Fault Tolerance within Session Initiation Protocol

Ekta Khurana

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science in
Electrical and Computer Engineering at
Concordia University
Montreal, Quebec, Canada

August 2005

© Ekta Khurana, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10238-1
Our file Notre référence
ISBN: 0-494-10238-1
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

CONCORDIA UNIVERISTY

School of Graduate Studies

This is to certify that the thesis prepared

By: Fkta Khurana

Entitled: Fault Tolerance within Session Initiation Protocol

and submitted in partial fulfillment of the requirements for the degree of
Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

Chair

Examiner

Examiner

Supervisor

Approved by

Chair of Department or Graduate Program Director

20

Dean of Faculty

ABSTRACT
Fault Tolerance within Session Initiation Protocol

Ekta Khurana

The Session Initiation Protocol is an application layer signaling protocol designed
for the session establishment between end users. These SIP sessions are established
based on a request-response paradigm between the client and server components of the
user agent. Proxy servers may exist within the network, which serve as a bridge between
two user agents who are either within different domains or are unregistered and unaware
of each others’ location. The entities however are not always reliable and may encounter
faults. First, this thesis aims to identify the locations within a SIP session where faults
can occur and the effect on the system. The current mechanisms used to handle these
faults were analyzed and it was determined that the user agents were forced to recover
from faults by means of restarting the session.

A novel approach was then proposed which detects and recovers from faults
dynamically. This is achieved through the addition of a Decider block within the proxy
domain which maintains the status of the proxy and determines if the message is to be
sent to the primary or to its corresponding backup server. The fault detection is done
through the usage of A/ive messages sent from the proxy servers to the Decider block.
This removes the recovery task from the user agent and reduces the dependence on a
timeout mechanism. The proposed model is checked for correctness using the
Specification and Description Language (SDL). Finally, after analysis of the message

sequence charts generated from the simulation tool, the proposed model is verified.

i1

Acknowledgements

I would like to take this opportunity to thank my supervisor Dr. Anjali Agarwal for her
continuous guidance in carrying out this research. She has given me invaluable insight in
my research domain while challenging me to step further as a means of attaining my
research goals. I would also like to thank Mr. Nikhil Varma who has given important
suggestions throughout the completion of this thesis. I would further like to express my
appreciation to the examiners Dr. O. Ormandjieva and Dr. A. En-Nouaary for their

comments for improving the presentation of this thesis.

Words are not sufficient to express the love and support that I have received from my
parents Kul and Ritu and my sister Puja. They have given me constant courage and

strength and they are the primary reason that I am able to accomplish this endeavor.

All of my friends in particular Uma Bharathi Ramachandran who have always given me a
shoulder to lean on and have forced me to have an immense amount of enthusiasm and
determination throughout my work. They have taught me the meaning of life and have

supported me endlessly.

v

Table Of Contents

LSt Of FIgUICS. ..o ett e vii
LSt Of TabDIES. ottt ix
Chapter 1 INErodUCHION...ccciiieriiiirrencnreetrssnnneieenessreecssssancssssessssssssssssssssssessssnsasases 1
1.1 Signaling ProtoCols ...cc.ivuiiiiiiiiiee e 1
1.2 WHhY ChoOSE SIP? ..ot 3
1.3 Overview of Fault TOlerancecccoocveeveeiinirniieneee et 4
1.4 Need for Fault Tolerance in SIP........cccccoiiiiiece e 7
1.5 CONIDULION ..ottt e 9
1.6 OFGANIZALIONeeevieeereeeetieeeeeeeeeeeesereesaeeeaeeateesbaeesabeessreesusesssseastessabeenaseessaeeeas 10
Chapter 2 Protocol OVervieW ... eiiieineininsecnernsnnenssissnsesssisesssesssessssssases 11
2.1 SIP COMPONEILS...uvteieiiiiririeeiie et eecire ettt ettt e tee st sbe e s bt eane e e 11
2.1.1 STP MESSAZES .eeeeeenneiieeeeiiieiieiereeetee et e et e e eiaee e sree e s raeesbeeeesaseeesennee 12
2.1.11 0 REQUESES .ottt e 12
2.1.1.1.1 Request Message Formatcccoveieiniiiniieniiceiiceeeceseeeee 14

21,12 RESPOMSES .eeicuriiiiiiieriiieritre ettt ettt ettt st 15
2.1.1.2.1 Response Classificationceeceeceeeeinireiiieneneecee et 17

2.1.1.2.2 Response Message Format..........ccococerniiiniiinniiiiicnniiiece 17

2.1.1.3 Basic SIP call flowcoooiiieiiciiieeceecet e 18

2.1.2 SIP EXTENSIONS 1vvvvviiiiieetieeeteieesieeesieesereesseeesssaessaesssressssessesssssesnssessssees 20
2.1.2.1 0 PRACK ettt ettt et 20
2.1.2.2 UPDATE ..ottt ettt et 21
2.1.2.3 SUBSCRIBE AND NOTIFY ...ooitiiiienineeienenteieteeceeeeereae e 23

2.2 SUMIMATY ..vviiiiiieeeietie e e et e e et e e e e et e e et e s seeeeessabreeesebeesenereessbseenssneeenssnnne 23
Chapter3 Fault Tolerance within SIPieinivneinenninnenennninieenennrecaees 25
3.1 Fault Tolerance Issues within SIP...........cccooiiiiiiiiieee 25
3.1.1 LANK FAIIUIES ..oeoevviiiieieeeiecitee ettt ee e 26
3.1.2 ProxXy FallUresocouieeiiiieciiie ettt 26

3.2 Current APProachescooveeiiiienee e 27
3.2.1 DINS QUETY ettt ettt ettt et e e 28
322 RSEIPOOL ..ottt et 29
323 State Sharing AlZOrIthM......c.cooeeiiiiieiiieete e 30

3.3 Need for a New ApProach........cccccoeveeverienientinienienieieneee e cneneeae s 31
3.4 Proposed Approach: OVEIVIEWcccccceciiiiiriinieieiieceee ettt 33
34.1 DECIACT SETVET ..nvveiiieiieeiieeiite ettt ettt sttt e e een 34
3.4.2 SIP ATChItECTUTE ...ttt e 35
343 SIP Fault SCENAIIOS ..eeuvveeieerreeeiieineeterreeiieeste et eeteseeebeebeesbeeseeesbeeeaae 48

3.5 SUMMIATY «evteeiiiiieeteeee et e e ettt e et e e e sebe e e senae e e ebeteseesenseessenseeesaannnne 56
Chapter 4 Implementationeiveenniiiineininnenniensiennenneenenssesssssssssssesssessses 57
4.1 SDL TOOL ettt ettt 57
4.2 SYSEM DESIZN..c.eiiiiiiiiiiiitcicretc ettt e 61
4.3 Block and Procedure Design........cccoveiiiiiiiiiiieiiieeeceec e 62
4.4 EFSM Level Process Design......coc.uiiiiiiieiiiiiieiee et e 82
4.5 TIMING ANALYSIS ticuviietiiiiieiieccieeerte ettt ire et e eersebesabe e et e e bt e sneeraeneees 93
4.6 Theoretical Performance AnalysiS........cccooiiiiiiiiiiiiiiniieicecec e 96

4.7 DesIZN ASSUMPLIONSvveeveeiereeiietieireneeeseeeseessessseassesssesssesssessseseassassnessesssesss 99

4.8 SUDUMIATY ..oeieiiieeitee ettt ettt e et e st st ee e st be e ebteebee et ebee st e e nbee e 100
Chapter 5 Simulation and Verificationveneenniinrenniiininniinensnsnssssessecssens 102
5.1 Fault Scenarios AnalyzZed..........ccocovcivveiieioiiieieeieeeee et 102
5.2 SDL LIMItAtIONS ..c.ttieeiietieiiieiieeiieete et et eriteire st teeaeesbeebeeeseesaee s assessaesaeesaeens 118
53 SUDIMATY ..ottt ettt b e bt 120
Chapter 6 Conclusion and Future Workiievicnncinnersnsesessssssisssesssssssessoses 121
6.1 TOPIC OVETVIEW ..ottt ettt es e ettt e b e aees 121
6.2 CONIIIDULONS. ... ittt ettt ettt sae e 122
6.3 FULULE WOTK ... 125
REFCIEIICES c.uuverrreriririreenntintineienseineissstississirsssssssrsssssssesssnsssssssssessnesssessessssssssssssnasss 126

vi

List of Figures

Figure 2.1 Basic SIP Message Transferc.ccocoveviecicoiinieiiniiccceenenenescee 19
Figure 2.2 PRACK and UPDATE Message FIOW ..o 22
Figure 2.3 SUBSCRIBE and NOTIFY Message FIOW.......c.cccevverninieniinininencnini 24
Figure 3.1 Process Communication within Proposed Approachc.ccccoevininininins 36
Figure 3.2 Calling Party (P1) State Machine Diagramc...ccccoveriinncineencnieneeeee 39
Figure 3.3 Called Party (P4) State Machine Diagram.........cc.cccccevrevievcenennncnncncnenennens 40
Figure 3.4 Primary proxy (P2) State Machine Diagramccccociviiniincniinicinnee, 42
Figure 3.5 Backup proxy (P3) State Machine Diagram........cccoccooceniinicnirniniencncnene 43

Figure 3.6 Decider server connected to the Calling Party (P5) State Machine Diagram.. 46
Figure 3.7 Decider server connected to the Called Party (P6) State Machine Diagram... 47

Figure 3.8 Location of fault 0CCUITENCESc..coververiiiieiiriineicrcctccccrececerece s 49
Figure 3.9 Fault A — Proxy fails before receiving INVITE ..o 51
Figure 3.10 Fault B — Proxy fails after sending 100 TRYINGcccccovveriimniiicnrncrnenn 51
Figure 3.11 Fault D — Proxy fails after sending 180 Ringing or Error Response............. 52
Figure 3.12 Fault F — Proxy fails after sending PRACK ... 52
Figure 3.13 Fault H — Proxy fails after sending 200 OK to PRACKc..coecieiviniinins 53
Figure 3.14 Fault J — Proxy fails after sending 200 OK to INVITEccooooiiiiieninnns 53
Figure 3.15 Fault M — Proxy fails before receiving BYE ..o 54
Figure 3.16 Fault C, E, G, I, K — Proxy fails after receiving INVITEc.ccocceovvnennen. 55
Figure 3.17 Primary proxy recovers from fault and resumes operationc.ccecevueeueene 55
Figure 4.1 Overall SDL System Model.........ccooviiiiiriiiiieeeeeceee e 62
Figure 4.2 Block Model of Calling Partycccoveeeieniiiniiiiiiiiieecceeecreire e 63
Figure 4.3 Creation of INVITE ReqUeStccccooiieiiiiieiiiieeee et 64
Figure 4.4 Creation of ACK ReqQUESt.......cooiiriiiiiiriciieecenecct e 64
Figure 4.5 Creation of PRACK ReqUeStcccuiiiiiiiiiieiiieccter et 65
Figure 4.6 Creation of BYE ReqUESTcoiiiiiiiiieiiceeeeeeecei et 65
Figure 4.7 Block Model of Called Partyc.cocovieiiiniiniiee e 67
Figure 4.8 Creation of 180 RINGING ReSPONSecceovviriirieerieiiieeieieeeenrere e 67
Figure 4.9 Creation of ERROR ReSPONSE.......oovuiveiiiiiiiiiiiieeceeee e 68
Figure 4.10 Creation of 200 OK to INVITE ReSpOnSe........cccovvevveriieierieieniierenciceiens 68
Figure 4.11 Creation of 200 OK to PRACK ReSponse...........cccvvvrnirieeninccnnenriceeeeens 69
Figure 4.12 Creation of 200 OK to BYE ResSponse.........ccoooeeviiiiinicinineceieneeeeen 69
Figure 4.13 Block Model of Fault Tolerance BIockcoceeciiiiiiiiiniininceeeiene 72
Figure 4.14 Procedure to update header values in proxy Serverccocccevccevccenreecneenneen. 73
Figure 4.15 Block model of Decider Block attached to Calling Party or next proxy....... 74
Figure 4.16 Block model of Decider Block attached to Called Party or next proxy 74
Figure 4.17 Block model of primary proxy S€rver.......cccecceevuerieerieeriemierienieetenieneeenenae 76
Figure 4.18 Creation of 100 TRYING ReSPONSE......ccoirriiiriiiiiiiiiciicrceceeeneeee 77
Figure 4.19 Creation of 200 OK to SUBSCRIBE ReSponsec.coceecvereeniinccnrinenennn 77
Figure 4.20 Creation of NOTIFY Request......coovoiiiiioiiiiiicieec e 78
Figure 4.21 Creation of StateRequest REqQUEStcceeceriiriiiniiiieeeeceeceeeee 78
Figure 4.22 Block model of backup proxXy SEIver........ccovcieiiieiiinineenecesee e 80
Figure 4.23 Creation of SUBSCRIBE Request........cccooviiiiiiiiiiiiicicerecceeee 81
Figure 4.24 Creation of 200 OK to NOTIFY ReSponseccccevvevvveeeniiiieinnicciiinneen 81

vii

Figure 4.25 Creation of StateResponse ReSponse..........cccevvererniiiinereeccnnicnienencneeenn, 82

Figure 4.26 Partial EFSM of SIP_Sender Processcocvevveeveereeierereeecieeseese e 83
Figure 4.27 Partial EFSM 0f D Process] PrOCESS......cvvviervuvereeeeiieeieieeiseeieseeesreeeeneens 84
Figure 4.28 Partial EFSM 0f D Process2 proCess.......ecveceveiereneieenenienieesieseneeeeneenes 86
Figure 4.29 Partial EFSM of Primary Process PrOCESScceeverviecererseeieriesreneeeeeesrennens 88
Figure 4.30 Additional transition for EFSM of Primary Process process........cccvcceuee.e. 89
Figure 4.31 Partial EFSM of Backup Process proCessc.cceeeeueeenerermierseenenenenennes 90
Figure 4.32 Additional transition for EFSM of Backup Process process........c.ccoueue... 91
Figure 4.33 Partial EFSM of SIP ReCeiver PrOCESScevvevveerreeiirireeeenienereseessiessessnees 92
Figure 4.34 SIP Message Exchange with Timing Constraints (Part 1).........ccoceneeencnn 95
Figure 4.35 SIP Message Exchange with Timing Constraints (Part 2).........cccccceceeeinenne. 96
Figure 4.36 Worst Case Timing Analysis with the presence of faults............cccoeervveeenen. 98
Figure 5.1 MSC of primary proxy failure at the beginning of the session...................... 105
Figure 5.2 MSC of primary proxy failure before receiving 180 Ringing.........ccccvveeee. 106
Figure 5.3 MSC of primary proxy failure before receiving Error Response................... 107
Figure 5.4 MSC of primary proxy failure before receiving PRACKc.cccoeeveviirnnennne. 108
Figure 5.5 MSC of primary proxy failure before receiving 200 OK to PRACK............. 109
Figure 5.6 MSC of primary proxy failure before receiving 200 OK to INVITE............ 111
Figure 5.7 MSC of primary proxy failure before receiving BYEc.ccoccoiiviniininnnn. 112
Figure 5.8 MSC of primary proxy failure after receiving 180 RINGING....................... 113
Figure 5.9 MSC of primary proxy failure after receiving 200 OK to PRACK................ 114
Figure 5.10 MSC of primary proxy failure before receiving INVITE and Proxy Recovery
before receipt of 180 RINGING ...c..oooiiiiiiiieceeeee e 116

Figure 5.11 MSC of Backup Proxy subscribing to the Primary after INVITE is sent.... 117

viii

List of Tables

Table 2.1 Request Header Fieldccoooiiiiiiieiiiiieee e 15
Table 2.2 SIP Response ClassifiCation.ccovveeiieieiiieeieesteeeeesee e 17
Table 3.1 Comparison of Current Approaches to the Proposed Approach.........c...c......... 32
Table 3.2 SIP request and 1esponse MeESSAZE SCL..c..vvverrieerrieeeiieeniee e erte et e eeeeieeees 37
Table 3.3 Effect of fault on SIP SeSSI0Ncocoiiiiiiiiiiie e 50
Table 4.1 Symbols used in SDL to represent FSM entitiescccocevvveviviiinicninnne 60
Table 4.2 Timing Constraints for €nd USETScevirveriiriienieeineeteeeeeesese e 94
Table 4.3 Timing Constraints for ProXy SETVETLScccvveirerteeiesienieeteeeeeeeseesreeseesieenne 94
Table 4.4 Summary of Performance Variables.........c.coceeveiieiciiiciiirieereciereeee e 99

iX

Chapter 1 Introduction

In this chapter, we begin with an overview of the Telephony and Signaling
protocols present today. We then introduce the reason for which we have chosen SIP
(Session Initiation Protocol) as our main focus. This leads into the discussion of the
reliability of SIP and the need for fault tolerance within the system. We analyze the fault
tolerance algorithms which can be applied to the protocol as a means of increasing its
reliability. Finally, we state our motivation for the thesis and the contributions which we
have made within this thesis. Throughout this thesis, the terms fault(s) and failure(s) are
used interchangeably to represent the deviation of the system from the expected

specification.

1.1 Signaling Protocols

Previously, telephony services were provided over circuit switched networks
which used traditional phones. Within the last decade however, there has been an
increase in sending audio, video and voice media over the Internet which is known as
Voice over IP (VolP) [1]. This has driven the need for reliable, scalable and
interoperable signaling protocols which will allow this information to be transmitted
successfully. The result of this need has been the specification of various protocols such
as H.323 and SIP [2] which initialize connections between end users residing in local or
wide area networks.

H.323 [3] is a recommendation developed in 1996 by the International

Telecommunication Union (ITU-T). It combines several network elements and protocols

as a means of allowing multimedia communications system over IP networks. The
entities found in an H.323 network include:

e H.323 Terminal which is an endpoint within the network and provides two-

way real-time communication with other terminals.

e H.323 Gatekeeper is an optional entity however serves two purposes. The

first is that it provides admission control for the network determining which
communication should be allowed between entities. The second is that it
provides an address translation service between protocols.

e H.323 Gateway provides conversion between H.323 entities and non H.323

networks.

e H.323 Multipoint Control Unit which allows conferencing between three or
more endpoints within the network. It has two subcomponents, the Multipoint
controller which handles call control and the Multipoint processor which
handles media exchange between the endpoints.

These entities use several protocols in order to actually set up the communication
path and transport the media. The transportation of messages is conducted using the
known Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP).

A simpler, text based protocol created as an alternative to H.323 is the Session
Initiation Protocol (SIP) [4]. This application layer protocol designed by the Internet
Engineering Task Force (IETF) was created in order to establish and modify sessions
across networks. The main entities found within a SIP network are the following:

e SIP User Agent (UA) which is similar to an H.323 Terminal since it is an

endpoint within the network and provides two-way real-time communication

with other user agents. These contain both a client (UAC) and a server (UAS)
component enabling it to send and receive messages.

e SIP Server which is similar to an H.323 Gatekeeper since it is an optional
entity within the network. It provides information to UA with respect to the
entities within the network and it also forwards messages on their behalf.

Similar to H.323, the transportation of messages is executed over TCP or UDP.

1.2 Why Choose SIP?

Although there are several solutions to sending media over IP networks such as
the Internet, SIP has recently received a lot of importance since it encompasses both the
call signaling and control mechanisms in a single protocol. This protocol is at the
application layer and will therefore lead to a more reliable and more efficient support for
real time communication. SIP also has several advantages over other protocols. Some of
these advantages are the following [5, 6, 7]:

1. The setup time in SIP is less time consuming than other VoIP alternatives. This is
due to the fact that the Session Description Protocol (SDP) [8] is used to determine
the media capabilities of endpoints that are attempting to connect. The capability
check is thus incorporated in the initial invitation message. If the features of the
session are not feasible by the end user receiving the invitation, then the session will
terminate prematurely thereby saving the resources required to establish and then
terminate a session.

2. The encoding of messages within SIP is done using a simple text based mechanism.

This increases the comprehensibility of the messages sent to the receiving end user

agents. Moreover, intermediary servers, if any, can easily determine the location of
end users since the format is similar to that used for email addresses.

SIP is easier to implement since the functionalities are placed in a single protocol.
Media exchange is achieved using the Real-time Transport Protocol (RTP) [9]
however the call signaling capabilities required for session establishment are built
into SIP.

SIP is both flexible and customizable since features can be added to a session using
the header fields of the messages. Using the header fields allows the other entities
within the session to know which type of messages will be sent. If they cannot
process those Requests or Responses, they can inform the sending end user
immediately. This assures consistency between the SIP entities with respect to the

message types which are to be exchanged within the session.

1.3 Overview of Fault Tolerance

Through our discussion, it is evident why SIP has become so popular in the

present VolP market. However, signaling protocols should also be able to sustain even in

the presence of faults within the system. Fault Tolerance is defined as the ability to

respond positively to hardware or software faults within a system. There are many levels

defined within Fault Tolerance [10] which enable us to determine the recovery

procedures required when the fault occurs. They are described as the following:

Level 0 - No tolerance to faults: In this level, when a fault occurs, the system dies and

must be manually restarted from an initial safe state. Resulting data may be incorrect

or inconsistent due to a time lag incurred due to the restart process.

o Level 1 - Automatic detection and restart: In this level, when a fault occurs, the error

is detected and the system 1is restarted on the same server or on an alternative backup
server, if any. As in Level 0, the resulting data may be incorrect or inconsistent due
to the incurred time lag resulting from the restart process.

e [evel 2 - Level 1 including periodic logging and recovery of the initial state: In this

level, periodic states in the system are logged so that when a fault occurs, the error is
detected and the system is restarted on the same server or on an alternative backup
server, if any but from the last saved state. This eliminates the overhead of starting
from the initial state.

o Level 3 — Continuous operation without any interruption. In this level, the system

functions with the highest degree of availability. There is no fault which causes the

system to fail and there is no situation in which the system will have to restart.

The two most used fault tolerance algorithms are the State-Machine approach and
the Primary-Backup approach.

The State-Machine approach [11] “is a general method for implementing a fault-
tolerant service by replicating servers and coordinating client interactions with server
replicas.” The main idea within this approach is to have replications of the state machine
being executed at the same time but on different processors. Each of the state machines
receives the messages and processes them in the exact same order. This ensures that all
of the state machines change states at the same time assuming that the processor

controlling these state machines is non-faulty. Thus implementing fault tolerant state

machines involves Replica Coordination [12] in which all replicas receive and process
the same sequence of requests. This is divided into two sub parts namely:
e Agreement: Every non-faulty state machine replica receives every request.
This is achieved if the protocol satisfies that
a. All non-faulty processors agree on the same value
b. If the transmitter is non-faulty, then all non-faulty processors use its
value as the one on which they agree.
e Order: Every non-faulty state machine replica processes the requests it
receives in the same relative order. This can be satisfied by assigning a
unique identifier to the requests and having the state machine process the next

stable request with the smallest unique identifier.

