respect to determination
of the mode of inheritance [111] and estimation of the magnitude of genetic effects and

allele frequencies [25].

1.4 Methodological issues in studies of G x I inter-
actions

In recent years, there have been many studies of various G x FE interactions. Some of
these works are applied in nature, while others focus on methodological issues. Feasi-
bility, is an important issue among genetic-epidemiologists since the cost of genotyping
remains quite high. For studies involving rare genes or uncommon environmental ex-
posures, and moderate strength of the interaction effect, the sample size required to
achieve reasonable statistical power can be prohibitive [6], [38]. Thus, development of
efficient study designs and methods of analysis that reduce required sample size has
become an important area of study within research on G' x E interactions.

Among the traditional epidemiologic study designs, the case-control design is widely
used. Several authors have described methods for estimating power and sample size
in the context of unmatched case-control studies [32], [35], [42], [51]. However, such
studies may be affected by population stratification, also known as admixture, which
arises when genetically diverse populations are incompletely mixed [38], [118]. Among
the matched designs, the population-based case-control study [38] and family-based

designs ( case-sib, case-parent) [23],[121] are often used. Different matching strategies



have been proposed to increase power and feasibility for detecting G x FE interaction.
The flexible matching design [106], counter-matching design [6] and case-combined-
control design [5] are such examples. Another study that does not use controls and
under certain assumptions offers greater efficiency over the case-control design is the
case-only design [59]. Several papers have discussed power and sample size calcula-
tions for these alternative designs and provide comparisons, in most cases, with the
population-based case-control study [98], [105], [121].

Most studies on G x E interaction assume that the environmental factor is cate-
gorical and the genetic factor and outcome of interest are binary [32], [35], [42], [51].
However, the situation where the outcome is continuously distributed is becoming more
important as researchers try to investigate the genetic basis of quantitative traits, such
as blood pressure, obesity and insulin sensitivity. Methods have been described for cal-
culation of sample size for detection of G' x F interaction in the case of a continuously
distributed outcome with a categorical genetic factor and continuous environmental
exposure. The power in this context is found to depend on the allele frequency, the
size of the main effect and magnitude of the interaction effect [72]. In planning studies
to examine G x FE interaction, measurement errors are often introduced by using a less
precise exposure measurement or a proxy for the true outcome of interest. The effect
of measurement error in exposure, outcome or genotyping on estimation and power to
detect G x E interaction is an important area of research and has been investigated

by some studies [122],[123].

1.5 Rationale and objectives

Large-scale databases are necessary to detect G x F interactions, and to test and
confirm related hypotheses. This is particularly true when the factors under consid-
eration are rare and the interaction effect is moderate, a common situation in studies
of potential effect modification by specific, thus, relatively rare genotypes. Ensuring
adequate power to detect G x E interaction is, therefore, a major concern in genetic
epidemiology studies.

Most researchers concerned with this problem have focussed on optimizing the

study design. However, the use of complex study designs often introduces practical



difficulties such as increased cost, complexity for subject recruitment, and computa-
tional and/or conceptual difficulty. The use of surrogate outcome measures to improve
power of G x E interaction studies is a potentially interesting alternative, and an area
that appears to be relatively unexplored. The strategy to use alternative outcomes
could be especially attractive if an infrequent binary outcome, such as occurrence of
a rare disease, is replaced by a clinically relevant quantitative “surrogate” outcome.
For example, rather than using the presence of hypertension, investigators may con-
sider a quantitative outcome such as the value of systolic blood pressure or its change
over a certain time interval. Another interesting type of surrogate outcome may in-
volve estimated risk of the clinical outcome, such as coronary heart disease, usually
obtained from a multivariable model that aggregates the impact of several risk factors
[55]. Indeed, statisticians working on the methodology of time-to-event analysis have
demonstrated the advantages, in terms of power and efficiency, of using such surro-
gates to compensate for the low power of the analyses of highly censored data [67],
[75], [83] [92], .

On the other hand, the disadvantages associated with the use of a dichotomized
version of a continuous outcome are well known [64]. Thus, even if it is predictable that
power will increase when the binary outcome is replaced by a quantitative surrogate,
several practical and conceptual issues remain to be systematically addressed. First, to
guide researchers in their decisions regarding the choice between a binary, more directly
relevant outcome, and a quantitative surrogate, the expected gains in statistical power,
offered by the latter choice needs to be quantified. Secondly, such gains will most
likely depend on several aspects of the study design and the data structure, such as
frequency of the binary outcome, realistic sample size, strength of the G x E impact
on the outcome and on the surrogate, and errors in the measurement of both outcome
and surrogate variables.

In addition, the power comparison may depend on the type of biological relation-
ship between the surrogate and the clinical (binary) outcome. In some studies, the
binary outcome may be simply defined based on the categorization of the quantita-
tive variable. For instance, hypertension is defined as a diastolic blood pressure > 90

mmHg and abnormal renal function as serum creatinine > 1.4 mg/dl. In other situa-



tions, a quantitative variable may be an important, but not the only, determinant of
the outcome, i.e. a risk factor. In yet other contexts, a quantitative variable may be
a marker for either the presence of disease or for the underlying pathological process
that ultimately leads to the disease occurrence. Each of these numerous alternatives
has different implications for the relative power and efficiency of the analyses focussing
on a quantitative surrogate rather than on a binary clinical outcome.

Moreover, there are alternative ways a quantitative variable may be measured and
analyzed. For example repeated measures may be expected to increase the precision,
and thus the efficiency, of the analysis [115]. One way is to simply take the mean
of all available measurements, but this will be valid only if there is no systematic
change over time. Alternatively, one can use repeated-measures methods such as
Generalized Estimating Equations (GEE) models [70] or mixed models [14], [53] that
account for inter-dependence of measurements on the same subject. However, such
more complex analyses will require a carefully designed analytical strategy to account
for the differences in the number of observations, and time intervals between them.
Yet, another modelling strategy is to focus mostly on changes over time in the value
of a quantitative “surrogate” outcome. Here, the main challenge may be to separate
changes due specifically to G x E interaction from the “natural” but possibly non-
linear changes due to ageing and from spurious “changes” due to regression to the
mean.

In this thesis, a series of simulation experiments are used to address some of the
afore-mentioned issues, related to the efficiency of using quantitative surrogate out-
comes in the study of G' x E interactions. Previous research, that has focussed mainly
on binary outcomes [5], [6], [106], reveals that the main determinants of statistical
power for detecting G x E interaction are similar regardless of study design. Although
more involved designs, such as those requiring careful matching, especially within fam-
ily, provide higher relative efficiency and power than unmatched or loosely matched
studies [6], [17], [105], [121] many practical considerations make such matching difficult
or impossible to achieve. For these reasons, all simulations in this thesis assume the
simplest unmatched design, corresponding to a cross-sectional or a prospective cohort

study. It is expected that the main conclusions related to relative efficiency of using



quantitative surrogate markers, will be generalizable to other study designs. Moreover,
the use of a simple study design has the advantage of allowing a variety of conceptual
models regarding the (presumed) underlying relationships between the “clinical” bi-
nary outcome, such as presence or incidence of a disease, and a quantitative surrogate
to be studied.

Thus, the main objectives of this thesis are:

1. To design a series of simulations implementing alternative conceptual models for
the relationship between a binary “clinical” outcome and a quantitative “surro-

gate” measure,

2. To quantify the expected gain in power from using continuous surrogate outcomes
instead of clinical binary outcomes, and to assess its dependence on relevant

parameters,

3. To offer researchers some guidelines for outcome selection in particular situations

in the context of G x FE interaction studies.

1.6 Organization of thesis

This thesis is divided into five chapters. Chapter 1 was a brief introduction to ge-
netic epidemiology, the importance of gene-environment (G x E) interactions, and
the methodological issues involved in its assessment. Motivation for the current work
and objectives of the thesis have also been described. Chapter 2 describes statistical
concepts relating to G x E interactions and reviews current literature on power and
efficiency of G x E interaction studies, and the use of surrogate outcomes. Chapter 3
deals with the set up and implementation of the simulation experiments. It describes
the proposed hypothetical models for the relationship between the “clinical” outcome
and the quantitative “surrogate” measure, the assumptions involved, and the method
of data generation. Alternative outcomes are defined and the associated regression
models are also described. Chapter 4 presents the results of the simulations, while
Chapter 5 provides a discussion of the results. The S-Plus codes prepared by the

author for implementing the simulations in this thesis are given in Appendix A.



Chapter 2

Review of Literature on
Gene-Environment Interactions

2.1 Introduction

This chapter presents a review of scientific literature on gene-environment (G x E) in-
teractions. First, some fundamental concepts underlying the study of gene-environment
interactions will be introduced. The meaning of epidemiologic interaction and the dif-
ferent kinds of interactions will be discussed. Secondly, it reviews some alternative
definitions of G x E interaction put forth by various authors, and traces the develop-
ment of G x E interaction studies over the years. Conceptual models of the relationship
between gene and environment will also be described.

A brief overview of different study designs for detecting G x E interactions are
presented in this chapter. In addition, issues that are particularly important in the
appraisal of studies of G x E interaction, such as the feasibility, power and efficiency
of the design, are briefly described. Finally, a short discussion on surrogate outcomes,

and its meaning, as used in the context of this thesis, is given.

2.2 Meaning of interaction

Statistical interaction is a measure of the extent to which the effect of one factor
varies with changes in the strength, level or presence/absence of other factors in an
experiment. For instance, if the effect of exposure varies with age, this represents

an interaction between exposure and age. Thus, interaction does not exist between
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a covariate and a risk factor if the association between the covariate and outcome
variable is the same across all levels of the risk factor [50]. A related concept is that
of biological interaction which has been defined as the coparticipation of two risk
factors in the same causal mechanism for disease development [95]. When assessing
a biological interaction, the primary interest is to estimate the proportion of incident
cases of a disease among those who are jointly exposed to both factors that may be
due to the interaction of the two exposures. Many studies have suggested that for
addressing public health concerns regarding disease frequency reduction, biological
interactions are most relevant [62], [95], [127].

A distinction is sometimes made between qualitative and quantitative interactions.
Interaction between two factors, say, X; and Xz is described as qualitative if the
direction of the effect of X; on the outcome differs depending on the value of X,. For
instance, in the context of G x E interaction studies, if the exposure is protective i.e.
reduces disease risk in individuals with the low risk genotype, but the same exposure
becomes a risk factor in persons with the high risk genotype, then the interaction
is described as qualitative. A quantitative interaction, on the other hand, reflects
changes in the magnitude of X; effect with X;, which do not induce a change in the
direction of the effect [30]. Epidemiologists also distinguish between synergistic and
antagonistic interactions. A synergistic effect occurs when the combined effect of risk
factors is greater than the sum of the effects of each factor given alone. In contrast,
an antagonistic interaction results in a combined effect being weaker than the sum of
the individual effects.

Epidemiologists are interested in the quantification of interactions because such
effects have important public health implications [62]. They aid in predicting disease
rates and provide a basis for well-informed recommendations for disease prevention.
Moreover, they provide new insights into disease etiology. Detection of biologically
meaningful and statistically significant interactions is therefore an important objective

of epidemiologic studies .
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2.3 Definitions of gene-environment interaction

The formal study of gene-environment interactions has its roots in the quantitative
genetics of agriculture and animal breeding [29], [74]. In human genetics, the early
work on G x E interaction can be traced to Hogben [46], [47], [48] and Haldane [44],
and farther back to Galton [34]. The role of G x E interactions in human diseases has
been considered by various researchers. MacMahon [76] discussed the complexity and
variability of G x E interactions in human disease. Eaves [25] proposed a logistic model
to evaluate disease risk in the presence of G x E interaction. Ottman [85] illustrated
how epidemiologic principles could be used to investigate relationships between genetic
susceptibility and other risk factors for disease. Many authors have concentrated on
the methodological issues pertaining to detection of G x E interaction [6], [17], [32],
[35], [38], [42], [51], [104], while others have focussed on the role of such effects in the
etiology of cancer and other diseases [81], [109], [117],[128].

In the literature, G x F interaction has been defined in various ways. Caligari and
Mather [15] define G x E interaction as a situation ‘when, because of their genetic dif-
ferences, two or more individuals, families or genotypic lines respond differently, or to
different extents, to change in the environment’. Similarly, Lynch and Walsh [74] de-
fine G x F interaction as the case when ‘different genotypes respond to environmental
change in nonparallel ways’. Hohenboken [49] states that: ‘A genotype x environment
interaction exists when the differences between phenotypes due to differences in geno-
type differ from one environment to another. Equivalently a genotype X environment
interaction exists when the magnitude or direction of effects on phenotypic differences
due to specific environmental differences differ from one genotype to another.’

In statistical terms, gene-environment interaction is present when the effect of geno-
type on disease risk depends on the level of exposure to an environmental factor, or
vice versa [20], [22], [87], (see Figure 2.1). In a G x E interaction study, the basic ques-
tion is whether different genotypes have a different relationship to the phenotype in
different environments. The study design therefore requires that the contrasting geno-
types (e.g. AA vs aa) be studied under two or more sets of environmental conditions.
If the analysis reveals a difference of genotype-phenotype relations in the different en-

vironments for persons with contrasting genotypes (as illustrated in Figure 2.1), this
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Figure 2.1: Hypothetical gene-environment interaction: shift in the relative relation-
ship between expressed phenotypes when environment changes among individuals with
different genotypes (i.e. AA vs aa).

would indicate presence of G x E interaction [22]. It is important to recognize that
the presence or absence of G x E interaction on the statistical level depends critically

on the scale one chooses to measure effects (i.e additive or multiplicative) [43], [120].

2.3.1 Statistical models of G x F interaction’

The statistical quantification of G x E interaction is model-dependent. Therefore,
conclusions regarding presence or absence of G x E interaction will depend on the
statistical model chosen to represent the state of no interaction. There are two models
of interaction: additive and multiplicative. If the effects of two variables meet the
condition of ‘no interaction on a multiplicative scale,” the data can be said to fit a
‘multiplicative model,” and if their effects meet the condition of ‘no interaction on an
additive scale,” the data can be said to fit an ‘additive model’ [87].

Consider two binary factors G and F, where G represents genetic susceptibility and
E represents exposure. Let G; and Gy denote the presence and absence of the high risk
genotype, respectively, and similarly let Ey and Fy denote presence and absence of the

exposure. The two states of interaction may be expressed in terms of the mathematical
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Table 2.1: Epidemiologic measures of effects of high-risk genotype (G) and environ-
mental exposure (E)

I. COHORT STUDY

Disease G Gy
status E, | E, E, | E,
Affected a b e f
Unaffected c d g h
Risk (rq;) m=z= | Tm=gg || T0= P Too = f—ih
Relative risk || RRi; = 7 | RRo; = ™ | RRjp =72 | RRoo = 1.0 ref.)
II. CASE-CONTROL STUDY
Disease G Go
status E, | E, E, | E,
Case a b e f
Control c d g h

QOdds ratio “ OR11 = g—? I OROl = %z I| ORm = Z—’; | OROO = 1.0 (ref.) ]
Source: Ottman [87], Table 1, pp.765

relationships among the risk ratios (or odd ratios). Table 2.1, Panel I, shows the data
layout for a cohort study in which the effects of environmental exposure and genotype
on disease risk are assessed [87]. Data from a cohort study can be used to compute four
relative risks (RR) using persons with no high risk genotype and no exposure as the
reference group. Thus, RR;; denotes the relative risk for persons with the high risk
genotype and exposure, RRjg denotes the relative risk for persons with exposure but
no high risk genotype, and so on. The corresponding table for the case-control study

is shown in Panel IT of Table 2.1 using the odds ratio as the measure of association.

Additive model:

On an additive scale, the effects of genotype and exposure meet the condition of

‘no interaction’ if
RRy1 = RRy1 + RR1p — 1 (2.1)

or (for case-control studies), if

OR11 - OR01 + ORm - 1 (22)
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That is, the effect of an environmental exposure differs among persons with

different genotypes (interaction on an additive scale) when r1; — ro; % 710 — To0-

Multiplicative model:
On a multiplicative scale, the effects of genotype and exposure meet the condition

of ‘no interaction’ if

RRH = RROl X RRlo (23)

or (for case-control studies), if
ORU = OR01 X ORm (2.4)

If risks are measured on a multiplicative scale, the effect of an environmental
exposure differs among persons with different genotypes (interaction on a mul-

tiplicative scale) when 711 /791 # 710/700-

For both additive and multiplicative models, the equations in (2.1)-(2.4) represent
conditions for “synergistic” interaction if the ‘= sign is replaced by ‘>’ [87].

There has been intense debate on the question of which scale of measurement
(additive or multiplicative) should be used in studies of G x F interaction [63], [65],
[93], [116]. The decision regarding choice of an appropriate scale is governed by many
factors, including the main objective of the investigation (discovery of etiology, public
health planning, etc.) and the hypothesized pathophysiologic model [87]. According
to Rothman et al. [95], if the primary goal is to unravel disease etiology, it may be
more appropriate to use a multiplicative scale whereas if it is to predict the number

of cases in the population, it may be more appropriate to use an additive scale.

2.4 Conceptual models of relationship between geno-
type and exposure

Recognition of the existence of different types of gene-environment relationships is
important for gaining insights into disease causation so that effective disease prevention
strategies may be developed. Ottman [85] proposed five biologically plausible models
of the relationship between a high risk genotype and an environmental risk factor in

terms of their effect on disease risk. These models are shown in Figure 2.2.
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Figure 2.2: Five plausible models of relations between high risk genotype and envi-
ronmental exposure, in terms of their effect on disease risk.

Model A does not represent interaction, however, it is an important mechanism
through which genetic factors influence disease susceptibility. In this model, the effect
of the genotype is to produce or increase expression of a “risk factor” that can also
be produced nongenetically. An example is the relation of the autosomal recessive
disorder, phenylketonuria (PKU), to high blood phenylalanine and mental retardation
[85]. PKU results from a genetic variant that leads to deficient metabolism of the
amino acid phenylalanine. In the presence of normal protein intake, phenylalanine ac-
cumulates and is neurotoxic. Individuals who are homozygous for the PKU gene (high
risk genotype) have a buildup of blood phenylalanine after birth (exposure), and the
high blood phenylalanine levels cause mental retardation (disease outcome). However,

mental retardation can also result from exposure to high blood phenylalanine in per-



16

sons who do not have the high risk genotype i.e. in persons who are not homozygous
for PKU. Phenylanine crosses the placenta, and high maternal blood levels produce
mental retardation in the child, regardless of its genotype. It is important to note that
the high blood phenylalanine level is an intervening variable [108] in Model A, and
the effect of exposure is the same in persons with and without the high risk genotype.
Thus, model A does not involve an interaction.

Model B (E-modification model) considers a mechanism in which the genotype
exacerbates the effect of the risk factor, but there is no effect of genotype in persons
without the exposure. That is, 8. > 0,8, = 0, F4e > 0. One example is the relation
of xeroderma pigmentosum (high risk genotype), an autosomal recessive disorder, to
ultraviolet (UV) radiation (exposure) and skin cancer (disease outcome) [85]. Excessive
exposure to UV radiation increases risk for skin cancer in the general population,
but individuals with xeroderma pigmentosum are deficient in an enzyme required for
repair of DNA damage induced by UV radiation, and hence have even higher risk. If
sun exposure could be prevented completely in these persons, they would not have
increased risk for skin cancer.

In Model C (G-modification model), the exposure exacerbates the effect of the
high risk genotype, but there is no effect of exposure in individuals with the low-risk
genotype. That is, . = 0,8, > 0,84 > 0. An example of this mechanism is the
autosomal dominant disorder pophyria variagata [85]. Individuals with this disorder
have skin problems of varying severity, including unusual sun sensitivity and a tendency
to blister easily. When exposed to barbiturates, an innocuous exposure in the general
population, they experience acute attacks that may involve paralysis or even death.

In Model D (Pure interaction model), both exposure and the high risk genotype
are required to increase disease risk. That is, 8. = 0,8, = 0, B4 > 0. For example,
some people with glucose- 6-phosphate dehydrogenase (G6PD) deficiency (an X-linked
recessive disorder) develop severe hemolytic anemia if they eat fava beans. Dietary
exposure to fava beans does not produce this reaction in individuals without G6PD
deficiency [85].

Model E (GE-modification model) assumes that the exposure and genotype each

have some effect on disease risk, and when they occur together risk is higher or lower
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than when they occur alone. That is, 8. > 0, By > 0,04 # 0. The relation between
a-1- antitrypsin deficiency (high risk genotype), smoking (exposure), and chronic ob-
structive pulmonary disease (COPD)[disease outcome] is an example [85]. Risk of
COPD is increased both in nonsmokers with a-1-antitrypsin deficiency and in smokers
without a-l-antitrypsin deficiency. However, risk is increased to a greater extent in

smokers with a-1-antitrypsin deficiency.

