A Framework for Object-Relational Mapping
With An Example in C++

Xiaobing Zhang

A Thesis
i
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada
April, 2004

February, 2004

© Xiaobing Zhang, 2004

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94760-2
Our file Notre référence
ISBN: 0-612-94760-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

[b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

A Framework for Object-Relational Mapping With An Example in C++
Xiaobing Zhang
As the Object-Oriented programming technique becomes more and more popular in
contemporary software design, issues related to persistent objects must be addressed. This
thesis introduces a framework for Object-Relational Mapping. The framework is intended to

simplify the handling of persistent objects in a Relational Database System.

The framework’s architecture consists of two layers: an object layer that contains the
infrastructure for persistent objects and a storage layer that provides an interface to the Physical
Storage System. As contributions, I have introduced my original work including mapping
inheritance with inheritance, a particular solution for aggregation and associations mapping, a
cache of object references for constructing objects and name conventions for preserving object

maps.

The Framework for Object-Relational Mapping is a C++ Framework (a set of Classes). It
supports most of relational database systems. Developers can use these classes to obtain abilities
about object relational mapping. In this thesis, a teaching assignment planner project is used to

test my framework’s performance in saving coding work.

iii

Acknowledgements

There is a person without whom this thesis would not have been at all possible and whom I need
to thank:

Professor Peter Grogono, my supervisor, has endlessly and tirelessly mentored, taught
and encouraged me since the summer, 2001. I appreciate his many useful comments on this
work, but even more so, I appreciate his advice, comments, and willingness to discuss any

questions or ideas that I have had.

TABLE OF CONTENTS

LIST OF FIGURES «eccreserasnserscosssssoscessessossascssasascssasssasssnssssssseacsassssanssnossseasssesssasssssssasessssasses Vil
1. INTRODUCTION . ccceecsessncsascsnsanssnsssasassssssacsnssasssasssesasssnsonsorssssaassonsesssssasssasesass .l
1.1 OBJECT PERSISTENCE ...eeiiietiieciitet e eeee e ettt ee e ettt e e ettt e e e e e e e e eeeeaeeeeseaeeeeeesaeasaens 1
1.2 BACKGROUNDcutii ittt ettt ee et e e e e e et e e e e eere s e e e e senseesneans 1
1.2.1 Serializationcccccccoviivvivinineiece e e e e ene e 2
1.2.2 Object oriented databaSEs............ccccuviveiiiseesiiaeeeieee et 2
1.2.3 RelQtional DataBDASEooeeeeeeeeeeeeeeeeeeeeeeeeee e e e ee e et e e e e e ees e e eeee s e e, 4

1.3 OBIECT-RELATIONAL MAPPINGcoiiiit ittt eevee s eeae e e e e 5
1.3.1 Object MOELingcccoviiiiiiiiieieceeee ettt ee e 5
1.3.2 Relational MOENNG.................cc.ooeeeeeeeeioreeeeeeeeeeeeeeeeeeeeeeeeeereseav e o
1.3.3 PrOBlem SEQIEIIENEcco..oooeoeoeeee e et e e e e e e e e, 6
1.34 Framework for Object-Relational Mappingc.ccccooeevimevovioioeeeeeeeereeeeeeeeeanns 7

1.4 RELATED WORK ..ottt e e 8
14.1 RELAIEEA PAITCTFL.c....eooeivoui oo e e e et e e e s e, 9
1.4.2 RELATEA SOLUILONS .ot ee et e s e ee e 16
143 KHOWR FPAPEWOTKS ccocoo oot e e e et 19

1.5 CONCLUSIONttt et e et e e e et e e e e e e e e e e e eeseaies 21
2. FRAMEWORK DESIGN cccecrersreccesensosncassneasecssssssssonessssssssssssasesassesssosessosesnsssesssnssesaces 22
2.1 FRAMEWORKooiiiiieeeiit et et e e e e e et e eeee e e e oo 22
2.2 LAYER ARCHITECTURE FOR OBJECT RELATIONAL MAPPING «..vevveeorieeeeeeeeeeen 22
2.2.1 OBJECE LAYETccooicuiiiiaiieeiises ettt er e en e 23
222 SIOF8GE LEYE.........ooooiieeiiieeeeeeeee e et en e 24
2.2.3 Mapping AZEFegationc.c.ccociviviiiisieie ittt 25
2.2.4 Mapping INAEITIANCE. ..o ettt 25
225 M8EPPING ASSOCIAHIONSoecoeieiies et 26

2.3 CONCLUSTON ...ttt ettt ettt ettt et e e e e e e e eee e e e e 29
3. IMPLEMENTATION OF DESIGN .ecccrecesssccsnsnorscscsssecasssessonssosssescossssossacassnssnsssasssssnsane 30
3.1 OBTECT LAYER oottt ettt e et e e e e e e e e ee s ere et e e, 30
3.1.1 PUSH DOWR/POD UP oottt ettt et s e eeene e e 31
312 OID MANAGET ...ttt ettt eeneaes 32
313 CPEISISTCIASS ...ttt 32
314 RelatiONODBIECL.cccoioiieeiiiieieee et 35
3.1.5 PersiSting OBJeCt........ccooiioiiiiiiiieis ittt 37
316 ODJECt CTEALION ...ttt ettt e s et 39
317 Standard IHIEF[ACEccoooevi et 40

32 STORAGE LLAYER ..ottt e e 43
3.2.1 Standard INEETfaCEc.ococciiiiiiiiiiice e 44

3.3 CONLIUSION ettt ee e ettt e e e e et e et eee e e mae e aeeeneereem s e s e e e e e st et aete e anss 45
4, CASE STUDY terceesoessrcsavorsscsssnasscsasosssssssssssssossasssssssssssssasssssssssssorssssesssssssassssssnsisessas 46
4.1 THE OBIJECT ORIENTED DATA MODEL ...oiveeeeeteteeeeee et eeenasteeeaneee e 46
4.2 MAPPING SIMPLE D AT A T PE oot eer e e enaees 46
4.3 MAPPING INHERITANCE .ottt e e e et e e e et e e e e r s 48
4.4 MAPPING AGGREGATION ceeeeeee et e r e e e e s e e s aae s enemeranaaes 49
4.5 MAPPING ASSOCIATIONS ¢ .ottt e e e va e e e e e e e e e e e et e e ereeeesrieeeaaane 51
4.6 P E R FORMANCE RESULTS .. ettt et e e e et e e s e ete e eeenaa s 53
4.7 CONLUSION ..ottt e et e e et et e e e e et e et e e s ene e e e et e e e et renesaaanaeaaes 55
5. SERVER SIDE OBUJECT severeccrssccrensersessssossessesassessssssarsssessassasssssesessassssssssssssssssssnsasas 56
Bl OBUECT S T et e e e e e et et 56
5.2 B RV ER ST E BT E T . ettt ittt et e e e e e e e et e e aeseee e e a e e aearesaaaaeereet e aaaaans 57
5.3 CONCURRENCY ..ottt e e e e et e e et eeere e s e ee e e reeeesaas 58
6. CONCLUSION AND FUTURE WORK ..coccoreeeernecssesssccnserssssesessennnns 60
6.1 CONCLUSION .1ttt ettt e e e e e e e e et e e e aaesaeeeneee et e s aneneraraeeearanans 60
0.2 FUTURE WORK ...ttt et e e ar e s e e e e e e e et e e e e aeeaaeanas 61
(GLOSSARY eevverresssssarssrasessoseransasssnasessasssssssnsesssssnssssrasssssssssssensssossssessssssssasssssasssssssssssossnsosss 63
FREFERENCES cecuuucerircsensenrerssessssacseosesssssssestosssssssssesssssssssssssssssassonsessssssnssranssasorssasosssssasssssns 65
APPENDIX A .oeeeeieeeenencncanncscssessssssesassssesssssssssssssssrssssnossssssssssssssssnsssssssnsnnssnsnsnnsssesssosnsassosses 68

vi

LIST OF FIGURES

FIGURE 1 MAPPING OBJECTS TO TABLE

FIGURE 2 SINGLE TABLE AGGREGATION

FIGURE 3 FOREIGN KEY AGGREGATION

FIGURE 4 INHERITANCE

FIGURE 5 COMMON PARENT TABLE

FIGURE 6 SEPARATE TABLES

FIGURE 7 ONE TABLE

FIGURE 8 FOREIGN KEY MAPPING ASSOCIATION

FIGURE 9 N:M ASSOCIATIONS

FIGURE 10 ASSOCIATION TABLE MAPPING

FIGURE 11 REFERENCE COUNTING SMARTER POINTER

FIGURE 12 OBJECT AND STORAGE LAYER

FIGURE 13 OBJECT CREATION

FIGURE 14 NAME CONVENTION

FIGURE 15 CPERSISTCLASS

FIGURE 16 RELATION OBJECT

FIGURE 17 PERSISTING OBJECT

FIGURE 18 MAPPING SCHEMA

vil

10

11

12

13

13

14

15

15

16

17

23

28

29

32

35

37

41

FIGURE 19 OBJECT ORIENTED DATA MODEL

FIGURE 20 AGGREGATION EXAMPLE

FIGURE 21 ASSOCIATION: TEACHING

FIGURE 22 RESULT OF MAPPING

FIGURE 23 OBJECTSET

FIGURE 24 SERVER SIDE OBJECT

FIGURE 25 SuB OBJECTSET

viil

46

49

51

53

56

57

58

1. INTRODUCTION

1.1 Object Persistence

Object-Oriented modeling, design, and programming is becoming more
and more popular in software design nowadays. Since most computer
applications need to store and retrieve data, saving and recreating objects
is an unavoidable problem in object-oriented applications. A definition for

object persistence was given in [1]:

“The process of storing and retrieving objects (or more accurately

their attributes) is called persistence”.

This thesis is about object relational mapping design and implementation.
it describes a framework to deal with object relational mapping that allows
developers who are using object oriented programming to store their

objects into a relational database, thereby achieving persistence.

To start, | will review the background knowledge of some possible ways to

deal with object persistence

1.2 Background

When developers are facing the problem of object persistence, there are
several solutions they can choose from: serialization, object-oriented
database, and relational database (mapping). Developers choose these

solutions based on system requirements.