In this scheme, a voting mechanism is used to decide the common value between
state machines. Therefore, the effects of the failures are completely masked. Although
this fault tolerant mechanism is useful for many systems, it poses an overhead since each
replica must receive the requests in order for the state machines to execute at the same
pace. Thus a lot of resources are consumed within the system.

The alternative solution is to designate one server as the Primary and all others as
the Backups. This is known as the Primary-Backup approach [12]. This technique
assigns a particular server as a primary and all redundant servers as backups. The backup
will receive periodic notification messages from the primary server in order to update the

backup of the current state of the session. This continues until the primary server fails.

At this point, the pre-selected backup will take over all of the session functionalities to
avoid any harm to the sender or receiver during the session.

The four properties of the primary backup fault tolerant approach [12] involve
assuring that at most one primary or one backup server is servicing the requests. These
properties include:

a. There exists a local predicate Pmry; on the state of each server s. At any time,
there is at most one server s whose state satisfies Pmry;.
i. This implies that single primary server exists for each SIP client.
b. Each client i maintains a server identity Dest; such that to make a request, client i
sends a message to Dest;.
i. This implies that the client sends the request to a single destination. In the
case of a SIP client, the request is sent to a single proxy server.
c. If a client request arrives at a server that is not the current primary, the request is
not queued (and therefore is not processed).
i. This is to ensure that upon recovery, the primary and the backup do not
respond to the same request.
d. There exist fixed values k£ and A such that the service behaves like a single (&, A)
i. This implies that this solution can be used to implement those services

which tolerate a bounded number of faults over their lifetime.

1.4 Need for Fault Tolerance in SIP

Subsequently after identifying the types of fault-tolerance mechanisms available it

becomes clear that there is a need for implementing fault-tolerance in SIP. Currently, the

SIP sessions are not capable of handling all types of faults which occur within the system.
There are several types of faults which can occur and these include link, user agent and
server faults.

The SIP protocol contains three layers [4] through which the session is
established. The lowest layer is the syntax and encoding layer which defines the rules for
the header values. The middle layer is the transport layer which handles the link failures
and manages the connections between end users. The third layer is the transaction layer
which handles the creation and retransmission of requests and responses.

The connection that is shared between end users must be monitored for the
destination IP address, the port and the transport protocol, either TCP or UDP, used
within the session. These connections are generally kept open for the duration of the
session establishment phase however if a link error occurs, the end users should be able
to handle messages received from a different connection. The creation of a new
connection is handled by the transport layer and is hidden to the SIP entities both end
user agents and servers.

If any faults occur within the end user agents themselves, then the messages will
cease to flow end-to-end. After a predefined time period, the end user which is still
active will prematurely terminate the session. In turn, all resources allocated to this
session will be relieved and a new session between two active end user agents can be
established.

The most important fault type to consider is a fault in the server. Currently, there
is no single mechanism implemented within SIP which allows the correct flow of a

session with the presence of faults. There are several types of servers within SIP

including the redirect, registrar and stateful and stateless proxy servers. In the case of the
redirect, registrar and stateless servers, if a fault occurs, there is no harm to the session.
All the messages sent to these servers have a prescribed time value attached to them and
once the instance expires, the message is re-issued to an alternative server.

The main problem arises in the case of stateful proxy servers wherein the server
wants to be aware of the SIP session at all times. At any point within the session, if the
server fails, there must be a backup server available to take over or else the session will
timeout and will have to be re-established.

Thus our goal within this thesis is to include fault-tolerance measures within SIP
as a means of conserving the session resources previously allocated. Furthermore, we
want to reduce the system’s reliance on the timeout mechanisms built into SIP in order to

reduce the elapsed time of the overall session.

1.5 Contribution

Research is currently in progress towards the inclusion of fault tolerance within
SIP. The objective of our work is to determine the limitations in the existing fault
tolerance approaches to SIP and to propose an enhanced fault tolerant scheme. The main
contributions of this thesis are as follows:

(1) A new framework for fault tolerance within SIP has been developed. A redundant
server has been added to take over the session in the presence of faults.
Furthermore, a decision maker has been added which determines which server is
active within the session. This removes the burden from the user agent to the

actual proxy domain.

(2) Simulation of the proposed approach with SDL, a verification and validation tool
for communicating systems. The tool generates Message Sequence Charts (MSC)
which exemplifies the proposed algorithm.

(3) Fault-Tolerance within SIP has been demonstrated using the proposed fault
tolerance algorithm under different failure scenarios within a session. This
establishes that the proposed framework has potential for handling the occurrence

of faults within the system.

1.6 Organization

The thesis is structured as follows: Chapter 2 provides an overview of the SIP
protocol including the types of entities present within a SIP session as well as the
messages exchanged. Chapter 3 discusses the current approaches to Fault tolerance in
SIP and is followed by an introduction to our proposed approach. Chapter 4 introduces
the SDL tool used to simulate our proposed approach. Further we describe the
simulations conducted to assure that our fault-tolerant mechanisms function as expected.
Chapter 5 describes our final simulation results and the verification of our SDL model
against our proposed approach. Finally, in Chapter 6, we conclude with an overview of

the work completed within this thesis and the possible future research work.

10

Chapter 2 Protocol Overview

In this chapter, we provide an overview of the fundamentals of the SIP protocol.
We analyze the entities which communicate within a SIP session and the requests and
responses issued for session instantiation and termination. We then discuss the

extensions which have been added to the protocol in order to enhance its completion.

2.1 SIP Components

There are several components found within a typical SIP network. As described
in [4] the end users are referred to as SIP User Agents (UA). They contain both a client
component which sends requests and a server component which issues responses based
on the capabilities of the network processing the requests. Furthermore, the UA have an
embedded transaction user which creates the requests and responses to be sent through
the client and server components. This user decides the message to be sent based on the
flow of messages previously exchanged within a session. The original invitation message
to a receiving end user is also generated from this transaction user. Therefore, the UA
can instantiate a SIP session and can be both on the sending or receiving end.

In between UA, there exist several server entities required for different stages of a
SIP Session. These servers are Registrar Servers, Redirect Servers and Proxy Servers.
Registrar Servers are similar to a database in which they maintain the location of end
users within their domain. At any point, if a sending user agent wishes to contact a
receiving user agent, it can obtain the sending port from the Registrar server. These

servers may also be integrated into the other servers within the network. The second type

11

is a Redirect Server which supplies a new URI to the sending user agent without any
further involvement in the session. This URI pertains to the location of the user agent for
whom an invitation is intended to be sent. Finally there is a Proxy Server which serves as
a bridge between two UA who are either within different domains or are unregistered and
unaware of each others’ whereabouts. These servers are used in order to process and
forward requests from one end user to another end user. These requests may be recorded
and responses issued from the Proxy which is the role of a stateful Proxy. On the other
hand, the stateless Proxy simply forwards the request to the destination user agent. They

are unaware of the status of the end users and that of the SIP Session in progress.

2.1.1 SIP Messages

The main SIP messages consist of requests or responses. These can be sent by
any end user agent however the header field rules as described in [4] must be adhered to.
Those messages which are incomplete will either be discarded by the components within
the SIP network or responded to with an indication that the message could not be

accepted.

2.1.1.1 Requests

There are several types of requests within the SIP Protocol [4]. These messages
are only initiated by end UA however they can be processed by any Server component of

the SIP Network.

12

The first request is INVITE which is used to instantiate a SIP Session. It contains
an offer of the type of media the end user is expecting to transfer, the location from which
it will be sending the media as well as the intended destination or called party. Once an
INVITE request is sent, the user agent becomes the calling party for the duration of the
SIP Session. This request is unique in that it is the only request that is outside of a SIP
dialog and can be sent without any limitations.

The next request is CANCEL which allows any of the end users to prematurely
terminate the session. This message can only be sent to terminate an INVITE request and
is limited to being sent after receipt of a Provisional response and before receipt of a final
Acceptance response from the called party.

The third is the ACK request which is sent by a calling party to notify the called
party that the final response has been received. This message confirms the proper
establishment of a SIP session between users and allows media transfer to commence.
This request can also contain an answer to the offer supplied by the called party if not
already done so in previous message exchanges between end users.

Termination of the SIP Session is achieved through the use of the BYE request.
This both terminates the session and releases all resources allocated to the running
transfer of media. This request can be generated by the calling party at any point within
the session but can be sent by the called party only after an ACK request has been
received. This limitation is to provide consistency with both end users.

The remaining requests are optional within the SIP Session. The first is the
REGISTER request which allows an end user to register its location with the SIP Server.

This information will be stored in a database and may be used by another end user within

13

the same domain who wishes to establish a session and is unaware of the user’s location.

The final request is the OPTIONS request which is used as a query to the server
or another user agent to determine its capabilities. Since the OPTIONS request is simply
an inquiry and has no effect on the state of the SIP Session, it can be sent both within and

outside of a dialog.

2.1.1.1.1 Request Message Format

All requests within a SIP Session must begin with a Request-Line which states the
name of the request (method name), the Request-URI and the SIP protocol version used.
The message is then followed by header fields which will identify the requests within the

session. These header fields are described in Table 2.1 [4].

An example INVITE request [4] containing both mandatory and optional header

fields is shown. The other requests are similar however their request-Line will be unique.

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice(@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Supported: 100 rel

Require: 100 rel

14

Header Field

Requirement*

Description

To

M

States the logical location of the called party with
whom a session is to be established.

From

M

States the logical location of the initiator of the
request. This will be known as the logical location
of the calling party in the case of an INVITE
request.

CSeq

Command Sequence Number which is generated by
the party creating the request and uniquely
identifies the session request.

Call-ID

Identification Number for a given dialog. All
requests within the dialog will be identified with
this common value.

Max-Forwards

This value is used to control the number of hops a
request can undergo. The value is an integer
(recommended to begin at 70) and is decremented
by each subsequent hop thereby identifying the
number of hops available for the message.

Via

This field states the route taken by the message and
the expected forward path. It contains the transport
protocol (TCP or UDP) used, the client’s host name
and the port number where it wants to receive
responses.

Supported

This field lists the SIP Extensions that the user
agent is capable of supporting including PRACK
and UPDATE. If the field is empty then no
extensions are supported by this user agent.

Require

This header field informs the server of the type of
extensions that must be understood in order for the
request to be processed.

* M = Mandatory,

O = Optional

Table 2.1 Request Header Field

2.1.1.2 Responses

There are three main types of responses within a SIP Session namely Provisional

responses whereby the status of the current transactions can be monitored, Error

responses which inform of the incapability of handling a given session or Final responses

which terminate transactions by means of an acceptance or rejection of the request

15

received. The responses are classified into six main categories which will be elaborated
upon in section 2.1.1.2.1 however there are several main responses that are transferred
within the establishment of a SIP Session.

The first is the 100 TRYING Provisional response which is sent by a stateful
Proxy Server only as a response to the INVITE request. This response is sent hop-by-hop
and notifies the end user or the Proxy of the previous hop that an attempt is being made to
contact the called party. Therefore, it assures that the INVITE Message is not
retransmitted. Note that this is the only response that is not forwarded when received by
a Proxy Server.

The next response is the 180 RINGING Provisional response which is instantiated
by the called party as a means of alerting the calling party that a SIP Session may be
possible. This response is sent end-to-end and may be retransmitted reliably depending
on the use of the SIP extensions described later.

The other response is the Error response which informs the calling party that the
session is not possible. The cause of this error can be due to the incapability of the called
party, erroneous request header parameters sent to the servers or else general global
errors within the network.

The 200 OK to INVITE Final response is the last main response found in SIP
Session establishments. This response is often referred to as the final acceptance
response since this assures that the called party will be partaking in the SIP Session. This
response also contains an answer to the offer provided by the calling user agent in the
INVITE request. If no offer was provided, the called party will extend the offer in this

response and await an answer in the ACK request.

16

2.1.1.2.1 Response Classification

The responses within a SIP Session are categorized within six classes. Each of
the classes contains several messages pertaining to the possible situations which may
arise within the SIP Session establishment phase. Table 2.2 [4] describes the classes

including a set of examples for each class.

Class Type

Class Description

Examples

1xx — Provisional

request received, continuing to
process the request

180 Ringing, 181 Call Is
Being Forwarded

2xx — Success

The action was successfully
received, understood, and accepted

200 OK

3xx — Redirection

Further action needs to be taken in

300 Multiple Choices, 302

order to complete the request Moved Temporarily

4xx — Client Error The request contains bad syntax or | 400 Bad Request, 483 Too
cannot be fulfilled at this server Many Hops

5xx — Server Error The server failed to fulfill an|502 Bad Gateway, 505
apparently valid request Version Not Supported

6xx — Global Failure | The request cannot be fulfilled at | 600 Busy Everywhere, 606
any server Not Acceptable

Table 2.2 SIP Response Classification

2.1.1.2.2 Response Message Format

All responses within a SIP Session must begin with a Status-Line which states the
SIP protocol version used, the Status Code indicating the class of response and the
Reason Phrase containing a description of the Status Code such as the examples shown in
Table 2.2. The remaining header fields are the same as the mandatory fields in the SIP

requests.

17

An example 200 OK response [4] is shown below. The other responses are similar

however their Status-Line will be unique.

SIP/2.0 200 OK

Via: SIP/2.0/UDP server10.biloxi.com

Via: SIP/2.0/UDP bigbox3.site3.atlanta.com

Via: SIP/2.0/UDP pc33.atlanta.com

To: Bob <sip:bob@biloxi.com>;tag=a6c85ct

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com
CSeq: 314159 INVITE

2.1.1.3 Basic SIP call flow

Several phases exist within a SIP Session. These include the Establishment
phase, Termination of the session, UA Registration, Cancellation of the session and
Query for the capabilities of a UA. The basic call flow of all of these phases within a SIP
session is shown in Figure 2.1. The response to the INVITE request can be either a
Provisional response or an Error response. Each SIP session does not need to include all
of these phases however the initial INVITE message must be sent before any of the other
phases occur. The other responses will have the same effect to the SIP session and are

therefore not repeated.

18

Calling Party
!

Proxy Server

Called Party

INVITE N
[INVITE R
" 100 TRYING
180 RINGING
Session 4 . 180 RINGING
Establishment
i 200 OK . 200 OK
ACK N
ACK ~
L >
(BYE
B BYE
Session 4 200 OK N
Termination d 200 OK
“-
[REGISTER .
| REGISTER .
User Agent 100 TRYING
Registration 200 OK
" 200 OK i
\
r
INVITE
INVITE
Session p < 100 TRYING
not Established 4xx, 5xx, 6xx
4xx, 5xx, 6xx Error Response

Error Response

A

INVITE |
[> INVITE .
100 TRYING
180 RINGING
Session 180 RINGING
Cancelled N
CANCEL |
CANCEL
B 200 OK
200 OK <
L I
.
a ‘ OPTIONS
uery of >
Capabilities OPTIONS
of User Agent 200 OK
200 OK

Figure 2.1 Basic SIP Message Transfer

19

2.1.2 SIP Extensions

The current set of SIP messages allows for the creation, modification and
termination of a SIP Session. This allows media communication between end users.
However there exist several scenarios which cannot be handled with this set of requests
and responses. Therefore, several extensions have been established as a means of
providing a solution to a specific requirement within the SIP protocol. These are

described in the following sections.

2.1.2.1 PRACK

Within the SIP Session, the 200 OK response is delivered reliably since it is
retransmitted until an ACK request is received. This assures that the calling party is
aware of the interests of the called party. Similarly, the calling party uses the Provisional
response such as 180 RINGING to be aware of the status of the called party. Without
this Provisional response, end users may misinterpret the called party and terminate the
invitation to a SIP Session prematurely. However, there is no enforced reliability for the
Provisional responses. Thus, to eliminate this problem, the PRACK extension [13] was
introduced to the SIP Protocol.

Once the Provisional response is received by the calling party, it issues a PRACK
(Provisional response Acknowledgement) in order to notify the called party of the
receipt. This causes the called party to stop retransmission of the Provisional response.
Finally the called party issues a 200 OK to PRACK message which completes this

extensions’ message exchange.

20

The reliability of the Provisional response may not always be necessary and
therefore, the use of this extension is decided by the calling party. If the reliability is to
be enforced, the calling party should set the proper header fields in the initial INVITE
request. The optional header fields Supported and Require should be set to 100rel if this
extension is to be used. This indicates to the called party that reliable Provisional
responses must be sent. If this request is not supported by the calling party, a 420 Bad
Extension Error response should be issued to the INVITE request. If the Require header
field is null, then Provisional responses will not be reliable and PRACK will not be
issued. This extension thus ensures reliable Provisional responses however the usage is

optional.

2.1.2.2 UPDATE

The calling party initiates a session with an INVITE request stating the offer of
the session which includes parameters such as the type of media to be sent and the
duration of the session. Amid a call however, either user agent may want to modify these
boundaries. At present, the user agent must wait for a response to the original INVITE
and then issue a re-INVITE containing the new desired session parameters. This
consumes a large amount of time and moreover a lot of resources are wasted since the
messages exchanged till this point will not be used for the remaining part of the session.

The solution is the introduction of the UPDATE [14] extension which allows the
UA to change the session parameters midway through without reissuing an INVITE
request. This request can be sent by either end user and contains a new offer. In

response, a 200 OK to UPDATE response is sent which contains the answer to the

21

changed parameters (i.e. whether the other party is capable of handling this change). The
UPDATE Extension can only be utilized before the transfer of the 200 OK to INVITE
Final Acceptance response. If this response has already been issued, then a re-INVITE
must be sent. Furthermore, for the usage of this extension, the initial INVITE must
contain an Allow header field stating UPDATE. This gives permission to the called party
to change the session parameters midway.

The message flow of PRACK and UPDATE are shown in Figure 2.2.
Note that it is assumed within this message flow that the header fields are set to the

required values.

Calling Party Proxy Server Called Party
‘::“-"!'z_-‘ == 100,

:

INVITE R
g INVITE _
P 180 Ringing
P 180 Ringing -
PRACK -~
" PRACK

Y

200 OK to PRACK

A

200 OK to PRACK

A

UPDATE

A 4

UPDATE
200 OK to UPDATE

Y

A

200 OK to UPDATE

A

200 OK to INVITE

A

200 OK to INVITE
ACK

A

A 4

ACK

Y

Figure 2.2 PRACK and UPDATE Message Flow

22

2.1.2.3 SUBSCRIBE AND NOTIFY

The previous extensions alter the instantiated SIP sessions however the
SUBSCRIBE and NOTIFY extension [15] is used to notify another SIP entity of a
running session. Therefore, this extension has no effect on the running dialog between
end users. The subscription can be used to find out about the present status and/or
any change in the state of a resource. The subscriber sends a SUBSCRIBE message to
the entity which it wishes to track. SUBSCRIBE requests contain an "Expires” header
which indicates the duration of the subscription. The Subscribe message must also have
an “Event” header amongst the header tields which will specify the type of event it is
subscribing to.

Upon acceptance of this message, the entity becomes the notifier. The notifier
sends NOTIFY messages to inform subscribers of changes in state to which the
subscriber has a subscription. This extension can be used by both UA and servers and
assures that the subscriber is aware of the current state of the notifier. To unsubscribe, a
SUBSCRIBE message with the “Expires” field set to zero is sent to the notifier. After this
point, NOTIFY messages will no longer be sent.

The basic flow of messages for the SUBSCRIBE and NOTIFY extension are as

illustrated in Figure 2.3 [15].

2.2 Summary

This chapter began with an overview of the Session Initiation Protocol. We have

introduced the components found in a SIP network including the end UA, the Registrar,

23

Calling Party
s

|

INVITE

180 RINGING

SUBSCRIBE

200 OK

200 OK to INVITE

NOTIFY

200 OK

ACK

NOTIFY

200 OK

RTP Media|Transfer

BYE

NOTIFY

200 OK

Figure 2.3 SUBSCRIBE and NOTIFY Message Flow

Redirect and Proxy servers. We then discussed the messages which can be sent between
UA namely in the form of requests and responses. We have introduced the Header
Formats required for these messages to be processed by the SIP clements and the
classification of these messages within the SIP message exchange set.

This discussion further led to the SIP extensions and the limitations which they
resolved. The extensions include PRACK which allows for reliable Provisional
responses, UPDATE which allows the session parameters to be changed before the
session is established and finally SUBSCRIBE and NOTIFY which allows another SIP
element to be aware of the status of a running session without being a member of the

actual message exchange.

24

Chapter 3 Fault Tolerance within SIP

In this chapter, we discuss which entities can be unreliable and the effect on the
session establishment. We then discuss the current approaches used to achieve Fault
Tolerance within a SIP network. We survey their methodology as well as the types of
faults which are handled within their system. We then discuss our analysis of a complete
SIP Session including both the establishment and termination phases. We identify the
types of faults which can occur within the session and at the precise location at which
these faults occur. Finally we describe in detail, our proposed approach for Fault
Tolerance within SIP. This includes both the system level overview and a detailed

message flow description.

3.1 Fault Tolerance Issues within SIP

The SIP protocol is advantageous for media transfer and allows mobility within a
system of networks. On the other hand, this protocol is not designed to handle large
amounts of traffic. For this reason, the resources which SIP utilizes must be able to cope
with the failure situations which may arise without compromising the service it is
expected to provide.

Failures within the system may be due to proxy server failures or failures in the
links along which the requests and responses are sent and received. In both cases, the
initial phase is fault detection whereby the location of the fault is known and secondly
there is the fault recovery phase where the situation is handled to avoid system shutdown

and to resume correct protocol behavior.

25

3.1.1 Link Failures

The SIP protocol contains three layers through which the connection is
established. The middle layer is the transport layer which describes the details of how a
client will send requests and receive responses and how a server will receive a request
and send a response over the network. At this layer, the link failures which can occur are
twofold. The first is a failure in the link between two user agents. The second is a failure
in the link between the user agent and the server. Generally, the transport layer sends and
receives messages along the same connection. In the case of link failures however, the
transport layer will open a new connection which the end users and the servers should be

capable of understanding.