2.5 Study designs for detection of G x E interaction

When the genetic factor and/or environmental exposure are rare, and the interaction
effect is moderate, sample sizes required to detect G x E interactions can be pro-
hibitive [38], [51]. Even when the required sample size is attainable, the cost involved
in genotyping large samples can render such studies infeasible. Thus, search for effi-
cient study designs that reduce required sample size has become an important area of
genetic-epidemiologic research.

Most study designs for gene-environment interactions are variants of the common
epidemiological cohort and case-control designs [62] (Figure 2.3). In studies of human
mutations, both main designs are known to have their advantages and disadvantages
[58]. In a cohort study, a group of disease-free individuals is identified, perhaps on
the basis of exposure to a risk factor of concern, and then followed up over time
to determine eventual disease incidence in exposed and unexposed sub-groups of the
population. For a gene-environment interaction study, all of the subjects could be
exposed to a particular environmental risk factor, and comparison of disease incidence
between different genotypes would be of primary interest. The interaction effect ,ége is
estimated by fitting a logistic regression model containing the G x E interaction term
and the main effects of G and E to the full cohort data.

In studies of disease incidence, the long follow-up necessary for the cohort design
can be overcome by using a retrospective cohort. However, for gene-environment inter-
action studies, this would necessitate archiving suitable biological samples such that
genotyping of all members of the cohort could be performed [21]. In the nested case-
control design (or case-control study nested in a cohort study), once sufficient cases

have accrued within the cohort, appropriate controls are selected from the remainder
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Figure 2.3: Study designs to detect gene-environment interactions.

of the cohort [21], [68]. Genotyping is required for only those cases and controls se-
lected for the nested case-control component of the investigation. The use of nested
case-control analysis of archived samples can potentially minimize the disadvantages
of the cost of genotyping an entire cohort [68].

The case-control design is more commonly used in studies of gene-disease associ-
ations and gene-environment interactions for late-onset diseases [60]. In unmatched
case-control designs, a major disadvantage is the low power and efficiency of these
designs and bias in the estimates of genetic effects due to confounding by ethnicity
[121]. If the allele frequency at a particular genetic locus varies across ethnic groups
and if ethnicity (or some unobserved factor that varies by ethnicity) is a risk factor for
disease independent of that locus, then failure to adequately control for ethnicity can
result in false associations between the gene and the disease [40] (see Figure 2.4). This
phenomenon is known as population stratification or genetic admixture [39]. To over-
come these limitations, alternative designs are used that employ different matching

strategies. There are three basic types of matched case-control studies:
e Population-based case-control design

e (Case-sib design
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e Case-parent design
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Figure 2.4: Confounding due to ethnicity or genetic ancestry.

2.5.1 Population-based case-control design

In this design, a random sample of cases (individuals with the disease of concern)
is compared with a group of controls (individuals who are free of the disease at the
time of the study), in terms of potentially causal genetic and exposure factors [21].
Each case is matched to one or more controls selected from the source population of
the case. Adjustment for potential confounding variables is accomplished by selecting
controls subject to the matching criteria (e.g. age, similar ethnic background, etc.).
By using unexposed individuals with no susceptibility genotype as the referent group,
odds ratios (OR’s) for all other groups can be estimated under either multiplicative
or additive models. The main advantage of this design is that the main effects of the
environmental exposure and genetic susceptibility, as well as their interactive effect,
may be estimated [42].

The power of studies with the population-based case-control design is influenced
by the frequency of the exposure of interest and by the population prevalence of the
susceptible genotype. It has been suggested that both need to be relatively common
(i.e. > 25%) for case-control studies to detect G x E interactions with a reasonable
probability [42]. Thus, a disadvantage of this design is that it may not be appropriate
for the study of G x E interaction involving rare genes or uncommon environmental ex-
posures (assuming reasonable strength of the interaction effect). Moreover, population

stratification adversely influences this design when there is poor ethnic matching.
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Analysis

When the outcome of interest is binary, a standard method for the analysis of matched
data is conditional logistic regression [12], [62]. Conditional logistic regression can be
used to simultaneously model genetic and environmental main effects, as well as G x F
interaction. This multivariable procedure is specifically designed for use when there
are small stratum-specific sizes. Thus, it is ideally suited to matched study designs
and should be used to avoid biased parameter estimates.

Consider a matched case-control study involving N cases, where the ith case is
individually matched to R; (R; > 1) controls on one or more variables. Thus, the
total number of cases and controls in the ith stratum is m; = 1 + R;. Let G, G,
and (g, denote parameters for the effect of a gene (G), environmental factor (E),
and G x F interaction, respectively. For a dichotomous response variable Y with
Y =1 indicating a case and Y = 0 indicating a control, consider fitting the multiple

conditional logistic regression model,
logit[Pr(Yi; = 1)] = Bo + ByGij + BeEij + ByeGis Eiz (2.5)

where 7 = 1,2,...,N and 7 = 1,2,...,m;. Then, the conditional likelihood for a
sample of N matched sets has the form:

N eﬂgGi1+ﬁeEi1+ﬁgeGi1Ei1

L(ﬂgvﬁe’ ﬂge) = L ZjEM(‘) eBeGij+BeEij+BgeGij Eij (26)
= i

where the index ‘1’ in the numerator of (2.6) refers to the case and the set M () includes
all subjects in matched set ¢ [38]. Parameters (3,, 0., and Gy, are estimated from (2.6)
using the method of maximum likelihood (ML) [50], [62]. The ML estimates (3) are
consistent estimates of the log-odds ratios from the logistic regression model (2.5). The
baseline probability of disease in the population, corresponding to unexposed subjects
with no “adverse” genotype, is given by 7= (Bo)

+exp (fo)’
OR, = exp (B.) and OR,. = exp (B,e) are the genetic, environmental and interaction

and quantities OR, = exp (F,),

odds ratios, respectively.
The model without the G x E interaction term in (2.5) is the standard multiplicative
odds ratio model. Departures from this model can be assessed by fitting (2.5) and

calculating a Wald’s test or a score test for the interaction term g, or a likelihood
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ratio test comparing (2.5) with the standard multiplicative odds ratio model. Thus,
ORg. is a measure of departure from the standard multiplicative odds-ratio model.

To test:

HO : /Bge =0
Hl : /6_(]6 7é 0:
using the score test, compute
U617 (82 U(B°) ~ xi. (27)

Here, ﬁo is the MLE of 8 under Hy, U(f3) is the vector of first partial derivatives of
In L with respect to 3 where L is given in (2.6), and I(3) = —H(8) or E[-H(3)],
where H((3) is the matrix of second partial derivatives of In L with respect to 3. The
significance of fg in (2.5) can be determined by comparing the residual chi-square in
(2.7) with a chi-square with one degree of freedom. Alternatively, one may compute
the Wald statistic:

_ B
= 550 N0, 1]. (2.8)

SE(Bge) is calculated from I“I(B), where 3 is the ML estimate for the vector of

parameters 3. For the likelihood ratio test, we compute:
A =20 — L% ~ x? under H,. (2.9)

Here, L' = In[L(B,, Be, Bye)] and Lo = In[L(f,, 3.)] are the maximum of the log-
likelihood based on (2.6) under H; and Hy respectively.

2.5.2 Case-sib design

Determination of ethnicity in a large-scale epidemiology study is difficult, especially
with the great diversity in cultural backgrounds that exists in urban areas where
studies are most likely to be conducted. Thus, the population-based case-control
design may not be optimal for the study of genes since it does not adequately match
cases to controls on ethnic background [40]. In contrast, the main advantage of family-

based case-control studies (case-sibling and case-parent designs) is their freedom from
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population stratification. For these reasons, family-based studies are of particular
interest in genetic epidemiology.

In the case-sib design, each case is matched to one or more of his/her unaffected,
i.e. disease-free, siblings [39], [40]. This has the advantage that cases and controls are
perfectly matched on ethnic background. For complex diseases with variable age at
onset, controls are sampled from the ‘risk set’ consisting of those siblings who were
disease-free at the age the case became affected (the index age) [40]. A sibling who is
disease-free at the index age but is known to later develop the disease is also eligible
as a control. Data on known environmental risk factors at the indez age are collected
for both cases and controls. Validity of the case-sibling design depends on a number
of important factors. Firstly, only recent incident cases should not be considered since
the age-matching requirement restricts control selection to older siblings. This could
lead to confounding of the effects of environmental exposures that have secular trends
or birth-order effects [40], and is a potential source of bias in estimates of G x E
interaction effects [120]. Secondly, inclusion of controls who have not attained the

index age can pose problems if time-dependent covariates are involved [39)].

Analysis

Standard methods for the analysis of matched case-control data can be applied to the
case-sibling design. These include McNemar’s and Mantel Haenszel chi-squared tests
and the associated estimates of the odds ratio [12]. Conditional logistic regression can
be used to simultaneously model genetic and environmental main effects, as well as
G x E interaction. The conditional likelihood for a sample of N case-sibling sets has the
same form as in (2.6) where the index ‘1’ refers to the case, and the set M (7) includes
the case and all controls from family 7. If controls are matched to the case’s age and
selected according to the principles of risk set sampling, the quantities R, = exp(0,),
R, = exp(f.), and Ry = exp(fye) can be interpreted as the corresponding hazard-rate
ratios [120]. If age of onset is not a factor, then these quantities represent odds ratios.

Score, Wald and likelihood ratio tests [50] based on (2.6) can be formed as usual to
test hypotheses about main or interactive effects. The conditional likelihood assumes

that the disease status in sibships is independent, given their covariate information (G
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and E) [39]. Thus, if there are more than two subjects per family, these tests will be

valid only if disease outcomes are conditionally independent within families.

2.5.3 Case-parent design

The case-parent design has been considered by many authors for detection of G x F
interaction [77], [98], [114]. In this design, ‘cases’ refer to the parental alleles or geno-
types transmitted to an affected offspring and the ‘controls’ refer to the parental alleles
or genotypes not transmitted. This can be cast as a 1:1 matched case-control analy-
sis with each parent-offspring pair as a matched set and analyzed with conditional
logistic regression (denoted ‘allelic’ transmission disequilibrium test [TDT]) [77]. Al-
ternatively, one may consider a 1:3 matched analysis with one case genotype and three
‘pseudo-siblings’ through conditional logistic or log-linear regression (‘genotypic’ TDT)
[98], [114]. ‘Pseudo-siblings’ refers to the three genotypes that were not transmitted
to the case. For example, if the father’s genotype is Aa, the mother’s Aa, and the
case’s AA, the pseudo-sibling genotypes are Aa (paternal A, maternal a), aA and aa.
Genotypes are collected from the case and his/her two parents, while environmental
data are required only from the case [98].

Validity of the case-parent design depends on the assumption that parental alleles
are transmitted with equal and independent probability in the population. It also
assumes that the ability to recruit a case is independent of the genotype given the
parental genotypes, and that the genotyped “parents” are in fact the case’s biological

parents [118].

Analysis

Conditional logistic regression for 1:3 matched sets provides a flexible framework for
analyzing case-parent data [38], [98]. Estimation of a main environmental effect is not
possible from this design since the three possible pseudo-siblings are perfectly matched
to the case except for genotype. Thus, the likelihood including the genetic main effect
and a G x F interaction has the form:

eBoGii+BgeGir EBiy

L(,@gyﬂge) = H ZG . BeGi+BgeGij Eix
i11Gip

N
(2.10)
i=1
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where the index ‘1’ refers to the case. The summation in the denominator of (2.10)
is over the four possible genotypes that could be transmitted to an offspring given
parental genotypes G;p. The quantities R, = exp(f,), and Ry = exp(f,.) can be
interpreted as relative risks [120].

An important assumption for valid estimation of the interaction effect Gy, requires
that G and E are independently distributed in the population. A limitation of this
design is that even if the independence assumption does hold, it is difficult to interpret
G x E interaction in the absence of knowledge of the main effect of exposure. This is
because without the main effect of exposure, it would not be possible to determine how
the effect of the exposure on disease risk varies among individuals with and without

the susceptibility genotype [118].

2.5.4 Alternative designs for rare factors or disease outcome

When either the exposure or the susceptibility genotype is rare, multi-stage designs
may be employed to overcome the limitations of conventional case-control studies. The
basic principle of these designs is to increase, in some way, the numbers of cases and/or
controls with the rare factor of interest. Andrieu et al. [6] proposed counter-matching
cases to controls as a technique for using available data at the time of sampling to
enrich the sample for informative matched sets. Controls are selected to increase the
variation in factors of interest in a case-control set relative to random sampling. The
main purpose of this design is to enhance power to detect G' x E interactions involving
rare genes (G) or uncommon environmental exposures (E). Another multistage design
is the balanced design [12], [119] which, rather than selecting a subset at random,
selects cases and controls in order to oversample for the rare factor of interest. The
oversampling is taken into account in the analysis to obtain unbiased estimates of the
effects of individual factors and their interaction [6].

Stirmer and Brenner [106] introduced flezible matching strategies with varying
proportions of a matching factor among selected controls to detect and estimate G x E
interactions. Recently, Andrieu and Goldstein [5] proposed the case-combined-control
design that uses related and unrelated controls simultaneously.

Several authors have proposed the use of case-only designs as an alternative to case-
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control designs to study gene-environment interactions [4], [59], [118]. This design has
been used in a number of studies [10], [79]. When the disease outcome of interest is rare,
case-only studies offer greater precision for estimating gene-environment interactions
than case-control studies of comparable size [126]. Interactions are assessed by carrying
out logistic regression analysis using only cases, treating G as the outcome. Validity
of the design hinges on one assumption - that the genetic and environmental factors
of interest are independent of one another. A disadvantage of the case-only approach
is that bias could arise because of incomplete mixing of subpopulations that differ by
exposure prevalence and genotype prevalence, even if their baseline risks of disease do
not differ [118]. Moreover, effects of the individual genotype and of the environment

cannot be measured.

2.6 Power, efficiency and sample size considera-
tions in studies of G x E interaction

Since investigation of interactions requires sample sizes much larger than those needed
to investigate main effects [6], a major issue in the study of G X F interactions is the
feasibility of the study design, in terms of ability to recruit and evaluate a number of
subjects sufficient to ensure adequate statistical power to detect clinically meaningful
interactions. Power and efficiency considerations are also critical for the statistical
evaluation of models of interaction [35]. In the context of unmatched case-control
studies, several studies have described methods for estimating sample size and power
in studies of G x F interaction [32], [35], [42], [51]. The low power and efficiency of
unmatched designs [105] has led to the development of various matching strategies for
estimation and detection of G x E interaction.

Stiirmer and Brenner [105] studied the effect of matching on an environmental risk
factor on the efficiency and power to detect G x E interactions. Comparisons of sample
size requirements for frequency matched versus unmatched case-control studies were
made by examining differences in the number of unmatched and matched controls
required to obtain a similar level of power.

Witte et al. [121] made some comparisons of efficiency in the case-sib, case-parent

designs and matched case-control design, for a limited number of disease models. A
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method for computing power and sample size to detect G x E interaction in the
case-parent design was described by Schaid [98]. Feasibility of this design was com-
pared with the unmatched case-control design. Gauderman [38] provided a general
framework for the calculation of power and sample size in the context of matched
case-control, case-sib and case-parent designs for a range of conceptual G x F interac-
tion models, and studied their efficiencies relative to one another. Recently, Chatterjee
et al. [17] proposed a novel conditional likelihood approach for the analysis of family-
based studies under the assumption that genetic susceptibility and environmental ex-
posure are distributed independently of each other within families in the source pop-
ulation. Based on these methods, they evaluated various family-based study designs
by examining their efficiencies relative to each other, and their efficiencies compared
to a population-based case-control design of unrelated subjects.

Andrieu et al. [6] proposed the counter-matching design to increase a study’s power
to detect G x E interaction when one of the factors under study is rare. Efficiency
of the design was evaluated and comparisons made with a full cohort study with no
matching and a standard nested case-control study. Sample sizes (number of counter-
matching sets) were calculated for a design that counter- matched on surrogates of
both G and E.

Power and efficiency of the flexible matching design was assessed by Stiirmer and
Brenner [106] under a variety of assumptions regarding the prevalence and effects
of environmental exposure and the genetic susceptibility, as well as their association
in the population. Results were compared with the unmatched case-control study.
Saunders and Barrett [97] studied sample size requirements for this design under an
optimal matching strategy. Comparisons with regard to efficiency were made with an
unmatched population-based case-control study and a case-only design for a range of
magnitudes of risk factor effects and frequencies.

The efficiency of the case-combined-control design relative to the classical case-
control study was studied by Andrieu and Goldstein [5]. They provided examples to
compare efficiency of this design with the classical case-control design.

The effect of measurement errors on the feasibility of a G x E interaction study has

been investigated by Garcia-Closas and Lubin [36] for binary exposure and outcome,
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and by Wong et al. [122] in the case of continuous exposure and outcome.

2.6.1 Methodologies for assessing feasibility and power of de-
signs

The power of a test is the probability 1 — 3 that the test will reject the null hypothesis
Hy when it is false. Here, (3 is the probability of a type II error, that is, the probability
of accepting Hy when it is false. Statistical power analysis characterizes the ability of
a study to detect a meaningful effect size. It also determines the sample size required
to provide a desired power for an effect of interest.

There are many factors involved in a power analysis, such as the research objective,
design, data analysis method, sample size, type I error («), effect size and variability.
In G x E interaction studies, statistical power clearly depends on the prevalence of
the at risk genotype and the magnitude of both absolute and relative risks. Hence,
for polymorphisms present in a large proportion of the source population and with a
high relative risk, only small numbers of subjects are required, whereas large samples
are required when the population prevalence of the susceptible genotype is small and
the relative risk is low.

In designing a G x E study, it is essential that power calculations are undertaken in
advance to obtain a realistic estimate of the number of subjects necessary to ensure a
statistically meaningful outcome. For some statistical models and tests, power analysis
calculations are exact in the sense of utilizing a mathematical formula that expresses
power directly in terms of the relevant design parameters. Such formulae typically
involve either enumeration or noncentral versions of the distribution of the test sta-
tistic [16], [28]. In the absence of exact mathematical results, approximate formulae
can sometimes be used. When neither exact power computations nor reasonable ap-
proximations are possible, simulation provides an increasingly viable alternative [16],
[28].

Formulae for estimating minimal sample sizes, both for cohort and case-control
studies, are available for standard study designs [12], [94], [99]. In G x E interaction
studies, asymptotic methods such as the likelihood ratio (LR) method are commonly

used for estimation of sample size and power for hypothesis testing. The steps of LR
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sample size or power calculations maybe outlined as follows [13]:

1. A complete alternative hypothesis parametric model is specified which represents
the true state of nature that is to be detected. This specification includes the

model, the values of the parameters, and the design of the experiment.

2. Constraints are specified on the model parameters that transform the alternative
hypothesis (H;) into the null hypothesis (Hp). Usually, this includes constraining

the regression parameter for G x E product to zero.

3. The LR methods use the assumption that for sufficiently large sample sizes, the
distribution of twice the loglikelihood ratio is distributed approximately as a
non-central 2. The loglikelihood L! is obtained by fitting the data by maxi-
mum likelihood using the unconstrained model (i.e. under H;). Similarly, L0 s
obtained using a model incorporating the constraints of the null hypothesis. The
degrees of freedom of the non-central x? is K, the total number of constraints.
If the null hypothesis is correct, the distribution of the likelihood ratio statistic

A = 2(L* — L) is approximately a central x? (i.e. non-centrality parameter,
n=0).

4. The critical value, C, is computed from the two-sided significance level, a, from

the cumulative central x? distribution:
a=1-PH3K)<C) (2.11)

Power is the probability that the non-central x? distribution with non-centrality

parameter, 7, exceeds this critical value, that is

P[*(K;n) > C) (2.12)

5. If sample size is to be determined, 7 is chosen to provide the desired power. The
sample size is chosen to yield this value of 1 using the fact that the non-centrality

parameter is linear in the sample size.

It is important to note that LR methods are asymptotic yielding correct values as

the sample size gets large. The advantage of these methods over simulation is that
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they are simple and cheap to compute. They allow rapid comparisons of different

designs and provide a direct method of calculating requisite sample sizes [13].

Binary outcomes

Gauderman [38] used asymptotic methods to estimate sample size for test of G x E
interaction for matched case-control, case-sib and case-parent designs. His calculations
were based on the LR test statistic A for a conditional regression analysis of matched
case-control data. For N matched sets, NA is the non-centrality parameter of the x?
- distribution under Hy. When G and E are both dichotomous, the test on interaction

has one degree of freedom and N can be computed as
N = (ZQ/Q + Zﬂ/g)Z/A (213)

with a as the two-sided type I error, 8 as the type II error and z, as the (1 — u)th

percentile of N'(0,1). For a given N, power was computed as

1= 6= B(y/(NA) ~ 70/2) + &(~V/(VA) — 20/2) (2.14)

Saunders and Barrett [97] used the LR method of Self et al. [100] to estimate sample
size for the flexible matching design. LR methods have also been used by Schaid [98]
for the case-parent design.

