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ABSTRACT

Liquefaction Potential Assessment in Soil Deposits Using Artificial Neural Networks

Gokhan Saygili

In the literature, several simplified methods can be found to assess nonlinear liquefaction
potential of soil. Derived from several field and laboratory tests, various procedures, also named
as conventional methods, have been developed by utilizing case studies and undisturbed soil
samples. In order to examine the collective knowledge built up in the conventional liquefaction
methods available in the literature, a General Regression Neural Network (GRNN) model is
proposed herein, which incorporates the parameters ignored in the past and accordingly will

eliminate the shortcomings of the existing design formulae.

Two separate sets of field data, based on the standard penetration test, SPT, and the cone
penetration test, CPT were used to develop the GRNN model. A total of 620 case records for
SPT data, and 3895 case records for CPT data were collected and utilized to develop the GRNN.
This data includes the results of field tests collected from the two major earthquakes that took
place in Turkey and Taiwan in 1999. These case records were divided randomly into testing,
training, and validation datasets. The GRNN was then tested by twenty-four soil and seismic
parameters; twelve of which are used in the SPT database and twelve of which are used in the
CPT database, where good performance was observed. Additional input parameters are obtained
from correlations existing in the literature. Soil liquefaction decisions in terms of seismic

demand and seismic capacity are determined by recognized simplified approach, namely stress-
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based method and strain-based method. Furthermore, liquefaction probability of soils with

significant fines was tested with the so-called Chinese Criteria. An iterative procedure was

followed to maximize the accuracy of the proposed models.

The proposed GRNN model predicted the occurrence/nonoccurrence of soil liquefaction
well in these sites. Furthermore, liquefaction decision supported by SPT test results is
incorporated into CPT based soil and seismic data. Therefore, the model supports the data
conversion of an SPT-to-CPT throughout the liquefaction potential analysis, which believed to
be the priinary limitation of the simplified techniques. Thus the proposed model provides a
viable tool to geotechnical engineers in assessing seismic condition in sites susceptible to

liquefaction.
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CHAPTER1

INTRODUCTION

1.1 GENERAL

In soils under undrained condition; earthquakes induce cyclic shear stresses, which may lead to
soil liquefaction. This can be explained by the fact that in a liquefiable soil layer, under dynamic
loads the pore water pressure increases suddenly, leading to a significant reduction in its shear
strength and acqordingly to liquefaction of the soil layer. By definition, soil liquefaction is the
loss of shear strength due to a transfer of intergranular stress from grains to pore water (Seed
1979).

Liquefaction has vital importance on the serviceability of bridges, railway embankments,
airport runways, submerged tunnels, buried structures such as water, sewage, gas pipelines, and
underground electric power and telecommunication lines. Therefore, it is important to predict the
liquefaction potential and to take precautions against liquefaction in susceptible sites.

There are many examples of serious damage caused by liquefaction in earthquakes such
as the sudden loss of bearing capacity of foundations, floating of buried structures, dislocation of
retaining walls and the excessive lateral soil movement.

Since the effect of this phenomenon on human life and the economy is significant,
geotechnical engineers have given their interest to investigate this problem. The two basic
approaches that have been implemented to assess liquefaction potential in layered soil are (Seed

and Idriss 1971, De Alba et. al. 1976, Seed 1979, Seed et. al. 1983):



a. Laboratory tests: They are based on cyclic stress and strain comparisons of soil samples.
Laboratory based techniques are believed to yield less reliable results due to both

disturbance of the specimens and the high costs.

b. Empirical methods: They are based on observations in previous earthquakes. Currently,
liquefaction-engineering procedures profoundly rely on empirical correlations such as
cyclic stress ratio for stress-based methodology and threshold acceleration for strain-
based methodology. Accordingly, parameters derived from field tests are used directly
through empirical calculations. These correlations derived from case histories yield

relatively more reliable results than laboratory tests.

1.2 PROBLEM DEFINITION

Over the last 30 years, simplified methods, developed from empirical equations and
laboratory tests data have become a general practice for the evaluation of soil liquefaction in
layered soils. Apart from being cost efficient, simplified methods based on in-situ and/or
laboratory test results provide engineers with a reliable prediction of soil liquefaction. This
research focuses on the evaluation of soil liquefaction in layered soils by presenting an

alternative computational tool to the ongoing empirical approach.

1.3 RESEARCH OBJECTIVE

Soil liquefaction evaluations can be successfully achieved by employing all the governing

soil and seismic parameters in one single model. Therefore, in this study, a comprehensive



approach that consists of all independent soil and seismic parameters proven to be influential for
decision making are taken into account. In that respect, Artificial Networks are proven to be
capable to incorporate a wide variety of parameters, representing a serious alternative to the
available models. The objective of this research can be summarized as follows:

1. To conduct a literature review on the existing siﬁpliﬁed models for predicting soil
liquefaction and highlight the limitations of these models by presenting conceptual
mechanism of soil liquefaction.

2. To generate a massive dataset of governing parameters that affects the soil liquefaction
obtained from the 1999 Chi-Chi, Taiwan earthquake (Magnitude M,=7.6) region and the
1999 Kocaeli, Turkey earthquake (magnitude M,=7.4) region.

3. To develop a Neural Network that incorporates all the influential factors and actual data

to predict soil liquefaction potential in layered soils.

1.4 THESIS ORGANIZATION

This thesis is organized as follows:
Chapter 2: Literature Review: This chapter presents a brief discussion on the existing
simplified methods proposed by different researchers for assessing soil liquefaction potential.
Chapter 3: Analyses of Data: This chapter presents the SPT and CPT data sets and presents a

concise version to generate the databases.
Chapter 4: Artificial Network Model: This chapter introduces Artificial Neural Networks

(ANN) as a model to predict the liquefaction potential. It also presents the GRNN model, which



was developed in four phases; these are: identification phase, collection phase, implementation

phase and verification phase.
Chapter 5: Conclusions and Recommendations: This chapter highlights the contribution of

this research and suggests recommendations for future work.



CHAPTER 2

LITERATURE REVIEW

2.1 GENERAL

The evaluation of the soil liquefaction potential has been a challenging task to
geotechnical engineers, especially after the two disastrous earthquakes, namely the 1964 Niigata
earthquake (Japan) and 1964 Great Alaskan earthquake (US). In the literature soil liquefaction
potential has been classified to include the development of instrumentation and cost-efficient
field observations. The current research trends have focused on four in-situ tests. These are:

1. Standard Penetration Test (SPT)

2. Cone Penetration Test (CPT)

3. Shear Wave Velocity Test

4. Becker Penetration Test (BPN)
The following chapter will present the historical development of existing SPT based empirical

methods in the literature.

2.2 HISTORICAL DEVELOPMENT OF SIMPLIFIED METHODS

Following the devastating earthquakes in US and Japan in 1964, researchers started to
investigate the use of the SPT to develop empirical methods. Starting in the 1970s, Seed (1971)
has initiated the empirical approach by generating the so-called “Simplified Method”, which was

followed by numerous researchers to shape that empirical approach.



Seed and Idriss (1971) formulated the shear stresses in any soil deposit during an earthquake, as

follows;

max

(tn), = Pa @.1)
g

Where,

(Tmax)r = maximum‘ shear stress

h = height of the soil column above a soil element
v = unit weight of the soil

g = acceleration of gravity

amax = Maximum horizontal ground surface acceleration

Since the soil column is not a rigid body and is subjected to deformations, the actual shear stress

evaluation requires a nonlinear shear mass participation factor. The relation is given as;

(Tmax )d = (Tmax )r rd (2'2)
Wheré,
(Tmax)d = actual shear stress

(Tmax)r = maximum shear stress

rq4 = the nonlinear shear mass participation factor



r4 is also called as stress reduction factor with a value less than unity. The variation of the

nonlinear shear mass participation factor with respect to increasing soil depth is given in Figure

2.1.
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Figure 2.1: Stress reduction factor (Seed and Idriss 1971)

Seed and Idriss (1971) formulated the cyclic stress ratio (CSR) developed on a soil element in

the field during an earthquake as follows:

a o '
CSR e = ’%. = ()2, (2.3)
vo g o

vo



Where,

amax = maximum horizontal ground surface acceleration
g = acceleration of gravity

rq4 = the nonlinear shear mass participation factor

Gvo= total vertical overburden stress

o’ vo= effective vertical overburden stress

Based on laboratory test data of Seed and Idriss (1971), the average equivalent uniform shear
stress is about 65 percent of the maximum shear stress. Therefore, the average cyclic shear stress
may be determined as;

CSR,, = (0.65)CSR 2.4)

peak
Where,
CSR.q = Equivalent cyclic stress ratio

CSRpeak = Peak cyclic stress ratio

Seed and Idriss (1971) developed a standard penetration test number (SPT-N) versus

cyclic stress ratio (CSR) curve.

The main limitations of the simplified method developed by Seed and Idriss (1971) are:
a. In the liquefaction boundary curve, there was a limited amount of reliable data to
define the boundary separating liquefiable and non-liquefiable sites. This problem has

been partly solved by ongoing research, which will be discussed later in this chapter.



b. The stress reduction coefficient has proven to provide biased (generally high)

estimates of rq at depths between 3 to 15 m. (Seed et. al. 2003; Youd et. al. 2001)

Seed et. al. (1977) proposed a correlation between the étress ratio and SPT penetration resistance
by utilizing additional data from the results of Christian and Swinger (1975). Like previous
studies, the main limitation of this correlation was lack of reliable data. Besides, the results were
not applicable due to changing of the initial conditions of the ground water level and chancing

shaking intensities. The correlation curve is given in Figure 2.2.
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Figure 2.2: Correlation between stress ratio causing liquefaction in the field and the penetration

resistance (Seed et. al. 1977)



Seed and Idriss (1982) produced a revised boundary curve by advancing the previous dataset

(Seed and Idriss 1971). The boundary curve had a far greater degree of confidence (Figure 2.3).
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Figure 2.3: Field liquefaction of sands (D50 > 0.25mm) versus SPT resistance

(Seed et. al. 1982)

The soil data utilized to draw Figure 2.3 were taken from a series of earthquakes, which have

magnitudes of 7.5. Therefore, a magnitude correction factor was introduced and given in Figure

24.
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Figure 2.4: Earthquakes magnitude scaling factor and its relationship between CSR and Number

of Cycles to cause Liquefaction (Seed et. al. 1982)

Seed and Idriss (1982) concluded that the standard penetration resistance increases with
increasing the effective overburden stress and further they presented the “Cy™ factor curve to
normalize the measured standard penetration resistance.

