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ABSTRACT

Luminescence Spectroscopy of Er** Doped Inorganic Nanocrystals — An Investigation
into their Upconversion Properties

Fiorenzo Vetrone, Ph.D.
Concordia University, 2005

This thesis presents a detailed investigation into the spectroscopic properties of
inorganic nanocrystals doped with trivalent rare earth ions. We focus on their
upconversion luminescence, emission of radiation at higher energy than the pump
wavelength, and evaluate the fundamental mechanisms of upconversion in the
nanocrystal.

We evaluate the spectroscopic properties of sesquioxide nanocrystals doped with
trivalent erbium (M»O3:Er’*, where M = Y, Lu, or Sc) prepared by the propellant
synthesis technique. Characteristic green, red, and near-infrared Er’" emission is
observed following excitation with 488 nm in all samples under investigation. The
overall luminescence intensity of the sesquioxide nanocrystals is lower compared to the
microcrystalline material (bulk) as a result of the presence of high vibrational energies,
1500 and 3350 cm’, due to adsorbed CO;* and OH anions, respectively, which
significantly increase the rate of multiphonon relaxation. The garnet (Gd;GasO2:Er’")
nanocrystals, however, have considerably less surface adsorbed species, which
consequently increases the luminescence intensity drastically.

The upconversion of red (Aexc = 650 nm) and near-infrared (Aexc = 800 or 980 nm)
radiation into UV, blue, green, and red emission is studied for Er’! ions doped in various

sesquioxide (Y203, Lu03, and Sc;03) and garnet (Gd;GasO;z) nanocrystals over a wide
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range of temperatures and dopant concentration is investigated. We present, for the first
time, upconversion in a trivalent rare earth (RE’") doped nanocrystalline material,
specifically Y;O3:Er’".  We show that replacing the Y** cation has significant
consequences on the upconversion. The upconverted luminescence of Lu,Oz:Er’”
nanocrystals have intensities that are 100x greater compared to identically doped
nanocrystalline Y,03:Er’*. Furthermore, Sc,03:Er’* nanocrystals show an enhanced red
emission, which is greater than Y,05:Er** nanocrystals (with identical Er** concentration)
due to the smaller unit cell resulting in increased interaction between Er’* ions. The
upconversion is observed to be dependent on the method of preparation. We explore
nanocrystalline Y,O3:Er** prepared via the propellant synthesis technique and a
controlled hydrolysis synthesis (or wet chemical synthesis) where we observed quite
diverse upconversion behavior attributed to the vastly different morphological properties
of the two different nanocrystalline materials. Additionally, we investigate the effect of
Yb** co-doping on the upconversion luminescence of Y,05:Er* nanocrystals prepared
via the two distinct synthesis routes, and observe a significant change in the mechanisms
of upconversion. In the sesquioxides, the upconversion properties of the nanocrystalline
material are diverse from the bulk counterpart.

Finally, we attempt to ascertain if any spectroscopic changes occur in nanosized
Lu;03:Nd™, Y203:8m®* and Y,03:Dy** prepared via combustion synthesis. In all cases,

the size of the particles affects the luminescence behavior.
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“If I have seen further, it is by standing on the shoulders of giants”’

Sir Isaac Newton, Letter to Robert Hooke, February 5, 1765
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CHAPTER 1
1. Introduction

1.1. The Rare Earth Elements

“These elements (rare earths) perplex us in our researches, baffle us in our
speculations and haunt us in our dreams. They stretch like an unknown sea before us
- mocking, mystifying and murmuring strange revelations and possibilities”

Sir William Crooke (1887)

1.1.1. History and Discovery of the Rare Earths

The rare earth elements are the fourteen elements that follow lanthanum in the
periodic table. The term rare earth was first suggested by Finnish chemist Johan Gadolin
in 1794, however despite their name, the rare earths are neither particularly rare nor are
they earths. In fact, each rare earth is more common in the earth’s crust than the precious
metals, silver, gold, or platinum by several orders of magnitude [1, 2]. Rare earths are
never found as free metals in the earth’s crust but rather in naturally occurring minerals,
which generally consist of mixtures of various rare earths and non-metals.