3.1.2 Proxy Failures

In the case of a proxy server, two possibilities are present. If the proxy is a
stateless proxy, its simplistic functionality within the session is to forward the requests
from the sender to the intended receiver. They are simple and fast and can be used as
simple load balancers or routers. One of the main drawbacks of the stateless proxy is
they are unable to retransmit messages or perform any advances routing such as forking.
If this server fails, no response will be received by the sender and a timeout on the
request will occur. The sender can then detect that the server has failed and it will reissue
the request to another stateless proxy server. This failure will not damage the functioning
of the system however it will incur an additional delay since the request will have to be

reissued.

26

For the stateful proxy case, there are additional concerns since the actual state of
the session is stored and the proxy is involved in the actual responses rather than simply
forwarding the information. This assures that the stateful proxy can handle
retransmissions (if the message is already received) and they can issue several messages
in response to the receipt of a single message. Although stateful proxy servers are more
complex, they are widely used since they offer accounting and retransmission features.
Due to the fact that the state is maintained, if retransmission mechanisms are used, the
alternative servers must be notified of the current status of the session before they can

successfully take over the session.

3.2 Current Approaches

Achieving Fault Tolerance within SIP is essential since it assures the proper
delivery of messages and media exchanged between end users. As mentioned earlier,
both link and server faults can occur. The Link faults are handled by the transport layer
of the SIP layer sequence. Therefore, the primary faults to consider within the SIP
session are Server faults.

The first stage is fault detection wherein a system is diagnosed and the
occurrences of faults are identified. These faults can be transient faults wherein the
server becomes temporarily unavailable and then returns to a safe state or else permanent
faults where the server is n;) longer available for the entire SIP Session. In both cases,
the session should perform as expected for both the Establishment and Termination
Phases. The tolerance of these faults can be achieved by placing the load on the end

users or the servers themselves. Several authors have analyzed this issue and through

27

means of timeouts and replication they have achieved a means to detect and handle faults

respectively.

3.2.1 DNS Query

Achieving Fault Tolerance within a SIP Session can be done through means of a
replicated server. When a user agent sends a request, a timer is started and if no response
is received within the prescribed time, the request is retransmitted to the replica server.
The selection of this alternative server is determined through means of a Domain name
space resource record (DNS-RR) lookup where the DNS server’s primary role is to
translate a domain name to an IP address [16,17,18]. The server resource record (SRV-
RR) states the services offered by a given domain and also allows a single domain to
have several servers contained within it. The location of these servers is known when
performing a lookup of a particular domain. Moreover, these servers are assigned a
priority value which will enforce the pattern in which these servers are accessed. The
user agent who issues the request will have access to a database of these servers in the
following format

_Service. Proto.Name TTL Class SRV Priority Weight Port Target
This approach uses the timeout mechanism built into SIP as a means of Fault Detection.
Once the timeout occurs, the user agent will attempt to find another server which can
send the request. An example of the information visible to the user agent for the domain
example.edu is:

_sip._udp.example.edu SRV 05 80 pl.example.edu
SRV 15 80 pl.example.edu

28

The advantage of this scheme is that the location of the alternative servers is
known to the user agent however the logic need not be built into its system. The
disadvantage however is that the burden of finding an alternative path is still placed on
the user agent and moreover, the timeout mechanism will delay the entire session

establishment.

3.2.2 RSerPool

An alternative to tolerating faults is to maintain a dynamic list of available servers
which are contained within a reliable pool of servers [19, 20]. The concept behind this
approach is to provide high reliability and increased scalability by means of choosing an
available server dynamically without waiting for the timeouts to occur. Conrad et al.
propose a method to dynamically determine the liveness of a server prior to the issuance
of a request while still maintaining redundancy as achieved with the DNS query.

The working of this proposed solution is that each server is considered to be a
pool or set of servers. Each pool of servers is located within a common domain and the
servers can be accessed by the calling user agent when a request is issued. Periodically,
the user agent can use the ENRP (Endpoint Name Resolution Protocol) server to detect
the current status of a SIP Element. This prevents sending requests to a server that has
permanently failed. Moreover, detecting the fault within a SIP server in advance
eliminates the dependency on a timeout mechanism. This removes the additional delay
placed on a SIP Session when using the previous DNS query approach. Although the
process is dynamic, the drawback is still that the load of fault detection is placed on the

SIP user agent.

29

3.2.3 State Sharing Algorithm

The previous approaches discuss the manner in which to obtain an alternative
server when a faulty server within the network is detected. Thus, Fault Tolerance can be
achieved through the usage of server replication within the SIP Session. However, simply
replicating the server is not sufficient since the replicated copy must be aware of the
current SIP Session even while it is dormant. For this, Bozinovski et al. [21] have
proposed a state sharing algorithm which sends a text based update message as a means
of notification to the replicated servers. This message is sent using the trivial File
Transfer Protocol (TFTP) at a lower level than the running SIP Session. This provides
the replicas with the current state of the server which has transferred requests or
responses within the SIP Session. This allows all servers within the system to be
consistent.

Prior to the usage of replicas however, the fault must be identified. Fault
detection is executed by means of a timeout mechanism. Requests are sent to a selected
server and if no response is received within a pre-defined time, the request times out and
is re-issued to another server. The alternative server is chosen using a server Selection
Policy (SSP). The selection policy can be either static as in the case of DNS Lookup or
dynamic as in the case of RSerPool.

The faults considered within this approach can be either transient or permanent
however the distinction has not been explicitly stated by the authors. A server which has
failed may be reselected if it satisfies the criteria set according to the SSP. In the case of

permanent faults, the requests will constantly timeout however in the case of transient

30

faults the requests may pass successfully given that the server has recovered from the
fault.

This proposed method updates the other servers within the list of available
alternatives however the dependence on the timeout mechanism delays the overall SIP
Session. Furthermore, there is no differentiation between permanent and transient faults
within the server therefore the faulty server will constantly send requests which will go
undelivered. This wastes the session resources without cause and introduces an

additional delay.

3.3 Need for a New Approach

The current approaches to achieving fault tolerance within SIP session all use the
notion of redundancy. Replicating a server allows a means to fail-over to a safe state
without terminating a running session. Nonetheless, a set of rules need to be defined
between the replicated servers as a means of determining which server will receive the
user requests and responses given that all servers are currently active.

The DNS Query method defines a priority but the other approaches do not
introduce this aspect. The set of rules which we have chosen between our replicated
servers is based on the primary backup algorithm as described in Section 1.3. At any
given time a single primary proxy server exists. Furthermore, when the primary proxy
server recovers from a fault, it must request the state from the backup server in order to
assure that only one server will receive the messages at a time. This eliminates the

double propagation of the same message.

31

The second requirement is to create an approach which provides fault tolerance

within a SIP session without dependence on the UA. A UA should send or receive

messages with the assumption that they are reliably reached end-to-end. The third

requirement is that the level of fault tolerance be increased so that the system is not

restarted from the beginning. After fault recovery, the system restarts dynamically from

the current state of the session. Finally, in order for this approach to be fully functional,

the messages must not be dependant on a timeout mechanism. If a timeout does occur,

the request will have to be retransmitted to the backup server. The comparison of the

current approaches is shown in Table 3.1.

Dependency | Redundancy | Primary | Status of | Burden Fault
on Used Backup server | on User | Tolerance
Timeout Scheme known Agent Level
mechanisms Employed | dynamic (Section
-ally 1.3)
DNS Yes Yes No No Yes 1
Query
RSerpool | No Yes No Yes Yes 1
State Yes Yes Yes No Yes 1
Sharing
Algorithm
Proposed | No Yes Yes Yes No 2
Approach

Table 3.1 Comparison of Current Approaches to the Proposed Approach

32

3.4 Proposed Approach: Overview

Knowing wherein the SIP session faults can occur is essential in order to
determine the recovery mechanism. However, in all solutions discussed till now, the
redundancy although available must be identified and accessed by the end user agents.
The Calling or Called parties determine the location of alternative servers, if any, and
then retransmit their requests and responses as a means of assuring it reaches the intended
destination.

Our approach removes the load from the user agent and places it within the server
domain. This assures that the messages will reach the destination and moreover this
removes the need for retransmission from the user agent. At any point within the SIP
Session, the user agent can send a request or response and our proposed Fault Tolerance
Block will ensure that it reaches its intended destination.

The second addition is that our approach does not use the timeout mechanism as a
means of identifying the presence of faults. Instead, an Alive message is introduced
which is sent in order to inform its domain that the proxy server is available to process
the end user messages. This removes the additional delay incurred when the user agent
waits for a predefined time to elapse before retransmitting the message to the backup
server. Performance issues related to the addition of the A/ive message are discussed in
Section 4.6.

If a primary server fails or if an error occurs in its transmission the message is
retransmitted to the known backup server. However, an issue which has until now been
overlooked is the fact that the primary server may come back to a safe state. At this

point, the backup server should relinquish all duties and pass them back to the primary

33

server that is now capable of handling the SIP Session. Our approach assures that the
Domain Manager is aware of the status of its servers at all times and thus the primary
server will always be chosen so long as it is capable of transmitting the messages. Fault
recovery is therefore dynamic and does not delay the overall session thereby increasing
the fault tolerance level of our system.

Maintaining correct status with the Domain Manager is essential however the
same must be done between the primary and backup servers. For this, our proposed
approach uses the SIP Extension NOTIFY message as a means of assuring that the
backup server is aware of the status of the primary server with respect to the current SIP
Session. This allows the backup to dynamically take over the session at any point. The
communication between servers also allows the primary server to be set back to the

current state within the session when it recovers from the previously occurred fault.

3.4.1 Decider server

The Domain Manager is referred to as the Decider server and is located within
every given domain. It is aware of the location of the primary server and all backup
servers. The Decider server also knows about the status of each of the servers (i.e.
whether or not it is capable of receiving requests or responses). If the server is alive, the
state of the session is only known to the primary and backup servers since maintaining
this information in the Decider server is unnecessary.

There are three main assumptions which we have taken within this approach. The
first assumption is that the Decider server is reliable and that the links from the Decider

are also reliable. This ensures that the Decider server will, at all times, be aware of the

34

status of the primary and backup servers within the domain. The second is that between
the primary and backup proxy servers, only one of the proxy’s fails at a time. This
ensures that the Decider block is aware of the status of both servers within the domain
and more importantly that a backup server is available to process the message. The third
main assumption is that when the primary proxy server sends a message, the notification
is atomic and is completed before the fault occurs. This ensures consistency within the
network and allows the backup to take over the job. However, if the primary proxy
server sends a request or response and then the fault occurs before the notification, this
will lead to an inconsistent state. The backup proxy server will not be able to recognize

the next message which it receives and thus the SIP session would not be established.

3.4.2 SIP Architecture

Through usage of the primary backup approach and the inclusion of the Decider
server, the elements within any given SIP Network include the end user agents referred to
as the Calling and Called Party, the primary proxy server(s), the backup proxy server(s)
and the Decider server. The finite state machine of each element is referred to as a
process. The Calling Party process is P1, Called Party process is P4, primary proxy
server process is P2, the backup proxy server process is P3 and the Decider server is PS5.
Each process runs in the individual server and the servers communicate as shown in the
block diagram in Figure 3.1 and their communication channels are bi-directional.

The set of requests and responses transmitted between end users are shown in

Table 3.1. The 100 TRYING message is labeled as m2a since it is found within the

35

Provisional response classification however it is a hop-by-hop message and is thus

separated from the class of m2 messages.

Primary Proxy
P2

Decider

Calling Party P5

Called Party

Backup Proxy
P3

Figure 3.1 Process Communication within Proposed Approach

The highlighted messages are those introduced within our proposed approach.
The first is the Alive message which is used by the proxy servers (both primary and
backup) to notify the Decider server that they are functional and can issue messages
between the UA. This message is sent to the Decider server at periodically. If no Alive
message 1s received then within a defined time span a fault is detected and the backup is
labeled as the current primary. All messages received will be issued to the backup.

Once the primary server recovers from a fault, it must determine the current status

of the session. For this reason, the StateRequest message has been added which sends a

36

request to the backup server to notify the state of the session. This assures that both the
primary and backup are not active within the session at the same time. The final addition
is the StateResponse message which is the response to the StateRequest. This message
contains the current state of the session. Once the primary receives this message, it reads
the contents and transfers to the given state. The primary then issues an A/ive message to
the Decider server and it can resume activity within the session.

The workings of the SIP elements inclusive of our proposed Decider server are
shown by means of finite state machines. The convention used is that each state machine
contains a queue to send messages (represented by -) and a queue to receive messages

(represented by +).

ml INVITE

m2 PROV response
m2a 100 TRYING

m3 Error response

m4 PRACK

m5 200 OK to PRACK
mob 200 OK to INVITE
m7 BYE

m8 200 OK to BYE

m9 ACK

m10 NOTIFY

mll Alive

ml2 200 OK to NOTIFY
ml3 StateRequest

ml4 StateResponse
ml5 SUBSCRIBE

ml6 200 OK to SUBSCRIBE

Table 3.2 SIP request and response message set

A SIP UA contains both the functionalities of the Calling and the Called parties

however for clarity we have separated them. Figure 3.2 illustrates the Calling Party. The

37

Calling party starts in an /dle state. It then initiates a session by sending an INVITE
request which transfers the state machine to the Calling state. At this point, a 100
TRYING message is sent by the proxy of the next hop. This does not change the state of
the Calling party however receipt of this message must be handled and is done so with a
self-loop. Once a Provisional response is received, the Calling party goes to the Attempt
state which means that the UA is attempting to establish a session. At the Attempt state,
retransmissions of the provisional response may arrive since the PRACK extension is
used and the message is assured to reach the end user reliably. These retransmissions are
done by the Decider block and receipt of them is denoted as another self-loop. The
Calling party then issues PRACK which takes the machine to a ProvReceived state
indicating that the Provisional response has been successfully received by the Calling
party. Once the 200 OK to PRACK response is received the Calling Party is in the
AlmostReady state. Receipt of the 200 OK to INVITE message takes the Calling party to
a Pre Connection state and finally once the ACK is sent, the machine enters the
SIPSession state and the session establishment phase is complete.

When a BYE message is sent, the Calling Party enters the Wait For Acceptance
phase and finally when the 200 OK to BYE response is received, the Calling party enters
the NOSIPSession state and the session termination phase is complete. As per the rules
of the BYE message, it can be sent after session establishment or before receipt of the
200 OK to INVITE acceptance response namely the AlmostReady or SIPSession states of
the Calling Party state machine.

If an Error Response is recetved from the Called party, the Calling party transfers

to the NOSIPSession state indicating that the session has not been established.

38

Figure 3.3 illustrates the Called Party. The Called party starts in an Idle state.
Upon receipt of an INVITE request the state machine transfers to the Called state. At
this point, a Provisional response is sent to the Calling party and an intermediate state
Attempt is reached. The Called party then waits for the PRACK message in order to go to
the ProvReceived state which notifies the Called party that the Provisional response
issued was in fact received by the Calling party. Note that no retransmissions occur
within this state machine therefore no self-loops are required.

Next, the 200 OK to PRACK response is sent and the Called Party is in the
AlmostReady state. Sending of the 200 OK to INVITE message takes the Called party to
a Pre_Connection state and finally receipt of the ACK forces the machine to enter the

SIPSession state and the session establishment phase is complete.

NOSIPSession

Wait_For_
Acceptance

Prov
Received
+m5 , P5
Almost Pre_
Ready Connection,

Figure 3.2 Calling Party (P1) State Machine Diagram

39

When a BYE message is received, the Called Party enters the
Wait For Acceptance phase and finally when the 200 OK to BYE response is sent, the
Called party enters the NOSIPSession state and the session termination phase is complete.
The Called party must be able to receive the BYE message sent by the Calling party
which corresponds to the AlmostReady and SIPSession states of the Called Party state
machine.

If an Error Response is sent to the Calling party, the Called party transfers to the

NOSIPSession state indicating that the session has not been established.

Wait_For_
Acceptance

NOSIPSession

+m4 , P6

Prov
Received

Figure 3.3 Called Party (P4) State Machine Diagram

Pre_
Connection

Figures 3.4 and 3.5 illustrate the primary and backup proxy servers respectively.
The primary server starts in an /dle state. Requests are received from the Decider server

attached to the Calling party (P5) and sent to the Decider server attached to the Called

40

party (P6). The responses traverse in the opposite direction from P6 to the proxy and
then to P5. Within each state transition, the primary and backup communicate by means
of a subscription and notification mechanism. At every state change (meaning every time
a message is sent by the primary proxy), the primary issues a NOTIFY message. The
backup then receives the notification, changes to the corresponding state and issues a 200
OK to NOTIFY indicating that it has successfully changed to the new state.

Note that the branch between states Calling and Trying will only occur if there
exist two or more proxy between the UA. In that case, a 100 TRYING from the next hop
will be issued to the primary proxy of the previous hop. The receipt of this message is
shown along the transition labeled —-m2a, P6. Furthermore, if the primary server fails it
returns to the Idle state. Upon recovery, it can send m13 to the backup server to request
the current state of the session. The state is sent in message m14. The primary server
then reads the response and transfers to the given state.

Within the backup proxy server, the machine changes states based on the receipt
of a request or response or by receipt of the notification message from the primary. Note
that at every state, the state machine is able to receive a StateRequest message m13 and
reply with the state of the session in m14. The primary server can recover at any point
and thus the receipt of the state request must be possible throughout the backup proxy
server state machine.

The Decider server connected to the Calling Party is shown in Figure 3.6 and the
Decider server connected to the Called party is shown in Figure 3.7. Note that the

message flow of the Decider connected to the Calling is the sender component while the

41

Decider connected to the Called party is the receiver component. These processes can be

merged into a single server however they are separated for visual clarity.

-m11, P5 &
-mt1, P6
+m15 , P3
-m16 , P3 Go to the state
givenin m14

-mi1,P5 &
-m11, P6 &
+m12, P3

. +m3, P5
O -m2a , P6
+m12,P3
+m2 , P6 & -m11, P5 &
m2, P5 & -m11, P6 & ogﬁié Pp?s)
-m10, P3 +m12, P3 > Wait_For_ &-m1d P3
Acceptance '
-m11, P5 &
-m11, P6 &

-m11,P5&

-m11, P6 & |

+m12, P3 +m12, P3
+m7, P5

-m11, P5 &

-m11, P6 &

‘12, P3

-m4 , P6
&-m10, P3
-m6 , P5
&-m10, P3
+m9,P5 &
-m9, P6 &
m5. P5 -m10, P3
&-m10, P3
-m11,P5& _m11, P5 & -m11, P5 &
-m11,P6 & _m1t. P6 & -m11,P6 &
+m12, P3 +mi2 P3 +m12, P3

Figure 3.4 Primary proxy (P2) State Machine Diagram

The state machine of this entity also begins in an Idle state. If an Alive message is

received from the primary server then the state machine goes to the PrimarylsAlive state.

42

In this state, if the A/ive message is received from the backup then it is ignored and no
change in state occurs. This is denoted as a self-loop. At this state, if a request or
response is received, it is sent to the primary server. If the backup Alive message is

received first, the Decider goes to the BackuplsAlive state.

+m13, P2 &
-m14, P2

-m11, P5 &
-m11, P6

+m15, P2 +m13, P2 &
-m14, P2

-m1t, P5 & +m3, P5
\ D -m11, P6 OR +m10, P2

-m7, P6 OR +mi3, P2 &
-m2a, P6 -mi2, P2 -mi14, P2
+m8, P6 ’
S OR +m10, P2 E
m PF?:‘ > vaiFor_ e NOSIP m 8,5
(-m2,P5 ok Acceptance Session “m12. P2
OR -m12, P2)) +m13, P2 & '
-m14, P2 v
-m11, P5 &
+m13, P2 & -m11, P8
-m14, P2
+m4 , P5 OR +m10, P2
-mi11, P5&
-m1t, P6
(+m9 , P5
OR +m10, P2) &
+mé , P6 {-m8, P6
-m5, P50R OR +m10, P2 OR -m12, P2}
-m12, P2 P SIPSession
;+m13, P2 &
+m13, P2 &) +m13 P2& m14, P2

-m14, P2
-m11, P5 &

-mit, P6 m11, P5 & m11, P5 &

-m11, P& -m11, P&

Figure 3.5 Backup proxy (P3) State Machine Diagram
If an Alive message is received from the primary then the machine reverts back to

the PrimarylsAlive state. This is required since we cannot guarantee the order in which

43

the Alive messages will be received. While in the BackuplsAlive state, if no Alive is
received from the primary within a predefined time lapse, then the request or response is
sent to the backup server. This timeout may also occur when no message is received
which is denoted by the self loop on the BackuplsAlive state. In this case, the Decider
server will wait till it receives a message.

When the Decider server sends a message, it stores it into a buffer] and returns to
the Idle state. If the primary server fails after the message was sent to it, the message is
lost and therefore, a retransmission to the backup server is required. A timer is placed on
cach message and if it expires (i.e. no response has been received), the Decider will
detect that a fault has occurred on the primary proxy server. The Decider then reads the
bufferl which contains the previously sent message and resends it to the backup server.
The size of the bufferl is one. Moreover the buffer]l does not need to be flushed since it
is overwritten each time a new request or response is sent.

The second buffer within the state machine, labeled buffer2 is required to save
messages received by the Decider block before the retransmission of the previous
message. This is needed to ensure that no messages are overwritten before their
retransmission. This scenario occurs if the primary proxy server fails after the Decider
has sent message m5 to it. At this point, the Called party may issue message mo6 before
mb5 is retransmitted to the backup proxy server. To avoid this scenario, message m5 is
stored in buffer! for retransmission while m6 is stored in buffer2 and sent after buffer! is
empty. The size of the buffer2 is one. Moreover the buffer2 does not need to be flushed

since it is overwritten each time a new request or response is received.

44

It should be noted that the finite state machines shown for the Decider blocks are
for the scenario wherein the Deciders are connected to the Calling and Called agents
directly. If additional proxy servers exist between the UA as shown in Figure 3.8 then P6
of the first proxy will send requests to P5 of the second proxy and the responses will

traverse the opposite route from P5 of the second proxy to P6 of the first proxy.