Figure 2.5, shows the “Modified thinese’ Criteria” presented by Seed and Idriss (1981,
1982), Seed et. al. (1983) and Wang (1979). In this Figure, the finest content liquefaction
potential assessment criteria indicates that soils with a significant plasticity are considered
vulnerable to significant loss of strength or liquefaction if they fallk into one of these three
categories;

a. Percent finer than 0.005 mm < 15%

b. Liquid limit (LL) <35%

c. Water content (W) <0.9xLL

11
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Figure 2.5: Modified Chinese criteria (Wang 1979 and Seed and Idriss 1982)

The main limitation of the Seed and Idriss (1982) procedure are;

a. The original curve (Figure 2.3) was projected to the origin, although there are few
points in the lower part of the plot. (Youd et. al. 2001)

b. Due to a limited amount of earthquake data from sites different than a 7.5 magnitude,
the magnitude scaling factor curve (Figure 2.4) is unable to adequately contain
boundaries between liquefaction and non-liquefaction regions for magnitudes other
than 7.5 (Youd et. al. 2001)

c. Cy should not exceed a value of 1.7 (Youd et. al. 2001)

d. The Chinese criteria modified by numerous researchers, but still there is no common
consensus reached among researchers and more study was warranted (Seed et. al.

2003)

12



Seed et. al. (1985) proposed a “deterministic” approach for SPT based on simplified methods
and that methodology became a common practice in earthquake engineering.

The chart presented by Seed et. al. (1985) suggests a boundary curve between the cyclic
stress ratio, CSR, and the standardized SPT blow-count, (N;)eo. In order to evaluate (Nj)eo
values, SPT-N values were required to be normalized with respect to effective overburden stress
and to be corrected with respect to energies delivered with respect to different types of hammer
systems. The equation for SPT-N blow-count correction was given as;

ER,

N =N 2.5
Ngo = (Ny),, 50 2.5)
Where:
(N1)¢o = Standardized SPT blow-count
(N1m = SPT-N value normalized for effective stress
(ER)m = Rod energy ratio for the method used in investigation
Summary of Energy ratios for SPT procedures are given in Table 1.
Table 2.1: Summary of Energy Ratios for SPT (Seed et. al. 1985)
Count Hammer Hammer Release Estimated Correction Factor
4 Type Rod Energy | for 60% Rod Energy
Japan Donut Free-Fall 78 1.30
Rope and Pulley with
Japan Donut Throw Release 67 1.12
USA Safety Rope and Pulley 60 1.00
USA Donut Rope and Pulley 45 0.75
Argentina { Donut Rope and Pulley 45 0.75
China Donut Free-Fall 60 1.00
China Donut Rope and Pulley 50 : 0.83

13



Seed et. al. (1985) proposed boundary curves separating sites where liquefaction effects
were or were not observed (Figure 2.6). In this Figure, the curves were developed for granular
soils with the fines content of 5% or less, 15%, and 35%. These curves provide a reasonable

basis for evaluating the liquefaction resistance of sands and silty sands for magnitude of 7.5

earthquakes.
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Figure 2.6: Correlation between cyclic stress ratio, CSR, and SPT (Nj)so value for magnitude 7.5

earthquakes (Seed et. al. 1985)
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The main limitations of the Seed et. al. (1985) procedure are;

a. Instead of a single liquefaction boundary curve, transition zones were suggested;
furthermore, it was proven that this approach predicted liquefaction in some cases where
no liquefaction would occur (Fear and McRoberts 1995)

b. Seed et. al. (1985) indicated that CSR increases with increased fines content. However,
the cause of the increase of fines whether due to the increase of liquefaction resistance or
a decrease of penetration resistance, which was not clear (Youd et. al. 2001)

c. Boundary curve for fines content < 5% corresponds to the probability of liquefaction of
50%, which is not a real case (Seed et. al. 2003)

d. The correlation of Seed et. al. (1985) was never formally corrected to ¢’y =1 atm,
however, it was noted that the field case histories in the database were “shallow”, and

approximately in this range. (Seed et. al 2003)

Liao et. al. (1988) proposed a statistical regression analysis to correlate a liquefaction
boundary curves in terms of CSR and SPT (Ny)g¢ value. Figure 2.7 shows these boundary curves,
which included a larger number of case history than were utilized by Seed et. al. (1985), and also

probabilities of liquefaction of 5%, 20%, 50%, 80%, and 95% were given.
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Figure 2.7: Statistical analysis for evaluation of liquefaction potential proposed by

Liao et. al. (1988) (published in Seed et. al. 2003)

The main limitations of Liao et. al. (1988) procedure are

Although the data set utilized for liquefaction potential analysis was relatively more

a.
than the dataset used by Seed et. al. (1985), the data set included a number of low
quality data. (Seed et. al 2003)

b. The proposed model failed to incorporate the impacts of fine content on the

relationship between SPT blow-count and the liquefaction resistance. Therefore, only

the curves for sandy soils with less than 12% fines are reliable. (Seed et. al. 2003)
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Apart from the review of Seed et. al. (1985), no general update to the procedure, named as
simplified method, was developed since 1985. However, Youd et. al. (2001) together with 21
experts have proposed a report of consensus recommendations including the developments that

took place over the last 10 years.

Liao and Whitman (1986b) proposed the following equation for a routine and non-critical
project to estimate average values of stress reduction factor;

r; =1.0-0.00765z for the cases 0fz<9.15m (2.6a)
r, =1.174 - 0.0267z for the cases 0 9.15<z<23 m (2.6b)

Where:

z = Depth below ground surface in meters

Regarding the factor to normalize measured standard penetration resistance to a common

reference effective overburden stress (Cy), Kayen et. al. (1992) proposed the following equation;

_22
= Hi2e0 /) @n

Where,

o’yvo = Effective overburden stress

P, = Atmosphere pressure (1 atm=100 kPa)

This equation limits the Cy value to 1.7 and according to the 20 experts attended to the

NCEER workshop; this equation provides a suitable fit to the original curve specified by Seed
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and Idriss (1982). In addition to this approximation, numerous researchers proposed Cy curves,

which are given in Figure 2.8.

SPT overburden correction factor, Cpy
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Legend:
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7. Zolkov & Wiseman, 1965
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8. Mansur & Kaufman, 1958
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i i

Effective vertical stress, oYy, tsf
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Figure 2.8: Cy Curves for various sands based on field and laboratory test data (Modified
from Castro 1995 and published in Youd et. al. 2001)
Adjustment of cyclic resistance ratio, CRR, for the earthquake under consideration is done by

magnitude scaling factor as given in Equation 2.8;

CRR = CRR, ;xMSF 2.8)

Where:

CRR = Cyclic resistance ratio adjusted for earthquake magnitude
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CRR7;5 = Cyclic resistance ratio for the magnitude 7.5 earthquakes specified by Seed and Idriss
(1982),

MSF = Scale factor.

Various researchers including Ambraseys (1988), Arango (1996, Andrus and Stokoe (1997),

Youd and Noble (1997) have proposed magnitude scaling factors given in Figure 2.9.

4.5 T
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\Q% & Youd and Noble, PL<50%
4 ! * .
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Magnitude Scaling Factor, MSEF
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Figure 2.9: Magnitude scaling factors derived by various investigators

(Youd and Noble 1997)

2.3. LITERATURE REVIEW ON NEURAL NETWORK APPLICATIONS

Recently, ANN models were adopted by many researchers in the field of geotechnical
engineering in solving varieties of problems. Goh (1995) developed a back propagation neural

network, BPNN, model to assess soil liquefaction. He used eight soil and seismic parameters
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including the standard penetration test value, mean grain size, fines content, equivalent dynamic
shear stress, total and effective overburden stress, earthquake magnitude, and peak horizontal
ground surface acceleration. He reported that neural networks were proven to be feasible tools
for soil liquefaction assessments, simpler to apply and yield more reliable results when compared
to conventional methodologies. It was noted that Goh (1995) has used relatively small dataset in
developing the BPNN model, which considered the main limitation of ANN approaches.

However, these models could be improved as new field case records become available.

In his second neural network model for soil liquefaction potential evaluation, Goh (1996)
introduced a new field test parameter, which is the cone penetration resistance, to the model and
removed SPT-N value parameter. The most important parameter was considered to be cone
penetration resistance. He concluded that his approach was simpler as no calibration and/or
normalization was required to reach reliable output. It was also concluded that the performance

of neural network model could be improved as further field case records became available.

In his further study, Goh (2002) developed PNN models to analyze the databases based
on cone penetration tests and shear wave velocity data. In this research, soil particle-size
information was introduced as an input variable and the liquefaction phenomenon was

considered as a classification problem.

Ural and Saka (1998) developed a BPNN model based on liquefaction records of
earthquakes from Japan, China, North and South America. In this research, a small number of

case records were used in the developing stage and the model was limited to sandy soil type.
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Juang at. al. (1999) developed two BPNN models using model-based data and actual field
results to compare Olsen and Robertson methods for liquefaction potential evaluations. The
Robertson method reported to be slightly more accurate and conservative, although, both

methods are fairly accurate in predicting liquefaction resistance of sandy soils.

