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Abstract

Behnood Gholami

Receding Horizon Control of Uncertain Systems

In the first part of this thesis stability robustness for quasi-infinite Receding Horizon
Control (RHC) of an uncertain nonlinear system is investigated. A sufficient condition is
developed for stability of a general nonlinear RHC system subject to perturbations. The
result is further specialized to linear systems. For this case it is demonstrated that the
closed-loop system is stable out side a bounded set containing the desired equilibrium
point upon satisfaction of an LMI constraint along with a bounded perturbation
assumption. The new result is applied for control of a mobile robot system which
demonstrates the validity of the approach. In the second part, RHC of an uncertain
nonlinear system is considered where the computational time is not negligible. The
existing method proposes a solution to deal with non-zero computation time by predicting
the states at the next sampling time, which provides the controller with sufficient time to
generate the required input signal. This work extends this previous result by applying
neighboring extremal paths theory to improve the performance further through the
addition of a correction phase to the algorithm. The proposed method is composed of
three steps: state prediction, trajectory generation, and trajectory correction. The new
approach is applied for control of a mobile robot system, which demonstrates significant

performance improvements over the existing method.
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1 . Introduction



1.1 Motivation

Multi-agent systems have received a growing amount of interest in the past couple of
years in different disciplines, each having their specific reason for using multiple agents
instead of one. Challenges involved in multi-agent systems control are

e Their dynamic environment, therefore requiring a control method capable of
changing the strategy online.

e Constraints on the state space and inputs, as there are always constraints present
due to the available physical space for the movement of the agents and also
constraints on the actuating power.

e Goal accomplishment while minimizing a cost, as is the case for almost all
engineering systems.

Receding Horizon Control (RHC), however, is considered a proper technique in dealing
with such systems due to its most distinguished feature which involves repeated online
solution of optimal control problems. This property, which enables application of this
scheme on systems operating in dynamic environments (i.e. environments which are not
completely identified - avoiding a pop-up threat in multi Unmanned Aerial Vehicle
(UAV) missions is an example), along with its ability to handle constraints on states and
inputs while optimizing a specific cost function are the main reasons that encourage

researchers to apply this techniques to multi-agent systems.

Since multi-agent systems appear in the research work of people in different disciplines

having different objectives, in the next section we briefly review the works done so far



and categorize them into three main groups. The following discussion, reviews the huge
body of work done in the multi-agent systems. This, however, still serves as the
motivation for our work on RHC. A comprehensive review of the work done in RHC

will follow this discussion.

1.2 A Discussion on Multi-Agent Systems

The majority of the research work addressing the problem of multi-agent systems fall into

the one of the following categories:

e Physics and Mathematics
e Control Theory

e Computer Graphics

While the works appearing in the first category has more intension towards analysis of
such systems, the works in the other two categories address both analysis and design
issues. The remainder of this section is devoted to describe each category's point of view

and some relevant works done in this area.

While there has been some literature review works addressing the multi-agent systems in
general (e.g. [1] and [2]), this has always been limited to works in a specific discipline,

where the multi-disciplinary flavor of this subject is not evident in them. A survey similar



to the present section can be found in the introduction section of [3], however, the range

of topics covered is not as complete as the materials discussed here.

1.2.1 Physics and Mathematics

The motivation for the researchers in this field comes from the fact that insects, animals,
bacteria and other agents which try to form a group or swarm, usually show complex
behaviors resulting from very simple rules. This includes an attraction/repulsion law
between the members of a swarm and some reactions in response to environmental
effects. A major body of work in this category tackles the problem of analysis of a swarm
of agents, where a member of such swarm, called a motile element [4], has the ability to
move around and sense neighboring agents. A common assumption in such papers is that
agents are considered as point masses (see for example [5]) and the interaction forces
between the members are similar to inter-molecular attraction/repulsion profile [4]. The
number of the particles considered are usually large and the main objective of these
articles are to understand the general characteristic of such systems resulting from a large

number of individuals and a limited number of rules.

The interested reader is encouraged to refer to papers [5].[6],[7] and the references

therein for a more detailed description.



1.2.2 Control Theory

It is almost always true that there is strength in numbers. Not only that a group of agents
can perform tasks that a single agent is unable to do, there are several other factors, e.g.
robustness to failure of individual units and dealing with a dynamic environment,
economic cost and simplicity of design of individual agents, that has motivated the use of
multiple agents instead of one in numerous applications. Multi-agent systems are
believed to be useful in a wide range of applications including but not limited to search

and rescue missions, deep space interferometry, fire fighting in forests, to name a few.

Although the general frame work for multi-agent systems is common, agents might have
different realizations in the physical world, namely, spacecrafts [8],[9], UAVs [10],
mobile robots and land vehicles [11],[12] or marine crafts [13]. While analysis of the
group behavior has been considered in this context, papers in this category are more oOr
less concerned with the design of control laws and strategies that result in a desired pre-

specified group behavior.

The methods used to tackle such problems are diverse; among those use of the following

methods is common:

e  Graph Theory [14],[15], where the authors use this theory to address problems
ranging from formation stabilization to changing between formation patterns.

e Convex Optimization and Mixed-Integer Linear Programming [16], where



the techniques used address problems such as fueltime optimal algorithms for
coordination of a group of agents.

e Artificial Potential [17], where it is used for collision avoidance and target
tracking.

e Decentralized Control Techniques [11],[18], where the stabilization of the
formation in the presence of local information and/or no central decision making
unit is addressed.

e Lyapunov Synthesis [3],[19], where the authors seek a control law to stabilize
the system.

e Behavior-based Techniques [12], which seems to be promising in tackling
multi-objective problems, where the agents have to reach a goal while satisfying
other requirements, e.g. obstacle avoidance, formation keeping,.... Although no
guarantee of stability is provided in this method.

e Receding Horizon Control (Model Predictive Control) [20],[21], where a
general (optimal) approach is being proposed for formation control in a
decentralized way.

e Game Theory [22], where the authors use this framework mainly in the context

of pursuit and evasion problems.

The reader is encouraged to refer to the papers cited above and the references therein for

a full description.



We should make a distinction in the works done in this category, between flocking
[3),[14] and moving in formation [18],[19]. While the desired condition in flocking is the
cohesiveness of the members of the group (with no predefined shape) and moving
towards a common target, in problems involving formation, the states of each individual

member and the overall pattern of formation is important as well.

While the majority of the work done in the “Control Theory” category is somehow
similar to the above mentioned papers, there exist some other articles having somehow a

different taste and point of view, which are briefly summarized bellow:

e Herding Problem (Sheepdog Problem) [23],[24] - There is usually a swarm of
agents (sheep) with local decentralized control law with a tendency of dispersion.
Our means of control for guiding this group to a predefined area (e.g. a circle) is

one or multiple dogs.

e Pursuit Evasion [25] - This type of problem, similar to the Herding Problem
involves interaction between multiple groups, as there is some non-cooperative
interaction between different agents. When it comes to non-cooperative games,

use of concepts from Game Theory seems justified [22].

o Entropy in Multi-Agent Systems [26] - In this type of problems, authors have
seen some connection between the Entropy (carrying a concept similar to what is

defined in Thermodynamics) and the multi-agent systems. Few papers have



addressed multi-agent systems in this context.

1.2.3 Computer Graphics

Multi-agent system has also been an interesting topic for those working on computer
graphics, animation and video games. In this context, the realizations of the agents are
autonomous characters that interact with each other in a cooperative or non-cooperative
manner. In [27] which is one of the early works in this field, Reynolds has devised a set
of ad hock control laws that results in a desired group behavior similar to what is seen in
the nature by birds, fish, etc. Successful implementation of these algorithms in computer

animation has been reported in the same article.