45

When a msg is received (state
4), store it into a buffer1 before
sending it out to the Primary or
Backup. When timeout occurs,

Timeout on
Message sent, Message

Check buffer1, received from
resend to P3 Called Party,
store in buffer2

check buffer1 and resend msg
stored. +mi1, P3
+mi1, P2
Check buffer2 and Backup!
send message else IsAlive
wait for incoming !
request or response Timeout on
\ ¥ +m11, P2 then check
buffer2 and send message
Primary else wait for incoming
*mit, P3 ‘ IsAlive request or response
+m1, P M4, P, “ma, +m2, +m3, +m5,
P1 P2 P2 P2 +’r:' +m7, P1 +m8, P2 +m23,
ORONOIOIO ONONORO
-m1, P2 -m4, P2 -m9, P2 -m2,P1] -m3,P1} -m5 P1 -mé6, P1 -m7, P2 -m8, Pt] -m2a, P1

+m2a, P3

o +m2 \
+m4, P ' M3,

-m1, P3 -m4, P3 -mg, P31 -m2 P1|] -m3,P1} -m5 P1} -m6 P1 -m7, P3 -m8, P1 | -m2a, P14

Figure 3.6 Decider server connected to the Calling Party (PS) State Machine

Diagram

46

Timeout on

Message sent, Message
When a msg is received (state Check buffert, ‘ received from
4), store it into a buffer1 before resend to P3 ' Called Party,
sending it out to the Primary or store in buffer2
Backup. When timeout occurs,

check buffer1 and resend msg

stored. +m11, P3
+m11, P2
Check buffer2 and a::_‘“p
send message else SAllve
wait for incoming .
request or response ‘ i {rlgwgi:; :r:: ook
buffer2 and send message
+m11. P3 ‘ Primaryls else wait for incoming
’ Alive request or response
e T Hm2, f +m3\ +ms) 22, P
’ g Pafp P4 P4 ‘e +m7, P2 +m8, Pa
-m1, P4 -m4, P4 -m9,P4) -m2, P2} -m3 P2] -m5 P2] -m6,P2 -m7, P4 -m8, P2 | -m2a, P2

+m1,P3 \ +m2a, P5
+m4, P! +Fr3n9, +r;§ +m3, +mby +m6, +m7 P Py
ONONOIOIOIONONONOIO
-m1, P4 -m4, P4 -m9, P4l -m2,P3} -m3,P3} -m5P3f -m6 P3 -m7, P4 -m8, P3 | -m2a, P3

Figure 3.7 Decider server connected to the Called Party (P6) State Machine
Diagram

47

3.4.3 SIP Fault Scenarios

Employing the primary backup algorithm assures that one server will be actively
handling the SIP Session at all times however, the location at which faults occur must be
identified. We have analyzed the SIP Session both through the Session Establishment
and Session Termination phases and we have determined the location at which faults can
occur within the system which may affect the proper workings of the SIP Session.
Furthermore, we have generalized the fault occurrences and their effect on the running
session with the presence of »n proxy servers (i.e. #» hops) located between the end user
agents.

Faults can occur within a SIP Session at the locations shown in Figure 3.8. The
server can either fail before the request or response is received or else after it has been
sent. At each stage, the effect on the session differs since the Decider server will have to
assess the situation and retransmit the messages in order to handle the occurrence of a
server fault. These effects are summarized in Table 3.3. The occurrence of all of these
faults can be recovered from using our proposed approach.

Figures 3.9 to 3.15 are block diagrams which include the Decider Block solution
and display the sequence of messages exchanged in order to tolerate the occurrence of
server faults. Note that once the backup proxy server is used, all messages will flow

along the same path until the primary proxy server recovers from the fault.

48

Calling Called

Party Decider1 Primary 1 1 Decider2 Decider1 Primary 2 Backup 2 Decider2 Party
P1) (P5) Pz2) ®s) (P2) (P3) (P6) P43)
e o | . ‘ e
== = = = h
= = = E
1 i i
et ‘ RS ipld
/A\:l've Alive Alive Alive
e Alive Alive Alive
Subscribe Subscribe
INVITE 200 OK 1 200 OK
INVITE | A
INVITE
100 TRYIN
100 TRYING INVITE E:I
Noti
203 'ZK INVITE
Alive I:B]_—_—Ar 100 TRYING {JO0 TRYING ”\:\l\,lgfs
ve otr
Ali INVITE
e Alive e 200 OK
Ali l N
100|TRYING AI',:": Alive
Notity ! - Alive
Notify
200 OK E 180 RINGING
CI‘ZQQ‘QK—‘
160 RINGIN 180|RINGING
180 RINGING| Notify
E] 180/ RINGING 200 OK
80 RINGING Alive | D Alive
180 RINGING Notify Alive "
500 OK Alive
Q;fve Dl Aiive
ve | Alive
PRACK
PRACK
PRACK
Notify PRACK
200 OK PRACK
2:"\/9 Alive PN (‘EK PRACK
ive N Ot
Alive 200 OK
i:fve Fl Aalive
Ve ¢ Alive
G 200 OK to PRAC
200 OK 200 OK to|PRACK
200 OK to PRACK
EG to PRACK Notify
200 OK 200 OK fo PRACK 200 OK |
200 OK to PRACK 4-——”""6 HI Alive
to PRACK Notify Alive .
200 OK Alive
l—Alive TH] Ajve
Alive - 200 OK to INVITH
Alive
200 OK 200 OK 1 INVITE
200 OK to INVITE
to INVITE Notify
200 OK 200 OK td INVITE 200 OK
200 OK to INVITE le—Alive I Ajve
to INVITE i i
Notify Alive Alive
200 OK
Alive Al
- e
Al
s Alive
S 5]
ACK
ACK
Notify ACK
200 OK] ACK
i [
Alive Alive ACK
Alive Al Notify ACK
Ve L 200 oK
Alive
Alive
BYE '\E . Alive N
BYE Alive
BYE
Notify BYE '\E
200 OK BYE
2:.ve N aee _ BYE e
ive - otify
Alive 300 OK
4—-—EA""E] Alive
Alive Al
Lve. 200 OK to BYE
200 OK 200 OKfto BYE
200 OK to BYE
to BYE
200 OK 200 OK to BYE
200 OK to BYE
to BYE

Figure 3.8 Location of fault occurrences

49

Server
Fault
Location

Effect on SIP Session

A

The Decider block (called party end) will not receive an Alive message from
the primary proxy server therefore the INVITE will be issued to the backup
proxy server. The backup will take over until the primary recovers.

Invite message will be sent however the Decider block (calling party end)
will not receive an A/ive message from the primary proxy server therefore
the 180 RINGING will be issued to the backup proxy server. The backup
will take over until the primary recovers.

Decider Internal Timeout Mechanism used to detect the fault. Decider
block retransmits the message saved in buffer1 to the backup proxy server.

The Decider block (calling party end) will not receive an Alive message
from the primary proxy server therefore the PRACK message will be sent to
the backup. The backup will take over until the primary recovers.

Decider Internal Timeout Mechanism used to detect the fault. Decider
block retransmits the message saved in buffer] to the backup proxy server.

The Decider block (called party end) will not receive an Alive message from
the primary proxy server therefore the 200 OK to PRACK message will be
sent to the backup. The backup will take over until the primary recovers.

Decider Internal Timeout Mechanism used to detect the fault. Decider
block retransmits the message saved in bufferl to the backup proxy server.

The Decider block (called party end) will not receive an Alive message from
the primary proxy server therefore the 200 OK to INVITE message will be
sent to the backup. The backup will take over until the primary recovers.

Decider Internal Timeout Mechanism used to detect the fault. Decider
block retransmits the message saved in buffer] to the backup proxy server.

The Decider block (calling party end) will not receive an Alive message
from the primary proxy server therefore the ACK message will be sent to
the backup. The backup will take over until the primary recovers.

Decider Internal Timeout Mechanism used to detect the fault. Decider
block retransmits the message saved in bufferl to the backup proxy server.

The Session is already established so media flows directly between end
users. Proxy server fault has no effect.

The Decider block (calling party end) will not receive an Alive message
from the primary proxy server therefore the BYE message will be sent to
the backup. The backup will take over until the primary recovers. [fno 200
OK to Bye is sent, a timeout occurs and all resources are de-allocated and
the session is terminated by all SIP entities.

The Calling Party will terminate (even without receipt of the 200 OK to
BYE). No media will be sent so after a timeout, the Called party will also
terminate its session connection.

Table 3.3 Effect of fault on SIP session

50

.
L

}3) Server Failure

/

BN

(2) INVITE [=
> (4) No Alive
s From
4 Decider z Primary
|
A

Primary Proxy Server

(7) INVITE

(1)Alive_Backup

(1)Alive_Backup

(5) INVITE

(6) INVITE

Backup Proxy Server

Decider

Y

i L
P 2

Called Party

Figure 3.9 Fault A — Proxy fails before receiving INVITE

Primary Proxy Server

(11) Server Failure

(3) INVITE

(4) INVITE

(1)Alive_Primary

(1)Alive_Primary

(5) 100
TRYING
A& (12)No Alive
Yy From Primary
[n:.
(2) INVITE - E
» (8) 200 OK
> (6) 100 TRYING B (7) NOTIFY to NOTIFY 7
g 5 (15) 180 RINGING 5
Calling Party DeciderA’ “y “z
\ J
(1)Alive_Backup : =% 1| (1)Alive_Backup

(9) INVITE

(10) 180 RINGING

(14) 180 RINGING

(13) 180 RINGING

-

H

Backup Proxy Server

-

£ .
Decider Called Party

Figure 3.10 Fault B — Proxy fails after sending 100 TRYING

51

Primary Proxy Server

(16) Server Failure

(3) INVITE =2 (4) INVITE
()Alive Primary : (1)Alive_Primary
(14) 180 RINGING
(1) 180
(5) 100 RINGING
TRYING A
wy Al
(2) INVITE N = = (9) INVITE
> (8)(13)200 0K]
(6) 100 TRYING == (7) (12) NOTIFY O NOTIFY | o lag—{10) 180 RINGING
> (18) No Alive (21) PRACK
LR (15 180 RINGING from Primary
Calling Party ™~ e sy
(17) PRACK A Decider ! Decider A A
(1)Alive_Backup } == 11 (1)Alive_Backup
(19) PRACK (20) PRACK

Backup Proxy Server

Figure 3.11 Fault D — Proxy fails after sending 180 Ringing or Error Response

{2) INVITE

o

{

Primary Proxy Server
(22) Server Failure

17) PRACK

»
(6) 100 TRYING

(15) 180 RINGING|

Calling Party

(26) 200 OK to PRACK

\ (18) PRACK_~7

4

(18) PRACK
\ (4) INVITE
(3) INVITE (1)Alive_Primary
(DAlive_Primary (11) 180
(14) 180 RINGING - RINGING
,,,,, \
(5) 100 A
Yy TRYING Yyy v
[ro] 3 (9) INVITE
(7) (12) (19) (8) (13) (20) »- .
NOTIFY 200 OK - 1QL1B0 RINGING ;
2 = to NOTIFY SR (21) PRACK
! Called Party
§ Decider Decider . . 23) 200 OK fo PRACK
Lo Y —
\ * ()Alive_Backup || =g] | (1)Alive_Backup lr g:r)n':,?irﬁ:s
(25) 200 OK to PRACK

(34) 200 OK to PRACK

.

Backup Proxy Server

Figure 3.12 Fault F — Proxy fails after sending PRACK

52

Primary Proxy Server

{28) Server Failure

(26) 200 OK to PRACK

__23) 200 OK to PRACK

(17) PRACK]| (BPRACK
¥ (4) INVITE
(3) INVITE N/ (1)Alive_Primary
(1)Alive_Primary (11) 180
(14) 180 RINGING _, RINGING
=N
(5) 100 A
v 4 TRYING ""V
i o Lwoers ;) {9) INVITE
2) INVITE
@ :JE ma2 09 | §e 03 eoes) >
(6) 100 TRYING (24) 200 OK < 10) 180 RINGING
-« L NOTIFY to NOTIFY ;
& (15) 180 RINGING| - aamar— (21) PRACK -
. i Called Party
Calling Party (16) PRACK Decider Decidet “N\\(22) 200 OK to PRACK
(27) 200 OK o PRACK " [T 1" \ o \29) 200 OK to INVITE
(33) 200 0K to INVITE "B * (DAlive_Backup)i Bt | | (1)Allve_Backup ‘r (30) No Alive
from Primary

(32) 200 OK to INVITE

(31) 200 OK to INVITE
-

-

Backup Proxy Server

Figure 3.13 Fault H — Proxy fails after sending 200 OK to PRACK

(32) 200 OK to INVITE

Primary Proxy Server

(34) Server Failure

{29) 200 OK to INVITE
-t

(26) 200 OK to PRACK || ‘=B | | (23) 200 OK to PRACK
(1T) PRACK N\ /_(18) PRACK
3) INVITE (4) INVITE

(DAlive_Primary|
14) 180 RINGING!

1)Alive_Primary|

(11) 180
RINGING

ool b
w Y {V TRYING “T3 41 Yy
(2) INVITE (8) (13) (20) £ o (9) INVITE
. > @ (12) (19 pANAS)
: (6) 100 TRYING (24) (30) A 1102150 RINGING j
> - NOTIFY
— (15) 180 RINGING to NOTIFY TRCD Lo . i
" il o Called Pa
Calling Party (16) PRACK) : o \{22) 200 OK to PRACK rty
Decider Decider]
(27, 200 OK 1o PRACK) \/ 28) 200 OK to INVITE
i
\ (33) 200 OK to INVITE 7 |5 I (39) ACK P
(35) ACK / T I 1 ;
gf’f; ";?1:1';‘:3 (1)Alive_Backup | (1)Alive_Backup 4

(37) ACK

(38) ACK

Bac

kup Proxy Server

Figure 3.14 Fault J — Proxy fails after sending 200 OK to INVITE

53

(3) Server Failure

Primary Proxy Server

(2) BYE =t L= (7) BYE
> (4) No Alive s
Decider || ™ Pti::;nry = | Decider |
, fa g
~7 Called Party

Ab :A A

(1)Alive_Backup } = | (1)Alive_Backup

(5) BYE (6) BYE

Backup Proxy Server

Figure 3.15 Fault M — Proxy fails before receiving BYE

Figure 3.16 is the only situation which uses the timeout mechanism. This
situation arises when the primary proxy server fails after sending an 4/ive message to the
Decider block. In this case, the Decider will identify the fault through an internal timeout
and it will resend the message to the backup proxy server. This can occur at any point
within the SIP Session however the end users are hidden from this retransmission.

At any point within the SIP Session, the primary proxy server can recover from
the fault which had occurred. In order to resume its responsibility within the session, it
must request the current state from the backup proxy server so that it remains consistent
with the running session. Once the state of the session is retrieved, the primary proxy
server sends an A/ive message to inform the Decider server of its restoration. As a result,
the messages flow through the primary proxy server until another server fault occurs.
An example of this situation is shown is Figure 3.17. In this case the server fails after the

INVITE request has been sent to the primary proxy server.

54

(3) INVITE

(4) Server Failure

!

(1)Alive_Primary |-

(1)Alive_Primary

N

Proxy Server

Primary
 / Yy
(2) INVITE - fﬂ ; = (8) INVITE >
Laet | (5) Internal L
Decider Timeout Decider
i L Lo
Calling Party TR AL Called Party
A A A

(1)Alive_Backup

(1)Alive_Backup

(6) INVITE

(7) INVITE

Backup Proxy Server

Figure 3.16 Fault C, E, G, I, K — Proxy fails after receiving INVITE

(21) PRACK
The remainder of the
messages are sent to the
Primary which is back alive

(3) INVITE

Primary Proxy Server

(16) Server RECOVERS
(11) Server Failure

/ (4) INVITE

(1)Alive_Primary

(1)Alive_Primary

(5) 100

{19) Alive sent to {12) No Alive
Decider From Primary
From Primary
3
(2) INVITE o (9) INVITE
» (8) 200 OK
E < (6) 100 TRYING to NOTIFY) | et (10) 180 RINGING
CQ’%*:&P rt\ - {15) 180 RINGING o .
alling Pa ; : i
(20) PRACK A A Decider 18) StateAck A Decider
Y
(1)Alive_Backup # =2 || (1)Alive_Backup
[

(14) 180 RINGING

(13) 180 RINGING

:ﬂ',.mTv

-

Backup Proxy Server

Figure 3.17 Primary proxy recovers from fault and resumes operation

55

3.5 Summary

This chapter begins with the identification of the link and proxy failures which
can occur within a SIP session. Mechanisms to handle these failures within the system
and determination of solutions which incur small amounts of delay are the focus of our
proposed approach. The chapter then provides an overview of the algorithms which have
been suggested to achieve Fault Tolerance within SIP. It further discusses the
shortcomings of these approaches which serve as a basis for our work. We then discuss
our proposed approach and introduce a Decider server. This solution is advantageous for
two reasons. First it eliminates the retransmission of messages from the end user and
secondly it considerably reduces the dependency on timeout mechanisms which generally
delays the overall SIP session. We then identify the locations within a SIP session where
faults can occur and affect on the message flow. We conclude the chapter with a
diagrammatic description of messages exchanged between SIP elements including the

Decider server, in the presence of server faults.

56

Chapter 4 Implementation

In this chapter, we introduce the tool used to simulate our proposed fault tolerant
block within SIP. We provide an overview of the capabilities of the tool, the components
within its system and the results which can be achieved from this simulation. We then
illustrate the design of SIP within the tool. This includes all of the SIP components
including the Decider server. We further describe the finite state machines which
represent the message flow which each entity traverses. This leads to the analysis of the
timing constraints of the system as well as the theoretical performance factors within the

system. We conclude with the assumptions taken when designing the system.

4.1 SDL Tool

The tool used for simulation of our Fault Tolerant SIP solution is Specification
and Description Language (SDL) [22]. SDL is a standardized language used for the
description of systems as communicating state machines. It is widely used in the area of
telecommunications and protocol systems however it is currently expanding into other
areas such as aircraft and railway systems. The key features of this tool are:

¢ Suitable for communicating distributed systems

e Offers Real-time capabilities

e Provides both graphical and textual representations of the system
e Offers the creation of a Stimulus-Response paradigm

e Provide a solid platform for developers and testers

57

Since SDL is a message based system, communication protocols can be
implemented and then checked for correctness based on the Message Sequence Charts
(MSC) derived from the tool. The basic notion is that the entities of the protocol are
represented as an Extended Finite State Machine (EFSM) and each one can exchange
messages through queues. These queues follow the FIFO (First-in-First-out) algorithm
wherein the messages will be processed in the order that they are received.

There are four main hierarchical levels in SDL. The first is the System level
which is the uppermost construct and represents the overall structure of the system to be
designed in SDL. Within this level, the communication between entities is shown and
moreover, the system’s response to environmental stimuli is described. This system is
then composed of many Blocks which is the second level within the hierarchy. These
blocks are individual entities and may be subdivided into sub blocks. Both the System
and Block levels have channels which serve as the medium over which communication
can take place. The blocks contain Processes which is the third hierarchy level. A
Process in SDL is essentially an EFSM which describes the workings of the stated block.
It contains the states that the block can reach, the variable types that the block can handle
and moreover any timing constraints which are present. Furthermore, the process
terminates once its execution has completed. The final hierarchy level is the Procedure
which can be placed within any of the previous levels and describes a temporary finite
state machine. It is local to the level in which it is created and can repeat execution from
the initial state.

There are several important constructs that are available in SDL. They are used to

create the EFSM within the process level and are shown in Table 4.1. These allow the

58

descriptions of the internal workings of the system. These EFSMs can run concurrently
and express the reaction to stimuli. They are either stagnant at a particular state or in the

middle of the execution of a transition.

Symbol Description
Start

Stop

Pad

Input

Output

Save

State

<
D,
| J
-

Continuous
Signal

Decision

Procedure Call

Procedure Start

Procedure Return

—T Text Box
Join
: Connection/Label

Table 4.1 Symbols used in SDL to represent FSM entities

There are also several data types which are considered within SDL. These can be
used when declaring variables within the EFSM. These include Boolean (True or False),
Character (‘A’, ‘B’, etc.), Integer (1, 2, 45, etc.), Natural (Null or Positive Integer), Real
(43.7, etc.) and Time (used for the creation of Timers).

The constructs and data types available within SDL allow systems to be defined

as EFSM. Through these, communication protocols can be verified to see if they are

60

following the expected set of rules and can also be validated for their correctness with

respect to the desired workings of the protocol.

4.2 System Design

We have implemented our proposed approach including the Decider server within
SDL [23]. The System level of the model is shown in Figure 4.1. The system is
composed of four blocks representing the entities communicating within the SIP session.
UAS represents the Calling Party which instantiates the initial INVITE message. UAR is
the Called Party which issues responses based on whether it wishes to join the session or
not. The two middle blocks F7BI and FTB2 are the fault tolerance blocks which we
have proposed. They contain the functionality to handle server failures which may occur
without the system. The managing of faults is internal to the fault tolerance blocks and
thus the workings are not visible to the end users UAS and UAR.

The status of the session (established or not) is informed to the environment
through channels EN/, EN2, EN3, and EN4. These notify that a SIP Session has been
established between the end users (SIPSession) or that an error has occurred and no
session has started (NOSIPSession).

The channels between the blocks (CUStoP1, CP2toUR etc.) allow the requests
and responses to traverse through the system from end to end. For clarity within this
implementation, the requests traverse from the UAS to the UAR block whereas the
responses in the opposite direction. Finally, there are three messages which can be
inputted from the environment. These are StartP, StopP, and GoAhead. These messages

are used to feed faults within the system. StopP will disable the primary proxy server

61

emulating that a fault has occurred. StartP will enable the primary proxy server

emulating that it has recovered from the previously occurred fault. Godhead is used to

emulate that there is no fault within the system and thus the Decider server can be

informed so that it sends messages through the primary proxy server.

system SIPModel
EN1 EN4
< UAS UAR »
[SIPSession, NOSIPSession} [SIPSession, NOSIPSession]
[Response] [Request]
CUStoP1 4 CURtoP2 A
Y CP1toUS Y CP2toUR
[Request] [Response]

N [Response] CP21oP1 EN3
[SIPSession, NOSIPSession] [SIPSession, NOSIPSession]
FTB1 FTB2
FTinEN2 > > < FTinEN3
[StartP, StopP, GoAhead) CP1toP2 [Request] [StartP, StopP, GoAhead)]

SIGNAL

Request(charstring,charstring,charstring,charstring,charstring,charstring,integer,charstring,charstring,charstring),
Response(charstring,charstring,charstring,charstring,charstring,charstring, charstring),
SIPSession, NOSIPSession, StartP, StopP, GoAhead;

Figure 4.1 Overall SDL System Model

4.3 Block and Procedure Design

The Blocks within the model contain the process to be described as an EFSM as

well as the channels along which messages enter and exit the block. The first is the UAS

Block as shown in Figure 4.2. This contains the SIP Sender process which will define

the workings of the Calling Party within the SIP Session.

