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Abstract

Reza Pedrami

Hybrid Modelling and Simulation of Rigid Bodies in Contact

Rigid body systems may undergo numerous types of dynamic interactions including
collisions and continuous contact which considerably complicate systematic modelling
and simulation of such problems. This thesis introduces a new modelling approach based
on a hybrid system formulation to describe the dynamics of interacting rigid body
systems. Interaction among physical objects occurs in two different forms: impulsive
contact and continuous contact. Characteristics of impulsive and continuous contacts are
different. Hence the modelling of each contact type requires the use of different
approaches. While the impulse-modelling approach better simulates the impulsive
contacts, our findings indicate that continues contact is much more accurately modeled
using the sliding manifold method. The proposed hybrid system approach combines the
impulse modelling method for collision interactions and the sliding manifold method to
model the differential-algebraic equations associated with continuous contact
interactions. Appropriate discrete states, events, reset maps, and threshold parameters that
yield a hybrid automaton framework to describe interacting rigid body systems are
developed. To illustrate the effectiveness of the proposed method a rolling ball simulation

for a virtual reality system is presented.
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1 . Introduction

1.1 Motivation

Simulation and modelling is the process of making the computer into a device which
imitates the physical world. The physical modelling of rigid body dynamic systems plays
an important role for many applications such as computer animations, manufacturing,

engineering processes, and the expanding area of virtual reality.

In the physical world, solid objects can interact with each other but not penetrate; unless
there are physical deformations. The physics-based simulations, including real-time
virtual reality applications, must handle the interaction between rigid bodies in contact.
The goal is not only to produce an animation sequence that looks correct to a human, but

also to calculate the forces that would prevent the bodies from interpenetrating.

Modelling of rigid bodies in contact is a complex problem due to the fact that different
types of contacts between rigid bodies have their own physical properties. Although a
large group of researchers has investigated the problem of modelling rigid bodies for
each contact situation, there still exists an open area for the design and implementation of

hybrid simulation systems which integrates all contact situations.
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In the next sections, we briefly review the different contact configurations. The following
discussion reviews the previous research for simulation of rigid bodies in contact. Also a
corresponding mathematical characteristic of each contact situation is discussed in

complete detail.

1.2 A Discussion on Different Contact Configurations

Two rigid bodies could be in different contact configurations. We can categorize them

into two groups from a collision point of view:

e Non-colliding rigid bodies

e Colliding rigid bodies

In the first group, the focus is to calculate the forces between bodies that prevent them
from interpenetration. The position and velocity of rigid bodies evolves in a smooth way
with respect to time. In the case of collision, on the other hand, the change of velocity
occurs on a much faster time scale than the time scale of the overall behaviour. In a more
abstract way, this fast dynamic system can be modeled as an instantaneous jump in
velocities upon collision. Rigid body systems show a very complicated behaviour due to
discontinuities in velocities which are caused by colliding contacts. The problem of
finding a proper reset map, which shows the relation between velocities before and after

collision, is addressed as a collision response.
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The first group implicitly implies that the rigid bodies are in permanent contact situation

and also these continuous or permanent contacts can be categorized into three different

types:

e Sticking contacts
¢ Rolling contacts

e Slipping contacts

It is known that the dynamics of a rigid body is characterized by the Euler-Lagrange
equations. The Lagrange formulation constructs a set of ordinary differential equations.
When two rigid bodies are in a continuous contact, the differential equations governing
rigid bodies’ motions are subjected to some algebraic equations. These algebraic
equations are of different types such as geometric and kinematic. For instance, consider a
ball rolling along a table. The motion of the ball centre should be located in a plane
parallel with the table’s surface. This is a geometric constraint. This geometric constraint
is exactly equivalent to a non-penetration constraint. Ball motions may also be subject to
some kinematic constraints such as rolling. This results in a system which is best

described by a mixed set of differential and algebraic equations.

In the next section, we introduce two basic paradigms; impulse-based and constraint-

based. Both methods are used by a large body of researchers to solve rigid bodies in

contact.
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1.2.1 Constraint-based Simulation via Impulse-based Simulation

The fact that no two bodies interpenetrate, impose unilateral constraints in dynamic
simulation of rigid bodies. In consequence, a large body of researchers has proposed
constraint-based approaches to simulate rigid-bodies in contact [1,2]. One of the early
examples for the constraint-based approaches is the penalty method. In this method, a
simple solution to separate penetrating bodies is presented by introducing arbitrary
penalty forces. The constraint-based methods are very efficient in the case of continuous

contact.

In contrast, impulse-based methods enforce no constraint on the configurations of the
moving objects [3]. In this method, non-colliding contacts are modeled by a series of tiny
micro collisions. The noteworthy advantage of the impulse-based method is its ability to
unify all types of contacts under a single model [3]. This method is very efficient in the
case of temporary collisions at a single contact point [4]. An analytical solution for
calculating the impulsive forces between a single pair of bodies colliding at a single point

is the basic problem of the impulse-based methods.

Designing and implementing a hybrid simulation system, which combines impulse-based
methods and constraint-based methods, is a recent strategy to develop efficient simulators
for the rigid body system in different contact situations [4,5]. In the next section, we

briefly review the hybrid systems.
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1.2.2 Hybrid Systems

The term hybrid system is used to describe a class of dynamical system that contains both
continuous and discrete aspects. The focus on hybrid systems has increased significantly
in recent years due to its capability of modelling wide ranges of engineering applications

such as

e Manufacturing systems

e Traffic control systems

e Hierarchical control in process industry

e Electrical networks (circuits with diodes and switches)
e Mechanical systems with collision

e Embedded computation systems

The hybrid framework is ideal for modelling nonlinear physical systems, which include
phenomena that occurs at multiple time scales. In these types of systems, the fast
dynamics can be abstracted away and be treated as discrete changes affecting the slower

dynamic [6].

A hybrid system is a mixture of continuous-time and discrete-event dynamics [6,7,8].
Therefore, the formulation of equations of the hybrid system motion consists of two main

parts:

17



e Condition or event rules (for discrete event component)

e Evolution of continuous states in every possible modes

By combining differential equations and finite state automata, it is possible to describe a
hybrid system. It is important to note that different set of differential equations describe
the continuous dynamics in each hybrid systems mode. It means that dynamic structure of
a system changes over the time in accordance with its event rules. In more details, the
number of state variables and algebraic variables changes when switching among
different modes of operation occurs. These systems are denoted as an evolvable
structure. Frame works such as dynamic structure discrete event system specification and
object oriented physical modelling (OOPM) are introduced for the representation of the
systems with evolvable structure [9]. More recently, a hybrid system is developed to
describe hybrid dynamics systems of variable structure with varying number of state and

algebraic variables [10].

It is worthy to mention that a continuous dynamic in each mode can be described in
different form of differential equations such as implicit/explicit Ordinary Differential
Equations (ODE) and implicit/explicit Differential Algebraic Equations (DAE). DAEs
are well suited when algebraic constraints on the variables exist [11]. In the next section,

we discuss ODEs versus DAEs.
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1.2.3 ODE versus DAE

In real life, when physical systems are modeled, several forms of relationships between
variables of interest and some of their derivatives are generated. Therefore, the model
takes the form of DAE. A variable usually has a physical meaning. Although changing a
model to ODE format simplifies the solution of the differential equations, it may produce
a meaningless variable as well. Solving ODEs are more convenient since several well-

known techniques are available in the literature.

Obtaining direct solution of the DAEs has been the focus of research activities for over
twenty years. The DAE systems, also known as descriptor, implicit, or singular systems
are known to provide a more general description of dynamical systems than ODEs [12].
The DAE models can be utilized to model dynamic interactions among physical systems
[13]. A wide variety of control methods applicable to the state space model, can be used
for solving the DAE systems. This procedure, often referred to as DAE realization, has
so far only been successful for limited classes of problems such as index one DAEs [14].
The index property of a DAE is a measure of the singularity of the system and can
significantly affect the solution. Simulation of high index system is generally more

difficult due to the numerical ill-conditioning [11,15].

1.3 Research Objectives
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The dynamic of rigid body is characterized by Euler-Lagrange equations. The motion
equations are subjected to some algebraic equations in a case of continuous contact
interactions. These algebraic equations are of different types such as geometric and
kinematics. Therefore, in continuous contact modes, the dynamics of rigid bodies are
coupled together by corresponding algebraic constraint. Then, the system equations are
described by a set of DAEs. A recent method known as the singularly perturbed sliding
manifold (SPSM) approach is used to solve the realization problem associated with

DAEs[16].

In the case of collision, change of velocity occurs on a much faster time scale than the
time scale of overall behaviour. In a more abstract way, this fast dynamic system can be
modeled as an instantaneous jump in the velocities upon the collision. Moreover, the
rigid body system changes its dynamics over the time in accordance with its contact
situation. For instance, a dynamic structure transform from ODEs (no contact) to DAEs
(continuous contact). The number of state variables and algebraic variables change in
accordance with the contact situation. A multiple time scale and evolvable structures

conduct us to design a system with combination of continuous and discrete components.