1.2.1 Serialization

Object Serialization is the ability to save the states of an object to an
output stream. Users can recreate the object by reading the saved states
from an input stream. The stream may be a disk file, a byte array or a

stream associated with a TCP/IP socket.

Serialization has two major disadvantages. First, The object can only be
accessed as a whole. Serialization does not allow access to or update of a
single object independently because the stream medium does not support
random read and write operations. Secondly, since there is no transaction
control in Serialization, it does not support concurrent access. When two
or more users are serializing objects, they could overwrite another user’s
objects by saving objects into the same stream. This makes Serialization

unsuitable for multiple user systems.

Although Serialization has many disadvantages, it is provided by most
OOP languages in the form of a method or interface. Developers can use

it without any further work.

1.2.2 Object oriented databases

Srinivasan and Chang in their paper [1] introduced object oriented

database as follow:

Object-oriented DBMSs (OODBMSs) are basically built on the principle that the best way
to add persistence to objects is to make objects persistent that are used in an object-
oriented programming language (OOPL) like C++ or Smalltalk. Because OODBMSs have

2

their roots in object-oriented programming languages, they are frequently referred to as
persistent programming language systems. Object-oriented DBMSs, however, go much
beyond simply adding persistence to any one object-oriented programming language.
This is because, historically, many object-oriented DBMSs were built to serve the market
for computer-aided design/computer-aided manufacturing (CAD/CAM) applications in
which features like fast navigational access, versions, and long transactions are extremely
important. Object-oriented DBMSs, therefore, support advanced object-oriented database
applications. with features like support for persistent objects from more than one
programming language, distribution of data, advanced transaction models, versions,
schema evolution, and dynamic generation of new types. Even though many of these
features have little to do with object orientation, object-oriented DBMSs emphasize them
in their systems and applications. There are several object-oriented DBMSs in the market

(e.g., Gemstone**, Objectivity/DB**, ObjectStore**, Ontos**, O2**, ltasca™*, Matisse™*).

There is no doubt that OODBMS is ideal to deal with object persistence

save objects because:

“OODBMS (object-oriented database management system) products are designed to
work well with object programming languages such as C#, C++, and Java. When you
integrate database capabilities with object programming language capabilities, the result
is an OODBMS. An OODBMS makes database objects appear as programming language
objects in one or more object programming languages. An OODBMS extends the
language with transparently persistent data, concurrency control, data recovery,

associative queries, and other capabilities.” [3]

“O0DBMSs provide the lowest cost for development and best performance combination
when using objects because they store objects on disk and have the transparent program
integration with object-oriented programming languages. This is because an OODBMS
stores exactly the same object model that is used at the application level, both

development and maintenance costs can be reduced.” [3]

However, the OODBMS does have one major disadvantage: limited

market acceptance. Comparing with the relational counterpart, it has

3

fewer users because the existence of large RDBs would siow down the
acceptance of OODBs. This is a major reason why OOP developers need

relational database.

1.2.3 Relational Database

Srinivasan and D. T. Chang in their paper [1] also introduced relational

database as follow:

Relational DBMSs typically provide support for storing data used in traditional business
applications such as banking transactions and inventory control. The relational model is
the basis of many commercial relational DBMS products (e.g., DB2*, Informix**, Oracle™,
Sybase*) and the structured query fanguage (SQL) is now a widely accepted standard for
both retrieving and updating data. The basic relational model is simple and mainly views
data as tables of rows and columns. The types of data that can be stored in a table are
basic types such as integer, string, and decimal, and other special types such as BLOB
(binary large object) and CLOB (character large object). These systems typically do not
allow users to extend the type system by adding new data types. They also only support
first-normal-form relations in which the type of every column must be atomic, i.e., no sets,
lists, or tables are allowed inside a column. Relational DBMSs have been extremely
successful in the marketplace, growing into an approximately four-billion-dollar market in a
decade. These systems are extremely good for a class of applications with simple data
models and extensive quetying needs. The use of a standard declarative query language
in SQL makes it possible for applications to transparently access relational DBMS data

from different vendors [1].

Another way of obtaining object persistence is to use a relational
database as the storage medium. A relational database is slower than an
object-oriented database. However, systems often need to store objects in
a relational database because relational databases are more popular than

OODBMS now.

Since relational databases do not support object model and need
transformations for Object modeling, designing software to connect an
object-oriented business system with a relational database is a difficult
task. Transformations between object and relational model are called

Object-Relational Mapping (ORM) [1][7].

1.3 Object-Relational Mapping

Object-Relational Mapping is the process of transforming between object
and relational modeling approaches and between the systems that

support these approaches.

To introduce Object-Relational Mapping, | will discuss the differences

between object and relatiocnal modeling.

1.3.1 Object Modeling

“Object modeling describes systems built out of objects, where objects are
programming abstractions that have identity, behavior, and state” [8].
Objects are an abstraction beyond simple data type (single value data
type), which are provided by most relational database systems. As such,
the object modeling includes many other concepts, such as aggregation,
inheritance, polymorphism, association and data types, all of which make

object oriented types “smarter” than relational database data types [11].

Object modeling uses Interclass references and class hierarchy

inheritance to represent the relationship between objects.

5

1.3.2 Relational Modeling

Relational modeling and object modeling are different paradigms of
programming. Relational modeling is based on the information. It only
supports simple data type (single value data type) and uses value-based
(Key) Approach to build the relationship between tables. For mapping
other concepts of object modeling (inheritance, association and

aggregation), relational models must perform transformations.

1.3.3 Problem Statement

Although the way to avoid the impedance mismatch between objects and
relations is to use an object-oriented database, systems often need to
store objects in a relational database. Relational databases such as MS
Access, SQI Server, Mysql are being used in many software systems from
desktop to web based. On the other hand, one of the major works in

upgrading is to reuse existing data in Relational database [2].

When developers use the relational database as storage for persisting
objects, they could spend much effort in dealing with mapping their object

data model with relational database.

This thesis introduces an object relational mapping framework for

simplifying combination of object persistence and relational database.

Since framework of object relational mapping is a complete working

solution, developer can use one instance of framework to deal with

mapping works more than once.

Most of frameworks of object relational mapping use SQL to deal with
database programming. SQL is supported by most relational database; it

is good at ad-hoc query including searching and sorting operations.

A framework also saves investment. The investment is not only the
expense of existing relational database, but also the investment for

learning other persisting solution especially OODBMS.

1.3.4 Framework for Object-Relational Mapping

In this thesis, | introduce a framework to map the object-oriented model to
the relational model; the framework is called Framework for Object-
Relational Mapping. It can be used by developers who are using OOP and

want to store/read objects into/from a relational database.

The Framework for Object-Relational Mapping is a C++ Framework (a set
of Classes) intended to help developers in dealing with object relational
mapping. It supports most of relational database systems including MS
SQL Server, Access, Oracle and MySQL, since | used OLE DB to deal
with database related programming. This framework implements some
new ways in dealing with object relational mapping including mapping
inheritance with inheritance, a solution for aggregation and associations
mapping, a cache of object references for constructing objects, and name

convention for preserving object maps for object creation.

This framework is written in C++. Developers could rewrite it in other OOP

language.

Developers can inherit from a base class provided by my framework to
obtain abilities of object ldentity management and simpie data type
mapping. To map complex data types, developers can use similar data
structure (classes) provided by my framework. This will save developers’

learning time and reduce the work of coding, they have to do.

1.4 Related Work

In this section, | will discuss and review related works about object
relational mapping. It includes some useful patterns such as mapping
aggregation, inheritance and association. It also lists several frameworks

for Java and C++,

1.4.1 Related Pattern

We first consider way of mapping objects to tables.

1.4.1.1 Mapping objects to tables

Figure 1 Mapping objects o table

Each attribute of an object becomes a column in a table, and each object
becomes a row in a table [16]. The mapped attribute is the kind of ADT
supported by the relational database system. Other complex data types

need more transformations, as described in the following sections.

This mapping is suitable for objects that have only simple types as

attributes.

1.4.1.2 Mapping Complex Data Type
The object oriented data model supports some complex data types such
as aggregation, inheritance, and associations. Comparing with simple
data type, complex data types need transform work to be applied for
abject relational mapping. This section will review related works for

mapping aggregation, inheritance, and associations.

1.4.1.2.1 MAPPING AGGREGATION

There are two patterns to map aggregation to relational tables: Single

Table Aggregation and Foreign Key Aggregation [10]{17].

Hanrapsiing Dliject =

T 1 \\ Agtregaling Obte) Table

I Al butes
s 1 M,‘@ﬂ%w%ﬁm@bjed Adtributes
bagagedObiag AT

| i

Figure 2 Single Table Aggregation

Single table aggregation consists of putting the aggregated object’s

attributes into the same table as the aggregating object’s.

If the aggregated object type is aggregated in more than one object type,
this design results in poor maintainability because each change of the
aggregated type requires an adaptation of all of the aggregating object

type’s database tables.

Scott W. Ambler has analyzed Single Table Aggregation as follows [10]:

1. Performance: The solution is optimal in terms of performance as only one table needs
to be accessed to retrieve an aggregating object with all its aggregated objects. On the
other hand, the fields for aggregated objects’ attributes are likely to increase the number
of pages retrieved with each database access, resulting in a possible waste of I/O

bandwidth.

2. Maintenance and flexibility: If the aggregated object type is aggregated in more than
one object type, the design results in poor maintainability as each change of the

aggregated type causes an adaptation all of the aggregating object types’ database tables.

3. Consistency of the database: Aggregated objects are automatically deleted on deletion
of the aggregating objects. No application kernel code or database triggers are needed.

10

4. Ad-hoc queries: If you want to form a query that scans all AddressType objects in the

database, this is very hard to formulate.

When this situation occurs, the alternative solution, Foreign Key

Aggregation [10] [17], is better but is not the best.

Customer
R SustomerTable
String Mame
A , Mame char{B0)
AddressType lovoisefddress |]
DsliveryfdddressOID char(e 4] \‘-\
%
N Y
1 Y
&
{
i
I
1 |
AddressType |
. _k AddressType Table t
shing alrest !
S T ey g
?}””}5{ . %!t‘i y SyntheticOID char6d) A"
oy 1ar [20] G'F‘ - ooe Strest char(s)
String State City char(50)
v ZpGods char{20
State chargEa)y

Figure 3 Foreign Key Aggregation
Foreign Key Aggregation uses a separate table for the aggregated object.