The discovery of the rare earths, now aptly known as the lanthanides, a name
derived from the Greek; to lie hidden or concealed, tells a remarkable tale of discovery
(or mis-discovery) and puzzlement. The saga begins in Sweden in 1787 in a town called
Ytterby in Stockholm’s archipelago. An amateur geologist and Swedish artillery officer,
Lieutenant Karl Axel Arrhenius, discovered a dense black mineral, which he named
ytterbite after the feldspar quarry in which it was found [3]. In 1794 while studying the
rare mineral, Gadolin discovered a new earth, which he named ytterbia and later
shortened to yttria [4]. In 1803 this mineral, which eventually became known as

gadolinite, yielded another earth named cerium after the asteroid Ceres through the work



of Swedish chemists Jons Jacob Berzelius and Wilhelm Hisinger and independently by
German chemist Martin Klaproth [2].

Some time later, the British chemist, Sir Humphry Davy, proved that the earths
were not elements but in fact oxides of the elements yttrium and cerium [2]. Forty years
into the future, Swedish chemist Carl Gustav Mosander showed that the yttria and ceria
earths were in fact oxides of mixtures of elements [4]. The two new oxides found in
yttria were named erbia and terbia (again derived from Ytterby) while the oxides found in
ceria were named lanthana and didymia [2]. Mosander was the first chemist to actually
extract the rare earth metals from their respective oxides, although the rudimentary
equipment used resulted in a rather impure form. In the mid-1850s, there was sizeable
debate and bewilderment over the results of further isolation of the rare earths with
different laboratories each naming the earths. The level of confusion reached such an
epic level that in 1860, a consensus was reached by scientists of the day, to interchange
the names of erbia and terbia [2].

Over the next century, fractionation of the rare earths was being investigated
widely. Didymia was shown to be a mixture of the oxides of samarium (Paul Emile
Lecoq de Boisbaudran, 1879), praseodymium (Carl Auer von Welsbach, 1885),
neodymium (Carl Auer von Welsbach, 1885) and europium (Eugene Demarcay, 1896)
[5]. Terbia and erbia yielded the oxides of ytterbium (Jean-Charles-Galinard de
Marignac, 1878), holmium (Per Theodor Cleve, 1878), thulium (Per Theodor Cleve,
1879), dysprosium (Paul Emile Lecoq de Boisbaudran, 1886) and lutetium (Georges
Urbain, 1907) [5]. The name lutetium was universally accepted by scientists except those

in Germany who referred to it as cassiopeium, until the 1950s when the name was agreed



internationally [2]. To add to the confusion, what was renamed erbia in 1860 reverted
back to terbia in 1877 and terbia once again became erbia. However, Mosander is
credited with discovering what we now know as erbium and terbium in 1843 and 1878,
respectively. In 1880, the Swiss chemist Jean-Charles-Galinard de Marignac discovered
gadolinium by separating gadolinia from the mineral samarskite (not gadolinite) but did
not name it. Some years later, French chemist Paul Emile Lecoq de Boisbaudran
produced a pure form of the earth and with Marignac’s approval named it in honor of
Gadolin [5].

By this time, all the rare elements were known with the exception of number 61,
the element between neodymium and samarium. However, its existence was predicted
in 1902 by John Branner and was initially confirmed by British physicist Henry Moseley
in 1914 [6]. In 1941, new radioactivities, which were thought to be those of element 61,
were produced by irradiating neodymium and praseodymium with neutrons, deuterons,
and alpha particles [7]. In 1942, Chien Shiung Wu, Emilio Gino Segré, and Hans
Albrecht Bethe, confirmed the formation this new element but chemical proof was
lacking due to the difficulty in separating the rare earths from each other at that time [8].
In 1945, chemists Jacob Marinsky, Larry Glendenin, and Charles Coryell produced
element 61 by both uranium fission and neutron bombardment of neodymium [7]. Using
ion-exchange chromatography, they made the first chemical identification of two
radioisotopes of element 61. The existence of element 61 was announced at the
American Chemical Society meeting in 1947 by Marinsky and Glendenin, the two year
gap between discovery and announcement due to the scientists being too busy with