To compare efficiency of alternative designs, asymptotic relative efficiencies (ARE)
are often computed. The ARE of design B relative to A is defined as the ratio of the
asymptotic G x F interaction variance for design A to the corresponding variance for
design B. Andrieu et al. [6] used this definition to compare efficiency of the counter-
matched design with the classical 1:3 nested case-control and full cohort designs. An-
drieu and Goldstein [5] computed ARE to compare efficiency of the case-combined
control study with the classical case-control design. To evaluate the efficiency of the
family-based designs relative to the case-control design, Gauderman [38] estimated the
number of matched sets (V) required for both designs to achieve 80 percent power for
rejecting Hy : B4 = 0 and evaluated the ARE as the ratio of IV for the case-control
design to IV for the family-based design.
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Quantitative outcome measures

The above studies considered sample size calculations for a binary environmental ex-
posure, binary genetic factor and a binary outcome event variable. Luan et al. [72]
described sample size calculations for the situation where the outcome variable and en-
vironmental exposure were continuously distributed. The test statistic for the G x E
interaction had a non-central F-distribution under H;. Using the non-central F-
distribution and non-centrality parameter, the power to detect an interaction effect,
or alternatively, the sample size necessary to detect a given interaction with fixed power
and significance may be calculated. Wong et al. [122] took into account measurement
errors in the continuous outcome and exposure in their sample size and power calcula-
tions. They presented an LR statistic for testing Hy : G4 = 0 (in the situation where
there was measurement error in assessment of £ and genotype could not be assessed
correctly) which was approximately distributed as a non-central x? under H; with 1

degree of freedom and non-centrality parameter ¢,.

Role of Simulations in Assessing Efficiency

Simulation has become an important tool in power analysis. This entails specifying
hypothetical “plausible” values for model parameters and using them to randomly gen-
erate a large number of hypothetical data sets. By applying the statistical test to each
data set, power is estimated as the percentage of times the null hypothesis is rejected.
While the simulation approach is computationally extensive, faster-computing makes
this less of an issue. A simulation-based power analysis is always a valid option, and,
with a large number of data replications, it can often be more accurate than analytical
approximations [16].

Simulations are increasingly being used in studies of G x E interaction. To compare
the efficiency of matched and unmatched case-controls studies in G x E interaction,
Stiirmer and Brenner [105] simulated frequency matched and unmatched case-control
studies for a wide range of scenarios regarding the prevalence of £ and G in the
population, their association with disease, and the strength of the interaction between
these factors. Simulated samples were analyzed with multivariable logistic regression.

The power of the matched and unmatched study design to detect G x E interaction
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was calculated by the proportion of simulated samples in which the two-sided P value
for the test of the estimated interaction parameter was smaller than 0.05. Sample size
requirements were compared by observing the numbers of controls per case required
to obtain certain levels of power, for a given combination of parameter values of the
basic scenario.

Andrieu and Goldstein [5] used simulations to assess the efficiency of the case-
combined-control design relative to a classical case-control study under a variety of
assumptions. Stirmer and Brenner [106] evaluated power and efficiency of the flexible
matching design under a variety of assumptions regarding the prevalence and effects
of F and G as well as their association in the population. For each set of parameters,
10,000 case-control studies were simulated using varying degrees of matching and each
simulated study was analyzed using unconditional logistic regression. For each degree
of matching, the relative efficiency of estimation compared with the unmatched design
was obtained by dividing the variance of the regression coefficient of interaction across
replications in the unmatched studies by the variance observed in studies with the
corresponding degree of matching. Chatterjee et al. [17] also used simulations to
evaluate the relative efficiencies of different family-based designs and analytic methods
using the population-based case-control design as the common reference point. The
quantity 7 = ﬁge / sd(ﬁge) was evaluated where Bge and sd(Bge) are the empirical mean
and the empirical standard error of the estimate of ;. from a given design over different
simulated data sets. The asymptotic relative efficiency of the two designs in estimating
the interaction was estimated by the ratio of 72 for the two designs. It should be
noticed that this ratio is not equivalent to the ratio of the power obtained with the

two designs.

2.6.2 Comparison of study designs based on feasibility and
power

Studies comparing unmatched and matched case-control designs reveal that more than
double the number of unmatched than matched controls are needed to obtain a similar
level of power in detecting G x F interaction [105]. Comparisons with respect to re-

quired sample sizes have been made between the standard matched case-control stud-
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ies: population-based case-control, case-sibling and case-parent designs [38]. These
reveal that family designs need smaller sample sizes than the population-based case-
control design. When genetic susceptibility is rare, the case-sibling design is preferable
(in terms of smaller sample size) to the case-parents design [38].

Sample size requirements for the flexible matching design and case-combined-
control design have also been compared to the traditional case-control design. Both
are found to require smaller sample sizes than the case-control design [5], [97]. For the
case-combined-control design, when the genetic factor G is rare, the required sample
size is only realistic when there are strong G x E interaction and G main effects [5].
Feasibility of the counter-matching design has been evaluated [6], but its sample size
requirement is yet to be compared with other designs. When the frequency of G is
very small, the needed sample size is only realistic when factor £ is common and the
interaction effect is high.

Measurement errors have an impact on the power and feasibility of G x E interac-
tion studies. Misclassification of a binary environmental factor biases a multiplicative
interaction effect toward the null value. This result is also true for misclassification
of genetic factors. As a result of misclassification, the sample size required to detect
G x E interaction with a given statistical power increases [36].

The studies reported above all involve dichotomous disease and exposure variables,
and define interaction on a multiplicative scale. Feasibility studies have also been made
for continuous environmental exposures and disease outcomes [72], [122]. These reveal
that in the absence of measurement errors, smaller sample size is required to detect
a moderately strong interaction with a given level of power if the association between
the exposure and outcome is strong. Power is markedly increased if the interaction
is very strong. Measurement errors of the exposure and/or of the outcome, and the
degree of genetic misclassification, are also determinants of sample size. Larger sample
sizes are required for studies with poor assessment of the exposure and/or outcome.
However, impact of misclassification in the assessment of genotype is relatively minor
except when the frequency of the minor allele is low [122].

Any gain in feasibility must be balanced by power and efficiency. Studies show that

matching for the environmental risk factor may often enhance power and efficiency to
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detect gene-environment interactions [105]. The counter-matching design is found to
be more efficient than a standard nested case-control design, the gain in efficiency
being greatest for very rare risk factors. However, the study of such rare factors
using the counter-matching design is unrealistic unless one is interested in very strong
interaction effects [6]. Compared to traditional frequency matching, flexible matching
strategies increase the power and efficiency of case-control studies, the highest gain
in efficiency being obtained for a rare exposure that is a strong risk factor [106].
In spite of increased complexity for control recruitment, the case-combined-control
design appears more efficient relative to the classical case-control design for detecting
interactions involving rare exposures and/or genetic factors. The relative efficiency of
this design decreases for common genes with moderate effects [5].

Family-based designs such as the case-sibling and case-parent designs provide
greater efficiency compared to the population-based case-control design [38]. The
gain in efficiency when relative controls are used usually decreases as the frequency
of G increases. The case-sibling design is more efficient when studying a dominant
gene, whereas a case-parent design is preferred for a recessive gene [38], [40]. However,
a recent study that uses a novel conditional likelihood framework for exploiting the
within-family G — E independence assumption reports that the case-sibling design can
be more efficient than the case-parent design even for recessive genes [17].

Estimates of G x E interactions from the case-only study have been shown to
be very efficient relative to estimates obtained with a case-control study under the
assumption of independence between the genetic and environmental factors [1], [59].
However, inferences about multiplicative interaction with the case-only design can be

highly distorted when there is departure from the independence assumption [1], [37].

2.7 Surrogate outcomes

The terms surrogate outcoine, surrogate endpoint or disease marker commonly appear
in the literature of clinical studies. According to Temple [110], a surrogate endpoint
is defined as a laboratory or physiologic measurement used as a substitute for a clin-
ical endpoint that measures directly how a patient feels, functions, or survives. For

example, blood pressure may be used as a surrogate outcome for stroke, degree of
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atherosclerosis on coronary angiography may be considered a surrogate outcome for
myocardial infarction or coronary death, etc. Surrogate outcomes or “markers” might
reflect underlying disease pathophysiology, predict future events, or indicate the pres-
ence of disease or damage to an organ. A marker could also be measured to assess
the progress of treatment. They are used as alternative endpoints because they are
quicker to measure, thus, leading to the faster evaluation and appropriate dissemina-
tion of new treatments. An ideal surrogate measure is sensitive to disease evolution so
that changes to the surrogate endpoint reliably predict the risk of the clinical endpoint.
In clinical trials, several types of surrogate outcomes, such as composite outcomes {73]
and multivariate risk scores [55], have been used to increase trial efficiency, in terms
of statistical precision and power.

One reason why relatively few studies test for the impact of G x E interaction on
hard clinical endpoints such as death is because sample sizes required to show inter-
action effects are largely prohibitive [52]. In clinical studies, where it is not feasible
to have adequate statistical power for a clinical endpoint, a valid surrogate may be
used as a primary outcome measure. Indeed, some studies have demonstrated the
benefits of surrogate outcomes in detecting treatment effects and interactions with in-
creased power and reduced size of trials [80], [84], [125]. However, replacing the clinical
outcome by the surrogate outcome in individuals for whom the clinical outcome is ob-
served may often lead to misleading results [31]. Thus, methods have been developed
for time-to-event analysis that retain the clinical endpoint as the primary outcome,
but use surrogate outcomes to provide additional information for censored subjects
[67], [75], [83], [92]. These methods are known to enhance power and efficiency of the
analyses of highly censored data [75].

In this thesis, the term “surrogate” outcome is used in a broader context, and is
not limited to markers of disease outcome in clinical trials. We refer to “surrogate”
outcomes as alternative outcome measures for the true clinical outcome. QOutcome
variables may be of several types: binary, continuous, categorical, counts and censored
times-to-event variables. The type of outcome determines the method of analysis
and the efficiency of a study. In some studies, the event of interest arises from an

intrinsically binary outcome variable (e.g. death or myocardial infarction), while in
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other situations, the outcome variable is measured continuously, but “dichotomized” to
permit a more efficient estimation of the risk of a particular event {107]. The choice of
the type of surrogate outcome may depend on several factors. For instance, the use of
the dichotomized version of a continuous outcome variable may be preferred if the risk
of an event is a clinically more meaningful measure than the mean of the continuous
variable related to the disease [107]. However, in general, it is better to record data
with the highest possible information content. For example, additional information
conveyed by a continuous variable may result in a study with higher statistical power.
In addition, the consequences of misclassification related to measurement error, and
bias due to several values falling close to the cutoff, are potentially reduced [107]. For
some diseases, the rate of change of some quantitative measurement reflects disease
severity and may serve as a potential surrogate [91]. Alternatively, outcomes defined
from repeated measures of a variable, such as the mean of two or more measurements,

can improve precision and consequently the power of the study [115].

2.8 Summary

This chapter has reviewed some background on G x FE interaction studies. Basic
concepts such as definition of G x E interaction, statistical models of interaction, and
types of gene-environment relationships were discussed. Study designs for detecting
G x FE interactions were reviewed. Special emphasis was placed on the statistical
issues involved in studies of G x E interactions, and common methodologies (such
as the use of simulations) for assessing power and efficiency. Lastly, a short section
was presented on types of surrogate outcomes and the potential advantages of using
“surrogates” instead of the true “clinical” outcome. '
In the following chapter, we draw upon some of the concepts described in this

chapter to formulate the main research problem of this thesis.



Chapter 3

Comparison of Alternative
Surrogate Outcomes: Simulation
Designs

3.1 Introduction

Statistical issues relating to G x E interaction can be complex. Ensuring adequate
statistical power to detect G x E interaction is of major concern in genetic epidemi-
ology studies, especially if the prevalence of the susceptibility genotype and/or of the
environmental exposure of interest are low. The review of literature (Chapter 2) in-
dicates that most of the recent research on enhancing power and efficiency of G x E
interaction studies has focussed on optimizing the study design. Yet, the use of alter-
native outcome measures may be a worthwhile strategy for improving the power to
detect G x F interactions.

This chapter considers various criteria for defining alternative outcome variables.
The choice of the “surrogate” outcome X and its relationship with the “clinical”
binary outcome Y could have important implications for power. Thus, we consider
three hypothetical models of the biological relationship between an ultimate “clinical”,
more directly relevant binary outcome, and a quantitative “surrogate” outcome. In
all investigations, it is assumed that risk of the outcome is affected by a single genetic
susceptibility factor G and a single exposure E. This is an oversimplified representation
of reality since most diseases, especially those complex in nature, are determined by

several genes, gene variants, and exposures, as well as gene-gene and gene-environment

36
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interactions. Nevertheless, this is a good starting point for investigations of more
complex situations. The study design is an unmatched cross-sectional or prospective
cohort study. In addition, we make the following assumptions for Scenarios I and II

described in this chapter:
Al. Genetic susceptibility (G) and exposure (E) are binary.

A2. Prevalence of genetic susceptibility, P(G = 1) = 0.2, i.e the gene is relatively

common.
A3. Prevalence of exposure, P(F = 1) = 0.3, i.e. the exposure is relatively common.
A4. G and FE are independent of each other.

Simulation is an indispensable tool in research, especially, in situations where direct
experimentation in the relevant real-life context is impossible. The primary objective
of this simulation study is to compare efficiency of the quantitative versus binary
outcomes in different plausible situations. Thus, while designing the simulation ex-
periments, we have taken into account several aspects of the study design such as
frequency of the genetic factor and exposure, sample size, strength of the G x E inter-
action effect on the outcome and on the surrogate, and errors in the measurement of
both outcome variables. This chapter discusses the postulated models describing the
relationships between G, E, X and Y, as well as the methods for data generation and
analysis. All programming for data generation and analyses was done by the author

in S-Plus 6.0 (R1) and Matlab 7.0 (R14) programming environments.

3.2 Scenario I: Using a risk factor as a surrogate
outcome

3.2.1 Postulated model

Scenario I represents the simplest conceptual model in which the quantitative variable
X is a risk factor for the binary outcome Y that indicates presence of the disease of
interest. Here, probability of disease occurrence is partly affected by the value of X

and partly by other risk factors. As Figure 3.1 illustrates, outcome Y depends directly
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on the binary genetic factor G, and binary exposure F, and the interaction effect of G
and E through some mechanism not involving X. Moreover, G, E and G x E affect
the quantitative variable X, which is a risk factor for Y. In other words, factors G, E
and G X E have their influence on the disease through two separate causal pathways:
via their effects on X and via their effects on one or more unmeasured intervening
variables. As an example, the relation between blood pressure (X) and coronary heart
disease (Y') could be described by this model. It is conceivable that G, E and G x E
may increase not only blood pressure, but also other risk factors such as blood glucose
level, body weight, cholesterol level, etc., which in turn influence Y. Thus under the
formulation described, X is a risk factor of the disease and a mediating factor for the

effects of G, E and G x E. Since X is measurable, the epidemiologic investigation of

———>»  Effects transmitted through other mediating factors

Figure 3.1: Conceptual model for relationship between quantitative surrogate outcome
(X) and binary outcome (Y'), under Scenario I

this model could be addressed at two levels, namely (i) the etiologic relationships of
G and E to X, and (ii) the etiologic relationships of variable X, and factors G, E to
the incidence of disease.

We consider four sub-scenarios of this model, obtained by altering assumptions
regarding strength of the effect of £ and G x F on Y via the unmeasured intervening
risk factors (see Table 3.1). Case 1.1 assumes a moderate effect of F and strong effect

of Gx EonY. Case 1.2 assumes a moderate effect of ¥ and moderate effect of G x F
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on Y. Case 1.3 assumes that E has no influence on Y through other mediating factors,
but there exists a moderate G x E interaction effect on Y. Finally, Case 1.4 assumes
that the effects of both F and G x FE interaction on Y are mediated entirely through
X. In the latter case, it seems reasonable that the question of a possible interaction
between G and E can be assessed most directly through their observable effects on
variable X. The effect of measurement errors in the quantitative outcome on power

to detect G x E interaction is also assessed.

3.2.2 Basic assumptions

Throughout this thesis, G = 1 and E = 1 represent, respectively, presence of the
genotype and of the exposure of interest. The assumptions outlined in Section 3.1,

lead to the following formal conditions used to define Scenario I.

Al. Distribution of continuous surrogate (X) depends on G with higher values oc-

curring when G = 1.
A2, X increases in the presence of exposure E, with larger increases for G=1.

A3. Probability that binary outcome Y occurs [i.e. P(Y = 1)] depends on X, and
also on G, E and G x E independently of X, i.e. by mechanisms that do not

involve X.

Ad4. There are measurements errors in X.

3.2.3 Data generation

Samples of size N = 500 are generated. For each i = 1,...,500 subjects, G, E, X and

Y are generated as follows.
B1. Generate G; and F; according to assumptions A2 and A3 in Section 3.1.

B2. Generate continuous X; when E; = 0 depending on value of Gj:

X; ~ N[0,1], if G;=0
X; ~ N[05,1], if G;=1



40

B3. Generate continuous X; when E; = 1 depending on value of Gj:

X, < X;+054, ifG=1

where §; = exp(l;) and I; ~ N[0, 1].

B4. The true value of X and its observed value X* are related by an additive error
model as X = X, + ¢;, where ¢, represents a random measurement error and is
generated from N0, 0.3].

B5. (i) Calculate
L; =logit(P(Y; = 1)) = Bo + 51Gi + B E; + B5(Gi x E;) +vX;  (3.1)

for each of the sub-scenarios in Table 3.1 that determines the logarithm of

odds ratio for each effect.

Table 3.1: Parameter values for four sub-scenarios of Scenario 1.

Parameter | Case 1.1 | Case 1.2 | Case 1.3 | Case 1.4
Bo In(0.1) |In(0.1) |In(0.1) |In(0.1)
I In(3) In(3) In(3) In(3)
B In(1.5) |In(1.5) |0 0
B3 In(3) In(2) In(2) 0
v In(2) In(2) In(2) In(2)
(ii) Calculate m; = 11);?(;%:)1-)’ i.e. the expected probability of the binary outcome,

conditional on covariates.

(iii) Generate binary Y; with P(Y; = 1) = m;

3.2.4 Data analysis

For each of the four sub-scenarios, three hundred independent samples are generated
using the methodology described in Section 3.2.3. To compare the efficiency of a con-
tinuous surrogate outcome with a binary outcome, each simulated sample is analyzed

using two types of models: the Multiple Linear Regression model with the continuous
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dependent variable X and the Multiple Logistic Regression model with the binary
outcome Y = 1. Power of the test for the coefficient of G X E interaction is estimated
as the proportion of simulated samples where the test rejects the null hypothesis of no

G x FE interaction at 0.05 level of significance.

Linear regression analysis

In matrix terms, the multiple linear regression model is
Y=X3+¢ (3.2)

where, X is the n x p data matrix in which the first column consists of 1s, Y isannx 1
vector of responses, B is the (p x 1) vector of regression coefficients, and € is a vector
of independent normal random variables, representing errors or residuals. Estimation
of parameters in the multiple linear regression model is performed by the method of

least squares which consists of minimizing the quantity

Q@ = (Y-XB)(Y-XB)
= Y'Y -28X'Y +8X'X3

To find the least squares estimate b, ) is differentiated with respect 3:

]
EX]

Equating to zero vector and substituting b for 3 gives the least squares normal equa-

Q) = -2X'Y + 2X'X

tion:
X'Xb =X'Y.

We then find the least squares estimators as:
b= (X'X)"'X"Y. (3.3)
To test:

Hy : [Br =0 against
Hy ﬂk7é()
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we use the test statistic
by

~ SE()

where p represents the number of regression coefficients in the model, including the

*

~ t(n —p) (3-4)

intercept. If | t* [> t(1—a/2;n—p), i.e. the critical value for the student t-distribution
with (n — p) degrees of freedom, we reject Hy at two-tailed « significance level.

For each of the linear models presented below, by of primary interest corresponds
to the estimated regression coefficient of G x E. The standard error of the estimate
and value of t* are also obtained . We introduce a binary variable g, which takes the
value 1 if the test rejects the null hypothesis of no G x E interaction at 0.05 level
of significance. Thus, for a large sample size, g = 1 if | t* |> 1.96, else g = 0. An
estimate of power of the test is given by the proportion of samples that have g = 1.

Linear regression analysis is performed for each sample using the quantitative vari-
able X as outcome. Two sets of X data are employed in the analysis: true X and X

with measurement errors (i.e. X*).

