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ABSTRACT

Unbiased Homomorphic System and its Application in Multiplicative

Noise Reduction
Debashis Sen

Noise of a multiplicative nature is encountered in many applications such as coherent
imaging, remote sensing and signal processing for communication systems.

This thesis is concerned with the problem of reducing the multiplicative noise corrupt-
ing a signal. A generalization of the existing sampled function weighted order (SFWO)
filter is proposed by relaxing the symmetry condition for the probability density function
(PDF) of the noise to the filter. This generalized SFWO (GSFWO) filter is then used within
a homomorphic system to reduce the multiplicative noise. It is shown that the output from
such a system is biased, and hence, a suitable bias compensation technique is suggested.
An unbiased homomorphic system, whose design is based on the PDF of the corrupting
multiplicative noise, is proposed to reduce the noise.

Images and videos generated by coherent imaging systems are always corrupted by
speckle, which is a multiplicative noise having a lognormal distribution. A filter called
the mean median (MM) filter to reduce additive white Gaussian noise (AWGN) is first
proposed and this filter is then used within the unbiased homomorphic system to reduce the
speckle in images.

Fast filters to reduce AWGN in videos are also proposed in this thesis. Novel tech-
niques for temporal estimation employing a change detection technique to determine the
interframe motion are developed for their use in these filters. A new method is proposed to
appropriately combine the spatial and spatiotemporal estimates of the original signal in or-
der to obtain the final output. Finally, the MM-filter along with a novel temporal estimation

scheme are used within the unbiased homomorphic system to reduce the speckle in videos.
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The effectiveness of the various proposed algorithms is demonstrated and compared

with that of some of the existing schemes through extensive simulations.
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Chapter 1

Introduction

Various kinds of noise get associated with a signal during the process of production, trans-
mission and archiving of the signal. Noise is random in nature and has different attributes
depending on its origin. The analysis and characterization of the signal as well as the per-
formance of the techniques used for processing the signal are hindered by the presence of
noise. Noise corrupting the signals can be broadly classified into signal independent and
signal dependent noise.

Noise of an additive nature is a signal independent noise. Linear as well as nonlinear
filters are used for reducing the additive noise [1, 2, 3]. Linear filters are easy to design and
implement due to their mathematical simplicity and the existence of some desirable prop-
erties such as linearity. Linear filters that minimize the mean square error (MSE) between
the desired response and the actual output of the filter can usually be found in closed form.
For example, sample mean filter, which is a linear filter, is optimal in minimizing the MSE
between the desired and the actual output, when used to diminish random additive white
noise with a Gaussian distribution [1, 4].

In many instances, such as in the case of noise being non-additive or non-Gaussian, it
might not be possible to find an acceptable linear filter. In such cases, nonlinear filters might

be found useful. A comprehensive review of nonlinear filters for reducing additive non-



Gaussian noise is given in [2]. Order statistic filters, morphological filters and polynomial
filters are a few examples of nonlinear filters. Order statistic filters are one of the most
popular classes of nonlinear filters for reducing non-Gaussian noise and are based on theory
of robust statistics [1]. Ranked-order filters, L-filters, alpha trimmed mean filters are a few
examples of order statistic filters. L-filter gets its name from ‘linear combination of order
statistics’ and many useful nonlinear estimators can be obtained by varying the coefficients
of L-filter. Optimal coefficients of L-filter, which minimizes the MSE between the desired
response and the actual output of the filter, can be obtained for a given noise distribution as
described in [2].

Unfortunately, the design and implementation of nonlinear filters is not as easy as its
linear counterparts. In [5], a new class of order statistic filter called sampled function
weighted order (SFWO) filter has been proposed to reduce additive white noise. The per-
formance of the SFWO filters is very close to the optimal L-filters, but its design is much
easier.

Noise of a multiplicative nature is a signal dependent noise. Linear filters perform
poorly while reducing multiplicative noise compared to the nonlinear filters. Homomorphic
filter, which is a nonlinear filter, is one of the oldest and most popular filters for reducing

corruption by a multiplicative noise [1].

1.1 Homomorphic Filters

In many applications of digital signal processing, both the desired and the undesired com-
ponents of a signal are found to be mixed in nonlinear way. A signal corrupted by noise
of a multiplicative nature is an example of such a mixture. Homomorphic filters [1] are a
special class of nonlinear filters that can be used to reduce this undesired component of the
signal.

The basic idea is to use a suitable nonlinear function to transform such a signal into ad-
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Figure 1.1: The classical homomorphic system

ditively combined ones and then to process the resulting signal using a linear filter. Then,
the inverse of the nonlinear function is applied to the output of the linear filter. Thus, a
linear filter, which is easier to design, is used between the forward and backward non-
linear transforms to reduce the nonlinearly related undesired components. The classical
homomorphic system is shown in Figure 1.1. The nonlinear transforms used within a ho-
momorphic system is also called the homomorphic transforms. When the noise is of a
multiplicative nature, the forward and backward homomorphic transforms are respectively

the natural logarithm and exponentiation.