Barai and Agarwal (2002) investigated Instance Based Learning, IBL, and models to
assess soil liquefaction potential. The IBL model is tested on cone penetration test dataset and
reported to yield better results when compared to existing regression models. As a final note, the

authors suggested exploring hybrid model combining IBL and neural networks.

Juang et. al. (2003) trained a neural network model to develop a CPT-based empirical
equation defining the unknown boundary curve, also known as limit state function. It is reported
that their method compares favorably to widely used existing methods, is simpler in formulation,

is easier to apply, and applicable to a wider range of soils.

Hanna et. al (2004) explored the efficiency of group piles in cohesionless soil using
artificial neural networks. Utilizing a back propagation neural network model, pile group
efficiency was addressed by introducing several governing parameters including the method of
pile installation, soil condition, cap condition, type of loading, pile cross section, pile
length/diameter ratio, pile spacing/diameter ratio, and pile arrangement. The outcome of the
model provides correct prediction in more than 80 percent of the cases while the conventional

methods provide correct prediction in 45 percent of the cases at maximum.
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2.4 DISCUSSION

Based on the above literature review, it can be concluded that simplified methods are still
under development and not sufficiently formulated for routine engineering practices. Also, it is
evident that general consensus is not existed and it is not anticipated to occur in the near future.
However, the rate of progress in soil liquefaction potential evaluation is impressive.

The purpose of this research is to make the best use of all the above-mentioned
information and to build a neural network model that predicts the soil liquefaction potential in

layered soils, in order to prevent human and property loss.
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CHAPTER 3

ANALYSIS OF DATA

3.1 GENERAL

NCEER, 2000 and PEER 2001 and 2002 have collabora‘;ively reported the laboratory and
the field test results of the two earthquakes that took place in Chi-Chi, Taiwan (1999) and
Kocaeli, Turkey in 1999. These records are used to develop the proposed soil liquefaction
potential evaluation models. Given in Table 3.1 below, the field data includes 27 CPT profiles
and 25 SPT borings from the 1999 Chi-Chi, Taiwan earthquake (magnitude M,=7.6) region and
43 CPT profiles and 38 SPT borings from the 1999 Kocaeli, Turkey earthquake (magnitude

M,=7.4) region.

Table 3.1: Total number of in-situ tests used in this research

Field Tests Turkey Earthquake Taiwan Earthquake
Number of CPT Profiles 43 27
Number of SPT Borings 38 25
Total 81 52

3.2 STANDARD PENETRATION TEST

Standardized in ASTM D1958, the SPT is one of the most popular and economical in-situ
soil testing methods. The outcome of this test is the SPT blow count (N) numbers that are
believed to be a good indicator of soil strength. In order to apply the SPT test, a hole is bored to a
desired depth. Then, sampler is plugged to the tip of the drilling rod and derived into the bottom

of the hole by means of a 63.5 kg hammer. The hammer is dropped freely from a height of 0.76
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m. The sampler is first driven to a depth of 15 cm, then the hammer blow numbers required to
drive the sampler to 30 cm are recorded. The reason for ignoring the first 15 cm is to reduce the
effect of soil disturbance into experiment results. As a general rule, the penetration of the
sampler should be halted if (i) 50 blows are required for any 15 cm increment, (ii) 100 blows are
obtained, and (iii) 10 successive blows produced no advancement. The results are highly»
dependant on the care of the technicians on site. The schematic view of SPT application in the

field is given in Figure 3.1
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Figure 3.1: SPT application on site
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In addition to SPT — N number, this test provides soil samples for visual description and/or
laboratory tests. Undisturbed soil samples can be obtained from Shelby tube sampler, which is
lowered into the soil at a constant rate. Soil specimens inside the tube are covered by wax to
preserve their natural moisture content. On the other hand, split spoon sampler using is also a

commonly practiced method of sample recovery.

3.3 CONE PENETRATION TEST

Standardized in ASTM D 3441-86, cone penetration test is used to identify soil type and
stratification by means of nearly continuous readings of tip and skin resistance measurements.
Commonly used penetrometers have 60° point angle and base diameters of 35,7 mm resulting in
a projected area of 150 cm® The loading systems for penetrometers are often vehicles with
enclosed cabins allowing in-situ testing under all weather conditions. The CPT steel probes are
hydraulically penetrated inside the soil at a constant rate of 1‘O mmn/s. In addition to cone tip
resistance and sleeve friction, CPT measures friction ratio, which is the ratio between the local
sleeve friction and cone resistance. Pore water pressure measurements are also possible in CPT

testing. As shown in Figure 3.2, CPT penetrometers have standard geometric shapes.
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Figure 3.2: CPT Apparatus

3.4 SPT & CPT DATABASES

The proposed soil liquefaction potential models consist of two separate experimental
datasets. One of the datasets is composed mostly of SPT parameters and the other is composed
mostly of CPT parameters. Therefore, herein after the datasets will be referred to as SPT
database and CPT database. A total of 620 case records were utilized for the SPT database, and
3895 case records were utilized for the CPT database. Given in Table 3.2 case histories are taken
from liquefied and non-liquefied sites. As presented in Table 3.3, these case records were

divided randomly into testing, training, and validation datasets.
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Table 3.2: Distribution of the Data for liquefaction occurrence

Database Liquefied | Non-liquefied | Total Case Histories
SPT Database 364 256 620
CPT Database 1665 2230 3895

Table 3.3: Distribution of the Data among Phases

Database SPT Database CPT Database
Earthquake | Turkey | Taiwan | Total | Turkey | Taiwan | Total
Training 220 193 413 | 1360 | 1562 | 2922
Testing 59 53 112 | 239 282 521
Forecast 51 44 95 213 239 | 452
Total 330 290 620 | 1812 | 2083 | 3895

3.5 SOIL AND SEISMIC PARAMETERS

Soil and seismic parameters characterizing soil type and material properties, seismic
attenuation characteristics, magnitude and nature of loads, and other site conditions including
stress, strain, strength, saturation and seismological aspects were selected and incorporated into
the databases. As shown in Table 3.4, twelve soil and seismic parameters were used for the SPT

database.
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Table 3.4: SPT parameters used in the database

SPT Database Parameters Abbreviations | Unit
Depth of soil specimen VA m
Corrected SPT blowcount (N1)so -
Percent fines content less than 75 mm F<75 pm %
Depth of ground water table dw m
Total overburden stress Gvo kPa
Effective overburden stress G'vo kPa
Threshold acceleration a g
Cyclic stress ratio Tav/G'vo -
Shear wave velocity Vs m/s
Internal friction angle of soil ¢' °
Earthquake magnitude M, -
Maximum horizontal acceleration at ground surface Amax g
Given in Table 3.5, twelve soil and seismic parameters are used for CPT database.
Table 3.5: CPT parameters used in the database
CPT Database Parameters Abbreviations | Unit
Depth of soil specimen Z m
Total overburden stress Ovo kPa
Effective overburden stress C'vo kPa
Depth of ground water table dw m
CPT cone tip resistance qe kPa
CPT sleeve friction resistance fs kPa
CPT friction ratio R¢ -
Shear wave velocity Vi m/s
Threshold acceleration a/g g
Cyclic stress ratio Tav/C'vo -
Earthquake magnitude M, -
Maximum horizontal acceleration at ground surface Amax g
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3.6 DATABASE DEVELOPMENT PROCEDURE

Databases are developed according to the procedure introduced by Youd. et. al. (2001),
Seed et. al. (2003), and other backbone studies mentioned in the literature review section. The

details of the development procedure are given in the following sections of this chapter.

3.6.1 SPT DATABASE

In the SPT database, maximum horizontal acceleration at ground surface values,
earthquake magnitude, depth of the soil samples, SPT — N values, fines contents, shear wave
velocities and ground water table elevations are the actual measured values. The remaining

design parameters were obtained by related correlations as described below.

In Table 3.11, the depths of the soil specimen, given in the first column, is taken up to
20m from the ground surface because the simplified method was developed and applicable for
shallow depths. The standard penetration test results, given in column 2, were corrected

according to the Equation 3.1, which was described by Youd et al. (2001) below;

(NI)GO :NmCNCRCSCBCé (3'1)
Where,
(Np)so= Corrected SPT blowcount

Ni = Measured SPT penetration resistance

Cn = Correction to normalize SPT blowcount to a common reference effective overburden stress
Cgr = Correction factor for borehole diameter

Cs = Correction factor for non-standardized sampler configuration
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Cg = Correction factor for borehole diameter

Cg = Correction factor for hammer energy efficiency

Named also as the overburden stress correction factor, the normalization factor (Cy)
corrects the SPT penetration resistance to an equivalent value under one atmosphere of effective

overburden stress by the following Equation 3.2 given by Liao and Whitman (1986a);

Cy = (ﬁ)a5 <17 (3.2)
o

vo

Where:

P,= Atmosphere pressure (1 atm=101,325 kPa)

c'y, = Effective overburden pressure

The correction to normalize the SPT blowcount to a common reference effective
overburden stress (Cn) should not exceed a value of 1.7. This value represents the consensus
reached after National Center for Earthquake Engineering Research (NCEER) working group

(NCEER 1997, Youd et. al.2001).

