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ABSTRACT

ERROR ANALYSIS OF A HYBRID MULTIPLE CLASSIFIER SYSTEM

FOR RECOGNIZING UNCONSTRAINED HANDWRITTEN NUMERALS

Chun Lei He

Since the early 1990s, many research communities, amongst the pattern recognition
and machine learning, have shown a growing interest in Multiple Classifier Systems
(MCSs), particularly for the recognition of handwritten words and numerals.

This thesis is divided into two parts. First, we construct an effective hybrid MCS
(HMCS) of handwritten numeral recognition in order to raise the reliability of the entire
system. This HMCS is proposed by integrating the cooperation (serial topology) and
combination (parallel topology) of three classifiers: SVM, MQDF, and LeNet-5. In
cooperation, patterns rejected from the previous classifier become the input of the next
classifier. Based on the principles of different classifiers, effective measurements for the
rejection options — First Rank Measurement (FRM), Differential Measurement (DM), and
Probability Measurement (PM) are defined. In combination, Weighted Borda Count
(WBC) at the rank level, which reflects confidence and preference of different ranks in
different classes with different classifiers, is applied. Second, we analyze factors that
cause the errors in HMCS. In this process, we focus mainly on the role of size
normalization on the recognition of handwritten numerals. We have conducted
experiments to investigate its effects and have found that the performance of handwritten
numeral recognition systems deteriorates dramatically as the size resolution lowers.

The experiment was conducted on the MNIST database, which is a widely known
handwritten digit recognition benchmark. The MNIST database of handwritten digits has
a training set of 60,000 samples, and a test set of 10,000 samples. The final recognition
rate of this system ranges from 95.54% to 99.11%, with a reliability of 99.93% to
99.11%. Hence, we conclude that, comparing to other systems, the proposed system has

successfully achieved a high reliability while maintaining a reasonable recognition rate.
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successfully achieved a high reliability while maintaining a reasonable recognition rate.
For the MNIST dataset, this study shows that enlarging the size from 20 * 20 to 26 * 26
can improve the performance significantly. After constructing a smaller database of
difficult original patterns from NIST, we prove that normalizing the original data to a size

larger than 20 * 20 in MNIST increases the recognition rate further.
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Chapter 1

Introduction

In this chapter, the motivation and objective of this thesis are introduced. We also review
the state of the art in Optical Character Recognition (OCR), classifiers, Multiple
Classifier Systems (MCSs), and even other disciplines using MCS. As prior knowledge,
the outputs of classifiers in three levels and common combination rules are introduced

respectively. Finally, I introduce the structure of this thesis in this chapter.

1.1 Motivation and Objectives

In this thesis, we focus on proposing a hybrid MCS (HMCS), effectively integrating the
(1) cooperation and (2) combination of multiple classifiers based on ranks from the
outputs in order to achieve a high reliability while maintaining a reasonable recognition
rate. We also analyze factors of causing the errors in HMCS. In this process, we mainly

focus on the role of size normalization in the recognition of handwritten numerals.



In the early days of pattern recognition, a lot of research was focused on printed and
handwritten character recognition. Characters were easy to work with, and were therefore
regarded as a recognition problem that could be solved easily. However, when the
research advanced from printed to handwritten character recognition, a great deal of
challenge in solving this problem became apparent because of the variety of
unconstrained handwritten numerals, ambiguity of handwritten numerals, different
writing styles, different kinds of noise that may break the strokes in the characters or
change their topology, and so on. Even though the problem is intrinsically complicated,
many researchers continue developing and implementing algorithms for recognizing
unconstrained handwritten characters, including numerals. The researchers now expect
that an OCR machine will achieve a high recognition rate and a low or even zero
substitution rate.

There are a number of classification algorithms to be applied in handwritten character
recognition. These algorithms are based on different theories and methodologies [6].
Broadly speaking, we now have two large groups of classification methods, namely,
feature-vector based methods and syntactic-and-structural methods. Furthermore, each
group of methods includes many algorithms that are based on a variety of other
methodologies, e.g., for the first group, there exist Bayes classifier, &-NN classifier,
various distance classifiers and neural network based classifiers, etc.

Usually, for a specific application problem, each of these classifiers could attain a
different degree of success, but perhaps none of them is totally perfect, or not as good as
expected for practical applications. In China, we always say that “Three cobblers with

their wits combined equal Zhuge Liang the master mind.” Thus, there is a need to study



the methodology of integrating the results of a number of different classification
algorithms so that a better result could be obtained.

Extensive research has been carried out in the last decade on the use of MCSs for
complex classification problems and the potential for performance improvement has been
proven. In financial applications, errors are less tolerable than rejections since much extra
effort is required to detect and correct the errors; therefore, very high reliability is
desired. Hence, an HMCS with a high reliability while maintaining a reasonable
recognition rate is proposed in this thesis.

In order to reduce misrecognition, we mainly investigate size’s effects on the
performance of handwritten numeric recognition systems. Some researchers studied the
misclassified data in different numeral databases, such as MNIST, CENARMI Database,
USPS, and NIST SD 19 [55] to deduce the reasons of misrecognition and probe the
probability of avoiding the errors. Suen et al. [55] divided the errors into three categories
based on their quality and analyze their distributions according to category. Category 1 is
for the images that are easily confused with other numerals because of the similarity of
their primitives and structures. Category 2 is for the images that humans have difficulty
in identifying them because of noise, filled loop, cursive writing or over-segmentation,
etc. Category 3 is for the images that are easily recognized by humans without any
ambiguity.

Figuring out the reasons and recognizing errors in Category 3 become a challenging
and interesting problem. According to a long-period of observation and experiments, we

suspected that low resolution reduces the recognition rates of OCR systems dramatically.



In this thesis, we conduct experiments to investigate in detail its effects and identify the

role of size resolution in handwritten numeric recognition systems.

1.2 State of the Art

In this section, we review the state of the art in several aspects: Optical Character
Recognition (OCR), classifiers, MCS, and even other disciplines using MCS. Moreover,
as prior knowledge, the outputs of classifiers in three levels and common combination
rules are introduced respectively.

OCR is one of the most successful applications of automatic pattern recognition. OCR
has been under research investigation since the mid 1950’s. Since then, there has been
steady research efforts in OCR devoted to the automatic processing and recognition of
handwritten characters, such as letters and numerals. For instance, recognition of
unconstrained isolated handwritten numerals is an important aspect of OCR. It has
applications in numerous fields including automatic postal sorting, automatic bank
cheque, financial slip processing, and so on [4][17][18][21].

A variety of multiple classifier systems have been studied since the late 1950’s. For
example, a head-demo (the combiner) would select the demon that “shouted the loudest”,
a scheme that is nowadays called a “winner-take-all” solution [20]. This area became a
hot topic in the 90°s with significant theoretical advances as well as numerous successful
practical applications. Since the early 1990s, Multiple Classifier Systems (MCS),
particularly for the recognition of words and handwritten digits [4-6], have been studied

frequently to achieve higher accuracy and reliability.



Theoretically, MCS for character recognition is based on the idea that classifiers with
different methodologies or different features are often complementary to each other;
hence, the combination of different and complementary classifiers may reduce errors
considerably and achieve a higher performance accuracy, just as the decision of a panel
of human experts is usually superior to that of a single individual [38].

Gunes et al. [10] distinguish the Multiple Classifier Systems by using three categories,
including (a) cooperation of classifiers (serial topology) (Figure 1), (b) combination of
classifiers (parallel topology) (Figure 2), and (c) selection of classifiers (Figure 3),
according to the types of operation among the classifiers. Moreover, if a system operates

with several types of associations, the system is known as a hybrid or mixed system.

X1 X2 X3
]

Figure 1. System of classifiers carrying out the cooperation of classifiers
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Figure 2. System of classifiers carrying out the combination of classifiers
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Figure 3. System of classifiers carrying out the selection of classifiers

Till now, many combination techniques have been proposed [6]; essentially, they
depend on the information provided by the classifiers. Some researchers use combination
rules based on the voting principle [7], others use rules based on the Bayesian theory [6],
on belief functions and Dempster-shafer theory of evidence [6], on fuzzy rules [8], on
Behaviour Knowledge Space [9], and so on.

Problems similar to MCS have been studied in other disciplines. For instance, in
statistics, the idea of popular opinion or consensus was a means of social and economic

organization for many years. The problem of reaching a consensus arises when a group of



people try to reach a common decision from individual opinions. Although the problems
may be slightly different in forms, their essence is similar. The consensus problem is
similar to MCS because it considers the general problem of combining multiple
distributions into a single distribution [30 - 32].

Stone [36] called his model an “opinion pool” in which a consensus was formed
through the weighted combination of individual opinions. When the weights were equal,
a democratic scheme, or what we call the “voting principle”, was formed. He was
interested in the condition under which the consensus achieved a higher “utility” function
than the worst opinion of the individual person. DeGroot [34] formalized the theory for
linear combination in order to reach a consensus. He proposed a method in which each
individual expert was assigned a degree of reliability to every other expert. The experts
modified their own opinions after hearing the opinions of others. A consensus was
reached when experts stop changing their opinions.

However, some combination techniques also work for aggregating point estimations
[33-35]. Numerous combination schemes have been published. Winkler [33]
experimented with simple combination strategies in football betting. He noticed that the
score increased consistently as more and more assessors are involved in the decision
combination process. Although the experiment was simple, and it involved a lot of
human factors, he identified three major issues. He observed that a strong correlation
exists among assessors working independently, that a combination of some sort improved
the score over the average of individuals, and that score improved as more and more

assessors are considered.



Generally speaking, the output information that various classification algorithms
supply or are able to supply can be divided into three levels:

1) The abstract level: a classifier e only outputs a unique label j, or for some
extension, e outputs a subset  A.

2) The rank level: e ranks all the labels in A or (a subsetJ < A) in a queue with the

label at the top being the first choice.

3) The measurement level: e attributes each label in A a measurement value to

address the degree that x has the label.

Among the three levels, the measurement level contains the most of information and
the abstract level contains the least. From the measurements attributed to each label, we
could rank all the labels in A according to a rank rule (e.g., ascending or descending
order). By choosing the label at the top rank, or directly by choosing the label with the
maximal or minimal value at the measurement level, we can assign a unique label to x. In
other words, from the measurement level to the abstract level there is an information

reduction process or abstraction process.

measure=2.18545

measure=—1.75272
measure=—1.84392
measure=—1.95583

neasure=—2.38528
measure=—2.3124
measure=—2.37782
111 1 : measure=—2.
B =4 peasure=—3.03863

Figure 4. Example of the output information in three levels

Let us see an example. In Figure 4, the output in the abstract lever is {3} as 3 is the

first rank of the output; the output in the abstract level is {3, 2, 1,9, 0, 7, 6, 8, 5, 4},



which are only ranks of the output; the output in the measurement level is {3, 2.18545},
{2,-1.75272}, ..., {4, -3.03863}, which are ranks with measurements.
For common combination, the following rules are usually used. To generalize, let us

define v, (x,) as a numerical value calculated by the classifier e, for the class C,during
the classification of a pattern x, and w;as a numerical value calculated by the system of

classifiers for the class C, . Usually the most usually employed rules are:

S
- The Maximum rule: Vie[L/],w(x,)=maxv (x,)
s=1

N
- The Minimum rule: Vi e[L/],w,(x,) = m}ln v, (x,)

S
- The Sum rule: v; e[1,/], w.(x,) = Z v, (x,)
s=1

S
- The Mean rule: Vi e [1,/],w,(x,) = %ka (x,)
s=1

- The Median rule: Vi € [1,/],w.(x,) = median’ v, (x,)

Usually, the decision rule is defined by a function SC(x, )such as:

!
SC(xk){Cf’ ifwj(xk):rr}ixwi(xk) and w(x,)2T
else.