1.2 Reduction of Multiplicative Noise using a
Homomorphic System

There are many applications like radar imaging, ultrasonic imaging, and digital signal pro-
cessing for communication systems, where multiplicative noise with different distributions
are encountered. As mentioned earlier, a homomorphic system, which consists of a linear
filter in between the natural logarithm and exponential transforms, could be used to reduce
the multiplicative noise. As the natural logarithm transforms the multiplicative noise to an
additive noise, the purpose of the linear filter is to reduce the additive noise. But, as men-
tioned earlier, the linear filter would perform satisfactorily only when the additive noise
has a Gaussian distribution, which is the case when the original multiplicative noise has a
lognormal distribution.

A nonlinear filter, which may be more useful in reducing an additive noise of non-



Gaussian nature, could be used instead of a linear filter within the homomorphic system.
The SFWO filter proposed in [5] is a nonlinear filter with a simple design procedure; it
could be used within the homomorphic system to reduce noise of a multiplicative nature.
But, the design of the SFWO filter assumes the probability density function (PDF) of the
additive noise to be symmetric, which unfortunately might not be the case after the applica-
tion of the forward nonlinear transform to the original signal corrupted by a multiplicative
noise. In addition, the design of the SFWO filter makes an assumption that the signal is
of constant amplitude within a filter window, which may not always be true. For example,
this assumption is not valid in the case of an image signal containing an edge within a filter

window.

1.3 Scope and Organization of the Thesis

There are many filters that have been proposed to reduce additive white noise, based on
the type of the PDF of the noise, for example, the optimal L-filters and the SFWO filters.
In order to reduce noise of a multiplicative nature, a filter whose design is based on the
PDF of the noise would be desirable. To the best knowledge of the author, such a problem
has not been dealt with. This thesis looks into the problem of designing a filter to reduce
the noise of a multiplicative nature, based on the type of noise distribution. This thesis
is also concerned with the reduction of speckle, in images and videos, speckle being a
multiplicative noise whose PDF approximately follows a lognormal distribution [6].

The organisation of the thesis is as follows. In Chapter 2, we first briefly review some
of the existing nonlinear filters such as the ranked order filter, L-filter and SFWO filter
from the point of view of reducing an additive noise. The design of all these filters assumes
that the PDF of the noise is symmetric. We generalize the SFWO filter by relaxing the
symmetry condition for the PDF of the noise. Next, a homomorphic system is presented

to reduce noise of a multiplicative nature by replacing the linear filter in Figure 1.1 by the



proposed generalized SFWO (GSFWO) filter. It is shown that the output from the homo-
morphic system is biased; hence, a suitable bias compensation technique is introduced after
carrying out the exponentiation to get the unbiased estimate. Finally, the performance of
the proposed unbiased homomorphic system to reduce the multiplicative noise in images is
studied and compared with that of a few other existing filters.

In Chapter 3, reduction of speckle in images using a homomorphic system is consid-
ered. As mentioned earlier, the speckle is a multiplicative noise, whose PDF approximately
follows a lognormal distribution [6]; it gets converted to an additive Gaussian noise after the
natural logarithm operation. In such a case, the unbiased homomorphic system proposed in
Chapter 2 reduces to the classical homomorphic system followed by the bias compensation
as shown in Figure 1.2, where the linear filter is the sample mean filter. The design of
the sample mean filter, which is optimal in both the minimum mean square error (MMSE)
sense and the maximum likelihood estimate (MLE) sense when used to diminish a ran-
dom additive white Gaussian noise (AWGN) [1, 4], assumes that the uncorrupted signal
to the filter is of constant amplitude within the filter window. For this reason, we propose
a nonlinear filter, which is referred to as the mean median (MM) filter to reduce the ad-
ditive Gaussian noise corrupting the signal to the filter. The performance of the proposed
MM-filter to reduce additive Gaussian noise in images is studied and compared with that
of the sample mean filter and the edge-adaptive Wiener filter [7]. Next, an unbiased homo-
morphic system is presented to reduce the speckle by replacing the linear filter in Figure
1.2 by the proposed MM-filter. Finally, the performance of the MM-filter-based unbiased
homomorphic system to reduce speckle in images is studied and compared with that of a
few existing ones.

When the reduction of speckle in videos using a homomorphic system is considered, a
filter suitable to reduce AWGN would be used between the forward and backward nonlinear
transforms. In Chapter 4, we propose two fast filters to reduce AWGN in videos, where the

interframe motion is measured using a change detection technique between frames, instead
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Figure 1.2: An unbiased homomorphic system to reduce speckle

of the commonly used complex motion estimation and compensation technique [8]. The
two filters use novel fast temporal estimation methods based on the Kalman filter [4] and
the running average filter, respectively. The final output of the proposed video filters is
obtained by an adaptive combination of the spatial and spatiotemporal estimates of the
original signal. Quantitative and qualitative performance of the proposed filters to reduce
AWGN in videos is studied and compared with that of a few existing ones.

In Chapter 5, a fast unbiased homomorphic system to reduce speckle in videos is pro-
posed. A detailed description of the algorithm, which uses the MM-filter proposed in
Chapter 3 for spatial estimation and the technique based on the running average filter pro-
posed in Chapter 4 for temporal estimation, is given. Quantitative and qualitative results of
the proposed system to reduce speckle in a video are studied and compared with those of
the two existing filters.

The thesis concludes with Chapter 6 by providing an overview of the contributions

made along with a few suggestion for future research.