The proposed hybrid dynamic system model combines an impulse modelling approach
for collision interactions with a recently developed sliding manifold method to model the
differential-algebraic equations associated with continuous contacts. Appropriate discrete
states, events, reset maps, and threshold parameters of the generalized hybrid automaton

are developed.
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1.4 Literature Review

The problem of modelling rigid bodies in contact has been investigated separately for
each mode of operation by a large body of researchers. The fact that no two bodies
interpenetrate, impose unilateral constraint in dynamic simulation of rigid bodies. In
consequence, a constraint-based approach is used to simulate rigid-bodies in resting
contact (non-colliding) [1,2]. An analytic calculation of the forces between systems of
rigid bodies in resting contact was developed. The collision is traced by observing
relative motions of two bodies at each contact point in the direction of unit surface
normal n. When the relative normal velocity is less than zero, the type of the contact is
colliding contact. It is known that the relative normal velocity is zero for non-colliding
contacts. To prevent inter-penetration, the relative acceleration in normal direction
should be kept non-negative. It is apparent that the relative normal acceleration is a
linear function of the contact force. The normal force, which exists in direction of unit
surface normal, must be non-negative. The existence of either the normal force is zero or
the relative normal velocity is zero introduces a quadratic objective function. Finally, the
problem of computing forces is transformed to an optimization problem [1]. In a later
work, the problem of computing forces as a linear complimentary problem (LCP) is
considered. Consequently the need for complex optimization tool is eliminated. These
methods are well suited for multiple contact points [2]. The drawback of these methods
is that the collision impacts are handled separately instead of incorporating into the

constraint model.
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The earliest works in the collision response area present analytical solutions for
calculating the impulsive forces between a single pair of bodies, which are colliding at a
single point [17,18]. To eliminate the constraints on the configurations of the moving
objects the impulse-based methods have been developed [3].  In this method, the non-
colliding contacts are modeled by series of tiny micro collisions. The noteworthy
advantage of the impulse-based method is its ability to unify all types of contacts under a
single model [3]. This method is very efficient in the case of temporary collisions at a
single contact point [4]. Modelling continuous contacts as series of tiny micro-collisions
creates low amplitude high frequency vibrations. These vibrations generate a chattering
behaviour in the normal relative velocity. The bound of chattering for normal velocity
depends on the increment of integration during the impulse calculation. The impulse-
based method is not well suited for continuous contact situation since tiny micro-
collisions generate large cumulative errors during the simulation of them. An implicit
time-stepping scheme is a recent impulse- based method. It is based on impulse-
momentum equations. This method is distinct form the other impulse-based methods in:

1) it does not require any explicit collision checking; ii) it can handle simultaneous

collisions [19,20].

Designing and implementing a hybrid simulation system that combines impulse-based
methods and constraint-based methods have not been studied much. Developing an
efficient hybrid simulation is still an open problem [4,5]. Limited number of works in the
area categorizes the physical systems to different classes of systems. Some of the

physical systems are collision intensive. It means that collision play a major role in
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determining the dynamics. This class of system sometimes is denoted as collision
intensive physical systems like part feeder system. On the other hand, some of physical
systems are subject to permanent such as prismatic joint and revolute. It is clear that the
constraint-based approach is the proper tool for such systems. Robotic systems and
articulated rigid links are good example of such systems. It is important that so many
physical applications are located somewhere between these two classes of the physical
systems. In the third class of the physical systems, collision and constraints are important
to determine the dynamic. These physical systems are denoted as transient contacts.

Examples of latter class are billiard, bowling, interactive environments and mechanisms

[5].

Moreover, the contact evolution problem has been studied recently. This strategy, which
is suitable for the continuous contact configurations, falls into the constraint-based
algorithms. The goal is to determine how a contact point evolves continuously over the
time. The work focuses on the dynamics of piecewise smooth surface in a single surface-
to-surface contact. The algorithm is based on using the reduced coordinate to evolve a

single continuous contact between smooth parametric surfaces [21].

A recent hybrid impulse-based strategy combines two different strategies to calculate the
impulse. A different scheme is used to calculate the impulses for different contact
situations. Previously known impulse-based method [22] is used to compute the force in
bouncing or temporary contact situations and implicit time-stepping scheme is used for

steady or permanent contacts.
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1.5 Thesis Contribution and the Qutline of the Thesis

We first review some background material in the second chapter. A quick overview of
DAE systems and high index DAE systems is then presented. Moreover, we show
modelling of rigid body systems in the form of DAEs using Lagrange multipliers. Most
importantly, a DAE realization process is developed by formulating a nonlinear control
problem. In addition, a singularly perturbed sliding manifold approach is presented.
Finally, we review impulse-momentum equations and a way to calculate collision

impulse in the presence of friction.

In the third chapter, the definition of different contact situations is given. Then, a hybrid
simulation system that combines impulse-based methods and constrained-based methods
to simulate contact between two rigid bodies in different contact situations is presented.
Representation of our simulator by using hybrid automaton framework is considered as
the main contribution in this chapter since it opens a new mathematical way to analyze
the rigid bodies in contact. Using the hybrid design, our simulator not only keeps the
advantage of both constraint-based and impulse base methods but also eliminates some of
their weakness such as elimination of the chattering of the relative normal velocity (in a

case of continuous contact).

Our contribution in the fourth chapter is to generalize our hybrid scheme in a case that

more than two rigid bodies can be present in the simulation. This characteristic enables
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the simulator to handle multi-contact problems. Firstly, a systematic approach to model a
system of rigid bodies is introduced by utilizing synchronous product of automaton
framework. The generalized model has different number of algebraic constraints in each
mode and this multi-resolution nature of the problem is investigated. Therefore, a
solution to multi- resolution problem under hybrid automaton framework is presented.
This discussion is followed by a proper example. Moreover, as our design highly
increases the complexity of the system, we propose a model reduction algorithm.
Finally, we illustrate a systematic approach to eliminate the Zeno problem from our

model.

The contributions in this thesis are summarized as follows:

e A new hybrid simulation approach for modelling multiple rigid bodies in contact

under a hybrid automaton framework

e The approach combines the efficiency of the impulse-based method for
intermittent contact and the SPSM approach for continuous contact

e A physics based hybrid model reduction algorithm is proposed to reduce model
complexity

e A method is proposed to eliminate Zeno Behaviour

This thesis represents the first hybrid modelling approach that combines DAE constraint

stabilization (SPSM) with the impulse method. The proposed approach is the first hybrid

modelling approach suitable for hard real-time virtual reality applications.
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2 . Background Material

2.1 DAE Modelling of Rigid Body Systems

In this section a brief review of DAE and rigid body systems will be given. The interested
reader should refer to [11] for more details on the materials presented in the next sub-

sections.
2.1.1 High Index DAE Systems

The most general DAE could be shown as the mixed set of implicit differential and
algebraic equations given by:

F(t,x,%)=0 )

where xeR", F:RxR"xR" > R". For a DAE system [JF/0x] is singular so that
some of the state variables are algebraically constrained. The DAE system could be

rewritten in the semi-explicit form as:
x=1f(1,x,7) (2)

0=g(t,x,z) €))
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where xeR", zeR”, RxR" xRT 5> R”, and g:RxR" xR >R, It is
assumed that equations (2) and (3) are sufficiently differentiable and that a well-defined

solution for x and z exists with consistent initial conditions. Under these assumptions an

important structural property of a DAE known as the index can be defined [11].

Definition 1. The minimum number of times that all or part of the constraint equations
(3) must be differentiated with respect to time in order to solve for z as a continuous

function of t, x, and z are the index of the DAE (2-3).

Calculating the differentiation gives:

0-28, %8¢ 08, (4)
ot ox oz

It is clear that if the Jacobian [ 6g/ 0z ] is nonsingular then it is possible to solve for z and

the system has an index of one. For high index systems ( index > 1 ), the Jacobian is not
invertible and the constraint equations are identically singular with respect to z. Such
high index problems are common in many control applications [11]. A constrained rigid
body system is a common example of a high index DAE system. In the following sub-

section, we give a quick review on the Lagrange formulation for the equations of motion.

2.1.2 Lagrange Formulation

Consider a mechanical system subject to some algebraic constraints h(q):
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h(g)=0, i=123,..k<n (5)

where q is the position. Constraints that are given as in equation (5) are called

holonomic constraints. Since they depend only on the position variables, they are also
called geometric constraints. The rigid body motion of such mechanical systems, which
are subject to some geometric constraints, can be formulated in the form of Euler-

Lagrange equations as shown below:

g=v (6)
d ¢ oL T

agL(q,v)_a—q+f(q,v,t)+c z (7)
0=h(g) ®)

where G =h/dq, L is Lagrangian, z is Lagrange multiplier, v is velocity ,f(q,v,t) is

external forces and t is the time. Equations (6-8) can be rewritten in DAE forms as:

q=v )
i21—15\":f'(q,v,t)+GTz (10)
0=h(q) (11)

where f'is given by:

2

f’(q,v,t):giwa(q,v,t)— oL
oq oqov

\% (12)
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This DAE system in the unknown variables v,qandzis linear in derivatives [23].

Equation (5) can be differentiated with respect to time t until the acceleration v is

obtained. It is shown that the resulting equation is linear in acceleration.

0=h(q) (13)
oh —
0=5&q:Gv:h(q,V) (14)

oh. o6h. o6h. oh
=Vt —(=—V+—V (15)
ov oq ov aq

0
Therefore, the DAE realization for the holonomic case is of third index type if and only if

the full rank condition for G = %‘ = ? 1s satisfied [23].
q

System constraints whose expression involves positions and velocities in the following

form:

a,(qv)=0 .,i=12..k<n (16)

are referred as kinematic constraints. In rigid body dynamics, such constraints are

usually encountered in the Pfaffian form:

al(Qv=0, i=12,..k<n a7

that is linear in the velocities. Although, the holonomic or geometric constraints imply
the existence of kinematic constraints expressed as (ch/dq)v =0, the converse is not

necessarily true: it may happen that the kinematic constraints in equation (17) are not
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integrable and cannot be written in the form of equation (5). Therefore the mechanical
system itself is called nonholonomic [24]. For instance, when two rigid bodies are rolling
relative to one another, the constraint is a nonholonomic type. The fact that
nonholonomic constraints may be realized as friction forces can help us to model rolling
friction. In consequence, the DAE realization for the nonholonomic case is second index

type if and only if the full rank condition da/dv is satisfied. The DAE system with

kinematics constraints can then be expressed as:

Zi—l;"’ =1'(q,v,t) +a(q)z (18)
a=v (19)
0=a'(q)v (20)

Finally a mechanical system with both geometric and kinematics constraints can be

formulated as:

g—i%v:f'(q,v,t)+[§Tz Q1)
q=v (22)
0=h(q) (23)
0=a"(q)v (24)

In order to solve the rigid bodies in continuous contact, forming DAE systems shown

above is essential.
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2.2 Singularly Perturbed Sliding Manifolds

2.2.1 Modelling of High Index DAEs using Nonlinear Control

In general a semi explicit DAE is represented by equations (2,3). Nonlinear functions
f and g respectively represent the ODE part and algebraic constraints of the DAE [11].
The mechanical system formulated in equations (21-24) is presented in a semi explicit
DAE form. The semi explicit DAEs can be solved by sliding-manifold method

[14,16,25].
A new approach for high index systems was developed in this section by formulating a
nonlinear control problem that is equivalent to the realization process of the DAE system.