One of the best realizations of autonomous characters in the context of computer
graphics is that seen in strategic games. In such games, while the user specifies a certain
goal at the highest level, a set of heterogeneous characters (e.g. vehicles, soldiers, ...)
perform the designated task in an autonomous manner. In such games, the opponents
decision making, done by the software itself, is totally autonomous, both in the high-level
and low-level tasks. Examples of such strategic games are [28],[29], where the goal is to
defeat the opponent using the available resources. The user serves as the high level
controller specifying general strategy, while the individual agents autonomously follow

that strategy.



While the researchers in this field address both design and analysis of such systems, there
is usually no guarantee of stability involved in their work. The overall behavior of such
systems is the combination of a set of pre-specified behaviors, resembling the behavior-
based approach in the previous section. Application of more rigorous techniques from
other categories of this review in computer animation and video games seems to be

promising and will help to construct more powerful and realistic simulations.

1.3 Research Objectives

The objective of this thesis is two-folded: In the first part of the thesis, stability
robustness for quasi-infinite RHC of an uncertain nonlinear system is investigated and
discussed further in the linear case. Although such robustness analysis is present for dual
mode RHC, this issue has not been addressed in the context of quasi-infinite RHC. In
quasi-infinite RHC, we seek an optimal input profile in a finite time span, while the
terminal cost of the optimal control problem bounds the infinite horizon cost of the

nonlinear system, therefore leading to the name quasi-infinite.

In the second part, RHC of an uncertain nonlinear system is considered where the
computational time is not negligible. The existing method proposes a solution to deal
with non-zero computation time by predicting the states at the next sampling time, which
provides the controller with sufficient time to generate the required input signal.

Although this approach solves the problem of practical implementation of RHC in the



presence of computational delay, properties guaranteed by the theoretical work does not
hold for such systems due to the fact that the pre-generated control signal is not optimal.
This comes from the fact that uncertainties present in the system produce error in state
prediction. We propose a new method that can provide the plant with the optimal input

in the presence of the computational delay.

1.4 Literature Review

Receding Horizon Control (RHC), also known as Model Predictive Control (MPC),
was first introduced in the process control community. It has attracted the attention of
many researchers due to its ability to handle constraints on the states and inputs in multi-
variable control problems [30]. Until recently this approach has found most of its
applications for process control problems with slow dynamics. However, recent
advances in computing performance and distributed computation has allowed the
approach to be applied to mechanical systems with fast dynamics such as aerospace and

mobile robot systems.

The RHC approach is essentially a repeated on-line solution to a finite horizon open
loop optimal control problem. Based on the current state values, an optimal control
problem is solved for a period of time called the prediction horizon. The first part of the
computed optimal input is applied to the plant in a period of time called the execution
horizon until the next sampling of the states becomes available, where again the same

procedure is repeated. The execution horizon might be constant or time varying.

10



Since RHC is based on solving constrained optimization problems, constraints on
inputs and states can be explicitly dealt with, a fact that makes it attractive in industrial
applications where constraints on the states and saturation of inputs should be strictly
observed. However, RHC of constrained systems is nonlinear in nature and thus
Lyapunov theory must be used to study the stability of the nonlinear closed loop system
[31]. As pointed out in [32], the repeated on-line solution of a finite horizon optimal
control problem does not guarantee an asymptotic property such as stability. A number
of methods have been proposed to guarantee closed loop stability where a terminal cost
or a terminal constraint, or a combination thereof, is introduced in the optimization
problem. For a detailed survey, the reader is referred to [31]. Recently, Jadbabaie [33]
suggested the use of Control Lyapunov Functions to avoid the necessity of using terminal

constraints, resulting in shorter computation time.

In the past, the repeated on-line solution of an open loop optimal control problem
limited the application of RHC mainly to process control problems. In process control
problems found in chemical industries, the dynamics of the plant is slow enough to allow
for the computation of the optimal control and therefore computation time is not an issue.
Today, with the current improvements in computing power available for control purposes
and the introduction of faster optimization algorithms, such as the one suggested in [34],
RHC can be applied to plants with fast dynamics, as found for instance in aerospace
systems. Authors in [34] use an active set approach for solving the online optimization

problem found in RHC and propose an algorithm which is capable of finding more

11



accurate solutions to the optimization problem and at the same time being robust to the
initial guess when compared to algorithms having the same computation time. In [35], a
direct method for solving optimal control problems has been proposed based on the
properties of flat outputs. The dimension of the optimization space is considerably
reduced using such outputs, and makes it more attractive from the computational point of
view. The method proposed in [35] was applied successfully to a vector thrust flight

experiment in [36], which is an example of an aerospace system having fast dynamics.

The issue of robustness of RHC-based closed loop systems was addressed by
Michalska and Mayne in [37], where they consider the dual-mode RHC. In such case,
the receding horizon controller drives the states to a terminal region containing the
desired equilibrium point. Once the state is in the terminal region, a classic linear
controller is applied to stabilize the system. Later, Chen and Allgower [38] proposed a
quasi-infinite horizon scheme, where the on-line optimization problem is repeatedly
solved whether or not the states reach the terminal region. In quasi-infinite RHC, the
terminal cost bounds the infinite horizon cost by penalizing the terminal states
appropriately. This leads to a finite horizon optimal control problem having a quasi-
infinite prediction horizon. The idea of linear feedback controller applied in a terminal
region, in the vicinity of the equilibrium point, is also used in quasi-infinite RHC;
however, the terminal controller is never implemented on the actual system and is solely
used for the design of a stabilizing receding horizon controller. Thus, with quasi-infinite
RHC there is no necessity for switching between controllers and the asymptotic stability

property is achieved using a single mode controller. Also, the role of the terminal

12



constraint penalty matrix is two-folded: it is serves as a bound for the infinite horizon
cost and can be used to define the terminal region off-line. Therefore, quasi-infinite RHC
appears to be more general compared to the dual-mode RHC and RHC involving terminal
equality constraints [38]. However, robustness of this quasi-infinite RHC in the presence

of disturbances has not been previously addressed.

On the other hand, addressing the problem of online optimization methods to solve
such optimization problem and also the issue of computation time are unavoidable when
the implementation of the RHC system is considered. In [45] and [46], authors propose
dividing the nonlinear optimal control system architecture into two parts: An outer loop
which generates the reference optimal outputs to be followed by the plant and an inner
loop stabilizing the states of the system around the generated reference trajectory using
neighbouring extremal paths theory. The main objective of the method described in [45]
and [46] is to propose a real-time implementation strategy for optimal control schemes
implemented on-line. The Legendre pseudospectral method is used to approximate the
states, co-states and inputs instead of the B-Spline approximation proposed in [35]. In
reference [45], the approximation method allows for rapid generation of optimal

trajectories, which can potentially be useful for RHC problems.

In the literature, there are several studies on the stability of closed-loop systems
obtained with a RHC strategy, albeit with a zero computation time assumption [33], [45] .
In practice, however, there is no guarantee of closed-loop stability as the zero

computation time assumption is violated, especially for systems with fast dynamics.