Chapter 2

An Unbiased Homomorphic System to

Reduce a Multiplicative Noise

2.1 Introduction

Signal corrupted by noise of a multiplicative nature is often encountered in many appli-
cations such as coherent imaging systems and nonlinear communication channels. Filters
to reduce speckle, which is a specific type of multiplicative noise, have been proposed by
many authors [6][9]-[14]. However, the reduction of a multiplicative noise of a general na-
ture, has seldom been considered. As in most applications, the PDF of the noise is known
or can easily be determined; it would be desirable to have a system, for the reduction of
multiplicative noise, whose design is based on the PDF of the noise.

The design of such a filter is proposed in this chapter [15, 16]. The design of the filter
assumes the multiplicative noise to be stationary, white and uncorrelated to the uncorrupted
original signal. The proposed filter belongs to the special class of nonlinear filters, namely,
the homomorphic filter/system introduced in Chapter 1. As explained in Chapter 1, to
reduce the multiplicative noise, a homomorphic system uses the natural logarithm to trans-

form the multiplicative nature of corruption into an additive one and then processes the



resulting corrupted signal using a filter to reduce the additive white noise. An exponential
function is then applied to the output of the filter. If a linear filter is used to reduce the
additive white noise, it would not be effective when the additive noise has a non-Gaussian
distribution, that is, the original multiplicative noise has a non-lognormal distribution. In
such a case, a nonlinear filter might prove to be useful. The SFWO filter proposed in [5],
which is a nonlinear filter and is easy to design, could be used as the filter to reduce the ad-
ditive white noise provided the PDF of the noise is symmetric. Unfortunately, the additive
noise obtained after the natural logarithm operation within the homomorphic system might
not have a symmetric distribution.

A generalization of the SFWO filter is proposed in this chapter relaxing the symmetric
PDF condition of the additive noise. The GSFWO filter is then used between the natural
logarithm and the exponential functions to obtain a homomorphic system to reduce noise
of a multiplicative nature. It is shown that the output after the exponentiation would be
biased and hence, a bias compensation technique is applied to the output to get the unbiased
estimate.

The organisation of this chapter is as follows. In Section 2.2, a brief description of a
few order statistic-based nonlinear filters is given. Section 2.3 presents the derivation of
the GSFWO filter. Section 2.4 describes the classical homomorphic system. The spatial
domain unbiased homomorphic system to reduce multiplicative noise is presented in Sec-
tion 2.5. In Section 2.6, the performance of the proposed unbiased homomorphic system
to reduce multiplicative noise is studied and compared to the performance of a few known

filters.

2.2 Order Statistic-Based Nonlinear Filters

In this section, a description of a few order statistic filters is given. Order statistics have

been found useful in the statistical data analysis, particularly in the robust analysis of



data corrupted by outlying observations. Let X be a random variable, and its samples

X1,Xo,.......X y be arranged in an ascending order of magnitude, say,
Xay <X <--- < Xy 2.1)

In the above, X(;is called the ith order statistics; X;, 7 = 1,---, N are generally assumed
to be independent identically distributed (i.i.d) random variables.

Order statistic-based nonlinear filters are popular in reducing additive noise with a non-
Gaussian distribution. Ranked-order filters, L-filters, alpha trimmed mean filters are a few
examples of order statistic filters. A brief description of each of these filters is given in the

following subsections.

2.2.1 Ranked-Order Filters

An rth ranked-order filter [2] is given by

RO(X;, Xg,+ -+ y Xnir) =Xy (2.2)

X, X9, -0 X n present within the filter window. A few special cases of this filter are the
sample median filter (r = [—]2\1] + 1), the maximum operation (r = N) and the minimum
operation (r = 1), where [M] stands for the largest integer less than M. The sample
median filter is known to have a good edge preservation property. But, some low-order
ranked-order filters with r < f%] have been found to have a better denoising capability for
various noise distributions than the sample median filters. The ranked-order filters are also

known as the percentile filters.



2.2.2 L-Filters

An L-filter is obtained by a linear combination of order statistics. Linear combinations of
order statistics have been found to be robust and often have optimal properties for esti-

mating population parameters for i.i.d. observations. The expression of a L-filter is given

by
N
L(Xy, Xo- -+, Xwa) = ) aiX (23)
i=1
where a = (aj,ap------ ,an)T is the coefficient vector of the L-filter. By varying the co-

efficients, which are normalized (Zf; 1 @i = 1), one can obtain many useful estimators. The
optimal design of L-filters to reduce an additive white noise is presented in [2]. The design
is based on the distribution of the noise and assumes that the original signal is constant

within a filter window. The optimal coefficients of the L-filter are given by

R le
a=———— 24
e"R7 e 24)
where R is the correlation matrix of the noise and e is the unity vector. As stated in [5], this
optimal design of the L-filter is cumbersome and can be achieved only by using complex

numerical methods.

2.2.3 Alpha-Trimmed Filter

The sample median filter removes impulses (outliers) and preserves edges, but its perfor-
mance in reducing the MSE between the desired response and the actual output is inferior
to that of a sample mean filter [17], when applied to reduce an additive noise. Therefore,
a compromise between the sample mean and sample median filter that would reduce the

MSE and also preserve edges satisfactorily is desired. Such a filter is the alpha-trimmed
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filter. Alpha-trimmed filter is defined by:

N—aN
1
ATr(X1,X2 """ XN;a) = m E X(l) (25)
i=aN+1

A few samples amongst those within the filter window arranged in an ascending order
are discarded at each end, and the output obtained by taking the average of the rest. The

number of samples trimmed at each end depends on the value of a.