The Object Identifier is inserted into the table and this object identity is
used in the table of the aggregating object to make a foreign key link to

the aggregated object.

Scott W. Ambler discussed the consequences in [10]:

1. Performance: Foreign Key Aggregation needs a join operation or at least two database
accesses where Single Table Aggregation needs a single database operation. If
accessing aggregated objects is a statistical rare case this is acceptable. If the
aggregated objects are always retrieved together with the aggregating object, you have to

have a second look at performance here.

I

2. Maintenance: Factoring out objects like the AddressTypes into tables of their own

makes them easier to maintain and hence makes the mapping more flexible.

3. Consistency of the database: Aggregated objects are not automatically deleted on
deletion of the aggregating objects. To perform this task you have to provide and maintain
application kernel code or database triggers. This is also an implementation issue. You

have to choose one of these two options.

4. Ad-hoc queries: Factoring out aggregated objects into separate tables allows easy

querying these tables with ad-hoc queries.
1.4.1.2.2 MAPPING INHERITANCE

This second type of mapping provides support for implementation

inheritance. The following discussion does not cover multiple inheritance.

Typically relational databases provide no support for inheritance. It is
therefore necessary to define a strategy for mapping inheritance

hierarchies to tables.

There are three approaches to this problem in [10], [17]. As an example,

the following object model can be implemented in any of the following

three ways.
Instrucior

i

Faine
Age

Emad

FullTime Tostroctor Part Tine Instructor
Duties DateFrom
Da%sT;z

Figure 4inheritance

12

1.

A common parent table plus separate subclass tables

This approach, shown in Figure 5, wastes no space, but requires

joins to load objects into memory

Instructor FullTime Istructor |
jiv] Tratses
MName _
Age | | PartTime Tnstructor
Ermail Daterrom
DateTo

Figure © Common parent fable
2. A separate self-contained table per class.

See Figure 6: This approach requires a different table to be

accessed depending on the type of the object being loaded

Tnstructor FullTime Trstrucinr | | Part 1ime Lastroctar
i i 38
Name Mamae Mame
hge Age Age
Frmail Emsail Email
Duties DateFrom
TatzTo

Figure f Separete tablas

13

3. One table per single inheritance hierarchy.

Insirucior
m
Mame
Age
Emad
DteFrom
DaieTo
Dulies

Figure 7 Cine table
See Figure 7: This approach is wasteful of space. The table will

contain lots of nulls but requires only a single table to be accessed

to load all objects in the hierarchy.

1.4.1.2.3 MAPPING ASSOCIATIONS

This section presents two patterns used to map associations between

objects: Foreign Key Association and Association Table [10] [17].

Consider the classic Order / Orderltem example. A valid Order may have

from zero to many Orderltems.

1. Foreign Key Association

The pattern shows how to map 1:n associations between objects to

relational tables.

Insert the owner object’s OID into the dependent objects table. The

OID may be represented by a database key or an Object ldentity.

14

Qrder

2. Association Table

Stang nID
1, % -
Set<Eef<Crdder Hera»> iteme A
ﬁmrﬂhjm:t
SyntheticOlD Ol , ‘
I5 mag}ped 1o ;
SevefllspandenCtiect '
DeparcrtObact8a i
i
i
i
Iinks:
i
.]
DependentOlgect :
i
B
1]

Foreign Key

Ordetltem

o

CsOneatTatle.

reranIEon e Ta 0

,,,,,,,,,,,,,,,,,

Figura 8 Foreign Hey Msging Asencistion

instructor

syatheticd D OID

employsdin

SetRef<Departmants »

Department

SyntheticIDl OIR

Set=Raf<instructors>
amployadFaopls

Figure 9 mim Associations

As an example we use the n:m association between an Instructor

object type and a Department object type. An Instructor can work

for more than one department. A department usually comprises

more than one Instructor.

15

InstructorTahle instructorepartmant Thale DepartmentTable
SntheticID char(@d) - - - - — - reflhjects charid) 4 SyntheticOID char(Gd)
reflbjectB char{dd] d 1" N
Fugure 10 Assacigtion Table Mapping -
Foreign Keys

This technique involves creating a separate table containing the

Object Identifiers (or Foreign Keys) of the two object types

participating in the association and then mapping the rest of the two

object types to tables using any other suitable mapping patterns

presented in this thesis.

1.4.2 Related Solutions

| have studied several existing solutions about object relational mapping

for designing my framework. | have also implemented some of them in my

framework design such as layer architecture [7] and introduced my work

based on them such as shared object [2].

1.4.2.1 Shared object

The Ratio Group provided an approach using “smart pointers” [18] to

handle this problem:

“Fortunately, a common approach to sharing objects and the associated memory

management problems in C++ comes to the rescue. Smart pointers are objects that

appear externally to behave like exactly like ordinary pointers, but which internally use a

reference counting mechanism to note that the object being pointed is shared. Thus, if two

smart pointers point to the same object the internal reference count of the pointer will be

16

set to two.”

SkaredBodya i
Sazandr T sharediody=t

. epratar®
et

Fizre 11 Reference Counting Smarter Pointer

“The smart pointer itself takes on responsibility for memory management, deleting
memory only when the reference count to the shared object drops to zero. “ [2]
1.4.2.2 Object/Relational Access Layers.
in [7], Wolfgang Keller described how to structure an object/relational
persistence subsystem in the global context of a layered architecture for
business systems. The architecture consists of two layers: an object layer
that contains the infrastructure to persist business objects and a tuple

layer that encapsulates a relational database.

This pattern is widely used by most mapping developers such as the Ratio

Group [2], SourcePro DB [14] and DataObjects.NET [15].

1.4.2.3 Client-Server Objects.
When object relational mapping framework is using a server side
database as storage of objects, it must concern the problem of client
server objects. Mark L. Fussel explains the client-server objects issues

and gives three approaches as follow:

Object relational mapping intrinsically brings in client-server issue because a relational
server is separated from the client application. The client-server issues are nonetheless
independent of relational mapping. This conveniently divides the problems into more

manageable pieces.

17

The major issues when dealing with client-server objects is to be able to manage the
identity and state of objects on each of the client and server, and then handie the
relationships between the two systems’ objects. This is different from the relationat
approach where everything is just a value. For that.approach, the client is only getting a
simple snapshot of the server state and then must explicitly how the server state should
change. The object model tries to provide a more transparent interface for the client, but

this actually causes a more complex model and a more sophisticated framework.

Because relational mapping intrinsically involves a client-server system we need to be
able to handle the issues with that system. Most of the issues have nothing to do with
relational mapping but are instead involved with having multiple ObjectSets between a
Server and its Client applications. We need to recognize that the client objects are
Replicates of the server objects, that they must keep track of the Identity of their server
object, and that there are many issues and approaches for handling concurrency between

the multipie clients.
Approach-1

“A client can "check-out" a collection of objects from the server and no other client can
see these objects until they are checked back in. This automatically causes each client to

have non-intersecting subsets.”
Approach-2

“A client can either “read check-out" or “write check-out" objects from the server. Two
clients can check-out the same object as long as they are not both trying to write to it.
Alternatively we can prevent dirty-reads as well: a client can only check out an object if
there are no write-focks on it and can only write-lock an object if no other client has

checked it out. “
Approach-3

“A client can replicate any object from the server but will only be able to write changes
back to the server if the server object has not changed since the client produced the

replicate. This is the standard optimistic locking” [8].

Although the problem of client-server objects does not belong to object
18

relational mapping, it should be solved in framework design because most

developers are using database on server side.

1.4.2.4 Connecting Business Objects to Relational Databases.
Joseph W. Yoder and Ralph E. Johnson introduced several patterns for

mapping objects into relational database in [4].

“These patterns describe how to implement business objects so that they can be mapped
to non object oriented databases. There is an impedance mismatch between these
technologies since objects consist of both data and behavior while a relational database
consists of tables and relations between them. Although it is impossible to completely
eliminate this impedance mismatch, you can minimize it by following the proper patterns.
The proper patterns hide persistence from the developer so that effort can be spent on

understanding the domain rather than in making objects persistent” [4].

These patterns are very useful in dealing with object relational mapping. |

implemented them in my framework.

1.4.3 Known Frameworks

1.43.1 Java
ObJectRelationalBridge(OJB)[12] is for O/R mapping. It is now a part of
the Jakarta project. OJB is an Object/Relational mapping tool that allows

transparent persistence for Java Objects against relational databases.

Hibernate [13] is a very popular free O/R mapping framework for Java.

Hibernate is a powerful, ultra-high performance object/relational persistence and query
service for Java. Hibernate lets you develop persistent objects following common Java
idiom - including asscciation, inheritance, polymorphism, composition and the Java

coliections framework [13].

19

These frameworks only support Java. in 1.4.3.2, | will list two frameworks

which support C++.

1.4.3.2 C++

1. SourcePro DB by RogueWave (used to be called DBTools.h++).

“Rogue Wave® SourcePro™ DB is a complete solution for object-oriented relational
database access in C++. SourcePro DB's layered architecture abstracts away the
complexity of writing database applications, yet lets you drill down to the native database

client libraries when necessary.”

“SourcePro DB offers significant benefits, whether you are working with a single database
or multiple databases. Code to SourcePro DB's consistent, high-level C++ API, and you'll
be able to quickly deliver applications that are reusable with databases from various

vendors. There's no need to deal with the details of a particular database vendor's AP ©

“SourcePro DB provides general access via ODBC, as well as direct access to the
following databases: MySQL Server, PostgreSQL Server, Microsoft SQL Server, Oracle,

Sybase, DB2, Microsoft SQL Server, Informix” [14].

It is an object encapsulation of SQL more than a full fledged access layer.

2. DataObjects.NET from http://www.x-tensive.com. DataObjects.NET allows

you to focus on the code of the business tier and application data model.