MODEL SI.1(i):
X =050+O{1G+C¥2E+Oé3(G X E) +¢€ (35)

MODEL SI.1(ii):
X' =08+/G+aE+35(GX E)+e (3.6)

Logistic regression analysis

Logistic regression is used to model the relationship between a binary response variable
and one or more predictor variables, which may be either discrete or continuous.
Binary outcome data are common in medical applications. For example, the binary
response variable might be whether or not a patient is alive five years after treatment
for cancer or whether the patient has an adverse reaction to a new drug. The multiple
logistic regression model is given by:

exp(XB)

1+ exp(X3) (37)

where

m=E(Y;| X)) =PY,=1]|X) (3.8)
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is the conditional probability that the outcome is present for the ith individual. The

logit transform of 7(X;) leads to the linear predictor:
logit(m;) = X,8 (3.9)

The method of maximum likelihood is used to estimate the parameters of the logistic
regression model. The principle of maximum likelihood states that we use as our

estimate of 3 the value which maximizes the likelihood function:
LB =[] - =" (3.10)

Differentiating In L(3) with respect to 8 and setting the resulting expressions equal

to zero gives the likelihood equations:
XY =X# (3.11)

Numerical search procedures such as the Newton Raphson method are used to solve
(3.11) to find the maximum likelihood estimates b.
To test:

Hy : [r =0 against
Hl : ﬂk 7é O)
an appropriate large-sample test statistic is:
~ SE(b)
We reject Hy at the 0.05 significance level if the two-sided P-value, P(| Z |>| w |) <

~ N0, 1. (3.12)

0.05, where Z is the standard normal variate, and w is the observed value of W.

In this thesis, the above test, known as the Wald test, is used to test for the
significance of the G x E interaction parameter in the logistic regression model. The
binary variable, g, takes the value 1 if the Wald test rejects the null hypothesis of no
G x E interaction at 0.05 level of significance. Thus, g = 1 if P-value for Wald test
< 0.05, else g = 0. The proportion of samples for which g equals 1 gives an estimate
of the power.

Each sample has four sets of outcome data Y corresponding to the four sub-
scenarios or cases described in B5 (see Table 3.1). For each Y, the following model

was fit to the sample data:
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MODEL SI.2
logit(P(Y = 1)) = 6 + 61G + 6, E + 65(G x E) (3.13)

Four estimated models are obtained for each Y and will be referred to as models

SI.2(i), SI.2(ii), SI.2(iii) and SL.2(iv) respectively.

Sensitivity analysis

We investigated the effect of varying sample size (N) on the power of the tests to
~ detect G x F interaction based on both linear and logistic regression models described
in Section 3.2.4. Three hundred samples were generated and the sample size for each

simulation run was varied from 500 to 1500 with increments of 200.

3.3 Scenario II: Using a marker of early disease as
a surrogate outcome

A patient may have the pathology and etiology of a disease without presenting signs
and symptoms. This is referred to as “silent”, “latent”, or “subclinical” disease [82].
People who already have the “pathological changes” that lead to a disease often ex-
perience elevated levels of some metabolic product or quantitative lab test that can
serve as markers of increased disease risk. For instance, elevation of serum creatinine
is a strong marker of increased vascular risk [3]. The urinary protein known as al-
bumin is being recognized as the earliest sign of vascular damage in both the kidney
and the heart [69]. Again, markers in serum are known to provide a window on the
inflammatory status of an individual, and thus insight into the pathophysiology of
atherosclerosis and its complications [71].

In this section, the hypothetical model assumes that the quantitative variable X
is a marker of the presence of disease rather than a risk factor. It is important to
consider the temporal sequence of the observed changes in X and Y. In the above
discussion, it was assumed that when the patient’s health status changes from healthy
to subclinical latent pathology, X starts to change or starts to increase at a higher rate.
Such changes in X may precede any observable change in disease status Y, thereby,

indicating future risk of disease. However, in this study, we assume the absence of a
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latent or subclinical period of the disease so that change of disease status (from Y = 0
toY = 1) is diagnosed immediately. Thus, a change in Y occurs concurrently to certain
pathological changes that lead to elevated levels of X. This means that X changes only
when Y changes from 0 to 1 so that it may serve as a surrogate marker for the disease.
For example, levels of the protein troponin in the blood can be used to determine if an
individual has had a heart attack [56]. Similarly, the most frequent feature of acute or
chronic viral hepatitis involves the elevation of serum alanine aminotransferase activity
(ALT) and aspartate aminotransferase activity (AST) above the range of normal values
[18].

This model might appear unrealistic for most applications since it assumes the
absence of a latent period. Nevertheless, it is worth considering as a benchmark for

future comparisons. Two variations of Scenario II are considered:

S1. Disease is associated with a higher value of X at a particular time point (as in

cross-sectional studies), and

S2. Disease is associated with a higher rate of increase in X (over and above “natural
aging”) which would require measurements at two (or more) time points (cohort

studies).

3.3.1 Postulated model for Case S1

Scenario I (Section 3.2) considered a simplistic situation in which X, G and E were the
only risk factors for Y. However, most diseases are multifactorial and determined by
a myriad of factors that have complex interrelationships. An important shortcoming
of Scenario I is that it makes no provision for other risk factors, either measurable or
nonmeasurable, that could have an effect on Y or that could be correlated with X or
G and/or E. The assumptions in Scenario I are, therefore, restrictive, which limits
applicability of its results.

Figure 3.2 presents a new causal model, consistent with Scenario II, that describes
how G, E and interaction between these two factors act in the pathogenic process
leading to disease. Contrary to Scenario I, here Y does affect X, i.e. X is a marker

for disease, rather than a risk factor. Moreover, here G, E and G x E interaction
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do not affect X directly, but only through their impact on the risk of Y. The model
assumes that disease outcome Y is influenced by other measurable risk factors that
are independent of G and E. Here, R is an aggregate “overall risk”, which can be, for
example, calculated from a multivariate risk score [55] representing the joint effect of
these risk factors. As Figure 3.2 illustrates, level of marker X depends on the set of
risk factors in R, as well as on the disease status Y.

Several issues here could have implications for power. First, is the choice of the
quantitative outcome X instead of the more relevant binary outcome Y. Second, is
the magnitude of misclassification errors in outcome Y versus measurement errors in
marker X. We take these factors into account while evaluating the gain, in terms of
power, of replacing a binary outcome by a quantitative surrogate. The efficiency of
the linear versus logistic model is also evaluated for different magnitudes of the true

FE and G x E interaction effect on Y.

)

"

Figure 3.2: Conceptual model for relationships between G, E, G x E, other factors
(R) independent of G and E, quantitative surrogate outcome (X) and binary outcome
(Y), under Scenario II (Case S1)

3.3.2 Postulated model for Case S2

The causal model described in Case S1 may not provide adequately for the complexity
of pathogenic processes because it does account for unmeasured or unobserved vari-

ables that influence Y and that may be confounders of G and/or E. In Case S2 we
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overcome this shortcoming by assuming that disease status depends additionally on
some unobserved risk factors that may be grouped into three categories: risk factors
correlated with neither G nor F, risk factors correlated with F only, and risk factors
correlated with both G and E (see Figure 3.3). Sy, Sg and Sgg are multivariate
risk scores representing aggregate “overall risks” for the risk factors in each group
respectively.

Important goals of surrogate markers are to assess the stage or severity of disease
and to determine rate of change. Cross-sectional studies may be used to measure the
level of surrogate at a particular time point, which in turn reflects stage or severity of
disease. For instance, cross-sectional data reveal that people with widely metastatic
cancer have higher levels of angiogenesis activity compared to early stage disease or
normals [11]. In cohort studies, change in surrogate marker levels reflect change in
disease status or progression of disease. For instance, cohort data for the same patients
show that over time the levels of angiogenesis activity rise as disease progresses.

Scenario S1 assumed a cross-sectional study in which disease was assessed at a
single time point. A conceptual difference between Scenarios S1 and S2 is that in
the latter, X is considered a “baseline” value at the initial assessment of disecase. A
second measurement, taken at a later time point, allows the rate of change in X
to be determined. Since increase of X at a higher rate may reflect the presence of
the disease of interest, it may be used as a surrogate marker for the disease. Thus,
three competing outcomes emerge from scenario S2: (i) the (more relevant) binary
variable Y, (ii) initial value of quantitative variable X, and (iii) the rate of change in
X. Apart from the choice of outcome, misclassification errors in the diagnosis of Y
and measurement errors in X, may both have important implications for power, and
will be considered under this scenario. As in Scenario I and Case S1, it is of interest
to compare power between the linear (with X as dependent variable) versus logistic

(with Y = 1 as outcome) regression models while varying the true underlying effects
of Fand Gx FonY.
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Figure 3.3: Conceptual model for relationships between G, E, G x E, other observed
factors (R) independent of G and E, other unobserved factors (S) that may be cor-
related with G and F, the quantitative surrogate outcome (X), and binary outcome
(Y), under Scenario IT (Case S2)

3.3.3 Basic assumptions

Important assumptions for Case S1 and Case S2, added to the “generic” assumptions

listed above (Section 3.1) may be outlined as follows.

Case S1

A1l. The risk of developing the disease (Y = 1) depends on G, E, G x E and the joint
effect of other risk factors, that are independent of G and E.

A2. Marker X depends on disease status with higher values occurring when ¥ = 1.

A3. There is some misclassification of disease Y, and some errors in measurement of
X.

Case S2
In addition to the assumptions for Case S1, the following assumptions are made:

A1l. Disease status depends on unobserved risk factors (S) that are grouped into three

groups:

e Sy: correlated with neither G nor F
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e Sg: correlated with £ only

e S correlated with both F and G

A2, Marker X is assessed at two time points so that we have two measurements X

and X;.

A3. G, R and S influence Xy and X; equally so that increase in X during time period
At = t; — ty depends on the length of time interval, exposure level at time ¢

and G x F interaction only.

A4. There are measurement errors in X at both time points, and the two errors for

the same subject are independent, i.e. not correlated.

3.3.4 Data generation

For both sub-scenarios of Scenario II, samples of size N = 500 are generated.
Case S1

For each ¢ = 1,...,500 subjects, G, F, Y and X are generated as follows.

B1. Generate G; and E; according to assumptions A2 and A3 in Section 3.1.
B2. Generate R; from N0, 1]

B3. Generate true disease status Y as follows:

(i) Calculate
L; = logit(P(Y; = 1)) = Bo + 51G; + Bo B + B5(G; X E;) + B4 R;

for each of the scenarios in Table 3.2. Using Case 2.1 as the reference, Case
2.2 indicates a slightly weaker effect of G x E on Y. Case 2.3 represents
the scenario where the G x E effect is the same as in Case 2.2, but there is
no exposure effect on Y. Case 2.4 assumes no G X FE or exposure effect on
Y and, thus, is used to assess the empirical size of the test i.e. type-I error

rate.
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Table 3.2: Combination of values for parameter 3 under Scenario II, Case S1.

Parameter | Case 2.1 | Case 2.2 | Case 2.3 | Case 2.4

Bo In(0.1) | In(0.1) |In(0.1) |In(0.1)

61 In(3) In(3) In(3) In(3)

B In(1.5) |In(l.5) |0 0

Bs In(3) In(2) In(2) 0

Jon In(1.5) | In(1.5) |In(1.5) |In(1.5)
exp(L;:)

(ii) Calculate m; = 5 Fexp(L3)

(ili) Generate binary Y; with P(Y; =1) =m;
B4. Generate observed disease status Y* from Y with sensitivity P(Y* = 1Y =1) =

m and specificity P(Y* = 0]Y = 0) = nq as follows:

(i) For Y; =1, generate b; from bin(1,7n;). Then

L [ 1 ifb =1
Yi_{o if b =0

(i) For Y; = 0, generate b; from bin(1, 7). Then

Y=

K3

0 ifb =1
1 ify; =0

Five combinations of values for 7, and 7, are considered as shown in Table 3.3.

Table 3.3: Combination of values for sensitivity (n;) and specificity (n9) of the observed
disease status.

T [ [0V ]V
m | 1.0]09 (070907
m|1.0|09]09]07]0.7

B5. Generate X, conditional on Y and R, as follows:

(i) IfY; =0, Xi ~ Nuo,r, 1] where pgr = 0 - R;
(11) If Y; = 1, Xz ~ N[/J/LR; 1] where H1,R = ey + GR . Rz
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According to this formulation, X depends on R such that, on average, X in-
creases as R increases. Larger values of X occur on average, when ¥ = 1. Six
combinations of values for 6z and fy are considered in Table 3.4. Higher value
of fy induces a larger increment in X when Y = 1, i.e. a higher diagnostic value
of X as a marker for Y = 1. Positive values of 85 result in a positive correlation
between X and R. It should be noticed that X depends on the “true” error-free

status of Y, rather than on the observed Y*.

Table 3.4: Combination of values for parameters 8z and 8y

I IIjIr | Iv v | VI
6r 10 (0|0 |05|05]|0.5
6y |0511 [15]05|1 |15

B6. Generate observed X from the additive error model X} = X, + ¢; where ¢; ~
N0, o]. Three values for o are considered: o = 0.05,0.5, 1, corresponding to the
situations of almost no error, moderate error and large error, respectively. For
better interpretability, one may compute the intraclass correlation (ICC) [26]
for the reliability of observed X* by:

2

ag
ICC = X 3.14
ce 0% + o2 (3.14)

where ox represents the standard deviation of the distribution of true X given
in B5 of this section. Thus for ox = 1, ICC for o = 0.05,0.5 and 1 equals 0.998,
0.8 and 0.5 respectively.

Case S2
C1. G, E; and R; are generated as described in B1 and B2 of Section 3.3.4.
C2. Generate:

1. Soi ~ N0, 1]

2. Spi ~N[-03,1], if E; = 0; Sp; ~ N[0.3,1],if E; =1

3. Sapi ~ Nlusi, 1], where ug; = —0.4 + 0.3G; + 0.5E;
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C3. Generate true disease status Y as follows:
(i) Calculate

L, =logit(P(Y; =1)) =6y + (G + BeE;i + B5(G; x E;)
+ BaR; + B5S0i + B6SEi + BrScE:

for each combination of parameter values shown in Table 3.5.

Table 3.5: Combinations of values for parameter 3 under Scenario II, Case S2.

Parameter | Case 2.1 | Case 2.2 | Case 2.3 | Case 2.4

Bo In(0.1) | In(0.1) |1In(0.1) | In(0.1)

51 In(3) In(3) In(3) In(3)

By In(15) |In(L5) |0 0

Bs In(3) In(2) In(2) 0

B4 In(1.5) | In(1.5) |In(1.5) | In(1.5)

Bs In(1.3) |In(1.3) |In(1.3) |In(1.3)

Bs In(1.5) | In(1.5) |In(l.5) | In(1.5)

B In(1.75) | In(1.75) | In(1.75) | In(1.75)
exp(L;)

(ii) Calculate m; = Trexp(L;)

(iii) Generate binary Y; with P(Y; = 1) = =;.
C4. Generate observed disease status Y* from Y as described in B4 of Section 3.3.4.

C5. Generate true Xy, i.e. the initial (baseline) value of X, conditional on Y and R

as described in B5 of this section.

C6. Generate observed X{, based on X generated in C5, using same method as

described in B6 of this section.
C7. Generate time interval between the two measurements of X: At; ~ U(0.5,1.5).
C8. Compute increase in true value of X by:
AX; = [yo + nE; +7(E; x Gy)]At; (3.15)

where v9 = 0.2, 73 = 0.1, 2 = 0.15. This implies that AX; depends only on

exposure, the impact of which varies depending on presence or absence of the
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gene: subjects with the gene have stronger reaction to exposure. The rate of
increase in X for the unexposed is 0.2. The rate increases to 0.3 for those exposed
but without the gene. The rate increases by an additional 50%, to 0.45 for those

exposed and with the gene.
C9. Compute “true” value of X at second assessment time by:

X1 = Xoi + AX; (3.16)

C10. Observed X; (i.e. X7) is generated using same approach as for generation of
X5
Xii=Xu+eu
where €1; ~ N[0, 0] and ¢ = 0.05, 0.50, 1.0. It should be noticed that ey; for X;
is generated independently of ¢; for Xy, since it is possible that e.g. measurement
error causes X to be overestimated and X7 to be underestimated, relative to

their “true” values, for subject 4.

3.3.5 Data analysis

As in Scenario I, three hundred independent random samples are generated for both
Case S1 and Case S2.

Case S1:

For each combination of the parameter values given in Table 3.2, eighteen sets of values
for X* are generated according to combinations of values of 0, 6y and o (see Section
3.3.4, Case S1 ). Thus, for each subject, we consider a total of 72 different values (4
different Y values times 18) for the continuous outcome X*. The following multiple

linear regression model is fit to the data for different X*:

MODEL SIL1(i)

X*=a0+a1G+a2E+a3(GxE)+a4R+8 (317)

Twenty sets of values for Y* are generated for combinations of values of the sensitivity

(m) and specificity (ng) parameters given in Table 3.3, and the parameters in Table 3.2.
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The following multiple logistic regression is used to analyze each sample for different

Y™
MODEL SIL1(ii)
logit(P(Y* = 1)) = vg + 1G + naFE + 13(G X E) + vy R (3.18)
Case S2:

For Case S2, we consider three competing outcomes: initial assessment of quantitative
marker X (i.e. X{), binary outcome (observed) Y, and the time interval standardized
difference in X, 7 = %, which provides a crude estimate of subject-specific rate
of change in X. Seventy two sets of values for X are generated for combinations of
values of 6, 0y (see Table 3.4), o and the § parameters in Table 3.5. Using the initial
values of the marker as outcome, data sets are analyzed using the following multiple

linear regression for different X:

MODEL SII2(i)

Xg = (50—|—51G+(52E—|—(53(G X E) + R +e€ (319)

The values of X at the two assessment times generate 72 sets of standardized differences
Z for the different combinations of parameter values. When rate of change in the

marker is used as outcome, each sample is analyzed using:

MODEL SII.2(ii)

Z=y+nG+nE+13(GxE)+yR+e (3.20)

We expect that when disease is associated with higher rate of increase in X, modelling
Z as the outco.me may provide greater power than using X at a single time point as
the outcome. Comparison of estimated powers for models SII.2(i) and SII.2(ii) will
provide some insights into this problem.

For each combination of parameter values in Table 3.5, five sets of values for Y*
are generated for the combinations of 7; and 7y given in Table 3.3. This results in
20 different values for Y* in each sample. For each Y™, the following multiple logistic

model is fit to the data:
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MODEL SII.2(iii)

logit(P(Y* = 1)) = Ao+ MG + ME + A(G x E) + MR (3.21)

For each of the models described in this section, power of the test for the coefficient of
G x E interaction is estimated by the proportion of simulated samples where the ap-
propriate test (t-test or Wald test) rejected the null hypothesis of no G x E interaction

at 0.05 level of significance.

3.4 Scenario III: Repeated measures of a marker

There are alternative ways a quantitative variable may be measured and analyzed.
Many studies measure a continuous covariate repeatedly over time. In some cases,
this is because researchers wish to investigate the time course of a symptom or to
evaluate how the effect of a treatment changes over time. Measures may also be
repeated in order to obtain a more precise estimate of the characteristic of interest.
Repeat assessment reduces intra-subject variability and, thus, increases study power
and efficiency [115].

In Scenario I1I, we consider a repeated measures design, in which data on a quanti-
tative variable of interest X, say blood pressure or value of some quantitative lab test,
is collected at different points in time. For example, if an individual’s blood pressure
is recorded during each visit to the hospital, the resulting data is repeated measures
data. Furthermore, we assume that the elevated level of the quantitative variable X
may reflect the presence of disease. In other words, X is a marker of the presence of
disease. For example, high levels of systolic blood pressure could indicate the presence
of hypertension. This scenario extends the assumption of two assessment times of
X, considered in Scenario II, to two or more assessment times but makes no explicit
assumptions about the mechanism of the G, F or G x E interaction effect on X.

In some studies, the binary outcome may be defined based on categorization of
the quantitative variable. For instance, hypertension is defined as blood pressure
above a certain cut-off point. Whether or not an individual is categorized as being
hypertensive depends on the selected threshold for blood pressure and method of

dichotomizing the quantitative marker. The choice of an appropriate threshold or
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method of dichotomization is typically guided by clinical relevance and other more
practical considerations, often related to measurement. In this scenario, we consider
two threshold values and alternative methods for classifying diseased and non-diseased
individuals on the basis of repeated measures of the disease marker. We compare power
for detecting G x E interaction between linear versus logistic regression models for a

number of competing outcomes, all defined based on the quantitative X variable.

3.4.1 Basic assumptions

In addition to assumptions Al and A4 in Section 3.1, we make the following assump-
tions pertaining to a hypothetical scenario in which X represents blood pressure and

Y indicates presence or absence of hypertension.
A1l. Prevalence of genetic susceptibility, P(G = 1) = 0.3.
A2. Lifetime prevalence of exposure, P(E = 1) = 0.6.