2.2.4 SFWO Filters

A new class of order statistic filters called the sampled function weighted order (SFWO)
filter was proposed in [5]. The coefficients of this filter are samples of a bounded real-
valued function. This real-valued function is derived for any given noise distribution by
examining the asymptotic behavior of the coefficients of the corresponding L-filter. A
good compromise between the alpha-trimmed mean filters, which are easy to design, and
the optimal L-filters, which are more flexible but difficult to design, is achieved using the

SFWO filter. A SFWO filter is given by

3o5m alti) X ) ()

SFWO(X{, Xy« ----- Xyia) = TS
j=1 O\Yj

(2.6)

where a is the unnormalized coefficient vector, which can be obtained for any given noise
distribution. The design of SFWO filters to reduce an additive white noise based on the
distribution of the noise is presented in [5]. The design assumes that the original signal
is constant within a filter window and the PDF of the noise is symmetric. This design of

SFWO filter is much simpler compared to that of the L-filter.
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2.3 Generalization of the Sampled Function Weighted

Order (SFWO) Filter

In this section, a generalization of the SFWO filter to reduce an additive white noise is
proposed by relaxing the symmetry condition of the noise PDF. This design extends the
usability of the filter to applications where additive noise with asymmetric PDF is encoun-
tered, e.g., a homomorphic system. As in [5], the classical problem of estimating a constant
amplitude signal A from the additively corrupted observed samples Y'(z) within a filter win-
dow is considered:

Y(i) = A + n(i) @2.7)

where n(7) is assumed to be a stationary, white, zero-mean noise. It is also assumed that the
uncorrupted signal A and the noise n are uncorrelated to each other. However, no assump-
tion about the shape of the noise PDF is made, unlike the design given in [5]. Equation
(2.7) can be rewritten as

T() = A+ ov(3) (2.8)

where o > 0 is the standard deviation of n(z). Thus, with this normalization v(3) becomes
a zero-mean unit-variance noise. Let the filter window be of size R x R. All the elements
within that window, when put in an array in an ascending order of magnitude, can be

expressed as

T(l)(i) S T(z)(i) < T(3)(i) ....... < T(T)(i), r= R2 (29)
The output of the GSFWO filter is given as

> =1 hi T (@)

Q(Z) N Z;=1 hj

(2.10)

where h; stands for the unnormalized coefficients of the GSFWO filter, which will be

determined using this design. All the noise elements within the filter window are assumed

12



to be i.i.d random values and thus, the observed corrupted samples will also be i.i.d samples.

Dropping the index ¢ for simplicity, each element of the array can be represented as

Ty =A+ovy),j=123.r 2.11)

Let
Cir = Elvy) — v — Bl Elve)] 2.12)
be the elements of the covariance matrix of vand 5,k =1,2,3...... r, and E|[-] stands for

the expected value. From (2.11), it is clear that the order in T is the same as that in v. The
MMSE criterion [1] is considered here to determine the coefficients of the GSFWO filter.

The MSE between the corrupted signal T and the recovered signal €2 can be expressed as
E[(Q — A)?] = E[Q%) - 2E[QA] + E[|A?] (2.13)

Substituting the expression for €2 from (2.10), we obtain

TS hihi(E[Y ik, A
E[(Q _ A)2] — ZJ—I Ekr_ll 2.7:;(1 h{jh(:k) ]) (214)
el Dk

where
E[Yx), Al = E[T5) Y] — 2B[AY () E[AY )] + E[A?]

By simple algebraic manipulation, it can be shown that the result of minimization of

the MSE given by (2.14) will yield the solution:
> hiCi=1 (2.15)
j=1

and hence, the coefficients of the GSFWO filter are given by
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hy =S Cy (2.16)
k=1

Here C}, represents the elements of the inverse covariance matrix of v. Let the standard
PDF of the additive noise v be f,(v) and the cumulative distributive function (CDF) of v
be represented by F,(v).

Now, to obtain the values of the coefficients given by (2.16) their asymptotic behaviour
(r — 00) shall be examined. As presented in [18], the samples of v, v(;) and v, given
in (2.11) and (2.12) are asymptotically distributed (as 7 — o0) according to the normal

bivariate distribution with the covariance:

AL = M) 1<i<j<r (2.17)

Cjkzrfv(vj)fv(vk)’ T

where

J -
)‘j = r+1 and'uj = Fv 1()\]')

It is assumed in (2.17) that f,(v) is nonzero. It is also assumed that f] and f. exist for
F;71(0) < v < F;Y(1). As the covariance matrix is singular in nature, the well known
Moore Penrose equations [19, 20] are used to find the elements of its pseudo-inverse and

the matrix thus obtained is considered as the inverse covariance matrix. Thus, the elements

of the inverse covariance matrix are derived as

A 2r fa(v;) :
Gi = Raa—jan 1sisrol
~ = fo(vj) folve) . :
- =1,23.r-1,]j—-k|=1
C]k A)\(l—jA)\)’]’k ) 73 r 7|.7 |
= TfQ(vr)
= ———-—U '1
" AN1 —TAN) (2.18)
Cir = 0, for|j—k|>1
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where
1