defense-related chemistry during the war [9]. In 1948, they proposed the name



promethium for the newly discovered element, after Prometheus, the Titan in Greek
mythology who stole fire from the heavens and in 1949, was accepted by the
international union of chemistry [9]. Searches for promethium on earth have been
fruitless, and it now appears that promethium is completely missing from the earth's
crust. Appositely, promethium has been detected in the spectrum of a star in the

constellation Andromeda [10].



1.1.2. The Rare Earths and the Periodic Table

The discovery of these elements was major concern for chemists of the early

twentieth century since they could not be squeezed into the original periodic table

proposed by Russian chemist Dmtri Mendeleev in 1869.

In fact Mendeleev himself

suggested that the discovery of the lanthanides “broke” his periodic table [11].

Resolution of this puzzle had to wait until the early 1900s when an understanding of

atomic structure was developed. The answer was to isolate these 14 elements below the

main body of the periodic table (Figure 1.1).
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Figure 1.1: Periodic table of the elements with the rare earth series (and similar ions)
expanded for clarity.




The rare earth elements correspond to the filling of the 4/ orbitals. However, also shown
in Figure 1.1 are the elements from Group 3; scandium, yttrium, lanthanum, which
although not members of the rare earth series have very similar chemical properties and
generally occur with the rare earths in the natural minerals. There is discord amongst
chemists as to which elements actually belong to the rare earth series. Many claim
cerium to lutetium, whereas there are voices, which say lanthanum to ytterbium. The

problem becomes apparent when looking at the electron configurations [12] (Table 1.1)

Table 1.1: Ground state electronic configurations of the rare earth elements.

Atomic Electronic Configuration
Numb Element Symbol

umoer Atom RE**
57 Lanthanum La [Xe] 652 4% 54" [Xe] 4f°
58 Cerium Ce [Xe] 65 47! 5d"  [Xe] 4f!
59 Praseodymium Pr [Xe] 65> 41> [Xe] 47>
60 Neodymium  Nd [Xe] 657 4f* [Xe] 41>
61 Promethium  Pm [Xe] 6% 4f° [Xe] 47*
62 Samarium Sm [Xe] 6% 4/° [Xe] 4f°
63 Europium Eu [Xe] 6s* 4f7 [Xe] 416
64 Gadolinium  Gd [Xe] 65> 417 5d'  [Xe] 4f7
65 Terbium Tb [Xe] 65> 4f° [Xe] 47°®
66 Dysprosium Dy [Xe] 657 41° [Xe] 4/°
67 Holmium Ho [Xe] 65° 4f " [Xe] 41"°
68 Erbium Er [Xe] 6s* 412 [Xe] 41!
69 Thulium Tm [Xe] 65° 4712 [Xe] 47"
70 Ytterbium Yb [Xe] 65° 47 [Xe] 41"
71 Lutetium Lu [Xe] 65* 4" 54" [Xe] 4™

While most periodic tables list lutetium as a lanthanide, its electronic configuration (as an

element) fits the pattern of the third transition series. The 15 elements from lanthanum to



lutetium share common chemical features, which explains why it took more than a
century from initial discovery to complete isolation. Thus, it is logical to group them
together. However, from a spectroscopic viewpoint, the elements from cerium to

ytterbium (with the exception of promethium) are of interest due to their unfilled 4fshell.



1.2. History of Spectroscopy

And God said, Let there be light: and there was light.