The range of the other correction factors indicated in Equation 3.1 is given in Table 3.6

below.
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Table 3.6: Corrections to SPT (Modified from Skempton 1986)

as listed by Roberts and Wride (1998)

Factor Equipment variable Term | Correction
Overburden pressure - Cn | (Palo'vo)®?
Overburden pressure - Cn Cn=17
Energy ratio Donut hammer Ce 0.5-1.0
Energy ratio Safety hammer Ce 0.7-1.2
Energy ratio Automatic-trip- Donut-type hammer Ce 0.8-1.3
Borehole diameter 65-115 mm Cs 1.0
Borehole diameter 150 mm Cs 1.05
Borehole diameter 200 mm Cs 1.15
Rod length <3m Cr 0.75
Rod length 3-4m Cr 0.8
Rod length 4-6 m Cr 0.85
Rod length 6-10 m Cr 0.95
Rod length 10-30 m Cr 1.0
Sampling method Standard sampler Cs 1.0
Sampling method Sampler without lines Cs 1.1-1.3

Regarding correction factor for hammer energy efficiency, the Equation 3.3 is used in

calculations;

Where:

ER = hammer efficiency ratio

_ER
o 60%
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| Hammer efficiency ratios (ER) for Kocaeli earthquake case records are the actual values
measured in the field. However, the “ER” values for Taiwan earthquake case records were based
on strain gauge measurements due to failing accelerometers. Therefore, the “ER” values reported
by Stewart et al. (2001) were adjusted to 69% for depths up to 3m and 75% for depths below 3m.
The field energy measurements during SPT testing in the Taiwan earthquake region are given in

Figure 3.3 below.
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Figure 3.3: Field energy ratio measurement during SPT testing
in Taiwan Earthquake region (Stewart et. al. 2001)
Additionally, in order to approximate the corrected SPT blow counts; the finest content
(FC) influence is taken into consideration by utilizing the equations given below (Youd et. al.

2001);
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(Nl)éo,cs =a+ fB(N))g (3.4)

Where:

o and p = Coefficients determined from the following Equations 3.5 & 3.6, respectively;

a=0 for FC< 5% (3.5a)
a =exp[l.76 — (190/ FC?)] for 5 <FC<5% (3.5b)
a=5.0 for FC> 35 (3.5¢)
And
p=10 for FC< 5% (3.6a)
B =[0.99 - (FC"’ /1000)] for 5 <FC<5% (3.6b)
p=12 for FC> 35% (3.6¢)

In Table 3.11, column 3 presents the percentage finest content less than 75 pm, which are
the actual values measured in the field. Finest content is also taken into consideration while
calculating the cyclic resistance ratio (CRR7 ), due to its notable influence on soil liquefaction
(Seed et. al. 1985). The depth of the ground water table is given in column 4 in Table 3.11. Total

and effective overburden stresses are presented in column 5-6 respectively.
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Being a strain problem, SPT liquefaction database includes threshold acceleration values
listed in column 7 of the Table 3.11. Threshold acceleration values are obtained by the procedure
given by Dobry et. al. (1981;1982) and Zengal et. al. (1994) and defined as the Equation 3.7

below;

G
Vsz['——] e
a4 _ G 3.7)
g gzr,(0.1(M-1))

Where:

V; = Shear wave velocity

vt = Threshold strain

(G/Gmax)t = Modulus reduction factor at the threshold
rq = Stress reduction coefficient (See Equation 3.9)
M = Magnitude of the earthquake

g = Acceleration of gravity

In this relation, with the strain level of order of 0.01% the modulus reduction factor at the
threshold is assumed to be 0.8 (Hardin et. al. 1972). The relationship between the shear modulus

and the shear strain is given in Figure 3.4,
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Figure 3.4: Relationship between the shear modulus and the shear strain

In column 8 of the Table 3.11, cyclic stress ratios required to generate soil liquefaction
were tabulated. Existing correlations formulated by Seed and Idriss (1971) allows the cyclic

stress ratio, CSR, to be defined as:

CSR = 22 = 0.65(7m ) T2y, (3.8)

vo O-VD

Where,

amax = Peak horizontal acceleration at the ground surface generated by the earthquake
g = Acceleration of gravity

Oyo = Total overburden stress

¢’yo = Effective overburden stress

rq = Stress reduction coefficient
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Stress reduction coefficient, 14, is calculated by Equation 3.9 which is the approximation

of the mean curve plotted in Figure 3.5;

1.00-0.4113z"° +0.04052z + 0.001753z"°
1.00-0.4177z% +0.05729z - 0.006205z"° +0.001210z>

v, =

(3.9
Where,

z = Depth of soil beneath ground surface.

Stress Reduction Coefficient, r;
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Figure 3.5: rq versus Depth Curves Developed by Seed and Idriss (1971) and Liao and Whitman

(1986Db) (Published in Youd et. al. 2001)
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In column 9 of Table 3.11, the shear wave velocities, which were the actual measured
values from related seismic cone test (SCPT) and spectral analysis of surface waves test (SASW)

were presented.

The angle at which soil resists shearing is defined as the internal friction angle and it is
tabulated in column 10 of the Table 3.11. The relative density influences the shear strength of
sands and consistency influences the shear strength of clays. From the empirical correlation
between internal friction angle (¢’) and plasticity index (PI) given in Figure 3.6, internal friction

angle for clay soils are evaluated by the following equation:

sing = —0.2291og,, PI +0.807 (3.10)

Where:
PI = Plasticity Index (%)

¢’ = Internal friction angle
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Figure 3.6: Empirical correlation between friction angle and plasticity index from triaxial

compression tests on normally consolidated undisturbed clays (JSSMFE 1988).

Terzaghi & Peck (1967) proposed the values of friction angle for sands and silts given in Table
3.7

Table 3.7: Representative values of ¢’ for sands and silts. (Terzaghi and Peck 1967)

Material Degrees
Loose | Dense
Sand, round grains, uniform 27.5 34
Sand, angular grains, well graded 33 45
Sandy gravels 35 50
Silty sands 27-33 30-34
Organic silts 27-30 | 30-35
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Dunhum (1954) proposed the correlation between friction angle and N-value, and
proposed the following Table 3.8. By using the definitions of the layers in the data set, a

consistent equation is chosen.

Table 3.8: Internal friction angle relations based on shape classification (Dunhum 1954).

Group Name @ Relation

For ground grains of uniform size ¢=(12N)1/ 2415
For ground grains, well graded (j>=(12N)1/2 +20
For sharp grains of uniform size ¢=( 12N)"2 + 20
For sharp grains, well graded ¢=(12N)1/ 2425

As depicted in the Figure 3.7, a correlation between N-value and ¢’ is given, in addition
to studies of Terzaghi and Peck (1948, 1967) and Dunhum (1954). Studies of Kolb & Shockly
(1957) regarding intervals of internal friction angle for clays, silts and sands are given in Table

3.9 below.

Table 3.9: Intervals of internal friction angle for clays, silts and sands (Kolb & Shockly 1957)

Predominant Soil Texture Angle of friction ()
Clay sands (SC) to silty clays(CL) 30

Sands (SP) 30-40

Silts (ML) and silty sands (SM) 25-35
Sands (SP) 30-38

Clay silts and silty clays (CL and CH) 15-20

Silts (ML) 10-35
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Figure 3.7: Comparison of the correlation between N-value and ¢' (JSSMFE 1988)

Earthquake magnitudes of all the soil data obtained from Turkey and Taiwan earthquake
regions are given in column 11 of Table 3.11. Maximum horizontal accelerations at ground
surface are given in the column 12. The distribution of the peak accelerations recorded by strong

motion station is given in Table 3.10 below.

Table 3.10: Maximum horizontal accelerations recorded by strong motion stations

Area Taiwan Turkey
Location Nantou | Wufeng | Yuanlin | Adapazari City
Value 0.38 (g) | 0.67(g) | 0.18 (g) 0.4 (g)
Station TCUO076 | TCU065 | TCU110 NSMP*

* National Strong Motion Network
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This study explores the liquefaction potential of layered soils. It is not possible however,
to investigate liquefaction potential of soil strata at particular depth by field observations. Thus,
conventional methods are used to calculate the possibility of liquefaction at each depth. SPT test
results supported by shear wave velocity measurements are capable of accurately identifying and
predicting liquefaction potential of liquefiable layers. Accordingly, the liquefaction potential of
soil layers has been evaluated by means of an assortment of empirical criteria, which was
sometimes found to be more reliable than analytical calculations and frozen sampling. Given in
column 13 in Table 2 above, liquefaction susceptibility of soils in Turkey and Taiwan earthquake
regions are determined by the three following criteria (i) stress-based liquefaction triggering
analyses developed for SPT tests (Youd et. al. 2001) (ii) strain-based procedure (Dobry et. al.

1982), and (iii) Chinese criteria (Finn (1991) and Finn et. al. 1994).

Formulized in Equation 3.11, the soil layer at the depth of the measured SPT is regarded
as liquefied if FS;iq < 1.0, while FSyq >1.0 indicates no liquefaction. (Ishihara 1985, 1993; Seed

and Harder 1990)

CRR,
CSR

YMSF (3.11)

lig =(

Where,

CSR = Cyclic stress ratio given by Seed and Idriss (1971),

CRR7 s = Cyclic resistance ratio for the magnitude 7.5 earthquakes specified by Seed and Idriss
(1982),

MSF = Scale factor.
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CRR7;s is determined from the results of the SPT (N values). The CRR7 5 curve is given in

Figure 3.8 below. The CRR curve for fines content <5% is referred to as “SPT clean sand base

curve”.
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Figure 3.8: SPT Clean-Sand Base Curve for Magnitude 7.5 Earthquakes with Data from

Liquefaction Case Histories (Youd et. al. 2001)

Clean sand base curve is approximated and defined as the Equation 3.12 (Youd et. al.

2001). In application, (N1)so,cs values should be used in this equation;

CRR

L e,

50

1

s 34—(N)y 135 (10(NV))g, +45)° ~ 200
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Clean granular soil exceeding (N;)so >30 are regarded as too dense to liquefy, therefore
the equation is valid for only (N)go <30;

The earthquakes utilized in this paper have magnitudes of 7.4 for Kocaeli/ Turkey
earthquake and 7.6 for Taiwan earthquake. These magnitudes call for magnitude scaling due to
the fact that aforementioned CRR75 approximations are based on certain magnitude of 7.5.
Andrus and Stokoe (1997) studied earthquakes with different magnitudes and they developed
bounding curves for their studies of liquefaction resistance. By taking the ratio of CRR for a
given magnitude to the CRR;s, magnitude-scaling factors are generated and given by the

Equation 3.13.