Al =
r+1

Now, substituting the expressions for inverse covariance matrix elements given by
(2.18) into the expression for the coefficients of the GSFWO filter given by (2.16), we

get

b= 2F)  rhE) ) () f(vie)

T OAML=AN) AM1—3A))  AM1 - jAN)
= —ri)gs [fv(vj-l) —lzfv% + o)

_ 1 [6%f,(v)

- _Tf"(vj)A_)\[1~jA])\]

or

82 f,(v;
hj = _va(vj)l_i-A)\I' (i)(\;jg)}A)\ (2.19)

where §2(-) is the second central difference. As can be seen, when r — oo (asymptotic

behavior), AX — 0 and (1 — jAX)— 1. Applying the limit AX — 0 in (2.19), we get

&2f,
H(\) = }im h; = —rf,(v) Cf;\g“)dA (2.20)

Now, let ¢, (v) = In(f,(v)). Since A= F,(v), we get d\ = f,(v)dv. Thus, (2.20) reduces

to,

H()) = —r¢"(v)dA, 0 < A < 1 @2.21)

The multiplying term —r , which is independent of A, will eventually be cancelled when
the coefficients are normalized by putting them in the form of (2.10). Hence, omitting this

term, we get
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H(\) = ¢"(v)d), 0< A< 1 (2.22)

Similar to the one proposed in [5], to obtain the coefficients, we consider a special form
h(-) of H(-):
h(A) =¢i(v), 0 < A< 1 (2.23)

It should be noted that h; could be obtained from the expression of ~(A) by sampling at
intervals of n—1—+1, for 0 < A < 1. Now, substituting the value of v from (2.17), we can write

(2.23) as

hj = ! (F;l (ri—l)) j=1,2,3..r (2.24)

Equation (2.24) gives the expression for the coefficients of the GSFWO filter, during
whose design the symmetry condition of the noise PDF assumed for the design of the
SFWO filter has been relaxed. Similar to the SFWO filter, the GSFWO filter has the fol-

lowing properties:

1. Tt is asymptotically efficient (that is, it satisfies the Cramer Rao lower bound [21]).

2. It can be designed with a simple methodology that does not require excessive com-

putation as is the case with the design of L-filters.

3. It does not require redesigning when the data size changes, unlike in the classical

L-filter design.

2.4 The Classical Homomorphic System

In many digital signal processing applications, both the desired and undesired components
of the signals mixed in a nonlinear way are encountered. Linear processing techniques
are not effective in such cases. Therefore, a special class of filters has been developed for

processing signals that have nonlinearly related components. They are called homomorphic
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filters/systems. The block diagram of the classical homomorphic system is shown in Figure

2.11[1].

xG@)———» D Dl —»y0)

%0 50

Figure 2.1: The block diagram of the classical homomorphic system.

In Figure 2.1, D stands for the forward homomorphic transform and D! for the inverse
transform. The function D is chosen such that it transforms the input signal z(7) to another
signal Z(z), where all the components are additively mixed. /N stands for a linear filter
which is applied after the forward transformation.

Let two signals z; () and z4 (i) be combined by the nonlinear operation «:

z(i) = 1(2) % z2(4) (2.25)

When (i) passes through the homomorphic system H, we have:

#(i) = Dlz(i)] = Dlz1(i)] + Dl2(4)] = 51(3) + Fa(d) (2.26)

y(0) = N[z(9)] = N[21(0) + Z2(9)] = 51(9) + 32(9) 2.27)

The output y(¢) of the homomorphic system H is given by

y(i) = DML (3) + 32(5)] = 1 (4) * 2 (3) (2.28)

Thus, the basic idea is to use nonlinear functions to transform nonlinearly-related compo-
nents to additively-related ones, and then to process them using a linear filter. The output
from the linear filter is then transformed by using the inverse of the nonlinear function.

Two examples of the nonlinear function used as the forward transform in a homomorphic
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system are In(z) and z7 [1].

2.5 Unbiased Homomorphic System to Reduce

Multiplicative Noise

2.5.1 System Description

The structure of the homomorphic system shown in Figure 2.1 can be used to reduce mul-
tiplicative noise corruption. Since linear filters are known to be ineffective in reducing
additive noise with non-Gaussian distribution, we will replace the linear filter by the GS-
FWO filter, a nonlinear filter. The GSFWO filter is employed, since it can be designed
based on the nature of the PDF of the corrupting noise. Such a system is shown in Figure

2.2.

GSFWO |
¥@ | fiter 50

xG)—>] I

exp ——» ()

Figure 2.2: A homomorphic system using the GSFWO filter to reduce multiplicative noise.