This new connection is expressed in the following proposition.

Proposition 1. Consider the SISO nonlinear control problem defined by

x =f(t,x,z)
z=v, (25)
w =g(1,x,2)

where v_ is an artificial input that drives z which is now assumed to be independent,

and w is an output equal to the violation of the constraint equations. Then the relative
degree of this problem is equal to the index of the DAE, and the zero dynamics represent

the dynamics of the high index DAE.

31



0 Ge > fitx,z) —

> g(tx.z) >

"

controller

Figure 1. Block diagram of DAE realization approach

Figure 1 illustrates the block diagram of the nonlinear control system (25) associated with
the DAE. The output of the system, which represents the violation of the algebraic

equation g(1,x,z), is fed back to create an input v_ that drives the output to zero. Thus,

the realization of a high index DAE system can be interpreted as finding a controller that

forces the defined output to zero.

2.2.2 DAE Realization of Rigid Body Systems

We start the application of sliding-manifold method by introducing the following error

variables w. as:
w, =h,(x) -h’(x), i=12,.k<m (26)

w,=a (xu—al’ (), j=k,k+1,..m Q27)

In general, each w may need to be differentiated a different number of times (r, —1) for

some components of z to appear. For the first k variables that represent geometric

constraints, assume that z terms appear in w and for the remaining variables that
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represent nonholonomic constraints, assume that z terms appear in w. The appropriate
choice of the state variables leads to the accuracy of our assumption [23]. Therefore, the
sliding manifold is constructed as:

s, =p W, 2w, +w,, i=12..k<m (28)

S, =W, W, j=k+1,...m (29)

where p, is a positive parameter that determines the dynamics of the fast motion and

s;,s; denote the sliding manifolds corresponds to the geometric and kinematic

constraints. Hence the SPSM method designs a controller that forces the motion to
satisfy all the kinematic and geometric constraints by a certain amount of error g;. Note
that there exists other approaches for constraint stabilization, similar to proportional
derivative control, such as Baumgart’s method [11]. However, in this thesis we select the
SPSM method due to its robustness properties and capability to allow more

computationally efficient approximations than the other approaches.

In order to achieve the above goals we design a sliding controller that determines the

value of the control input, which is v, =z. Next, the value of the Lagrange multipliers

z is obtained by integrating v_. By differentiating s, with respect to time we obtain:

§, =W, W, +2p,W, +W,, i=12,..,k<m €LY
§,=pW 4w, j=k+1..,m (31)
w,:awiimi, i=12,..k <m (32)
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W= az"mcj, j=k+1,..,m (33)

Now, the Jacobian matrix can be defined as:

J=p22 i=12..k<m 34
s “l aZ ( )
Ji = W, i=k+1 35
S_p’j 61 > _]— + >"':m ( )

The s vector is packed in the following form:

s=J.v. +a (36)
where

o, =pio, +2puw, +w,, i=12,..k<m 37
o; =u,0;+w, j=k+1,...m (38)

If the above equation is solved for v, then we can steer the sliding motion into the
desired boundary layer. Since determining the exact values of a and J_ is

computationally expensive, they are approximated by a and J ! respectively. It has

been shown that if the v_ is computed by the following sliding controller:

v, = -J N (& +K- diag{sat(—z—f-JD (39)

u iu}<l

sat(u) = { (40)

sign(u) [u[=1
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and the sliding conditions are satisfied then the motion will converge to its desired error
boundary within a short reaching phase. These results are expressed by the following

theorem.

Theorem 1. Assume that I' =|diagla —J Sj ). If the matrix of J Sj J'K —Tis diagonally

dominant then a sliding condition is satisfied and it guarantees the following explicit

error bounds

|si[ <g, 1=1,2,.m C3))
j j

AW 2% i 12m (42)
d’ K,

Proof. See reference [25].

2.3 Impulse Momentum Equations

There is an essential need to formulate the equations in an impulse momentum format at
the moment of collision. This formulation helps us to calculate impulses caused by the
collision. To improve the performance of the simulator, the friction impulse during the
collision 1s taken into consideration. In addition to the coefficient of restitution, the
friction is also attempted to be included in the formulation to improve the flexibility of

the simulator.
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2.3.1 Assumption for Calculating Impulse

The following assumptions must hold in order to achieve the proposed simulation:

e Infinitesimal collision time
e Poisson’s hypothesis

e Coulomb Friction

Infinitesimal collision time assumption implies that the duration of a collision is very
short. In consequent, the configuration of the colliding bodies can be assumed constant
during the collision. Hence the impulsive force can instantaneously affect the velocities
according to the fact that the fundamental dynamical axiom is the axiom of bounded
momentum. In a more abstract way, this fast dynamic system can be modeled as an

instantaneous jump in velocities upon collision.

The Poisson’s hypothesis mentions that the collision has two phases: compression and

restitution. Let P

total

be the magnitude of the normal components of the impulse
throughout the collision. Let P, be the part of the normal component of the impulse

during the compression phase. It is important to notify that the point of the maximum
compression impulse is simply the point at which the normal component relative contact

velocity vanishes. According to Poisson’s hypothesis
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I)Ioral = (1 + Cr )Pmc (43)

where C,is a constant between zero and one, depends on the object’s material, and it is

denoted as a coefficient of restitution as shown in figure 2.

$4— compression —wie—— restitution ——st
p /’fﬁ\\\
“total
plt)
Pme
f{t)
— | | -
i 1 >
o Une U

Figure 2. Compression and restitution phase of Poisson’s Theorem [3}

Let AV_be the relative contact velocity, AV, be the tangential component of AV, and G,

be the unit vector in the direction of AV,. Let F{'and F; be the normal and the tangential

(frictional) components of the force exerted. Coulomb Friction law implies that:

F =C,F
F <C;

n

Fn

, AV! 20
, AV =0

(44

where C . is the coefficient of friction.
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2.3.2 Impulse Calculation

Consider a collision between body 1 and body 2, as shown in figure 3. The contact

velocities are:

V.=V, +e, xp, (45)

The relative contact velocity AV, is simply VZ—V!. If the n-component of V_ is

negative, then the objects are colliding and the impulse computation is required.
Collision impulse must be applied to find the new velocities after the collision. A new

parameter, y (collision parameter), was introduced to model the dynamics of the bodies
during the collision. The collision parameter is a variable, which starts at zero, and

continuously increases during the collision until it reaches to some final value y,. The
collision parameter can be chosen as the normal component of the impulse, y=P_ . All
the velocities are functions of y, where P(y) is the impulse. The goal is to determine the

total impulse( P(y,)) and to reset the velocities.
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Figure 3. possible collision between rigid bodies

The linear and angular velocities for the first body can be described as a function of

collision parameter v:

1
AV, =—P(y) (46)
m,
Aw, =37 x P(Y)] (47)
In consequent, the change in the contact velocity is defined as:
1 ‘g1
AV! = [—1 ~r I }P(y) (48)
I,
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where I is the identity matrix, and ris the canonical 3x3 skew-symmetric matrix

corresponding to r,. After carrying a similar analysis on the second body, the relative

contact velocity is defined as:

AV, () =MP(y) (49)

where M is a 3x3 matrix dependent only on the masses, the moment of inertia of the
colliding bodies, and the location of the contact point relative to their centre of masses
[13]. By the first assumption, M 1is constant over the entire collision. We can

differentiate the above equation w.r.t. the collision parameter to obtain:

V.(v) =MP'(y) (50)

Lemma 1. If the collision parameter y is chosen to be P, then while the bodies are
sliding relative to one another P’ is calculated as:

P'=[-C,cos6 —C,sin6 1|7 (51)

where 0(y) is the relative direction of sliding during the collision.

Proof. See reference [3].

Finally, we obtain a nonlinear differential equation for V_ which is valid as long as the

bodies are sliding relative to each other:
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The basic impulse calculation algorithm proceeds as follows:

o Compute the initial V_
e Verify that V_, is negative

e Numerically integrate V_ by using Eq. (48)

During this integration, V_ will increase until it becomes zero where the point of

maximum compression is reached. Then, the terminating value for the collision

parameter vy, is computed by multiplying the total normal impulse P, during compression
phase by (1+C,). The integration continues until the terminating value is reached. At

this point P(y,) is the desired total collision impulse. Finally, new angular and linear

velocities are computed according to impulses.
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3 . Single Contact Hybrid Simulation

We are introducing a hybrid automaton, which includes two modes of operation: 1)
continuous contact and ii) intermittent contact. In continuous contact mode, rigid bodies’
dynamics are coupled together by constructing an algebraic constraint and the simulator
model becomes a set of DAEs. On the other hand, the simulator model is described by a
set of ODEs in the intermittent contact mode. Briefly, the rigid body system changes its
dynamic over the time in accordance with its contact situation. A dynamic structure

transforms from ODEs (no contact) to DAEs (continuous contact).

A recent method known as the singularly perturbed sliding manifold (SPSM) approach is
used to solve the realization problem associated with the modelling of rigid bodies
systems in continuous contact. A proper reset map is essential to reinitialize the state
variables of the set of ODEs whenever the colliding contact makes jumps in the rigid
bodies’ velocities in intermittent contacts. In the first subsection, we give the definitions

for different contact situation.

3.1 Contact Definitions
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The Collision detection or the distance computation is one of the essential parts of the
problem. A collision detection algorithm must be global; that is, they must report the

Euclidean distance between two rigid bodies at each frame.

(&)

Figure 4. (a) Vertex-Plane contact (b) Edge-Edge contact

Definition 2. The shortest distance between two rigid bodies A and B is the Euclidean

distance:

d(t)= inf

peA,geB

P—q| (53)

where pand qare the positions of the two arbitrary points at A and B respectively. The

above equation could be rewritten as:

d(t) =n(t)-(p(t) —q(1)) (54)

where n(t) is the unit normal surface. A normal surface direction can be defined as the

outward unit surface normal of a plane for vertex-plane contact (see figure 4.a) and n is
defined as the unit vector mutually perpendicular to the two contacting edges for the

edge-to-edge contact case (see figure 4.b). The distance function is utilized to examine
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the relative motion of two solid objects. The positive distance between objects (d(t)> 0)
specifies that there is no contact between two bodies. The negative distance (d(t)< 0) 1s
not acceptable and indicating inter-penetration. Also the zero distance (d(t)= 0) defines

that two bodies are in contact. The relative velocity defines the types of contact when

two bodies are in contact.