Genesis 1:3

1.2.1. The Origins of Spectroscopy

Light is undoubtedly at the core of spectroscopy and in tracing the history of this
science, it can be said that its foundations were laid with the utterance of the above
words. However, its physical understanding was forced to wait eons and came to light
with the arrival of Sir Isaac Newton. Newton allowed sunlight from a small, circular hole
to fall on a prism, producing a rainbow of color. Although the production of a rainbow
by a clear crystal was known to the ancients, it was Newton (in 1666) who showed that
white light from the sun could be dispersed into a continuous series of colors. He proved
that the colors did not originate in the crystal, but rather were the components of sunlight.
This array of colors he called a spectrum and subsequently put forth his theory in the
1704 book “Opticks” [13]. According to Newton and contrary to beliefs of the era, light
was composed of tiny particles (corpuscles) that were emitted by luminous bodies. In his
eulogy, following the death of Sir Isaac Newton, the poet Alexander Pope highlighted
Newton’s accomplishments in the field of optics:

“Nature and Nature's laws lay hid in night;
God said, 'Let Newton be!' and all was light.”

Alexander Pope (1727)

The spectral nature of light was present in the rainbow since the dawn of time but it was
beyond the ability of primitive man to recognize its significance. Newton’s studies led

him to unweave the mystery and essentially spoil the poetic beauty of the rainbow.



Scientific understanding of the colors of the rainbow inspired Keats to pen his well

known lines [14]:

"Do not all charms fly at the mere touch of cold philosophy?
There was an awful rainbow once in heaven: we know her
woof, her texture; she is given in the dull catalogue of common
things.  Philosophy will clip an angel's wings, conquer all
mysteries by rule and line, empty the haunted air, and gnome
mine unweave a rainbow."

John Keats (1820)

Isaac Newton used an instrument with a small circular aperture to define the beam
of light and a lens to collimate the beam. It was then directed to a glass prism, which

dispersed it onto a small screen that displayed the spectrum (Figure 1.2).

Figure 1.2:  Sir Isaac Newton’s experimental set-up used to separate the colors of
sunlight.

This rudimentary instrument was the foundation of the modern spectroscope and
Newton’s analysis of sunlight unleashed the scientific pursuit of what we refer today as
the science of spectroscopy.

In the 19" century, the science of spectroscopy advanced by leaps and bounds
with the invention of the spectroscope. In 1861, Prussian physicist Gustav Robert
Kirchoff and German chemist Robert Wilhelm Eberhard von Bunsen pieced together the

first spectroscope. The initial Bunsen-Kirchoff spectroscope (Figure 1.3) was made of



nothing more than a cigar box, prism, two obsolete telescopes and a flame (from a

Bunsen burner) [15].

Figure 1.3:  The initial Bunsen-Kirchoff spectroscope invented by Bunsen and
Kirchoff in 1861.
The instrument was of tremendous importance in chemical analysis, especially in the
discovery of new elements by yielding a unique spectrum for each element. By the late
1880’s the spectroscope was refined to include a collimator, adjustable slit, a prism for
comparison of spectra, a second collimator with a photographed millimeter scale, and a
telescope for examining the rays from the former two. The prism, which was of made of

flint-glass, was enclosed in a strong metal box (Figure 1.4) [16].

Figure 1.4: A more modern spectroscope, circa 1880.
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The invention of the spectroscope transcended science and made its way to literary
circles. In Our Mutual Friend, written in 1865, Charles Dickens imagined a “moral
spectroscopy” whereby the inhabitants of remote galaxies and stars might analyze the
light from the Earth to gauge its good and evil, the moral spectrum of its inhabitants [17,
18].

Of course, the complete and entire history of spectroscopy is vast. We will thus

henceforth only focus on the history of rare earth spectroscopy.

1.2.2. Rare Earth Spectroscopy

Spectroscopic studies of the rare earths began a few years following the
development of spectral analysis by Bunsen and Kirchoff. In his studies on didymium
sulfate octahydrate (1866), Bunsen observed absorption spectra that were dependent upon
the direction of the crystals with respect to the excitation light [19]. Using light polarized
in different orientations, unique absorption spectra were obtained for given
crystallographic directions. In 1888, French physicist Henri Becquerel who along with
Pierre and Marie Curie discovered radioactivity, thoroughly examined this phenomenon
using many rare earth containing minerals. Becquerel recognized the appearance and
disappearance of structure in these minerals because of the sharpness of the absorption
bands [20]. Roughly two decades into the future, his son Jean Becquerel examined the
spectra of these minerals at low temperatures and observed a relationship between the
width of the absorption lines and temperature. Along with his co-workers, they noticed a
refinement of the bands into sharp lines when the material was cooled to liquid air