62

Furthermore this block

contains several processes which create an instance of a request. As described in Chapter
2, the SIP User Agent contains an embedded transaction user which creates messages.
This layer is represented in our model using several processes which create a request and
then terminate. These processes are executed only once as there is no retransmission of
requests with a SIP session. The processes included in the UAS block are for the
following requests; INVITE (7U_INV) shown in Figure 4.3, ACK (TU _ACK) shown in
Figure 4.4, PRACK (TU _PRACK) shown in Figure 4.5, and BYE (7U BYE) shown in
Figure 4.6. The setup for all of the requests is similar however the contents of the
message differ. The process begins, creates the request and outputs the message to the

Sender block and then terminates.

block UAS
M
CPOUS C1 [Response] ,
C5
[Requestl |, cystop1
C6 SIP. 7
SiP_Sender L Sess:on}[EN1
C2 [Request]
TU_INV i
| Cc7 NOSIPS:
[esS/on]K EN1
-
[Request}
/ A
[Request]
TU_ACK (Requesi]
C4
8
TU_PRACK c
TU_BYE

Figure 4.2 Block Model of Calling Party

63

process TU_INV

Request_Line ;= "INVITE",
ReguestURI = “John <sip:john@concordia.ca®,
Dest := "John <sip:;john@concordia.ca“,
Source := "Juile <sip:julie@cae.com>",
CSeq := “314592 Invite",

Call_ID := “a8ejjw22ks@pc.cae.com”,

Max_Forwards := 70,
Via_Route := “SIP/2.0/UDP pc.cae.com; branch =xh7w93kkw?2",
Supported := “100rel",
Require = “100rel"

Request{Request_Line, ReguestURI, Dest, Source, CSeq, Call_ID, Max_Forwards, Via_Route, Supported, Require

DCL Request_Line charstring;
DCL RequestURI charstring;
DCL Dest charstring;

DCL Source charstring;

DCL CSeq charstring;

DCL Call_iD charstring;

DCL Max_Forwards integer;
DCL Via_Route charstring;
DCL Supperted charstiing;
DCL Require charstring;

Figure 4.3 Creation of INVITE Request

process TU_ACK

Request_Line := "ACK",
RequestURI := “John <sip:john@concordia.ca®,
Dest := “John <sip:john@concordia.ca®,
Source := “Juile <sip:julie@cae.com>*,
CSeq = “314592 Ack®,
Call_ID := “a8ejjw22ks@pc.cae.com",
Max_Forwards := 0,
Via_Route := “SIP/2.0/UDP pc.cae.com; branch =xh7w33kkw2",
Supported := “100rel",
Require := "100rel"

l

Request(Request_Line, RequestURI, Dest, Source, CSeq, Cali_ID, Max_Forwards, Via_Route, Supported, Require

DCL Request_Line charstring;
DCL RequestURI charstring;
DCL Dest charstring;

DCL Source charstring;

DCL CSeq charstring;

DCL Cali_ID charstring;

DCL Max_Forwards integer;
DCL Via_Route charstring;
DCL Supported charstring;
DCL Require charstring;

Figure 4.4 Creation of ACK Request

64

process TU_PRACK

l

Request_Line := “PRACK",
RequestURI = “John <sip:john@concordia.ca’,
Dest := "John <sip:john@concordia.ca”,
Source = "Juile <sip:julie@cae.com>",
CSeq = “314592 Prack",
Call_ID := “a8ejjiw22ks@pc.cae.com”,
Max_Forwards := 0,
Via_Route := "SIP/2.0/UDP pc.cae.com; branch =xh7w93kkw2",
Supported := “100rel*,
Regquire := “100ref"

[

Ri equest_Line, F JR!, Dest, Source, CSeq, Call_ID, Max_Forwards, Via_Route, Supported, Require

DCL Request_Line charstring;
DCL RequestURI charstring;
DCL Dest charstring;

DCL Source charstring;

DCL CSeq charstring;

DCL Call_ID charstring;

DCL Max_Forwards integer;
DCL Via_Route charstring;
DCL Supported charstring;
DCL Require charstiing;

Figure 4.5 Creation of PRACK Request

process TU_BYE

Request_Line :="BYE",
RequestURI := “John <sip:;john@concordia.ca®,
Dest := “John <sip:;john@concordia.ca*,
Source := “Juile <sip:julie@cae.com>",
CSeq := “314592 Bye®,
Call_ID := "aBejjw22ks@pc.cae.com”,
Max_Forwards .= 0,
Via_Route := “SIP/2.0/UDP pc.cae.com; branch =xh7w93kkw2",
Supported = “100rel",
Require := “100rel*

Request(Request_Line, RequestURI, Dest, Source, CSeq, Call_ID, Max_Forwards, Via_Route, Supported, Require

DCL Request_Line charstring;
DCL RequestURI charstring;
DCL Dest charstring;

DCL Source charstring;

DCL CSeq charstring;

DCL Call_ID charstring;

DCL Max_Forwards integer;
DCL Via_Route charstring;
DCL Supported charstring;
DCL Require charstring;

Figure 4.6 Creation of BYE Request

65

The next is the UAR Block as shown in Figure 4.7. This contains the
SIP Receiver process which will define the workings of the Called Party within the SIP
Session. Similar to the sender block, this block also contains several processes however
in this case they create instances of responses. The same rules for the process apply here
wherein there is no retransmission. The provisional, error and acceptance responses can
be retransmitted as in the definition of SIP however this burden has been shifted to the
fault tolerant block. As per the user’s point of view, there are no retransmissions.

The processes included in the UAR block are for the following requests;
PROVISIONAL RESPONSE (TU Prov) shown in Figure 4.8, ERROR RESPONSE
(TU Err) shown in Fivgure 4.9, 200 OK to INVITE (TU Accept) shown in Figure 4.10,
200 OK to PRACK (TU PrackAccept) shown in Figure 4.11 and 200 OK to BYE
(TU ByeAccept) shown in Figure 4.12. The setup for all of these responses is similar
however the contents of the message differ. The process begins, creates the response and

outputs the message to the Receiver block.

66

block UAR

1
CP2AOURO—C [Request] >
cé [SIPSession)]
X EN4
c7 NOSIPSessi
SIP_Receiver (NoS ess:on]_{ EN4
c2 [Response]
TU_Prov c8 Response]
[Resp }K CURtoP2
[Response
Response’
c3 - SN [Response]
TU Err [Response}
- [Response]

TU_Accept

C5

TU_ByeAccept

TU_PrackAccept

Figure 4.7 Block Model of Called Party

process TU_Prov

Status_Line := “180 RINGING",
RequestURI := “John <sip:john@concordia.ca*,
Dest := “Juile <sip:julie@cae.com>*,
Source := “John <sip:john@concordia.ca“,
CSeq = "314592 Invite*,
Call_ID := “a8ejjw22ks@pc.cae.com’,
Via_Route := “SiP/2.0/UDP pc.cae.com; branch =xh7w93kkw2"

Response(Status_Line, RequestURI, Dest, Source, CSeq, Call_IB, Via_Route)

DCL Status_Line charstring;
DCL RequestURI charstring;
DCL Dest charstring;

DCL Source charstring;

DCL CSeq charstring;

DCL Call_{D charstring;
DCL Via_Route charstring;

Figure 4.8 Creation of 180 RINGING Response

67

process TU_Ermr

Status_Line := "ERROR",
RequestUR John <sip:;john@concordia.ca®,
Des Juile <sip:julie@cae.com>,
Source := “John <sip:john@gconcordia.ca“,
CSeq := 314592 Invite",
Call_ID := “a8ejjw22ks@pc.cae.com”,
Via_Route := "SiP/2.0/UDP pc.cae.com; branch =xh7w93kkw2"

R _Line, Ry URL, Dest, Source, CSeq, Call_ID, Via_Route)

DCL Status_Line charstring;
DCL RequestURI charstring;
DCL Dest charstring;

DCL Source charstring;
DCL CSeq charstring;

DCL Call_ID charstring;
DCL Via_Route charstring;

Figure 4.9 Creation of ERROR Response

process TU_Accept

Status_Line := “200 OK to INVITE",
RequestURI := “John <sip:john@concordia.ca“,
Dest := “Juile <sip:julie@cae.com>",
Source := “John <sip:john@concordia.ca,
CSeq := “314592 Invite",
Call_ID := “a8ejjw22ks@pc.cae.com”,
Via_Route := “SIP/2.0/UDP pc.cae.com; branch =xh7w93kkw2*

Response(Status_Line, RequestUR], Dest, Source, CSeq, Call_ID, Via_Route)

DCL Status_Line charstring;
DCL RequestURL charstring;
DCL Dest charstring;

DCL Source charstring;

DCL CSeq charstring;

DCL Call_ID charstring;
DCL Via_Route charstring;

Figure 4.10 Creation of 200 OK to INVITE Response

68

process TU_PrackAccept

Status_Line = “200 OK to PRACK",
RequestURI := “John <sip;john@concordia.ca’,
Dest := “Juile <sipjulie@cae.com>",
Source := “John <sip;john@concordia.ca",
CSeq = “314592 Prack®,
Call_|D := “aBejjw22ks@pc.cae.com”,
Via_Route := “SIP/2.0/UDP pe.cae.com; branch =xh7w93kkw2"

F Status_Line, JRI, Dest, Source, CSeq, Call_ID, Via_Route)

DCL Status_Line charstring;
DCL RequestURI charstring;
DCL Dest charstring;

DCL Source charstring;
DCL CSeq charstring;

DCL Cali_ID charstring;
DCL Via_Route charstring;

Figure 4.11 Creation of 200 OK to PRACK Response

process TU_ByeAccept

Status_Line := “200 OK to BYE®,
RequestURI := “John <sip:john@concordia.ca®,
Dest ;= “Juile <sip:julie@cae.com>*,
Source := *John <sip:john@concordia.ca*,
CSeq := “314592 Bye*,
Call_ID := “a8ejjw22ks@pc.cae.com®,
Via_Route := “SIP/2.0/UDP pc.cae.com; branch =xh7w93kkw2*

Resp Status_Line, R

JRI, Dest, Source, CSeq, Call_ID, Via_Route)

DCL Status_Line charstring;
DCL RequestURI charstring;
DCL Dest charstring;

DCL Source charstring;
DCL CSeq charstring;

DCL Cali_ID charstring;
DCL Via_Route charstring;

Figure 4.12 Creation of 200 OK to BYE Response

69

The next two blocks are similar since they represent two proxies existing between
the end user agents. Each fault tolerant block contains a set of four sub blocks as shown
in Figure 4.13. These are Deciderl which is the Decider server connected to the Calling
Party, Primary which is the primary proxy server within the domain, Backup which is the
backup proxy server within the domain and Decider? which is the Decider server
connected to the Called Party. The channels local to this block are the AliveP and AliveB
messages which are sent to the Decider server from the primary and backup Proxies
respectively. This informs the Decider server about the availability of the proxy server.
The other local messages are those between the primary and backup servers. These
include Subscribe, Notify, AcceptRespN (200 OK to Notfiy), AcceptRespS (200 OK to
Subscribe), StateReq wherein the primary proxy informs the backup that it has recovered
and is ready to resume within the SIP Session and StateResp which contains the current
state from the backup thereby allowing the primary to return to the session after recovery.

This block also contains a procedure called UpdateMsgInfo as shown in Figure
4.14 which is used to update the header parameters of the requests and responses which
traverse through the proxy servers. According to the SIP rules [4], there are three
changes which the proxy must make. It should,

1) Reduce the number of hops (MaxForwards header field) in each request sent
2) Add the location which it wishes to receive messages at (Via header field)

3) Update the route, if required (RequestURI header field)

The Decider sub blocks as shown in Figures 4.15 and 4.16 are similar except that

they are connected to the Calling or Called parties respectively. They contain the

70

processes D Process] and D Process? and the channels along which the requests and
responses are sent. The AliveP] message informs the Deciderl that the primary proxy
server is alive and able to receive requests. The AliveP2 message informs the Decider2
that the primary proxy server is alive and able to receive responses. The same goes for
the AliveBI and Alive B2 messages except they inform of the availability of the backup
server.

The next sub block is the primary proxy block shown in Figure 4.17. This
contains the Primary Process process which defines the workings of the primary proxy
server. The block contains the channels of messages that flow through the proxy. There
are two processes within this block. The first is TU Trying shown in Figure 4.18 which
creates the 100 TRYING message and sends it to the previous hop. This message as
described in Chapter 2 is hop by hop and thus locally generated. The second process is
TU AcceptS shown in Figure 4.19 which creates the 200 OK to SUBSCRIBE message
notifying the backup server that the subscription request has been accepted.

This block also contains two procedures which represent those messages that are
sent repeatedly within the session. The first is the Notification Procedure called
Notification Proc shown in Figure 4.20 which issues a Notification message to the
backup server. This is required after each change in state within the SIP Session and is
therefore implemented as a procedure which can be repetitively instantiated. The
procedure begins, creates the notification message, outputs the message to the backup

server and then returns to start for the next change in state.

71

ZN3

L d0IZdD
Z2doiLdO

ZN3

'(Busleyd'Buins.leyos'Bulysteys tabey

‘(Busreys' Busieyd Buuisleyo'Busleus bulis eys Buusieys bulisieud)dseyoiels
‘(BuwsleyoBusieyd Bumsieys Bumsieys Bumsieyd Sunsieyo'buuisieyo)beysiels
{(Busleyobuwnsieys Busieyo Bulysieyo Buusieyo Bulysieys)buikay
sJeyo ‘Buisseyd Bulsieyd Bulysieya Bulisieys b
sseyo Buwsieyd Busieyo Buws.eys Bulysieyo Busieys' Buseyo)gasuodsey
1s1eyo'bulseys Buls.ieys Bumsieyo Buuseys)gissnbey
‘(Busteys ‘Bumsieyo'Buisieya ebeju) ‘Bumsieys ' Suisteys Bulsteys Busieyo Buinsieyd Buuisteys)disenbay
‘ZTABAIY' LEBAIY TdBAIY' LdaAlly (BuLysreys Bunsieyo Bums.ieyo Bumsieys Buwysieys Buisieys Butiseyo)sdseyidecoy
‘(Bumsseyn'Buins.eyo Buusieys' Buwisieyd Butsieyo Bumsseys Susieyo)Ndseyideooy
‘(Buisieyo'BuLsseyo Sums.teys Buuysseyo ' Bulisieys Bulsieys Buwseyo Bulysieys Busieus Buuseys Bulisieyd Busieyo)aquosgns
‘(BuLysseyo ‘Bumisseyo ‘Buinsieys 'butsieyo bulsieys Bupseys bulsteyo bulsieus Busieyo Buliseyd Busieys Bulseyo) AnoN

6

Butisieys’'t

s1eyo'Bus.ieyo)desuodsay

!

TYNOIS
< >
< N3
48] luoissesISON] luosssasars] €0
{egeniy] igoniv]
80 dnsoeg L0
A
[gesuodsay) Igisonboy]
A 4 A 4
b ‘'sdsq Y
Tosanben] [bayerels sdsayideooy Auon] [gasuodsey]
> >
[esuodsay] T z58psQ vo Li8pPaQ 010 [esuodsay] Hm:o:ao
 lisenbey] G510 %) Tsorbon] LdOISND
[gisenbay] [dseyajels ‘Ndsaxfidanay ‘aguosgng] [gosvodsay]
A A
[resuodsoy] v [qisanbay]
Aewud
[zdonv] 90 g0 lidoniv]
< = lpeayyon ' qdois grers]) MNZW_EE
< > ZN3
e [0S SIS ISON} luosssasars]]

oyu|Bswatepdn

Lg.1400(q

Figure 4.13 Block Model of Fault Tolerance Block

72

procedure UpdateMsginfo
FPAR IN/OUT RequestUR|, Dest, Via_Route charstring, Max_Forwards integer

Dest = "John<sip:jchn@concordia.com>"

Via_Route := “old via”,

MaxTemp := Max_Forwards RequestURI := “old R_URI"

|

MaxTemp = MaxTemp - 1

|

Via_Route := “new via”,
Max_Forwards := MaxTemp,
RequestURI := “new R_URI”

DCL MaxTemp integer;

Figure 4.14 Procedure to update header values in proxy server

The second procedure is the StateReq Proc which creates the request that the
primary issues to the backup server as a means of determining the current state of the
session. This is executed every time the primary proxy server recovers from a failure
within the SIP Session. This can occur several times within the system and so this

consistency requirement is implemented as a procedure.

73

Cc9

C5

c11

C12

Cc7

block Decider1t

» D_Process1

Ca [Request] »
| ¢b [AliveP1] R
| Cc [ResponseP]

Cd [ResponseB] N

Ce {AliveB1]

A 4

Cf

Response

[Resp. ! :ﬁ C10
C R stB
g [Request] ¥ C12
Ch Request

[Req i ¥ C11

Figure 4.15 Block model of Decider Block attached to Calling Party or next proxy

block Decider2

D_Process2

cf

Reques

[Requesf] » C15
C R P
g [ResponseP} 2 c13
Ch

ResponseB
[P i x» C14

Ca [AliveP2]
cé >
Cbh [AliveB2]
[oF:] ’u »
R
c13 Ce [RequestP]} >
C14 Cd [RequestB] >
[of R
c16 e [Response]

)

Figure 4.16 Block model of Decider Block attached to Called Party or next proxy

74

This block also contains two procedures which represent those messages that are
sent repeatedly within the session. The first is the Notification Procedure called
Notification Proc shown in Figure 4.20 which issues a Notification message to the
backup server. This is required after each change in state within the SIP Session and is
therefore implemented as a procedure which can be repetitively instantiated. The
procedure begins, creates the notification message, outputs the message to the backup
server and then returns to start for the next change in state. The second procedure is the
StateReq Proc which creates the request that the primary issues to the backup server as a
means of determining the current state of the session. This is executed every time the
primary proxy server recovers from a failure within the SIP Session. This can occur
several times within the system and so this consistency requirement is implemented as a
procedure.

The final sub block is the béckup proxy block shown in Figure 4.22. This
contains the Backup Process process which defines the workings of the backup proxy
server. The block contains the channels of messages that flow through the proxy. There
are two processes within this block. The first is 7U Trying which is the same as that
found in the primary proxy server block. In the event that the backup takes over the
session from the beginning, it must send a 100 TRYING to the end user agent. The
second process is 7U Sub shown in Figure 4.23 which creates the SUBSCRIBE message
and sends it to the primary proxy server thereby requesting that it be notified during the

SIP Session Establishment and Termination phases.

75

CF

CF

C11

C13

CA

CF

block Primary

C1 [StopP} Cd [SIPSession] c1
Cc2 Start C NOSIPSessi
[StartP) e [essmn]}G c2
Ca [RequestP] Cf [AliveP1] o cs
Cb [ResponseP] Primary_Process Cg [AliveP2] ce
[Subscribe, AcceptRespN,
Cc StateResp) Ch [ResponseF)] o ci1
C5 [GoAhead] Ci [RequestP] a ci3
_ [Notify, AcceptRespS,
Cj StateReq] CA
. S
Y
[AcceptRespS]
C4
TU_Trying
TU_AcceptS

Notification_Proc

{ StateReq_Proc J

Figure 4.17 Block model of primary proxy server

76

process TU_Trying

Status_Line := *100 TRYING®,
Dest := “Juile <sip:julie@cae.com>",
Source := “John <sip;john@concordia.ca’,
CSeq = “314592 Invite*,
Call_D := "a8ejjw22ks@pc.cae.com”,
Via_Route := "SIP/2.0/UDP pc.cae.com; branch =xh7w93kkw2"

Trying(Status_Line, Dest, Source, CSeq, Cali_ID, Via_Route)

DCL Status_Line charstring;
DCL Dest charstring;

DCL Source charstring;
DCL CSeq charstring;

DCL Call_ID charstring;
DCL Via_Route charstring;

Figure 4.18 Creation of 100 TRYING Response

process TU_AcceptS

Msg_Type := “200 OK to SUB*,
Dest := “Backup Proxy",
Source := “Primary Proxy*,
CSeq :=“314592 Invite",
Call_ID := “a8ejjw22ks@pc.cae.com”,
Via_Route := “SIP/2.0/UDP pc.cae.com; branch =xh7w93kkw2",
Content_Length :=“0"

AcceptRespS(MsgType, Dest, Source, CSeq, Call_ID, Via_Route, Content_Length)

DCL Msg_Type charstring;

DCL Dest charstring;

DCL Source charstring;

DCL CSeq charstring;

DCL Call_ID charstring;

DCL Via_Route charstring;

DCL Content_tength charstring;

Figure 4.19 Creation of 200 OK to SUBSCRIBE Response

77

procedure Notification_Proc
FPAR IN/OUT Current_State charstring

Msg_Type := “NOTIFY*,
Request_URI := “John <sip:john@concordia.ca®,
Dest := “Backup Proxy",

Source := “Primary Proxy”,

CSeq := “314592 Invite",

Call_ID := “a8ejjw22ks@pc.cae.com”,
Via_Route := “SIP/2.0/UDP pc.cae.com; branch =xh7w93kkw2"
Event_Type := “dialog”,
Subscription_State := “active”,

Expires := “3600",

Content_Type := “application/diaiog-info+xml”,
Content_Length := Current_State

Notify{Msg_Type, RequestUIR, Dest, Source, CSeq, Cali_ID, Via_Route, Event_Type,
Subscription_State, Expires, Content_Type, Content_[L ength)

DCL Msg_type charstring;

DCL Request_URI charstring;
DCL Dest charstring;

DCL Source charstring;

DCL CSeq charstring;

DCL Call_ID charstring;

DCL Via_Route charstring;

DCL Event_Type charstring;
DCL Subscription_State charstring;
DCL Expires charstring;

DCL Content_Type charstring;
DCL Centent_Length charstring;

Figure 4.20 Creation of NOTIFY Request

procedure StateReq_Proc

Msg_Type := "STATEREQUEST",
Dest := “Backup Proxy”,
Source := “Primary Proxy",
CSeq = “314592 Invite®,
Call_ID := “a8ejjw22ks@pc.cae.com”,
Via_Route := “SIP/2.0/UDP pc.cae.com; branch =xh7w93kkw2*
Content_Length := *

StateReq(Msg_Type, Dest, Source, CSeq, Call_ID, Via_Route, Content_Length)

DCL Msg_type charstring;

DCL Dest charstring;

DCL Source charstring;

DCL CSeq charstring;

DCL Call_ID charstring;

DCL Via_Route charstring;

DCL Content_Length charstring;

Figure 4.21 Creation of StateRequest Request

78

This block also contains two procedures which represent the responses to the
periodically received notification and state inquiry messages. The first is the
AcceptNotifiy Proc shown in Figure 4.24 which is the 200 OK to NOTIFY message
issued to the primary proxy server. This is so that the primary proxy server can ensure
that the backup received the change in state notification. Since the notification procedure
occurs after every state, the backup proxy server must also accept the notification every
time it receives the message and therefore it is also implemented as a structure which can
be repeated at every call. The procedure begins, creates the acceptance to the notify
message, outputs the message to the primary server and then returns to start for the next
change in state. The second procedure is the StateResp Proc shown in Figure 4.25 which
creates the response to the request of the primary server. This message contains the
current state of the SIP Session. The primary server can then read the value of the
Content Length header field found within the message to determine the current state.
This is executed every time the primary proxy server recovers from a failure and sends a
request for the current state of the session. This can occur several times within the

system and is thus implemented as a procedure.