“DataObjects.NET is an object persistence layer for the .NET Framework. It dramatically
decreases development time by handling all persistence-related tasks transparently. it
completely supports inheritance (including interfaces), relations and collections,
transactions, object queries, full-text indexing and search, multilingual properties and a lot
of other features. Moreover, it provides a set of unigue services including automatic
transaction management and buiit-in access control system. Its feature set allows- building
not only the data access tier with it, but the complete business tier of a complex

application” [15].

20

All of these C++ frameworks (SourcePro DB and DataObjects.NET) are
not free. They do not provide the source codes to developers. My thesis

tries to provide a framework to developers with all of the source codes.

1.5 Conclusion

First, this chapter introduced the problem that this thesis deals with: object
persistence. After discussed the background of possible solutions for
object persistence, | explained why object relational mapping is important
and useful. Then, | explained the motive of this thesis: design and
implement a framework to simply work in object relational mapping. It
supports most of relational database systems. There are some new ways
of dealing with object relational mapping including mapping inheritance
with inheritance, one solution for aggregation and associations mapping,
cache of object references for constructing objects and name convention

for preserving object maps for object creation.

In the second part, | have reviewed the most popular solutions of object
relational mapping. Most of these solutions are widely used by Object-

relational mapping vendors. Many ideas of mine come from these works.

In Chapter 2, I will discuss design of my framework and focus on my

contributions in object relational mapping.

21

2. FRAMEWORK DESIGN

2.1 Framework

Although object modeling and relational modeling have very different
concerns, they are actually extremely compatible. Relational theory is
primarily concerned with knowledge and objebt techniques are primarily
concerned with behavior. Mapping between the two models requires
deciding how the two worlds can refer to each other. First, | will describe

the design of the architecture.

2.2 Layer Architecture For Object Relational Mapping

Relational database programming is complex; storage subsystems are
also complex but they are well known abstractions. Object-oriented
programming languages are proven concepts. Relational database
programming and Object-oriented programming have sufficient complexity.
The easiest way is to separate the concepts of object-orientation from
those of database programming and to separate the object-oriented
database aspects from the relational database aspects. Many existing

works are using the same architecture such as [5], [7] and [9].

To achieve this separation, | used Wolfgang Keller's pattern [7] of two

layers: Object Layer and Storage Layer.

22

Objectorienied Languages(C++ Smaliall. Java,..} l

Frame wark for Objec-Relationsl magping

Object Layer

Storags Lyer

Relational Database

Figure 12 Object and Storasge Layer

2.2.1 Object Layer

An "object layer" should have behavior and interfaces similar to an object-
oriented database for reasons of convenience as object oriented
databases like the "natural extension" of object-oriented languages with
persistence features [6] [9]. This layer is the only interface that developers
can use in my framework. Developers use these interfaces as functions of

classes.

The object layer encapsulates the concepts of object orientation. This
layer should hide the developer from the details of storing layout. It should
pass persistent object information submitted by the developer to the
storage layer (pushing down) and load the persistent object information
from the storage layer (popping up). The persistent object information
includes different type of data: object ldentity, attributes, associations,

inheritance, and so on. In my design, developers can use similar ways to

23

deal with all of the complex relationships such as aggregation,

associations and inheritance.

2.2.2 Storage Layer

The Storage layer provides an interface to a relational database. it has the
following responsibilities: Persistence, Concurrency, Recovery, and Ad

Hoc Query.

The Ad Hoc Query is a database concept that developers wrap at the
level of their object-oriented language in order to offer their user the
equivalent of SQL. Therefore developers have to deal with some form of
Object SQL (also called Object Query Language (OQL) [ODMG93)) in
both layers. The Ad Hoc Query is a very important reason for using object
relational mapping because relational databases provide many functions
for Ad Hoc query. To achieve Ad Hoc Query, there must be a parser
between the object layer and the storage layer. It will translate OQL into

SQL and vise versa.

The storage layer encapsulates all database operations related to object
persistence. The storage layer provides an interface to the object layer.
The object layer can ask the storage layer to save or retrieve objects

without knowing the storage layout in the relational database.

To begin with, I will discuss how | deal with major problems in designing
framework of object relational mapping. This discussion will concentrate

on my original work.
24

2.2.3 Mapping Aggregation

in Chapter 1, | have reviewed two patterns for mapping aggregation:
single table aggregation and foreign key aggregation. Although Ambler
gives a lot of advantages of foreign key aggregation and also mentions
that there is a pitfall in consisting of the database, additional work is
needed to maintain consistency of the database. | try to modify the
solution to avoid this additional work. | introduce a class called
“relationobject”, which is provided by my framework, to manage all of
aggregations. This object is responsible for releasing the resources of the

aggregated object.

2.2.4 Mapping Inheritance

in 1.4.1.2.2, | have introduced three approaches to mapping inheritance: a
common parent table plus separate subclass tables, a separate self-

contained table per class and one table per single inheritance hierarchy.

in my framework, | combined three ways together to give flexibility to
developers. This idea took advantage of the concepts of object oriented
programming, thus | am using inheritance to solve mapping inheritance.
When objects need to be persistent, my framework will call their base
object to make the persistent in advance. This calling procedure will follow
the inheritance hierarchy. Moreover, | recommend a common parent table

plus separate subclass tables for mapping inheritance because it not only

25

saves database spaces but also preserve the relationship layout in

database.

2.2.5 Mapping Associations

in chapter 1, there are two patterns to map associations between objects:
Foreign Key Association and Association Table. My framework will use
Association Table to map associations instead of Foreign Key Association
because Foreign Key Association only supports 1:n associations.
However, Association Table will face a problem about shared objects that

is clarified in Section 2.2.5.1.

2.2.5.1 Shared Object
It is not difficult to understand the use of collection attributes to implement
associations in the object model. Often, the contents of the collection are
pointers that point to related objects. At runtime, objects within an object
model are inherently shared - it is possible for two objects to point to the
same object. As we do not want two copies of the same object to be in
buffer at the same time (this could cause problems updating database),
any pointers used must point to the same object in buffer. This presents

us with a memory management problem.

My framework introduced another way to solve the problem which is to
construct a cache to hold all references to the objects. In my framework,
all of the persisting objects are derived from the same base object. |

provided a base class called CpersistClass as structure of the base object.

26

A cache, a container of CpersistClass objects, is built when my framework
starts. When an object needs to be constructed, the system first searches
the cache to see if the requested object has already been constructed. If it
has, the system passes the object reference to the caller; if not, the
system constructs a new instance and saves the reference into the cache.
Due to the association problem (shared object), object creation, which is
an important issue in object relational mapping, becomes complex. In

2.2.5.2, will discuss the solutions of this complex problem.

2.2.5.2 Object Creation
Loading an object from a row in a table is not a simple task, because we
must determine the class of the loaded object. Next, | will introduce two of

my solutions of loading an object (object creation).

One solution is to use the Objects map. One objects map must be
established when the application starts. The map maps each class name
to a static creation function. Another map, the object-table map, is needed
to link class names to table names. The creation function creates a blank
object instance and then fills its contents with a particular table according
to the object-table map. Obviously, an object-table map has the same life
cycle as the database application and extends beyond the application life

cycle.

Since it interacts with database system, the storage layer must provide a

mechanism to support transaction and concurrency control.

27

Figure 14 shows the result of instructor’s example discussed in chapter 1.

My second way to create objects does not need any maps in memory. As

Clags Fam e FuilTine
=t Pyl Time | FuliTins i3] Mams
Part Tuneingt | FariTune)] P
W] pia
Memory | Fill with spesific row
TCinsinstar® PulCrens]

~ofilgnk Cinstructor Objeet

) e .
Clasirentar Partsoass 1 i bynomle Coxt

FullThne Objest

Ianary
: coilection of FullTzon Ctjects
it e Cogdleetinn of Fuil Taws Oless

1 Pantupelng

Figuarel3 Object Creation

all the objects are stored into a relational database, we can store the
object’'s map into the relational database as well. This will hide the entire
table layout in the storage layer from the application programmer and the
object layer. To save the objects map into a relational database, we can
use a haming convention to preserve the structure of the objects map. |
used class names to define the table name and add a relation column to
connect related objects table and save complex data type into new table

connecting with certain column with certain name.

To explain clearly, | use instructor/courses association as example. Next

is the result of instructor/course.

28

CInstructor

jCourze Code II
Courze Humber
Title

iCCourse

2Rssignﬁurkload

ICategory

Figure 14 Name Convention
When devélopers pass the name of constructed object (“Clnstructor”), my
framework uses it as the table name to read attributes for constructed
object. Then my framework constructs the association using
“Relation_Teaching” as foreign key to retrieve all related object (CCourse)

for Clnstructor objects.

This concludes the discussion of my contributions of object relational

mapping. These contributions were implemented in my framework design.

2.3 Conclusion

In this chapter, | have introduced some new solutions that have been
implemented in my object relational mapping framework as contributions
inciuding mapping inheritance with inheritance, one solution for
aggregation and associations mapping, cache of object references for
constructing objects and name convention for preserving object maps for

object creation.

In chapter 3, | will clarify the implementation of the design based on the

discussion in this chapter.

29

3. IMPLEMENTATION OF DESIGN

Having finished the discussion of the design of framework for object
relational mapping, | will explain how these principles are implemented. |

will use top-down order, from the object layer to the storage layer.

3.1 Object layer

The object layer interacts with Object Oriented programming for mapping
objects to and from the storage layer. Programmers use interfaces,
provided by the object layer, to save and read object to and from a
relational database. The relational model, unlike the object model, does
not support object identifiers. Whenever developers construct an instance
of an object from a class, the compiler creates a unique identifier {object
identity) for it. Usually, the identifier is the object addresé, and developers
can use it. Whenever an object is persistent, it is important to record the
uniqueness of that object. Since all objects are unique in an object
oriented system, it is important to give an object a unique object identifier
called its O/D. Consequently the persistent object must have the ability to
maintain its OID during the mapping process. For saving and reading
objects into/from relational database, the framework should provide a
mechanism. For handling complex data type such as aggregation and
association, the framework should also provide some mechanisms. As a
beginning, | will discuss the design of pushing and popping data with a

simple data type.