temperature (85 K) [21], sharper lines when the temperature was lowered to liquid
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hydrogen (20 K) [22], and sharper still at liquid helium temperatures (4 K) [23]. They
recognized that the absorption spectra consisted not of bands but of lines approximating
in sharpness the absorption lines of gases. A link between the structure of the rare earth
ion and the observed absorption spectrum could not be established with absolute certainty
due to the doubtful identity of the rare earth ion contained in the mineral studied. Many
of the minerals under investigation contained a combination of rare earths and thus
complicated the analysis. A considerable amount of experimental evidence was collected
but little progress was made in understanding the phenomena due to the lack of a solid
theoretical foundation. In the course of his studies, Becquerel also discovered a Zeeman
effect from these crystals and became interested in their magnetic orientation [24].

The fundamental theory of rare earth spectra began to gain momentum with the
advent of the Bohr Theory (1913) and later with the dawn of quantum mechanics in 1925.
The mid to late 1920°s was a remarkable time in the study of rare earths. Friedrich Hund
studied the magnetic properties of the rare earths and successfully predicted the ground
states of the trivalent ions [25]. Shortly thereafter in 1929, Hans Bethe and Hendrik A.
Kramers made possible the interpretation of rare earth spectra. Bethe introduced group
theory (gruppen pest) to the study of the rare earths and laid the foundation for the study
of energy states in crystals, essentially giving birth to the crystal field theory [26, 27]. He
derived the number and symmetry characteristics of the component levels, which arise
for a given atomic energy level after it’s embedded in fields of various crystallographic
symmetries. Bethe showed that the observed splitting of the absorption lines in the
electric crystalline field was directly related to the symmetry of the field. Meanwhile,

Kramers [28] (1929) made use of the recently developed quantum theory to interpret the

-12-



results of these experiments and made a significant discovery. He noticed that the
electrical fields of the lattice do not remove the degeneracy coming from the spin of the
electrons and proved that in an odd electron system, every level must remain at least
doubly degenerate (Kramer’s degeneracy). The degeneracy of these levels can be
removed by an externally applied magnetic field. Today, the trivalent rare earth ions with
odd 4felectrons are commonly referred to as Kramers ions [29].

John H. Van Vleck and Amelia Frank resolved the inconsistencies between theory
and experiment for Eu’*, which at the time, marred Hund’s rare earth theory (1929) [30].
The findings continued on into the 1930°s where in 1932, Van Vleck published his
comprehensive book on magnetic susceptibilities [31]. In their 1932 paper, William G.
Penney and Robert Schlapp initiated practical crystal field calculations [32]. By making
use of Eugene P. Wigner’s recently published Gruppentheorie [33], Penney and
Schlapp’s crystal field theory was extended by Amelia Frank (1932 and 1935) to include
J-mixing [34, 35]. Frank applied the crystal field theory of Penney and Schlapp to the
magnetic susceptibilities of Eu*" and Sm**. She explored the effects of a breakdown to
lower symmetry, from cubic to rhombic, and in her short life can be considered one of the
unsung protagonists of crystal field theory [36].

As early as 1929, Simon Freed and Frank H. Spedding [19, 37, 38] had initiated
detailed studies of the low temperature absorption spectra of rare earth salts and outlined
reasons why the sharp absorption spectra of the rare earths in the solid state would
resemble the line spectra of the ions in the gaseous state. Freed and Spedding observed
that there existed large groups of lines clustered closely together separated by larger

intervals. Some of these clusters disappeared at low temperatures allowing them to
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identify the presence of low lying levels, which were significantly populated at higher
temperatures. Freed and Spedding recognized that these cluster of closely spaced lines
arose from the crystal splitting of the free atom states. However, they speciously
suggested that the sharp line spectra w