The forward and backward homomorphic transforms are respectively the natural loga-
rithm and exponential functions. The natural logarithm transforms the multiplicative nature
of corruption at the input to the system into one of an additive nature. A suitable GSFWO
filter is designed to reduce this additive noise. The GSFWO filter is employed, as it can
be used in applications where the PDF of the noise could be asymmetric. Let z(¢) and
y(2) be respectively the input to and output of the system. The input signal corrupted by a

multiplicative noise may be written as

z(1) = z1(2) - 22(2) (2.29)

where - defines the multiplication operation and z5(¢) is the noise component. Then, ap-
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plying the natural logarithm, we get
#(6) = Info(@)] = Info1(6) - 22(0)] = Infaa(6)] + Infaa()] = F(0) + Fali)  (230)

where + stands for addition. Now, applying the GSFWO filter to remove the noise, ideally,
we get

7(i) = GSFWO[Z(3)] = GSFWO[3, (i) + F2(i)] = 71(i) 2.31)

Then, the output from the homomorphic system is obtained by applying the exponential

function and is given as

y(i) = exply(é)] = exp[2:1(i)] = :1(2) (2.32)

Thus, by using a homomorphic system, the removal of the multiplicative noise z, is

achieved.

2.5.2 Coefficients of the GSFWO Filter Within the Homomorphic

System

Noise corruption of a multiplicative nature in an image can be interpreted as each pixel of
the uncorrupted original signal being multiplied by a random noise element. This noise

corruption of a multiplicative nature is modelled either as
V(i) = O+ O x 7(i)

or

U(i) = © x 7(3) (2.33)

where 7(i) is a stationary white multiplicative noise having a zero mean in the first ex-

pression and unit mean in the second expression of (2.33), © is the original signal that is
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assumed to be constant within a filter window, and ¥ (¢) the observed corrupted signal. It is
also assumed that the uncorrupted signal © and the noise 7 are uncorrelated to each other.

Both the expressions in (2.33) can be rewritten as

T(i) = O x (3) (2.34)

where ®(7) is a unit mean multiplicative white noise. The corrupted signal is passed
through the homomorphic system described in Section 2.5.1 to reduce the multiplicative
noise. The first step in the homomorphic system is to take the natural logarithmic trans-
form of the observed corrupted signal. Applying natural logarithm to both sides of (2.34),
we get

In¥(i) =1nO + In ®(3) (2.35)

Equation (2.35) can be written as:

T(i) = A +n3) (2.36)

where n(Z) is a random zero-mean stationary white noise and A = In© + m, m being
the mean of In ®(z). As the multiplicative noise is white, the additive noise obtained after
the nonlinear transform will remain white [22]. Now, the (2.36) is the same as (2.7), which
defines the problem of reduction of noise of an additive nature. To reduce the additive noise
n(1), the GSFWO filter is applied. Once the additive noise has been reduced, the original
signal can be estimated by applying exponentiation followed by a bias compensation to
nullify the shift m. The bias compensation technique will be explained in Section 2.5.3.
Now, the coefficients of the GSFWO filter within the homomorphic system for a given
PDF of the multiplicative noise are derived. Now, let the standard PDF of the multiplicative
noise ® be f5(P) and the corresponding CDF be Fs(®). The noise random variables v and
® are related by v = In(®), where, ® = F;'()\), 0 < A < 1. The effect of the non-zero
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mean m of In(®P) is taken into account by appropriate bias compensation to be explained

in Section 2.5.3. Now, from the relation of v and ®, we can deduce the following relation:

v

F'(0) = (Fgl(A)), 0<A<1 2.37)

The next task is to find the relation between ¢, and ¢g, where ¢ = In(fo(®)). The

relation between the PDFs is given by

fo(v) = fa(exp(v)) | J | (2.38)

where J = 42 is the Jacobian of the transformation v = In(®) [23]. Therefore:

¢o(v) = Infu(v)
¢u(v) = In(fe(exp(v)) - exp(v))

¢u(v) = ¢a(exp(v)) +v (2.39)

Further from (2.39),
$p(v) = 1+ ¢5(exp(v)) - exp(v) (2.40)
»(V) = ¢5(exp(v)) - exp(v) + ¢ (exp(v)) - exp(2v) (2.41)

Hence, from (2.24), (2.37), (2.40) and (2.41), it is clear that the coefficients of the
GSFWO filter within the homomorphic system can be obtained if f5(®) is known, which is
the PDF of the multiplicative noise. At the end of the homomorphic system, exponentiation

is applied to get the estimate of the original signal.
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2.5.3 Bias Compensation

In this subsection, it is shown that the presence of 7 makes the output after the exponentia-
tion biased and hence a corresponding bias compensation procedure is proposed. A method
to compensate for the bias is explained in this subsection. Let the output from the GSFWO

filter within the homomorphic system be denoted by A, which is given by
A=) +m (2.42)

where © is the unbiased estimate of the original uncorrupted signal and 7 is the estimate
of the shift. Now, taking the exponential of the estimate A, we get the biased estimate and

is expressed as

~

@ = exp A = exp (In(©) + 1h) = B - exp(1h) (2.43)

As can be seen, the output is biased by a factor exp(). This bias can be compensated as

follows. Taking the expected value on both sides of (2.43), we get
E[@'] = E[6)] - exp(1h) (2.44)

Now, by consistency theory of estimates [21], we have

E[6] = E[6] (2.45)

and since ® was assumed to have unit mean, we get

E[©] = E[Y] (2.46)
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Using (2.44), (2.45) and (2.46), a bias compensation constant ¢ is defined and the compen-

sation is achieved as follows.