The interpenetration is not acceptable in rigid body simulations but some sort of tolerance
is always acceptable to overcome the computational errors during the simulation. This

condition can be expressed as:

d(t)> ~T, (55)

This condition must be valid throughout the simulation. Two rigid bodies are in contact
when the distance between two rigid bodies is below an acceptable threshold; that is

mathematically expressed as:

d1) <T, (56)

To handle the contact problem, we use the hybrid scheme. Motion equations for each
mode are depending on the contact situation. To complete our hybrid simulation strategy,
a report for change of contact situation should be generated. Later, we define different
events that are responsible to report those changes. We can divide the contact points into

to two types: intermittent and continuous.
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Definition 3. Two rigid bodies are in continuous contact at time t,when they remain in
contact at the next simulation step t,+At. Mathematically it means that d(t;)and
d(to) are approximately zero.

It is assumed that the simulation time step At has been selected previously so that the
simulation error is sufficiently small. Since the other simulation parameters and
definitions depend on this parameter it should be selected first and the other parameters
after that. There are different types of continuous contacts between rigid bodies that can
be listed as follows:

1- Rolling Contact

2- Slipping Contact

3- Sticking Contact

In order to recognize each contact type, we must observe the relative tangential velocity
between two rigid bodies at the contact points. The relative contact velocity is expressed

as:

Vc = V V:D( + cht)' (57)

where V_ and V_, defined as:

V. =1, (0.(p(t) — (1))

. . . (58)
V,, =1, (1) (p(t) - q(t))
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Two bodies are slipping on each other when the velocity is not zeroV, # 0. Then, the
friction force can be modeled according to Coulomb’s law as:

V.1 + Vi
Ff:_Cf otx "x ctz "z

Fn

(59)

c

The contact type is rolling or sticking when the relative tangential velocity is zero but
these two cases are conceptually different. In the rolling case, the contact points are

always changing; that is, the collision detection algorithm report different closet points p
and q at each iteration. In contrast, the contact points are remaining constant during the

simulation for sticking case.

Definition 4. Two rigid bodies are in intermittent contact at time t, when it’s not of

continuous type.

Note that the state in which two bodies are not in contact is categorized as intermittent
contact. The separating contact can be considered as the intermittent type. In addition, the
colliding contacts which introduces some sort of jump in the velocity falls into this family

of contact situation.

Definition 5. Two rigid bodies are in colliding contact at timet, if the contact exists

between the objects and the relative normal velocity is negative by accepting a proper

threshold. This can be mathematically expressed as:
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d(ty) <T, nd(ty) <-T, (60)

In the colliding case, the velocities are reset. If not so, the Euclidean distance between
colliding objects will violate the interpenetration condition at the next simulation step

which means:

d(t, + At) <-T, (61)

Definition 6. Two rigid bodies are in separating contact at time t, if the contact exists

between the objects and the relative normal velocity is positive by accepting a proper

threshold. This can be mathematically expressed as:

d(t,) < T, Ad(t,) > T, (62)

Lemma 2. If the distance function is smooth then the following inequality holds:

: (63)

Proof. We have the following approximation from smoothness of the distance function.

d(t, + At) ~ d(t,) + d(t)At (64)

Assume that the two bodies are in colliding contact at time t, so the equations (56,60)

are valid. From equations (56,60,64), it is concluded that

max(d(t, + At)) = max(d(t,) + d(tO)At) = max(d(t,)) + max(c'l(t0 DAt =T, =T, At (65)

47



As long as the obtained maximum value still represents the colliding contact the equation
(61) is valid. By obtaining

T, - T, At <-T, (66)

equation (63) is derived.
Lemma 3. If the distance function is smooth then the following inequality holds

T, +T,
At

T > (67)

Proof. The proof is similar to lemma 2. In the proof, separating contact is used instead of

colliding contact.

3.2 Switching Between Different Contact Situation

When two rigid bodies are in contact (d(t)=0) and the relative normal velocity is zero

(d(t)=0), then it is assumed that one geometric constraint exists between two rigid

bodies. At this time, the continuous contact situation occurs. It physically means that two
solid objects start to slide or roll on each other. If our assumption is wrong the calculated
normal force is negative which is physically not possible. Hence it is concluded that the
continuous contact as well as geometric constraint do not exist. This situation will be
kept as far as the normal force is greater than zero. When the normal force goes to zero

separation occurs.
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Proposition 2 The continuous contact ends in two cases; either the magnitude of the

normal force smoothly goes to zero or a sudden change in the direction of the normal

D [
RYAYA

Figure 5. (a) Sudden jump (b) smooth release

force occurs.

Consider the magnitude of the normal force smoothly goes to zero, that is physically

equivalent to the case where the constraint is released and became inactive. Secondly, A
sudden change in the direction of the normal force implies that n(t) is not smooth. The
non-smoothness in n(t) causes a jump in the distance between two bodies. These two

cases are shown in the figure 5 for the rolling ball. Figure 5.a shows that ball detaches
from the constraint when the normal force goes to zero and figure 5.b describes the effect

of non-smoothness in n(t).

When two solid objects are sliding or rolling on each other, there is a continuous contact
between them. Not only the distance d(t) continuously remains zero but also d(t) and

the higher order derivatives remain zero. In these cases, a non-penetration constraint can

be considered as geometric constraints as shown in equation (5). More important the
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normal force can be found by utilizing sliding manifold realization. In this approach, we

can model the static friction during rolling by adding a rolling constraint to the model.

3.3 Hybrid Automaton for Single Contact

In this section, the goal is to the model rigid body systems with the help of the hybrid
framework. A formal mathematical framework, hybrid automaton, is utilized to model

and analyze the system.

Definition 7. A hybrid automaton H is a collection H = (Q, X, f,Init,D,E,G,R), where
e ( is adiscrete state space;

e X =%R"is acontinuous state space;

e f:QxX—> NR"isa vector field ;

Init © Q x X is a set of initial states;

D:Q — P(X)is a domain;

e EcQxQisasetof edges;

G:E — P(X)is a guard condition;

R:ExX — P(X)is a reset map.

For simplicity, consider a rigid body system subject only to a non-penetration constraint.

The hybrid automaton for this system can be illustrated as:
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o Q={Q,,Q,}describes two different modes of operation. The First mode is the
case where two solid objects are in intermittent contact and the second one is the
case where two solid objects are in a continuous contact;

e X=[q",v",z]" where q is the rigid body’s position, v is the rigid body’s
velocity and z is the Lagrange multiplier. This vector of variable is the extend

vector of variables which is the same in both modes.

The non-penetration constraint is a kind of inequality geometric constraint. It is known
that error variable w which corresponds to a non-penetration constraint shows distance
between two rigid bodies. The dynamic system, when there is no constraint (mode Q,),

can be shown as:

o’L
v =1'(q,v,t
— v =1@v.0 68)

q=v

The variable z is not defined in mode Q, .

Proposition 3 To extend the vector of variables in every mode, in such a way that the
extended vector of variables is the same in all of them, their undefined variables are

included and their time derivative are set to zero.

As mentioned in the proposition, it is desired to extend the vector of variables, in such a

way that the extended vector of variables is the same in both modes. To do so,
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X =[q",v",z]" is utilized as continuous state variables. Then, equations of mode Q,

can be rewritten as:

2
0 I; v=1'(q,v,t)+6h/dq" z
. (69)
q=v
z=0

On the other hand, the dynamic system can be shown as below when the equality

constraint 1s active (mode Q, ):

'L
aVZ
q=v
Z=V

s

V= —j:(d +K- sat(i)j :
£

The dynamics of systems subject to a constraint is described by set of DAEs, which can

v=1'(q,v,t)+2h/oq" z

(70)

be realized as a set of ODEs when the sliding manifold approach is used. Note that there
exists other approaches for constraint stabilization, similar to proportional derivative
control, such as Baumgart’s method [11]. However, in this thesis we select the SPSM
method due to its robustness properties and capability to allow more computationally

efficient approximations than the other approaches.

The next step is to define the initial conditions. The acceptable set of initial conditions is

described as:
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Init ={Q}x{X|w>0Az=0}U{Q,}x{X|W<—-eArz20} (71)

where € is acceptable bound of an error for the geometric constraint. The domain set for

each mode is characterized by following sets:
DQ,) = {X|w>3vw>p} (72)

D(Q,) ={X|w<ead2-E} (73)

where & is a positive threshold for the distance, B is a threshold for the normal relative
velocity and £ is a positive constant which is of € order (§ = O(g)). The definition of

the rules that govern the transitions between modes of operation is the final step to
complete a hybrid automaton system. The set of edges and guard conditions are

describing mode transitions. The set of edges are as follows:

G(Q,,Q) ={X|w<dAW<—B} (74)
G(Q,,Q,) ={X|w <3 A|W|<B} (75)
G(Q,,Q,) ={X]| w <8 A|W| < B} (76)

The physical meaning of G(Q,,Q,) is that the collision is detected and the relative
normal velocity is less than zero with accepting f threshold. After hitting the guard
condition, the continuous state resets to some new value in R(Q,,Q,,X). Reset map

shows a jump in the velocities at the time of collision. Therefore the velocities are
reinitialized according to the method described in the section 2.3.2. The reset map can be

expressed as:
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R(Q,,Q,,X)={q=q,z=zv=V"} (amn

On edge {Q,.Q,}, a geometric constraint between two rigid bodies becomes active, the
hybrid system then switch to the second mode of operation. Consequently, the
interaction forces are calculated by sliding manifold approach in the continuous contact
mode. At this discrete transition, the continuous state dose not jump. Hence there is no
need to reinitialize the continuous states after switching to a new mode of operation.
Briefly, the rest map correspond to this transition can be shown as:

R(Q,.Q,,X)={q=q.z=2zv =V} (78)

w<bnw<=p

L

L, ¥?=f'(ll,V,t)+%Tz

T
v=1(gv,t)+ M "2
Fe e o
q=v Z=v
2=0

D(gy) = X|w>8vw>p} v5=—J;1[&+K.sat(i.)J

D{y,) = {X|w<eniz-t}

Figure 6. A hybrid system modelling of interacting rigid bodies

Edge {Q,,Q,} physically implies the end of the continuous contact due to vanishing of

normal force. The normal force may go to zero smoothly or non-smoothly. The non-

smooth case occurs due to sudden change in the direction of normal force as mentioned
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in previous section. Therefore continuous state z may show a jump at this discrete

transition and the corresponding rest map is as follows:

R(Q;,Q:X)={g=q,2=0,v=v} (79)

Finally, the following modelling can be represented graphically in the figure 6.