MSF =(M,, /7.5 (3.13)

Where:
M, = Magnitude of the earthquake

Seed et. al. (1985) correlation, modified by Youd et .al. (2001), is controlled by mostly
clean sands and silty sands with less than 35% fines; however, many of case histories from both
earthquake regions involve high cyclic stress ratios and high finest content soils. Therefore, three
different soil liquefaction potential evaluation procedures are used. From an earthquake
geotechnical engineer’s point of view, these earthquakes provide an exceptional opportunity to
advance the development of empirical liquefaction assessment methodology in that case histories

in the city of Adapazari (Turkey) and the cities of Wufeng, Nantou and Yuanlin (Taiwan)

43



(Stewart et. al. 2003; Bray et. al 2002) and complete the necessary parameter spaces in the well

known Seed et. al. (1985) procedure.

Based on the Youd et. al. (2001), the relationship between cyclic stress ratio and
corrected standard penetration resistance for sands and silty sands with varying peak ground

acceleration and earthquake magnitudes are given in Figure 3.9, 3.10, 3.11 and 3.12 below;
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Figure 3.9: Relationship between cyclic stress ratio (CSR) and corrected standard penetration test
(SPT) number for Kocaeli, Turkey Earthquake data for the peak ground acceleration (amax) of 0.4
g and a moment magnitude (My,) of 7.4 (Modified for the magnitude scaling factor given by

Andrus and Stokoe 1997)
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0f 0.38 g and a moment magnitude (My,) of 7.6. (Modified for the magnitude scaling factor given

by Andrus and Stokoe 1997)
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Figure 3.12. Relationship between cyclic stress ratio (CSR) and corrected standard penetration
test (SPT) number for Chi-Chi, Taiwan Earthquake data for the peak ground acceleration (amax)
of 0.67 g and a moment magnitude (My,) of 7.6. (Modified for the magnitude scaling factor given
by Andrus and Stokoe 1997)

Regarding soils with plastic fines, Finn (1991) and Finn et. al. (1994) proposed
modifications to “Modified Chinese Method”. The evaluation of the liquefaction potential of
soils with plastic fine is performed according to this procedure. If the soil index properties fall
within the below-mentioned bounds, soil with plastic fines is considered vulnerable against loss
of strength induced by soil liquefaction. These bounds are;

o Percent finer less than 0.005 mm <20%

e (Liquid limit + 1%) <35%
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e (Water content + 2%) > 0.9 x (Liquid limit + 1%)
e Liquidity index (based on Liquid Limit + 1% and water content + 2%) < 0.75
The graphical representation of this criterion with soil data from both earthquakes is shown in

Figures 3.13, 3.14, and 3.15.
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for both Turkey and Taiwan Earthquakes data
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Given in Equation 3.14, the threshold acceleration can be calculated as follows;

v?: .(GG j Y,
G \Tmx/i (3.14)
g 0.65.g.zr,

Where;

V, = shear wave velocity

v: = threshold strain

(G/Gumax): = modulus reduction factor at the threshold
rq = stress reduction coefficient

M = magnitude of the earthquake.

The modulus reduction factor at the threshold, (G/Gax), Was assumed to be 0.8 with a strain

level of an order of 0.01% (Hardin et. al. 1972). Factor of safety in threshold acceleration criteria

is given in Equation 3.15 below;

Fo="2 (3.15)

‘ amax
F,>1 implies that there is no risk, F,< 1 does not necessarily mean that liquefaction will occur;
instead, the value predicts that there will be gross sliding of the grain-to-grain contact surfaces

which is essential for excess pore water pressure generation and therefore crucial for liquefaction

(Rauch 1997).
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3.6.2 CPT DATABASE

In CPT database, CPT tip resistance, CPT sleeve friction resistance, CPT friction ratio, .
maximum horizontal acceleration at ground surface values, earthquake magnitude, depth of the
soil samples, shear wave velocities and ground water table elevations are the actual measured
values. The remaining parameters were obtained by related correlations as described in (3.4.1
SPT Database Section).

In Table 3.12, depths of soil specimen in the first column were taken up to 20 meters
from the ground surface. Total and effective vertical stresses are presented in column 2-3
respectively. The depth of ground water table is given in column 4. In Table 3.12, CPT test
outcomes namely, cone tip resistance, sleeve friction resistance, and friction ratio values are
presented in columns 5, 6 and 7 respectively. In column 8, the shear wave velocities, which were
actual measured values form related seismic cone test (SCPT) and spectral analysis of surface
wave test (SASW) were presented. The threshold acceleration values were calculated following
the procedure given by Dobry et. al. (1981, 1982) and Zengal et. al. (1994) and given in column
9. The modulus reduction factor at the threshold, (G/Gmax)t is assumed to be 0.8 with a strain
level of an order of 0.01% (Hardin et. al. 1972).

In column 10 of Table 3.12, cyclic stress ratios required to generate soil liquefaction were
tabulated (Seed and Idriss 1971). Column 11, presents the moment magnitude of the Turkey and
Taiwan earthquakes, in which soil data obtained. Maximum horizontal accelerations at ground
surface are given in column 12. The distribution of the’ peak accelerations recorded by strong

motion station is given in Table 3.10.
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CHAPTER 4

ARTIFICIAL NEURAL NETWORKS

41 GENERAL

In the last two decades, Artificial Intelligence (AI) has been used in several applications
in civil engineering, because of their heuristic problem-solving capabilities. Artificial neural
network (ANN) is one of the Al approaches that can be classified as “machine learning”. It has
the ability to simulate the learning capabilities of the human brain by automating the process of
knowledge acquisition and data mining. The ANN is a collection of interconnected
computational elements called neurons that have performance characteristics similar to the
biological neurons (Fausett 1994). This brain-like structure makes ANN models superior to
knowledge-based models and mathematical formulae in making predictions that involve intuitive
judgment and possess high degrees of non-linearity.

Basically, interconnections among neurons are established by weights, which are applied
to all values passing through one neuron to another. Changing weights improve adaptabilities
and prediction capabilities of the Neural Networks. Neural Networks are arranged in three or
more layers according to their connection to the outside world.

Neurons receiving data are in the input layer; neurons carrying the results are in the
output 1ayer, and other neurons are in the hidden layers. Through the learning process, input and
output data of a specific engineering problem are given and aforementioned weights among

neurons are updated without requiring human development of algorithms.
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4.2 GENERAL REGRESSION NEURAL NETWORKS “GRNN”

The general regression neural networks (GRNN) are similar to all artificial neural
networks in its analogy to the human brain. As depicted in Figure 4.1, GRNN are three layer
networks; input, hidden and output layer. The hidden layer consists of two slabs: summation and
pattern units. The summation unit computes the sum of the outputs from all hidden neurons and
the network’s final output is obtained at the output layer where a normalization function is
performed. The number of neurons in the input and output layers are as same as the number of
input and output respectively, and there are hidden neurons for each training pattern in the
architecture. Unlike Back-propagation neural networks, GRNN require neither time learning
trials nor alarming learning time stopping knowledge. GRNN perform well for continuous

function approximations and models are trained by a one-pass learning algorithm (Specht 1991).
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Figure 4.1: GRNN Architecture (Specht 1991)

4.3 COMPONENTS AND OPERATION OF GRNN

GRNN are selected for the development of the proposed model for the reason that they
are practicable for nonlinear analysis including sparse and noisy data. GRNN, were introduced

by Specht (1991) as an alternative to feed-forward neural networks and are based on nonlinear

regression theory for function estimation.
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In what follows below, the approach proposed by Specht (1991) is presented for
clarification of the operation of GRNN. Please note that GRNN are used for decision of problem
of regression. In that respect, assume y be a scalar dependant variable and system output, and x
be a vector independent variable and system input, and let X be a particulair measured value of x.
Let f{x, y) be the joint probability density function (pdf) of x and y. The regression of y on X, by

other words the conditional mean of y given X, is defined by the following Equation 4.1;

[yrx.yay
Ey| X]="—— 4.1

[raxyay

If the joint pdf AX, y) is known, then the expected value of regression is computed easily.
However, as GRNN is a non-parametric estimator, through this approach, it is possible to
compute the conditional mean of y given X even when the joint pdf AX, y) is unknown. The joint
pdf AX, y) can be empirically determined from the observed data using Parzen’s consistent
estimators (Parzen 1962). According to Parzen window estimation, the probability estimator is

given as;

4.2)
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Where,
p = Dimension of the vector variable and » is the number of sample observations.
o = Smoothing factor

Substituting joint probability estimator in Equation 4.2 to conditional mean in Equation

4.1 yields to Equation 4.3 below;

y= ] _[ e ZH,» J"” [ y_y;- J 4.3)
Ze 20 J‘e 20 d

T
If the scalar function is defined as Df = (x —x' )(x -x' )and substituted into Equation

4.3, Equation 4.4 is evaluated as follows;

e )
y= ;—ye—— (4.4)
1@ -

The target output corresponding to input training (w;) can be defined in Equation 4.5 as

follows;
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[%] (4.5)

Substituting the target output in Equation 4.5 to the conditional mean in Equation 4.4 yields to

Equation 4.6 (the ‘heart’ of GRNN) below;

n

Zyiwi

i=1

Y= (4.6)

PR

=1
Where;
yi = Target output cofresponding to input training vector
w; = Output of a hidden layer neuron

In GRNN, values of w; are assigned from the associated input training vectors. Thus, ¢
value is named as smoothing factor and during the GRNN training process; smoothing factors (or
bandwidths) are the only weights to be calculated (Wasserman 1993). The success of the
network is dependent upon the smoothing factor, but there is no intuitive method for selecting
the optimal smoothing factor. If smoothing factor value is made large, distant neighbors affect
the estimate at X, leading to a very smooth estimate, better generalization but poor recall. On the
other hand, with a smaller value of smoothing factor wild points have too great effect on the
estimate. Only a few samples plays a role, which is a good, recall but poorer generalization

(Specht, 1991).
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4.4 DEVELOPMENT OF GRNN MODEL

The proposed GRNN model was developed in four phases, mainly: identification phase,
collection phase, implementation phase, and verification phase. An iterative procedure was
followed to maximize the accuracy of the proposed model. The following subsections present a
detailed explanation of the phases to the development of the GRNN model that estimates the

liquefaction potential in layered soils.