13



Although several methods for rapid generation of optimal trajectories exist [35], [45], the
problem of non-zero computation time is unavoidable for mechanical systems. Milam ef.
al. address this issue in [44], by proposing a method involving prediction of the states at
the next sampling time before hand, which gives the controller enough time to generate
the optimal trajectories. The predicted states serve as initial conditions for the open loop
optimal control problem, giving the controller a computation deadline equal to the
sampling period to solve the optimisation problem. At the next sampling time, same

prediction and optimal trajectory generation procedure is repeated.

1.5 Thesis Contribution and the Outline of the Thesis

We first review some background material including optimal control and the flatness
property, which will be used in the subsequent chapters. To address the problem of
stability robustness in the context of quasi-infinite RHC, we briefly review the quasi-
infinite RHC in section 3.1. In section 3.2 a sufficient condition is developed for stability
of a general nonlinear RHC system subject to perturbations. The result is further
specialized to linear systems in section 3.3. For this case it is demonstrated that the closed
loop system is stable outside a bounded set containing the desired equilibrium point upon
satisfaction of an Linear Matrix Inequality (LMI) constraint along with a bounded
perturbation assumption, which serves as the main contribution of the this chapter. A
numerical example of a mobile robot of unicycle type presented in section 3.4,

demonstrates the validity of the proposed conditions.

14



In the work presented in Section 4, the RHC of uncertain nonlinear systems with non-
zero computation time is addressed. The theoretical background needed is presented in
sections 4.1 and 4.2, where the general RHC scheme and the theory of neighboring
extremal paths [47] are briefly discussed, respectively. In section 4.3 we build upon the
work presented in [44] by proposing the addition of a correction phase to the prediction
and trajectory generation in the RHC of systems with non-zero computation time. In our
proposed method, the control signal design for the RHC system is obtained in three
stages, the first two being those proposed in [44]. The prediction phase estimates the
values of the states of the system in the next RHC sampling time. An optimal trajectory
is designed with the initial conditions of the optimal open loop problem being the
predicted values calculated in the prediction phase. The generation of this trajectory is
the most time consuming part of the computation of the RHC inputs. The actual values
of the states available at the next sampling period can be used to modify this pre-
calculated trajectory using neighbouring extremal paths theory. This constitutes the third
phase, ie. the correction phase. The modification can be assumed to have zero
computation time, even in systems with fast dynamics such as aerospace systems, as

discussed later in this section.

Using our proposed method, the solution to the open loop optimal control problem
obtained by assuming zero computation time can be recovered as long as the conditions
put forth in section 4.4 are satisfied. The method proposed in this chapter allows for use
of RHC in practical systems, while the theoretical results assuming zero computation

time for uncertain nonlinear systems still applicable to such practical systems; a property

15



that does not hold for the method presented in [44] as the actual solution to the optimal
control problem is not obtained due to the state prediction errors. To illustrate the new
approach, it is applied to a mobile robot of unicycle type. Simulations of the system,
presented in 4.5, show considerable improvement in performance compared to the

existing method found in [44].

16



2 . Background Material
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2.1 Review of Optimal Control

In this section a brief review of classical optimal control will be given. We confine our
attention to continues-time systems. The interested reader should refer to [47] for more
details on the materials presented in the next sub-sections and a discussion on multi-stage
systems.

2.1.1 Open-loop Optimal Control Problem
An optimal control problem is defined as follows:
Consider the following system of differential equations

(t) = fx(0),u(t)) [21, (1)

where x(t;) is given, x(?) is the state of the system and u(%) is its input. Find a control law

u(t) such that the following performance index (scalar) is minimized
J=olx,)1,)+ j’of Lx(t), u(r), 1)t @)

Depending on the problem, they may be constraints on {;, the optimization horizon, states

and/or input variables. Tools from calculus of variations are being used to solve such a
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problem. A standard approach is to introduce a set of co-state variables Ai(t), and form the

Hamiltonian of the system defined as follows:

Hx(0),u(t), A0),1) = L{x(),u(t),1)+ A f(x(1),u(1),1) 3)

As a necessary condition for optimality a set of differential equations subject to boundary

values should be solve which is summarized in the following sub-sections.

2.1.1.1 No terminal constraints, fixed terminal time

To find the control vector u(?), that produces a stationary value of the performance index

J, we must solve the following differential equations:

%= fx,u.t)

T T
(Y
ox Ox
Where u(?) is determined by

T T
H_o o (ﬁfijm(ai] ~0
ou ou

Subject to the boundary conditions

4)

)

19



x(t,) given

At,)= (%%j (©)

=y
The above problem is referred to as a Two Point Boundary Value Problem (TPBVP). In

the next parts of this section, we will discuss on numerical methods to solve such

problems.

2.1.1.2 Functions of the state variables prescribed at a fixed

terminal time

Consider the system (1) and the performance index (2) with ¢ additional constraints

on the state variables at the terminal time ¢ as
vl )t,)=0 (7
The TPBVP is as follows

%= flxu,t)
oge
Ox ox (8)

T T
‘E:(%j M(?é) o
ou ou ou

yl

Il
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xi(to) given or A(ty)=0, k=1, ,n asn boundary conditions as well as

op oy
)= LZ+v =
) (Gx Y ox j,_,f ©)

With q side conditions as
wxt,).1,)=0 (10)

In (9) v are parameters introduced as a result of constraints on the end points to be

determined by the set of equations mentioned above.
2.1.2 Numerical Methods for Solving TPBVP

In this sub-section, our objective is to review numerical algorithms to solve a TPBVP,

namely, a set of differential equations
@)= fley(x) a<x<b (11)
And a set of boundary conditions

2(¥(a), 9(8))=0 (12)
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Among different methods we briefly review the Shooting Method and the Collocation

Method.

2.1.2.1 Shooting Method

As there are numerous efficient algorithms to solve Initial Value Problems (IVP), a
possible way of solving numerically a TPBVP is to transform it to a IVP and an algebraic

equation. Consider the system (11) along with the following initial value conditions

Wa;s)=s (13)

With s being an unknown set of parameters. Now the problem transforms into solving for

s in

gls, y(b;5) =0 (14)
Equation (14) can be solved using any method for solving a (nonlinear) algebraic
equation (e.g. Newton’s Method). Note that each function evaluation of (14) requires

solving an [VP.

Although this method is easy to understand, it has some disadvantages, e.g. the IVPs may

be unstable although the BVPs are stable or starting with some initial guesses may lead to
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solutions partly defined on the interval [a,b/ which causes problems in the

implementation of the algorithm. For a detailed discussion of this algorithm refer to [48].

2.1.2.2 Collocation Method

In this method the solution y(x) is approximated by
K

v(x) =2 ah(x) (15)
i=l

Where Ai(x) is some well-behaved basis function and a; are parameters to be determined

by the following conditions:
¢ Boundary conditions — v(x) should satisfy the boundary conditions
e Collocation constraints — The approximate solution v(x) satisfies the original

differential equation (11) in K-1 points.

If we are not unlucky, we will end up with a unique solution for the mentioned problem

and as K — « the approximate solution v(x) will converge to y(x) [49].
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2.1.2.3 Example 1: VanDerPol Oscillator

As an example, we will solve the VanDerPol Oscillator problem, defined in [35].
VanDerPol Oscillator is a classical example in nonlinear system theory. For a

fundamental introduction refer to [50].
Consider the system and its initial conditions

X, =X,

%, =—x, +(1—x])x, +u (16)
x(0)=1

x,(0)=0

Subject to a performance index and endpoint condition of the form

1 2 2 2
I =7 [+ 23 +u ) -
x,5)-x,(5)-1=0

As mentioned in 2.1.1.2 the above problem can be transformed into the following TPBVP
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X, =X,

%, =—x, +(1=x))x, +u

A = (1+2x,x,)4, —2x,

Ay =—A —(1=x])A, —2x,
)’2

u=-——

2 (18)
x,(0)=1
x,(0)=0
AL(B)=-v
A,(5)=v
x,(5)-x,05)-1=0

The following solution was obtained using MATLAB which solves TPBVPs using

collocation algorithm (bvp4c.m).