3.3.1 2D Example

Consider a ball rolling on an arbitrary path. For simplicity, the equations that define the
simulation are written in 2D case. The following geometric constraint exists when the

ball rolls on the surface:

h(x,y,0) = (x = x,)cosy +(y —y,)siny —R =0 (80)
Z—h:G:[cosW siny O] (81)
q

Where (x,y,0) is configuration space, (V,,V, ,0,) is tangent space and v is an angel
between the unit normal surface and the horizontal plane (see figure 7), R is a ball

radius, and x, and y, are the locations of a single point on the path.

The nonholonomic kinematic constraint is a rolling condition and is expressed as:
X
a(x,y,0,%,y,0) = xsiny — ycosy + RO = [sin\y —cosy R]y|[=0 (82)
0
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Figure 7. Ball rolls on a surface

Note that the SPSM method can stabilize this nonholonomic constraint in a manner
similar to holonomic constraints. In that case the constraint just has an index of two

instead of an index of three.

The equation of the motion for this system in the Cartesian coordinates forms a DAE

problem as follows:

X

- . 1
V, =—2z,siny +—2z, cosy
m m

. 1 .
V, =——z,cosy+—z,siny—-g
m m
6, =27
z J 2
X=V, (83)
y=V

56



At this state, the error variables are described as:
w, =(x-X,)cosy+(y—-y,)siny—R (84)

w, = Xsiny — ycosy + RO (85)

and the sliding manifold is constructed as follows:
s, =AW, +2uwW, +w, (86)

S; =HW, + W, (87)
where p is a positive constant. When a ball rolls on a trajectory, the control input is
calculated with the sliding manifold approach that was described before. If the ball does

not have a contact with the path then motion of rigid body in an intermittent mode can

be described as follow:

y=V, (88)
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After calculating the collision impulses the velocities are reinitialized. The contact

velocity then is expressed as:

V, =V, +Ro, (89)

Vo =V, (90)

The changes of velocities are:

AV, =P, 1)
m

AV, =Lp) 92)
m
R

A(DZ = —J—PX (93)

Obtaining change of the contact velocity:

AV, =+ Rp () 94)
m J

av,, =+ 25 () (95)
m J

we can form the following nonlinear differential equation during the collision:
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1 R* V,
] )i (96)

V., =-C,(—+—
otx f(m V

ctx

v, =1 97)

The term V_ can numerically be integrated by utilizing the equation given above. During
this integration, V_ will increase. The point of maximum compression is attained when

V,_ reaches to zero. Then the terminating value for the collision parameters vy, is

calculated. Finally, the integration continues to this point.

In order to simplify the problem, it is assumed that the geometric constraint and rolling
constraint become active simultaneously. This physically meant that the short-time
transition state from sliding to rolling is negligible. In a more detail modelling, one more
mode should be added to the hybrid system for this transition state in which the
geometric (non-penetration) constraint is active and the rolling constraint is inactive. The

simplified hybrid automaton is shown in figure 8.
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w,daw, < —h

w, <8 |<p

DIQ)={X]w,>5vw, >B

D(Q) ={X|w,<snd > -8

Figure 8. A simplified hybrid automaton for rolling ball example

Parameters €,u,B,£,8 should be tuned in an appropriate way to avoid chattering. We test

our method with different initial conditions and different paths, which are approximated
as piecewise-constant convex paths. It can be seen from figure 9 that a ball follows a
correct path if switching between the modes is done correctly. The behaviour of the
system near discontinuity can be shown in figure 10 and it demonstrates that the
constraint is released and hybrid automaton transits to intermittent mode. It can be seen
form figure 11 that there is no chattering between the modes. The transition from
continuous contact to intermittent one happens because of discontinuity. One of the
advantages of the described method is to eliminate the chattering behaviour of relative
normal velocity when two bodies have continuous contact with each other. The bound of

chattering depends on the integration increment of collision parameter. Figure 12
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illustrates these phenomena. The first and the second plots are using impulse-based

method with different collision increment but the third one is the control-based method.

-50 1 ] 1 | I

-80 -40 0 40 80 120
X (m)

Figure 9. Ball trajectory
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4 .
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5 10 X (m) 20 25

Figure 10. Ball detaches form the constraint near discontinuity

Continuous

Intermittent

1 1

time (m/s) 10

15

Figure 11. Mode Transition
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Figure 12. Chattering bebaviours

3.3.2 Applications

In order to show the performance our simulator for real applications, some simulations
are done in three dimensions. The first simulation shows the rolling ball example in
pervious section in real 3D environment. A ball rolls down a ramp and then roll up
another ramp and after that it follows a free body motion and then hits the ground and
finally the bouncing is damped according to coefficient of restitution and again it starts to
roll after short period of sliding (see figure 13). In the figure 14, the simulation is tested

via different initial conditions and different trajectories of the ball are shown.
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Figure 13. Ball is rolling down and up the ramp and hitting the ground

A ball on a spinning table is simulated to show that the control-based approach is well
suited for continuous contact situations. It is known that ball is rolling when there is high
coefficient of friction between ball and table. When the equations of motions are obeying
from nonholonomic modelling and there is no external force on a ball, our result is that a
ball rolls in circle, which is eccentric with respect to the table’s axis of rotation [26]. (see

figure 15).

200--

Y (m)

w0
800 400 Zom

Xim)

Figure 14. Ball trajectories according to ditferent initial conditions
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It seems that the method is acceptable for a wide range of applications, which are not
collision intensive systems, and many mechanical systems fall into this category. For
instance consider the cam-follower system. The cam mechanism is a familiar way to
translate the rotational motion into a linear displacement. The cam and follower may be
disconnected due to high velocities and this introduces collision to system and the
simulator may handle this collision. The other mechanical example is to model contact

between two gears.

Figure 15. Ball trajectories according to different initial conditions
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4 . Multiple Contact Hybrid Simulation

In this chapter, the main goal is to generalize our hybrid scheme for a case in which more
than two rigid bodies are presented in the simulation. Throughout this chapter, we assume
that all rigid bodies are convex. Only one contact point between two convex objects is
possible if the number of the contact points is finite. Infinite number of contacts between
two convex objects could be possible; that is degenerate case. Degenerate cases are not in

the scope of this thesis.

Proposition 4 To handle the non-convex objects, we can split them to convex objects.

In the next section, we will derive the equations for the system of rigid bodies in

continuous contacts in the general case.

4.1 Rigid bodies Systems in Continuous Contact

The local frame attached to a body is used to describe the motion of a rigid body. This
local frame is located at the centre of mass with its axis aligned to the principal axis of

the rotation. We denote a transformation matrix from local coordinate to global
coordinate as E;, where i represents the local frame attached to the i® body. Consider
bodies 1 and j are in contact. It is required to define a normal contact coordinate

between these two bodies. A 3x3 transformation matrix from the normal contact
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coordinate (between bodies i and j) to the global coordinate is denoted as E!. This

transformation matrix can be expressed as:

E) =[(t,); A, (1,);] (98)

The contact forces between body 1 and body j are given by 3x1 vector z; in the

normal contact coordinate E?. The position of the contact point in the i" body frame is

denoted by r;. A function, A, is introduced to report the continuous contact situation

ij
as:

1 if body iand body jare in continuous contact
A = 99)

0 otherwise

It is apparent from definition that A; = A ;. Itis also known from the action and reaction

law that we have z; = —z; . The motion equations of each object can be shown in general

case as follows:

ma =f +mg+ ZAij (E’z. )

n™y
j=1

J#i

(100)

™'y

n
. _ "
Jo +o xJo =1 +zAij(rij xE, Elz.)
j=1

J=i

For a case in which some bodies are in continuous contacts, we must incorporate proper
constraints into the dynamic equations. Normally, these constraints are expressed by set
of algebraic differential equations. As we explained earlier in the thesis, there are

different types of continuous contacts. Hence, each type introduces its own set of
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constraint equations. It is important to note that the non-penetration constraint is
common constraint between all those types. We can show the non-penetration constraint

between bodies 1 and  as:

0
wy =d;=E}|1|-(p~q)=n;-(p-q) (101)
0

In a case of slipping contact, we have an inequality constraint:

(t); - P-@)+(t,), - P-q) =0 (102)

When two objects are rolling on each other in 3D space, two more constraints must be

added to the dynamic simulation. Those constraints can be shown as:
wi=(t); - (p—9) =0 (103)

wi=(t,),-(p-q)=0 (104)

We can apply the same constraint equations for the sticking case. The dynamic equations
include a set of ODEs and algebraic differential equations at the same time. Basically, the
whole system is subject to set of the DAEs. This DAE can be realized as a set of ODEs
by sliding manifold approach. It is clear that the number of constraints is changing due to
the change of the contact configuration. As mentioned earlier, this is one of the main
reasons that leads us to use the hybrid scheme for the simulation of rigid bodies in
contact. In this hybrid scheme, we have different number of constraint equations in each

mode. For instance, two more algebraic constraints must be added to the dynamic
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equations when the system switches from the slipping contact to the rolling contact. To
apply sliding manifold method, we should introduce control inputs correspond to each
constraint. We define the control input as:

vP=(0 1 0) -z,

vi=(1 0 0) -z, (105)
vi=(0 0 D'z

0

When body i and body j are slipping on each other, the three elements of z; are not

independent. From Coulomb’s law of friction (59), we conclude that only the second

element of z;; 1s an independent variable. This implies that just one control input must be

introduced for the independent element for the slipping case. Also equations (105) must

be modified to the following equations.