I+1°

In order to reduce misrecognition, we mainly investigate multi-resolution on the
performance of handwritten numeral recognition systems. Although some researchers
designed some features based on multi-resolution, the role of resolution on the
performance of handwritten numeral recognition systems is unclear. Formerly, some
studies based on multi-resolution features were presented [57] [25]. In [57], the authors

focus on sub-images with multi-resolution. As an example mentioned in this paper, if ‘3’



are the top contenders at a particular recursive stage, the features from the upper zone of

the test pattern holds greater discriminatory power and should be examined at a finer

resolution. In [58], the authors proposed a scheme in the feature extraction stage, which

extracts multi-resolution features with wavelet transform. They only find a fine resolution

for sub-image or extract multi-resolution features. These features are based on similarities

among classes or dependency among features. In this thesis, the role of resolution on the

performance of entire system is studied in depth.

1.3

Outline of Thesis

The thesis is organized into seven chapters.

In Chapter 1, I introduce the motivation and objective of this thesis. I also review
the state of the art in Optical Character Recognition (OCR), classifiers, MCS, and
even other disciplines using MCS. As prior knowledge, the outputs of classifiers
in three levels and common combination rules are introduced respectively.
Moreover, I introduce the structure of this thesis in this chapter.

In Chapter 2, three classifiers are introduced. These include Support Vector
Machine (SVM), Modified Quadratic Discriminant Function (MQDF), and
LeNet-5. As these three classifiers have excellent generalization performance in a
wide variety of learning applications such as handwritten digit recognition and
object recognition, they were chosen to design the HMCS.

In Chapter 3, we define three effective rejection measurements. They are First

Rank Measurement (FRM), Differential Measurement (DM), and Probability

10



Measurement (PM). These measurements are classifiers used in cooperation of
HMCS.

In Chapter 4, a hybrid Multiple Classifier System (HMCS), including cooperation
and combination of classifiers, is detailed. In combination, compared to Majority
Vote and Borda Count (BC), we propose a more effective combination method at
the rank level — Weighted Borda Count (WBC). Afterwards, we describe the
entire structure of this HMCS.

In Chapter 5, we analyze errors and observe the relationship between
normalization sizes and recognition rates in this HMCS. We propose to analyze
the substitution images with different normalization sizes, but the same classifier
and same features extracted to predict the relationship between normalization
sizes and recognition rates. After constructing a smaller database of difficult
original patterns from NIST, we found that normalizing the original data to a size
larger than 20 * 20 in MNIST further increases the recognition rate.

In Chapter 6, we introduce the database used in this thesis, and demonstrate the
experimental results of HMCS and error analysis, respectively. In HMCS, we
show not only each classifier’s experimental results of rejection option in
cooperation, but also experimental results of different combination methods.
Afterwards, we compare the performance of HMCS and each individual classifier.
In error analysis, we show the experimental results of recognition rates with
different normalization sizes in SVM and MQDF. Moreover, we did some

statistics on sizes of patterns in NIST. Finally, we compare the error rates in the

11



small database with various sizes normalized from patterns in both MNIST and
NIST.

Conclusions are drawn in Chapter 7. In this chapter, we summarize contribution
of this thesis and present some future work in this research direction. In this thesis,
we not only proposed an effective hybrid Multiple Classifier System but also
investigate the relationship between the performance of handwritten numeral

recognition systems and size resolution. Thus, we have some future work in these

two facets.

There are several appendices in this thesis.

Appendix I contains index of images in MNIST, which are substituted in different

sizes.

Appendix II contains index of images in NIST and MNIST, which are substituted

in at least 2 different sizes.

Patterns with maximum or minimum width, height or area in NIST SD 19 are

demonstrated in Appendix II1.

In Appendix IV, original images of patterns in NIST, which are incorrectly

recognized in MNIST with HMCS.

In Appendix V, Total Probability Theorem is introduced.

12



Chapter 2

Classifiers

In this chapter, three classifiers are introduced. These include Support Vector Machine
(SVM), Modified Quadratic Discriminant Function (MQDF), and LeNet-5. As these
three classifiers have excellent generalization performance in a wide variety of learning
applications such as handwritten digit recognition and object recognition, they were

chosen to design the HMCS.

2.1 Classification Methods

There are a number of classification algorithms to be applied in handwritten character
recognition. These algorithms are based on different theories and methodologies. The
classifiers include (1) support vector machine (SVM) classifiers, (2) nearest-neighbor
classifiers, (3) Bayesian classifiers, (4) polynomial discriminant classifiers, (5) neural
network classifiers, (6) tree classifiers, (7) syntactic approaches, (8) Hidden Markov
Model (HMM), etc. They typically use feature descriptors in the form of vectors and

return a class identity.

13



SVM is a large margin linear classifier on a feature space defined by the kernel
function. The weight vector is the interpolation of the learning patterns. The
coefficients are determined on the learning patterns by solving a quadratic
optimization problem, in which a pre-specified upper bound of coefficients
controls the tolerance of learning errors. After optimization, only a small portion
of the learning patterns, which are called support vectors (SVs), have a non-zero
coefficient.

The nearest-neighbor classifier performs direct prototype matching using a
predefined distance to measure the similarity between a pattern and those
prototypes in a class. The distance function can be a Euclidean or a Hamming
distance. The problem with the method is that there is a high computation cost
when classification is conducted [39]. There are many variants of this approach
with the intention to reduce the complexity. A famous one is the k-nearest
neighbor which finds & closest matches and uses a voting scheme to decide on the
class. When pixel value is used directly, the method is referred to as template
matching.

The Bayesian classifier assigns a pattern to a class with the maximum posterior
probability. The class prototypes are used in a training stage to estimate the class-
conditional probability density function for a feature vector [40 - 41].

The polynomial discriminant classifier [42] assigns a pattern to a class with the
maximum discriminant value, which is computed by a polynomial in the
components of a feature vector. The class models are implicitly represented by

the coefficients in the polynomial.
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Syntactic classifiers [43] use grammars at all levels in the Chomsky hierarchy to
describe class models. These grammars take in a high level descriptor such as a
symbol string instead of feature vectors. The class models are abstracted as
grammatical rules that can be used to generate the prototypes.

Tree classifiers are motivated by the need to reduce the complexity in prototype
matching. There are many design stratégies [44 - 45], but generally it 1s difficult
to control the growing and pruning of trees. Commonly used control methods are
mutual information, probability models or entropy values. The most famous tree
classifiers are CART [46] and C4.5 [47]. Ho [48] extends the work to C4.5
Decision Forests and reports good results.

Hidden Markov Model (HMM) [49] is a statistical framework for modeling
sequential input by state transitions. It has been widely used in speech
recognition and online handwritten recognition. Its applications to offline
handwritten recognition have been growing. Cai et al. [52] define the state of a
given observation in HMM as a micro-state and the collections of individual
micro-states as macro-states. The statistical information of a handwritten numeral
is represented by micro-states using HMMs, and the structural information is

modeled by relationships between macro-states. Park et al. [53] use a 2-D HMM

for character recognition.

15



2.2 SYM

In the past several years, support vector machine (SVM) has played an increasingly
important role in the pattern recognition system due to its excellent generalization
performance in a wide variety of learning applications such as handwritten digit
recognition and object recognition.

Given that training sample {X,,y,}, y, € {-1,1}, X, € R" where y, is the class label
andi=1,...,N.

The support vector machine first maps the data to a Hilbert space H, which can be
considered as a generalization of Euclidean space, using a mapping @,

O:R"—>H

The mapping ®@ depends on a kernel function K that satisfies the Mercer’s conditions
[40, 41] such that K(X,, X ;) = ©(X,) e D(X ). Then, in the space H, we need to find an
optimal hyperplane by maximizing the margin and bounding the number of training

errors. More specifically, we need to compute the sign of f(X), where

f(X)=WD(X)+b

= iaiyi(D(Xi)(D(X) +b

i=1

:iaiyiK(Xi,X)an 2.1

i=1
and b is a threshold. The data X, for which «,>0 are called support vectors (SV). We

can avoid computing ®(X) explicitly and use the kernel function K instead.
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Training an SVM is to finder,, i = 1, ..., N, which can be obtained by minimizing the
following quadratic cost function:

N 1 N N
Ly(@)=> a, —EZZaiajyiyjK(Xi,Xj) (2.2)
i=l i=l j=t

subjectto 0<g, <C i=1...N

N
Y.y, =0 (23)
i=1

where C is a parameter decided by the user. The larger the value of C, the higher penalty
allocated to the training errors.

As the training of SVM is slow, we applied a fast SVM training algorithm [1]. The
algorithm applies Keerthi et al ’s [37] SMO to solve the optimization of a sub-problem in
a working set, which is a subset of the training set, in combination with some effective
techniques such as kernel caching, “digest” strategy, shrinking strategies, and the queue

technique of selecting a new working set.

2.3 LeNet-5

Convolutional Neural Networks [28] are specialized neural network architectures which
incorporate knowledge about the invariances of 2D shapes by using local connection
patterns, and by imposing constraints on the weights. LeNet-5 is a convolutional neural
network.

LeNet-5 comprises of seven layers, not counting the input, all of which contain

trainable parameters (weights). The input is a 32 * 32 pixel image. This is significantly
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larger than the largest character in the database (at most 20 *20 pixels centered in a 28 *
28 field). It is desirable for potential distinctive features such as stroke end-points or
centers to appear in the center of the receptive field of the highest-level feature detectors.
In LeNet-5 the set of centers of receptive fields of the last convolutional layer (C3, see
below) form a 20 * 20 area in the center of the 32 * 32 input. The values of the input
pixels are normalized so that the background level (white) corresponds to a value of -0.1
and the foreground (black) corresponds to a value of 1.175. This makes the mean input

roughly 0, and the variance roughly 1, which accelerates learning [29].

The seven layers contain convolutional layers (labeled as C,), sub-sampling layers

(labeled as S, ), and fully-connected layers (labeled as F; ). The architecture of the LeNet-5

is shown in Figure 5.

S4:.feature maps

C1:feature maps 16@5x5
5@28x28 C3feature maps:
18@10x10 C5: layer 120 _
S2feature g o D-13YET 84 output 10
maps g 3 e

b@14x14 -

Convolutions Subsampling Convolutions  Subsampling Full Full Gausslan
connection connection connection

Figure 5: Architecture of LeNet-5

The layer C, is a convolutional layer, which is composed of six feature maps of the
size of 28x28 with different weight vectors. A unit in a feature map has 25 inputs
connected to a 5 by 5 area of the input, which is the receptive field of the unit. The
receptive fields of neighboring units are overlapped. The layer C, contains 156 trainable

parameters and 122,304 connections.
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The layer §,1s a sub-sampling layer with six feature maps of sizel4x14. Each unit is
connected to the 2x 2 area in the corresponding feature maps of C,. The reason for sub-

sampling is to reduce the precision of some feature information. Precise information of
certain features is harmful because the information is likely to vary in different samples
of a numeral. For instance, we only need to know that there is an end point in the top left
corner of the numeral seven, and we do not need to know the exact coordination of this
end point since the coordination varies in instances of the numeral seven. The value of a
unit is obtained by adding the four inputs from C,, then multiplying the result by a
trainable coefficient, and adding it to a trainable bias. The final result is passed through a

sigmoid function. The layer S, has 12 trainable parameters and 5,880 connections.

The layer C, is a convolutional layer with 16 feature maps of size10x10. Each unit is
connected to 5x5 neighbors at the identical locations of S, ’s feature maps. The
connection matrix of (', features maps and S, feature maps are shown in Table 1. The

layer C, has 1,516 trainable parameters and 156,000 connections.

Table 1: Connection matrix of ¢ feature maps and 5: feature maps

S

The columns indicate the feature map in G ; the rows indicate the feature maps in*2. The table indicates

which feature maps in 53 are combined with a particular feature map of =

O |1 12 {3 (4|5 16 |7 (819 |10]11]12,13]14]15
01X X | X | X X |1X |X X
1 [ X X X1X X X | X | X | X X
2 1 XXX X[ X [X X X [ X [X
3 X[ X1X XX XX X X | X
4 X |1X | X X | X | XX X | X X
5 X XX XXX | X X | X | X
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The layer S, is a sub-sampling layer with 16 feature maps of size 5x5. Each unit in
each feature map is connected to the feature maps of the previous layer in a similar way

asin C, and §,. Layer §,has 32 trainable parameters and 2,000 connections.

The layer C; is a convolutional layer with 120 feature maps of size 1x1. Each unit is
connected to 5x5 neighbors at the identical locations of all of §,’s feature maps. Layer
C contains 48,120 trainable connections.