79

CA

C12

c14

block Backup

[Notify, AcceptRespS,

Ca StateReq] N
Cb [RequestB]
Cc [ResponseB]
Cc2
TU_Sub

AcceptNotify_Proc }

StateResp_Proc J

Backup_Process

[Subscribe]

C 1P i
d [SiPSession] c3
P .
Ce [NOSI Sess:on]ﬂ ca
i 1
Cf [AliveB1] c7
C AliveB2
g [AlveB2) 3 C8
Ch [ResponseB] o c12
i B
Ci [RequestB] K C14
ci [Subscribe, AcceptRespN,
] StateResp] CA
S
Y
[Trying]
C1
TU_Trying

Figure 4.22 Block model of backup proxy server

80

process TU_Sub

[

Msg_Type := "SUBSCRIBE*,
Request_URI := “John <sip;john@concordia.ca®,
Dest := “Primary Proxy",

Source Backup Proxy”,

CSeq := “314592 Invite",

Call_ID := “a8ejiw22ks@pc.cae.com®,
Via_Route := *SIP/2.0/UDP pc.cae.com; branch =xh7w93kkw2"
Event_Type := “dialog”,
Subscription_State := “active”,

Expires := *3600",

Accept_Type := “application/dialog-info+xmi”,
Content_Length = "0"

i

Subscribe(Msg_Type, RequestUIR, Dest, Source, CSeq, Call_ID, Via_Route,
Event_Type, Subscription_State, Expires, Accept_Type, Content_Length)

DCL Msg_type charstring;

DCL Dest charstring;

DCL Source charstring;
DCL CSeq charstring;

DCL Call_ID charstring;
DCL Via_Route charstring;
DCL Event_Type charstring;

DCL Request_URI charstring;

DCL Subscription_State charstring;
DCL Expires charstring;

DCL Accept_Type charstring;

DCL Content_Length charstring;

Figure 4.23 Creation of SUBSCRIBE Request

procedure AcceptNotify_Proc

Msg_Type := “200 OK to NOTIFY",
“Primary Proxy",
“Backup Proxy“,
q = “314592 Invite®,
Call_iD := “a8ejjw22ks@pc.cae.com’,
Via_Route := "SIP/2. 0/UDP pc.cae.com; branch =xh7w93kkw2",
Content_Length i

AcceptRespN{MsgType, Dest, Source, CSeq, Call_ID, Via_Route, Content_Length)

DCL Msg_Type charstring;

DCL Dest charstring;

DCL Source charstring;

DCL CSeq charstring;

DCL Call_ID charstring;

DCL Via_Route charstring;

DCL Content_Length charstring;

Figure 4.24 Creation of 200 OK to NOTIFY Response

81

procedure StateResp_Proc
FPAR IN/OUT Current_State charstring

Msg_Type := “STATERESPONSE",
Dest := "Primary Proxy",
Source := “Backup Proxy",
CSeq = “314592 Invite*,
Call_ID := “aBejjw22ks@pc.cae.com®,
Via_Route := “SIP/2.0/UDP pc.cae.com; branch =xh7w93kkw2"
Content_Length := Current_State

I

StateResp(Msg_Type, Dest, Source, CSeq, Cali_ID, Via_Route, Content_Length)

DCL Msg_type charstring;

DCL Dest charstring;

DCL Source charstring;

DCL CSeq charstring;

DCL Call_ID charstring;

DCL Via_Route charstring;

DCL Content_Length charstring;

Figure 4.25 Creation of StateResponse Response

4.4 EFSM Level Process Design

Each process within SDL is defined through an EFSM. This contains the
workings of the process as described theoretically in Section 3.4.2. Within each diagram,
a change in state is dependent on the receipt of a message or the sending of a message to
another process within the system.

A part of the EFSM for the SIP Sender process is shown in Figure 4.26. The
scenario shown describes the Calling Party in the Attempt state. It has received the
provisional response and is now awaiting the receipt of a PRACK message from its

transaction user. Upon receipt, the Max Forwards value is decreased and the message is

82

sent to the Decider block. It then goes to the ProvReceived state. If the message received

is not PRACK, there is no SIP session established and the EFSM terminates.

I

Request(Request_Line,RequestURI,Dest,Source,CSeq,Call_ID,Max_Forwards,Via_Route,Supported,Require) (

Request_Line = ‘PRACK’

(v) (+)

Max_Forwards := MaxTemp -1 NOSIPSession)

Request(Request_Line,RequestURI,Dest,Source,CSeq,Call_ID,
Max_Forwards,Via_Route,Supported,Require)

MaxTemp := Max_Forwards

Figure 4.26 Partial EFSM of SIP Sender process

A part of the EFSM for the D _Process! process is shown in Figure 4.27. The
scenario shown describes the Decider process receiving a Request from the Calling Party
and then issuing it to the primary proxy server. Note that before sending the message, the
process saves the Request in case it has to be retransmitted to the backup proxy server.
The other branch shows the Decider process receiving a Response from the primary
proxy and then sending it to the Calling Party. If any Alive messages are received while

in the PrimarylsAlive state, the messages do not alter the state of the Decider. This

83

ensures that the proper state is taken regardless of the order in which the Alive messages

are received from the primary and the backup proxy servers.

AliveP1

PrimarylsAlive

AliveB1 (AliveP1 (

ResponseP(Status_Line,RequestURI,Dest,Source, CSeq,Call_ID,Via_Route) < l I

I (j’n‘marylsAliv;)(l’rimarylsAlive)

Response(Status_Line,RequestURI,Dest,Source,CSeq,Call_ID,Via_Route))

“ Request(Request_Iine,RequestURl,Dest,Source,CSeq,Call_lD,Max_ForwardsK

Via_Route, Supported,Require)

|

Ltemp := Request_Line,
RUtemp := RequestURI,
Dtemp := Dest,
Stemp := Source,
CStemp := CSeq,
Cltemp :=Call_ID,
Mtemp := Max_Forwards,
Vtemp := Via_Route,
SPtemp := Supported,
Rtemp := Require

.Max_Forwards,Via_Route,Supported,Require)

Figure 4.27 Partial EFSM of D_Processl process

RequestP(Request_line,RequestURI,Dest,Source,CSeq,Call_ID)

Similarly, Figure 4.28 shows a part of the D Process2 process which describes
the Decider process receiving the messages from the backup proxy server and then
sending it to the respective parties. The scenario shown is the receipt of a request from
the Calling party. The Decider block waits for a predetermined time for the AliveP
message from the primary proxy server. If it is not received, the Decider process issues

the Request to the backup proxy server. Since the receipt of messages by the Decider

84

server is not controlled, the Alive messages may arrive before the timeout occurs. These
situations are handled within the EFSM of the Decider process.

The branch which takes a timer Tk value as an input is required in order to
retransmit lost messages. This occurs if the primary proxy server fails after the Decider
has issued a message to it. In this case, no response will be received and the message
times out. At this point, a fault is detected within the primary proxy server and the
message will then be retransmitted to the backup proxy server which takes over the
current session.

Before this retransmission occurs however the Calling or Called parties can send
the next message since their processes are independent of the Fault tolerance block. The
provision taken is to input the message, store it into a buffer and set a flag indicating that
the next message has been stored. When the next alive message is received, it indicates
that the previous message has been retransmitted successfully. At this point, the buffer is
checked. If it is empty, the Decider waits for a UA to send a message. In the case where

the buffer is full, the saved message is transmitted to the appropriate proxy server.

85

00IN0g 88" (M(

{amnoy eIn

diodilepm

(alinbey'peyoddng ajnoy eIA SpIEMIOS T XEIN
0'basD'80In0g 1saQ [YNIsenbey aulTIsenbax)gisanbay

|e0’basy'a0In0g 18’

(esnbay’ pepoddng alnoy

w'ou jsenbe; >

'SpIBMIOL XB

dwalp =: ainoy~ eI
‘dwisld = QI e
‘dweyz) =: beso
‘duselg =: 8aInog
‘dweiq =)seq
‘dweiny = [dnisenbey
‘dwe} = euI snielg

‘sur] snig)s = zdwey

donlvL

deAllvL
Zajeisdwa)
Lgeny

bayeleipaune)

(dOMIVL ‘L+ MON) 138

sAlysiluetiug

'8021n08 150G 14r

(emoy " BIN'QIT1BD'beSD
bey'aun smeig)

Zdwap =: ooy ein
‘zdweyo = @i len
‘Zdwelg) =: basy
‘zdwelg =: e2Inog

‘zdwayQ = 1seQ
‘zdweyny = (yrisenbay
‘Zdwe =: sur] snelg

{a1nbey'pepoddng‘e)noy “BIA'SpIEMIO S XEIN
‘Al 1. beg D e3In0S IS8 [nisenbay ‘aul jsenbay)isenbey

Ldealy

(amnox " eIA‘Ql

0'bag D e0In0g
‘1seQ'1dnIsanbey eurr T snieig)esuodsey

1

dio-fiem

L8eAlY

anig

Ldaaly

(IL 'S+ MON) L3S

process

I EFSM of D_Process2

12

Figure 4.28 Part

86

A part of the EFSM for the Primary Process process is shown in Figure 4.29.
The primary proxy server is in the Atfempt state. At this stage, a PRACK message can be
received if the extension is supported within the session. This will cause the EFSM to go
to the ProvReceived state. Prior to the transfer to the new state, the primary proxy server
may fail. This is simulated using the StopP message inputted from the environment. In
order to simulate proper functionality of the system, the Go4head message is inputted. If
no PRACK is used, then the 200 OK to INVITE Acceptance Response may be received
directly. At this point the decision to simulate a fault or not is again possible. If neither
of the responses are received then the 180 Ringing message times out and no SIP session
is established. The EFSM terminates in this case.

Within this EFSM, it is assumed that the backup proxy server has subscribed to
the primary and therefore notification messages are sent when the EFSM changes state.
The Acceptance Response to the notification can be received AcceptRespS however the
state of the server is not altered. This subscription however can be done at any point
within the session. The EFSM for the case wherein the subscription is not done at the
beginning is slightly different. In the branch where PRACK is received, no notification
message is sent and instead of accepting the response to the notification, the subscription
message is accepted as shown in Figure 4.30. The states are appended with a ‘2’ as
Attempt2. After the subscription is accepted, the EFSM reverts to the Attempt state
wherein notification takes place. The primary proxy continues to notify the backup for

the rest of the session.

87

i

UoIssaSdISON

Uo1SS8G e (SON

A osies

uoNIBUUOD Bid

ap| oY
pussay _
ddoig pesyyogy

oni)
gojEIpaLISIL

N

ONIONIY
081, = oUIT SMEIS

asied

(spsemo 4~ xXep 'sinoy "eIA
1s8Q" |¢Misanbay)ojuibseiepdn

enig

dweny

ddoig

_

ALIANI O}
MO 002, = au snigig

PaAIBIRYAOIH

_

peayyoD

ddoig

oIpi A Zdsnlly

GolRIPAWIBIUY

(e¥e18TIUBLIND)20.4 " UolEION

PoAIBIBYACI, =01EIS UBLND

(aunbey ‘papoddng ‘aInoy TRIA ‘SPIeMIO S XB
‘al e beg D '90In0g IS8 [y NIsenbay ‘sul jsenbay)disenbey

I

(spiemo 4~ xep'einoy " BIA
189" Msenbay)ojuBsiyelepdn

dweny ZdeAIlY

as|e eni

MOVHd, = eur]isanbay

(yiBuaTjusu0) ‘anoy eIA
'Qi"lIeD 'bagD ‘evinog
189 ‘adA 1 Bspy)Ndsayidaooy

(a1n0x TBIA'GIT 118D bR D) 92.n0G 1590 1y Misenbay ‘aur snieIS) esuodsey

(21nbay ‘palioddng sinoy eIA 'spiemio{ xen
‘Qim .Y begD e2in0g 188’ |y NIsenbay ‘U Isanbey)disenbey

|

f

dweny

Figure 4.29 Partial EFSM of Primary Process process

88

Subscribe(MsgType,RequestURI,Dest,Source,CSeq,Call_ID,Via_Route Event_Type,Subscription_State,Expires,Accept_Type,Content_Length) (

Attempt2 ResptoSub8

AcceptRespS(MsgType,Dest,Source,CSeq,Call_ID,Via_Route,Content_Length) i

AcceptRespS(MsgType,Dest,Source,CSeq,Call_ID,Via_Route,Content_Length))

Figure 4.30 Additional transition for EFSM of Primary Process process

A part of the EFSM for the Backup Process process is shown in Figure 4.31. The
scenario shown here is the same as that in the primary proxy server however the backup
can either receive the messages directly or else it can transfer to the correct state with the
notification message. The state sent by the primary proxy server is checked and the
backup proxy server goes to the given state. This assures consistency between both
servers.

At each state within this EFSM, the backup may receive a Request from the
primary proxy server as to the current state of the session. This occurs after the primary
server recovers from a fault. The Response is sent by the backup server informing the
primary of the current state of the session although the state of the backup server is not
changed. This change will only occur once a notification message is received from the

primary or else a Request or Response from the Decider block.

89

[1o198uU00 814

288Ny

(-0

2oueidordy
RERL

E
zgony
gy

casAy

LaoAy

9)e1S ™ uoijeledaly)

Buthi)

Bulreay Jdwsly Buyien
zgealy Igeny 88Ny
1goAlY 1geny 188AIN

280MI

18oMY

28Ny

o E
3K [1:ELT

2019~ ApoNidaoay

2014 AoNIdeoay 2014 "AgioNda00y _ __ _

2018 "AoN 1deoay

20ig~AJoNId00Y _ __ _

2014 AjopN1deooy

2014 AJaoNdsady

— -

0195Uu6) a1,

d 104 7B,

9014 ARIONIda0Y — _ :,
SBumen, Jdwany,

_
_

91eIS uoneledsiy,

Buikiy,

20id”ApioNdaady — _ — 2034 ApoNIdasoy

Apeay, 8Pl

ubuan juser

(uiBuaT w0 "edk Twalwos Soidxy eleisuouduosqng otk Tueag “simoy” A

10 'beg2 '8oun0g "iseQ) ‘wirusenbay ‘adk 1 "Bswikon

U0ISSaSdISON

as(e3

pussay

ani)

ONIONIY
081, = ury siEig

dwopy

esjey

(MBS UBUND)00Id "dsoyere)S

UoYIBUU0Y "Bld

(spiemo4™xew'ainoy "eIA
1890 Iy PIsenbax)ojuBsiwetepdn

E
a

(aunbey'pajoddng
‘BInoyTeIA'spIEmIoS T Xe ') TIED'bag D pomn
9gysa(]' |} Nisenbay’ sul"jsenbey)g)senba)

(spJemo4TXeW a0y BIA
1590 1y nisenbay)ojuIBswarepdn

idweyy 2deAly

BT

UoisseSdISON

Jdweny, =ateis uauny

J3UANIQ)
N0 00Z, = Ui "snjeig

osiey A i)

euiT18enbay

Figure 4.31 Partial EFSM of Backup Process process

{WbusY uslu0) oy BIA
‘712D 085D ‘aainog 18
‘gaQ ‘adk | Bsplbaxalelg

{onoy BAG

0'beg)'301n0g 1500 Iy NIsenbey ‘U~ snieig)desuodsey

(ainbay'paLoddng an0Y ~BIA'SPIBMIOL KB

QI71BD'bes) 22108 180 [9nisanbay'eu Jsenbay)gissnboy

I |

Vdwapy

90

If the backup proxy server is not subscribed to the primary proxy server, then the
notification branch is replaced with the one in Figure 4.32. The Subscribe message is
taken as an input from its own process which creates the message (TU Sub). The

message is then sent to the primary proxy server.

Subscribe(MsgType,RequestURI,Dest,Source,CSeq,Call_ID,Via_Route,
Event_Type,Subscription_State,Expires,Accept_Type,Content_Length)

Subscribe(MsgType,RequestURI,Dest,Source,CSeq,Call_ID,Via_Route,
Event_Type,Subscription_State Expires,Accept_Type,Content_Length)

WaitForResp7

AcceptRespS(MsgType,Dest,Source,CSeq,Call_iD,Via_Route,Content_Length) (

Attempt

Figure 4.32 Additional transition for EFSM of Backup Process process

A part of the EFSM for the SIP_Receiver process is shown in Figure 4.33. The
scenario shown describes the Called Party in the Pre Connection state. It has sent the
acceptance response and is now awaiting the receipt of an ACK message from the Calling
Party. Upon receipt, the Called Party sends out a SIPSession message to the environment
stating that the session has been correctly established. The EFSM then returns to the
initial /dle state awaiting a new session invitation. In the case where the message is a
BYE Request instead of an ACK, the state machine jumps to the Bye Check point

wherein the Request is consumed and the state of the machine changes accordingly.

91

AlmostReady

Response(Status_Line,RequestUR!, Dest,Source,CSeq,Call_ID,Via_Route) (

Status_Line = "200 OK to

INVITE” CSeq,Call_ID Max_Forwards,Via_Route,

Supported Require)

(True) (False)
Bye_Check

Request(Request_Line,RequestURI,Dest,Source,(

Call_ID,Via_Route) NOSIPSession

Response(Status_Line, RequestURI Dest.Source,Cseq,)

‘ Pre_Connection ’

Reguest(Request_Line,RequestURI, Dest,Source,CSeq,Call_ID Max_Forwards,Via_Route,Supported,Require) (TE j

NOSIPSession)

Request_Line = "ACK”

(7) (1)

SiPSession Bye_Check

Figure 4.33 Partial EFSM of SIP_Receiver process

92

4.5 Timing Analysis

As mentioned in Chapter 3, the SIP protocol contains a set of timers applied to the
requests and responses sent within the session. These timers are used to limit the waiting
time of the end users. If a response is not received within the allotted time, the request
expires and 1s either retransmitted or no SIP session is established. Recall that SIP
messages can be sent along either TCP or UDP. The timeout values for both
transportation protocols as defined in [4] are given for the end user agents in Table 4.2
and for the proxy servers in Table 4.3. Note that the maximum wait time for requests
other than INVITE and responses to the INVITE is 4 sec. However with the usage of
PRACK, this condition is uplifted so as to allow the retransmission of Provisional
responses. Therefore, this timing constraint is not placed within our implementation as
we enforce the usage of PRACK.

Furthermore, our implementation can be executed with the transport being UDP
or TCP. In the case of UDP, timers can be expired thereby simulating the retransmission
of the messages within a SIP session. This real-time feature is provided in SDL. In the
case of TCP, no retransmission is required since this is a reliable transport protocol.

The final timing constraint is that placed on the retransmission of responses and is
set to 500 milliseconds (Tk). In [4] this value is given to the proxy server as the wait
time before a response should be retransmitted. In our implementation, this
retransmission is executed by the Decider server and thus the timer expires within the
Decider block for both the requests and responses sent between end user agents. A

diagrammatic view of these timing constraints is shown in Figures 4.34 and 4.35.

93

UDP Timeout TCP Timeout
Timeout for INVITE 32 sec 32 sec
Request [Tb]
Wait time for Response 1 sec No retransmission needed
Retransmit [Td] (0 sec)
Wait time for Request 500 ms No retransmission needed
Retransmit [Te] (0 sec)
Timeout for Responses (if | 32 sec 32 sec
PRACK used) [Tf]

Table 4.2 Timing Constraints for end users

UDP Timeout TCP Timeout
Timeout for ACK 32 sec No retransmission needed
Request [Th] (0 sec)
Wait time for ACK 5 sec No retransmission needed
Retransmits [Ti] (0 sec)
Wait time for Request 32 sec No retransmission needed
Retransmit [Tj] (0 sec)
Wait time for Response 500 msec No retransmission needed
Retransmit [Tk] (0 sec)

Table 4.3 Timing Constraints for proxy servers

The recovery process within our proposed approach is achieved through less than
the 32 sec of the initial INVITE message. Faults are detected dynamically and thus the
system need not restart from the beginning. The 32 sec timeout is reset by the calling

party when the Provisional or Error response is received.