Vctx
v

vP=(0 1 0)f -z, (106)

Vv
0 0 l)T-zijz—Cf[(O 1 0)T~Zij] \;‘Z

4

ao O)T‘Zij:—cf[(o 1 O)T'Zij]

We introduced another function I'; to report the type of the continuous contact. The

function also enables us to find the number of constraints in each mode of our hybrid

simulator. The function mathematically is expressed as:

(107)

i

{1 if body 1 and body j are in slipping contact

0 otherwise
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In general, each w; must be differentiated a different number of times (r, —1) for some
components of z; to appear. For the non-penetration constraints, it can be seen that z;

terms appear in w;;. It is also assumed that z;; terms appear in w; for rolling constraints.

Differentiating the non-penetration constraint with respect to time, we obtain:

np _

Wi ﬁij ‘(p—q)
WP =h -(p—q)+i,-(p—q) (108)

W =1’ (p-q)+20,-(p—q)+8, - (p-§)

Also the differentiation of the rolling constraint can be expressed as:

Wi =(t,), (p-a)
Wirjz = (Ez)ij -(p-q)

e N S (109)
wi =(t);-(P—@)+(t,);-(p—q)
W= () (0 - @)+ (1), (- @)
The velocity of contact points, p and q, are expressed as:
p=r +E;(mi xrij)
(110)

q:rj+E{(mjxrﬁ)

where r, is the centre of mass position of the i"™ object. Differentiating with respect to

time one more time gives:

p=1 +Ej[0; x1; + 0; x (0; xT1;)]

L (111)
q=rj+E][cojxrji+coj><(oajxrji)]
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Combining equations (100) and (111) gives:

p=— [f +mg+ZA 2zl +

i =
i

n*ij

E;[J;l(ri JrZAij(rij xE‘ 'Big. )—o, xJo)x1; +o; x(0; x1;)]
=1
)=l

o1 n ,
g =—r;1—[fj +mjg+Z;A (Eiz )]+

i

(112)

i#]

Ei[J] (1, +ZAJ](r xE ' Efz,)~0,xJ0,)x1, +0,x(0,x1,)

n*™j

l¢_]

The next step is to construct sliding manifold corresponds to each constraint. Therefore,

the sliding manifold is constructed as:

sy’ = (pup) Wi + 2P WP+ wiP (113)
sirjx :u;"w;" +wirj" (114)
sl-rjZ = p.;zwf +wfjZ (115)

4.2 Hybrid Design

As we mentioned before, the number of constraints in each mode is different. It depends
on the contact configuration of each mode. It is assumed that all objects are convex so
each pair of objects must be in contact at only one point. The number of constraints is

calculated as:
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N:3x(i zn:/\ij)—zx(i irﬁ) (116)

i=l j=it] i=1 j=i+l

The number of modes is equal to the number of the possible contact configurations.

Therefore, 1t can be calculated as:

oo 3(;’] 117)

The case of a single contact between two rigid bodies is completely investigated in the
previous chapter. In this chapter, our goal is to propose a systematic way to handle
general cases. A formal mathematical framework, hybrid automaton, is utilized to model

and analyze the system (see the definition 7 for details).

When two or more objects exist in an environment, their state vectors can be combined
into a new configuration vector q=[q, ¢, --- q.]", where n is the number of
independent objects in the environment and q; is the state vector for the i™ object. All
the elements of q are independents for a case in which none of the objects are in contact.
On the other hand, one or more of the terms in q is no longer independent when some of

the objects are in contact. Therefore, some constraints equations must be added to the

system. In consequence, the dynamic equations in no longer described by a set of ODEs.

To feed the dynamic equations into the hybrid automaton framework, we have some

restriction such as:
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e The equations must be in the form of ODEs (see the definition 7 for f) instead of

DAE:s.

e The vector of variables should be of the same dimension in all modes

To achieve those goals, each DAE system is realized as an ODE system with the help of
the sliding manifold approach by imtroducing each z;. The next step is to extend the

vector of variables, in such a way that the extended vector of variables is the same in all

modes (see proposition 3). Finally, a continuous state variable is introduced as:

T T T TT

X=[lq, q, - q, Z7]

T T T T T T T T T T
L=[z,, 2,5 - 2y, Zy Zy - Iy Zomy Zw-ow o) (118)
where

T
zijz[zi’jX Z;p zirjy]

As we mentioned before, the tangential frictional force and the normal force are not
independent any more for the case of slipping contact. Hence the equations (100) should
be modified as follows:
T
ma, =f, +mig+i/\ij(l—I}j)(Egzij)-}—ir}ngzgp[—\;& | _—qu
=]

7=
J#l J#i

Jo, +o,xJo =1+ A(1-T,)r,xE Elz)
J=1
J#l

T
n i~teaii Vc Vc
+erij(rinE1 Eizijp(_Tm 1 *—Ej)
=

c

(119)

)7

where

zgp:(O 1 O)T-zl.j
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In order to complete the ODE equations, we must define Z with respect to the other state

variables. This vector can be generally shown as:

zy vi’j" 0
iij = igp = Aij (l—Ej) Vgp +Fij Vgp (120)
7.7 v 0

1 b}

4.2.1 Discussion on the dimension of Control Jacobian

Before using the sliding manifold, it is necessary to decrease the dimension of Z in each
mode. To decrease the dimension, we just keep the defined elements (ones which have
nonzero derivative with respect to time). We denote this new vector variable as Z; (k
shows the corresponding contact configuration). This is exactly equivalent of eliminating
the undefined variables of each mode (see proposition 3). It is clear from equation (120)
that the dimension of this new vector variable Z; is highly depends on the contact
configuration. Consequently, it is equal to the number of constraints, N, which can be
found from equation (116). In the last step, we must give a solution to find the control
inputs corresponding to each constraint v| = Z; for a new reduced system, where v, is
the control vector in the corresponding mode. The SPSM method then designs a

controller that forces the motion to satisfy constraints with certain amount of error ¢;. In
order to achieve the above goals, we design a sliding controller that determines the value

of the control input, which is v, =z,

- The value of z; is then obtained by integrating

v, . Differentiating s; with respect to time we obtain:
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~np np 2 ::-np np - np )
55 _(“ij ) Wi +2Hij Wi + Wy (121)

S5 =y Wy Wy (122)
S5 = W W W (123)

After rearranging the equations, we have:

o
57 = (1) (—az? Z + 0 )+ 2u Wi+ Wi (124).
k

7 =P ( az:j Z, +6T)+ W (125)
k

L v A

& = az:j Z, +067)+ W (126)
k

Therefore the control Jacobian matrix is defined as:

oW

n np \ 2 gy -

I =) ( az;i Z,) (127)
X > aw:;x .1

J5 = o, z, (128)
o —azf z (129)

At this moment, the dimension of the Jacobian matrix is [I1x N. For the constraints,
which are not active, the corresponding row of Jacobian is zero. After eliminating those

rows, we reach to the square Jacobian matrix with N dimensions. In a more compact

form, we can write:
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S =(J vy + oy (130)

where s’ is a reduced vector of sliding manifolds corresponds to each mode, and a, is

calculated as:

(@ )y = () (o) + 20 Wi + WP (131)
(@), = (67 + W (132)
(@) =p () +wy (133)

If the above equation is solved for v, then we can steer the sliding motion into the

desired boundary layer. Since determining the exact values of a, and (J,), is

computationally expensive, they are approximated by a, and (j S)k_] respectively. It has

been shown that if the v, is computed by the following sliding controller:

v =-(J),” [&k +K, -diag{sat(s—;ﬂ) (134)
g

u }u|<1 |

sat(u) = { (135)

sign(u) |u| >1

where K, is the gain for mode k, then the motion will converge to its desired error

boundary after a short reaching phase according to theorem /.

76



Theorem 2. Assume that matrix I, =|diagla, —(J),(J,),a,|. If the matrices

) K, -3, K, =Ty, (3 ) (3, 'Ky, ~ Ty (where 1 denotes the
number of modes) are diagonally dominant then a sliding condition is satisfied and it

guarantees the following explicit error bounds throughout the hybrid simulation:

np bp
sy’ <€;
spl<ep, i=12,.,nandj=ii+1..,n (136)
sy | <&
dPw¥| 2Pe?
1) < i
dt? } e
d"wi 2Pel ) L
H<—2>—, i=12,.n,j=1i+l,..,n (137)
dt” Hijj

1

dt® | THy

dPw?| 2P’
< L]

where n denotes the number of objects.

Proof. From the diagonal dominancy of matrix of (J,), (j S)k—lKk —~TI', and theorem /.,

it is concluded that the following bounds are satisfied in the k" mode. So each error

variables is bounded in each mode and this implies the equation (137)
It is very important to note that the dimension of square Jacobian matrix is changing

according to the contact configuration. These Jacobian matrices are illustrated by the

proper example in the next sub section.
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4.2.2 V-Groove Example:

The V-Groove problem is a very good example to illustrate different contact situations.
As it is shown in the figure 16, this problem includes three convex rigid bodies. It is

important to note that V-Groove is a non-convex object so it should be divided into two

convex objects.