The layer £ is a fully-connected layer with 84 units. It has 10,164 trainable
parameters. Up to layer £, the state of unit 7, denoted by x,, is computed by a sigmoid
squashing function:

x; = f(a;) (2.4)
where a; is the weighted sum of the unit i. For each unit, the weighted sum between the

input vector and its weight vector is produced by adding a trainable bias to a dot product.

The squashing function is defined as

f(a) = Atanh(Sa) 2.5)

where A is the amplitude of the function and S determines its slope at the origin. Here,

we set at A=1.7159 and S=§ .

Finally, the output layer is composed of Euclidean Radial Basis Function units (RBF),

one for each class, with 84 inputs each. The RBF unit is computed using the following

formula:

Yi :Z(xj—wij)z (2.6)
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The larger the RBF is, the less fitness is between the input pattern and the model of the

class associated with the RBF.

The loss function of this neural network is:
P
EW)= %Z (¥, (Z7 W) +log(e” + Y e ") 2.7)
p=1 i

where y_, is the output of the D, th RBF unit, Z”is the p-input pattern, and W

represents the collection of adjustable parameters in the system.
The first term of loss function is an MSE criterion, which pushes down the penalty of

the correct class; the second term plays a “competitive” role, as it pulls up the penalties of

the incorrect classes.
2.4 MQDF

In this section, we briefly review the modified Quadratic Discriminant Function (MQDF)
proposed by Kimura et al. [3]. The QDF is obtained under the assumption of multivariate
Gaussian density for each class of numerals. The MQDF aims to improve the
computation efficiency and classification performance of QDF via eigenvalue smoothing
[50].

The parameters of MQDF are estimated via the maximum likelihood (ML) estimation
of covariance matrices followed by a K-L transformation. The MQDF is different from
the QDF in that the eigenvalues of minor axes are set to a constant. The motivation

behind this is to smoothe the parameters that compensate for the estimation error on finite

sample size.
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Let us start with the Bayesian decision rule, which classifies the input pattern to the
class of a maximum a posteriori (MAP) probability out of M classes. Representing a
pattern with a feature vector x=(x,,...,x,)", the a posteriori probability is computed by

Bayes rule:

P(w, | x) = L00PxI W)

=1...M 2.8
p(x) 29

b4

where P(w,)is the a priori probability of class w,, p(x|w,) is the class probability

density function (pdf) and p(x) is the mixture density function. Since p(x) is

independent of a class label, the nominator of the above formula can be used as the
discriminant function for classification:

g(x)=P(w)p(x|w,). (2.9)

The Bayesian classifier is reduced to Linear Discriminant Function (LDF) or

Quadratic Discriminant Function (QDF) under the Gaussian density assumption with

varying restrictions. Assume that the pdf of each class is a multivariate Gausian fuction:

1 (x—p)" 2 (x =)
y expl[— - : :
en’ |z, 2

p(x|w,)= ] (2.10)

where g, and X, denote the mean vector and the covariance matrix of class @, ,
respectively. Inserting the above formula to g(x), taking the negative logarithm and
omitting the common terms under equal a priori probabilities, the QDF is obtained as:
g0 = (- ) £y (- u ) +log | 2V | 2log P(@®) . (2.11)
for a class @" where y and ¥, denote the mean vector and the convariance matrix for

2, in the class w,, respectively, and Z.is the a priori probability for the class w,. The
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QDF is actually a distance metric in the sense that the class of minimum distance is
assigned to the input pattern.

Meanwhile, a QDF can be written in the orthogonal expansion form:

2,(x) =Z%{w;<x~uM>}2 +log[ |4 (2.12)

i=1 7Y =1

by using the equation:

N
Ly = Z/’Li¢i¢it (2.13)

i=1
where the y,, and X, denote the maximum likelihood estimates of the mean and the

covariance, respectively, and 4, ( 4, 2 4,,,) and ¢, denote the ith eigenvalue and the

eigenvector of the matrix Z,, respectively.

However, the QDF uses the maximum likelihood estimate of the covariance matrix,
which is sensitive to the estimation error of the covariance matrix. Thus, a MQDF
employs a kind of a pseudo Bayesian estimate of the covariance matrix. MQDF is less
sensitive to the error and requires less computation time and storage while achieving a
better performance.

Performance of the discriminant function is improved by using the following pseudo-

Bayesian estimate [51] of the covariance:

T, =%, 4k (2.14)

where 7 is the identity matrix and /4” is a constant.

From the above formula:

02,0 =X, +h' =4, +h (2.15)
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The ith eigenvalue and eigenvector of X are equal to 4, + h*and ¢,, respectively. A

modified quadratic MQDF1 is given as:

800 = T gl (e )Y +log[ T4 +17) 2.16)

MQDF1 is less sensitive than QDF to the error of the estimate of the covariance
matrix, but it requires O (n’) computation time and storage as QDF does. In order to

decrease the computation time and storage, another modification MQDF2 of the

discriminant function has been designed. By substituting 4* for all of the eigenvalues 4.,

i>=k+1of Z,, inQDF, we obtain the MQDEF2:

£00 =X (/G- )P + X gl - ) +logW®* TT2)  @.17)

2
i i=k+l1 h

By using the equation:

i{wf(x—#M)}z =x - el (2.18)

The MQDEF?2 is rewritten as:

N

2 hz 2 2(n—k .
800 =l = | = 2= ! - Y 1+ logh® P [2) 219)

=1
It is obvious that the required computation time and storage of the MQDF?2 are about
k/n times those of the QDF and the MQDF1. Also, the MQDF2 as well as the MQDF1

are less sensitive to the estimation error of the covariance matrix if #°and k are suitably

chosen.
The advantages of the MQDF2 are multiple. First, it overcomes the bias of minor
eigenvalues (which are underestimated on small sample sizes), allowing the classification

performance to be improved. Second, for computing the MQDF2, only the principal
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eigenvectors and eigenvalues are to be stored so that the memory space is reduced. Third,
the computation effort decreases because the projections to minor axes are not computed

[39].
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Chapter 3

Rejection Measurements for
Cooperation

In this chapter, we define three effective rejection measurements. They are First Rank
Measurement (FRM), Differential Measurement (DM), and Probability Measurement

(PM). These measurements are used by classifiers in cooperation of HMCS.

3.1 Rejection Option

The reject option can be very useful in preventing excessive misclassifications in
applications that require high classification reliability [11]. Rejection measurements
based on the outputs of classifiers are vital, especially in cooperation with a hybrid
Multiple Classifier System (HMCS), because only the rejected patterns from a previous
classifier are classified by the next one.

We propose three measures: First Rank Measurement (FRM), Differential
Measurement (DM), and the Probability Measurement (PM) for classifiers in this HMCS.

However, we only use the DM and the PM for three classifiers as the DM is modified on
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the FRM and has better performance of isolated handwritten numeral recognition.
Therefore, if the outputs of the classifiers are numerical scores that are the values of an
arbitrary discriminant (MQDF) or of distances to margins (SVM), then the DM is a more
effective method to measure the rejected patterns. However, if the outputs of classifiers
are the distances to prototypes (LeNet-5), then the PM is better.

If we consider measuring the outputs of classifiers for the rejection option as a two-
class problem, acceptable patterns and rejection classification, and thereby the outputs at

the measure level can be considered as features for measurements of rejection option.

3.2 First Rank Measurement (FRM)

The first idea of measuring classifier is to compute the statistics for all the patterns that
have the negative confidence values of the first rank, especially for SVM. According to
the principle of SVM, a negative confidence value means that the given pattern does not
belong to the current class, if we only consider two classes (is or isn’t). Hence, if the
confidence values of the patterns’ first rank are negative, it means that SVM could not
classify them very well. In this case, we need to find other classifiers or another method
to classify these patterns.

It is true that the patterns we expect to reject, which are wrong in SVM, have negative
confidence values or small positive values of their first ranks. Moreover, the distribution
of the confidence value of the first rank in SVM has a Gaussian shape. (Its distribution is
shown in Chapter 6.) It seems that we can reject all the patterns if their first ranks are

negative or if they have small positive confidence values.
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However, FRM has some drawbacks. According to the experiments, we find that most
patterns with small positive values or negative confidence values in the first rank are not
bad. On the contrary, the number of correctly recognized patterns is greater than number
of incorrectly recognized patterns in the same range of the first rank’s confidence values
(showed in tables in Chapter 6). If we reject patterns based on the confidence values of
the first rank, the rejection rate is too large at 18.8%.

In addition, FRM does not distinguish patterns whose confidence values of the first
rank in SVM are similar, but the values of second rank are either positive or negative.
These two kinds of patterns are not the same. If the confidence values of patterns’ first
rank are positive, and the values of their second rank are negative, we assume that these
patterns are successfully classified by the current classifier, and they belong to the same
classes as their first ranks. Nevertheless, if both the confidence values of patterns’ first
rank and the values of their second rank are positive or negative, we can hardly determine
if they belong to the class of the first rank or the class of the second rank.

Even if the first ranks’ confidence values are negative, but they are much greater than
their second ranks’ values, they should belong to good classified patterns because they
are closer to the boundaries of the first class than to the boundaries of the second class.
Sometimes, the errors — negative values in the first rank in SVM, are made by the
calculation of boundaries between classes.

Therefore, we develop a new measurement, which uses distribution and relationship
among all the confidence values instead of only the confidence of the first rank, to

overcome these drawbacks.
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3.3 Differential Measurement (DM)

The performance of the first rank’s confidence values 1s known to determine whether the
pattern should be rejected. Nonetheless, using the distribution and the relationship among

all the confidence values proves to be more reliable.

Generally, we assume that classes are internally cohesive but isolated from the others.
Hence, in each classifier, we expect that the first rank of the output with a higher
confidence value is correct. Accordingly, the ratio of the difference between the first rank

and the center of other ranks ¢(x) and the center, ®(x), is defined as follows:

v, () —c(x)

D(x)= o (3.1)

where
1 N-1
o) === () - v ()], (3.2)
T L=

andV (x) = {v,(x), v, (x),..., v, (x)} is the output of the given pattern X , and N is
the total number of classes.
Actually, we even do not expect V,(x) to have a competitive confidence value

with v (x). Thus, we modify ®(x) as:

() =M%‘)’2(—x)‘ (3.3)

Using a classifier implementing linear decision functions to a two-class problem:

f(x,a)=ysign(w-x+b), (3.4)
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the corresponding decision function can then be defined as follows:

[+l 0,027,
f(x,a)—{_ O ()<, (3.5)

where T, 1s a threshold derived from the training data.

We call the above measurement method Differential Measurement (DM). As
explained, DM has a better performance than FRM in SVM. If the outputs of the
classifiers are numerical scores that are the values of an arbitrary discriminant (MQDF)
or that are distances to margins (SVM), DM is a more effective method to measure the

rejected patterns. However, DM does not perform very well in LeNet-5 (Details in

Chapter 6).

3.4 Probability Measurement (PM)

Because DM cannot perform very well in LeNet-5, we need to define another new

measurement, called Probability Measurement (PM) for it. We apply the following

formula to the output vector V(x)={v(x),v,(x),...,vy(x)} , and we

derive P(x) = {p,(x), py(x),..., Py ()} :

e
k=12,...,N 3.6
Zl 1/()6) ? G0

pe(x)=
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For each pattern, if the output vectors of a classifier are arranged in ascending order,
then p,(x) has the maximum value. The corresponding decision function is then defined

as follows:

A, if p()>T,
f(x,a)={_1’ if p(x)<T (3.7)

where Tp is a threshold obtained from the training data.

In fact, the definition of p,(x) is not new. Formerly, researchers use p,(x), which

obey the three basic axioms of probability theory, as apparent post-probabilities and put

them into (3.8) for combination in measure level.
1 K
PE(xeCi/x):EZPk(xeCi/x), i=1..,N (3.8)
k=1

In this system, we employ p,(x) for a rejection measurement for classifiers as the

outputs of LeNet-5 are the distances to prototypes. Experimentally, PM is better than
both FRM and DM 1in LeNet-5. In Chapter 6, more experimental results of DM and PM

for three different classifiers are well demonstrated.
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Chapter 4

Hybrid Multiple Classifier System

(HMCS)

In this chapter, a hybrid Multiple Classifier System (HMCS), including cooperation and
combination of classifiers, is detailed. In combination, compared to Majority Vote and
Borda Count (BC), we propose a more effective combination method at the rank level —
Weighted Borda Count (WBC). Afterwards, we describe the entire structure of this

HMCS.