30

3.1.1 Push Down/Pop up

No matter what kind of complex attribute the persistent object has, the
relational database supports only singie value data types (ADT) (i.e., a
column of a table). The persistent object’s content will eventually be
presented in the form of columns with a single déta type. Each persistent
object needs to push its content to the lower layer (storage layer) when

saving, and to pop up its content from the lower layer when reading.

So, | introduce a broker for pushing down and popping up. This broker is a
set of data structures (CColumnList) that holds all of the ADTs (Single

Value) of the persistent object. Next is the definition.

clasg CColumn:public CObject
{
public:
CColumn (void) ;
CColumn (CColumn* pColumn) ;
~CColumn (void) ;
CString sName;
WORD dtype;
int bPrecision;
int bScale;
VARIANT wvalue;
Yi
typedef CTypedPtrList<CObList,CColumn*>CColumnList;

Obviously, this schema (ccoiumnrist) is compatible with table schema. It

can be used as a broker between objects and tables.

Having finished the definition of data structure, I will introduce the
implementation of object identifier management because all of the

mapping mechanisms are based on it.
31

3.1.2 OID Manager

First my framework creates a unigue number. Then, it combines the class
name with unique number to generate a key. Before using the key, my
framework checks it with persistent objects in the database to ensure that

it is unique. In my framework, the OID management procedure is invisible

to developers.

Next, | introduce a class that is responsible for completing push down/pop

up and OID management in my framework.

3.1.3 CpersistClass

; CPerstas :
This class has a broker (CColumnList) to deal with | s s cralmalie,
sl gshiarne | otiing
push-down and pop-up. An OID manageris | StChEcaog)
Setemtiamel)
included as well. This class also involved the object | sudreatencoumi
creation that | will discuss later. Design of 1
_ _ £
CpersistClass is as follows: i
Loy
geddae (Gl

&

The list of columns holds all of the ADTs (Single %

5 i
P R e

Value) of the persistent object. It provides the

Figuns 15 CPersisiCliuss

CpersistClass with the abilities to deal with one-to-cne relation between

an aggregating object type and an aggregated object type.
1. The attributes as follows:

sDID

is the unique identifier for the object.

32

sClassName

identifies the runtime class name of this object.

mColumnList

is the broker for pushing down and popping up.

2.The public methods

Save(Push Down)

Write the object data to the database. It will update or insert

FOwWs as hecessary.

Read(Pop Up)

Return single instance of a class with data in the columns

from the database.

The implementation is as follow:

void CPersistClass::Read()

{

}

CColumn* pColumn=this->GetColumn ("ObjectID") ;
if (pColumn ! =NULL)

thig->sDID=CString (pColumn->value.bstrvVal);
Prepare(); //Read OID

void CPersistClass::Save()

{

ClearLdst();

Prepare(); //8ave OID

CColumn* myColunn=new CColumn{() ;
myColumn->sName="0bjectID";
myColumn->dtype=130;
myColumn->bScale=100;

myColumn->value.vE=VT_BSTR;

33

myColumn->value.bstrVal=this->sDID.AllocSysString();
this->nColumnlist . AddHead (myColumn) ;

)
Each domain object is a subclass derived from this CpersistClass.

Each object therefore inherits these methods (OID management
and push down/pop up) to perform its mapping transformations.
Although it requires some code in each domain class that is
database specific, this code is segregated, and is easy to find and

maintain.
3. Map Inheritance

The CpersistClass is sufficient for simple data type mapping, but it

can map inheritance with different ways discussed in chapter 2.

Developers can override Save method in different ways to map
inheritance. | will discuss the detail in next section because it will

use the same standard interfaces of object layer.

To map other complex data types (association and aggregation), | will

introduce a new class called RelationObject in next section.

34

3.1.4 RelationObject

RelationshipObject
gmnRelationObjectlist + RelationObjact Lit

Saddreltion()
| %Get RelationObje ct Q\
1

L.

(RelatiorObject
SRelationList + Persist JassLit
&m_sRelatiorMarne 1 Chring
&mn_pPersistdass 1 PersistJass™

©add()
|_%Get Relationtame ()

Figurelf FaltionObject

The CpersistClass is unable to perform complex data type mapping so |
introduce the RelationObject class. For mapping the complex data type,
this class has a container to hold the complex data. The complex data
types includes Sets, Lists, Array, Aggregation (class or list of class),
Association (list of object reference). One RelationObject represents each
complex data type in the object. To hold the complex data, | constructed a
Set of RelationObject called CRelationshipObject. With
CRelationshipObject, | can use one data structure to solve all of complex

data including aggregation (4.4) and association (4.5).

Definition to RelationObject:

class CRelationObject : public CObject

{

public:
CPersistClassList RelationList;
CString m_sRelationName;
CPersistClass* m_pPersistClass;
void ClearList(void);

public:

35

HRESULT Add(CPersistClass* pPersistClass);
Cstring GetRelationName (void) ;
}i
typedef CTypedPtrList<CObList,CRelationObject*>CRelationObjectList;

Attributes:
RelationList :List of CpersistClass as container.

m_sRelationName : a identifier to indicate relation to the owner

object.
m_pPersistClass : Reference to the owner object.
Methods:
Add : Push down an element into container.
GetRelationName : Returns the Relation name.

Definition to CrelationshipObject:

class CRelationshipObject : public CObject
{
public:
CRelationshipObject () ;
virtual ~CRelationshipObject();
CRelationObjectList mRelationObjectlList;
public:

void AddRelation (CPersistClass* PersistClassl,CPersistClass*
PersistClass2,CString sRelationName) ;

public:

CRelationObject* GetRelationObject (CString sRelationName) ;
public:

void ClearAll (void);
Y

Attributes:

mRelationObjectList: Container of all of complex data.

36

Method:

AddRelation: Add a complex data to container.

GetRelationObject: Returns the data according relation name.

With the CrelationshipObject, my framework can map all of the data types

that any object model could have. Figure 17 is the workflow of persisting

object.

Persisting domain olyjzct

¥

!

ADTs Attributes Cotrgpdex Data
Column Broker Containes

4

l

Ask Elemends o Persist

[Y

I

Sawsead

}

Storage Laver

Figurel7 Persizting objent

3.1.5 Persisting Object

Principles:

Each domain object obtains the column broker by inheriting from

the CpersistClass. A domain object with complex data can declare

37

a variable of CrelationshipObject and can then add the push-down
operation for the complex data into the save method as well as the

pop-up operation in the read method.

Aggregation: Consider the following sample class:

class CAggregatingClass : public CPersistClass
{
CAggregatedClass mAggregatedClass; //Aggregation

CRelationshipObject mRelationshipObject; //container for the
maggregatedClass

)
CAggregatingClass has a mAggregatedClass variable with a class

data type. For persistent CaggregatingClass, system adds a
mRelationshipObject variable of CrelationshipObject. Then the
overridable methods inherited from CpersistClass must be rewritten
by users for implementing the mapping of mAggregatedClass into

the database.

void CAggregatingClass::Save()
{

CPersistClass: :Save() ; //class base class method
mAggregatedClass ->Save(); // save aggregated object into
database

mRelationshipObject.AddRelation (mAggregatedClass); //link
persisted aggregated object

}
Other kinds of complex data can be processed in the same way.

38

3.1.6 Object Creation

Object creation (Object loading) is one of difficult works in object relational
mapping. It has two aspects: determine the class of the loaded object and

deal with shared object. Next, | will explain how [solve these problems.
1. Developers determine the class of loaded object.

My framework is set of classes; developers who use my framework must
include my framework into their source code. That means my framework
is part of their application. Taking advantages of this, developers could

communicate information of class between classes of the framework my

frameworks. Consider the next example.

class_instructor* pInstructor=new class_instructox();

nmyPersistenceFrameWork.ReadObject ({(CPersistClass*)plnstructor);

First, developers construct a blank object and pass it to my framework.

Then, my framework loads the contents of the passed object from the
storage layer and returns it to developers. This implementation does not

need any objects map in memory.
2. Object loading.

My solution is to use a cache that holds all of constructed object

references. Here is the definition of the cache.

CPersistClassList mPersistClassList;

Since all of persisting objects are derived from CPersistClass, this

provides the capability of caching all objects references within a set.

39

CPersistenceFrameWork::ReadObject() is responsible for adding

constructed object references into cache.

3.1.7 Standard interface

in my framework, the object layer implements some interfaces to
developers. Programmers use these interfaces to save and read objects
to and from a relational database. They are SaveObject, ReadObject,

SaveRelationShip, AddToRelationSet, GetRelationShip and Execute.

SaveObject: Users save the contents in the passing column broker into

database. The definition for the SaveObject is as follows:

HRESULT CPersistenceFrameWork: :SaveObject (CPersistClass* pPersistClass)
{

SaveCbject () ;

GetDataBaseConnection () ;

PrepareSQL () ;

Execute () ;

}
ReadObject: In my design, the ReadObject is very straightforward. First, it

searches for the required object within the sink of persisted objects using
the passed OID. If the object is found, it returns a reference to it.
Otherwise, it pushes the passed object reference into the cache. The

definition for this method is as follows:

40

HRESULT ReadObject (CpersistClass* pPersistClass)

CpersistClass* m_pPersistClass=GetPersistClass (pPersistClass);
if (m_pPersistClass!=NULL)
{

delete pPersistClass;

pPergistClass=m pPersistClass;

else
mPersistClassList.AddTail (pPersistClass);
return S_OK;

}
SaveRelationShip: The method is used to save the complex data into the

database. It iterates through each element in the CrelationshipObject to

save them into database. The definition for SaveRelationShip is as follows:

HRESULT SaveRelationShip (CrelationshipObject* pRelationshipObject)

Iterate though CRelationshipThiect

i

Call AddToRelationSet method to save each element

AddToRelationSet: This method links the owner object to the complex

data using a relationship tabie.

With this method, developer can build the schema as shown in Figure 18.

The declaration for AddToRelationSet is as follows:

HRESULT AddToRelationSet (CpersistClass* pOwner,CpersistClass*

pDependent,Cstring sRelationName) ,

GetRelationShip: This method is used to build a CrelationshipObject

object for persistent object based on its mapping schema in the database.