4.4.1 IDENTIFICATION PHASE

In this phase, soil and seismic parameters affecting soil liquefaction potential are
identified. This identification process includes assigning the input neurons the proposed GRNN
model. Identification was developed in two steps according to engineering and statistical
significances. Regarding engineering significance, earlier studies and model tests regarding the
soil liquefaction potential evaluation wer;e examined and the parameters involved in these studies
and tests were considered. The concern in introducing various soil and seismic parameters into
both SPT model and CPT model is to provide necessary information with reasonable accuracy
for site characterization. Second, analysis of variance statistical test (ANOVA) table was

presented to identify the importance and the significance of each of these parameters.

4.4.1.1 ENGINEERING SIGNIFICANCE OF THE VARIABLES

Soil behaves as a deformable body with increasing depth (z); hence depth is a site condition

parameter and has a huge impact on soil response against its capacity to resist liquefaction. For
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liquefaction to occur, ground water conditions should be sufficient to create saturated soil
conditions. Thus, depth to the groundwater table (dy) is an important consideration in identifying
soils that are susceptible to liquefaction. Representing miscellaneous locations of soil layers,
depth of soil specimen and ground water table, which are real world parameters than can be
obtained from various globally practiced field tests, are introduced into the proposed GRNN
model.

SPT blow numbers have been commonly used for characterization of liquefaction resistance
and SPT procedures have been developed by researchers to obtain information for liquefaction
assessment. Thus, SPT penetration resistance (N-SPT) is used as an index of liquefaction
assessment model. Liquefaction potential of both cohesive and coarse-grained soils are
influenced by fines content. As a compositional factor, fines content (F<75 um) affects both
cyclic shear strength and penetration resistance. Therefore, the fines content is introduced into
the model to improve the accuracy.

CPT penetration resistance has been commo;ly used for characterization of liquefaction
resistance and CPT procedures have been developed by researchers to obtain information for
liquefaction assessment. Thus, CPT test parameters, namely CPT tip resistance (qc), CPT sleeve
friction resistance (f;), and CPT friction ratio (Ry) is used as an index of liquefaction assessment
model.

It has been proven that an increase in overburden stresses increases susceptibility of soils to
cyclic liquefaction. Representing geological setting of soil strata, overburden stress effects for
liquefaction analysis procedures are investigated in the research of Boulanger (2003) and Seed

et. al. (2003). Accordingly, total and effective overburden stresses (G'vo, Ovo) are brought into the
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model. Shear wave velocity (V) values are proven to represent the capacity of soil against
liquefaction; therefore actual measured values of shear wave velocities are introduced into the
network as an index of liquefaction resistance. Earthquake magnitude (M,) and maximum
horizontal acceleration at ground surface (amax) characterize nature of loading, intensity of
seismic ground shaking, and attenuation effects induced by the earthquakes. Obtained from
strong ground networks, they are real world parameters that are crucial to introduce into the
seismic model.

Conventional liquefaction potential assessment procedures heavily rely on empirical
correlations such as cyclic stress ratio (Ta/0'yo) for stress-based methodology and threshold
acceleration (a/g) for strain-based methodology. Accordingly, parameters derived from field
tests are used directly through empirical calculations. These correlations derived from case
histories and laboratory experiments yield reliable results. Dobry et. al. (1982) showed that
liquefaction resistance of saturated undrained specimens against soil liquefaction can also be
quantified by threshold shear strain, which is not _dependent on the method of sample
preparation, and it is approximately 0.01%. By utilizing this value, acceleration corresponding to
threshold shear strain value is evaluated by the strain-based assessment procedure for
liquefaction occurrence. Strain-based liquefaction potential assessment procedure is idealized for
sand grains and then generalized for natural soil deposits. Threshold acceleration value together
with strain-based factor of safety states the exceedance of the threshold strain, which is required
for liquefaction to occur. In order to evaluate the threshold acceleration, easily obtained field
tests variables and earthquake characteristics are utilized. Therefore, the threshold acceleration

can be considered as a real world parameter, which contributes strain-based procedure
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knowledge into the complex liquefaction problem. Moreover, formulated by Seed et. al. (1971),
cyclic stress ratio is a normalized measure of cyclic load severity and it represents the seismic
demand on soil to liquefy. In that respect, threshold acceleration and cyclic stress ratio values are
introduced into the model.

The angle at which soil resists shearing is defined as internal friction angle (¢"). Thus internal
friction angle illustrates shearing strength. With the advent of field-testing methods, friction
angle can easily consistently be estimated from SPT, CPT tests. Internal friction angle of soil is
introduced into the model by using correlations based on SPT penetration blow counts in order to

assess most realistic values.

4.4.1.2 STATISTICAL SIGNIFICANCE OF THE VARIABLES

The main limitation of GRNN is that it cannot ignore irrelevant inputs in the dataset.
Therefore, ANOVA tables, which identify the statistical significance of the proposed input data,
are crucial and required to be presented to improve the quality of the proposed data set. The
ANOVA table is given in Table 4.1 for the SPT model. In the SPT model, soil specimen depth
and earthquake magnitude, which are already proven to be influential parameters, were not
included in the ANOVA tests.

In Table 4.1, the first column lists the parameters, which were introduced into the GRNN
architectures. The next four columns respectively present following statistical characteristics: the
minimum value (Min), the maximum value (Max), the mean value (u), and the standard
deviation (S). The last columns present the P-value of the ANOVA test whether for rejecting or

accepting the null hypothesis (Hp). This test has a null hypothesis “Ho” that the population
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means are all equal and an alternative hypothesis “Ha” that at least one population means is
different. The significance level (o) criterion is used for rejecting null hypothesis. Statistically, if
the P-value is less than the significance level (o) then rejects Hy, otherwise accept. If the null
hypothesis is rejected then the outcome is said to be statistically significant. In significance
testing, if a true null hypothesis is incorrectly rejected then Type-I error is made. By using
significance level 0=0.05, the probability of committing “Type-I” error is assumed to be 5%.
Based on the results given in Table 4.1, it can be concluded that the listed parameters have

significant effects on soil liquefaction potential as they all produced values of P< 0.05.

Table 4.1: SPT model ANOVA and parameter statistics

Parameter Min | Max )7, S P
Correlated standard penetration blow numbers | 1.06 | 75.18 | 14.48 | 11.37 | 0.034
Fines content less than 75 pm 1 100 | 62.99 | 34.28 | 0.000
Depth of ground water table 0.35 10 1.45 | 1.20 | 0.002
Total vertical overburden stress 12.09 | 408.87 | 144.60 | 98.20 | 0.009
Effective vertical overburden stress 7.50 | 233.68 | 82.47 |52.84 | 0.000
Threshold acceleration 0.004 | 0.85 0.07 | 0.07 | 0.004
Cyclic stress ratio 0.12 | 0.77 0.37 | 0.15 | 0.000
Shear wave velocity 37 500 |166.98 | 67.08 | 0.038
Internal friction angle 23.46 | 52.08 | 31.96-| 4.85 | 0.000
Peak horizontal acceleration at ground surface | 0.18 | 0.67 0.38 | 0.15 | 0.000

The ANOVA table is given in Table 4.2 for the CPT model. In the CPT model, maximum
horizontal acceleration at ground surface, which is already proven to be influential parameter,
was not included into the ANOVA test. Based on the results given in Table 4.2, it can be
concluded that the listed parameters have significant effects on soil liquefaction potential as they

all produced values of P< 0.05.
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Table 4.2: CPT model ANOVA and parameter statistics

Parameter Min Max U S P
Soil specimen depth 1.00 | 20.00 8.04 4.62 | 0.000
Total vertical overburden stress 14.1 | 4133 | 151.19 | 90.92 | 0.000
Effective vertical overburden stress 8.5 240.9 | 85.69 47.72 | 0.000
Depth of ground water table 0.35 5.00 1.44 0.97 |0.000
CPT tip resistance 9.81 | 32767 | 4667.82 | 6171.16 | 0.000
CPT sleeve friction resistance 0 890.4 | 50.09 55.71 | 0.000
CPT friction ratio 0 38.4 1.87 1.59 1 0.000
Shear wave velocity 37 400 | 167.28 | 63.25 |0.000
Threshold acceleration 0.0018 | 1.3082 | 0.07 0.07 | 0.006
Cyclic stress ratio 0.115 | 0.752 0.36 0.16 |0.014
Earthquake moment magnitude 7.40 7.60 7.51 0.10 | 0.001

After exploration of the engineering and statistical significance of the variables, input and output
parameters for both SPT and CPT GRNN models are tabulated below:

Table 4.3: Input and output parameters of the developed SPT GRNN model

Parameter Number
T Parameter Aspect Parameter Name of
ype

Neurons

Depth Soil specimen — Ground water 2

Stress Total — Effective 2

Soil and material properties | Friction angle — Fines Content 2

Strain Threshold strain 1

Input Liquefaction strength Cyeclic stress ratio 1

Earthquake characteristics Magnitude 1

SPT blow number — Shear wave
In-situ test results velocity — max horizontal ground 3
acceleration
Output | Liquefaction occurrence 1
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Table 4.4: Input and output parameters of the developed CPT GRNN model

Parameter Number
T Parameter Aspect Parameter Name of
ype ‘
- Neurons
Depth Soil specimen — Ground water 2
Stress Total — Effective 2
CPT results Tip resistance — Sle§ve frlc.:tlon 3
resistance — Friction ratio
Input Strain Threshold strain 1
Liquefaction strength Cyclic stress ratio 1
Earthquake characteristics Magnitude 1
Other in-situ test results Shear wave velocity — max
. : 2
and measurements horizontal ground acceleration
Output Liquefaction occurrence 1
4.4.2 COLLECTION PHASE