4.1 Integration Methods

4.2.1 Cooperation

Cooperation is a serial architecture (as opposed to a combination or parallel architecture)

[10]. This method uses the decisions and/or the results of a classifier applied to
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handwritten numeral images for better guidance of whether to use one or more other
classifiers. Using this topology, classifiers are applied in succession, with each classifier
producing a reduced set of possible classes for each pattern, so that the individual
classifiers or experts can become increasingly focused [22].

Choosing an optimal sequence of three classifiers is a problem to solve. The general
schema of cooperation in this system is described in Figure 6. As we knew before, we
measure SVM and MQDF with DM, LeNet-5 with PM. Since SVM has the highest
accuracy, we use SVM as the first one, and secondly, we use MQDF or LeNet-5 later.
Therefore, analyzing the distribution of patterns rejected from SVM with MQDF and
LeNet-5 is necessary. The process of cooperation in this system is: If SVM does not show
acceptable outputs, MQDF (or LeNet-5) is applied to the former patterns; or else we
consider the SVM’s output as the final results. Similarly, if the confidence value in
MQDF (or LeNet-5) is high, we accept it and look at it as a final result; or else, we reject
it and forward it to LeNet-5 (or MQDF). Finally, if LeNet-5 does not recognize it very

well, we reject it; or else we accept its performance in LeNet-5.

33



' Rejected Accepted
? leNet5 ‘—\_ﬁ
( Rejected Accepted
MQDF
Rejected Accepted

Rejection

Figure 6. Flowchart of cooperation among three classifiers

Although the reliability is high, the recognition rate is not as high as we expected.

Therefore, we design a combination (parallel topology) of three classifiers.

4.2.2 Combination

In combination, as we know, we can combine multiple classifiers in three ways:
combination in abstract level; combination in rank level; and combination in measure
level.

Classifiers are combined only at the rank level in this research study because it is more
general and reasonable. Because voting in abstract level only includes little information

from the three classifiers’ outputs, the final result of majority vote in abstract level should
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not be good enough for patterns’ recognition. On the other hand, treating equally all
classes generated by all classifiers is not preferable even though we may normalize the
final results in measure level. This is because the individual classifier has its own
capabilities,

In order to compare the Weighted Borda Count (WBC) algorithm with Majority Vote
and Borda Count, we implement a combination in abstract level and other combination

algorithms in rank level at first.

4.2.2.1 Majority Vote

About a system in abstract level, majority vote is usually considered because this type of

combination can be used for any type of classifier, whatever the type of outputs of these

classifiers is.

Majority vote has been a much studied subject among mathematicians and social
scientists since its origin in the Condorcet Jury Theorem (CJT) [23]. This theorem
provided validity to the belief that the judgment of a group is superior to those of
individuals, provided the individuals have reasonable competence [22].

For combinations of small numbers of classifiers by majority vote, another factor that
merits attention 1s the trade-off recognition and error rate. It has been proved theoretically
that combinations of even numbers of experts will produce both lower correct and error

rates (and higher rejection rates) than combinations of odd numbers of experts.
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Majority vote is used in this system as follows: If at least two classifiers agree to the

same result, confirm it; or else, reject it. For example, for a pattern xin Figure 7, the

outputs of SVM, MQDF, and LeNet-5 are all listed in the Table 2.

Figure 7. Example pattern in MNIST (label = 7)

In Table 2, as the outputs of SVM, MQDF, and LeNet-5 are , =4,r, =9,and r, =7,

Let u be the output of combination, and the final result 1 is rejected. Accordingly, only

considering the outputs in abstract level is not enough.

Table 2: Example of outputs from three classifiers

[R, M] in the following table represents results and their measurements, respectively

Ranks SVM MQDF LeNet-5
1 [4,-0.519872] [9,306.227] [7,36.5627]
2 [8, 0.545886] [4,309.957] [8,41.6108]
3 [7,-1015621] [8,318.193] (3,50.7307]
4 [3,-1.19321] [7,348.69] [6,61.7424]
5 [5,-1.55446] [5,387.344] [5,69.9872]
6 [2,-1.6244] [3,388.129] [2,73.0493]
7 [6,-1.70928] [2,446.556] [0,77.6559]
8 [0,-1.76175] [1,601.243] [9,77.8455]
9 [9,-2.04378] [6,629.95] (4,80.5389]
10 [1,-2.53281] [0,653.848] [1,94.7965]
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4.2.2.2 Borda Count (BC)

Let x be the output of combination. The BC is an equal-weight-voting scheme, where

the score 7(8) of class @ is the (negative) sum of the ranks assigned to it by the

constituents:
L =arc(maxT(0)), 4.1)
TO) = f,(rY,...r') = ‘Z~ U (6) (4.2)

This function was proposed by Borda [12], illustrating an inherent problem in
objective rank combination, whereby the rank of a class can paradoxically be affected by
classes with worse ranks if they are removed, which violates the principle of
independence of irrelevant alternatives. This paradox is a precursor to the famous
Arrow’s impossibility theorem in social choice theory [13]. In order to avoid negative

operation, we modify the above formula to:
1 J .
T'(O0)= £, ) = (S =r"(0) (43)
J=1

where S is the total number of classes.
For example, for the same pattern x in Figure 7, the outputs of SVM, MQDF, and
LeNet-5 are[4,8,7,3,5,2,6,0,9,11,[9,4,8,7,5,3,2.1,6,0],and[7,8,3,6,5,2,0,9,4,1]. The T (0) in

each of the classifiers 1s as follows:
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Table 3: Scores of an example pattern in BC

Classes(r'(6)) 011 2 3 4 5 6 7 8 9
Scores in SVM 210 4 6 9 5 3 7 8 1
Scores in MQDF 01} 2 3 4 8 5 1 6 7 9
Scores in LeNet-5 310 4 7 1 5 6 9 8 2
7'(6) 5121 11 17 18 | 15 10 | 22 | 23 | 12

Accordingly, the final result is ¢z = 8. Although the final result is still incorrect, the
correct one, which is ¢z =7, is ranked at the second.

In conclusion, the strength of the BC method is in its simplicity, where all classifiers
are treated equally in combination and where the training of the combination rule is not
required. These are also its problems as it does not argument or discount for superior or

inferior classifiers nor does it differentiate between low and high ranks in its combination

strategy.

4.2.2.3 Weighted Borda Count (WBC)

A mixture of classifiers of various types, numerical scores such as distances to
prototypes, values of an arbitrary discriminant, and distances to margins are not directly
usable because their scales are not compatible with each other. Thus, calculating a
confusion matrix for each confidence level of the given pattern used as weights for
different classes in each classifier is necessary. The confusion matrix (Table 4) is

calculated from the overall performance of each classifier on the training set.
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Table 4: Confusion matrix of three classifiers

0 i 2 3 4 5 6 7 8 9

SVM | 0.9990 | 0.9938 | 0.9961 | 0.9921 | 0.9919 { 0.9933 | 0.9917 | 0.9803 | 0.9908 | 0.9841

MQDF | 0.9949 | 0.9859 | 0.9915 | 0.9891 | 0.9837 | 0.9922 | 0.9843 | 0.9786 | 0.9856 | 0.9554

LeNet- | 0.9898 | 0.9850 | 0.9864 | 0.9822 | 0.9786 | 0.9675 | 0.9823 | 0.9715 | 0.9846 | 0.9623

This model is a generalization of the BC in that it replaces the sum of ranks with a
weighted sum of ranks. The WBC combiner assigns different weights to different
component classifiers according to their performance characteristics. By assigning
relatively higher weights to more accurate classifiers, the WBC shows preference for

their rankings in its combination function. Similar to previous section, we define y In
(4.1) be the output of combination and M, be the confidence value of class i of the

combination. The WBC score function is

J
TO) = £,V sty =D wr(6) (4.4)
Jj=l
where
S .
M, =) rP@)xw, (4.5)
k=1

If we apply Total Probability Theorem to the above formula, w, and r"’(0) are

calculated as follows:

w, = P, (classifier ,(x)= j|xe C,)- P, (classifier ,(x)), (4.6)
where
cw
P (classifier,(x) = j|xe C))= "7 A , @)
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D(k)
P, (classifier, (x)) = K/[ , (4.8)
and

2x(10-R,), ifR, =1

: 49
10-R,, ifR,=23,.,N #9)

r9(8) = Conf,, = {

Conf, and R, represent the confidence value and the rank of a pattern, respectively. For
Conf,and R,, k represents the classifier, and i represents the class. S is the number of
classifiers, and N represents the total number of classes. Moreover, c® denotes the
number of patterns with actual class i that is assigned to class j by the classifier &. NV,
denotes the number of patterns whose actual class is i. D" denotes the number of
patterns correctly classified by the classifier k. M denotes the total number of patterns in
training set. Therefore, c¢® is a 10x10 confusion matrix in classifier k, and the
conditional probabilities P, (classifier (x) =i|x e C,) - P,(classifier (x)),k =12,..., s

are the probabilities calculated from the overall performance of each classifier on the

training set. The confidence value of the first rank is doubled by the formula2x(10-R,,)

because we assume that the first rank should have a higher probability than others to be

the true label, hence it weighs double in these excellent classifiers.

The performance of each classifier P, (classifier,(x))is calculated as follows: When &

=1, 2, 3, P.(classifier,(x)) stands by the performance of classifier SVM, MQDF, and
LeNet-5, respectively.
B (classifier;(x)) = 0.9923

P, (classifier,(x)) = 0.9844
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P,(classifier,(x)) = 0.9802
Let us go back to the example of a pattern in Figure 7 and results in Table 2. in

previous two sections. For the same pattern x in Figure 7, 7 (0) in each classifier is

changed as follows:

Table 5: Scores of an example pattern in WBC

Classes(6) 0 1 2 3 4 5 6 7 8 9
Scores in SVM 2 0 4 6 18 5 3 7 8 1
Scores in MQDF 0 2 3 4 8 5 1 6 7 18
Scores in LeNet-5 3 0 4 7 1 S 6 18 8 2
r(6) 5 2 11 17 27 15 10 | 31 23 21
7'(0) 49119108 | 165|264 | 146 |97 |29.7 | 224 | 1938

Moreover, we need to calculate the final results with weights. We calculate 7 (7) and
7"(8) as examples:
T'(7)=0.9923 * 0.9803 * 7+ 0. 9844 * 0.9786 * 6 + 0.9802 * 0.9715%18
=29.7301
T(8)=10.9923 *0.99076 * 8 + 0.9844 * 0.9856 * 7 + 0.9802 * 0.9846 * §
=22.3775
Finally, we calculate the final result ¢ = 7, which is correct. Accordingly, we find that

considering the preference and confidence of each class in each classifier and rank is

necessary in the combination of MCS.

The general schema of cooperation in this system is as follows (Figure 8).
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SVM

Accepted ers
CCV Recognition

LeNet-5 — Output

Rejected

Rejection

MQDF

Figure 8. Flowchart of combination among three classifiers

The advantages of this WBC framework are multiple. At first, at the rank level,
measurements of different types of classifiers are the same. Secondly, the most difficult
patterns are filtered by several experts instead of one. Thirdly, both confidence (e.g. the
first rank has double scores) and preference (e.g. preference for classifiers with higher
general accuracy) are taken into consideration in combination, which is more reliable and
reasonable in real life.

As a result, although WBC is better than cooperation of three classifiers, we want to
find a better solution with a higher recognition rate while keeping high reliability.

Therefore, we can integrate cooperation with combination.
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4.2 HMCS in this chapter

Here, we study a hybrid system formed by the cooperation and combination of multiple
classifiers. In other words, a classifier can transmit its decision, either acceptance or

rejection, to one or more other classifiers [11]. The architecture of this hybrid system is

shown in Figure 9.