Figure 1. Open-loop control of the VanDerPol Oscillator
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2.1.2.4 An Alternative Approach For Solving Open-loop

Optimal Control Problems

Milam et. al. in [35] has suggested the following approach to solve the open-loop optimal

control problem:

1. Transforming the original set of under-determined differential equations to the
lowest dimension possible by choosing the appropriate set of outputs (possibly
flat outputs — a brief discussion on flat outputs is given in the next section).

2. Parametrizing the selected outputs using B;Spline basis functions.

3. Reformulating the original constrained problem with the new parametrization.
This results in an optimization problem, where the objective is to find the
unknown parameters introduced by B-Splines such that the performance index
is minimized.

4. Using Sequential Quadratic Programming (SQP) to solve the constrained

optimization problem.

The main motivation for using such method is its speed of convergence as compared to

the other methods (refer to [35] for a detailed comparison).

This method would be especially useful if we would like to solve the optimal control

problem on-line.
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2.2 Receding Horizon Control

2.2.1 Theoretical details of the RHC

Consider the nonlinear system
Mty = fx@.u@)  x(0)=x, (19)

where x(f) € R" and u(f) € R™ are states and inputs of the system, respectively. Assume

that the following constraints on input is present:

u(t)eU (20)
And the vector field f(x(t),u(t)) satisfies a set of assumptions (Assumptions Al-A3 in
[38]). Moreover, f{0,0)=0 meaning that the origin in the presence of no control input is an
equilibrium point of the system. Now the open-loop optimal control problem (that should

be solved repeatedly) is stated as follows:

Problem [38],[56]: Find

J" (x(0).T) = min J (x(0),u().T) @1)

with
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J(x(0),u(),T) = J’” G|x(r;x(t))||2Q + @) )dr + e+ T3 x| 22)
Subject to

x(s) = f(x(s),u(s))
u(s)eU selt,t+T] (23)
x(s;x()e”Z

and
x(t+T;x(1)eQ - (24)

Where x(r;x(t)) represents the state of the system at time t if the initial state of the

system is x(¢) and Q, R and P are weighting matrices . Equation (24) is called the terminal

constraint and T is the prediction horizon. If the solution to the open-loop optimal control

problem at time ¢ and initial state x(?) is u (1;x(1)) the receding horizon control law is
' (t)=u'(r;x(t)), re[t,t+5), 0<5<T (25)

In the above expression & is the sampling time or execution horizon. After applying the
calculated control law for & time units, the open-loop optimal control problem is solved
again with the current state of the system regarded as the initial state in the optimal

control problem. This incorporates an implicit feedback into the closed-loop system.
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The following diagram describes the mentioned procedure of the RHC method.

Figure 2. Diagram showing the RHC method

2.3 RHC of a Two-Dimensional Double Integrator

A 2D double integrator is described by the following set of differential equations

X, =X,
X, =,
Xy =X,
X, =u,

29
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This system is also known as “point mass system” since it represents a point mass with

mass of unity. We choose the following performance index for this system

J(x(0),u().T)= j' " (“x(r;x(t))”zg e )df +xe + T3x))| 27)

In this example we consider the unconstrained problem. We choose the following

weighting matrixes for the definition of the performance index (28).

Q Iy (29)

I4x4 R
Following the procedure briefly discussed above £2happens to be the entire state space
(since the system is linear and the problem is unconstrained - a point-mass system isa

simple case of a general nonlinear system) and the weighting matrix P is

519 -1 0 0

,e -1 -173 0 0 %
1o 0 519 -1 (30)

0 -1 -1.73

The simulation is done for 6=0.5 and 7=35. The figure shows that the system is

asymptotically stable, as guaranteed by the method mentioned above.
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Figure 3. State trajectory of a point-mass system with RHC scheme

A snap-shot view of the particle moving in two dimensional space is shown in the next

figure.

g

N1

Porg 3 B : . > . o : E

¥

Figure 4. Snap-shot view of the point-mass in 2D space
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2.4 Differentially flat systems

Underdetermined systems of Ordinary Differential Equations (ODEs) are a set of
differential equations where number of dependent variables exceeds the number of
equations. Most of physical and engineering models are considered as underdetermined,
where the influence of the environment (e.g. forces, torques,...) are incorporated in the

model by some additional dependent variables.

Consider the system

Flit,x,x,.,x?)=0 j=L.,N-p 31)
J

Where F 7/ are assumed to be C*-smooth functions, x=(x',..,x")eR" are the
dependent variables, 7 is the independent variable (usually time), x™ stands for the rth
time derivative of x and p (=1) the number of equations by which the systems is
underdetermined. By choosing any p dependent variables and assigning an arbitrary
function to them, all other variables can be found by solving the equations (31).
Therefore, the solution to the system is parametrized by p functions and a number of

integration constants, depending on the order of the system.

32



An interesting question found in [51] is: “Can one find a set of ouiputs (function of
dependent variables and their derivatives) so that by assigning arbitrary functions to
those outputs, all the other dependent variables can be recovered without the presence of

the integration constants?” This gives rise to the definition of the “flat outputs™.

Definition [51]: The system given by (31) is said to be differentially flat or simply flat if

there exists variables y',...,y” given by an equation of the form

y = h(t, x,xV,..,x") (32)

such that the original variables x may be recovered from y (locally) by an equation of the

form

x=gt, .,y s y?) (33)

The variables y'....,y” are referred to as the flat outputs.

In this way the original control problem can be tackled in a lower dimensional space
(equal to the number of flat outputs) where there is a one-to-one correspondence between
each solution in the lower dimensional space and the original space. This property has
been used in the last section, for solving an optimal control problem with higher speed.

For a detailed discussion on flatness refer to [51].
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3 . Quasi-Infinite Receding Horizon
Control of Systems with Bounded

Perturbation
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In this section the stability robustness of quasi-infinite RHC is discussed. This results

can also be found in [52].

3.1 Quasi-Infinite Receding Horizon of Nonlinear Systems

In this section the scheme proposed in [38] is reviewed. The class of systems

considered is described by the set of equations

x= flx@,u@)  x(0)=x, (34)

where x(f) e R” is the state of the system and u(r) € R” is the input vector satisfying

the constraints

w()eU V120 (35)

U is the set of allowable input values. Furthermore, assume that the set of assumptions
(A1-A3) in [38] is also satisfied; that is, f is twice differentiable, U is compact and

convex, and the system (34) has a unique solution for a given initial condition. Receding

horizon control is essentially the repeated solution of the following problem.

Problem 1 Find
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Jo(x(0)= min J (x(0), u(.),T) (36)
with
5001 = [ (et xnfy @l ke e+ 3 (37)

subject to

x(s) = f (x(5), u(s))

u(S)EU } SE[t,t-i-T] (38)
x(t+T;x(1)) € £2,
2, = {x e R'|x"Px < a} (39)

Qec®R™ and ReR™ denote positive-definite, symmetric weighting matrixes by
which the states and the inputs can be penalized, T is a finite prediction time and x(z;x,)
denotes the trajectory of the system (1) driven by u(?) starting from the initial condition

xp. Furthermore, the weighted norms in Eq. (37) are defined as "x”i =x"Px .