Data used for training and testing the GRNN models is the main source of knowledge
acquisition in this kind of models. The records obtained from the 1999 Chi-Chi, Taiwan
earthquake (magnitude M, ~=7.6) region and the 1999 Kocaeli, Turkey earthquake (magnitude
M,,=7.4) region were used extensively in this study to develop, test, and validate the proposed
GRNN models. These data, which account for 620 cases in the SPT model and 3895 cases in the

CPT model, were listed in Tables 4.5 and 4.6
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Table 4.5: Typical SPT Soil Data

< (]V1)60 F: 575/»”” dy Ovo O"vo a; Tav/ O"vo Vs j' M, | Amax
(m) | - (%) | (m) | (kPa) | (kPa) | (8) - ()| ) | - | @
1.0 7 87 0.64 | 16.1 12.5 ] 0.13| 0.32 100 | 3094741040
2.0 12 43 0.64| 347 | 21.1 {0.07| 041 100 | 29.80|7.41040
3.0 3 57 0.64| 539 | 303 |0.10| 0.43 150 (249074040
4.0 5 95 0.64 723 | 387 {0.08] 045 150 [27.54 |74 |0.40
5.0 11 91 0.64 | 91.6 | 48.0 | 0.06| 0.45 150 [30.39 741040
6.0 12 58 0.64|111.2 ] 57.6 10.05| 045 150 [30.951]7.4 040
7.0 10 93 0.64 1302 | 66.6 |0.05| 0.45 150 |30.39}7.410.40
8.0 9 89 0.64]147.7| 74.1 {0.04 | 0.45 150 129.80|7.4 1040
8.8 7 100 0.64 1622 | 806 | 0.04| 0.45 150 [29.17 741040
9.8 34 7 0.64 1833 | 91.7 {1 0.04| 044 160 |[39.90 74040
1.1 11 89 1.65) 177 | 17.7 |1 0.12| 0.25 100 [26.96 |7.4]0.40
4.2 10 42 5.00| 67.6 | 67.6 |0.08 | 0.24 161 | 29.17 |7.6 ] 0.38
5.8 9 25 5.00] 96.8 | 89.0 | 0.08 | 0.26 184 [29.17 7.6 |0.38
9.8 15 23 1.03 11989 {112.8|10.03 | 0.71 149 13249 |7.6]0.67
10.8 | 17 18 1.03 [ 219.8 | 123.9 [ 0.03 | 0.70 149 |33.42 7.6 |0.67
Table 4.6: Typical CPT Soil Data
z Ovo Oy dy qc L Ry Vs a | /0" | My | Gmax

(m) | (kPa) | (kPa) | (m) | kP0) [ kPy) | ) [ | @ | 0 | O | @
1.6 29.01 20.8]0.78 571.5 11.21]19 105 | 0.09 035]74] 04
521 93.7| 493 (0.77 10500 | 234 (2.2 105 1 0.03 045 (74| 04
7.6 1384 | 70.5]0.82]10570.0| 759 10.7] 25010.12 045174 04
58 107.0| 56.00.71 7875 102113 8510.02 04574, 04
36| 62.6| 57.613.10| 51793 | 243 0.5 1851 0.13 02674 04
3.8 66.6| 59.6|3.10 750471 31.1 |04 1851 0.12 027174 | 04

9.8 11982 117.0|1.68 | 28169.0 | 103.0 | 0.4 | 400 | 0.24 037({74] 04
40| 685] 435]150] 3360.0| 37.7|1.1 8510.02 038174 04
44| 770 374044 945.0 | 26528 8510.02 049174 04
7211349 762134 845.6 9711.1 | 180 0.06 040]174] 04
7411388 78.1 134 3963.8| 51.6|13| 180]0.06 04074, 04
9.0 1656 | 88.6|130| 1470.0| 31.62.1| 180]0.05 041174 04
20| 36.1| 33.0/1.69| 12684 78106 145(0.14 027174 04
11.6 | 224411253 | 1.69 | 17441 | 749 43| 170]0.04 0381741 04
7.8 11463 733 10.50(23677.0| 59.1 02| 299]0.17 045174 04
6.6 1213 71.61.64| 57225 43.810.8 49 1 0.01 039{74| 04
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4.4.2.1 1999 KOCAELIL TURKEY EARTHQUAKE

A collaborative research program was carried out by University of California- Berkeley,
Brigham Young University, University of California-Los Angeles, ZETAS corporation, Sakarya
University, Bogazici University and Middle East Technical University with the support of the
U.S National Science Foundation, California Department of Transportation, California Energy
Commission, and Pacific Gas and Electric Company in the region following the 1999 Kocaeli,
Turkey earthquake. A total of 135 CPT profiles (of which 19 were seismic CPTs) and 46 soil
borings with multiple SPT (often at 0.8 m spacing) were completed in the city of Adapazari.
Details of this site investigation program are available at

http://peer.berkeley.edu/turkey/adapazari/

4.4.2.2 1999 CHI-CHI, TAIWAN EARTHQUAKE

A series of site investigation programs were undertaken in 2000 by researchers with the
National Center for Research in Earthquake (NCREE) in Taiwan and in 2001-2002 by the
authors with funding from Pacific Earthquake Engineering Research Center (PEER). The PEER
and NCREE site investigation programs resulted in a total of 92 cone penetration test (CPT)
soundings (of which 63 were seismic CPTs) and 98 soil borings with standard penetration testing
(SPT) (typically at 1.0 m spacing). The majority of the NCREE work was performed in the city
of Yuanlin, whereas the entirety of the PEER work and some of the NCREE work was
performed in the cities of Nantou and Wufeng. Results of both site investigation programs are

synthesized at the address http://peer.berkeley.edu/lifelines/research_projects/3A02/.
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4.4.3 IMPLEMENTATION PHASE

For the implementation of the proposed models, the Neural Network software
(NeuroShell 2) developed by the Ward Systems Group, in United States was used for training,
testing and validating the GRNN model. This software is capable of implementing different
Neural Network architectures including BPNN, GRNN, and PNN. The following are the basic

steps carried out for model implementation.

4.4.3.1 Binary-Value Transformation

The symbolic output parameter, which is the liquefaction decision, is transformed into a
numeric parameter due to the fact that neural networks deal only with numbers (Nelson and
Illingworth 1991). In that respect, the liquefaction potential is characterized by 1 output neuron;
where the binary number 1 represents the occurrence of liquefaction and 0 represents the

nonoccurrence of liquefaction.

4.4.3.2 Data Division

Moreover, as given in Table 4.7 below, SPT & CPT databases were randomly
categorized into three subsets namely training, testing, and validation sets. Training sets generate
the algorithm with best smoothing parameter. Testing sets are used for observing the capabilities
of the generated algorithm to assess intricate relationships amid input and output values.
Validation sets are used for applying the trained algorithm to separate dataset, which was not

introduced to the network before. Therefore, validation set can be regarded as the real test for the
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performance of the model. Neural Networks perform well as long as large volumes of data

covering to all possible governing parameters and field conditions.

Table 4.7: Distribution of data for GRNN Modeling

Database SPT Database CPT Database
Earthquake | Turkey | Taiwan | Total | Turkey | Taiwan | Total
Training 35% 31% 67% 35% 40% 75%
Testing 10% 9% 18% 6% 7% 13%
Forecast 8% 7% 15% 5% 6% 12%
Total 53% 47% 100% | 47% 53% 100%

4.4.3.3 GRNN Architecture Design

Configuring the network architecture is one of the most crucial stages in model
development. As schematically shown in Figure 4.2 below; GRNN is a three layer network
where the number of neurons in the input layer (Slab 1) is the number of inputs in your problem,
the number of neurons in the output layer (Slab 3) corresponds to the number of outputs, and
there must be one neuron for each training pattern in the hidden layer (Slab 2), however, it is
possible to increase the number of the neurons in the hidden if adding more pattern data is
projected.

Input values are required to be scaled to a numeric range so that the network deals with
them efficiently. Roughly, there are two types of scaling, namely linear and non-linear scaling. In

this study, linear scaling [0,1] is utilized. In other words, data from 0 to 100 is scaled to [0,1].
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Figure 4.2: GRNN architecture design module

4.4.3.4 Training Criteria

In GRNN, the distance of the sarﬁple pattern from the given training set is measured. The
training data is represented in N dimensional space, where N is the number of inputs introduced
into the network. In this study, ‘city block distance’ is measured. As shown in Equation 4.7
below, the City Block distance metric is the sum of the absolute values of the differences in all

dimensions between the pattern and the weight vector for that neuron (Neuroshell 2, 1996)
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4.4.3.5 GRNN Learning

In this phase, GRNN training data are presented into the network. Network’s outcome in
the training data is applied to the testing data and the best smoothing factor for the network was
- explored. The value of the smoothing factor giving the smallest error is used in the final network.
The objective is minimizing the mean squared error of the test set: therefore, amid presented test
data, random testing datasets are generated in order to observe the network’s performance. Givenl
in Figures 4.3 and 4.4, the mean squared error for the test set is compared to the number of

generations for both SPT and CPT Model.
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Figure 4.3 SPT model training graphic

0.080—
0075}
0.070-}
Error 0.065-+
0060+
00551 1“\

0.050

Generations Elapsed

Figure 4.4: CPT model training graphic
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While applying the network’s outcome to the test patterns, statistical values, given in
Table 4.8 below, are utilized to understand network’s performance as learning progresses. In
column 2 and 3, total number of training and testing patterns are shown respectively. Column 3
displays the number of times the test set has been propagated through the network with different
smoothing factor adjustments. Column 4 shows the value of the smoothing factor giving the
smallest error. Column 5 shows the value of the mean squared error calculated by the best
smoothing factor. Please note that those minimum mean squared errors are internal to the net and

limited to the test patterns.