94

Calling

Party
(P1)

Talivep = 1 sec
(timeout on AliveP)

i

Decidert Primary 1 Backup 1 Decider2 Decider1 Primary 2 Backup 2 Decider2
(PS)

h 4

A A

INVITE

A A

Called

Talivep F 1 sec

"

an AliveP)

Th = 32 sec <
(timeout)

\

= 500 msec{

hoark | 100 TRYING

100 TRYING

Talivep =

1 sec
"

(tii o

AliveP)

h 4

>

Talivep £ 1 sec

t on AliveP)

7,180 RINGING

Tk = 500 msl

transmissiqn
to backup Td = 1 sec

J

180 RINGING[

<

180 RINGING

A 4

1 sec

Talive
(timeou

p = 1 sec

(timeout on

t on AliveP) ||

Te = 500 ms sec
(retransmission
time)

transmissio
to backup

(timeout on

= 500

7 E 32 sec,
PRACK (timeout)

Talivep =

1 sec

A

N (retransmission
Talivep = > time)
Tf = 32 sec
AliveP) (timeout)

AliveP)

200 OK

AA
A

Talivep 5 1 sec
il t on AliveP)

200 OK to PRAC

A

to PRACK

Talivep
(timeout

Tk = 500 msec
} retransmission
to backup

Talivep 5 1 sec
il t on AliveP)

Y

= 1sec
on AliveP)

Figure 4.34 SIP Message Exchange with Timing Constraints (Part 1)

1200 OK to INVITH R
200 OK 200 OK t INVITE k = 500
200 OK to INVITE N retrans-
t 0 mission
200 OK t§ INVITE o 2l;gtl(f)yK) to backup Td =1 sec
200 OK ! Jk = 500 msec (retransmission
Ti=5 200 OK to INVITH™ retrans-[_Alive Alive | Talivep = time)
. =3sec to INVITE Notify mission| Alive — 1sec 4 -
(retr time) > to backul Alive & Tf = 32 sec
= i t) 200 OK i —» |/ (timeout or N
Th = 32 sec (ti) o e AliveP) (timeout)
Talivep = 1 sec Afve Alive > >Ti = 5 st_ec (l:etrans-
(timeout|on AliveP) Alive mission time)
ACK > Th & 32 sec
Tk = 500 mse¢ ACK (timeout)
Retrans{ <l Ack
mission "
to backup Notify ACK
Tali 200 0K Tk = 500 msgc ACK J
alivep = i N retrans
1 sec { < ﬁ:{ve Alive g NAC'fI?/ ACK
{timeout onl ¢ e Alive _[to backu ot /
AliveP) P 200 0K
. Alive Alive
BYE 3 < Alive Al } Talivep 941 sec
[[Tk = 500 msec BYE ve (timeout on AliveP)
retrans-{ BYE
. "‘l"ss':" Notify BYE
© backup 200 OK TW = 500 msec BYE
Thye = 1 sec Talivep _{ < 2’;"9 Alive re'tra.ns{ . BYE e
- - t
(timeout) 1sec Ll Alive __fto backup i
. 200 OK
(timeout on Al <
AliveP) Ve Alive Talivep 91 sec
o Alive Alive (timeout on AliveP)
200 OK to BYE
200 0K | 200 OKtoBYE Tk = 500 msec
2000K | ‘0BYE retransmigsion
| toBYE to backip
200 OK to BYE B
2000K i Tk= 500 msec
200 OK < 1o BYE }retransrnission
\ le¢ to BYE to bagkup

Figure 4.35 SIP Message Exchange with Timing Constraints (Part 2)

4.6 Theoretical Performance Analysis

After analyzing the timing constraints placed on the messages within SIP it is
evident that when creating a novel proposed approach to attain fault tolerance within SIP,
several performance issues must be analyzed with respect to the number of messages
which are introduced into the network as well the time required to carry out the SIP
session establishment and termination between end users. With the addition of the
Decider block, the number of messages within the network increases. The additional

messages are Alive, StateRequest, StateResponse, Subscribe and Notify. These messages

96

are sent over the network but only between the entities ot the fault tolerance block (i.e.
Decider server, primary proxy server and backup proxy server). The Alive messages are
sent concurrently to the SIP requests and responses and therefore do not increase the time
of a session. However, some additional network resources will be consumed for the state
updating process between the primary and backup proxy servers.

The fault detection and recovery within our proposed approach is completed in
less than 32 seconds which is the maximum timeout of the initial INVITE request. The
alternative approaches for fault tolerance as described in Section 3.1 detect a fault,
timeout, and restart the session. This implies that the 32 seconds are expired and then the
steps to recovery are taken. In our approach, the faults are handled dynamically while the
session is being established. The faults are handled at the moment of their occurrence
except in the case when the primary proxy fails after receiving a message. In this case,
the Decider will resend the message to the backup within 500 msec. Let us take the
scenario where the INVITE and 180 RINGING messages are sent end to end. In the
worst case, each server fails affer receiving the messages and the total recovery time is 4
x (500 msec) + Tm (time to transmit a message) = 2 sec + Tm as compared to 32 + Tm in
the other approaches. If there are additional proxy servers between the UA then also the
time to recovery is significantly less than 32 sec. The timing analysis of our proposed
approach in the case where the server fails at every point before the receipt of the
provisional response is shown in Figure 4.36. Server failures at the other points produce

the same timing scheme as the scenario shown.

97

Therefore, after theoretically analyzing our proposed approach, it can be stated
that even though the number of messages has increased, the delay factor within the

system is drastically reduced. This is summarized in Table 4.4

Calling Called
Decider1 Primary 1 Backup 1 Decider2 Decidert Primary 2 Backup 2 Decider2 Party
(P4)

(P5) (P2)

(E=—1
i

(P6) (P5) (P2) (P3)

ﬁ:f"e Alive ‘ //i'lfve Alive
(=3 Ve 4
e Alive « Alive
Subscribe Subscribe
INVITE) 200 OK 200 OK >
TTINVITE]
do msec XX
Tk = 500 msec /' \
INVITE
Tm > INVITE
’ 100 TRYING > INVITE
100 TRYING [* > INVITE
Tk = 50D msec ><
Tm WVIE INVITE
100 TRYING > INVITE
100 TRYING
100 TRYING ¢ StateRequest
StateRequestf StateResponse
BtateResponsg
Alive A E—
- Alive '
Alive Alive < //'\\l;_ve Alive
. 1 Alive
180 RINGING
180 RINGING [¢
Tm
>< Tk = 500 msec
180 RINGING
180RINGING [¢
180 RINGING!¢
’ 180 RINGING|¢
>/
N Tk = 500 msec
180 RINGING
180[RINGING Tm
|_180RINGING [€

Figure 4.36 Worst Case Timing Analysis with the presence of faults

98

Number of messages Time to Recovery
(Session Establishment using PRACK) (Worst Case)

Other 7 32 + Tm sec
Approaches [INVITE, 100 TRYING, 180 RINGING, 200 OK
to INVITE, PRACK, 200 OK to PRACK, ACK]

Proposed 12 12 + Tm sec
Approach | [INVITE, 100 TRYING, 180 RINGING, 200 OK
to INVITE, PRACK, 200 OK to PRACK, ACK,
SUBSCRIBE, NOTIFY, ALIVE,
STATEREQUEST, STATERESPONSE]

Table 4.4 Summary of Performance Variables

4.7 Design Assumptions

Throughout the implementation of our proposed approach in SDL, there are
several assumptions which we have taken. These allow the description of our fault
tolerant Decider server solution to be complete without the implementation of the entire
protocol.

As mentioned in Chapter 2, there are several requests which can be sent between
end users. Among these, the CANCEL and OPTIONS requests were not implemented
within the SDL model of our proposed approach. The CANCEL request will prematurely
terminate the session and like all other messages, will flow through the proxy servers
based on the decision of the Decider server. The CANCEL request does not require any
retransmissions and therefore the complexity is reduced. The request can alter the status
of the session however it is not essential when describing the failure and recovery process
of the primary proxy server. Thus, this request is omitted from the implementation. The
OPTIONS request is simply a query to determine the capabilities of another SIP entity

and does not alter the session state. Therefore, it will be ignored if sent to a proxy server

99

that has failed. The usage of this request has no added value with respect to our proposed
approach and thus is eliminated from the implementation.

The next assumption which we have taken is with respect to the primary and
backup proxy servers within the fault tolerance block. We assume that the servers are
already registered with the Decider server. This prerequisite will allow the Decider
server to forward the messages received from the end user agents. The registration
process is not shown within the implementation as our focus was on attaining fault
tolerance within the session establishment and termination phases of the SIP session.

Our implementation also uses the PRACK Extension to assure that reliable
provisional responses are received from the Called Party. Recall from Chapter 2 that in
order for this extension to be used, the Calling Party must contain 100rel in both the
Supported and Require header fields of the INVITE request. Within our implementation,
we are attempting to assure that the retransmissions are safely delivered even in the
presence of a proxy failure and thus our final assumption is that the header fields within
the messages are correctly set. This implies that the SIP entities involved in the session

are aware and capable of handling this extension.

4.8 Summary

This chapter summarized the implementation which we have conducted for SIP
inclusive of our proposed Decider server. This was done using the SDL modeling tool.
This tool allows the definition of communication protocols by means of a hierarchy. The
entire system inclusive of its communication with the environment was shown. The
blocks and sub blocks which contained the workings of the individual SIP entities were

shown and the processes and procedures defined for the SIP requests and responses were

100

displayed. Finally, the workings of the processes were presented through the designed
EFSM. The chapter continued with an overview of the timing constraints imposed by SIP
and an analysis of the performance issues raised within the system design. The chapter

concluded with the assumptions that we have taken during the implementation.

101

Chapter 5 Simulation and Verification

In this chapter, we describe the results obtained from the verification of our SDL
model. We analyze the resulting Message Sequence Charts (MSC) from the SDL tool
and verify if these match the expected results of the SIP fault scenarios introduced in
Section 3.4.3. Finally, we discuss the limitations of the SDL tool and the manner in

which our model was modified as a means of coping with these restrictions.

5.1 Fault Scenarios Analyzed

Several fault scenarios are analyzed against those theoretically proposed in Section
3.4.3. For each case, the backup server takes over the session when a fault occurs in the
primary proxy server. Several points must be taken into consideration when analyzing
the given MSC.

1) The message exchange for non-faulty scenarios are similar to those shown in Figure
3.8 and are thus eliminated from the MSC. These MSC are partial and display the
occurrence of faults within the running session.

2) The transaction layer is eliminated from the MSC. The layer simply creates the
request or response and transmits it to the calling or called party respectively. Since
this also represents a non-faulty component of the session, it is eliminated.

3) Excluding the eleventh scenario, the backup proxy subscribes to the primary proxy at
the beginning of the session prior to the issue of an initial INVITE Request. For

every successful non-faulty transfer of a message (i.e. any request or response), the

102

primary issues a notification message to the backup proxy thereby maintaining both
servers at a consistent state.

4) Periodically, the primary and backup proxies issue A/ive messages to the Decider
blocks to inform their current status (i.e. alive or not).

5) The MSC begins with a fault occurrence simulated with the StopP message fed from
the environment into the system. The faults considered are not permanent since
recovery of the primary proxy server can occur at any point although the first nine
scenarios do not show any recovery within the message flow.

6) Faults may occur in one or more primary proxy servers. Within our model, two
proxy servers exist and either primary may fail. In several of our scenarios, both
primary proxies fail in order to illustrate that faults can be tolerated in more than one
primary proxy at a time. In other scenarios, a single proxy fails which shows that
redundancy can be localized to a particular server.

7) After a primary proxy server has failed, it moves to the idle state and all messages
sent to it are ignored. The absorption of these messages is simulated by taking the
request or response as an input and then returning to the idle state. No change of state
occurs until the primary proxy server recovers.

The first scenario shows the occurrence of a fault within both primary proxy
servers at the beginning of a session. Since no AliveP message is received from the
primary proxy server, the Decider block detects a fault and thus the D/ Process sends
the INVITE Message to the backup server. The session continues through the backup
proxy without the primary server’s involvement. The resulting MSC is shown in Figure

5.1.

103

In the second scenario, the primary proxy server fails before receiving the
Provisional Response from the Called Party. Since no AliveP message is received from
the primary proxy server, the Decider block detects a fault and thus the D2 Process
sends the 180 RINGING Response to the backup server. As expected all subsequent
messages are routed through the backup proxy server. The resulting MSC is shown in
Figure 5.2.

In the third scenario, the primary proxy server fails before receiving the Error
Response from the Called Party. Since no AliveP message is received from the primary
proxy server, the Decider block detects a fault and thus the D2 Process sends the Error
Response to the backup server. As expected all subsequent messages are routed through
the backup proxy server. The resulting MSC is shown in Figure 5.3.

In the fourth scenario, the primary proxy server fails before receiving PRACK
from the Calling Party. Since no AliveP message is received from the primary proxy
server, the Decider block detects a fault and thus the DI Process sends the PRACK
Request to the backup server. As expected all subsequent messages are routed through
the backup proxy server. The resulting MSC is shown in Figure 5.4.

In the fifth scenario, the primary proxy server fails before receiving 200 OK to
PRACK from the Called Party. Since no AliveP message is received from the primary
proxy server, the Decider block detects a fault and thus the D2 Process sends the 200
OK to PRACK Response to the backup server. As expected all subsequent messages are

routed through the backup proxy server. The resulting MSC is shown in Figure 5.5.

104

A

(:3LIANLI1senbai

(0°1)denie)

(ALIANIL)aisenbal

(0'1)danliey

cqanle

>

(3LIAN1)qIseNbaI

>

(ALIANI,1senbal

(0'1)daniey

(3LIANL)gIsenbal

(01)daniey

cqsnle

(3LIANLIsenbay

A

LgsAlie

A 4

(3LIANI)aissnbas

Lgsnite

(1190001 dis/en
/1epowdis/ $3300¥d

(1 Mapuasdis/sen
/lepowdis/ $3300Yd

{1)zss8001d7p
[2I0P108D/ZaY
f1epowdis/ $83004d

(1188800107
/119PI2BPIZaY
fiepowdis/ $$300Md

(1500010~ dnxoeq
(dny2eq/zay
fiepowds/ $$300xd

{1)zsse00udp
/Z4en108p/1.qY
/1epowdis/ $53J0Ud

(1)188800,d 7 p
/110p108p/L.0y
/1epowdis/ $$300Ud

(1)ssa001d"dnyoeq
Jdnxoeq/Lay
/lapowdis/ $$ID0U

LIS

on

f the sess

inning o

.

Figure 5.1 MSC of primary proxy failure at the beg

105

|

(ONIONIN 081 Jesuodsal

1
(0'1) danliey M

(01) denliey %

L

COBATE

(ON|

Lgeale
NId 08l Jaesuodsal

————
Laene o

(ONIDNIY 08} Jaspuodsal

L

zaenie
(0'1) deayey (ONIONIY 08},)8suodsal
Lgene
(ONIDNIY owrﬁmmr§ ZdeNe
. Lgenie > ({ONIAYL 00},)g9su0dse)
L) den {ONIONIY 084,)q9suU0dsB]
'}) denire) -
—>
(ONIDNI¥ 081,)psuodse: -— 7o \ ddors
2qBATE ! ')
“AdILON 0} MO 0z,)udsandaooe dontle) Mm
—] TONIAGL[00F)esuodsal
(B’ Ad1LON)Aimou A/I
(ONIAYL 00 Mﬁ zqenie
bdenie T
(.AZILON 01 X0 00z Judsesideoce
) (ONIAYL 001 Jesucdsal
Butkil, A4ILON) mou
» Pl
ddoys
(ON[AYL 00},)esuodsel Ldenile
~ - 986001d | d| — _
{1 ieneoasdis {1 1opues™dis A:\NN‘_mu_oou P {1)sseo0ud"dnyjoeq :‘V_‘_,m_mmw_ouoq“u P {1)sse001d"Arewnd Emwwmwuma P {1)sse00d~ArRWIN (1)ysse00:d"p (1)sse001d"dnyoeq
jenyepouldis /senjjepowidss y (dnyoea/zay ! Rewndizay 1ziepiosp e qy /1 1epiosp o
/853004d /$83004d feepoudss Jlepowdis/ SSI00Ud fzqufiepouids epowdis, fLayfepowdis d /L qutepowdis fanyoeq/Lqy
1$8300¥d I 1 88350Md fiepowdis/ S$300¥d 1 8530044 flepowdis; S$300¥d 18839084 /epowdis; $83008d

¢ OSW

inging

106

Figure 5.2 MSC of primary proxy failure before receiving 180 R

A

<

uoissesdisou

=)

w

L) deaiey M
uoisses
disou
5.

HOHY3,Jesuodg

(.MO¥N3,)esuodsal

_||..IV

(0'1) deniey M

?

HOHH3,

/

LgsAle

»

(0'1) deniey \4

1LgeAlle

(, y3,)aesuodsal

%

(ON¥3,)gesuodss)

T

(AZILON 0}

e
' AdILONJAIROU

(Bul

_||||V
(0't) deney M

(,4O¥¥3,)esuodsal

(¥0yy3,)gesuodsal

— e

A/

Oog)udsendsooe | ———

ful 004.) desuodsas

LGeAl|
(.Ad1LON 03 ¥Q 00Z,)udsededFe
[ddojs
| (BUALL “AdILONfmOU
{(BuwA] ool,) desuodsas
asuodsal
) ddojs

(1)1eni8004"dis
Henjjepowdis
/§83004d

(1 iopuss™dis
senjjepowdss
/883004d

{1)zsse001d"p
fzi9pioep
JZau/iepowidis
1853004d

(1)sseooiddnyoeq
fdmjseazay
flepowdis; $§3004d

(1)) ss0001d™p

ILepioep
R epouidis heuwdzay
/ $53008d /lepowidis/ §S300¥d

(1)sse00ud™~Arewiud

{1)zss0205dp
[ziepioep
/vayepouldis
188300¥8d

{1)sseoord~Asewnd
Jhiewud;|qy
fopowdss/ S5300¥d

(1}1588004d7p
{118pioep
/L y1epowidis
/883004d

107

{1)sse00.d"dnyoeq
[dnyoeq/Lqy
/18powdis; $$300%d

Figure 5.3 MSC of primary proxy failure before receiving Error Response

P

Lgenle

|\\.\|\\|\|\V

ddoys

ddois

(1 1oA0081dis
Henyjepowds

/8$300ud

o1 %z_sM
A/I
MAOvad.)aisanbal IR
caene RISYEER
—>
(0'1) donlley M
« MOV dd NIsanbal
(01} doniey M
{XOv¥d,aisenbal
— (MOVad)aisenbel
] (0°1) dantjey M
(MOvad.hisenbas >
e
N (A3ILON 0} O 00z]udsandecds
(NIDNIY 08, Jesuodsel
g V. ' Ad1LON.JAnou
(ONIONIY omz%mc%e\v
] 1denie
zasne R
vaone \ (ONIONIY 081)desuodsel
ATTION 01 310 é\v
(ONIONI|08t,)esuodsal
A;ae;
(ONIONIH 081)desuodse]
A%
(ONIONIY o Josuodses (ON)ONI 081)desuodsas
. a7 - _ -~
{1)ropues™dis Cvmw_mmmw%h 3 (1)ss800:d"drojoeq (1)ysseooud™p (1)sse001d Atewyd (})zssedoid™p (1)ss800:0 ewud (})1s5000)0 p
senjepowdss oo dnype i " 1ziepoep 1118p108p
\\ wmmoo% feay/epowds _wuop_g”_m\ m._@wom ’ RAuERowdS . Ke_ﬁ”w:_aaé /\qyiepouidss ;_Me,s\ - /\qyepoudss
1853004d ! /$53008d flepouidis/ S$3908d 1 95900Md flspouidss/ $300Md | $6350u0

(1)s80001d~dnxjoEq
Jdnyoeqy|qy
flepowdss/ $53504d

YOS

Figure 5.4 MSC of primary proxy failure before receiving PRACK
108

< {MOvHd 0 MO 00z Jesuodsal
| Aoevam>=m~Mm
AJﬁ/
{(MOVHd G0 002,)aesuodss.
P
—> (MOV¥d 0 O 00z,)assuodsal
(0'1) denyiey M
I
dse
I (o)) denyes MHV (MOVd 0} %O 00Z.Jesuo
D I
zgelle
/ (>Ovad 01 30 00Z.)dbsuodsal
Lgenle
— (MOVAd 03 YO 00z,)aesuodses ”
—— Grconel
(MOvad MO 00z, Jesuodsai |]
‘ zaemie I
le— | <
» [CENE < ST
(.A<ILON 01O 00Z,)udsasndeooe < T
h (AJILON 0F MG 00z, Judsandsaoe
{(ADwHd. hisenbey N =
AA Wy v— (poAIB2RYA0I, | AdILON.MAou
[EE
ADVdd Jdisanbet
(MDVHd.isenber B ddors
(ponieoaxAoid,| A1 LON.)Asiou >
—
(MOVYd.)disenbes
< zdenie
(MOvad,Jdisenba]
(MOV¥d hisenbes N
I - (1)zsseooid p (1)1 5580010 N -) -
A\— it \ﬁ P,W__%%m o [erspioep :vm\mﬂwﬁm\wﬁ% . /148p05p Swwﬂoo”_ anoeq A:\Nsmn_o%“v P Ewwwooa A E\ﬂm‘_wwwmm ’ {1)ss000.d"dnyoeq
1$83008d 85300 feaepouidss Aopowdis/ $5300Y rZquepowdis ! axo ye JLqunepowdss Hhiewidyy qy L nepowds /dnyoeqLay
/$S3008d I d 1 58900844 flepowdss/ $$300¥d 18539044 flepowdis/ $83008d 18830084 fepouidis/ $$3008d

GOSW

Figure 5.5 MSC of primary proxy failure before receiving 200 OK to PRACK
109

In the sixth scenario, the primary proxy server fails before receiving 200 OK to
INVITE from the Called Party. Since no AliveP message is received from the primary
proxy server, the Decider block detects a fault and thus the D2 Process sends the 200
OK to INVITE Response to the backup server. As expected all subsequent messages are
routed through the backup proxy server. The resulting MSC is shown in Figure 5.6.

In the seventh scenario, the primary proxy server fails before receiving BYE from
the Calling Party. As expected the response is routed through the backup proxy server.
The resulting MSC is shown in Figure 5.7.

In the eighth scenario, the primary proxy server fails after sending an AliveP
message to the Decider. Since an AliveP message is received from the primary proxy
server, the Decider block does not detect a fault and thus the DI Process sends the 180
RINGING Request to the primary server. The 180 RINGING Request however is not
transmitted by the proxy. The Decider internally times out and reissues the saved
message to the backup proxy server. As expected all subsequent messages are routed
through the backup proxy server. The resulting MSC is shown in Figure 5.8.

In the ninth scenario, the second primary proxy server fails after receiving the 200
OK to PRACK message from the Called Party. At this point, the message which was
previously stored into the first buffer is resent to the backup server. The backup takes
over the session until the primary proxy server recovers. Note that if the 200 OK to
INVITE message is issued by the Called Party before the retransmission of the 200 OK to
PRACK message then it is stored in a second buffer and sent later. This saving is
required since the message issuance of the Called party cannot be controlled. The

resulting MSC is shown in Figure 5.9.