_ E9]
 E[Y]

¢ = exp(h) (2.47)

0 = (2.48)

5 - 9
§
Thus, as both the biased recovered signal ((:)' ) and the observed signal (¥) are available,
the unbiased estimate of the original signal (©) can readily be obtained using (2.48).
The overall block diagram of the proposed unbiased homomorphic system to reduce

multiplicative noise is shown in 2.3.

. - GSFWO ___I Bias
e filter m compensation —6

Figure 2.3: Proposed GSFWO filter based-unbiased homomorphic system to reduce noise
of a multiplicative nature

2.6 Performance of the Proposed and Some Known Filters
in Reducing Multiplicative Noise

In this section, the performance of the proposed unbiased homomorphic system to reduce
a multiplicative noise is compared to that of a few known filters. The filter considered for
comparison are as follows.

(1) Filter proposed by Kuan et al. [24]

(2) Sample mean filter [17] being used as the linear filter in the homomorphic system
shown in Figure 2.1

(3) Sample median filter [25] being used in place of the linear filter in Figure 2.1

(4) Edge-adaptive Wiener filter [24, 7] being used in place of the linear filter in Figure
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2.1

Now, let us consider the proposed unbiased homomorphic system to reduce noise of a mul-
tiplicative nature. The coefficients of the GSFWO filter are derived based on the nature
of the PDF of the multiplicative noise. Hence, different GSFWO filters are obtained de-
pending on the type of noise. Three different noise distributions are considered, and the
corresponding expressions for ¢¢(®) are given below.

1. Gaussian Distribution:

¢o(®) =In f4(P) = K — @? (2.49)

2. Uniform Distribution:

$o(®) =Info(®) =InK — d° (2.50)

and Fyp'(\N)= 2A-1

3. Lognormal Distribution:

¢5(®) =In fo(®) = K — (In(P))? (2.51)

where K represents a constant and « is a very large integer [5]. For all the three cases, the
corresponding coefficients of the GSFWO filter can be obtained using (2.24) and (2.41).
Figure 2.4 shows the coefficients of the GSFWO filter obtained using the method proposed
in Section 2.5 for the above three PDFs of the multiplicative noise. It is seen from Figure
2.4(c) that the GSFWO filter reduces to a mean filter when the multiplicative noise has a
lognormal distribution.

Figure 2.5 shows the two original images (without corruption), namely, the ‘Pepper’
and ‘Goldhill’. Figure 2.6 shows the ‘Pepper’ image corrupted by a multiplicative Gaus-

sian noise of variance 0.25 (normalized with respect to maximum greyscale value, i.e, 255)
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and the images filtered by the proposed system as well as the four filters mentioned in the
previous paragraph. Figure 2.7 shows the corresponding images for the ‘Goldhill’ image
corrupted again by a Gaussian noise. Figures 2.8 and 2.9 give similar results when the
images are corrupted by a noise with uniform distribution. Finally, Figures 2.10 and 2.11

correspond to case when the noise has a lognormal distribution.

o.(,:_i i.ﬁ"f,j 7 TI s THHH ;ﬁ | ;

(a) Filter coefficients when noise PDF is Gaussian

0.9

0.7 . : B -1
o6k --- L P 4
asl .. L e . P .
o.al - . R . L s
ol . e L . .

o2 ) ) ° 4

-1 10 15 20 25

10 15 20 25

(c) Filter coefficients when noise PDF is lognormal

Figure 2.4: Coefficients of the GSFWO filter within the homomorphic system for multi-
plicative noise with different distributions
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From these figures, it can be seen that the proposed spatial domain unbiased homomor-
phic system using the GSFWO filter effectively reduces the multiplicative noise for all the
different distributions considered. The filter proposed by Kuan et al., which will henceforth
be referred to as the Kuan filter, leaves behind a significant amount of noise and hence, has
an inferior noise reduction capacity when compared to the proposed system. Even though
the performance of the homomorphic system employing the sample mean or sample me-
dian filter is quite good when the noise has a lognormal distribution, the proposed filter has
a even better performance. However, when the noise has a Gaussian or a uniform distribu-
tion, the proposed system is clearly superior to the mean or median filter-based systems in
removing the noise. The homomorphic system employing the edge-adaptive Wiener filter
leaves a significant amount of noise at the edges when the noise has a lognormal distri-
bution, whereas the noise left behind is quite considerable not only at the edges but also
in the homogeneous regions as compared to that in the images filtered using the proposed
system. Thus, on a qualitative basis, it may be concluded that the GSFWO filter-based
unbiased homomorphic system gives the best results amongst all the filters considered for
reducing multiplicative noise.

Tables 2.1 and 2.2 give quantitative results obtained by the various filters in reducing
multiplicative noise. The MSE between each recovered image and the original uncorrupted
image is listed for the different kinds of multiplicative noise considered. The MSE is
calculated as

1 NS sy ap w2
MSE = - — ; ; (B(3,7) — A(4,7)) (2.52)
where B is the recovered image and A is the original uncorrupted image, and M x N is the
size of the image. Note that the MSE value given in the tables corresponding to the noisy
image is obtained between the noisy image and the uncorrupted original image.