41

It works closely with the database system via the database access layer
and returns a CrelationshipObject object as the container that holds all

complex data of the owner object. The declaration is as follows:

HRESULT GetRelationShip{(CPersistClass* pOwner,CRelationshipObject*

pRelationshipObject) ;

CramerObiect ke

| ot |} Relaedtions

OID? i} Beleedtioma
k
Relatinrlame Diependent Data bl
J D s/5 G}], WIDT
B *
ntny L ER \?/j QDL
o uig i ()" ¢ A3
oi Bl !(DIDIY
}I
o Ha] RIH

Figure] GMaphg Sclema

Execute: Fetching objects from database needs a collection data structure
to contain the fetched objects. Furthermore, a kind of OOQL (Object
Oriented Query Language) should be supported by the storage layer. The
developer uses the OOQL to send a request to the storage layer. The
storage layer returns a collection of requested objects. The developer’s
code will iterate the collection for fetching objects. So, | provide an
Execute method for dealing with fetching. The declaration for Execute is

as follows:

42

HRESULT Execute (Cstring s0gl,CobjectSet* pObjectSet),

The CobjectSet is the collection containing objects as the result of

execution of OOQL. The definition as follows:

class CpersistClass;
typedef CtypedPtrList<CobList,CpersistClass*>CpersistClassList;
class CobjectSet
{
public:
long GetCount () ;
public:
HRESULT GetAt (POSITION pos,CpersistClass* pPersistClass);
private:
CpersistClassList mPersistClassList;
public:
HRESULT Bind(void);
POSITION MoveNext (POSITION pos);
POSITION MoveFirst(void);
}:

To fetch a set of objects, the developer can use the following code:

CobjectSet* pCObjectSet=new CobjectSet(sSqgl);
hr=pDoc-~->myPersistenceFrameWork.Execute (s0gl, pCObjectSet) ;
POSITION pos=pCObjectSet->MoveFirst();
while {pos!=NULL)
{
Object* pObject=new Object();
hr=pCObjectSet->GetAt (pos, (CpersistClass*)pObject) ;

pos=pCObjectSet->MoveNext (pos) ;

3.2 Storage Layer

As | discussed in the last section, all persistent objects use the standard

interface of the storage layer. The standard interface provides read, save

43

3.2.1

and delete operations. Using the standard interface, the developer can
populate objects from a database and can save the corresponding data
back to the database. In my previous design, a column broker conveyed
the pushed down or popped up data. Consequently, the storage layer
must be able to perform type conversions in order to convert the types of
values between broker and database. To interact with the database, the
storage layer also needs a SQL parser to build the actual SQL calls to the
database. Under the SQL parser is a connection manager that sets up
connections to the desired database. Using these internal layers in the
storage layer, the developer can ignore the details of the storage

mechanism.

Another technique to prevent objects from loading more than once is to
construct a reference cache that holds references to all loaded objects.
Whenever an object is required, the storage layer checks this cache

before creating the required object.

Standard interface

OpenDataSource: As the connection manager, OpenDataSource method
requires a connection string to connect the desired database. in my
design, | use the OLEDB to build the database access layer, which is the
lowest sub-layer in the storage layer. It interacts directly with the database
system and hides all details of database operations from users. Users can

access most database systems using this method.

44

GetObjectWithRelation: The object layer uses this interface to fetch

related objects by name of relation.
RemoveObject: The object layer uses this interface to delete objects.

OpenTable, CreateTable and GetTable: Object layer uses these

interfaces to get and save information from/into relational database.

After introducing these principles, | will describe their implementations in

the next section.

3.3 Conlusion

This chapter focuses on my works on implementation to design of
framework for object relational mapping. The purpose of implementation is
to hide the relational model layout from application developer and make
developer take advantage of both OO programming and relational
database systems. in chapter 4, | will use the teaching assignment

planner project as a case study to test my framework.

45

Jro—

In this chapter, | will use one of my projects: Teaching assignment planner

4. CASE STUDY

to demonstrate how my framework worked in an OOP application for

save/read objects to/from relational database. A requirements document

for this project, written by Peter Grogono, is provided in Appendix A.

4.1 The Object Oriented Data Model

Figure 99 shows the object data model of teaching assignment planner

project in the form of a class diagram.

]

cluss couwrse

clags dutios

csllugies :

sbring

A

elasr sostion

class, perttineg

: sk

Ll s

slring

Lok rom

o REe o
TGl

4.2 Mapping Simple Data Type

Figurel9 Object Orientad Data Madel

In this section, | will demonstrate how to map simple data types in class

instructor.

46

Class Definition:

class class_instructor : public CPersistClass
{

virtual void Read; //override method

virtual void Save();//override method
private:
string sID; //attribute with simple data type

}
void Read()
{
CPersistClass::Read(); //0ID Management
//Pop up InstructorID Column
CColumn* myColumn=this->GetColumn{"InstructorID") ;
if (myColumn ! =NULL)

this->sID=CString {myColumn->value.bstrVal);

}

void Save ()

{
CPersistClass::Save(); //0ID Management
//Push down InstructorID Column
CColumn* myColumn=new CColumn () ;
myColumn->sName=_T {"InstructorIiD") ;
myColumn->value.bstrVal=this->sID.AllocSysString();
thig~>mColumnlList.AddTail (myColumn) ;

CPersistClass::Read() and CPersistClass::Save() work with the
OID manager to maintain the object identifier for the persisting

object. Rests of codes are straightforward and readable.

47

4.3 Mapping Inheritance

Class instructor has two subclasses, fulltime and part-time instructor. For
mapping these objects into relational database, developers could follow

this pattern:

Class definition

class class_instructor : public CPersistClass
{...}
class class_fulltime : public class_instructor
{...}
class class_parttime : public class_instructor
{...}
void class_fulltime: :Read()
{
class_instructor: :Read();
CColumn* myColumn=this->GetColumn{"Duties");
if (myColumn!=NULL)

thig->sDuties=CString (myColumn->value.bstrVal) ;

}

void class_parttime: :Read{()

{
class_instructor::Read();
CColumn* myColumn=this->GetColumn (“DateFrom") ;
if (myColumn ! =NULL)

this->sDateFrom=CString (myColumn->value.bstrval) ;

}
Subclasses call their base class read/save method to save the attributes

that inherit from base class into the same table.

Developers may map these classes a common parent table plus separate

subclass tables using RelationObject class to build a connection between

48

class instructor and its sub classes. In section 4.4, | will demonstrate how

to use RelationObject to build relation between tables.

4.4 Mapping aggregation

The Instructor class has the most complex data structure. It has
aggregation (duty). There is also a class_duties to present duty
information. The instructor class has an attribute with data type of

class_duties.

class nstructor

&8I0 CString
sFarrilyName_Tritial | CSting
Q‘«Imagelrdex » Integer

[T

class_duties

iDuties 1 CString
CSenializz)

Figure 20 Aggregation Example
Definition of Classes

Make classes derive from CpersistClass.

1.class_instructor
class class_instructor : public CPersistClass

{

class_duties c¢_duties;

49

2.class_duties

class class_duties : public CPersistClass

{.}
Override Save/Read method

void class_instructor::Save ()

{
CPersistClass::Save();

//saving Duties
c_duties.Save();
mRelationshipObject.AddRelation((CPersistClass*)this,

(CPersistClass*) &c_duties, *Duty") ;

First, we call the c_duties’s Save method to save it's contents into
database. Then, we build a relation called “Duty” to link instructor and duty

object.

Comparing with Save method, the Read method is more complex.

void class_instructor::Read(CPersistenceFrameWork* pPersistenceFrameWork)
{
CPersistClass::Read();

pPersistenceFrameWork->GetRelationShip((CPersistClass™*) this, &this-
>mRelationshipObject) ;

CRelationObject*
pRelationObject=mRelationshipObject.GetRelationObject ("Duty");

POSITION pos=pRelationObject->RelationList.GetHeadPcsition();
while (pos!=NULL)
{

CPersistClass* pPersistClass=pRelationCbject-
>RelationList.GetNext (pos) ;

c_Duties =(class_duties*)pPersistenceFrameWork-
>GetObjectWithRelation (&c_Duties,pPersistClass);

c_Duties->Read();

50

break;

}
In my framework, | use CrelationshipObject structure to hold all the

complex data types. For retrieving complex data from storage layer,

developers can use CrelationshipObject.

First, we call GetRelationShip method to obtain the CrelationshipObject
object of instructor. Then, because we want to fetch the related duty
object, we use “Duty” as parameter to obtain the duty RelationObject.
Using the RelationObject(Duty), we can get the related duty object by

calling GetObjectWithRelation provided by my framework.

4.5 Mapping Associations

| will explain the implementation of mapping associations with the
Instructor object type and Section object type. One instructor may have

zero or more sections to teach (Teaching Association).

s osbring

e ~Feedrd v

wlaws secd lon

Figure2l AzgweistiomiTesshing

Definition to Class

Make classes derive from CpersistClass.

51

1. class_instructor
class class_instructor : public CPersistClass

{
CSectionList listCfSectionTaught;

)
2. class_section

class class_section : public CPersistClass

{.}
typedef CTypedPtrList<CObList,class_section*>CSectionList;

Override Save/Read method

veid class_instructor::Save()
{

CPersistClass::Save();

//saving assoclated sections

POSITION pos=this->listOfSectionTaught.GetHeadPosition() ;
while (pos!=NULL)

{

class_section* pSection=this->listOfSectionTaught.GetNext (pos);
pSection->Save() ;

mRelationshipObject.AddRelation((CPersistClass*)this, (Cpersist
Class*)pSection, "Teaching");

}
In the discussion about principles of mapping associations, | showed that‘
associations in object model are often presented in the form of a collection
attributes in object oriented programming. To construct associations
between class_instructor and class_section, | use a type-safe list
(listOfSectionTaught). This structure stores all of related sections’
references. Developers may iterate the collection and call the Save

method for every item in this collection.

52

The Read method is very similar to the one in mapping aggregation (just

remove “break;”).

Implementing class_section in the same way, we can build a n:m

association between class_instructor and class_section.

As we can see, | used a similar way to map aggregation and associations.
Developers can take advantages of this way to simplify their

implementation.