A3. Distribution of X values at birth may depend on G, with higher values occurring
when G = 1:

Xig ~ N[GO + Ay, 10], if G; =1 (3.22)

where two cases are considered: Ax = 0 or 5.
A4. Distribution of current age of ith subject, ¢, is independent of any covariates.

A5. Subjects who are “exposed”, become first exposed only at a certain age, S, which
varies across subjects. Once exposed, subjects remain exposed for the rest of
their life, which is consistent with the assumption that exposure has a permanent

impact as is the case in ecological disasters [90].

A6. X increases linearly with age, and the rate (or slope) of age-dependent increase
varies across subjects and may depend on G (see Figure 3.4), so that X at age
ti0 equals:

Xi(tio) = Xio + Bitio (3.23)
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where,

B ~ NI0.2,0.05], if G;=0
B ~ N[0.2+Ag,0.05], if G;=1. (3.24)

Here two cases are considered: Ag = 0 or 0.10. The difference in slopes for the
two genetic groups as seen in Figure 3.4, prior to exposure, induces an interaction

between GG and age.

AT. As Figure 3.4 illustrates, the rate of change in X (i.e. ') may further increase
due to exposure and/or G x E interaction. However, F and G x E will affect
X only after the subject becomes exposed, that is after age S;. Thus, if E; = 1,
which implies ¢;5 > 5;, we get:

Xi(tio) = Xi(Si) + Bi(tio — Si) (3.25)

where, S; is age at first exposure and the post-exposure slope 8] = §; + AgE; +
AgreG; x E; for the ith subject. Here, the following values of the relevant pa-
rameters are considered: Agp = 0.03 and Agg = 0,0.20 or 0.40. Thus, for a
subject with £ =1 and G =0, £ = 8; + 0.03 + 0, which implies an increase in
the rate of change of X; with exposure. However, for a subject with £ = 1 and
G =1, § = 3;+0.03+ Agg, so that there is an even greater increase in the rate

of change of X; with exposure.

AS8. There is error in measurement of X.

3.4.2 Data generation

This section describes the steps used to generate the data [G, E, repeated values of X
and Y]. Samples of size N = 500 are generated. For the ith subject (« = 1,...,500),
we generate several times (or ages) ¢;_;, 7 =0, ..., 77 at which X was assessed in the

last six years before the “current age” t;,.
B1. Generate GG; and E; according to assumptions Al and A2 in Section 3.4.1.

B2. Generate current age t; from U[40, 60]
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Figure 3.4: Effect of G and/or E on rate of change of X assuming no effect of G on
X at birth (i.e. Ax =0).

B3.

B4.

B5.

B6.

B7.

BS.

Generate age at first exposure S by:

S; ~ U[20,40], if E; =1
S = 0, if B;=0. (3.26)

Subjects are considered “exposed” only at ages higher than age S. Thus, E; _; =1
only if (i) E5 = 1 and (ii) ¢;—; > S;. If S;_; > t;_;, where S, _; = S;, change
Ei,—j and Sz',—j to 0.

Compute X;(t;0) according to value of E using A3 and A6 or A7 in Section 3.4.1.

For the ith subject, generate time interval between successive measurements,

dt;,—j, from U[0.5, 1.5]
Calculate age at which the previous measurement was taken by t; _; = t; 0 —dt; _1

Generate random variable U; _; from bin(1,0.3). If U; _1 = 1, X;(¢; —1) is missing.

Otherwise generate X;(¢; _1) as follows:

(i) Generate baseline value X, as described in A3.
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(ii) If E;_; = 0, generate X;(t;_1) as described in A6. If E; ; = 1, compute
Xi(Si,—1) from (3.23) and using this value, compute X;(¢; _1) as described
in A7.

B9. Regardless of whether t; _; is missing or not, carry out the following steps:

(i) Generate dt; _o from U[0.5,1.5] (as in B6)
(ii) Calculate t; o =1, 1 —dt; 2
(iii) Generate U; 5 from bin(1,0.3) to decide if ¢; _5 is missing or not.
(iv) If t;_5 is not missing, calculate X;(¢; —2) as described in BS.
B10. Repeat steps (i)-(iv) in B9 iteratively until ¢; _; < t;0 — 6. Ignore this time
point and pass to next subject (¢ 4+ 1). This induces “left censoring” reflecting

the assumption that measurements of X are available for only past six years.

B11. TFor 7 =0, ..., 5, generate observed X} _; for the sth subject from the additive

error model
Xi*(ti,—j) = Xi(ti,_j) + 51‘7]‘ (327)

where, €;; ~ NM[0,0.1].
B12. We construct eight different outcomes based on observed X as follows:

1. Simple continuous outcome: X7(¢;¢), i.e. “current value” of X.
2. Two alternative versions of simple dichotomous outcome Y1}, based on
X} (tip), each using a different threshold:

(i) For each sample, find two threshold values 77 and T5. T is chosen to
be the 70th percentile of the empirical distribution of X}(¢;0) and T3 is
chosen as the 50th percentile of X/ (t,0). According to this definition,
T1>T2.

(ii) Then, define two alternative binary outcomes, using either T'1 or 7'2 as

the cut-off point:

Y117 = 1 iff X/(t;0) > T1, Y11} = 0 otherwise;
Y127 = 1 iff X[ (t;0) > T2, Y12f =0 otherwise.
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. Two alternative versions of dichotomous outcome Y2; based on at least two
values above T' (T} or T3) in the last 6 years:
Use all non-missing values of X* (except at current age) available for a
given subject .
(i) If X}(ti—;) > T1,then §;; =1for j =1,..., j}.
(ii) Compute V; = Z;;l 8ij
(i) Y21 =1, iff V; > 2; Y21F = 0, otherwise.
(iv) If T'1 is replaced by T2 in (i), then,

Y22: =1,iff V; > 2; Y227 = 0, otherwise.
. Two alternative versions of dichotomous outcomes Y3 and Y4 based on
new development of “disease” (i.e. value of X above the threshold) in last
6 years:
Here, we restrict the analysis to subjects with X} (t; ;=) < T where T' = T}
or 15, i.e. to subjects who were below the cut-off point at the earliest time

for which X measurement is available.
(a) (i) For subjects with X/(t; ;) < T1,
Y31y =1 ,iff X (t;i0) > T1; Y31; =0, otherwise.
(ii) Similarly, for subjects with X (¢; _;) < T2,
Y327 =1, iff X[ (t;p) > T2; Y32 =0, otherwise.
(b) (i) For subjects with X[ (t;_;+) < T1, §;; = 1 if X7 (t;_;) > T1 for
J=0,1,..,5: -1
(ii) Compute V; = Z;;f 8i
(ili) Y41; =1, iff V; > 2; Y41F = 0, otherwise.
(iv) If T'1 is replaced by T2 in (b)(i), then Y42F = 1, iff V; > 2; Y42 =
0, otherwise.
. Continuous time-interval standardized difference (increase) in X3:
The standardized difference AX} is calculated as,

X tio) — X7 (ti—sr)

AX} =
ti0 = ti,—j;

(3.28)
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where, AX; may be interpreted as a simple measure of average increase in

X per year.

6. Rate of progression in X, a3;:
Regress repeated measures of X for the ith subject on age at which mea-

surements were recorded:
X;(ti,—j) = Oéai + afiti,_j, _7 = 0, ]_, Ca ,]1* (329)

The slope of{i is used as the outcome and measures the rate of progression
in X for the 4th individual. Note that (3.29) is similar to (3.23) in Section
3.4.1, which was used to generate X at current age in absence of exposure.

Therefore, 3; is analogous to aj;.

3.4.3 Data analysis

Three hundred independent random samples are generated for each combination of
relevant parameters. Using different combinations of Ax, Ag and Agg, 12 different
scenarios are considered, each yielding different values of the continuous outcomes
analyzed in models SITI(i), SIII(vi) and SIII(vii) below. In addition, two different
thresholds T (T'1 or T2) were used, resulting in 24 different scenarios for the outcomes
analyzed in models SIII(ii)-SIII(v) below.

Thus, each simulated sample was analyzed by seven different models. All models
are adjusted for the subject’s age. Although the notations for X and Y in the models
shown below indicate values with measurement errors (i.e. observed values), it is
important to note that the same models are used to analyze true values of the generated
outcomes as well.

For each generated sample, the estimated parameter of G x FE interaction, its
standard error, and value of the ¢-statistic (for linear regression) or Wald statistic (for
logistic regression) are obtained as described in Section 3.2.4. The value of the binary
indicator g for each sample (see Section 3.2.4) is used to estimate power of the test
for G x E interaction as the proportion of simulated samples where the two-tailed test

rejected the null hypothesis of no G x E interaction at 0.05 level of significance.
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MODEL SIII(i):

X*(to) = Bo + 51G + BoE + B3(G x E) + Sato + € (3.30)

Here, X*(ty) represents current value of the quantitative marker, such as current blood

pressure.
MODEL SIII(ii):

logit(P(Yl* = 1)) =1+ 111G+ nFE + I/3(G X E) + vatp (331)

This model incorporates the same adjustments as model SITI(i). Here, Y1 is a binary
outcome representing the state of disease which is characterized by the current value
of X being above the threshold T. For instance, Y1 = 1 indicates presence of hy-
pertension if current blood pressure exceeds T'. Power comparisons between models
SIII(i) and SIII(ii) could provide an assessment for the relative gain or loss associated

with dichotomizing the continuous outcome X*(%p).
MODEL SIII(iii):

logit(P(Y2" = 1)) = ap + auG + aeE + a3(G x E) + ayty (3.32)

This model is similar to the previous one except that repeated measures of the con-
tinuous outcome are taken into account while determining binary outcome Y'2. That
is, Y2 is based on two or more values of X above the threshold, prior to the current

measurement, obtained in the last six years.
MODEL SIII(iv):

logit(P(Y3* = 1)) = do+ MG+ AE + Xs(G x E) + Aty
=+ )\5(t0 — t_j*) + )\6X*(t_j~)
(3.33)

Y3 is a binary outcome that indicates disease occurrence among individuals disease-

free at the earliest assessment time, if value of X at current age exceeds T'. This
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model adjusts the estimated effects of G, F, G x E interaction and current age t,.
Additionally, the model adjusts for (i) the follow-up duration (f, — t_;«), and (ii)
the earliest observed X value X*(t_;»). The former adjustment accounts for the fact
that occurrence of the outcome is more likely among subjects with longer follow-up,
whereas the latter accounts for subjects with higher initial X being at higher “risk”

of exceeding the threshold.

MODEL SIII(v):

logit(P(Y4* = 1)) =% +1G + mE+7(G x E) + vsto
+ ’}/5(t0 — t_j*) + 'YGX*(t—j*)
(3.34)

Binary outcome Y4 is similar to Y3 except that disease occurrence is defined by at
least two values of X exceeding the threshold for subjects initially free from disease.

This model incorporates the same adjustments as model SITI(iv).

MODEL SIII(vi):

AX* = pg+ G + peF + pu3s(G x F) + pal_j« + € (3.35)
Here, AX* represents the (standardized) average increase in X per one year increase
in subject’s age.
MODEL SIII(vii):

a} =0+ 601G + 02E + 03(G x E) + 4t _j= + 05 X*(t_;») + € (3.36)

Model SIII(vii) estimates the effects of G, E and G x E on the rate of progression
in X while adjusting for subject’s age and initial X value, at the earliest available X

measurement.

Sensitivity analysis

According to the literature review, frequency of genetic susceptibility and exposure,

and magnitude of the interaction are the most important determinants of the power



64

Table 3.6: Parameter values under the basic setting and new setting for Scenario III
(sensitivity analyses).

I Parameter “ Previous value | New value l

P(G=1) 0.3 0.2
P(E=1) 0.6 0.3
Ag 0.1 0.02
Ack 0.20 0.03
0.40 0.06

of a study to detect G x E interaction. We explore the effects on power of changing
values of some of these parameters used in the data generation. Table 3.6 gives the
alternative parameter settings explored in sensitivity analysis. Parameters not shown
in the table have their previous values, as in Section 3.4.1.

Table 3.6 shows that, under the sensitivity analysis setting, genetic susceptibility
and exposure are less common. In the absence of exposure, subjects experience a

smaller rate of increase in X with age:

B ~ N0.1,0.03], if G, =0
Gi ~ N[O.l—l—Ag,0.0S], if G;=1.

This rate may increase in the presence of genetic susceptibility. However, the magni-
tude of increase (A¢) is lower than what was previously assumed (see Table 3.6) so
that the presence of the gene results in a smaller rate of change in X. Moreover, we
consider two new values for Agg that assume much weaker effects of G x E on rate
of increase in X.

In the previous setting, subjects with current ages between 40-60 years who were
exposed, became first exposed at ages between 20-40 years (Section 3.4.2). That is, first
exposure occurred before the current age t; o for all subjects. However, this assumption
no longer holds in the current setting since ¢, is now generated from ¢/[30, 60], which
implies that first exposure may occur after the current age for some subjects. In
addition, larger errors are assumed in the measurement of X, i.e. ¢;,; ~ N/0,1] in
(3.27). The performance of the linear regression models SITI(i) and SIII(vi) versus the

logistic regression models SIII(ii) - SITI(v) is assessed under these new assumptions.
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3.5 Summary

This chapter described three basic scenarios for simulations design, in the context
of which the efficiency of continuous versus binary outcomes for detecting G x E
interaction was studied. Scenario I assumed that the continuous outcome X was a
risk factor for the disease (Y = 1) and that part of the effect of G x E on binary
outcome Y was mediated by this variable. Scenario II assumed that X was a marker
for disease and change in X followed change in disease status Y. Two variations of
Scenario II were considered: (i) Y depended on the observed risk factors that were
independent of G, F and G x E; (ii) Y depended, additionally, on some unobserved
risk factors, which could be correlated with G or E, or both G and E.

In Scenario III, we generated repeated measurements of the continuous variable X,
which was a marker of disease progression. Based on these repeated measures, different
types of continuous and binary outcomes were generated to investigate which outcome
would yield a model with higher power for detecting G x E interaction. To assess
the role of important parameters in influencing the power of the study, in sensitivity
analyses two settings for these parameters were investigated.

The underlying assumptions, various sub-scenarios, corresponding to different pa-
rameter values and/or data structure, data generation and methods of analysis, were
described for each scenario. In the following chapter, we shall present the results of

the simulations.



Chapter 4

Results

4.1 Introduction

The choice between a continuous or binary outcome could have important implications
for the power of a study to detect G x E interaction. However, the magnitude of the
gain in efficiency from replacing the clinically more relevant binary outcome Y by a
continuous surrogate outcome X is likely to depend on a number of factors. To explore
these factors, in this thesis, a number of scenarios have been considered which vary in
their assumptions about the underlying mechanisms of G, E and G x E interaction
effect on X or Y, and the relationship of these factors with other risk factors for
Y and/or X. Alternative models of the biological relationship between X and Y
are also explored. In addition, we consider different methods of dichotomization of
the continuous variable X based on repeated measures, to construct different binary
outcomes. Simulations have been used to assess the efficiency of alternative outcomes
to detect G x E interaction.

In Chapter 3, we discussed the scenarios, their assumptions and the data genera-
tion procedures for the simulations. Different models for analysis based on alternative
binary or continuous outcome variables were also described. This chapter presents
the results of the simulations for each scenario, under a variety of parameter settings.
Although the simulations were performed in both S-Plus and Matlab, to avoid redun-

dancy, we present only the results of S-Plus in this thesis.

66
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Table 4.1: Power of test for rejecting Hy : G4 = 0 at 0.05 significance level for models
SI.1(i)-SI.2(iv).

Linear Regression Logistic Regression
SL1(i) | SL1(ii) [ SI.2(i) | SI.2(ii) | SL.2(iii) | SL.2(iv)
0.359 | 0.335 0.495 | 0.277 | 0.275 0.063 |

4.2 Scenario I

Section 3.2.4 described six different models for analyzing each sample in Scenario I
where a quantitative variable X was considered a risk factor for the binary outcome
Y. Models SI.1(i) and SI.1(ii) were linear regression models for the true values and
observed values of the continuous outcome X, respectively. The remaining four models
(SI1.2(i), SI.2(ii), SI.2(iii) and SI.2(iv)) were logistic regression models for the four
versions (or “types”) of binary outcome Y, obtained from different combinations of
the parameter values given in Table 3.1 of Section 3.2.3. To recapitulate, model SI.2(i)
corresponds to the situation, in which there is a relatively strong direct effect (i.e.
B3 = In3) of G x E and moderate effect of F on disease outcome Y (by “direct” we
mean effects not transmitted through X). On the other hand, outcome Y in model
SL.2(ii) is influenced by a slightly weaker (83 = In2), i.e. a moderate (direct) effect
of G x E interaction. The outcome in model SI.2(iii) differs from that in SI.2(ii) by
assuming that there is no (direct) effect of E on Y. Lastly, model SI.2(iv) corresponds
to the case where there are no direct effects of either G x F or E on Y.

The estimated power for each of the above models is reported in Table 4.1. Com-
parison between models SI.1(i) and SI.1(ii) reveals that there is some loss of power due
to measurement errors in the quantitative risk factor X. Power comparisons between
the logistic regression models indicate that when a “strong” G x E interaction effect
on Y is mediated through pathways not involving X, highest power for model SI.2 is
observed. Indeed, in that case using the binary outcome improves power compared
to the quantitative “surrogate” X. The main reason is that the impact of G x F
on Y is only partly mediated by X. When the direct effect for G x E is moderate,
estimated power in model SI.2 declines by 44%. Comparison between models SI.2(ii)

and SI.2(iii) indicates that magnitude of the direct ezposure effect (i.e. 5;) does not
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Figure 4.1: Effect of sample size variation on power for the test of Hy : By = 0 at 0.05
significance level for models SI.1(i)-SI.2(iv). The number of data sets generated was
300.

have a significant influence on the power to detect G x F interaction. As expected,
when effects of both G x E and E are reduced to zero, probability of rejecting Hy is
close to 0.05, indicating the test has the correct size.

Based on the data generation scheme, direct power comparisons between linear
and logistic regression models is of limited interest here. Nevertheless, some important
results do emerge from the two types of analyses. Power for linear regression on X

versus logistic regression on P(Y = 1) depends mainly on:

1. Relative strength of G x E interaction effects on X (i.e. a3 in (3.5)) versus on
P(Y =1) (ie. Bs, in (3.1)).

2. To a lesser extent, measurement errors in X.

The effect of increase in sample size on estimated power for each model is summarized
in Figure 4.1. In general, power for detecting G x E interaction increases as sample

size increases.
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Table 4.2: Power of test for rejecting Hy : B4 = 0 at 0.05 significance level for linear
regression model SIL.1(i).

Combination® | o° (Or, Oy )"

(0,05) [ (0,1) [ (0, 15) | (0.5,05) [ (0.5,1) | (0.5,1.5)
0.05 | 0.100 | 0.163 | 0.347 0.080 0.207 0.36

Case 2.1 0.50 || 0.087 | 0.167 | 0.283 0.070 0.157 0.297
1.00 || 0.103 | 0.113 | 0.217 0.097 0.120 0.257

0.05 | 0.077 | 0.097 | 0.193 0.063 0.117 0.207
Case 2.2 0.50 || 0.073 | 0.107 | 0.180 0.067 0.087 0.153
1.00 || 0.083 | 0.080| 0.113 0.060 0.080 0.143

0.05 || 0.070 | 0.070 | 0.120 0.057 0.093 0.137
Case 2.3 0.50 | 0.070 | 0.087 | 0.107 0.047 0.063 0.113
1.00 || 0.083 | 0.070 | 0.107 0.057 0.060 0.113

0.05 || 0.050 |0.037 | 0.037 0.057 0.057 0.063
Case 2.4 0.50 | 0.067 | 0.050 | 0.043 0.050 0.030 0.053
1.00 | 0.063 | 0.050 | 0.050 0.060 0.050 0.070

@ See Table 3.2
b Measurement error standard deviation for X

¢ 0y determines diagnostic value of X as marker for Y = 1; #z determines correlation between X
and other observable risk factors R

4.3 Scenario 11

Case S1

A basic difference between Scenarios I and II described in Sections 3.2 and 3.3 respec-
tively, is that in the latter, the quantitative variable X is a marker rather than a risk
factor for the disease outcome Y. This difference in the biological relationship between
X and Y is likely to have some influence on power comparisons between linear and
logistic regression analyses. Moreover unlike Scenario I, which made no explicit as-
sumptions regarding the presence of other observed/unobserved risk factors of Y, the
hypothetical model in Case S1 assumes that both X and Y depend on other observed
risk factors (R) independent of G and E.

Both linear and logistic regression models were described in Section 3.3.5 for ana-
lyzing the continuous (surrogate) outcome X and binary outcome Y in Case S1. For
each model, it is of interest to investigate the effect on power of changes in the simu-

lation parameters 0, 6y and o. Here, 0z determines the correlation between X and
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Table 4.3: Power of test for rejecting Hy : B4 = 0 at 0.05 significance level for logistic
regression model SIL.1(ii).