SVM
Accepted
Rejected
MQDF
Accepted
Rejected
leNet5
Accepted
Rejected
Combination of 3
Classifiers J
Accepted
Rejected l
Rejection

Figure 9. A Hybnid system of multiple classifiers

In cooperation, we choose a sequence of multiple classifiers according to their
recognition accuracy. Firstly, we apply SVM, which has the highest accuracy, and
recognizes the patterns with high measurement values. Next, we apply MQDF and

LeNet-5 respectively to the pattemns rejected by SVM. Finally, the patterns rejected by all
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of the three classifiers are sent to the combination of MCS. As a result, HMCS has a

better performance than cooperation and combination singly.
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Chapter 5

Error Analysis

In this chapter, we analyze the errors and observe the relationship between normalization
sizes and recognition rates in this HMCS. We propose to analyze the substitution images
with different normalization sizes, but the same classifier and same features extracted to
predict the relationship between normalization sizes and recognition rates. After
constructing a smaller database of difficult original patterns from NIST, we found that
normalizing the original data to a size larger (e.g. 26 * 26) than 20 * 20 in MNIST further

increases the recognition rate.

5.1 Introduction

Generally, a character recognition system includes three main tasks: pre-processing,
feature extraction, and classification. In pre-processing, researchers normally work on
noise filtering, binarization, thinning [19], skew correction [18], slant normalization [17],

etc. to enhance the quality of images and correct the distortion; in feature extraction,
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various types of features and extraction techniques are available; in classification, a great
number of classifiers can be used, such as statistical classifiers, support vector machines
(SVMs), neural networks, and Multiple Classifier Systems (MCSs).

Although correctly selecting the options for each task helps to improve the overall
recognition rate, one crucial factor of affecting the recognition rate is always ignored.
This crucial factor is size normalization. Since some MNIST data are not noise-free, they
are not good enough to be directly recognized by small images. In this process, we focus
mainly on the role of size normalization on the recognition of handwritten numerals.

Most researchers agree that the substitution is mainly caused by the quality of images,
or distortion of images; according to long-periods of observations and experiments, we
suspected that low resolution is an important factor, which reduces the recognition rates

of OCR systems.

5.2 Pre-processing & Feature extraction

At first, we work on pre-processing, which includes size normalization. We normalize
images of MNIST from 20 * 20 to bigger sizes, and then extract gradient features from

them 1n order to train and test the classifiers.
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5.2.1 Pre-processing

In size normalization, we keep the aspect ratio of the images and normalize them to a
bigger size. First, we binarize and cut the original images (Figure 10(a)) of an MNIST
numeral into a rectangle with the same height and width of the original patterns (Figure
10(b)). After that, we enlarge the images to a fixed size (e.g. 26 * 26) using a bilinear
interpolation algorithm (Figure 10(c)) [27]. Finally, we place the new normalized images
at the center of an empty image with size 32 * 32 (Figure 10(d)) for the extraction of

gradient features.

]
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11

(d)

Figure 10. Sample images in size normalization

(a) an original image in MNIST; (b) a cut image from MNIST;
(c) an enlarged image; and (d) an image for feature extraction

In size normalization, we use bilinear interpolation for normalization. By translating
and rescaling the coordinates, which will not change the interpolation, we may suppose
the square is centered at (x, y) and the centers of the surrounding cells located at (0, 0),

(1, 0), (0, 1), and (1, 1), where they have values Zgo, Z10, Zo1, and Z;;, respectively.

201 Z1 Zﬂ
o) 4
o
xX.¥)
o & o
Zyy Z; Zip

Figure 11. An example of bilinear interpolation

Linear interpolation on the bottom row of neighbors, between (0, 0) and (1, 0),
estimates the value Zg at (x, 0) as x*Z,, H{l-x)*Z,,. Likewise, linear interpolation on

the top row of neighbors, between (0, 1) and (1, 1), estimates the value Z; at (x, 1) as
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x*Z,, Hl-x)*Z, . Fally, linear interpolation between Z¢ and Z, estimates the value Z
at (x,y)asy*Z Hl1-y)*Z,.

The key idea of bilinear interpolation is to perform linear interpolation first in one
direction, and then in the other direction. By substituting the expressions for Zy and Z,
into the previous formula you can see that the formula for Z is a polynomial involving
powers of x and y no greater than 1, so it has four coefficients:

Z=a+tb*x+tc*y+d*Fx*y (5.1

Because these four coefficients were determined by four values (Zgo, ... , Z11), they are
in general uniquely determined by the data. This immediately implies that the
comparable procedure of first interpolating along columns (in the y-direction) and then
interpolating the results in the x-direction will give the same result, because 1t, too, will
have a similar formula with a unique solution.

Note that the term "bilinear” derives from the process of linear interpolation (twice in
one direction, then once in the perpendicular direction), not from the formula for Z. The

formula involves a term with x * y, which is not linear.

5.2.2 Feature extraction

Gradient features [21] are extracted from the binary images in the MNIST database in
this study. In each pattern, a feature vector with a size 400 (5 horizontal, 5 vertical, 16
directions) is produced.

The gray-scale normalized image is standardized such that its mean and maximum

values are 0 and 1.0, respectively. After centering a normalized image (e.g. 26 * 26) into
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a 32 * 32 box as mentioned in 5.2.1, Robert filter [24] is applied to calculate gradient
strengths and directions. For example, the gradient magnitude and direction of pixel

g(m, n) are calculated as follows:

Au=g(mn)—g(m+1,n+1), (5.2)

Av=g(mn+1)—g(m+1n), (5.3)

6 (m, n) = arctan( av ), (5.4)
Au

s(mn)=yAu’ +AV, (5.5)

where 6 (m, n)and s (m,n) specify the direction and gradient magnitude of pixel (m, n),
respectively.

We calculate the strength of the gradient as a feature vector. The direction of gradient
is quantized to 32 levels with an interval #/16. The normalized character image is divided
into 81 (9 horizontal * 9 vertical) blocks. The strength of the gradient in each of the 32

directions 1s accumulated in each block to produce 81 local joint spectra of direction and

curvature.

The spatial resolution is reduced from 9*9 to 5*5 by down sampling every two
horizontal and every two vertical blocks with a 5*5 Gaussian filter. Similarly, the
directional resolution is reduced from 32 to 16 levels by down sampling with a weight
vector[14641]", to produce a feature vector of size 400 (5 horizontal, 5 vertical, and 16
directions).

Moreover, variable transformation ( y =x"*) is applied to make the distribution of the

feature Gaussian-like. The feature size is reduced to 400 by principal component analysis

(KL transform).
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Finally, we scale the feature vectors by a constant factor such that the values of feature

components range from 0 to 1.0.

5.3 Recognizing images in MNIST with different sizes

We applied two different classifiers -- SVM and MQDF to test all the patterns in our
MNIST test set to observe the recognition rate at different sizes. The reason for choosing
two classifiers is to ensure that the normalization size affecting the recognition rate of the
system is not happening because of these classifiers. LeNet-5 classifier cannot be used for
this analysis because it has a fixed structure (detailed in Chapter 2), and normalizing the
sizes of patterns may destroy its structure.

As a result, we find that the recognition rates rise with both SVM and MQDF when
we enlarge the images (shown in Chapter 6). As images in MNIST have already been
normalized, normalizing them to a bigger size is the second source of distortion of the
originals. Even though the data underwent distortion (normalization) twice, the
recognition rates still rise from 98.98% to 99.23% in SVM and from 89.79% to 98.44%
in MQDF when we enlarge the images from 20 * 20 to 30 * 30. This suggests that if we
normalize the original image to a bigger size than 20 * 20, the recognition rate of the
entire system will rise because we only need to normalize images from the originals once
instead of twice. To prove whether this hypothesis is true or not, we constructed a small

database with originals.
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5.4 Finding the originals to construct a small database

Since the MNIST database was constructed from NIST's Special Database 3 and Special
Database 1, which contain binary images of handwritten digits, and NIST Special
Database 19, which includes NIST's Special Database 3 and Special Database 1,
consequently we should be able to match all the images between the normalized images
from MNIST and the original images from NIST SD 19.

In total, we found 417 substitution images with eight different sizes (Table 6). In order
to create a database with the most difficult ones, we constructed a small database with

images not recognized in at least two different sizes.

Table 6. Numbers of error images with different sizes

No. of sizes 8 7 6 5 4 3 2 1
No. of substituted patterns 12 |21 {23 115 |18 |33 {59 |236
Total of substituted patterns 181 236

Thus, we have in total 181 substitution images (An index of these images is listed in
Appendix ). The distributions of each class in this small database are as follows (Table

7) (An index matched in NIST and MNIST is listed in Appendix II):

Table 7. Distribution of samples of each class in small database

Class | 0 1 2 3 4 5 6 7 & 9 Total
No. 8 8 17 {17 (19 |18 115 122 |24 |33 |181

Since NIST SD 19 is too huge to match images one by one manually, we have
implemented an automatic procedure to effectively apply template matching globally
with some constraints. At first, we find all the substitution images in MNIST and sort
them into ten classes (0,1, ..., 9); then we load one substitution image in a class.

Subsequently, we cut the image to the real size; in other words, we remove four
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boundaries and keep the real images; afterwards, we load the images in NIST SD 19 and
normalize them to the same size of the cut image. Further, we match two images with
template matching in order to choose a candidate image, and finally, we verify the

candidate image with local structures. The details are shown in Figure 12.
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Find all the substitution images in MNIST
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Sort them into 10 classes (0, 1, ..., 9)
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Load one substitution image in a class
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Load the i/th image in S of NIST SD 19

v

Normalize it to the same size of the cut image
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Match two images using template matching
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Be chosen as a candidate image

v

Verify the image with local structures

Own the similar local
structures”?

Y v
Print out the sequence No. in NIST

!

Figure 12. Flowchart of finding the originals of substitution images
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During the procedure of matching two images, we apply a template matching algorithm.
Template matching approaches have been quite popular in optical computing: frequency
domain characteristics of convolution are used to simplify the computation. It can be
simplified significantly in binary images. In the following, we introduce template
matching first, and mention conditions for matching, such as constraints on number of
dissimilar pixels and aspect ratio (height to width) in an image.

Suppose that we have a template g[i, j] and we wish to detect its instances in an image
/i, j1. An obvious thing to do is to place the template at a location in an image and to
detect its presence at that point by comparing intensity values in the template with the
corresponding values in the image. Since it is rare that intensity values will match
exactly, we require a measure of dissimilarity between the intensity values of the

template and the corresponding values of the image. Several measures may be defined:

MaxXy; jier |/ —gl (5.6)
D¢l (5.7)
[/ JeR

2.(f-g) (5.8)
(i.j IR

where R is the region of the template. Here, we take the entire error image as a template
and calculate the similarities between error images and original images with formula
(5.8) because the sum of the squared errors is the most popular measure. In the case of
template matching, this measure can be computed indirectly and computational cost can

be reduced. We can simplify:
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2.(f-e =2+ 222 fg (5.9)
[

[i./)eR [,jleR {i./)eR [i,/]erR
Our aim 1s to find patterns with minimum distances in (5.7) or patterns with distances

smaller than a certain threshold value. As f'and g are fixed, then ¥ 7 gives a measure

of mismatch in (5.9). Thus, we only need to find patterns with maximum values of
Dk

In the procedure of matching two images, the image has to satisfy the following
constraints: (1) number of dissimilar pixels is not big and (i1) having similar aspect ratios.
If any image satisfies (i) and (ii), it is considered as a candidate image; otherwise, if no
image satisfies the two conditions, K in (1) need to be enlarged until an image or several

images are found as candidate images.

(1). We use K in the following formula to represent the measure of similarity between two

images:

K= maXng (5.10)

Here, we need K to satisfy the following condition: K < (/. on ¥ Weasituion ) €1 >

h is the height of the current substituted image, w is the weight of the

substututi on substituti on

current substituted image; and ¢, is a constant. Experimentally, we set ¢, = 6.

(i1). The difference between the aspect ratio of the original images and the aspect ratio of

the current error image should be small. In (5.11), we experimentally set ¢, = 0.1.

is an aspect ratio of an original image, and »

original

¥

original

is an aspect ratio of an error

image.
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| Forginat — Viemplate I<c, (5.11)

When verifying the original images from candidate images, we consider two
situations. If the minimum distances in template matching are very small, we endorse the
images with minimum distances as their originals. However, if the minimum distances
are too big, we need to consider all the candidate images with their local structures in
order to find their original images. We considered choosing several candidates instead of
choosing one is because, during the verification, we found that two specific situations

occurred when the minimum distances were large.