Figure 22 shows the result of mapping.

memwm g
f-d clegs instrarler
/ clazs_duties

Relation Duty s actlh
Relstion Exparience s class, oourse ;’, CovrzaTD
Boletion Dosrdinstion p—, ; ; jf Crdell
Relsti 5 o \\ é{‘ Cowzelitle
: Y ’ o | Cowrselradies |
InsireeterId fclass_ins tru‘cf‘toa;] / fE wn:feﬂum?w ’
Hame class_seclien F__},éi HeedDoordinaic!
Calegory R, o | IR
Hunber D ourse ‘!L'H) y
YorklLosd) ‘ ‘MAMI . .
Inagelndex v 2"-—* rlass_insiructor o iU jactTd
; . cless_stedson r&«-’#f Fectionld
' : Courzeld
Term
Sectiondlann
Bays
Figure22 Result of hMapping StartTine
ExdTime
Siste

4.6 Performance Results

Having finished introducing the mapping work in teaching assignment

planner project, | will analysis the performance of my framework: how my

53

framework helps developers in dealing with object persistence with

relational database.

As we can see in section 4.2, developers save and read attributes of class
instructor using the broker that my framework provided without having to
use relational database programming. On the other hand, developers do
not need to define a table in the database containing instructor objects.

My framework also maintains object identifier for developers.

For mapping complex data types into database, developers ask each
element of complex data types to map itself and my framework to build the
relationship to each of them. According to the developers’ request, my
framework builds tables for accommodating each data type and creates
associate tables to link object tables together. When fetching objects’
complex data types from database, developers do not worry about the
problem of shared objects. My framework is responsible for handling this
problem. There is a cache that holds all of created objects references in
my framework. Developers can take advantage of this cache for memory

management.

To gain advantage from my framework, developers must derive their
objects from the same base class (CPersistClass) and override the
save/read methods. As a result, the persistence mechanism was

encapsulated into class definition. The resulting code is easy to maintain.

54

4.7 Conlusion

In this chapter, | used the teaching assignment planner project as an
example to demonstrate my framework’s implementation. The purpose of
this chapter is to prove that my framework is useful in object relational

mapping work.

In chapter 5, | want to clarify some mapping problems in respect of

multiple user environment.

55

5. SERVER SIDE OBJECT

HR e

One significant advantage of object relational mapping is making objects
accessible to multiple users. Client applications can operate objects
persisted in relational database system running on a certain server. Every
client is only getting a subset of the server side objects so the major issue
of the server side objects is to manage the state of objects on each of the

client and the server.

5.1 ObjectSet

Crordiratvg Palationskip
P -
™, \‘\4 ,ff x\\
{miraricel Cousel .
o > >
Irstmricsd e Comsed ;)
e . e .
£ Tmstraptord .. Couwse3
, — g

wﬁ‘/ - o
ot 7

Figure2d ObjectSet
An ObjectSet is a collection of objects based on the relationship between

these objects. An ObjectSet is self-contained and isolated from other
ObjectSets. There is no communication between two ObjectSets. An
example of ObjeciSet is the Instructor objects and related coordinated

course objects.

56

5.2 Server Side Object

When objects were persisted into a relational database on a certain server,
they can be accessed by all of clients connecting to the database server.

The completed ObjectSet on that server is called server side ObjectSet.

Tesching Peletosship i

l Torhing Rrlagorakip

~ !

s, ~ . N . 5 e

. - S . " e, o . .
< Tatrantor ’:‘ Sactond ;\) £ Dwtrorierl P < Sexfonl »
“wormims . mf_}’v e =, e Hﬁhhﬂ““v{#“ 4{""‘:
e BagEned ~ i Sergonl o

i -*'"P“- -~ “ il

f,’ ‘ ,.,.,\\; P N A . S
. Treteushgd f '4’:\ Ireimeeicrs f‘c’:«fw Seriald ’f
e T Ly %"—\.«___\-’ <
B - B

Figure?4 Server Side Object s

Each client has its own ObjectSet but this is only a temporary working-
copy of the server’s true ObjectSet. Each object in a client's ObjectSet is a
replica of a server set object, and the whole client ObjectSet forms a
partial or complete replica of the server's ObjectSet. The next example
shows two ObjectSet belong to the different clients that derived from the

same server side ObjectSet.

If each client deals with a non-intersecting subset of the servers ObjectSet
then we can have easy and "perfect” concurrency: clients can cause
changes to their ObjectSet replicas and propagate these to the server

without worry about a conflict with another client.

For most applications it is very unlikely that clients will always using a non-
intersecting subsets. For the cases where the ObjectSet on clients overlap

there must be some type of concurrency control between the clients and
57

the server. Concurrency controls can depend on granularity, visibility,

pessimism, functional dependency, and many other axes[9].

5.3 Concurrency

The major problem of server side object is to keep concurrency between
clients and server. In the last example, there is an overlap between these
two ObjectSet. For instance, any changes to Instructor1 in both ObjectSet
could interfere with each other. Next | will discuss 2 solutions for coping

with this problem.
Solution:

1. After loading an object from server, the client marks the
object as locked. Any locked object can not be loaded until that
client unlocks it. In previous sample, after Client A loaded
Instructor! and it’s related Section1 and Section2, Client A would
lock these loaded objects. When Client B wants to build its
ObjectSet, Client B could not load Instructor1, Section1 and

Section2. Figure 25 shows The Client B’s ObjectSet.

\\‘:5*

P
ot -3
— — e Sectiond
{ Igtracter3 >
. - N T———
e >
Figure 25 Sub ChjectSet —_—
2. Add a timestamp attribute, which contains a unigue time

value, to each server side object. When client load an object, the

58

framework changes the timestamp attribute with a unigue value.
When a client attempts to write changes to the object, the
framework matches the timestamp attribute. If it matched, commit

change.

Obviously, the second solution is better than the first one, because two

clients can load the same object at the same time in the second solution.

59

6. CONCLUSION AND FU

T

[P—

6.1 Conclusion

Different ways (serialization, object oriented database and reiational
database) can be used for persisting objects in object oriented
programming. Although relational modeling and object modeling are
different paradigms of programming, we can develop a object relational

mapping framework to connect them together.

In this thesis, | introduce a framework to achieve Object-Relational

Mapping that is composed of two layers: Object Layer and Storage Layer.

In the discussion of design, | have contributed some new techniques:
mapping inheritance with inheritance, a solution for aggregation and
associations mapping, a cache of object references for constructing
objects and name convention for preserving object maps. These new

ideas have been analyzed and demonstrated in this thesis.

For testing my framework’s performance, | used teaching assignment

planner project as an example.

Another interesting part of my thesis is about server side object. The
major issue in this part is concurrency. | introduced two different ways to

deal with it.

60

6.2 Future Work

This object relational mapping framework may further be enhanced to

meet the future needs by following three steps:
1. Implementing consistency control and supporting the OQL.

Some mechanisms will be needed to prevent users from interfering
with one another’s data. Two important concepts in maintaining
data consistency are transaction and locking. It may need a
transaction class and lock manager to finish. The transaction class
encapsulates the transaction object provided by relational database.
It lets developers utilizes database transaction in application level.
Because a mapping operation may have database related
operations more than once, developers need a mechanism to deal
with atomicity. To control concurrency, we can use lock manager. It
maintains states of all objects to deal with concurrency. We can
take advantage of the cache of all constructed objects in my

previous design to implement lock manager.

Supporting OQL is very useful in Ad Hoc query. The relational
database is good at Ad Hoc query. We can design a parser class to
handle the translation between OQL and SQL. It would provide
more functionality in enterprise system design. Also the object

loading design of my framework should be modified to support OQL.

61

2. Programming Macro for simplify implementation.

Although the actual code is simple and readable, for example, the
Save and Read method, developers may find something boring to

use. Macro is a right solution for this. Next is some of ideas.

BEGIN MAP(class_instructor, CPersistClass)
ADT_MAP (sCode, int,10) //Map ADT type
AGG_MAP(c_duties,class_duties, "Duty") //Map Aggregation
ASS_MAP (mListSectionTaught,class_section, "Teaching”)
//Map Associations

END_MAP ()

If we complete this enhancement, we could start the step 3.
3. Providing a software engineering tool

In the step3 | plan to provide an application for automatically
generating skeleton code based on given class structure. The ideal
application could work together with other engineering software
such as Rational Rose and Microsoft Visio and generate code

integrated with object relational mapping.

62

GLOSSARY

ADTs:
Abstract data types.

Aggregation
A special form of association that specifies a whole-part relationship
between the aggregate (whole) and a component part. [19]

Association
The semantic relationship between two or more classifiers that specifies
connections among their instances. [19]

JDO:

Java Data Objects is a standard for Java Object persistence that's

currently out in version 1.x - Version 2.0 is under development.
ObjectSet:

An ObjectSet is a collection of objects based on the relationship between

within these objects.
ODMG:

Object Data Management Group.
OID:

Object Identifier
Persistence:

In Object Orientated Programming (OOP) the process of storing and
63

retrieving objects (or more accurately their attributes) is called persistence.
Popping up:

Load the persistent object information from the storage layer.
Pushing down:

Passes persistent object information submitted by the developer to the

storage layer.
Serialization:

Serialization is the process of writing or reading an object to or from a

persistent storage medium such as a disk file.
SAQL:

Structure Query Language.
Transaction:

Transaction is a collection of operations that form a logical unit of work.

64

REFERENCES

B

1.Srinivasan and D. T. Chang “Object persistence in object-oriented
applications” IBM Systems Journal Volume 36, Number 1, 1997. Pages 66-87.
2. “Persistence: Implementing Objects over a Relational Database Version

1.0” Ratio Group Ltd, 2002 Pages 9-10. http://www.ratio.co.uk/

3. “OODBMS articles and products” Barry & Associates, Inc. 2003

hitp://www.service-architecture.com/oodbms/

4.Joseph W. Yoder, Ralph E. Johnson “Connecting Business Objects to
Relational Databases”, Fifth Conference on Patterns Languages of Programs
Monticello, lllinois, August 1998. Technical report #wucs-98-25, Dept. of
Computer Science, Washington University Department of Computer Science,
September 1998.