Combination® (n5,m8)

@D [(0.9,09) ] (0.7,0.9) [ (08,0.7) | (0.7,0.7)
Case 2.1 0.507 | 0.423 0.280 0.340 0.167
Case 2.2 0.223 | 0.203 0.157 0.123 0.100
Case 2.3 0.177 ) 0.140 0.093 0.087 0.057
Case 2.4 0.030 | 0.0167 0.063 0.040 0.030

% See Table 3.2
b Sensitivity in ¥’

¢ Specificity in Y

R, Oy determines the magnitude of the change in X when Y = 1, and o determines
the level of measurement errors in X (Section 3.3.4). Table 4.2 summarizes the results
for the linear regression model SII.1(i) under the assumptions of Case S1. Estimated
power of the test for the coefficient of G x E interaction increases as 6y increases for
a fixed 0. This result is apparent in Figure 4.2. The parameter 6y determines the
impact on X of changes in Y. Thus, as expected, the greater the increase in marker X
for change in disease status Y, the higher the power of the linear regression model for
detecting G x E interaction. The latter finding reflects a necessary characteristic of a
“good” surrogate outcome. In order to detect G x E interaction with higher power, X
should undergo a large enough change when disease status changes. Estimated power
does not change appreciably for a higher value of the parameter 6 when fy is fixed.
In other words, correlation between X and R does not significantly affect the power
to detect G x E interaction. Power declines rapidly for the linear regression model
SIL.1(i) as the true underlying G x E interaction effect on Y decreases. The decline
is more apparent at higher values of y. Power also decreases slightly with increase in
measurement error in X (Table 4.2)

The results regarding power to detect G x E interaction in the case of the logistic
regression model SII.1(ii), under Case S1, are shown in Table 4.3. Similar to linear
regression, estimated power for logistic regression declines as the effect of the underly-
ing G x E interaction effect on Y (03, Table 3.2) becomes weaker. As expected, power

also declines with increase in misclassification error of ¥ (Figure 4.4). Compared to
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Table 4.4: Power of test for rejecting Hy : G4 = 0 at 0.05 significance level for linear
regression model SII.2(i) with observed X, as outcome.

Combination® | o° (Or, Oy )¢

(0,0.5) | (0,1) [ (0, 1.5) [ (0.5,0.5) [ (0.5,1) | (0.5,1.5)
0.05 || 0.057 | 0.253 | 0.400 0.133 0.237 0.393
Case 1 0.50 || 0.063 | 0.223 | 0.323 0.133 0.207 0.343
1.00 || 0.063 | 0.137 | 0.243 0.077 0.167 0.243

0.05 | 0.057 | 0.157 | 0.243 0.103 0.160 0.243
Case 2 0.50 || 0.037 | 0.153 | 0.233 0.117 0.147 0.210
1.00 | 0.037 |0.083| 0.170 0.067 0.120 0.163

0.05 ) 0.040 | 0.103 | 0.193 0.093 0.107 0.187
Case 3 0.50 || 0.030 | 0.100 | 0.190 0.107 0.103 0.147
1.00 || 0.037 | 0.067 | 0.137 0.060 0.073 0.100
0.05 (| 0.030 | 0.037 | 0.100 0.067 0.043 0.077
Case 4 0.50 || 0.020 [ 0.040 | 0.076 0.087 0.050 0.073
1.00 || 0.027 | 0.043 | 0.077 0.053 0.037 0.067

@ See Table 3.5
b Measurement error standard deviation for X

¢ 0y determines diagnostic value of X as marker for Y = 1; §z determines correlation between X
and other observable risk factors R

the linear regression model for X, the logistic regression model has higher power for
detecting strong G x E interaction in the data. However, this relative power advan-
tage of the logistic regression model declines with increase in misclassification error
of Y. For instance, when the sensitivity (7;) and specificity (ny) parameters in Table
4.3 equal 0.7 and 0.9 respectively, the linear regression model has higher power (35%)
relative to the logistic regression model (28%) when 6y = 1.5 and there exist almost
no measurement errors in X (Table 4.2).

To summarize, the power for linear regression on X versus logistic regression on

P(Y = 1) under Case S1 depends mainly on:

1. The value of 6y for the association between changes in marker X and changes
inY,

2. Level of misclassification errors i.e. sensitivity and specificity in Y for logistic

regression,
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Figure 4.2: Effect of 6y and fr on estimated power for detecting G x E interaction
for linear regression model SII.1(i) assuming strong G x E interaction and moderate
exposure effect on Y [G2 = In(1.5), O3 = In(3); Table 3.2].

3. To a lesser extent, measurement errors in X.
Case S2

The assumptions of Case S2 differ from that of Case S1 in two major aspects: (i)
outcome Y depends, additionally, on unobserved risk factors (S) which could be cor-
related with G and/or E, (ii) there are two repeated measurements of X. Table 4.4
shows, for different combinations of the parameter values 8y, 6r and o, the estimated
power to detect G x E interaction for the linear regression model SII.2(i) that uses the
initial value of observed X (i.e. X}) as outcome. As in Case S1, estimated power for
detecting G x E interaction increases as fy increases for a fixed 0 (see Figure 4.3).
For a fixed @y, power does not appear to change significantly when 6g increases from
0 to 0.5.

The strength of the underlying G' x E interaction effect on Y (85, Table 3.5) is also
an important determinant of power in this model. Power decreases as (3 decreases.
The estimated power decreases only slightly for model SII.2(i) as measurement error
in Xy increases. Thus, as Figure 4.3 illustrates, there are no major differences in the

factors affecting power in linear regression models SII.1(i) and SII.2(i) under Case S1
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Figure 4.3: Power of test for Hy : B4 = 0 at 0.05 significance level for linear regression
models SII.1(i) [Case S1] versus SII.2(i) [Case S2] assuming strong G x E interaction
and moderate exposure effect on Y [G; = In(1.5), 83 = In(3); Tables 3.2, 3.5]: (a)
fr =0 (b) 6 =0.5.

and Case S2, respectively.

Table 4.5: Power of test for rejecting Hy : G4 = 0 at 0.05 significance level for logistic
regression model SIT.2(iii).

Combination® (m3, 1)

(1,1) [(0.9,0.9) [ (0.7,09) | (0.9,0.7) | (0.7,0.7)
Case 2.1 0.400 | 0.390 0.243 0.327 0.193
Case 2.2 0.203 | 0.217 0.147 0.200 0.133
Case 2.3 0.170 | 0.150 0.120 0.143 0.097
Case 2.4 0.053 | 0.050 0.040 0.053 0.040

% See Table 3.5
b Sensitivity in Y

¢ Specificity in ¥

Table 4.5 summarizes the results of power computations for the logistic regression
model SIT.2(iii) under Case S2. The estimated power decreases rapidly with increase
in misclassification error of Y (Figure 4.4). The gradient of the decline appears to be
slightly steeper for Case S1 than for Case S2, especially when the underlying G x E
interaction effect on Y is strong. As in the case of model SII.2(i), power of the test
to detect G x E interaction for the logistic regression model SII.2(iii) is higher when
the underlying interaction effect on Y is strong (Figure 4.4). It is interesting to note

that for certain combinations of the values of 6z and 6y, the linear regression model
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Figure 4.4: Power of test for Hy : 34 = 0 at 0.05 significance level for logistic regres-
sion models SII.1(ii) [Case S1] and SIL2(iii) [Case S2] according to combinations of
sensitivity /specificity (11, 70) and effects of E and G x E on Y [f,, Bs; Tables 3.2, 3.5].

for Xg, SII.2(i), has power as high as that for the logistic regression model SIIL.2(iii),
especially when there are almost no measurement errors in X,. Thus, comparison of
power for linear regression analysis of X versus logistic regression analysis of ¥ for

Case S2 depends mainly on:

1. Magnitude of fy, i.e. strength of the impact on the marker of the change in

disease status Y,
2. Degree of misclassification error in Y,
3. To a lesser extent, measurement errors in X.

Interesting results are observed for the linear model SII.2(ii) in which the rate of
change in X (referred to as Z) is the outcome. Table 4.6 shows that when measurement
error in X is small (¢ = 0.05, ICC = 0.998), the estimated power of the test to detect
G x E interaction becomes 100%, irrespective of the magnitude of the underlying
G x FE interaction effect on Y. A possible explanation for such high power is that in
the absence of moderate or large errors in X, Z is determined largely by the component
[Yo +71E + 72(G x E)], which in turn depends on E and G x E. Thus, we can expect
E and G x E to be significant predictors of Z in model SII.2(ii). As measurement
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error increases, the value of Z depends to a greater extent on the random component
£=¢ and thus G X E may no longer have a significant effect on Z. This is reflected
in the low values of power for 0 = 0.50 (JCC = 0.8) and ¢ = 1 (ICC = 0.5) for all

combinations of Az and fy.

Table 4.6: Power of test for rejecting Hy : B4 = 0 at 0.05 significance level for linear
regression model SII.2(ii) with time-interval standardized difference Z as outcome.

Combination® | ¢? (Or, 0y )"

(0,05) [ (0,1) [ (0, 1.5) | (0.5, 05) | (0.5,1) | (0.5,1.5)
0.05 {| 1.000 | 1.000 [ 1.000 1.000 1.000 1.000
Case 2.1 0.50 || 0.100 | 0.107 | 0.110 0.137 0.127 0.130
1.00 || 0.070 | 0.070 | 0.067 0.067 0.050 0.070

0.05 || 1.000 | 1.000 | 1.000 1.000 1.000 1.000
Case 2.2 0.50 || 0.100 | 0.107 | 0.110 0.137 0.127 0.130
1.00 | 0.070 | 0.070 | 0.067 0.067 0.050 0.070
0.05 | 1.000 | 1.000 [ 1.000 1.000 1.000 1.000
Case 2.3 0.50 || 0.100 | 0.107 | 0.110 0.137 0.127 0.130
1.00 || 0.070 | 0.070 | 0.067 0.067 0.050 0.070
0.05 || 1.000 | 1.000 | 1.000 1.000 1.000 1.000
Case 2.4 0.50 || 0.100 | 0.107 | 0.110 0.137 0.127 0.130
1.00 || 0.070 | 0.070 | 0.067 0.067 0.050 0.070

% See Table 3.5
b Measurement error standard deviation for X

¢ @y determines diagnostic value of X as marker for Y = 1; 8r determines correlation between X
and other observable risk factors R

4.4 Scenario I1I

4.4.1 Results of the main analysis

Scenario III involves comparison of alternative continuous and binary outcomes derived
from repeated measures of the quantitative marker X. Under the assumptions of
Scenario III, the rate of increase in X (from the earliest assessment time) depends
on the effects of G and G x E interaction, which are determined by the simulation
parameters Ag and Agg, respectively.

Three types of continuous outcomes and four types of binary outcomes were consid-

ered, and analyzed using the linear and logistic regression models described in Section
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Table 4.7: Power of test for rejecting Hy : B4 = 0 at 0.05 significance level for multiple
linear regression models SIII(i), SITI(vi), and SITI(vii) with continuous outcomes X (to),

AX and ay, respectively.

Outcome® | A%p AL =0 Ax =5

AT =0]|Ac=010| Ag=0] Ag = 0.10

0.00 | 0.067 0.063 0.077 0.053

X (t)? 0.20 || 0.507 0.513 0.510 0.523

0.40 || 0.977 0.973 0.963 0.963

0.00 || 0.063 0.063 0.077 0.053

X*(t) | 020 | 0503 0.513 0.510 0.523

0.40 || 0.977 0.973 0.963 0.963

0.00 || 0.030 0.060 0.030 0.060

AXe 0.20 1.000 1.000 1.000 1.000

0.40 1.000 1.000 1.000 1.000

0.00 || 0.037 0.043 0.037 0.043

AX* 0.20 1.000 1.000 1.000 1.000

0.40 1.000 1.000 1.000 1.000

0.00 || 0.037 0.057 0.027 0.063

i 0.20 1.000 1.000 1.000 1.000

0.40 || 1.000 1.000 1.000 1.000

0.00 | 0.033 0.063 0.030 0.060

oZ{ 0.20 1.000 1.000 1.000 1.000

0.40 1.000 1.000 1.000 1.000

% Asterisks indicate outcomes with measurement errors

b Current value of marker X

¢ Time-interval standardized difference in X

¢ Rate of progression in X

¢ Impact of G x E interaction on rate of change in X

f Impact of G on X at birth

9 Impact of G on rate of change in X
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Power

Figure 4.5: Power of test for Hy : B4 = 0 at 0.05 significance level using linear
regression models SIII(i), SIII(vi) and SIII(vii) for Ax = 0, assuming no measurement
errors in X.

3.4.3. Table 4.7 gives the estimated power for the test of G x E interaction for linear
regression models SIII(i), SIII(vi) and SIII(vii). To recapitulate, model SIII(i) uses
the current value of the quantitative marker X (¢y) as the outcome, while adjusting for
the effects of G, E, G x E interaction and current age of the subject. Model SIII(vi)
is similar to model SIII(i), but uses AX, the (standardized) average increase in X per
year, as outcome and adjusts for the subject’s earliest (available) measurement time.
In addition to the independent variables in model SIII(vi), model SIII(vii) adjusts for
the subject’s initial X value and uses the rate of progression in X (i.e. &;) as outcome.
For all three models, parameter Agp affects the estimated power most (Figure 4.5).
When Agg = 0, the rate of rejection of (true) Hy is close to 0.05. Power increases
from about 50% to almost 100% as Agg increases from 0.20 to 0.40. This is expected
since Agg directly determines ', the rate of change in X due to G x E interaction
(see Section 3.4.1), which in turn affects the values of X at different assessment times.
Models SITI(vi) and SIII(vii) have similar estimated powers for different parameter
combinations as seen in Figure 4.5. Both have high power to detect G x E interaction
even when the underlying interaction effect in the data is moderate (i.e. Agg = 0.20).
In contrast, model SIII(i), which uses the current X value as outcome, requires a
stronger underlying G x E interaction effect in the data to detect interactions with

adequate power. Neither Ag nor Ay appear to influence estimated power for these
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Table 4.8: Power of test for rejecting Hy : B¢ = 0 at 0.05 significance level for mul-
tiple logistic regression models [SITI(ii)-SIII(v)] with four different binary outcomes,
assuming no measurement errors in X.

Outcome | (A%, T") (AS, AL L)
[Model] 0,0 1 (0,0.20) [ (0, 0.40) | (0.1,0) | (0.1,0.20) | (0.1, 0.40)
(0,71) 0.063 { 0.290 0.817 0.033 0.313 0.783
Y1 (0,72) 0.063 | 0.323 0.783 0.067 0.300 0.750
smg) | (6.1 | 0057 | 0283 | 0787 | 0.047 | 0.253 0.690
(5,72) 0.070 | 0.337 0.777 0.043 0.263 0.697
(0,71) 0.0563 | 0.227 0.670 0.053 0.243 0.640
Y2 (0,72) 0.063 | 0.260 0.680 0.063 0.237 0.623
jsimg)) | (5,71) | 0.063| 0220 | 0600 | 0.050 | 0.230 0.507
(5,12) 0.070 | 0.260 0.597 0.057 0.187 0.530
(0,71) 0.107 | 0.150 0.190 0.120 0.117 0.153
Y3 (0,72) 0.143 | 0.197 0.177 0.170 0.193 0.243
[Siigiw)] | (5,71) || 0.093| 0.123 | 0137 | 0003 | 0.107 0.107
(5,172) 0.130 | 0.157 0.123 0.100 0.163 0.163
(0,71) 0.073 | 0.110 0.190 0.107 0.143 0.130
Y4 (0,72) 0.120 | 0.153 0.183 0.103 0.157 0.190
[SIII(v)] (5,71) 0.070 | 0.100 0.153 0.080 0.117 0.120
(5,172) 0.110 | 0.120 0.163 0.117 0.093 0.123

¢ Impact of G on X at birth
b Threshold value of X
¢ Impact of G on rate of change of X

¢ Impact of G x E interaction on rate of change of X

models (Table 4.7).

For Scenario 111, four different types of binary outcomes were formulated to examine
how the power depends on the way the outcome is operationalized. In model SITI(ii),
Y1 = 1, if current value of X exceeds threshold T. In model SIII(iii), Y2 = 1 if at
least two repeated measures of X before the current age exceed the threshold value.
For subjects with initial X value less than the threshold, outcome Y3 = 1 in model
SIII(iv) if the current X value exceeds the threshold. For the same restricted sample,
outcome Y4 = 1 in model SIII(v) if two or more repeated measurements of X exceeds
the threshold.

Table 4.8 shows the estimated power for detecting G x F interaction for the logistic
regression models SIII(ii)-SIII(v). As expected, the type-I error rates are close to 0.05

when Agg is 0. Obviously, power increases as Agg increases. However, the increase
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Figure 4.6: Power of test for Hy : G, = 0 at 0.05 significance level using logistic
regression models SIII(ii)- SIII(v) for Ax = 0, T = T'1, assuming no measurement
€rTors.

is more pronounced for binary outcomes Y1 and Y2 corresponding to models SITI(ii)
and SIII(iii), respectively. For instance, in the case of model SIII(ii), power increases
from about 30% to as high as 81% as Agg increases from 0.2 to 0.4 when Ax = 0
and T' = T'1. For models SIII(iv) and SIII(v) with outcomes Y'3 and Y4 respectively,
the increase is much less, in comparison. Comparing models SITI(ii) and SITI(iii), we
see that estimated power is slightly less for the latter. The uniformly low power of
models SIII(iv) and SIII(v) compared to the other two logistic models (i.e. SITI(ii) and
SIII(iii)) indicates that, as expected, outcomes based on the entire sample are more
efficient than outcomes restricted to subjects that were disease-free at the earliest
assessment time (Figure 4.6).

The threshold parameter 7', as well as Ag and Ax do not have significant effects
on power in either of these models. When Ag increases from 0 to 0.1, power decreases
slightly in all models when Agg is set to its highest value. For a fixed threshold T,
there seems to be a slight, but rather systematic, decline in estimated power as Ax
increases. Finally, measurement errors in X appear to have only a minor impact on
the estimated power.

To summarize, comparison of power between the various continuous outcomes re-
veals that models based on outcomes AX, the (standardized) average increase in X,

and ay, the rate of progression in X (i.e. models SIII(vi) and SIII(vii)), have higher
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Table 4.9: Power of test for rejecting Hy : B, = 0 at 0.05 significance level for mul-
tiple logistic regression models [SITI(ii)-SIII(v)] with four different binary outcomes,
assuming measurement errors in X.

Outcome® | (A%, T°) (AL, AL L)

[Model] (0,0) ] (0,0:20) | (0, 0-40) | (0.1,0) | (0.1,0.20) | (0.1, 0.40)

(0,71) 0.040 | 0.290 0.807 0.077 0.297 0.783

Yi* (0,72) 0.067 , 0.317 0.783 0.080 0.313 0.747

[sm)) | (5,71) | 0.057 | 0330 | 0.803 | 0.047 | 0.267 0.707

(5,72) 0.077  0.327 0.783 0.057 0.287 0.673

(0,T1) 0.060 | 0.210 0.673 0.060 0.223 0.623

Y2* (0,72) 0.057 | 0.257 0.637 0.057 0.237 0.610

[sgi)) | (5,71) | 0.063 | 0.223 | 0593 | 0.037 | 0.223 0.500

(5,172) 0.073 | 0.223 0.590 0.047 0.170 0.513

(0,71) 0.087 | 0.107 0.170 0.133 0.173 0.173

Y 3* (0,72) 0.080 | 0.097 0.130 0.110 0.163 0.170

[smr)) | (5,71) || 0077 | 0150 | 0128 | 0097 | 0.010 0.163

(56,72) 0.113 1 0.097 0.143 0.103 0.100 0.127

(0,11) 0.153 ; 0.193 0.240 0.187 0.267 0.253

Y4* (0,72) 0.167 | 0.183 0.240 0.207 0.210 0.207

[siw)) | (5,71) || 0150 | 0177 | 0.207 | 0.153 | 0.103 0.220

(5,T2) 0.197  0.213 0.197 0.183 0.173 0.203

¢ Binary outcomes were derived from values of X with measurement errors

b Impact of G on X at birth

¢ Threshold value of X
¢ Impact of G on rate of change of X

¢ Impact of G x E interaction on rate of change of X

power for detecting “moderate” G x FE interaction in the data relative to the model

that uses the current X value X (o) as outcome (model SITI(i)). However, all three

models are efficient in detecting strong interaction in the data. Comparison of power

between the binary outcomes shows that for detecting moderate to strong G x E in-

teraction, outcomes Y1 and Y2 based on all subjects in the data are more efficient

than Y3 and Y4 which are obtained only for subjects with initial X values below

the threshold. Moreover, outcomes based on the current X value (Y1 and Y'3) have

slightly higher power than outcomes obtained from repeated X measurements (Y2 and

Y4). Overall, the simulation results for Scenario III demonstrate that for detecting

moderate to strong G x E interaction effects in the data, quantitative outcomes based

on variable X are more efficient than binary outcomes (Y'1-Y'4) derived from X.
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4.4.2 Results of sensitivity analysis

In Section 3.4.3 we described modifications of some of the parameter values to assess
their effects on estimated power for models SIII(i) - SIII(vi). Specifically, the preva-
lence of the genetic factor G and exposure E were decreased, impact of G on rate of
change of X (A¢) and impact of G x E on rate of change of X (Agg) were decreased.
Moreover, larger errors were assumed in the measurement of X.