Conditions:

a) If d(x, ¥) = || Dmin(X, ¥) — Dand min(X, ¥)il <T, we will match all the candidate images;
otherwise, we will assign the image with Dpin(X, y) to the image in MNIST as a
matching pair, where x is the pattern in MNIST, y is the pattern in NIST, Dyin(X, y) is
the distance between x and y with template matching, and d(x, y) is the distance
between Duin(X, ¥) and Dang min(X, ¥), and T 1s a constant.

b) If d(x, y1) = d(x, y2) & r(x,y1) =r(x,y1), where r(x,y))= |[Rynist ()—Rnist(yll, (¢ = 1,
2), we assign the image with y;, where Rynist (X) is an aspect ratio of pattern x in
MNIST.

If all the images satisfy condition a), which means that the first candidate image is too
similar to the second candidate image, we need to look and compare their local geometric
structures to those of the image in MNIST. The patterns in Figure 13 serve as an
example. Although the 1* candidate (far right image in NIST) has the minimum distance,
the second middle candidate (centre image in NIST) is the real match of the image in

MNIST (the left one). Accordingly, considering the candidate images is necessary.
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Figure 13. An example that candidate images are considered

Another case is the situation that condition b) is satisfied. If condition b) is satisfied,

which means that the matched image in MNIST owns two candidate images with
minimum distance in NIST, the aspect ratio should be considered. Let us look at the

patterns in Figure 14. We have determined that the matching image is the middle one

because it has the same aspect ratio as the image in MNIST.
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Image in Images in NIST

1111111
xxxxx 1
u1 1
1y 1
1 by
1
1
1
1 111,
13 11
1 1

Distance / 44 44

Original Images

Aspect Ratio (H/W) | 20/13=1.54 | 72/48=1.5 | 51/38=1.34

Results / N X

Figure 14. An example where the aspect ratios are considered

5.5 Comparing the substitution rates of the small database

While keeping their aspect ratios, we normalized the original images to various sizes and
recognized the normalized images by the same feature extraction algorithm and classifier
-SVM.

According to the statistical results shown in Chapter 6, we found that enlarging
images helps to increase the recognition rate. When the images are normalized to the
same sizes from both the originals and MNIST, images normalized from the originals
have better performance and lower substitution rate. Hence, we conclude that:

(1) Enlarging images helps to increase the recognition rate,

(2) Normalizing images from the originals has a better performance than normalizing

images from MNIST.
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Chapter 6

Experimental Results

In this chapter, we introduce the database used in this thesis, and we demonstrate the
experimental results of HMCS and error analysis, respectively. In HMCS, we show not
only the results of each classifier concerning the rejection option in cooperation, but also
the results of different combination methods. Afterwards, we compare the performance of
HMCS with each individual classifier. In error analysis, we show the experimental results
of recognition rates with different normalization sizes in SVM and in MQDF. Moreover,
we show some statistics on sizes of patterns in NIST. Finally, we compare the error rates

in the small database with various sizes normalized from patterns in either MNIST or

NIST.

6.1 Database

The experiment was conducted on the MNIST database [2], which is a widely known
handwritten digit recognition benchmark. The MNIST database of handwritten digits has
a training set of 60,000 samples and a test set of 10,000 samples. The MNIST database is

a subset of a larger set available from NIST. The digits of MNIST have been size-
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normalized and centered into a fixed-size image. The original black and white (bi-level)
images from NIST were size normalized to fit into a 20*%20 pixel box while preserving
their aspect ratio. The resulting images contain grey levels as a result of the anti-aliasing
technique used by the normalization algorithm. Each image was then centered in a 28*28
image by calculating the point, which is the center of the mass of all the pixels for each
image, and shifting the image so as to position this point at the center of the 28*28 field.

The following patterns are samples of MNIST (Figure 15).
7 0 > 7 3 4
Figure 15. Samples of MNIST

The formulae for calculating the recognition rate, substitution rate, rejection rate and

reliability, respectively, are:

Number of correctly recognized samples

Recognition rate = x100%

Total number of test samples

o Number of incorrectly recognized samples
Substitution rate = f 24 g P

x100%
Total number of test samples

Number of rejected samples

Rejection rate = x100%

Total number of test samples

R 17 t
Reliability = ecognition rate

100% - Rejection rate

6.2 Experimental Results of the Entire System

We designed an HMCS, which integrates the cooperation (serial topology) and
combination (parallel topology) of three classifiers: SVM, MQDF, and LeNet-5
developed by Dong [1]. In cooperation, Differential Measurement (DM), Probability
Measurement (PM) and First Rank Measurement (FRM) are defined for their rejection

options on different types of classifiers. As we know, DM is more reliable than FRM as

61



DM uses distribution and relationship among all the confidence values. Thus, DM is
applied to SVM and MQDF for their rejection options. Moreover, PM is applied to
LeNet-5. In the process of combination, Weighted Borda Count (WBC) at the rank level
with the Total Probability Theorem to the three classifiers is applied. WBC has better
performance in comparison with Majority Vote, and Borda Count. In order to further

improve the reliability of this HMCS, a verifier can be plugged into it.

6.2.1 Experimental Results of the Cooperation

In cooperation with this HMCS, SVM, LeNet-5, and MQDF were applied serially. As we
look at rejected patterns from a previous classifier as input for the next classifier,
measurements of the rejections are vital. In this section, we demonstrate the results from
various measurements mentioned in Chapter 3 with different classifiers.

First, we compared the recognition results of SVM classifier using FRM or DM, as
shown in Figure 16 and Figure 17. As both FRM and DM are designed for its rejection
options, we chose an ideal measurement, which has a higher recognition rate while

keeping the same low substitution rate for a classifier.
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Distribution of the Outputs with First Rank
Measurement on SVM
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Figure 16. Distributions of recognition results of classifiers SVM using FRM
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Figure 17. Distributions of recognition results of classifiers SVM using DM



According to the experiment on the training set of MNIST, the range of the confidence
value of the FRM in SVM is from - 0.618123 to 4.15665. The maximum value of the
FRM in the substitution set in SVM 1s 1.2. Table 8 shows the recognition and substitution

rates of SVM against various thresholds of the FRM.

Table 8. Thresholds for rejection of SVM based on the confidence value of FRM

>Threshold 1.2 1.1 1.0 0.6 0 -0.6
Recognition Rate | 81.09% | 85.49% | 86.76% | 94.01% | 98.54% | 99.23%
Substitution Rate | 0% 0.01% | 0.02% |{0.09% |0.56% |0.77%

According to the experiment on the training set of MNIST, the range of the confidence
value of the DM in SVM is from 0 to 8.6. The maximum value of the DM in the

substitution set in SVM 1is 5.65. Table 9 shows the recognition and substitution rates of

SVM against various thresholds of the DM.

Table 9. Thresholds for rejection of SVM based on the confidence value of DM

>Threshold 5.65 4.52 3.39 2.26 1.13 0
Recognition Rate | 82.32% | 93.42% | 97.15% | 98.55% | 99.53% | 99.23%
Substitution Ratej 0% 0.01% | 0.09% | 0.22% | 0.43% | 0.77%

Based on the recognition results presented in Table 8 and Table 9, DM is better than
FRM. The recognition rates are 93.42% in DM and only 85.49% in FRM, while both
have the same substitution rate with 0.01%. Therefore, we used DM as a measurement
for classifier SVM’s rejection.

Similarly, DM is a good measurement for classifier MQDF. The distributions of the
correctly recognized data and erroneous data are shown in Figure 18. As illustrated, the
correctly recognized data are distributed in a Gaussian shape where the peak of the

distribution is far away from the peak of the distribution of substitution patterns.
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Differential Measurement in MQDF
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Figure 18: Distributions of recognition results of classifier MQDF using DM

Despite its benefits, DM is not a good measurement for classifier LeNet-5. As shown

in Figure 19, it is hard for DM to find a threshold for rejection that can properly separate

correctly recognized data and errors when used with LeNet-5.

Differental Measurement in LeNet-5
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Figure 19: Data distributions of LeNet-5 using DM
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On the other hand, PM 1is an effective tool to evaluate the outputs of LeNet-5, as
shown in Figure 20. Over 60% of patterns in the entire test set have a PM greater than

0.99, while there is no substitution in that range.
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Figure 20: Distributions for LeNet-5 using PM

When using DM with a fixed threshold, SVM rejects a number of patterns. The
distribution of these patterns in LeNet-5 with correct and incorrect recognition data are
shown in Figure 21. Although it seems that the range of measurement of incorrect data is
almost the same as the range of correct data, the amount of data with the measurement
from 88 — 90 have a big difference. Thus, using PM in LeNet-5 to deal with the
incorrectly recognized patterns in SVM is reasonable. We reject patterns which cannot

perform well in either SVM or LeNet-5.
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Distribution of the patterns incorrectly
recognized by SVM in LeNet-5 using PM
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Figure 21. Distribution of patterns incorrectly recognized in SVM in LeNet-5 with PM

In addition, we can analyze the distribution of rejection from the former two

classifiers in MQDF in the same way. In order to maintain the substitution rate, we

control MQDF’s threshold strictly.

6.2.2 Experimental Results of the Combination

In combination of this HMCS, we integrated three classifiers with a parallel topology.
We compared the results of WBC, a reliable combination method at rank level introduced
in Chapter 4 with the results of well known methods, such as Majority Vote and BC.
Majority Vote is used for the combination of MCS at the abstract level. If at least two
of classifiers give same result, we confirm it; otherwise, we reject it. After combination

occurs In this way, the recognition rate is reduced to 97.92% and the rejection rate is
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0.24%. Because voting in abstract level does not include enough information from the
three classifiers’ outputs, the recognition rate of majority vote in abstract level is not high
enough. Borda Count is used for the combination of MCS at the rank level. As a result,
the recognition rate is 98.78% without rejection.

WBC is a weighted BC of MCS at the rank level. According to the experiments, the
recognition rate of WBC is 99.00% without rejection, which is better than both Majority

Vote and BC, as shown in Table 10.

Table 10. Recognition Results of WBC, BC, and Majority vote
WBC BC Majority vote
Recognition Rate | 99.00% | 98.78% | 97.92%
Substitution Rate | 1.00% | 1.22% | 1.84%
Rejection Rate 0.00% | 0.00% | 0.24%

6.2.3 Experimental Resuits of the HMCS

The HMCS included in our study can be used to either give the final output or to work as
an input to verifiers [54]. If the target is to give the final output with HMCS, we should
focus on both the recognition rate and the reliability rate. However, if the target is the
latter one, we should reduce the substitution rate as much as possible. Thus, if we only
use HMCS without verification, after adjusting the thresholds at each stage on the
training data, the overall recognition rate of the test set is 98.34%, while the reliability
rate is 99.54%. However, if this MCS is considered as the input of verification by
prototypes [54], the overall recognition rate is 95.54%, but the reliability rate is high at

99.93%, and the substitution rate decreases from 0.46% to 0.07%. A comparison of the
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performance of HMCS with different classifiers and different strategies is listed in Table

11.
Table 11. Comparison of the performance of HMCS with individual classifier
Classifiers Recognition | Error Rejection | Reliability

Rate (%) Rate (%) | Rate (%) | Rate (%)

SVM 99.23 0.77 0 99.23

MQDF 98.44 1.56 0 98.44

LeNet-5 98.02 1.98 0 98.02

Cooperation 94.86 0.02 5.12 99.93

Combination 99.00 1.00 0 99.00

HMCS | With verification 95.54 0.07 439 99.93

97.00 0.14 2.86 99.86

98.34 0.45 1.21 99.54

Without verification | 99.11 0.89 0 99.11

6.3 Experimental Results of Error Analysis

6.3.1 Error Rates at Various Sizes

Several steps are involved in error analysis. Firstly, we compare the recognition rates in

both SVM and MQDF when we enlarge images to various sizes larger than the patterns

in MNIST. The details are shown in Figure 22 and Figure 23.
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Figure 22. Substitution rates at different normalization sizes of MNIST in SVM
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Figure 23. Substitution rates at different normalization sizes of MNIST in MQDF

As a result, we find that the recognition rates increase with both SVM and MQDF
when we enlarge the images. We find that when we increase the normalization sizes from
20 * 20 to 26 * 26, the substitution rate for SVM decreases from 1.02% to 0.84% and

from 10.21% to 2.24% for MQDF. When we increase the normalization sizes from 26 *
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26 to 41 * 41, the substitution rate for SVM and MQDF continues to decrease, but the
differences are much smaller. We have chosen 26 * 26 as the optimal normalization size
for practical purposes in terms of performance and processing time even though the
recognition rate rises when we normalize images to bigger sizes.