Let & denote the receding horizon sampling period, where Jlies in the (0,7] interval. The

closed loop system is described by
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(o) = flx(),u" (@)
w(r)=u (r;x(t)) rtelt,t+5), 0<5<T

(40)
where u'(z;x(t)), te[t,t+T] is the optimal control of the problem stated above with

the initial condition x(z), ¢ being the time of start of the optimization process and the

instant at which states are sampled.

s
[ bAT

Figure 5. A Schematic diagram showing the execution and prediction horizon

3.2 Robustness Analysis

In reference [36] a brief robustness analysis of the RHC scheme proposed in [33]
was discussed, where a ball of specified radius was found where the closed loop system is
stable as long as the states are outside the ball. Such analysis is based on a first-order
approximation of the incremental cost in the /0,0] interval. This result requires a very
small receding horizon update time, &, to be accurate due to the order of the

approximation. In the present section, we follow the methodology in [36], although we

37



propose to use a more accurate approximation to the incremental cost function, to deal
with the RHC with a quadratic cost function presented in [38] and derive a sufficient
condition for the stability of the closed loop system. The higher-order approximation
makes the choice of & less conservative, hence allowing larger values to be used, namely
up to 2 times the order of magnitude when compared with the method presented in [36].

We later specialize our results to the linear case in Section 2.4.

Consider the system

x= f(x,u) (41)

which is used as a nominal model in the RHC synthesis and

y=f(y,u)+g,y.u) (42)

which serves as the model of the real system. In Eq. (42), g(ty.u) accounts for
disturbances and modeling uncertainty and its 2-norm is upper bounded by b and f'in Egs.
(41) and (42) is a Lipschitz continuous function. It can be shown that for sufficiently
small receding horizon updates, &, and with a RHC technique as described in Section 2.2,

the closed loop system (40) is stable in the Lyapunov sense, provided that some nonlinear
inequality is satisfied (49).
According to Theorem 1 in [38], the following inequality holds for the nominal system

J;(x(tk +5))SJ;(x(tk))_Q5(x(tk)) (43)
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where

0,(x())= [ | (2, )] ar (44)

and x*(z;x(t,)) and u"(z;x(t,)) are the optimal values of the states and control inputs for

the open loop optimal control problem with initial condition x(tk).

On the other hand, the following inequality is a direct consequence of the Bellman-

Grownwall Lemma [36]

||y(tk + 5)— x(tk + 5)“ < em"y(tk)— x(tk m+—i—(ew - 1) 45)

where L is the Lipschitz constant of the function f. Since J,(.) is Lipschitz continuous

with a Lipschitz constant of say K, the following inequality holds

* * b
10l + )5 7 0 )- 0l )+ K et 1) (46)
Note that x(tk)z y(tk) due to the zero computation time assumption. To prove the

stability of the closed loop system, we take J;(.) as the discrete time Lyapunov function

of the sampled RHC system and it is straightforward to verify that the following

inequality is a sufficient condition for the stability of the closed loop system.
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b
~0,(x(t,)+ Kz(e” ~1)<0 (47)
We take &° ~ Osince & is sufficiently small. Using Taylor series expansion we have

6300 =6 (e ¥ )5 ax()S 40l ) @

It is straightforward to verify that the set of all points in the state space which satisfy the

following inequality serve as the region of attraction for the nonlinear uncertain system

represented by Eq. (9).
x"Qx+3 f7(x)Qx = 2Kb (49)

Note that f{x) represents the dynamics of the closed loop system where u=u(x) and we

have used the following inequality, which holds for 6 <1[36]

K%(e” ~1)<2KbS (50)

3.3 Robustness Analysis for Linear Systems

There is no guarantee of boundedness for the set of points for which equation (51)
defined in Section 2.3 does not hold for the general case. However, such set can be

bounded in the case of linear systems. In this section we show that the closed loop
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system is stable outside a bounded set which contains the desired equilibrium point
provided an LMI constraint is satisfied. Equivalently, by introduction of perturbations,
the closed loop system will be stable inside a bounded set rather than a single point.
Before stating the main result of the chapter, in the form of Theorem 1, we need to state

the following lemmas and assumption.

Lemma 1. Consider the ellipsoid, centered at the origin, defined by

x"Hx =1 (52)

where x e R” and H =H' is a nxn positive definite matrix. This ellipsoid is contained
in a ball, centered at the origin, of radius,”ﬂ;ﬂ(H)l , where Ai,(H) is the minimum

absolute value of the eigenvalues of the matrix H.

Proof. The length of the semi-axis of an ellipsoid is given by 4" where 4 is the i

eigenvalue of the matrix H [10]. Therefore

max|x| = /4.1, (HD) (53)

xeFE

where E = {xeiR" xTszl}. O

Lemma 2. Consider the set £2, as the collection of ellipsoidal regions defined by
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(x—xc)TH(x—xc)Sl, x eXc} (54)

c

.Q={xeSR"

where H is an n-dimensional square matrix and X; is a bounded set in R”. Then 2is

bounded.

Proof. To show that €2 is bounded, we will find a ball, B,, centered at the origin that
contains £2. Note that since 2 is a collection of ellipsoids, the point having the largest
distance from the origin lies on the boundary of one of the ellipsoids. Furthermore, the
coordinates of a point on the boundary of an ellipsoid, x, can be found by the addition of
two vectors: A vector connecting the origin to the center of the corresponding ellipsoid,
x., and the vector connecting the center of the ellipsoid to the corresponding point, X,

which satisfies x. Hx, =1.

Now take

K= sug“x” =sup|x, + X, (55)
Using the Schwartz’s inequality and the sup property,

K =sup|x, + X, || < sup”xc ||+ sup|.x, (56)
As X, is bounded with a radius of say R, using Lemma 1 we can conclude that

sup|x, |+ sup|x,| = R+ 4, (H) 57)
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The radius of B, can be found as follows

r=R+A. (H) (58)

Assumption 1. Assume a zero computational time for the on-line optimization

algorithm, solving Problem 1 in Section 2.2.

Theorem 1. Consider the receding horizon control of an uncertain system defined by

y=Ay+Bu+g(t,y,u) (59)

where the nominal LTI system

%=Ax+Bu (60)

is used for controller synthesis. For a small enough receding horizon update period, 6,

the closed loop system (40) is stable while the states are outside the bounded set 02

containing the origin, provided that

le(, y,w)|<b (61)

and the following LMI constraint holds

Q+§QA+§ATQ>O (62)
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where b is a positive constant and Q is the weighting matrix in the optimal control

problem.

Proof. Using Egs. (48) and (60), and rearranging terms we end up with the following

equation

2

2 2
X (:x(,)) = A+A +%A2)x; +(B+ fz—AB)u; + %Bi{(tk  x(t,)) +0() (63)

Using (63) and the definition of the weighted norm we conclude that

J'j( x*(z’;x(tk ))“Z)dr = x;TQx; + 52u;TBTQx; + O( 53\) (64)
where
6=5Q+%2QA+%ZATQ (65)

Using (47), (50) and (64) the closed loop system is stable, while the following condition
holds

2KbS < x; Qx, +5°u, B'Qx, (66)

where we have used the following notation for simplicity
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(67)

As Eq. (66) defines a region in the state space (which is a specific form of the condition
(49)) we require this region to be bounded and in the form of an ellipsoid. It is

straightforward to show that Eq. (66) defines an ellipsoid with a boundary given by

(x—x, ) H(x-x)=1 (68)

where

X - —%ZCN)‘IQBu; (69)
1 o o .7

H—E(Q+EQA+EA Q] (70)

provided that the Qs positive definite or equivalently, the LMI constraint in Eq. (62)
holds. Now we define €2 containing the origin, so that while the trajectory of the closed
loop system is outside of this set the system is stable.