Table 4.10 summarizes the results for the linear regression models SIII(i) and

SIII(vi) under the new parameter settings. Power is uniformly low for all parame-

0.02

Figure 4.7: Comparison of estimated power for detecting G x E interaction in models
SIII(i)-SIII(vi) under new parameter settings, with Ax=0 for all models and T = T'1
for the logistic regression models.

ter combinations given in Table 4.10 when the current X value X (¢,) is the outcome.
The estimated power is only slightly higher for the average increase in X, AX, when
the impact of G x E on the rate of change is weak (Agg = 0.06). Similarly, power for
detecting G x E interaction is low for logistic regression analysis (Table 4.11).

For easy comparison, Figure 4.7 shows the trend in power estimates for all six
models with Ax fixed at 0 and 7" = T'1 for the logistic regression models. The observed
trends are quite similar for other combinations of Ax and T (data not shown). Power
comparisons between linear and logistic regression analysis indicate that, with reduced

strength of interaction, neither of the two performs substantially better than
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Table 4.10: Power of test for rejecting Hy : fye = 0 at 0.05 significance level for
multiple linear regression models SIII(i) and SIII(vi) with continuous outcomes X *(ty)
and AX™, respectively, under new parameter settings.

Outcome® | A% & =0 Ax =5
AL=0]Ac=0.02]Ac=0]Az=0.02
0.00 ][ 0.053 0.060 0.030 0.037
X*(to)® | 0.03 | 0.057 0.057 0.043 0.050
0.06 || 0.057 0.06% 0.070 0.067

0.00 || 0.060 0.033 0.060 0.033
AX* 0.03 | 0.060 0.063 0.060 0.063
0.06 || 0.143 0.113 0.143 0.113

@ Asterisks indicate outcomes with measurement errors
b Current value of marker X

¢ Time-interval standardized difference in X

4 Impact of G x E interaction on rate of change in X
¢ Impact of G on X at birth

f Impact of G on rate of change in X

the other. Thus, the relative gain in power from using continuous outcomes instead
of binary outcomes observed in Section 4.4.1 disappears under the new parameter
settings. However, model SIII(vi) (shaded in Figure 4.7) that uses the (standardized)
average increase in X as outcome seems to have relatively better power when Agg =
0.06.

Thus, the results of Scenario I1I simulations reveal that use of continuous outcomes
provides greater power than the binary outcomes when there is moderate to strong
G x E interaction in the data. The comparison of power of the two types of analyses,

linear versus logistic, depends on two main factors:
L
1. The type of binary outcome used versus the type of continuous outcome.

2. The magnitude of the underlying G x E interaction effect in the data.

For detecting moderate G x E interaction, the relative power among the continuous
outcomes is higher for the average increase in X and the rate of progression in X.
Among the binary outcomes, the relative power for detecting moderate to strong G x
E interaction is higher for outcomes defined for all subjects (Y1 and Y2) than for

outcomes defined for subjects having earliest X measurement below the threshold (Y3
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Table 4.11: Power of test for rejecting Hy : B4 = 0 at 0.05 significance level for logistic
regression models SITI(ii)-SIII(v), under new parameter settings.

Outcome?® | (A%, T°) (AL, ALR)
[Model] (0,0) | (0,0.03) ] (0, 0.06) | (0.02,0) | (0.02,0.03) | (0.02, 0.06)
(0,T'1) 0.053 | 0.060 0.053 0.037 0.053 0.063
Y1* (0,72) 0.047 | 0.073 0.067 0.053 0.047 0.070
[SIII(ii)] (5,T1) 0.043 | 0.037 0.053 0.037 0.027 0.043
(5,72) | 0.043 | 0.037 0.047 0.050 0.060 0.053
(0,11) 0.050 | 0.057 0.067 0.050 0.053 0.060
Y2* (0,72) 0.057 | 0.063 0.070 0.063 0.047 0.053
[siici)] | (5,71) | 0.017 | 0.027 0.043 0.037 0.047 0.043
(5,72) 0.040 | 0.050 0.043 0.040 0.053 0.047
(0,71) 0.050 | 0.060 0.050 0.047 0.053 0.043
Y3* (0,72) 0.030 | 0.053 0.057 0.047 0.060 0.053
[sri(w)) | (5,71) || 0.017 | 0067 | 0.040 | 0.067 0.047 0.077
(5,72) 0.063 | 0.043 0.060 0.050 0.040 0.050
(0,71) | 0.080 { 0.080 0.073 0.080 0.110 0.090
Y4* (0,72) | 0.103 | 0.110 0.113 0.093 0.110 0.090
[SIII(v)] (5,11) 0.050 | 0.070 0.090 0.100 0.087 0.110
(5,T2) 0.080 } 0.090 0.100 0.107 0.080 0.100

¢ Binary outcomes were derived from values of X with measurement errors
b Impact of G on X at birth

¢ Threshold value of X

2 Impact of G on rate of change of X

¢ Impact of G x E interaction on rate of change of X

and Y4).

4.5 Summary

This chapter presents the results of the simulations for the three scenarios described in
Chapter 3. Under Scenario I, replacing the binary outcome Y by the continuous risk
factor X could result in higher power in situations where the effect of G x E interaction
on Y that is mediated through other risk factors (pathways not involving X) is weak
i.e. the interaction effect is mostly mediated through X. Under the assumptions of
Scenario II, the association between changes in marker X and changes in disease status
Y is the main factor that determines whether any gain in power could be achieved by

using the continuous surrogate outcome. Misclassification error in Y seems to have a
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more serious effect on the power in logistic regression analysis than measurement errors
in X in linear regression analysis. Thus, in circumstances where misclassification error
in Y is likely to be of concern, use of the continuous surrogate outcome may be a
better alternative.

For Scenario III, where changes in X are assumed to reflect the change in disease
status, results indicate that the most important parameter determining power is the
magnitude of underlying G' x E interaction in the data. For moderate and strong
interaction effects, all three linear regression models were efficient. In contrast, only
logistic regression models that used all cases in the analysis were successful in detecting
G x E interaction with any reasonable level of power.

Sensitivity analysis showed that when genetic susceptibility and exposure are less
common, interaction in the data is weak and measurement errors are large, all of the
models assessed have very low power. In these circumstances, the linear regression
model that uses time-interval standardized change in X as outcome may have some
promise.

In conclusion, the simulation results indicate that, under most scenarios considered,
use of continuous outcomes based on repeated measures of the quantitative variable
X, provides better power than binary outcomes obtained from some dichotomization

of this variable.



Chapter 5

Discussion and Conclusion

Power and efficiency considerations are critical for the design and feasibility of epi-
demiologic studies of gene-environment (G x E) interactions. When the interaction
effect is moderate, involving uncommon genes or environmental exposures, required
sample sizes are often unattainable. Thus, much of the methodological literature on
G x FE interactions has focused on evaluation of different study designs to enhance
statistical power. This study explored an alternative strategy for improving power
without having to resort to the use of more complicated and costly study designs.
For most pathological processes, the clinical outcome of ultimate interest is binary,
such as the occurrence of disease. However, in such studies available data often include
also measurements of some quantitative variable that may be a risk factor or marker for
this outcome. Replacing the binary outcome by this quantitative “surrogate” outcome
could result in better power for disclosing G x E interactions, especially if the binary
outcome is rare. However, any gain in power is likely to depend on a number of factors,
such as the magnitude of the G x E interaction effect on the true binary outcome Y
and on the surrogate, frequency of the binary outcome, and of the factors G and E, as
well as measurement errors in both outcome variables [5], [6], [105], [122]. In addition,
the biological relationship between the binary outcome and the quantitative surrogate,
and the role of the latter in the pathological process will have some influence on their
relative powers for detecting G x E interactions. The purpose of this thesis was to carry
out a systematic quantitative study of the implications of using alternative outcomes
on the power to detect G x E interactions while taking into account some of these

factors.
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Three basic scenarios were proposed. Each assumed that disease was determined
by a single common genetic factor and a single exposure, and that both factors were
binary. Scenario I considered the simplest hypothetical model of the relationship
between the binary and quantitative outcomes, and their dependence on G, E and
G x E interaction. Here, the surrogate X was assumed to be a risk factor for disease,
and a mediating factor for the effects of G, E and G x E. Alternative sub-scenarios
were studied based on varying assumptions regarding the magnitudes of the G x E
and E effects on binary outcome Y that were not transmitted through X.

Scenario II assumed that the quantitative surrogate X was a marker of disease
incidence, and was also associated with other risk factors for the binary outcome that
were independent of G and E. Elevated levels of the marker indicated the occurrence
of disease. Another variation of this scenario assumed that Y depended, additionally,
on some other unobserved risk factors, some of which were correlated with G and/or
E. Assuming the study was prospective, two measurements were generated for X
and a new quantitative outcome was defined as the rate of change in the quantitative
marker.

The way a quantitative variable is measured determines, at least partly, the effi-
ciency of analysis. Thus, the last scenario considered repeated measures of the quan-
titative marker, from which alternative continuous and binary outcomes were derived.
Linear or logistic regression analyses were performed, depending on the type of out-
come, and estimates for power were compared.

The results of the simulations reveal a number of important findings. Firstly,
under the assumptions of Scenario I, the quantitative surrogate outcome provides
higher power than the binary outcome when the effects of G x E and F on Y are
transmitted mainly through X. In other words, a “good” surrogate outcome for Y
to detect G x E interaction would be one that (almost) entirely mediates the effects
of G x E. The latter finding is consistent with the criterion for assessing surrogate
endpoints of clinical outcomes in clinical trials: a perfect surrogate should completely
explain the treatment effect on clinical outcome [33], [89]. Moreover, the gain in power
from replacing the binary outcome by the quantitative surrogate is higher when there

are no errors in measurement of X. There may be other factors that affect the power



87

in this scenario, although these factors have not yet been investigated. For instance,
a higher prevalence of disease outcome, say close to 0.5, could result in an increased
power for logistic regression. The association between X and P(Y = 1) may also
influence power comparisons: power for the two models may be closer when a stronger
association exists.

In Scenario II, the binary outcome is a better choice for detecting G x E inter-
action with higher power. However, its efficiency is compromised when the degree
of misclassification error in Y increases, in which case the quantitative outcome may
be a better alternative. Researchers searching for biomarkers of disease outcome use
sensitivity as an important criterion for evaluating markers [78], [88]. For instance,
high sensitivity of cardiac troponin assays enables diagnosis of patients with unstable
angina [124]. In our study, the strength of the association between changes in the
quantitative marker X and changes in disease status Y is the most important factor
that determines its efficiency relative to the binary outcome. The greater the increase
in X when status changes from non-diseased to diseased, the higher the power of lin-
ear regression to detect G x E interaction. Thus, under the assumptions of Scenario
II, replacing the binary outcome by the quantitative surrogate could result in higher
power if existing methods for direct assessment of the binary outcome are crude, and
accurate measurements for the quantitative outcome could be ascertained. The use
of melanotransferrin, an accurate marker for mild Alzheimers disease, provides an ex-
ample, since clinical diagnosis at early stages of the disease is not always reliable [61].
In the situation where Y also depends on unobserved risk factors, the relative power
advantage of logistic regression declines, even in the absence of misclassification errors,
when there are no measurement errors in X. Thus, even under the assumptions of
Scenario II, use of alternative measures offers some promise in improving the power
to detect G x E interaction.

Three types of continuous outcomes and four types of binary outcomes were consid-
ered in Scenario III. Binary outcomes were obtained through various dichotomizations
of the marker. Results indicate that continuous outcomes are more efficient than bi-
nary outcomes for detecting moderate to strong G x F interaction effects. The low

efficiency of binary outcomes in this scenario could perhaps be attributed to the loss
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of information incurred due to discretization of the continuous variable [107]. The
average increase in X per year and the rate of progression of X provide the highest
power among all alternative outcomes. Thus, when repeated measures are available
on a quantitative variable X, modelling the “rate” as outcome could provide better
power for detecting G x E interactions than binary outcomes obtained through differ-
ent dichotomizations. However, the sensitivity analysis reveals that neither linear nor
logistic regression, using the outcomes considered in this study, have reasonable power
to detect weak interactions in the data.

Overall, the findings of this research lead us to conclude that evaluation of al-
ternative outcomes is a viable option for improving the power of studies to detect
G x E interaction. Only a limited number of possible outcomes were assessed in this
study. However, surrogate outcomes that are clinically more relevant could be de-
veloped, especially, to detect weak interactions of biological significance. In Scenario
III, we considered a continuous outcome that measures the rate of progression in X.
Another interesting alternative outcome could be one that dichotomizes the rate of
progression to measure an “abnormally” fast progression of X. Our study involved
univariate surrogate outcomes. However, it may be of interest to examine the efficiency
of multivariate surrogates. Thus, the work presented in this thesis may be extended
to incorporate “Multivariable Risk Scoring” [8], [55] where rather than a single X, a
weighted mean of several markers/risk factors: X, ..., X, with weights reflecting
their prognostic utility, may be considered.

An important scenario that has wide applicability and may be considered in future
is one that assumes a latent period for the disease [2], [54], [82], [102]. Before the disease
becomes observable, a pathological process may start, in which a patient’s health
status changes from healthy to subclinical latent pathology. With change of latent
health status, the level of some factor X may start to change or increase at a higher
rate. A further refinement of this scenario would be to assume a latent “severity” of
the patient’s latent health status (a quantitative variable) so that subjects with higher
severity have both (i) faster rate of increase in X, and (ii) shorter time to diagnosis of
(observable) disease Y, so that the rate of change in X is correlated with the hazard of

developing the disease. Other, more complex scenarios may be considered, depending
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on the disease of interest, to obtain a more comprehensive understanding of how choice
of the outcome may influence the power of a G x E interaction study.

There are a myriad of factors that contribute to the development of disease. The
scenarios that we have examined represent, therefore, simplified models of reality but,
nevertheless, incorporate important features of the causal mechanisms of disease de-
velopment and occurrence. Thus, this thesis lays the groundwork for future studies
involving more complex scenarios. We hope that the findings of the present study will
encourage researchers to explore this avenue in their efforts to detect G x E interactions

with sufficient power.
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APPENDIX-A

S-PLUS Codes for the Simulation Study

This Appendix contains the S-Plus program codes for simulating the hypothetical
scenarios described in this thesis. The entire program for each scenario was divided
into modules according to type of outcome or parameter combinations. However, only
selected program codes are given here for Scenario I, Scenario II and Scenario III due

to space constraints.

A-1 Simulation program for Scenario I

sim.SI<- function(N, S) {

# N=number of data sets generated, S= sample size
I<-0

gl.1 <- rep(O,N)

g1.2 <- rep(0, N)

g2.1 <- rep(0, N)

g2.4 <- rep(0, N)

b <- matrix(c(log(0.1), log(3), log(1.5), log(3), log(2), log(0.1), log(3), log(1.5), log(2),
log(2), log(0.1), log(3), 0, log(2), log( 2), log(0.1), log(3), 0, 0, log(2)), 4, 5, byrow =
T)

repeat {

# Generation of data for each sample

I<-I+1

G <-rep(0, S)
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E <- rep(0, S)

X <- rep(0, S)

d <- rep(0, S)

1 <- rep(0, S)

e <- rep(0, S)

G <- rbinom(S, 1, 0.2)

E <- rbinom(S, 1, 0.3)

for(i in 1:S) {
d[i] <- rnorm(1, 0, 0.3)
if (E[i] == 0 && G[i] ==0) {
X[i] <- rnorm(1, 0, 1) } # true X
else if (E[i] == 0 && G[i] ==1) {
X[i] <- rnorm(1, 0.5, 1) } # true X
else if(Efi] == 1 && Gli] == 0) {
1[i] <- rnorm(1, 0, 1)
el <- exp(If)
X[i] <- rnorm(1, 0, 1) + eli] * 0.25 } # true X
else {
1[i] <- rnorm(1, 0, 1)
efi] <- exp(1[i])
X[i] <- rnorm(1, 0.5, 1) + €[i] * 0.5 } # true X
}

X1 <- X 4 d # observed X

#

# Program for linear models
#
lin.1<-linreg(X, G, E) # Model SI.1(i)
gl.1[I]<-lin.1$g

lin.2<-linreg(X1, G, E) # Model SI.1(ii)
gl.2(I]<-lin.2%g

# Generation of binary outcomes
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XX <- matrix(0, 5, S)
XX[1, ] <-rep(1, S)
XX[2,] <-G

XX[3,] <- E
XXH4,]<-G*E
XX[5, ] <- X

bXX <- bb %*% XX
L1 <- exp(bXX][1, ])

L4 <-exp(bXX[4, |)
pi.l <- L1/(1 + L1)

pid <- L4/(1 + L4)
Y1 <- rep(0, S)

Y4 <- rep(0, S)
for(j in 1:S) {

Y1[j] <- rbinom(1, 1, pi.1[j])
Y2[j] <- rbinom(1, 1, pi.2[j])
Y3[j]<- rbinom(1, 1, pi.3[j])
Y4[j] <-rbinom(1, 1, pi.4[j])

}

#

# Program for logistic regression models SI.2

#

log.1<-logreg(Y1, G, E)

g2.1[I]<-log.1%g

log.4<-logreg(Y4, G, E)
g2.4[I)<-log.4%g
if(I == N)
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break

}

proplinl <- sum(gl.1)/N
proplin2 <- sum(gl.2)/N
proplogl <- sum(g2.1)/N

proplogd <- sum(g2.4)/N

cat(''Results for Multiple Linear Regression Model SL1(i): \n'")
print(proplinl)

cat(''Results for Multiple Linear Regression Model SI.1(ii): \n')
print(proplin2)

cat(""Results for Multiple Logistic Regression Model SI.2(i): \n"')
print(proplogl)

cat('"Results for Multiple Logistic Regression Model SI.2(iv): \n")
print(proplog4)

}

linreg;:

function(X, G, E){

xlreg <- glm(formula = X ~ G* E, family = gaussian)
b <- coef(xlreg)

ve <- veov(xlreg)

ved <- diag(ve)

std <- sqrt(ved)

t <- b/std

if(abs(t[4]) >=1.96) g =1
elseg =10

list(g=g) }

logreg:
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function(Y, G, E){

xlreg<- glm(formula = Y ~ G * E, family = binomial(link = logit), maxit = 50,
epsilon = 0.0001)

b <- coef(xlreg)

ve <~ veov(xlreg)

ved <- diag(ve)

std <- sqrt(ved)

wald <- b/std

if(wald[4] <- 0) pval <- 2 * pnorm(wald[4], 0, 1)
else pval <- 2 * (1 - pnorm(wald[4], 0, 1))
if(pval <= 0.05) g =1

else g =0

list(g = g) }

A-2 Simulation program for Scenario II, Case S1

sim.SIla<-function(N, S) {

# N=number of data sets generated, S= sample size

I<-0

b <- c¢(log(0.1), log(3), log(1.5), log(3), log(1.5)) # Combination 1, Table 3.2
AR ## A BLOCK VAR HH A

SS <- matrix(c(1, 1, 0.9, 0.9, 0.7, 0.9, 0.9, 0.7, 0.7, 0.7), 2, 5)

theta.R <- ¢(0, 0.5)

theta.Y <- ¢(0.5, 1, 1.5)

sigma <- ¢(0.05, 0.5, 1)

glin.1 <- rep(0, N)

glin.2 <- glin.3 <-...<-...<-glin.18 <- glin.1

glog.1 <- rep(0, N)

glog.2 <- glog.3 <- glog.4 <- glog.5 <- glog.1
HHH#HH A HH# A ##4# END BLOCK #H#H#H#HAHHH A HHHHH
set.seed(58670)

repeat {



# Generation of data for each sample
I<I+1
HH#HHHHAHHHAHHHHHHBLOCK 2#H#HHFHHHHHHHHHHHHHH#
G <-rep(0, S)
E <- rep(0, S)
R <- rep(0, S)
G <- rbinom(S, 1, 0.2)
E <- rbinom(s, 1, 0.3)
R <- rnorm(S, 0, 1)
HH#H#HAHHHHA#HAHH#H#4# END BLOCK ###H##HSHHHHHHHHH
XX <- matrix(0, 5, S)
XX[1, ] <-rep(1, S)
XX[2,] <- G
XX[3,] <-E
XX[4,]<-G*E
XX[5,] <-R
HHHHHHHHHHHHH#HHHBLOCK SH#HAHHH##HHHHHHHAHHHH#
bXX <- b %*% XX
L <- exp(bXX)
pi <-L/(1 + L)
Y <- rep(0, S)
# Generation of true Y using combination 1
for(i in 1:S) {
Y[i] <- rbinom(1, 1, pifi])
}
# Generation of observed Y