Figure 16. V-Groove problem

Consider a case that ball rolls on the second object, there are three constraints, which
restrict the movement of the ball; two rolling constraint along (t, ),.,(t,),, directions and
one non-penetration constraint along unit normal direction f,,. The constraint equations

can be found as:
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wp =1 - (), +re, - (t,),
Wg:(fl”‘cz)'ﬁlz‘r (138)

wp =1 (F,), 1o, - (t,),

where ¢, shows the contact point on the second object. The Jacobian matrix for this

contact configuration is calculated as:

17
Hip(—+—) 0 0
m J
o 1
Jh = 0 (Hé’)z(;) 0 (139)
2
0 0 p;;(i+5—]
. m J -t

It 1s assumed that this contact configuration corresponds to the first mode. Therefore the

control input for this mode can be shown as:

vi=lm oz ] (140)

Consider systems begin to roll inside the V-groove (second mode), this means that six
constraints are active. The constraints are as follows:
wpi =1 (L), +1o, - (t,),

wiy = (F —¢) -y, =1 (141)

wph =1 (), —te, - (t,),

wii =1 () +1o, - (t,);
w3 = (f —¢;) By 1 (142)

Wg = l.'1 '(tz)ls —To, '(tx)13
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where c,,c,; shows the contact point on the second and the third object. The Jacobian

matrix for this contact configuration is calculated as:

J]]
(JS)Z = I:le

where
i L1 1 |
pp(—+—) 0 0
m J
1
J = 0 1)’ (=) 0
m
L1 1
0 0 ppp(—+—)
L m J ]
I ~ 1 r’ ~ 1 x 1 r? ]
iz (\Pn ‘_+1P33 ‘_) My, (qju ”_) “12(\1113 “'—LP31 _)
m J m m J
1] l ] 1 nj l
Jiz = (ng)z Y (=) (T )2 (W —) (s )2 Yy (—)
m m m
. 1 r’ o 1 . 1 r’
p (Y —=Y;—) oy, (Vs —) py(Wes —+ ), =)
L m J m m I
i ~ 1 r’ ~x 1 ~ 1 2]
p (W —+ Vs —) pys (Y —) (Y ——Y5—)
m J m m J
o 1 i 1 o 1
le = (H]g)zlplz (=) (”15)2 (Y —) (u3 )2 ¥, (—)
m m m
. 1 r’ . 1 . 1 r’
p (P —=W, =) (Y —) Hys (W —+ ¥, —)
| m J m m J ]
i w1 r? |
Hz(—+—) 0 0
m J
et R et S
m 2
2,1 T
0 0 M (—+—)
L m J ]

JZ]
J;Z:i
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and also each element of matrix ¥ shows the angle between the two different contact

coordinates. This matrix is defined as:

(Ex)12 .(ix)B ({x)12 'ﬁ13 (ex)n '(Ez)]f&
Y= ﬁl2 '(tx)w ﬁ12 ‘ﬁls ﬁn_ '(tz)xa (148)
(tz)12 ‘(tx)w (tz)u 'ﬁ13 (tz)12 '(tz)u

Finally, control input can be shown as:

r_lem - np -1z - X - np -1z
Vz—[zn Ziy Zyy 2y Zyy le]T (149)

As it is shown, the resolution of the Jacobian matrix and the control input change
according to the contact situation. In this example, the resolution changes from three to

six when the system switches from the first mode to the second one. It is important to

note that Z vector in all modes have the same dimension. For instance, Z for the first

and the second mode can be shown as:
x np 74 e 1)) -1z * X - np »¥Z 3
[Vlz v vipb 00 O]r = [le 2y Ly Lz Iy 213]’[ =7 (150)

x np 1z x np rz ! fem - np ‘1z - X snp .1z |
[Vu Vio Vio Vi3 Vi3 Vi3 *[le Zyy 2Ly Zyy Iy Z13]_Z (151)

The next step to design hybrid automaton is to define proper events and guard conditions.

They will be developed in the following section.
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4.3 Discussion on States and Events

In order to define the set of edges, guard conditions and domains, we should borrow
some concepts from automaton literature. The definition of events is highly dependent on
the definition of contacts (section 3.1). Consider the bodies i and j are in contact. A
hybrid model, which describes the contact between these two arbitrary pair of objects, is

depicted in figure 17 (events and modes are shown in the nomenclature).

Figure 17. Hybrid Modelling for pair of objects in contact

Given events are describing physical phenomena. Also it is describing the guard
conditions and domains in hybrid automaton framework. It is apparent that there are three

possible contact configurations between a pair of objects. I,

ij 2

Ro;,Sl; are showing these
different cases; intermittent, rolling and slipping. The discrete states variables

¥.QY and Q¥ can be shown mathematically with the help of functions A jand T

V=(01-Ay) (152)
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L= AT, (153)

1=A(1-T}) (154)

Five events completely are responsible for switching between the modes. Therefore the

set of edges for this hybrid model can be shown as:

E ={(Q},Q1).(Q/,Q),(Q3,Q3),(Q3,Q1).(Q3.Q)),(Q1,Q3} (155)

The guard conditions G(Q?,QY) physically mean that the collision is detected. This

implies that the definition (5) must be taken into the consideration in the representation of

the guard. Therefore, we have:

of :GQLQYD) = (X | Wy <T, AW <—Tc} (16)

On edge {QV,Q}}, a continuous contact between two rigid body starts. Hence the hybrid

system switches to the other mode of operation. According to the definition (3) and (6),

the guard is described by:

e} :G(QLQD =X | WP <T, A-T, <W <B<T} (157)

where B is a positive constant. Two guards {Q},Q”) and {Q?,Q”} imply the end of the
continuous contact but from different modes. These guards can be defined with the help
of definition (6) as:

el :G(QY,Q)) =G(Q1,Q)) ={X|w > T, vzP <-1r} (158)
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where A is a positive threshold for the normal force. These conditions physically imply

the end of the continuous contact, which is caused by the vanishing of the normal force in
a smooth or non-smooth way. The last guard G(QY,QY) physically is about the

vanishing of the tangential velocity, equation (57). Therefore, we have

<T.} (159)

ij

e3G(Q),Q3) = {X| 'w;’" <T, A lw’.z

where T, is a positive constant considered as tolerance for tangential velocity. The last

event is responsible for switching from the rolling mode to the slipping mode; that is the

existence of tangential velocity.

eIG(QL,QY) = X |wi|> T, v|wy|> T} (160)

After constructing the hybrid automaton model for a pair of objects, we can construct the
general hybrid automaton model for the system of rigid bodies with the help of

synchronous product or parallel composition.

Definition 8. Synchronous product is product between two automata
9, =(X,,Z,,m). 9, =(X,,Z,,m,); where X,,X, is a set of discrete states corresponding
to 9, and 9,.%,,Z, are set of events and Finally n,,n, are the states transition partial
functions X x X — X . The product 9, ® §, =(X,Z,n) is defined as follows:

X=X,xX, (161)

$=3%,UZ, (162)
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(M (%,,0),M,(X,,0)) 6 € £, NE,,if n(x,,06)!,m,(x,,0)!

X,,0),X ceX -2 ,if n,(x,,0)!
(X, %,),6) = (M (x,,0),X,) 1 2 - M (X,,0) (163)
(x,,M,(x,,0)) ceX,-2,ifn,(x,,o)

otherwise it's not defined

As it is shown in figure 17, the set of modes for hybrid model between i™ and j® body

2
3

is X, ={I;,S1;,Ro;} and set of events can be expressed as I, ={ej.e;,e;,e;}.

j°
Transition partial function is described by:
N (Iij:e;j) = Iij

;i (Iij’eg) = Slij

UF (S, eg) = Iij

i (164)
N (Slij>e3) = Roij

nij(Roij,eij =1
T (Roipeig) = Slij

We can conclude that the hybrid model for each individual pair of rigid bodies can be

shown by 9;(X;,Z;,n;). According to the definition of synchronous product (8), the

ij
complete model could be found as:

9= 812 ®813 ®'“‘91n ® 923 ® 324 ®""Pzn "'S(n-z)(n—n ® 8(n‘2)n ® 8(n—l)n (165)
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Figure 18. Synchronous products 9; ® 3,

For example consider the case in which three objects are present in the simulation.
Therefore, the model can be constructed as 3 =(9,, ®9,;)®9,,. The figure 18 shows
the synchronous product graphically. It looks very similar to the figure 17 but each upper
layer mode consists of some sub-modes. Each event for upper layer mode (shown by grey
lines) could be occurred for its individual sub-modes. At the moment, the events is

triggered at any sub-mode, systems goes to the corresponding sub-mode of the other

upper layer mode. For example, consider a case event e¥ happens when the system is
located at (S1;,SlI; ). Then system switches to (SI;,Ro, ) since a corresponding sub-

1?2

mode is Sl .
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4.4 Reducing the Complexity of the Hybrid Automaton

The number of modes is highly dependent on the number of objects in the simulation. It
can be calculated according to the equation (117). It is clear that increase in the number
of modes makes the problem more complicated. In this section, we are looking for

introducing ways to reduce this number.

It is known that collision detection problem could be broken up into two sub-problems:
broad phase and narrow phase. In a broad phase, we identify the pair of objects we need
to consider for possible collision. On the other hand, we consider the distance
computation problem as well as collision response in the narrow phase. For the first
phase, a kind of simple bounding volume is used to solve the problem [27]. Therefore, it
is quick to eliminate objects that cannot possibly interact with each other. We denote the
number of objects that cannot possibly interact with each other as n’. Therefore we can

calculate the number of states as:

n-n’

_—y (166)

For example, consider a simulation that we have 10 objects. Assume that more often
minimum 6 of the objects cannot interact with each other. For this case, we decrease the
number of states from 2.95e+ 21 to maximum 729 states with the help of narrow and
broad phase. Figure 19 shows that maximum four objects can interact with each other in

the shaded bounding volume.
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Figure 19. Bounding volume and broad phase

Although we decrease the number of states, it seems that it should be reduced more. We
consider three possible contact configurations between each pair of objects. In most of
the cases, the slipping mode is too short and it is like a transient period to rolling or
sticking mode. The duration of this transient period is highly dependent on the coefficient
of dynamic friction. More friction implies the less transient time. The alternative is to
model slipping contact as series of micro-collisions. Hence the model used for
intermittent mode can also be used for the transient slipping mode. The same strategy is
done in the impulse-based simulations. In impulse-based method, all contact
configurations (rolling, slipping, and sticking) are modeled as the series of tiny micro-
collision. Unlike the impulse-based method, we do not model a rolling or sticking mode
as series of micro-collision. Our decision is based on two main reasons. First, the tiny
micro-collisions behave like very low-amplitude, high frequency impulses on each body.

In consequence, the time integral of force times velocity (work done) show increase with
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respect to time. It gradually adds energy into the system. The amount of energy in a short
transient slipping period is small. Therefore it doesn’t affect the simulation too much.
Secondly, considering another mode for sticking and rolling case helps the system to
avoid from Zeno behaviour. Finally, we reduced the number of contact situations

between each pair from three to two. Then, the number of states is given by:

e (167)

In the second step the number of states are reduced from 729 to 64 . Briefly, we can
summarize the reduction algorithm in the following proposition. The proposed algorithm

is graphically summarized in figure 20.