Q={xe|(x-xY H(x-x,)<1, u; U] 1)

We conclude the proof by showing that £2 is bounded. As U is a bounded set and
regarding the fact that x, is the image of u, given by the linear transformation (69), using

the property of linear transformations we can conclude that the image set X, is also
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bounded, 7.e. it is contained in the ball centered at the origin with a radius R. Now using

Lemma 2 the radius of the ball containing (2is given by

r= R+ |/, (FD)| (72)

and this concludes the proof. O

Remark 1. Theorem 1 shows that if the linear approximation of a general nonlinear
system subject to exogenous disturbances has norm bounded modeling error, the linear
model can still be successfully used for the controller design purposé, while RHC
controller stabilizes the actual nonlinear system around a bounded set containing the

desired equilibrium point.

3.4 Example

In this section, we apply the previous developed results to the point stabilization of a
differentially driven wheeled mobile robot, which is especially useful in formation
stabilization. For this problem it is desired that each agent take a predefined position

[11]. A mobile robot of unicycle type is described by the following set of kinematic

equations

x=vcost

y=vsind (73)
f=0
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where x and y are the coordinates of a point located at the mid-axis of the rear wheels of
the robot, @ is the heading angle of the robot with respect to the positive x-axis and v and

w are the linear and angular velocity of the robot, respectively. The dynamic equations of

the mobile robot are described by

My=F
Jo=1

(74)
where F and 7 represent the force and torque exerted on the robot (control inputs),

respectively, and M and J are the mass and moment of inertia of the robot, respectively.

A schematic diagram of a mobile robot is shown in Figure 1. This set of equations,
which can also serve as a description for a rotorcraft-like UAV flying at constant altitude

(see Figure 2), can be transformed into a two-dimensional double integrator using

feedback linearization [40], [41] and [42].

yA

Figure 6. A schematic diagram of a mobile robot of unicycle type
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Figure 7. Lynxmotion’s Carpet Rover and Piccolo Pro helicopter facilities in the CIS Lab.

We consider the coordinates of a point off the center of the wheel axis, (x,x3), as the
output (e.g. center of mass of the robot, see Figure 2). Following a series of

manipulations, we end up with the following system (refer to the appendix, Section 0)

X, =X,
X, =u
2 1
) (75)
X3 =X,
X, =u,

where the relationship between the new inputs and the actual inputs to the system is given

by
1 F .
o La*| [cos@ —sin@| |u
m = g + (76)
L, r —vo | |sin@ cosO | |u,
J
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In the above equation L, is the distance from the middle of the wheel axis of the robot to
the chosen point (x;,x3). The RHC of a two-dimensional double integrator is described in

more detail in the appendix, Section 2.3.

We take the actual uncertain system under control as

X, =x,ta,
X, =u+a
2 1 2
. an
X, =x, o, .
X, =u, +a,

where o, e[— l,l] , i=1,2,3,4, are random variables, whereas the initial conditions are
chosen to be xp=[5 -1 -6 0]'. We use the system described by Eq. (75) as the nominal
system for the RHC synthesis and choose the execution horizon and prediction horizon to
be 0.1 and 5 seconds, respectively. Weighting matrices Q and R are chosen as the
identity matrices of appropriate dimension. Matrix P in (37) is found by solving the
Lyapunov equation, Eq. (9) in [38]. The set of allowable input signals U is defined by

U={u=ln, w) eR|-15us1 i=12| (78)

Using Theorem 1, it is straightforward to verify that the LMI inequality constraint (62) is
satisfied and that the perturbation term is bounded, namely b=2. Furthermore, we

assume that 6°=0.001 is negligible, compared to the parameters chosen above.
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To implement the RHC technique, we use the direct method adopted from [35]. Note
that x; and x; are the flat outputs of this system and by choosing them as the optimization
variables we can reduce the dimension of the state space considerably. The flatness
property and its use in control systems are addressed in [43]. We use third-order
continuous piecewise polynomials to approximate the optimum outputs. The interval
[0,5] has been divided into 10 intervals, which are second-order continuous ét the
boundaries. Since third-order polynomials have been used to approximate the outputs,
the inputs, which are the second-order derivative of the outputs will be piecewise linear

as shown in the figures.

As can be seen from Figures 1 and 2, RHC was able to drive the states of the system
to the vicinity of the origin and prevent further deviation from this point in the presence

of a stochastic perturbation in the state equations, as guaranteed by the theory.

states

"""""

Ak---------— o~

, 8 10
time (s)

Figure 8. Time history of x; and x;

50



10

1.5

T T T T
I T 1 i 1 I
< " u1U2_ 1 . 1 I
il | TS | |
i ! i 1 § ! 1
i ! i I
i [ 1 20 1 1
i ! v I ' 1 |
,_ 1 I = 1 I
! [ __ [ | ! |
S T R i
1 1 X
! 1 |
! ! ~ I
| 1 x |
! ! el i
I I & X
I I © X
1 i x:,. 1
1 2 2 (e P P
[ e Sy ..,
i ' — © [
1 ' [ Wu |
1 1 S o I
! ! Q k7S |
I I aem
C £ = _
] t L ad )]
.Il{f_\rnlnﬂ\ - — -7 |
1 A e i
1 A . :
| \.A @ )
A @ 1
I ! = X
12 ) =11} 1
1 - —
I < |
T
~, e
PN #
[N m
t AN i
) 7/ i
l 1, i
i l i
1 1 i
1 1 o m
[sp] N - —

time (s)

Figure 10. Time history of inputs u; and u,

51



4 . Receding Horizon Control of
Uncertain Nonlinear Systems

Subject to Computational Delay
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In this section, we discuss the RHC where the computation time is non-negligible. The

results may also be found in [53].

4.1 Receding Horizon Control of Nonlinear Systems

In this section, we review the general RHC scheme briefly. Although the quasi-
infinite RHC was discussed in Section 3.1, we would like to discuss the RHC in general

in this chapter and will not limit ourselves to quasi-infinite RHC.

The class of systems considered is described by the set of equations

x = f(x(0),u())  x(0)=x, (79)

where x(f) e R" is the state of the system and u(r) € R” is the input vector satisfying

the constraints

u) eU V=0 (80)

U is the set of allowable inputs. Furthermore, we assume that assumptions (A1-A3) in
[38] are also satisfied; that is, f is twice differentiable, U is compact and convex, and
system (79) has a unique solution for a given initial condition. Receding horizon control

is the repeated solution of the following problem.

Problem 1 Find
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Jr(x(0)= min.J (x(1), u().T) (81)

with

+T
1

J(x(0),u(),T) = j (“x(r; x(t))”(z) +u([}, )dz' +|x+ T @), (82)
subject to

%(s) = f(x(s), u(s)
u(s)elU

)} selti+T] (83
Q eR™ and R eR™” denote positive-definite, symmetric weighting matrices, T is a
finite prediction time and x(¢;x,) denotes the trajectory of the system (1) driven by u(1)

starting from the initial condition xp. Furthermore, the weighted norms in (37) are

defined as ||x||; =x"Qx .

Let h denote the receding horizon sampling period, where # lies in the (0,7] interval.