Yile <- sim3.1(S, Y, SSJ, 1))

Y15e <- sim3.1(S, Y, SS|, 5])
# Generation of true X
X11 <- sim3.2(S, Y, R, theta.R[1], theta.Y[1])
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X12 <-sim3.2(S, Y, R, theta.R[1], theta.Y[2]
X13 <- sim3.2(S, Y, R, theta.R[1], theta.Y

( ], theta.Y[1
( ]

2

X22 <-sim3.2(S, Y, R, theta.R|2], theta.Y|2
X23 <-sim3.2(S, Y, R, theta.R[2], theta.Y[3])

# Generation of observed X for three values of sigma

[
[
X21 <-sim3.2(S, Y, R, theta.R]|
[
[

X11le <- sim3.3(S, X11$X, sigmal[l])
X112e <- sim3.3(S, X11$X, sigma|2])
X113e <- sim3.3(S, X11$X, sigma(3])
X12le <- sim3.3(S, X12$X, sigmall])
X122e <- sim3.3(S, X12$X, sigma[2])
X123e <- sim3.3(S, X12$X, sigma[3])
X131le <- sim3.3(S, X13$X, sigma[l]
X132e <- sim3.3(S, X13$X, sigma|2]
X133e <- sim3.3(S, X13$X, sigmal[3]
X211le <- sim3.3(S, X21$X, sigmal[1]
X212e <- sim3.3(S, X21$X, sigmal[2]
X213e <- sim3.3(S, X21$X, sigma[3]
X221le <- sim3.3(S, X22$X, sigma][l
X222e <- sim3.3(S, X22$X, sigmal[2
X223e <- sim3.3(S, X22$X, sigma[3
X231le <- sim3.3(S, X23$X, sigmall
X232e <- sim3.3(S, X23$X, sigmal2
X233e <~ sim3.3(S, X23$X, sigma[3])

HH##H#HAH#HHF4H## END BLOCK #H#H#H#HAAHHHHAHAHH
# Multiple linear regression models (SII.1(i))

HHHHHHHHHHH A4 BLOCK 4 #HH#HHHHHHHH A A H

linreg.1 <- sim3.4(X111e$Xe, G, E, R)
glin.1[T] <- linreg.1$g
linreg.2 <- sim3.4(X112e$Xe, G, E, R)
glin.2[I] <- linreg.2%g
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linreg.17 <- sim3.4(X232e$Xe, G, E, R)
glin.17[I] <- linreg.17$g

linreg.18 <- sim3.4(X233e$Xe, G, E, R)
glin.18[I] <- linreg.18%g

# Multiple logistic regression models (SII.1(ii))
logreg.1 <- sim3.5(Y11le$Ye, G, E, R)

glog.1[I] <- logreg.1$g

logreg.5 <- sim3.5(Y15e$Ye, G, E, R)

glog.5[I] <- logreg.5%g

#H#HH#H#HH#HA#HA#HH# END BLOCK #H#H#H#H#HHHHHHHH A4
if(I == N)

break

}

# Computation of estimated power for linear regression models
HHH#HHHHHHHHH A BLOCK b #H#AHH##HHHHH A
proplin.1 <- sum(glin.1)/N

proplin.2 <- sum(glin.2)/N

proplin.17 <- sum(glin.17)/N

proplin.18 <-sum(glin.18)/N

cat('"Power for Multiple Linear Regression Models using combination 1: \ n'")
cat("'theta_.R=0, theta_Y=0.5, sigma=0.05: \ n'")

print(proplin.1)

cat(''theta_R=0, theta_Y=0.5, sigma=0.5: \ n"')

print(proplin.2)

cat("'theta R=0, theta_Y=0.5, sigma=1: \ n"")

print(proplin.3)

cat(''theta_R=0.5, theta_Y=1.5, sigma=1:\n"")
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print(proplin.18)
# Computation of estimated power for logistic regression models

proplog.1 <- sum(glog.1)/N

proplog.5 <- sum(glog.5)/N

cat(""Power for Logistic Regression Models using combination 1: \n")
cat("'sensitivity=1, specificity=1:\n")

print(proplog.1)

cat("'sensitivity=0.7, specificity=0.7:—\n"")

print(proplog.5)

#HH#FHH A #HHHH# END BLOCK F###HH#H#HHHHHH A4
}

sim3.1:
function(S, Y, nu) {
# generation of observed Y from true Y
Ye <- rep(0, S)
v <- rep(0, S)
for(i in 1:S) {
i#(Y[i] == 1) {
v[i] <- rbinom(1, 1, nu[l])
if(v]i] == 1) Yeli] <- 1
else Yeli] <- 0
}
else {

v[i] <- rbinom(1, 1, nu[2])

if(v[i] == 1) Yeli] <- 0
else Yeli] <- 1
}
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list(Ye = Ye)
}

sim3.2:
function(S, Y, R, theta.R, theta.Y) {
# generation of true X
mu <- rep(0, S)
X <- rep(0, S)
for(i in 1:S) {
if(Y[i] == 0) {
mu[i] <- theta.R * R{i]
X[i] <- rnorm(1, muli], 1)
¥
else {
muli] <- theta.Y + theta.R * R][i]
X[i] <- rnorm(1, muli], 1)}
}
list(X = X)
}

sim3.3:
# generation of observed X
function(S, X, sigma) {
Xe <- rep(0, S)
for(i in 1:S) {
Xeli] <- X[i] + rnorm(1, 0, sigma)
}
list(Xe = Xe)
}

Note: Functions sim3.4 and sim3.5 are similar to the functions linreg and logreg
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for fitting linear regression and logistic regression models respectively in Scenario I,
except for the input variables. Three other modules to estimate power for the three
remaining combinations of parameter values in Table 3.2 have not been shown. These

functions are identical to the above module except for changes to the vector b.

A-3 Simulation program for Scenario II, Case S2

sim.SIIb<-function(N, S) {

# N=number of data sets generated, S= sample size

I<-0

# Combination 1, Table 3.5

b <- c(log(0.1), log(3), log(1.5), log(3), log(1.5), log(1.3), log(1.5), log(1.75))

enter BLOCK 1 lines here

dglin.1 <- rep(0, N)

dglin.2 <- dglin.3 <-...<- dglin.18 <- dglin.1
set.seed(58670)

repeat {

[<-I+1

enter BLOCK 2 lines here

S0 <- rep(0, S)

SE <- rep(0, S)

SGE <- rep(0, S)

SO <- rnorm(S, 0, 1)

mu <-rep(0, S)

for(i in 1:S) {
if(E[i] == 0) {SE[i] <- rnorm(1, -0.3, 1)}
else {SE[i] <- rnorm(1, 0.3, 1)}
mufi] <- -0.4 + 0.3 * G[i] + 0.5 *E[i]



SGEJi] <- rnorm(1, muli], 1)

}
XX <-matrix(0, 8, S)

XX[6, ] <- SO
XX[7,] <- SE
XX[8,] <- SGE

enter BLOCK 3 lines here

delxt <- simb5.1(S, G, E) # generation of true delta- X

# generation of true X at t=1
Xt11 <- X11$X + delxt$delx
Xt12 <-X12$X + delxt$delx

Xt13 <- X13$X + delxt$delx
Xt21 <- X21$X + delxt$delx
X122 <- X22$X + delxt$delx
X123 <- X23%X + delxt$delx

# generation of observed X at t=1

Xt1lle <- simb.2(S, Xt11, sigma[l])
Xt112e <- simb.2(S, Xt11, sigma|2])
Xt113e <- sim5.2(S, Xt11, sigma[3])

Xt231le <- sim5.2(S, Xt23, sigma[l])
Xt232e <- simb.2(S, Xt23, sigmal2])
Xt233e <- sim5.2(S, Xt23, sigmal3])

# Generation of outcome d
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dl <-(Xt1lle$X1le - X111le$Xe)/delxtt
d2 <- (Xt112e$X1e - X112e$Xe)/delxt$t

d17 <- (Xt232e$X1e - X232e$Xe)/delxt$t
d18 <-(Xt233e$X1e - X233e$Xe)/delxt$t
# models SI1.2(i) and SII.2(iii)

enter BLOCK 4 lines here

# Multiple linear regression with d as dependent variable (SIL.2(ii))
dlinreg.1 <- sim3.4(d1, G, E, R)
dglin.1[T] <- dlinreg.18g

dlinreg.2 <- sim3.4(d2, G, E, R)
dglin.2[I] <-dlinreg.2%g

dlinreg. 17 <- sim3.4(d17, G, E, R)
dglin.17[I] <-dlinreg.178g
dlinreg.18 <- sim3.4(d18, G, E, R)
dglin.18[I] <- dlinreg.18%g

if(I == N)

break

}
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# Computation of estimated power for linear regression models with X as dependent

variable, and for logistic regression models

enter BLOCK 5 lines here

# Computation of estimated power for linear regression models with d as dependent

variable
proplin.1 <- sum(dglin.1)/N
proplin.2 <- sum(dglin.2)/N
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proplin.17 <- sum(dglin.17)/N

proplin.18 <- sum(dglin.18)/N

cat('"Power for Multiple Linear Regression Models using combination 1 and d as de-
pendent variable: \n")

cat('"theta_R=0, theta_Y=0.5, sigma=0.05: \n'")

print(proplin.1)

cat('"theta_R=0, theta_Y=0.5, sigma=0.5: \n'")

print(proplin.2)

cat('"theta_R=0.5, theta_Y=1.5, sigma=0.5: \n"")
print(proplin.17)

cat("'theta_R=0.5, theta_Y=1.5, sigma=1: \n")
print(proplin.18)

}

simb.1:

function(S, G, E) {
g <-¢(0.2, 0.1, 0.15)
x <- matrix(0, 3, S)
x[1, ] <-rep(1, S)
x[2,] <-E
x[3,] <-G*E
t <- rep(0, S)
for(i in 1:S) {

t[i] <- runif(1, 0.5, 1.5)
}
delx <- (g %*% x) * t
list(delx = delx, t = t)

}
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simb5.2:

function(S, X, sigma) {

# generation of observed X at time t=1
Xle <-rep(0, S)

for(i in 1:S) {

Xle[i] <- X[i] + rnorm(1, 0, sigma)

}

list(X1e = Xle)

}

Note: Program modules for the three remaining combinations of values of parameter

vector b in Table 3.5 are not shown.

A-4 Simulation program for Scenario I1I

(a) Outcome X*(t;) (Model SIII(i))

sim.SITa<-function(N, Sm) {

# N=number of data sets generated, Sm=sample size
I<-0

glinl.1 <- rep(0, N)

glinl.2 <- glinl.3 <- ... <- glinl.6 <- glinl.1
set.seed(456)

repeat {

I<-I+1

# Initialization of vectors
HHHAHHHHHHHHHHAHH BLOCK | fEf A #H A HHH A H A7
G <- rep(0, Sm)

El <- rep(0, Sm)

S1 <- rep(0, Sm)
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X01 <- rep(0, Sm)
X02 <- rep(0, Sm)
bl <- rep(0, Sm)
b2 <- rep(0, Sm)
X02 <- rep(0, Sm)
X02 <-rep(0, Sm)
G <- rbinom(Sm, 1, 0.3)
El <- rbinom(Sm, 1, 0.6)
HH#H#H#HFH#H A H#H# END BLOCK #H###HHHHHH A HH A
# generation of current age
HHHHHHHHH#AFAH A BLOCK 2 #4t4t#H## A HHH A HH
Z <- runif(Sm, 40, 60)
for(i in 1:Sm) {

i#(Gli) = 0) {

# generation of baseline X values

X01[i] <- rnorm(1, 60, 10)

X02[i] <- rnorm(1, 60, 10)

b1[i] <- rnorm(1, 0.2, 0.05)

b2[i] <- rnorm(1, 0.2, 0.05)}

else {

X01[i] <- rnorm(1, 60, 10)

X02[i] <- rnorm(1, 65, 10) # del X=5

bl[i] <- rnorm(1, 0.2, 0.05)

b2[i] <- rnorm(1, 0.3, 0.05)} # del . G=0.1
# generation of age of first exposure

if(E1[i] == 0) {S1]i] == 0}

else {S1[i] < — runif(1, 20, 40)}

}
tt <- sim6.1(Sm, Z) # repeated measurement times and missing values
u <- ttdu »
uf, 1] <- 0



ufu > 0] <- NA # indicator for missing assessment times
cl<-sign(tt$t >= S1)

E <-El1 *cl

S<-S1*cl

c2 <- sign(E == 0)

# generation of X at age before first exposure
XX0tl <- X01 + bl * tt$t # for del X=0
XX0t2 <- X01 + b2 * tt$t # for del X=0
#XX0t1 <- X02 + bl * tt5t # for del_X=5
#XX0t2 <- X02 + b2 * tt$t # for del X=5
XX0ul <- XX0tl +u

XX0u2 <- XX0t2 + u

X0ul <- XX0ul * c2

X0u2 <- XX0u2 * c2

c3 <-sign(E == 1)

# generation of X at age at first exposure
XXS1 <- X01 + bl * S # for del X=0
XXS2 <- X01 + b2 * S # for del X=0
#XXS1 <- X02 4+ bl * S # for del X=5
#XXS2 <- X02 + b2 * S # for del_ X=5
bbll <-bl +0.03*E+0*G*E

bbl2 <-bl +0.03*E +02*G*E

bbl3 <-bl +0.03*E +04*G*E

bb21 <-b2 +0.03*E+0*G*E

bb22 <-b2 +0.03*E+02*G*E

bb23 <-b2 +0.03*E +04*G*E

# generation of X at ages after exposure
XX1t11 <- XXS1 + bbll * (tt$t - S)
XX1t12 <- XXS1 + bb12 * (tt$t - S)
XX1t13 <- XXS1 + bb13 * (tt$t - S)
XX1t24 <- XXS2 + bb21 * (tt$t - S)
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XX1t25 <- XXS2 + bb22 * (tt$t - S)
XX1t26 <- XXS2 + bb23 * (tt$t - S)
XX1ull <- XX1t11 4+ u

XX1ul2 <- XX1t12 + u

XX1uld <- XX1t13 + u

XX1u24 <- XX1t24 + u

XX1u25 <-XX1t25 + u

XX1u26 <- XX1t26 + u

X1lul <- XX1ull * ¢3

X1u2 <- XX1ul2 * ¢3

X1u3 <- XX1ul3 * ¢3

X1ul0 <- XX1u24 * ¢3

Xlull <- XX1u25 * ¢3

X1ul2 <- XX1u26 * c3

# values of X at different assessment times for 6 combinations
#of parameters del .G and del GE
Xtl <- X0ul + X1ul

Xt2 <-X0ul + X1u2

Xt3 <- X0ul + X1u3

Xt10 <- X0u2 + X1ul0

Xt1l <- X0u2 4 X1lull

Xt12 <- X0u2 + X1ul2

# generation of observed values of X
el <- matrix(rnorm(Sm * 20, 0, 0.1), nrow = Sm )

Xtel <- Xtl + el

e6 <- matrix(rnorm(Sm * 20, 0, 0.1), nrow = Sm )

Xtel2 <- Xt12 + €6

HHHHHHH#HHH#HHH#FHH# END BLOCK #H#HH#HHHHHHAHHHH
# linear regression models using observed X

Cl.1 <- sim3.4(Xtel[, 1], G, E[, 1], 2)
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Cl1.6 <- sim3.4(Xtel2], 1], G, E|, 1], Z)
# linear regression models using true X
C2.1 <- sim3.4(Xt1[, 1}, G, E[, 1], Z)

C2.6<- sim3.4(Xt12[, 1), G, E[, 1], Z)
glinl.1]T] <- C1.18g
glinl.2[T] <- C1.28g

glin2.5[I] <- C2.5%g

glin2.6[1] <- C2.6%g

if(l == N)

break

}

# Computation of estimated power
proplinl.1 <- sum(glinl.1)/N
proplinl.2 <- sum(glinl.2)/N

proplin2.5 <- sum(glin2.5)/N

proplin2.6 <- sum(glin2.6)/N

cat('"Power for Multiple Linear Regression Model using true X at current age as de-
pendent variable: \n'"')

cat("'del_G=0, del GE=0, X: \n")

print(proplin2.1)

cat("'del_G=0.02, del GE=0.40,X: \n'")

print(proplin2.6)

cat(""Power for Multiple Linear Regression Model using observed X at current age as
dependent variable: \n'"')

cat("'del_ G=0, del.GE=0, Xe: \n'")

print(proplinl.1)



cat(''del.G=0.02, del.GE=0.40,Xe: \n")
print(proplinl.6)

}

sim6.1:

function(S, Z) {
# generation of repeated measurement times and missing values
dt <- matrix(0, S, 20)
t <- matrix(0, S, 20)
u <- matrix(0, S, 20)
for(i in 1:S) {
I<-0
t[i, 1] <-Z[i]
dtfi, 1] <- NA
ufi, 1] <- NA
repeat {
I<-I+1
dtfi, I + 1] <- runif(1, 0.5, 1.5)
tli, I + 1] <- t[i, I) - dt[i, I + 1]
ufi, I + 1] <- rbinom(1, 1, 0.3)
if(tfi, T+ 1] < Z[i] - 6) {
for(j in (I +1):20) {
ufi, j] <- NA
dtfi, j] <- NA
t[i, j] <- NA}
break
}
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(ii) Outcome Y1 (Model SITI(ii))

sim.SIIIb<-function(N, Sm) {

I<-0

glogl.1 <- rep(0, N)

glog2.1 <- rep(0, N)

glogl.2 <- glogl.3 <- ... <~ glogl.12 <-glogl.1
glog2.2 <- glog2.3 <- ...glog2.12 <- glog2.1
set.seed(456)

repeat {

I<I+1

enter BLOCK 1 lines here
thrshl <- matrix(0, 6, 2)
thrsh2 <- matrix(0, 6, 2)
# generation of current age

enter BLOCK 2 lines here

# determining thresholds T1 and T2
thrsh1[l, | <- quantile(Xtel[, 1], ¢(0.7, 0.5))

thrsh1[6, | <- quantile(Xtel2], 1], ¢(0.7, 0.5))
thrsh2[1, ] <- quantile(Xt1][, 1}, ¢(0.7, 0.5))

thrsh2[6, | <- quantile(Xt12], 1], ¢(0.7, 0.5))

# generating binary outcome Y1
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outeml <- sim6.2(Xtel[, 1], Xte2[, 1], Xte3[ , 1], Xtel0[, 1], Xtell[, 1], Xtel2[, 1],

thrshl)

outem? <- sim6.2(Xt1[, 1], Xt2[, 1], Xt3[ , 1], Xt10[, 1], X¢t11[, 1], Xt12[, 1], thrsh2)

# logistic regression models based on observed X
C2a.1 <- sim3.5(outcm18yl, G, E[, 1], Z)

C2a.12 <- sim3.5(outecm1$y12, G, E[, 1], Z)
# logistic regression models based on true X
C2b.1 <- sim3.5(outcm28yl, G, E[, 1], Z)

C2b.12 <- sim3.5(outem2$y12, G, E[, 1], Z)
glogl.1[I] <- C2a.18g

glogl.12[I] <- C2a.128g
glog2.1[I] <- C2b.13g

glog2.12[T] <- C2b.12%g
if(T == N) break
}

# Computation of estimated power

propl.1 <- sum(glogl.1)/N

propl.12 <- sum(glogl.12)/N
prop2.1 <- sum(glog2.1)/N

prop2.12 <- sum(glog2.12)/N

cat('"Power for Logistic Regression Model using Y1 (based on true X) as dependent

variable: \n")
cat(''del.G=0, del GE=0,T1,X:\n")
print{prop2.1)
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cat("'del.G=0.02, del.GE=0.06,T2,X:\n"")

print(prop2.12)

cat('"Power for Logistic Regression Model using Y1 (based on observed X) as depen-
dent variable: \n'")

cat(''del_G=0, del_.GE=0,T1,Xe:\n")

print(propl.1)

cat(udel_G:0.02, del—GE:O-OG,TZ,Xe:\n”)
print(propl.12)

}

sim6.2

function(XZ1, XZ2, XZ3, XZ4, X75, XZ6, R) {
d11 <- sign(XZ1 > R[L, 1])

d16 <-sign(XZ6 > R[6, 1)
d21 <- sign(XZ1 > R[1, 2])

d26 <- sign(XZ6 > R[6, 2))

list(yl = d11, y2 = d12, y3 = d13, y4 = d14, y5 = d15, y6 = d16, y7 = d21, y8 =
422, y9 = d23, y10 = d24, y11 = d25, y12 = d26)

}