As images in MNIST have already been normalized, normalizing them to a bigger size
leads to another source of distortion of the originals. Thus, we normalize the image to a
bigger size than 20 * 20 from the originals only once instead of twice. Hence, we

constructed a small database of originals to study the real effect of size normalization.

6.3.2 Experimental Results of NIST

The MNIST database was constructed from NIST's Special Database 3 and Special
Database 1, which contain binary images of handwritten digits. The NIST Special
Database 19 (NIST SD 19) also includes NIST's Special Database 3 and Special Database
1. Consequently we should be able to match all the images between the normalized
images from MNIST and the original images from NIST SD 19.

In order to better understand patterns in NIST SD 19, we did some statistics on NIST
SD 19. According to that, the total number of handwritten labeled characters (digit and
alphabetic) in NIST SD 19 is 814,255, In the training set, there are 344,307 isolated
digits, and there are 58,646 isolated digits in the test set. The numbers of each class are
listed in Table 12. We discovered that the images with sequence numbers ranging 0-4999

in MNIST are chosen from the test set of NIST SD19; while the images with sequence
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numbers ranging from 5000-10000 in MNIST are chosen from the training set of NIST

SD19.

Table 12. Numbers of each class distributed in NIST SD 19
Label 0 1 2 3 4 5 6 7 8 9

Train- 34,803 | 38,049 | 34,184 | 35,293 | 33,432 | 31,007 | 34,079 | 35,796 | 33,884 | 33,720
ing Set
Test 5,561 6,055 | 5,888 | 5,819 | 5,721 5,539 | 5,858 6,097 | 5,695 | 5,813
Set

Moreover, we found that the size of normalized samples (20 * 20) in MNIST is less
than % the average width and height of the size of the original images. According to the
statistics on NIST, we found that the average size of images in the training set and that of
the test set are similar. The average original width varies from 32 to 40 pixels except for
class “17, and the average original height is from 39 to 51 pixels (Table 13). Appendix III
includes two tables of all the images from NIST SD 19 with maximum height, maximum
width, maximum area, minimum height, minimum width, and minimum area of images in

each class in both the training set and the test set.
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Table 13. Summary of the width and height of the samples
in the Training and Test sets of NIST SD 19

Training set:

Label Number Range Range Mean of | Mean of | Range of Area (Width * Height)

of Patterns | of of Width Height

Width Height

0 34,803 13-85 14-83 | 36 39 240(15* 16)-7055 (85*83)
I 38,049 3-73 17-82 20 43 75(3*%25)-5256(73*72)
2 34,184 13-123 18-80 41 42 270(15%18)-8856(123*72)
3 35,293 15-89 21-81 37 45 360(15%24)-5976(83%72)
4 33,432 16-101 | 9-83 40 50 336(16*21)-8181(101*81)
5 31,067 13-123 | 20-82 47 45 360(18%20)-8775(117*75)
6 34,079 12-85 18-81 34 47 288(16*18)-6035(85*71)
7 35,796 12-97 18-81 35 46 240(12*20)-6840(95*72)
8 33,884 15-108 | 21-82 37 49 418(19%22)-7560(108*70)
9 33,720 14-94 24-83 34 51 435(15*29)-6016(94*64)
Test set:
Label Number Range Range Mean of | Mean of | Range of Area (Width * Height)

of Patterns | of of Width Height

Width Height

0 5,561 13-79 15-79 35 41 208(13*16)-5372(68*79)
1 6,655 3-60 18-81 13 44 108(3%36)-3432(52%56)
2 5,888 14-95 15-79 38 43 210(14*15)-5775(75*77)
3 5,819 13-75 18-79 34 47 340(17*20)-5254(71*74)
4 5,721 12-76 16-81 35 48 288(18*16)-5852(76*%77)
S 5,539 14-92 21-81 39 47 357(17*%21)-6318(81*78)
6 5,858 12-74 17-81 32 47 216(12*18)-4891(73*67)
7 6,097 12-96 14-80 34 46 266(19%14)-6084(78*78)
8 5,695 13-78 17-82 34 48 247(13*19)-5040(70*72)
9 5,813 13-71 20-82 32 50 374(17%22)-5025(67*75)

6.3.3 Experimental Results of the Small Database

As we mentioned in Chapter 5, we constructed a small database with 181 images. Each

image was mis-recognized in at least two different sizes, i.c. they are the most difficult

OI1CS.
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According to the following table (Table 14), we conclude that enlarging images helps

“to increase the recognition rate.

Table 14. Substitution numbers of a smaller database with different normalization sources
Normalization Size 20%20 | 22%22 | 24%24 | 26*26 | 28*%28 | 30*30
Normalized from MNIST 76 91 93 77 84 69
Normalized from originals | 70 87 63 55 57 53

Normalizing images from the originals has a better performance than normalizing
images from MNIST (already normalized once) when the images are normalized to the

same sizes (Figure 24).
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Figure 24. Number of errors in the small normalized database from different sources
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Chapter 7

Conclusion

In this chapter, we summarize the contribution of this thesis and present some future
work in this research direction. In this thesis, we not only proposed an effective hybrid
Multiple Classifier System, but through error analysis we also investigated the
relationship between the performance of handwritten numeral recognition systems and

size resolution. Thus, my recommendations for future work are based on two facets.

7.1 Summary

The basic concept of this thesis is to construct an effective hybrid MCS (HMCS) of
handwritten numeral recognition and to analyze factors that cause the errors in HMCS.
The goal of the HMCS is to increase the reliability of the handwritten numeral
recognition system while maintaining a reasonable recognition rate, which satisfies the
requirement of some financial document processing systems. In error analysis of the
HMCS, we focused mainly on the role of size normalization in the recognition of
handwritten numerals.

The proposed HMCS integrates the cooperation (serial topology) and combination

(parallel topology) of three classifiers: SVM, MQDF, and LeNet-5.
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In cooperation, three measurements — First Rank Measurement (FRM), Differential
Measurement (DM) and Probability Measurement (PM) are defined for their rejection
options on different types of classifiers. As proven by the experiments, DM is an
effective method to measure the rejected patterns when the outputs are numerical scores
that contain the values of an arbitrary discriminant (MQDF) or distances to margins
(SVM). However, if the outputs of classifiers are the distances to prototypes (LeNet-5),
PM is a better method. As DM performs better than FRM in SVM and MQDF, FRM 1is
not applied in cooperation of three classifiers.

In combination, Weighted Borda Count (WBC) at the rank level, which reflects
confidence and preference of different ranks in different classes with different classifiers,
is applied. We assigned a higher confidence to the classes at the first rank in each
classifier, and we treated each class in each classifier differently based on their
performance to show preference. According to the experiments, we found that WBC
performs better than Majority Vote and BC.

After we integrated cooperation and combination on multiple classifiers, the final
recognition rate of this hybrid system ranged from 95.54% to 99.11% with a reliability
rate of 99.93% to 99.11%. Hence, we conclude that the proposed system has successfully
achieved a high reliability while maintaining a reasonable recognition rate.

Although this HMCS has a high reliability rate while maintaining a reasonable
recognition rate, analyzing error factors is vital to better performance. In error analysis,
we focused mainly on the role of size normalization on the recognition of handwritten

numerals.
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The experimental results indicate that enlarging normalization size from 20 * 20 to
bigger sizes (e.g. 26*26) is helpful in improving the recognition rate. As images in
MNIST have already been normalized, normalizing them to a bigger size is the second
source of distortion of the originals. Even though we distort (normalize) images twice,
the recognition rates still rise. This suggests that if we normalize the image to a bigger
size than 20 * 20 from the originals, the recognition rate of the entire system will rise
because we only need to normalize images from the originals once instead of twice.

Hence, we constructed a small database with originals. As it is impossible to find all
the original images of the test set in MNIST, we resorted to the most difficult images,
which are misrecognized in at least two different sizes, to construct the small database.
Template matching with some constraints was applied to match the images in NIST and
MNIST. We saw that normalizing the original data to a size larger than 20 * 20 in
MNIST increases the recognition rate. Therefore, we conclude that the performance of
handwritten numeric recognition systems deteriorates dramatically due to low size

resolution.

7.2 Future Research

This HMCS is not only useful for the recognition of handwritten numerals, but also for
various application areas of pattern recognition (e.g. signature recognition, fingerprint
recognition, face recognition, bioinformatics, etc.). Although several models and
measurements have been proposed, the work is far from finished, and future research

may include the following challenging problems:
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In error analysis of this system, we know that images normalized to a larger size
produced a higher recognition rate. However, enlarging images requires a higher
computational cost, both in space and time. In the future, we can consider
enlarging images partially instead of using the entire database as an optimal
solution, e.g. mainly those images where the classifier does not have a high
recognition confidence.

In this HMCS, although it includes cooperation and combination, its structure is
not dynamic. Optimizing the model, which may integrate a selection of multiple
classifiers, should be taken into consideration in the future.

Although DM and PM have been effectively defined for their rejection options in
cooperation in this HMCS, their performance in other classifiers has not been
examined. Meanwhile, other measurements may be designed for the current three
classifiers. In the future, we may conduct more research on measurements of the
rejection option.

In combination, weights, which reflect confidence and preference of each
classifier in each class, are defined in this thesis. These weights are based on a
statistical point of view. This means that a large enough and representative
learning data set should be provided for future research. Therefore, the key issue
to successfully apply this method is to construct a representative training data
base, which cannot be guaranteed in this HMCS. Therefore, partial selection of
training data may be considered.

In error analysis, we have conducted experiments to investigate its effects and

have found that the performance of handwritten numeric recognition systems
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deteriorates dramatically due to low size resolution. However, other factors may
also reduce recognition rates. In the future, these factors (e.g. choosing different

features, changing the space resolution of gradient features, etc.) may be taken

into consideration.
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Appendix I:

Index of images in MNIST, which are substituted in different sizes

181 images substituted in at least 2 different sizes:

582 924 | 1901 | 3762 | 4176 | 4224 | 4497 | 4761 | 6571 | 6883 | 9530 | 9729
247 | 1112 | 1530 1871 | 1878 | 2130} 2135 | 2182 | 2462 | 4271 | 4284 | 4360
5654 | 6555 | 6572 | 6625 | 8325 8527 | 9587 | 9664 | 9792 447 448 583
947 | 1319 | 1393 | 1681 | 1709 | 1737 | 2040 | 2053 | 2952 | 3369 | 3422 | 3902
4201 | 4807 | 5955 | 6559 | 6576 | 6597 | 9505 | 9634 412 659 1 1039 | 1242
2293 | 2326 | 2414 | 2654 | 2939 | 3021 | 3073 | 4306 | 4369 | 4924 | 9850 674
691 716 882 938 | 1226 | 1621 | 2447 | 2454 | 4063 | 4578 { 4823 | 5972
6558 | 7921 | 8246 | 8316 | 8408 29 320 449 495 726 846 | 1014
1290 | 1299 | 1790 | 2052 | 2877 | 2927 | 3060 | 3225 | 3821 | 3869 | 3941 | 4065
4163 | 4571 | 4575 4838 1 5176 | 5735 | 5937 | 6560 | 6561 | 7845 | 8059 | 8550
9024 | 9692 18 92 | 149 321 358 445 684 740 | 1033 | 1182
1364 | 1500 | 1549 | 1982 | 2035} 2070 | 2105 | 2118 | 2189 | 2387 2405 | 2648
2945 | 3005 | 3100 | 3316 3365 | 3559 | 3604 | 3702 | 3780 | 3806 | 4078 | 4265
4433 | 4723 | 4740 | 4874 | 4879 | 4956 | 5835 | 5888 | 5973 | 6011 | 6755 | 6783
6895 | 7430 | 7853 | 7862 8094 | 9009 i 9015 9620 9642 | 9700 | 9839 | 9944
9980
231 images substituted in 1 size:

63 73 115 158 184 209 241 290 340 404 406 435
478 522 551 578 593 646 696 707 810 813 844 894
936 | 1002 | 1003 | 1022 | 1044 | 1068 | 1114} 1212} 1247 | 1256 | 1260 | 1270
1296 | 1403 | 1414 | 1444 | 1454 | 1581 | 1611 | 1634 | 1637 | led4l | 1695 1701
1721 1754 | 1769 | 1915 | 1938 | 1941 | 1952 | 1984 { 1994 | 2016 | 2043 | 2044
2109 | 2129 | 2198 | 2276 | 2309 | 2314 | 2327 | 2380 | 2382 | 2406 | 2437 | 2488
2514 | 2523 | 2532 | 2671 | 2678 | 2770 | 2800 | 2850 | 2863 | 2921 | 2953 | 3030
3186 | 3250 | 3329 | 3330 | 3344 | 3377 3381 | 3558 | 3475 3503 | 3534 | 3629
3672 | 3726 | 3751 | 3756 | 3767 | 3772 | 3778 | 3785 | 3817 | 3834 | 3893 | 3964
3985 | 4007 | 4017 | 4018 | 4086 | 4156 | 4167 | 4289 | 4300 | 4317 | 4325 | 4419
4425 | 4437 | 4443 | 4451 | 4505 1 4536 | 4548 | 4551 | 4594 | 4625 | 4690 | 4696
4699 | 4731 | 4755 | 4759 | 4783 | 4924 | 4860 { 4880 | 4943 | 5188} 5190 | 5261
5268 | 5288 | 5331 5450 | 5600 | 5601 | 5626 | 5634 | 5734} 5769 | 5802 | 5866
5939 | 6042 | 6065 | 6081 | 6091 | 6093 | 6137 | 6157 | 6166 | 6172 | 6173 | 6370
6532 ) 6553 | 6581 ] 65921 6599 | 6632 | 6651 | 66621 6765 | 6806 | 6847 | 6988
7081 | 7208 | 7216 | 7259 | 7457 | 7505 | 77552 | 7774 | U857 | 7902 | 7915 | 8062
8065 | 8071 { 8081 8092 | 8095 | 8112 | 8217 | 8254 | 8263 | 8277 | 8279 | 8295
8310 | 8320 | 8377 | 8382 | 8453 | 8508 | 8607 | 9019 | 9022 | 9175 9225 | 9227
9255 | 9280 | 94271 9698 | 9779 | 9811 | 9847 | 9849 | 9867 | 9874 | 9875 | 9892
9904 | 9905 | 9943

86



Appendix II:

Index of images in NIST and MNIST, which are substituted in at least 2 different sizes

MNIST | NIST label | MNIST | NIST label | MNIST | NIST label | MNIST | NIST label
582 | 046256 8 3422 | 020336 6 495 | 039198 8 2105 | 012373 3
924 | 029251 2 3902 | 054485 5 726 |.020157 7 2118 | 051740 6

1901 | 021018 9 4201 | 053927 1 846 | 042415 7 2189 | 014970 9
3762 | 013627 6 4807 | 008282 8 1014 | 040296 6 2387 | 006254 9
4176 | 056443 2 5955 | 019873 3 1290 | 035601 3 2405 | 039487 3
4224 | 021744 9 6559 | 099864 4 1299 | 050578 S 2648 | 016183 9
4497 | 006575 8 6576 | 080528 7 1790 | 022650 2 2945 | 033751 3
4761 | 053812 9 6597 | 229350 0 2052 | 019093 8 3005 | 047162 9
6571 | 052859 9 9505 | 320036 7 2877 | 054565 4 3100 { 019049 5
6883 | 273430 1 9634 | 116274 0 2927 | 039371 3 3316 | 055336 7
9530 | 028766 9 412 | 003422 5 3060 | 053059 9 3365 | 013295 6
9729 | 024669 5 659 | 052206 2 3225 | 021785 7 3559 1 049346 8
247 | 055304 4 1039 1 006733 7 3821 | 047709 9 3604 | 056385 7
1112 | 055964 4 1242 | 057181 4 3869 | 007685 9 3702 | 006293 5
1530 | 015234 8 2293 | 041915 9 3941 | 023157 4 3780 | 022683 4
1871 | 048358 2 2326 | 006402 0 4065 | 026195 0 3806 | 053463 5
1878 | 027001 8 2414 | 034953 9 4163 | 037757 9 4078 | 000955 9
2130 | 035302 4 2654 | 022815 6 4571 | 033342 6 4265 | 030829 4
2135 | 002621 6 2939 | 036004 9 4575 | 003941 4 4433 | 028239 7
2182 | 033186 1 3021 | 048695 2 4838 | 040366 6 4723 | 048716 2
2462 | 003019 2 3073 | 057812 l 5176 | 089023 8 4740 | 034875 3
4271 | 001508 5 4306 | 037004 3 5735 | 252635 S 4874 | 006178 9
4284 | 035992 9 4369 | 014734 9 5937 | 128333 5 4879 | 004154 8
4360 | 035247 5 4924 | 015975 1 6560 | 070395 9 4956 | 013023 &
5654 | 321845 7 9850 | 054117 0 6561 | 169043 7 5835 | 061379 7
6555 | 103320 8 674 | 007587 5 7845 | 333833 8 5888 | 223432 4
6572 | 156873 l 691 | 051347 8 8059 | 044268 2 5973 | 160917 3
6625 | 233623 8 716 | 007842 1 8550 | 327660 2 6011 | 237875 3
8325 | 006132 0 882 | 050809 9 9024 | 008312 7 6755 | 229704 8
8527 | 305783 4 938 | 012575 3 9692 | 237236 9 6783 | 152681 1
9587 | 282157 9 1226 { 017226 7 18 1 050034 3 6895 | 047501 9
9664 | 067322 2 1621 | 010030 0 92 1 054071 9 7430 1 007210 5
9792 | 193498 4 2447 | 047283 4 149 | 036431 2 7853 1 106810 8
447 | 007832 4 2454 | 049033 6 321 | 004169 2 7862 | 256992 8
448 { 006996 9 4063 | 002887 6 358 | 014554 7 8094 | 162800 2
583 ] 031661 2 4578 | 005391 7 445 | 058271 6 9009 | 130565 7
947 | 033897 8 4823 | 027861 9 684 | 032148 7 9015 | 246077 7
1319 | 049789 8 5972 | 037645 5 740 | 013822 4 9620 | 041283 9
1393 | 029768 5 6558 | 165654 6 1033 | 016353 8 9642 | 226879 9
1681 | 031153 3 7921 | 299972 8 1182 | 044865 6 9700 | 204103 2
1709 | 010039 9 8246 | 109948 3 1364 | 054498 8 9839 | 065932 4
1737 | 002324 5 8316 | 244183 7 1500 | 013856 7 9944 | 252626 3
2040 { 000271 5 8408 | 286072 8 1549 | 057788 4 9980 | 186239 2
2053 | 014586 4 29 | 027709 1 1982 | 057765 6
2952 | 014950 3 320 | 049672 9 2035 | 055771 5
3369 | 036042 9 449 1 002705 3 2070 | 054427 7
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Appendix I1I:

Patterns with maximum or minimum width, height or area in NIST SD 19: Training Set
and Test Set

Training Set

0
Characters | Max Height Min Max Width Min Max Area Min
Height Width Area
Size 83 14 85 13 7055 240
Sequence 334375 005562 | 145759 001078 | 334375 008316
No.
Images _@ H E
|
Characters | Max Height Min Max Width Min Max Area Min
Height Width Area
Size 82 17 73 3 5256 75
Sequence 079237 033581 | 149129 054707 | 149129 054707
No.
Images m I
2
Characters | Max Min Max Width Min Max Area Min Area
Height Height Width
Size 80 18 123 13 8856 270
Sequence 103383 150790 102303 189076 | 102303 150790
No.
Images E '] E
3
Characters | Max Height Min Max Width Min Max Area Min
Height Width Area
Size 79 8 75 13 5254 340
Sequence 034993 053431 | 058285 037134 | 020201 051422
No.
- =
Images ‘1: ; 1 E

88



4

Characters | Max Height Min Max Width Min Max Area Min
Height Width Area
Size 81 16 76 12 5852 288
Sequence 029576 005009 | 056349 032153 | 056349 005009
No.
Images E F g
3
5
Characters | Max Height Min Max Width Min Max Area Min
Height Width Area
Size 18 21 92 14 6318 357
Sequence 007608 035235 | 000546 050428 | 031831 050156
No.
o ;j @ H ;‘q
6
Characters | Max Height Min Max Width Min Max Area Min
Height Width Area
Size 81 17 74 12 4891 216
Sequence 057417 051581 | 010582 010989 | 049163 051004
No.
r
Images C! Z : @
7
Characters | Max Height Min Max Width Min Max Area Min
Height Width Area
Size 80 14 96 12 6084 266
Sequence 051971 049409 | 003088 001544 | 031136 049409
No.
Images E i r a
!
8
Characters | Max Height Min Max Width Min Max Area Min
Height Width Area
Size 82 17 78 13 5040 247
Sequence 013015 055408 | 000894 043742 | 025033 043742
No.

89



Images @ m i i
9
Characters | Max Height Min Max Width Min Max Area Min
Height Width Area
Size 82 20 71 13 5025 374
Sequence 052406 036191 | 003100 029413 | 011900 029577
No.
r
Images q E § ; %
Test Set
0
Characters Max Height Min Max Width Min Max Area Min Area
Height Width
Size 79 15 79 13 5372 208
Sequence 037909 000597 033649 000080 037909 027013
No.
Images f‘:’j ' ] :;:
L
1
Characters Max Height Min Max Width Min Max Area Min Area
Height Width
Size 81 18 60 3 3432 108
Sequence 010767 050564 032519 003352 044100 003352
No.
Images M l!
2
Characters Max Height Min Max Width Min Max Area Min Area
Height Width
Size 79 15 95 14 5775 210
Sequence 050547 036186 039341 017370 023766 036186
No.
[mages E ’J E

90



3

Characters Max Height Min Max Width Min Max Area [ Min Area
Height Width
Size 79 18 75 13 5254 340
Sequence 034993 053431 058285 037134 020261 051422
No.
e —
Images b 4 j @
P
4
Characters Max Height Min Max Width Min Max Area Min Area
Height Width
Size 81 16 76 12 5852 288
Sequence 029576 005009 056349 032153 056349 005009
No.
Images g i‘ g
L
S5
Characters Max Height Min Max Width Min Max Area Min Area
Height Width
Size 18 21 92 14 6318 357
Sequence 007608 035235 000546 050428 031831 050156
No.
Images ¢ o
. S g ‘ 5 >
6
Characters Max Height Min Max Width Min Max Area Min Area
Height Width
Size 81 17 74 12 4891 216
Sequence 057417 051581 010582 010989 049163 051004
No.
r
Images j Z :2 m @
7
Characters Max Height Min Max Width Min Max Area Min Area
Height Width
Size 80 14 96 12 6084 266
Sequence 051971 049409 003088 001544 031136 049409
No.
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Images E i r E i
{
8
Characters Max Height Min Max Width Min Max Area Min Area
Height Width
Size 82 17 78 13 5040 247
Sequence 013015 055408 000894 043742 025053 043742
No.
Images _m i E
9
Characters Max Height Min Max Width Min Max Area Min Area
Height Width
Size 82 20 71 13 5025 374
Sequence 052406 036191 003100 029413 011900 029577
No.
Images e
¢ b |

N S2N
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Appendix IV:
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Appendix V:

Total Probability Theorem:

Given n mutually exclusive events A4, ..., 4, whose probabilities sum to unity, then
P(B)=P(B| A)P(4)+..+ P(B| 4,)P(4,)

where B is an arbitrary event, and P(B | 4;) is the conditional probability of B assuming
A .

1

95