The closed-loop system is described by

() = fx(),u (1))

. . (84)
u(t)=u (r;x(t)) reltt+h), 0<h<T
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where u'(7;x(t)), te€[t,t+T], is the optimal control of the problem stated above with

the initial condition x(?), t being the start time of the optimisation process and the instant

at which states are sampled.

As discussed in [31], numerous methods have been suggested to guarantee the
stability of closed-loop system by requiring a terminal covnstraint at the end-time of the
optimization horizon or a special way to select the terminal cost. Therefore, it is
straightforward to adapt the RHC scheme to the specific method, one would like to
implement. As an instance, [38] guarantees the stability of the closed-loop system

provided that the following terminal inequality constraint is added to Problem 1

x(t +T; x(t)) e (2,

2, = {x eR" (85)

x"Px < a}

where «a is a positive constant and the matrix P, the solution to the Lyapunov equation is
selected as described in [38]. This method, known as quasi-infinite RHC, was discussed

in Chapter 2.

4.2 Neighbouring Extremal Paths

In this section, we briefly review the perturbation analysis of the open loop optimal
control problem presented in [47]. This will be used in Section 3.4, where we state our

proposed solution for dealing with uncertainties in the presence of computational delay.
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Assume that Problem 1 in Section 3.2 is solved for the given initial conditions x(#y) .

Introduction of a small perturbation in the initial conditions,dx,, will cause a change in

the optimal trajectories, i.e.dx and ou. The solution to the perturbed problem can be
retrieved by solving a linear optimal control problem. More specifically, this problem is

composed of finding the optimal change in the input signal ou, minimizing

1 1 prir H H ox
8 ==\ox" D _ox)_ +— oxT oouy ™ d

Sox' o 0x)_ 2 [ lox" o ][Hu Huj[éu} r (86)
subject to the following constraint
ox= f.ox+ f,ou

/s ‘ Ju 87)

ox(t,) = ox,
with Hamiltonian described by
H =[xz xpf + [u@) + 4" (88)

where A is the vector of co-state variables. As this problem is a linear optimal control
problem, it is straightforward to show that the optimal input is given by

Su(t) = —H_ (H, o+ f &) (89)

where the perturbation in the states and co-states is given by
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& = A()ox —B(1)o

8l = —-C(t)dx — AT (H A (90)

Matrices A(f), B(r) and C(¢) are defined as follows

AW =f.-f,H,H,,
B()=f,H,.f, (91)
C()=H,-H,H,H,

Among the possible ways to solve the Two Point Boundary Value Problem (TPBVP) in

(90), we choose the backward sweep method described in [47].

Remark 1. Although Problem 1 assumes a quadratic cost for the performance index .J in
(37), in the perturbation analysis, the theory of neighbouring extremal paths is general
enough to be applied to optimal control problems with a nonlinear cost in the
performance index. This allows its application to RHC schemes such as those described
in [33], where the cost in the performance index J is not necessarily quadratic and can

have a general nonlinear form.

4.3 Problem Statement and Proposed Method of Solution

Consider the RHC of system (79), as described in Problem 1 in Section 3.2. The
optimization problem has to be solved on-line implying that the process of finding the

optimal value will require a certain computation time, not known a priori. As proposed

57



in [44], the following computation algorithm can be used allowing the RHC scheme to be
applied to practical systems: At time ¢, predict the state of the system at time 7+h, using
the current state values available from the sampling operation. Then, solve the optimal
control problem using the predicted states as the initial conditions. This gives the system

a computation deadline equal to 4 to compute the optimal input.

If there is no uncertainty present in the modelling of system (79), the predicted and
the actual values of the states are the same. However, uncertainties in the model and
exogenous disturbances cause a mismatch in the predicted and the actual values of the
states. We propose to modify this pre-computed input before its application to the plant
using the theory of neighbouring extremal paths [47] reviewed in Section 3.3. The
modification process is composed of two parts: (i) Solving a differential equation by the
backward sweep method, a differential Riccati equation resulting from the TPBVP (90);
(ii) Solving an initial value differential equation to calculate the changes in the input

profile using (89).

The process of modification can be regarded as a zero computation task even in the
case of fast dynamic mechanical systems, as it is composed of the solution of two initial

value problems for # € [0,T] corresponding to the first initial value problem and ¢ €[0,4]

for the second one. Note that the parameters of the differential Riccati equation are
computed off-line (refer to Chapter 5 in [47]), therefore only the solution of such initial

value problems has to be carried out on-line.
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The complete algorithm is summarized below.

Algorithm 1. (a) Assume a zero input for the first execution horizon, ie. up=0. Let
k=0.

(b) Sample the states at times /=

(c) At time #, predict the states of the system at time (=t 1=t+h based on the current
states and current input uy.

(d) Solve the open loop optimal control problem using the predicted states calculated in
step (c). The solution of the optimisation takes place in the time interval [#%/] having a
computation deadline of A.

(e) Sample the states Xacmar, at 1=lg+ ;.

(f) Calculate the difference between the predicted states, Xpredicr and the actual states Xgemar
at 1=ty ).

(g) Solve for the change in the optimal input, du, and update the input ux.;.

(h) k=k+1. Goto step (c).

4.4 Validity of the Proposed Algorithm

As the neighbouring extremal paths theory, used in Algorithm 1 in Section 3.4, is
only valid in a sufficiently small neighbourhood of the original extremal trajectories, in
this section we find a more rigorous description for the condition mentioned above. We

show that satisfaction of a condition stated in Proposition 1 is sufficient for the validity of
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the proposed method for a general nonlinear system subject to bounded perturbations.

We require the following assumptions to hold.

Assumption 1. In the open loop optimal control problem described in Problem 1, small
perturbation in the initial conditions will result in perturbation in other variables, ox, ou

and 04, of the same order, i.e.

0O(8x,) = O(dx) = O(ou) = O(R) (92)

Assumption 2. The RHC problem defined in Problem 1 has no constraints on the input,
ie. U=R", where m is the dimension of the input space. This is due to the fact that the
perturbation analysis in Section 3.3 is based on the optimal control problem with no
constraints on the input. This assumption can be removed, if the corresponding theory is

modified accordingly.

Assumption 3. Among the possible RHC schemes discussed in [31],[33].[38], we
choose those for which a terminal constraint is not used to guarantee stability of the
closed loop. In order to remove this assumption, the perturbation analysis should be

appropriately changed (refer to [47]).

Remark 2. Assumption 3 confines the use of the method described in [38] to linear

unconstrained problems. A novel RHC technique to stabilize nonlinear systems has been
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recently introduced in [33]. The latter does not require a terminal constraint. Therefore,

the RHC method described in [33] satisfies Assumption 3.

Assumption 4. The computation time of the parts (f) and (g) of Algorithm 1 are

negligible compared to the dynamics of the closed-loop system.

Remark 3. Note that Assumption 4 is only necessary from the practical point of view
and not for the validity of the correction phase in Algorithm 1. It is practically
achievable, considering the fact that two initial value problems (with the parameters of
the differential equations calculated off-line) have to be solved in a time span equal to the
execution and prediction horizon, for the corresponding initial value problems. Use of
the method described in [45] can even reduce the computation time further. TPBVP can
be avoided using the pseudospectral approximation. Instead, a set of coupled algebraic

equations should be solved on-line, reducing the computation burden significantly.

Assumption 5. The computation time required to solve the optimal control problem in

step (d) is less than the execution horizon.