Table 4.8: GRNN learning statistics

Network training statistics SPT Model | CPT Model
Number of training patterns 413 2922
Number of test patterns 112 521
Smoothing test individuals 4540 559
Current best smoothing factor 0.0255 0.0332
Minimum mean squared error* | 0.0218 0.0542

*Please see Figures 4.3 and 4.4

As the last step of implementation, trained neural network is applied to data file to
produce predictions for each data pairs introduced into the model. In that step, the coefficient of

multiple determination value (R) is evaluated by the Equation 4.9 below:

R? =1__Z_(y_—27)_ (4.9)

Y-»?
Where;

y = Actual value
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§ = Predicted value of y
y =Mean value of y
R-squared value compares the accuracy of the model results to the actual values. A

perfect fit results in a R-squared value of 1, and a poor fit results in 0.

4.4.3.6 SPT MODEL IMPLEMENTATION PHASE

In the proposed GRNN model based on SPT database, smoothing factor of 6=0.02552
was used for soil liquefaction potential estimation. In this proposed GRNN model, the coefficient
of multiple determination value (R?) is 96.4% for the training phase and 83.6% for the validation
phase. The error limit for the analysis was taken as + 30%. This means that when the difference
between the target output and the network result within this range, the result is considered to be

incorrect. Error distribution through patterns is given in Figure 4.5.
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Figure 4.5: Error through Patterns
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Figure 4.6 presents the results of the sensitivity study for the parameters impacting

liquefaction potential in the SPT model.
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Figure 4.6: Parameter Sensitivity Study of the SPT model

4.4.3.7 CPT MODEL IMPLEMENTATION PHASE

In the CPT model, GRNN approach used for soil liquefaction potential estimations
with a smoothing factor of 6=0.0332. In this proposed GRNN model, the coefficient of multiple
determination value (R?) is 94.4% for the training phase and 83.3% for the validation phase. The
error limit for the analysis is taken as 0.3 (i.e., 30%). This means that with the difference
between the target output and network result is greater than 0.30, the result is considered to be

incorrect. Error distribution through patterns is depicted in Figure 4.7.
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Figure 4.7: Error through patterns

In the parameter sensitivity study of the CPT model, most influential parameters

impacting liquefaction assessment are outlined and given in Figure 4.8.
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Figure 4.8: Parameter Sensitivity Study
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The liquefaction potential is characterized by 1 output neuron; where the binary
number 1 represents the occurrence of liquefaction and O represents the non-occurrence of

liquefaction.

4.4 VALIDATION PHASE

In this phase, model accuracy and efficiency were examined by making prediction
against case records, which were not used during model training and testing. In this phase, the
proposed algorithm does not require human development of the proposed model: it rather

confirms the architecture’s prediction capabilities of the model.

4.4.1 SPT MODEL VALIDATION PHASE

In the SPT model, validation data approximately corresponds to 15% of the dataset
selected from Kocaeli, Turkey and Chi-Chi, Taiwan earthquakes case histories. The results of

this phase are also given in Table 3.11 and summarized in Table 4.9.

Table 4.9: Results of the SPT based GRNN model

Overall Taiwan Earthquake Turkey Earthquake
Case ErrorlSuccess Case Error |Success Case Error| Success
Records Records records
Train 413 0 100% 193 0 100% 220 0 100%

Test 112 8 |92.9% 33 3 94.3% 59 5 92%
Forecast 95 5 |194.7% 44 0 100% 51 5 90%
Total 620 13 1 97.9% | 290 3 99.0% | 330 10 97%
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Network’s outcome in favor of soil liquefaction occurrence/nonoccurrence for both

earthquake cases is given in Figure 4.9.
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Figure 4.9: SPT model’s performance on soil liquefaction potential

4.4.2 CPT MODEL VALIDATION PHASE

In the CPT model, validation data, approximately corresponds to 12% of the dataset,
it was randomly selected from Kocaeli, Turkey and Chi-Chi, Taiwan earthquakes case histories.

The results of this phase are also given in the Table 3.12, and summarized in Table 4.10.
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Table 4.10: Results of the CPT based GRNN Model

Overall Taiwan Earthquake Turkey Earthquake

Case Case Case
Error| Success Error | Success Error| Success
Records Records records

Train 2922 10 199.66% | 1562 0 100.00%| 1360 10 199.26%
Test 521 46 191.17% | 282 15 [94.68% | 239 31 |87.03%
Forecast | 452 27 194.03%| 239 8 196.65%| 213 19 191.08%
Total 3895 83 197.87% | 2083 23 198.90% | 1812 | 60 |96.69%

Network’s outcome in favor of soil liquefaction occurrence/nonoccurrence for both

earthquake cases is given in Figure 4.10 below.
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Figure 4.10: CPT model’s performance on soil liquefaction potential
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 SUMMARY \/

As we are racing into the 21¥ century, population density of some communities is getting
larger on daily basis. Furthermore, the damages caused by earthquakes are extensive and costly.
Soil liquefaction potential, is considered one of features of earthquakes, which is regarded as
complex geotechnical engineering problem that is not well understood yet; due to its mysterious
internal mechanism. Therefore, researchers had focused on conducting experimental and field
tests and developing design theories to predict soil liquefaction potential in soil deposits. This
research was directed to predict soil liquefaction using the governing soil and seismic
parameters.

The literature review revealed that prediction of occurrence and non-occurrence of soil
liquefaction has been investigated through numerous empirical methods. These empirical
methods were based on field data, which have been developed according to the observations in
the previous earthquakes. Furthermore, in-situ based empirical methods are regarded as cost
efficient for geotechnical engineers throughout much of the world to employ them.

The proposed model explores the feasibility of addressing soil and seismic parameters
acquired from the two most widely used in field testing, namely standard penetration test and
cone penetration test. Therefore, the measurements of these tests are incorporated into one

model.
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A computational knowledge based approach, known as General Regression Neural
Network (GRNN), is presented to predict the soil liquefaction potential in layered soils.

Collected from Turkey and Taiwan earthquake regions following the devastating
earthquakes took place in 1999, extensive in-situ and laboratory tests were performed. In the
present study, a total of 70 CPT profiles and 63 SPT borings have been used to generate a total of
620 case records for the SPT database and 3895 case records for the CPT database. These data
were used for training and validéting of the proposed GRNN model.

In order to identify the input parameters of the proposed networks, the analysis of
variance (ANOVA) statistical measures were carried out for both SPT & CPT model database.
Additionally, sensitivity analysis was conducted to determine the parameters, which govern this
behavior. Twelve soil and seismic parameters for SPT model and twelve soil and seismic
parameters for CPT model, which characterizing the soil type and material properties, seismic
attenuation characteristics, magnitude and nature of loads, and other site conditions including
stress, strain, strength, saturation and seismological aspects were selected and incorporated into
the network.

The results produced by the proposed “GRNN” models compared well with the available
field results. It provides a viable liquefaction potential assessment tool that assist geotechnical
engineers in making an accurate and realistic predictions. Furthermore, this study integrates
knowledge learned from the two devastating earthquakes to the ongoing development of soil

liquefaction analysis.
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5.2 CONCLUSIONS

Based on the results of this investigation, it can be reported that Neural Networks are
powerful computational tool to analyze the complex relationship between soil and seismic
parameters for liquefaction potential analysis in layered soils. The proposed GRNN model is a
quick and reliable tool for estimating the liquefaction potential without performing any manual
work. In addition, the proposed model can be easily updated to incorporate new data and to
accommodate new parameters. Based on the output of this research, the following conclusions

can be made:

1. CPT model develops a Neural Network architecture, which examines soil liquefaction
potential in CPT based soil data, where liquefaction decision, in the form occurrence/non-
occurrence, is imported from SPT test results. In this respect, verification of the viability of

SPT-to-CPT data conversion, which is the main limitation of simplified techniques, is tested.

2. Based on the sensitivity analysis of SPT parameters, it was noted that SPT penetration
resistance is the most influential parameter, and the shear wave velocity is the least
significant parameter. Results are highly consistent with information reported in the
literature, as reported by Seed et. al. 2003, namely that the shear wave velocity is a very
small-strain measurement and correlates poorly with a much larger strain problem such as
liquefaction (Seed et. al. 2003). Furthermore, the sensitivity analysis of CPT parameters

revealed that the most effective parameter for CPT model is the effective overburden stress

of soil.
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3. It is of interest to note that assessments, which were developed based on applying only one
type of the existing seismic assessment and liquefaction potential procedures, have failed to
make well predictions following the Turkey and Taiwan earthquakes (Stewart et. al. 2001;
Peer, 2003). However, the proposed comprehensive Neural Network model consists of all
independent soil and seismic parameters proven to be influential for decision making;

therefore, eliminates the shortcomings of the existing design formulae.

4. New soil and seismic parameters, which were ignored in previous works, are incorporated in
the present model. With increasing the number of input parameters, it was noted that distinct

improvements in the performance of the Neural Network models were observed.

5. When compared to the previous works, this proposed GRNN model has a much larger data
set in terms of size and quality, which globally cover all possible variation of the problem
stated. Therefore, with a larger number of data, a more accurate sensitivity analysis is

attained for soil and seismic parameters.

6. Furthermore, this study integrates knowledge learned from the two devastating earthquakes

~ on the ongoing development of soil liquefaction analysis.
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5.3 RECOMMENDATIONS FOR FUTURE RESEARCH

When future field case records became available, the performance of the Neural Network
will be significantly enhanced. In addition to the network configuration and architecture tried in
this research, different network architectures can be used in the training of the network by
changing the network’s internal parameters. Different models can also be constructed by
changing the input parameters, and network performance for these models should be
investigated. Besides, GRNN algorithm used in this study, other well-known Neural Network
types such as probabilistic neural network, PNN and polynomial neural network, GMDH whose

learning algorithms are different can also be used.
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