110

(ALIANI ©1 %O 002,)8suodsa)
I —
(0'1) deaigy M
(ALIANI O MO oom:gy/l
TALIANT 0 SIO 00¢)qosucdse) >
>
(0°4) deaigy
3LIANI 0} MO 002,)esuodsal
—
(0'}) doney M
(3LIANS 0} YO 00Z,)485uodsal
T3LIANI O YO 002,)gesuodsal >
—>
(1) danlley M
(ILIANI 01 HO 00z.)esuodsas | o —
zaene
(MDY 01 MO 002.)esuodsaT — |
[(AdILON 03O 002, udsandaod
< Wi
(Apey 10wy, AJLLON) Anou ddojs
. 0]
(MOv¥d| 0 MO 00z,)desuodsal danie
E— e acses
/ MO 002,)desuodsas
ZgoAIE
/ HOVHd 01 MO 0pZ,)osuodsal
(A(LONPI MO 00Z,Judsauidesog
B (Apeoy 150wy A41LON.)Aou
“ ddojs
{(DViid P} MO 00Z.)desuodsad Fone
(Movyd o
31 MO 00Z,)desuodsal
{(MOVHd 01 MO 002,)osuodsal
() ensoa)dis (| topuas™dis (1Jgsseo0idp - (issao0id p ~ 5580010 | i
penjfapouichs senyiepouds feiepioep Ew\wmmmmammss [8piasp {pJsseoaud dmozq :v\wwu_oﬁ”u ? (pjssaooid Aiewnd (Dyseo0idp {1)ss2001d"dnpeq
/68300%d feqyppowds Al fZqunepowdss rdmpoeqzay ' fhewnd;qy [113pIosp d
19800u 15530044 PO S5O0 . PO SS300Md fiuppous spouids 11ahpowcs e
1883004d : 1983008d flapouidis/ $S300dd \wmmoomm f1spowdis; $$300Ud

90SW

111

Figure 5.6 MSC of primary proxy failure before receiving 200 OK to INVITE

) (asgente! —
< (3Ag)aisenbay uoissasdisou 7
ZasAlle
N (VNG T i
(0°1) denyey M
(3AgNssenbas m —
—>
(o)) daniemy M
(3ag)asenbas
2qenie Lioissas
I dsou
——p{ (3Ag)asenbe:
— on comer3
e e E—
€ ddois
N ddoys
< ZGBAIE Egﬁ/
(AdILON 0} MP 00Z,)udsendsooe
dossasd A
—>
—— |
zaenie
(A41LON 0} YOI 002,)udsadaod
no_wmmm "
ds |7 (sov.senbas ' m;m__nmﬁmw,_co_mmwm
‘ LU
(5OV.)disabal \ AJILONJAIION
Zdanie
[~ (Mov)disenbal BusiqeisIuoIsseg]
Iovsenbal | "AdLLON)AIION
ﬁ.xo<.uam#ua/
A%
< Uoissesdis “ v, dsenbel
(MOV)isenbas »
_ _ i -
{} beneoer La_w {1 J1epuiss m_m E\Nwm_wwn_v%m“n P (})sss00sd™Aaiuud :V\Fm_mmww%hmvn {} Jsse01d~dnyoeq A_V\NMMMAQ%MM 3 (1)sseo01dAewud A:\v—m‘_wwwowwv {} Jsseo01d~dnyorq
188300ud 1553004 2o _%k:ﬁws_mmuwowa fequepouds _%o\,muw_wo\m%%hwo% fqupepouds et Ihguenouds s
/53004 /553004 ! 1 S53905d Jlepowdis/ SSAD0Yd 15530044 fepowidis/ SSIO0M

LOSW

Figure 5.7 MSC of primary proxy failure before receiving BYE

112

ey EEEENEN B
T) E—— |
— 3 QoA
N (AdILON 01 % 00z,)udsandedoe
(ONIDNIY 081 ,Jesuodses
(Jdwany.' A4ILGN,)Aou
<
zdeae
I peaueod
(ONIONIY 081)desuodses
Ldeale
(ONIONIY 081)desuodse)
<
. (ONIONIY 081)esuodsas
(0'4) dentey M
Zaenije -
(ONIONIY 08},)088u0ds3.
Lgenie
(ONIONIN 081)assuodsel 7
{ONIONIY 08),)deguodse, ddors
{ONIOfiy 081,)esuodsas »
(0'1) dapiiey
(X9 MW
(1ancoar e () opues’ s E\NMH"_HN P Ewwo.u%o_m P (1)sse001d"Arewind ::Mwmn_.oomaln {1)sseo01d~dnyoeq (1)sse004d™ Aseruanid (Iysseooid™p {1)sssooid-dnyoeq
Jenjepouidis jsenpepowdis [geronnis \th\ _owoe e Aeundizay \Nh“_mﬂosw_m iy oo,) bw__wﬂwwuq_m o
. X epowd g X

/9830084 853908 /$83004d 1553004d IGPOIAEY $53008d 859004 fiepoudss/ $8300d frepouds/ $5300Md ot fopouds/ §53004d

808

113

Figure 5.8 MSC of primary proxy failure after receiving 180 RINGING

“BAllR IS S| YDIum Axosd Asewiud jsui oy} 0 Jues uey) S| asuodsal ay] Axoud
dnxoeq 8y} 0} JUSS pue ZJeYNg WoJ) PeAsIIeL §1 8Bessall I LIANI O YO 00Z 8U.L

.
.
le———————1

(. 3LIANI 01 MO 00Z,)gesuodsas /

/
— |
(MOV¥Hd 01 4O Doz,)esus —
E—
I
ey S
] (3OVad 0 Yo[o5Z desuodse
\ zdente
<) | peeus)
(Apeey ysowly, ' A1ON,)AHON]
idenie

(MOVHd OO 00z,)desuodses

._HW (MDv¥d|or MO 00z,)esuodsar” |
\\\\\\.\G. 1) dantiey M

Lagne ——
I
MOVHd 01 YO 00Z,)9ssuodses

Zashlje

A 4

LqeAle

(MOVHd 01 MO 002,)g8suodsel
I Zlayng

(3LIANI P} O 002,)esuodsel

SI3LIANY

] 0} %0 002

<

114

A/ ddojs
(MOWHd 01 MO 0pz.)esuodss]

»

\
e |

(MOV¥Hd [P} MO 00z.)8suodsas

- 75 -
I [wewe
I]
- Lqente \\‘
| Zdanlle
R R (L oneoor-ds (1) opuss-ds (R (1)zss8001dp {1)1550001dp P (L)zsseo0id p (1}1s80001d7p
Jdneqzay jdneq)ay pengepourcs jsenjepowds thiewidrzay \Nﬁ_ﬂw_wﬂw_w &wﬂmﬂ s ey o topond aopoud
iepoudss; §53004d fopowds; SSI00Nd 1$83008d 1$8300¥d epowdss . i _ epouidis/ Ihaunepowals frmepons
flepowIclsy S$300ud 185300¥d 185300¥d IOpONICES 853008d 158300Yd 185300Md

608

Figure 5.9 MSC of primary proxy failure after receiving 200 OK to PRACK

In the tenth scenario, the primary proxy server fails before receiving the INVITE
Request from the Calling Party. As expected the response is routed through the backup
proxy server. After the issue of the 180 RINGING response, the server recovers. The
primary proxy server requests the state of the session from the backup proxy server,
issues an AliveP message to the Decider Block and resumes operation within the session.
The resulting MSC is shown in Figure 5.10.

In the eleventh scenario, the backup proxy server subscribes to the primary proxy
server after the INVITE Request has been sent by the Calling Party. As expected, no
notification messages are issued prior to the subscription. Once the subscription is
accepted by the primary proxy server, notification messages will be sent to the backup.
The resulting MSC is shown in Figure 5.11.

After analysis of these MSC, we have verified that our proposed approach handles
the occurrence of faults anywhere within the SIP session. Furthermore, the recovery of
the primary server should allow it to resume its role within the running session. This
criterion is also fulfilled since the current state is requested from the backup server and
then the Alive messages inform the deciding block of the availability of the server.
Further, the backup should be allowed to subscribe to the primary at any stage within the
session. This criterion is also fulfilled within our design. Finally the finite state
machines should be free of any deadlock and/or livelock scenarios. These properties

were tested within the SDL tool by running and analyzing the derived MSC.

115

}NE) JSYIOUE JO S3DUBLINDDO BU} |IIUN SINLINOD

— s1y) 'SI8AIas AXoJd Alewnd pa1saodal ay) ybBnosy) pessed mou ase sebessaw syl

< (ONIONIH 081,)dasuodsas
(ONIONI 08}.)psuodsal >
ZdoA(e > |
< TOBATE »
<
(ISNOJSIHILYLS Jdseisiers
(.1S3NDIHILVLS eusiels
4 [ERE » .
auets TdaAne I
(3SNOJSIHILY 1S Ksaisiels
> (1s3aNDIYILVLS[bossrers zqenle i
e (ONIAYL 001 jassundsal
(0" 1)denie
(ONIAYL 001,}8suodsal i
(q'1)daney
290A1E
(ONIAML 00 H?/
< M (DNIANL 004)esuodsas
(3LIANthsenbas
(01)deniey
o A / (q t)deney
EE R e — Em—
[,Jaisenbal >
AWANLS (ONIAXL 00} Jaesuods
(qrycene /
Lqenie
~ {3LANLisenbar
(01)deniey
(gdinNL)gsan /
zqsne 7
(3LIANI)qIsenbes
(91)doniey
(ALIANL)senbay
e
{} Jsseo01d~Atewid {1)sse00id Arewud 9AB98S IS 1opuss”djs (1)zssaooud™p ()))ss8001d7p — {1)zssecod p (1)3588001d7p B
hewndizay Arewiudy) quy A__g_.h:xx.a_,w MMEWSE% B %;mﬂw%a :_mn_omna Sm\%w_ww QMM__QE \N_mv_u%a 11 op5p :uw\wﬂﬂ_maeﬂw“w__og
, /iepowdss Zqwepoudis /\afiepowdis L Qyepowdis
flepowdis; SSFO0US Jlepowdis/ $SI00Md 1883004d 1883004d Jpectney 1 53008d Jepowdis/ $5300Md PPty \mm_m w.m w 1epoats Somnd

OLOSI

116

Figure 5.10 MSC of primary proxy failure before receiving INVITE and Proxy
Recovery before receipt of 180 RINGING

Alewud ayy Ag paiepdn s Janias I
Ax04d dnxoeq sy 'aueyd siels AIens 1y l \\\\\L
—
zqene
S —
= /
A4ILON 0} Y0 00z Judsaudeooe J7
(ONIAY L 001 Jesuods
A o |
D peayeot
(Buki L AJILONMynou l\\\.\\\\\\\\\\\\.\\v
] l (ONIAYL{00})desuodsal L
e |
b (8ns a0 0oz)sdsendeoce
(.3891408aNs.)equosans >
) (8NS 01 YO 00Z,)sdsa.deooe
(38190saNS Jequosans
Lg8Alie > .
L QeAKE ,
peayeof ‘e
zdanne
A LALIANLGsenbe] |
(.3LIANLsenbal
A\‘ Ummcmoo
(ALIANI)disenbey
)
A (J3LiANI)disenbas
(. 3LIANIIsenbas
}denie > .
[CENT P

())sseo01d~dnyoeq
dmyoea/zay
flepowdis; $$300Hd

{1)sse004d"dnsjoeq
JdmjoeyLay
/iepowdisy S$3008d

(| Jione0er dis
frenjiep

{4 J1opuss~dis
udis

1553004d

! 19F

/853004d

(1)3seo01d"Arewnd
JArewdizay
flepowdis/ SS3008d

{1)zsseo0idp
Jg1epioep
/Zqu/iepouds
1388300d

(118500010 p
/Liepioep
Jzaufepowdss
1$$3004d

())ss0001d " Aseind

(1)zsseo0id p

{1)138000:d7p

hreudrL Gy \Nﬁu_wwva_w \tmgomna
flepowdist SS3O0Md 11.q4/19p /1 qufiepowdis
/98300dd 1553004d

LLOSW

t

1S sen

fter INVITE

imary a

to the Pri

ibing

Figure 5.11 MSC of Backup Proxy subscr

117

5.2 SDL Limitations

A few limitations have been imposed on our design due to the SDL tool. The first
is that the time measurement within SDL cannot be a decimal value. They are limited to
positive integer types since they are represented in SDL as time units rather than actual
measured time. Within SIP however there are some timers which are in milliseconds and
others in seconds. The timer value of 500 ms was thus made to 1 sec or 1 time unit, and
then all of the other timers were modified according to the same scale.

The next limitation is that there is no mechanism within SDL which allows the
intrusion of faults within the EFSM itself. The tool however maintains a relation
between the system and the environment and thus several messages were added to the
design in order to demonstrate the occurrence of faults. The first message is the StopP
message which simulates a fault within the primary proxy server. This causes the server
to terminate at the location where it is and then revert back to the idle state. This will
assure that no Al/ive messages are sent to the Decider block and thus the backup proxy
server will be used. The next message is the StartP message which is added in order to
simulate the recovery of a primary proxy server. This message is only inputted at the idle
state which assures that this message is received for recovery simulation and not
erroneously from another component. If the primary proxy server is not in the idle state
when this message is sent, it means that an error never occurred and thus, this message is
disregarded.

As can be seen in the system design in Figure 4.1, both of these messages are fed

from the environment. These messages are thus user controlled and although desirable

118

cannot be sent dynamically within the tool itself. They are fed into the system externally
as a means of displaying the fault occurrence and recovery within the SIP session.

The final limitation is that the SDL tool does not allow any outputs to be sent
once a new state has been reached. The state is defined within SDL as a point wherein an
input is being awaited. In our design, we need to send Alive messages while we are in
any given state since there is no restriction as to when the proxy servers can issue these
messages. Within SDL however we cannot send these messages after reaching a state so
the alternative is to send the message before the state is reached. In this case however, if
the primary proxy server fails at the new reached state then there will be inconsistencies
within our design. The Decider block will receive an Alive message before the primary
proxy server fails.

Furthermore, in the case of our design, there is a requirement to simulate faults
however there must be a mechanism which illustrates the correct functionality of a SIP
entity. For this reason, we included the Go4head message which represents that no faults
have occurred within the system and the SIP session establishment is in progress. Prior
to reaching a state, we have created intermediate states wherein a decision must be made.
If the GoAhead message is received, the session establishment continues without any
faults. On the other hand if the StopP message is received, then a fault has occurred in
the primary proxy server and the EFSM returns to the idle state. This decision is taken
(i.e. the message is inputted from the environment) at every stage within the EFSM of the
primary proxy server since a fault can occur anywhere within the SIP session

establishment and termination phases.

119

5.3 Summary

This chapter summarized our simulation within the SDL tool. Furthermore, the
MSC were compared to the theoretical simulations which were done in the previous
chapter. It was shown that our Decider block handled the fault occurrence in all
scenarios and that the dependency on timeout mechanisms was drastically reduced.
Finally, we discuss the limitations of the SDL tool and the inclusion of messages fed

from the environment as a means of overcoming these limitations.

120

Chapter 6 Conclusion and Future Work

6.1 Topic Overview

Several communication protocols exist for data transfer between end user agents
however within the present market there is an increased need to send voice media over
the Internet. This need has come about due to the merging of data and voice
infrastructures as well as the addition of services within the domain of voice transfer.
Several protocols have been introduced for this purpose including H.323 and SIP. These
protocols allow connections between end users to be established and media to be sent
between them. Furthermore, these protocols are interoperable with end users from
different domains and are thus more flexible.

Although several alternatives exist, SIP has risen to be one of most widely used
protocols for media transfers. The main reason is that SIP is more flexible with respect to
the features which can be added. This allows SIP to be more customizable. Furthermore,
SIP is a text based protocol which operates at the application layer making it simple and
easy to use. In turn the simplicity of SIP makes it easier to develop and debug
applications.

All of these advantages enhance the usage of SIP however there are some
shortcomings which have to be examined. Although there is mention of security within
SIP [4], there is scarce mention of the reliability of the entities within a SIP network. If
end users are within the same domain then reliability is easily maintained however the

transfer of media between end users in different domains is largely dependant on the

121

availability of the resources between them. These resources include the links along

which the media is sent and the proxy servers through which the media is transferred.

6.2 Contributions

In our thesis, we have identified the types of faults which may occur within a SIP
session and effects of this on the overall system. The faults within a SIP session occur
within the links or the proxy servers. The link faults are presently handled within SIP
since the protocol contains a multi-layer model inclusive of a transport layer.

On the other hand, in the case of stateful proxies there are few mechanisms to
handle the occurrence of faults. The protocol is equipped with timeout mechanisms
which are used for fault detection while the server faults are handled by restarting the
session (i.e. re-issuing the set of requests and responses). There are several drawbacks to
this solution which include:

1) Prior to the occurrence of faults within a system, several resources are allocated in
order to send requests and responses. Connections between end user agents are
established and servers register with registrars within the domains to identify their
availability. When a fault occurs, the message is re-issued through a new
connection and thus a large amount of resources are wasted.

2) The timeout mechanism which is used for fault detection delays the overall
recovery within the session. The occurrence of a fault within the system is not
identified before the prescribed time elapses and thus recovery measures cannot
be taken immediately. This delays the time taken for the session to be

established.

122

3) The detection of faults within the system is conducted by the end user agents.
The burden of retransmission is thus placed on the end user. Generally in
communication protocols however, the end users should be unaware of the fault
tolerance techniques available. They simply send the requests and receive the
responses.

A thorough analysis of the disadvantages within the current SIP system was the
motivation behind our work. We thus introduced a fault tolerance block which would
detect the presence of faults immediately, eliminate the dependence on a timeout
mechanism and remove the burden from the end user agents. Our first addition was the
redundancy of the servers within the session. A primary backup scheme was used. This
allows a backup server to be present to handle the current session in the presence of
faults. The backup server is assumed to be non-faulty and can resume activity for the
primary at any stage within the session.

We then introduce a Decider server which sends and receives requests and
responses to the proxy server which is alive to handle the messages. If the primary server
fails, the Decider server will not receive any Alive messages and thus will route the
message through the backup server. This eliminates the dependence on the timeout
present within SIP. Furthermore, the end UA can send requests and responses with the
assurance that they will reach the intended destination. The method used for the message
to reach the destination reliably is the role of the fault tolerance block which consists of a
primary proxy server, a backup proxy server and a Decider server. Therefore the burden

is removed from the end UA.

123

In order to complete our design, we identified the locations in which faults can
occur within the session establishment and session termination phases. We determined
the sequence of messages which should occur in order to assure that the session continues
even with the presence of faults within the proxy servers of the system. Our proposed
module was then simulated and verified in SDL. Faults were simulated within the system
and message sequence charts were generated in order to verify the sequence of messages
exchanged between the entities within the system. Two proxies were present within the
system design in SDL so as to show the functionalities of the Decider blocks both with
the end user agents as well as with the proxy servers. Finally the system was verified and
all fault scenarios resulted as theoretically proposed.

Within our analysis of our proposed approach, we have compared our approach to
other existent approaches with respect to the number of messages sent over the network
as well as the time required for recovery from faults within a running SIP session. We
have described that the time taken is reduced with the usage of a Decider server since the
recovery process is completed before the initial INVITE request timer expires. The
number of messages sent over the network increases however they are sent concurrently
to other messages and therefore the time is not extended. Overall, the level of fault
tolerance has been increased within our system so as to avoid inconsistencies or
incorrectness within the data received which can be caused due to a time lag incurred by

the restart process.

124

6.3 Future Work

Extending the research work presented in this thesis, involves the execution of
performance analysis of the proposed Decider block. Although we have stated that the
delay decreases while the number of messages increases, these factors have not been
formally simulated within a tool such as NS-2 or OPNET. The factors to consider
include network complexity, transmission delay, queuing delay, bandwidth usage, and
packet loss. Analysis of these factors will prove the overall gain when using the Decider
block within a SIP network. Furthermore, the performance analysis tools will allow a
real-time simulation of our proposed approach indicating the actual time saved during the

establishment and termination of a SIP session.

125

References

10.

11.

12.

13.

14.

Goode, B. “Voice over Internet Protocol (VoIP).” In Proc. of the IEEE 90.9
(2002): 1495-1517.

Sinnreich, Henry. Internet communications using SIP: delivering VolP and
multimedia services with Session Initiation Protocol. New York: Wiley Computer

Pub., 2001.

ITU-T Recommendation H.323. "Packet-Based Multimedia Communications
Systems.” February 1998.

Rosenberg, J., Schulzrinne, H., et al. "SIP: Session Initiation Protocol.” IETF
RFC 3261, June 2002.

Johnston, Alan B. SIP: understanding the Session Initiation Protocol. Boston:
Artech House, 2001.

Camarillo, Gonzalo. SIP Demystified. New York: McGraw-Hill, 2002.

Dalgic, I., and H. Fang. “Comparison of H.323 and SIP for IP Telephony
Signaling.” In Proc. of Photonics East (1999).

Handley, M., and V. Jacobson. “SDP: Session Description Protocol.” IETF RFC
2327, April 1998.

Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP: A Transport
Protocol for Real-Time Applications.” IETF RFC 3550, July 2003.

Yennun, H., and C. Kintala. Software Fault Tolerance. 231-247. John Wiley &
Sons, 1995.

Schneider, F.B. “Implementing Fault-tolerant services using the State Machine
Approach: A tutorial.” In ACM Computing Survey 22 (1990): 299-319.

Budhiraja, N., Marzullo K., Schneider F., and S. Toueg “Primary-Backup
Protocols: Lower Bounds and Optimal Implementations.” In Proc. Third IFIP
Conference on Dependable Computing for Critical Applications (1992): 321-343.

Rosenberg, J., “Reliability of Provisional Responses in the Session Initiation
Protocol (SIP).” IETF RFC 3262, June 2002.

Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE Method.” IETF
RFC 3311, September 2002.

126

15.

16.

17.

18.

19.

20.

21.

22.

23.

Roach, A. B., "Session Initiation Protocol (SIP)-Specific Event Notification.”
IETF RFC 3265, June 2002.

Gulbrandsen, A., Vixie, P., and L. Esibov. “A DNS RR for specifying the location
of services (DNS SRV).” IETF RFC 2782, February 2000.

Singh, K., and H. Schulzrinne. “Failover and Load Sharing in SIP Telephony.”
Tech. Rep. CUCS-011-04, Columbia University, Computer Science Department
(2004).

Rosenberg, J., and H. Schulzrinne. “Session Initiation Protocol (SIP): Locating
SIP Servers.” IETF RFC 3263, June 2002.

Conrad, P., Jungmaier, A., Ross, C., Sim, W.-C., and M. T uxen. “Reliable IP
Telephony Applications with SIP using RSerPool.” In Proc. of the SCI,
Mobile/Wireless Computing and Communication Systems 11 10(2003).

Tuexen, M., Xie, Q., Stewart, R., Shore, M., Ong, L., Loughney, J., and M.
Stillman. “Requirements for Reliable Server Pooling.” IETF RFC 3237, January
2002.

Bozinovski, M., Gavrilovska, L., Prasad, R., and H.-P Schwefel. “Evaluation of a
Fault-Tolerant Call Control System.” In Facta Universitatis Series: Electronics

and Energetics 17.1 (2004).

Doldi, Laurent. Validation of Communication Systems with SDL. England: Wiley
& Sons, 2003,

Chan, K., and G.v. Bochmann. “Modeling IETF Session Initiation Protocol and
its services in SDL.” In Proc. Eleventh SDL Forum 2708 (2003): 352-373.

127