Broad Phase Narrow Phase Simulation Phase
[n] » {n-n’] > [n—n’]
TI1=3\? I=3 2 =27
Fliminating the number of Reducing the number of
objects contact configuraion

Figure 20. Reduction algorithm

Proposition 5 To reduce the hybrid automaton complexity, first the problem is divided
into two sub-problems: broad phase and narrow phase. Objects that cannot possibly
interact with each other are eliminated in the broad phase. Secondly, the number of
contact configurations between a pair of object is reduced from three to two

configurations by modelling a slipping contact as series of tiny micro-collision.
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4.4.1 Zeno Behaviour

In this section, firstly we introduce Zeno paradox. It is desired to move from point A to
point B in a finite time. But to reach B, we must first reach M ; the midpoint of AB, and
to reach that, we must first reach the midpoint of AM. Since space is infinitely divisible,
we have to reach an infinite number of midpoints in a finite time. This phenomenon is

called as Zeno paradox.

An execution of a hybrid system may exhibit infinitely many discrete jumps in finite
time. This phenomenon is denoted as Zeno behaviour. As mentioned in the previous
section, considering another mode for the sticking and rolling cases helps the system to
avoid from Zeno behaviour. To define the Zeno mathematically, it is a need to define a

hybrid time set.

Definition 9. A hybrid time sel is a finite or infinite sequences of interval T = {I.}", such
that

e I =[t t]foralli<N;

e if N <o theneither I, =[t_ .t} or I, =[t_,t ];

o t <t =t foralli.

i = Mgl

Note that the right end point of one interval coincides with the left end point of the
following interval. The interpretation is that these are the times at which events are

triggered. Consider a set, which includes all event times, S__ :{t,,t,,....t, } . If this set

90



1s closed and countable and also 0 € S we called that set as an admissible event times

event ?
set. With the help of hybrid time set, we are able to give a mathematical representation of
Zeno behaviour.

Definition 10. An admissible event time sets S is left Zeno free if

event

o forall t'>1t,(t,t)nS,,, isnotempty

and is right Zeno free if

o forall t'<t,(t',t)nS,, ., 1s not empty.

event

In the following subsection, we show how we can solve the Zeno problem by introducing

a new mode of sticking.

4.4.1.1 Example

A model for a bouncing ball can be represented as a simple hybrid system with one
mode. A dimension of the continuous state is two. X, is the vertical position of the ball ,
x, is the velocity and g represent the gravitational force. The ball bounces when x, =0.
At each bounce, the ball loses a fraction of its energy. This happens when we reset the

velocities according to the Poisson’s law of restitution x, = —cX, .
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Figure 21. The simplest hybrid model for bouncing ball

1,0
2¢'x)

Assume x,(0)=0 and x,(0)=x., event times are related through t =t +
o
o

0

5

g—gc

. Ball is at rest within finite time span, but after

This sequence has finite limit t* =

infinitely many bounces. Therefore, the set of event times has right Zeno.

o - I _—
Green: Velocity
1.5- Blue: Position
1 -
0.5~
O —
-0.5
-
1.5
2 — — — — . —
0 05 1 1.5 2 2.5

Figure 22. Zeno behaviour for bouncing ball
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Zeno behaviour is clearly seen in the figure 22. The jumps in velocity happen as a result
of collision. To solve the problem, it is required to introduce a new mode for our hybrid

scheme. This new hybrid system is shown in the figure 23.

Figure 23. Modification of hybrid system to solve the Zeno problem

Finally, the solution for Zeno problem is depicted in figure 24. The second mode of

operation illustrates the sticking mode for the ball.

2 ' I
“
‘ Green: Welooity
vsl Blue: P osttion |
1 4
0S¢ —
i . e
a5 —
At q
1.5 —
2 Yy I |
D D5 ! ' i N 3
time (s)

Figure 24. Solution of the Zeno problem
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Finally, the solution for Zeno problem is depicted in figure 24. The second mode of

operation illustrates the sticking mode for the ball.

4.5 Applications in 3D Simulations

A reduced hybrid model, which describes the model for V-Groove problem is depicted in
figure 25. There are only four modes of operation in the reduced model. It is important to

note that the slipping contact is modeled as a series of micro collision. Consequently,

modes of operations correspond to slipping contact;(1,,,S1,,),(S},,,1,;) and (S1,,,S1;5),

are merged in mode (1,,,1,,).

12 13
€ .6 Q|

Figure 25. Hybrid Model for V-Groove problem
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Five events completely are responsible for switching between the modes. The events
e;’and e’ physically mean that collision is detected between the ball and surfaces of V-
groove. They can be shown as:

e = {X|w® <T, AW <-T_} (168)

e = (X W <T, AW <-T,} (169)

When event €} or ¢}’ is triggered, a rolling or sticking contact between the ball and the

corresponding surface of V-groove starts. They are mathematically expressed as:

S = {X W% <T, A=T, < W% <BAy/(WE) +(w2)? <T,} (170)

e = (X | WP < Ty A-T, < W2 <BA (W) +(W5)? <T,} (171)

The last events ey and e}’ are responsible for switching from the rolling modes to

intermittent/Slipping modes. This may happen due to the existence of tangential velocity

or vanishing of a normal force. They are given by:

2 = X | W > T, vz <—Av (W) +(wi)? > T} (172)

e = {X | W2 > T, vz < —Av (W32 + (W) > T, } (173)

Finally, we test our method with different initial conditions for V-groove problem. The
simulation shows the rolling ball and V-groove example in real 3D environment. A ball
rolls down the surface of V-groove and then hits another surface and after that it goes

down the V-groove. The ball and V-groove 3D simulation is shown in the figure 26.

95



Figure 26 Ball and V-Groove 3D simulation

The simulation is tested and ball trajectories is shown in figure 27 . Firstly, ball is in the
ballistic motions. Then hits the first surface and bounces. After a period of bouncing, ball
starts to rolls on the surface until the moment at which hits the second surface. After
hitting the second surface, ball bounces back and forth between two surfaces and finally
rolls down the V-groove.

100+

504

‘50\.

‘100'\-\

-150.]
1]

200 - 200

400 g 50 1oa

Figure 27 Ball and V-Groove 3D simulation
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Most importantly, the mode transition is investigated via different initial conditions. It is
clear from figures 28 and 29 that there is no chattering between the modes. An integer

number is assigned to each mode, where 1,2.3and 4 are respectively representing the
states (I,,,1;;), (Ro,,.1,3), (I;,,R0,;) and (Ro,,,Ro0,;). The system is initially located at

the first mode. After a while bouncing contacts switches to continuous rolling contact. In
consequence, system switches to the second mode. The transition from continuous
rolling contact to intermittent one happens due to the collision to the second surface.
Hence, system switches back to the first mode. Finally, ball rolls down the V-groove and
system switches to the fourth mode. It is important to note that the switching from the
first mode to the fourth mode is not possible according to our automaton design. The

zoom in-figures are clearly showing this fact.

5 - 5
“or State i 45r State )
4 4t — 4
3.5 g 3.5} B
) § 3 -
2.5¢ B 2.5+ ~
2 . 2 ( -
15 . 1.5 l i
i
1 4 ) S 1
0.5 B! 0.5 B
0 1 1] 1 ] 0 L 1 1
0 5 10 15 20 25 15.6 15.8 16 16.2
time (s) time (s)

Figure 28 State transitions for a case in which ball is dropped near the first surface
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Figure 29 State transitions for a case in which ball is dropped near the second surface
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5 . Conclusions and Future Work

5.1 Conclusions

Constrained-based simulation is a well-studied topic due to its applicability to a large
class of physical problems. On the other hand, the impulse-based simulation is a recent
approach that is particularly suitable for collision intensive systems. However, neither
technique is perfect to address physical system simulations during both collision and non-
collision modes. Hence, a hybrid model that utilizes both methods effectively under a
hybrid automaton framework enables much more realistic physical simulation. This
thesis introduces a new hybrid design for simulating rigid bodies in various contact

situations.

In the third chapter, a hybrid simulation system that combines impulse-based methods
and constrained-based methods is presented. It is shown that the collision response
problem can be modeled effectively by combining the singularly perturbed sliding
manifold DAE realization with the impulse-based method. A recent DAE realization,
singularly perturbed sliding manifold approach, is utilized for simulation rigid bodies in
continuous contact. An explicit state space approximation of these DAEs is constructed
consequently. Furthermore, a hybrid system that transform from ODEs (no contact) to
DAEs (continuous contact) is analyzed within the hybrid automaton framework. Some
examples are provided to demonstrate the efficiency of the proposed method to model

two rigid bodies in contact.
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In the fourth chapter, generalized hybrid automation framework for more than two rigid
bodies is introduced. A solution to the problem of multi-resolution under hybrid
automaton framework is proposed to implement the hybrid simulation. In addition, a
model reduction algorithm is presented. Model reduction algorithm reduces the number
of possible contact situations in two consecutive steps. First, the number of modes
decreases with the help of broad and narrow phase strategy. Next the number of states is
decreased by modelling a slipping contact as a series of tiny micro collisions. Proper
examples are given to demonstrate the effectiveness of the proposed algorithms. Finally,

a unique solution to Zeno problem for the proposed hybrid systems is suggested.

The contributions in this thesis are summarized as follows:

e A new hybrid simulation approach for modelling multiple rigid bodies in contact
under a hybrid automaton framework

e The approach combines the efficiency of the impulse-based method for
intermittent contact and the SPSM approach for continuous contact

e A physics based hybrid model reduction algorithm is proposed to reduce model
complexity

e A method is proposed to eliminate Zeno Behaviour

This thesis represents the first hybrid modelling approach that combines DAE constraint

stabilization (SPSM) with the impulse method. The proposed approach is the first hybrid

modelling approach suitable for hard real-time virtual reality applications.
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5.2 Future Work

In this section, we state the possible future directions of this research work. Generally
speaking, one of the main problems of hybrid systems is the chattering problem. The
hybrid system literature is loose in this area. In consequent, a tuning procedure for the
parameters is a need to avoid chattering. Finding a systematic or hierarchical way to tune
the parameters could be a great step to make the hybrid design more effective. Briefly,
finding a systematic method for selecting simulation parameters is the main direction of

our research.

Implementing the hybrid simulation on the cluster of computers helps us to improve the
real time performance of the simulator. For instance, a computation of each state can be
assigned to a different computer. It is apparent from a broad phase algorithm that each
bounding volume of space is independent from the other ones; this makes the problem to

suit well for the cluster of computers.

Our future direction can be summarized as:
e Systematic methods for selecting simulation parameters
¢ Distributed simulation for computational clusters

e Theoretical analysis of chattering and Zeno behaviour
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