5.Malcolm P. Atkinson, Francgois Bancilhon, David J. DeWitt, Klaus R. Dittrich,
David Maier, Stanley B. Zdonik: "The Object-Oriented Database System
Manifesto. In "Deductive and Object-Oriented Databases", Proceedings of the
First International Conference on Deductive and Object-Oriented Databases
(DOOD'89), Pages 223-240.

6. Wolfgang Keller, Christian Mitterbauer, Klaus Wagner. “Object-Oriented Data
integration Running Several Generations of Database Technology in Parallel”.
2001.

7.Wolfgang Keller: “Object/Relational Access Layers”, A Roadmap, Missing
Links and More Patterns Wolfgang Keller, Third European Conference on

Pattern Languages of Programming and Computing (EuroPLoP) Bad lIrsee,

65

Germany 1998.

8.Mark L. Fussell “Foundations of Object Relational Mapping’,
Mark.Fussell@ChiMu.com, www.chimu.com ,1997-2002.

9.Klaus Renzel,Wolegang Keller: “Three Layer Architecture” in Manfred Broy,
Ernst Denert, Klaus Renzel, Monika Schmidt (Eds.) Software Architectures
and Design Patterns in Business Applications 1997.

10. Scott W. Ambler. Mapping Object to Relational Database. URL:

http:/fwww.AmbySoft.com/mappingObjects. pdf

11. Bertino, Elisa “Object-oriented database systems : concepts and
architectures / Elisa Bertino, Lorenzo Martino” Wokingham, England ;
Reading, Mass. : Addison-Wesley Pub. Co., c1993.

12. ObJectRelationalBridge (OJB) “The Apache DB Project”.

hitp://db.apache.org/oib/

13. Hibernate “Relational Persistence For Idiomatic Java”.

hitp://www . hibernate.org/

14. Rogue Wave Software, Inc “SourcePro DB”. http://www.roguewave.com

15. X-tensive.com “DataObjects.NET". http://www.x-tensive.com/Products/

16. Wolfgang Keller "Mapping Objects to Tables -- A Pattern Language",
Proc. Of European Conference on Pattern Languages of Programming
Conference (EuroPLOP)"97, Bushman, F. and Riehle, D.; (eds), lIrsee,
Germany, 1997.

17. ChiMu Corporation “Objects integrated into the Relational Model”,
http://www.chimu.com/,1997-2002

18. D. Edeison and I. Pohl. “A Copying Collector for C++", Usenix C++
66

Conference, 1991, pages 85-102.
19. OMG. “Unified Modeling Language Specification”, March 2003 Version 1.5

formal/03-03-0 Glossary.

67

APPENDIX A

Teaching Assignment Planner
Requirements
Peter Grogono
August 2001

1 Introduction

Each year, the Department of Computer Science assigns instructors to about
200 courses. Each course requires an instructor, and the instructors must be
assigned in a way that reflects various constraints. Some of the constraints are
easy to understand and simple to check. For example, an instructor cannot teach
two courses at the same time. Other constraints are more complicated and must
be carefully prioritized. For example, a professor who does not like teaching in
the evenings may want a graduate course, but the only available graduate

courses are scheduled in the evening.

The proposed program would not perform the task of teaching assignment but,

instead, would simplify the task of a person, or people, doing the assignment.
2 Entities and Relationships

An assignment is a link connecting an instructor to a particular section of a
particular course. In this section, we describe the data that is associated with

each of these entities.
2.1 Course
A course is described by the following data (the third column gives typical

68

examples):

Code A four-letter string. COMP, ENCS.
Number A three- or four-digit string. 248, 5421.

Title The name of the course. Arti_cial Intelligence.
Credits A number in the range 0 to 5. 1.5, 3.0, 4.75.
Sections A list of “sections’ (see below). 2/AA, 2/P, 4IXX.
Needs coordinator. A boolean value true, false.

In practice, the Sections list of a course might be implemented with pointers

rather than with codes such as 2/AA.
2.2 Section

Each course is offered in zero or more sections. Introductory courses usually
have several sections each term. Advanced and graduate courses typically have
only one section. Course that are offered only occasionally may have no sections

at all in a particular year.

A section is described by the following data:

Session A single digit indicating the term . 1,2, 3, 4.
Code A one- or two-letter string. A, XX.
Days One or two days on which the course is taught. T, WF.
Start The start time of the lecture. 10:15.
Finish The finishing time of the lecture. 11:30.

The session codes are interpreted as follows: 1 is a Summer course; 2 is a Fall
course; 3 is a Fall and Winter course; and 4 is a Winter course. Note that a

section is always associated with a course. Here is an example:
69

COMP 472 Artificial Intelligence (4 credits)
12X MW 11:45 {13:00
14YY W 17:45 { 20:15

2.3 Instructor

An instructor has some fixed characteristics and some data that changes as the
user makes assignments. Instructors both teach and coordinate courses; this is

explained further below. The fixed (or given) characteristics are:

Name A string of characters.

Number of courses The number of courses that the instructor should teach.
Assigned Workload The number of \points" for the instructor's workload.
Experience A list of the courses that the instructor might teach.

The variable component of the data is described as follows:
Teaching A list of sections.
Coordinating A list of course/session pairs.

Actual Workload The number of equivalent credits that the instructor is

performing.
2.4 Relationships

The essential relationship for this application links an instructor to a section and
is called a teaching assignment. For example, the link \Peter Grogono teaches
SOEN 341/4 Section S" assigns a course to me.

There is also a relationship between an instructor and a course; this is the

70

coordination assignment and indicates that an instructor is the coordinator of a

course.
There are various constraints on the assignment relations:

__An instructor cannot be in two places at once. In fact, it is preferable to ensure

that an instructor has at ieast one hour between classes.
_ A section can be taught by at most one instructor.
__ A course for which Needs coordination is false cannot have a coordinator.

_ A course for which Needs coordination is true may have 0, 1, or 2 coordinators.

If there are two coordinators, they must be different people.

_ The courses that an instructor teaches are normally chosen from the

Experience list of the instructor. However, this constraint can be overridden.
Teaching Assignment Planner Requirements 3

_ The instructor's assigned workload is calculated by adding 3 points for each
teaching assignment and 1 point for each coordination assignment. A typical
workload is 14 points and workloads do not normally exceed 16 points. The
calculated workload should be approximately equal to the Assigned Workload for

the instructor.
3 Use Cases

This section provides an informal set of requirements for the program by

describing typical user behaviour in terms of use cases.

1. Load database. The program loads either the course database or instructor

71

database.

It may be possible to obtain a course database from the Department's _les.
However, this database will probably be out of date and will require modification.
For example, we hope to start assigning instructors for the academic year 2002{3
in November 2001 but, at this time, the Department's data will be for the
academic year 2001. We will probably set up an instructor database and modify

it slightly from year to year.

2. Modify database. The user can make modifications to the course database or

the instructor database.

3. Load state. The current state of the program, including instructors, courses,
sections, and assignments, can be restored from a _le. As usual, this can be

done by selecting File/Open.

4. Save state. The current state of the program, as described in the previous use
case, is saved to a file. As usual, there should be two options: File/Save and

File/Save as....

5. View instructors. The program displays all instructors, together with their fixed
and variable data. This enables the user to check progress and to see which
instructors are still short of work. The display should include a computed column

showing
Actual Workload Of Assigned Workload

A negative value indicates that more work should be assigned to the instructor

and a positive value indicates that the instructor already has too much work.

72

6. View sections. The program displays all sections. Each section is listed with
the instructor's name if an instructor has been assigned; this field is blank if no

instructor has been assigned.

7. View unassigned sections. The program displays all sections for which no

instructor has been assigned.

8. Suggest instructor. Assume that the program is displaying unassigned
sections, as in the previous use case. If the user selects a section, the program
should suggest suitable instructors (that is, the instructors whose Experience

field includes this course).

The display of suggested instructors should distinguish between instructors who
already have a complete workload (e.g., by displaying grey text) and instructors

who need more work (e.g., by displaying black text).
Teaching Assignment Planner Requirements 4

9. Add teaching assignment. The user selects an instructor and a section; the
program assigns the section to the instructor, checks for conflicts, and

recalculates the instructor's workload.

Assume that the program is displaying a section and a list of suggested
instructors, as in the previous use case. Clicking on an instructor assigns the

instructor to that section.
10. Delete teaching assignment.

(a) The user selects a section to which an instructor has been assigned and

deletes the instructor.
73

(b) The user selects an instructor and deletes a section from his or her teaching

load.
In either case, the program recalculates the instructor's workload.

11. Add coordination assignment. The user selects an instructor and a course;
the program assigns the course to the instructor, checks for conflicts, and

recalculates the instructor's workload.
12. Delete coordination assignment.

(a) The user selects a course to which an instructor has been assigned as

coordinator and deletes the instructor.
(b) The user selects an instructor and deletes a course from his coordination load.
In either case, the program recalculates the instructor's workload.

13. Report instructors. The program generates a report of instructors and their

workloads, sorted alphabetically by instructors’ names.

14. Report assignments. The program generates a report of courses and
sections. The report includes the coordinator assigned to each course and the
instructor assigned to each section, with blanks if no assignment has been made.

Several options are provided:

(a) Sequence:

i. Sort by session, course, and section.
ii. Sort by course, term, and section.

(b) Selection:

74

i. List assigned sections only.
ii. List unassigned sections only.
iii. List courses and coordinators only.

15. Summaries. The program provides summary data on request. It would be

even better to display the summary data on the screen at all times.
(a) Number of instructors.

(b) Number of courses.

(c) Number of courses which require coordination.

(d) Number of courses with a coordinator assigned.

(e) Number of sections.

(f) Number of sections with an instructor assigned.

Teaching Assignment Planner Requirements 5

4 Normal Use

The program should be designed so that the following operations (which will
probably be typical of normal use) are easy and intuitive. Bracketed numbers

refer 1o Use cases.

1. [3] Start the program and load a complete \state" (instructors, courses,

sections, and assignments).
2. [7] View unassigned sections.

3. Repeat:

75

(a) [8] Look at the suggested instructors for a particular section.
(b) [9] Assign an instructor to the section, noting conflicts.
(c) [10] (Occasionally) delete assignments.

4. [4] Save the current state and exit.

76