Proposition 1. Consider the system

x= f(x,u) (93)

which is used as a nominal model for the RHC synthesis and

xactual = f(xactual H u) + g(t7 xactual > ll) (94)
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which serves as the model of the real system. In (42), g(fXacmartt) accounts for
disturbances, uncertainties and unmodelled dynamics. Algorithm 1 is valid provided that

the following condition is satisfied

lg(t, X pepar- )] < & (95)

where b is a positive constant. In addition, (bh)’ is negligible (4 is the execution horizon)

and Assumptions 1-3 hold.

Proof. As previously mentioned, for the algorithm proposed in Section 3.4 to be valid,
the perturbation in the initial conditions of the open loop optimal control problem should
be sufficiently small. This allows the use of neighbouring extremal paths theory to
modify the pre-computed input signal. As discussed in Section 3.3, the introduction of a
small perturbation in the initial conditions results in a linear optimal control problem,

where the first-order necessary conditions for optimality is described by

x= f(x,u,r)
gr__oH
ax
o _, 6)
ou

i) = (%),:T

with xg=x(11+1) given, is linearized around the available optimum solution leading to
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&= f.ox+ f,ou

Si=-H_d&— fl&—H, ou

H, &+ ] +H,ou ©7)
At )= b,

with dx(ty) given. In the above equations ¢ is defined as

¢ =|x(t + T x), (98)

As we have used Taylor series expansion to derive these equations, the higher order
terms are neglected, implying that & ~0, du ~0and 64 =0 for n>1, where &;, ou;

and &4 stand for the i-th component of the perturbation vectors. Using norm notation,

the following assumption is used implicitly in the derivation of equation (97)

" ~ 0
6wl ~ 0 (99)
| ~ o0

Equation (99) is therefore a condition for using neighbouring extremal paths theory. This
condition can be stated in terms of the perturbation in the initial condition dxy, assuming

Assumption 1 holds; that is,

e, =0 (100)
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is a sufficient condition for the use of neighbouring extremal paths theory. It should be

noted that &x,, the mismatch between the predicted and the actual states at time #4., is

described by

5x0 = Xoetual (tk+l) - x(tk+l) = J‘I:H g(t, X, u)dr (101)

Using equation (95) and (101), equation (100) holds if (bh)’ is negligible and this

concludes the proof. O

4.5 Example

In this section, we apply the proposed Algorithm 1 to the point stabilization of a
differentially driven wheeled mobile robot, which is especially useful in formation
stabilization, where it is desirable that each agent take a predefined position. The reader
is referred to [11] for a discussion of cooperative control of mobile robots. For a

complete discussion of the transformation of such system to the double integrator

described by

X =X,

X, =U

2 (102)
Xy =X

X, =,

refer to Section 3.4.
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We take the actual uncertain system under control as

X, =X,

x, =u, +0.5sin(tx,) (103)

X3 =Xy

x, =u, +0.5sin(tx;)

with initial conditions chosen to be xg=[6 2 5 -4]'. We use the system described by
equation (75) as the nominal system for the RHC synthesis and select the execution and
prediction horizons to be 0.5 and 5 seconds, respectively. Weighting matrices Q and R
are taken as identity matrices of appropriate dimension. Matrix P in (37) is found by

solving the Lyapunov equation, equation (9) in [38].

As can be seen in Figures 8 to 11, the proposed modification in the generated control
signal has improved the performance of the system considerably compared to the method
pointed out in [44] (referred in the figures as unmodified). The introduced disturbances
have resulted in some oscillations in the states in the unmodified case using the algorithm
described in [44], whereas no oscillation is present when the proposed method of
Algorithm 1 was used. In Figure 11 the magnitude of oscillation is growing, which
shows that the existing method presented in [44] is not successful in stabilizing the states
of the system. The value of (bh)?=0.125 was determined to be negligible compared to
the values selected above as required by Proposition 1. As the nominal system (75) is a

linear system, Assumption 1 holds. Since the problem is linear with no constraints on the
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input, the RHC scheme described in [38] can be used, consequently, Assumptions 2 and 3

are satisfied.

The finite horizon open loop optimal control problem was solved numerically using
MATLAB, where collocation method (see reference [55]) was utilized. The TPBVP was

solved using backward sweep method [47].
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5 . Conclusions and Future Works
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5.1 Conclusions

In this thesis, in Chapter 3, stability robustness for quasi-infinite Receding Horizon
Control (RHC) of an uncertain nonlinear system was investigated. It was shown that
satisfaction of a nonlinear inequality constraint is a sufficient condition for stability of the
closed loop system. This condition was further specialized for linear systems. For this
case sufficient conditions were derived to guarantee the stability of the closed loop
system, as long as the states are outside a bounded set containing the desired equilibrium
point for an uncertain linear system under the assumption of bounded perturbations.
Simulations of a mobile robot of unicycle type with constraints on the inputs

demonstrated the validity of the proposed analysis.

In Chapter 4, a novel Receding Horizon Control strategy for uncertain nonlinear
systems was proposed considering the effect of computational delay. The approach is
composed of state prediction, trajectory generation, and trajectory correction. To allow
for the computation of the optimal trajectories, states are predicted at the next sampling
time. The predicted values of the states are used as initial conditions for the finite
horizon open loop optimal control problem, allowing the optimal input profiles to be
computed one sampling time in advance. At the time of implementation, when the new
data from the states becomes available, the pre-computed input is modified using the
perturbation analysis done off-line. The on-line modification analysis is composed of the
solution to two initial value problems, assumed to be computed in negligible time. The

proposed method is valid as long as the perturbation in the states and the sampling time
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are sufficiently small. The method was applied to simulations of a mobile robot of
unicycle type, where the proposed method shows significant improvement in

performance compared to existing methods.

It is anticipated that these new results will find significant utility for control design of
mobile robot and unmanned aerial vehicle (UAV) systems, especially cooperative control

of a group of them.

5.2 Future Works

In this section, we state the possible future directions for the approaches proposed in
this thesis. Future directions for the approach presented in Chapter 3 include
experimental applications to mobile robot and UAV systems, and generalization to
account for the effect of computational delays. For the approach in Chapter 4,
experimental applications to mobile robot and UAV systems, and the addition of
sufficient conditions for robust stability constitute the future works. The generalization
of the method for RHC schemes requiring terminal inequality constraints and input

constraints should also be addressed for the method discussed in Chapter 3.
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Transforming the Equations of a Mobile Robot of Unicycle

Type to a Two-Dimensional Double Integrator

We would like to show that the equations of a mobile robot of unicycle type can be

transformed to a 2D double integrator by a choosing a different set of coordinates [54].

Take

x, =x+L,cosf Lo
x,=y+L,sin@ (104)

Therefore

%, =x—L,wsinf =vcosd~L,wsind 105
%, =y+L,0cos8 =vcosf+ L ,wcost (105)

Now defining the inputs as

u, | |cosf —sind| v
u, | |sind cosd | Lo (106)
\——_ﬂ/—‘_J

R(8)

Differentiating (107) one more time results in
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F 2
51 ol ¥ ) v_g;‘Laa’
p —R()Lw+R()Laa.) =RO)| T . (108)

3 a v

As a result, the relationship between the newly assigned inputs and the dynamic

parameters of the system is described by

1

;F | Lo’ . cosf —sind] [y, 109
L_| | -vo sind cosf | |u, (109)

AT

Finally the transformed equations of the mobile robot of unicycle type is given by the

following equation

X, P U
L.}}R(H) 7. =[ } (110)
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