It is evident from the tables that the proposed system outperforms the others in reducing

multiplicative noise having different distributions. This better performance of the proposed

unbiased homomorphic system using GSFWO filter can be attributed to the fact that the

26



(a) Original Pepper Image

(b) Original Goldhill Image

Figure 2.5: The two original images (without corruption) considered
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(a) Noisy image (b) Image recovered by the proposed
GSFWO filter-based unbiased homo-
morphic system

(c) Image recovered by the Kuan fil- (d) Image recovered by the sample
ter mean filter-based homomorphic sys-
tem

(e) Image recovered by the sam- (f) Image recovered by the edge-

ple median filter-based homomor- adaptive Wiener filter-based homo-
phic system morphic system

Figure 2.6: Qualitative results using the ‘Pepper’ image showing the performance of the
various filters in reducing multiplicative noise having Gaussian distribution
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(a) Noisy image (b) Image recovered by the proposed GS-
FWO filter-based unbiased homomorphic
system

(c) Image recovered by the Kuan filter  (d) Image recovered by the sample mean
filter-based homomorphic system

(e) Image recovered by the sample median (f) Image recovered by the edge-adaptive
filter-based homomorphic system Wiener filter-based homomorphic system

Figure 2.7: Qualitative results using the ‘Goldhill’ image showing the performance of the
various filters in reducing multiplicative noise having Gaussian distribution

29



i P

(a) Noisy image (b) Image recovered by the proposed
GSFWO filter-based unbiased homo-
morphic system

(c) Image recovered by the Kuan fil- (d) Image recovered by the sample
ter mean filter-based homomorphic sys-
tem

(e) Image recovered by the sam- (f) Image recovered by the edge-
ple median filter-based homomor- adaptive Wiener filter-based homo-
phic system morphic system

Figure 2.8: Qualitative results using the ‘Pepper’ image showing the performance of the
various filters in reducing multiplicative noise having uniform distribution
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(a) Noisy image (b) Image recovered by the proposed GS-
FWO filter-based unbiased homomorphic
system

(c) Image recovered by the Kuan filter  (d) Image recovered by the sample mean
filter-based homomorphic system

(e) Image recovered by the sample median (f) Image recovered by the edge-adaptive
filter-based homomorphic system Wiener filter-based homomorphic system

Figure 2.9: Qualitative results using the ‘Goldhill’ image showing the performance of the
various filters in reducing multiplicative noise having uniform distribution
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(a) Noisy image (b) Image recovered by the proposed
GSFWO filter-based unbiased homo-
morphic system

(c) Image recovered by the Kuan fil- (d) Image recovered by the sample
ter mean filter-based homomorphic sys-
tem

(e) Image recovered by the sam- (f) Image recovered by the edge-
ple median filter-based homomor- adaptive Wiener filter-based homo-
phic system morphic system

Figure 2.10: Qualitative results using the ‘Pepper’ image showing the performance of the
various filters in reducing multiplicative noise having lognormal distribution
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(a) Noisy image (b) Image recovered by the proposed GS-
FWO filter-based unbiased homomorphic
system

(c) Image recovered by the Kuan filter (d) Image recovered by the sample mean
filter-based homomorphic system

(e) Image recovered by the sample median (f) Image recovered by the edge-adaptive
filter-based homomorphic system Wiener filter-based homomorphic system

Figure 2.11: Qualitative results using the ‘Goldhill’ image showing the performance of the
various filters in reducing multiplicative noise having lognormal distribution

33



TABLE 2.1

MSE FOR THE VARIOUS FILTERS IN REDUCING MULTIPLICATIVE NOISE USING THE
‘PEPPER’ IMAGE

Mean Square Error Gaussian | Uniform | Lognormal
(MSE) Noise PDF | Noise PDF | Noise PDF
Noisy Image 3159.8 3604.8 1917.1
Image recovered by the proposed GSFWO
filter-based unbiased homomorphic system | 226.54 289.4 326.67
Image recovered by the
Kuan Filter 295.7 329.17 762.4
Image recovered by the sample mean
filter-based homomorphic system 859.52 848.71 431.29
Image recovered by the sample median
filter-based homomorphic system 371.37 596.43 526.61
Image recovered by the edge-adaptive
Wiener filter-based homomorphic system 790.72 724.76 328.03
TABLE 2.2

MSE EOR THE VARIOUS FILTERS IN REDUCING MULTIPLICATIVE NOISE USING THE
‘GOLDHILL’ IMAGE

Mean Square Error Gaussian | Uniform | Lognormal
(MSE) Noise PDF | Noise PDF | Noise PDF
Noisy Image 2432.8 2739.3 1595.1
Image recovered by the proposed GSFWO
filter-based unbiased homomorphic system 188.97 217.57 193.87
Image recovered by the
Kuan Filter 248.01 267.09 607.95
Image recovered by the sample mean
filter-based homomorphic system 598.13 591.28 275.07
Image recovered by the sample median
filter-based homomorphic system 295.37 443.7 42421
Image recovered by the edge-adaptive
Wiener filter-based homomorphic system 634.67 576.82 284.27
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TABLE 2.3

MSE FOR THE VARIOUS FILTERS IN REDUCING MULTIPLICATIVE NOISE USING THE
‘PEPPER’ IMAGE

Mean Square Error Gaussian | Uniform | Lognormal

(MSE) Noise PDF | Noise PDF | Noise PDF

Image recovered by the sample mean
filter-based unbiased homomorphic system 582.81 52491 326.67
Image recovered by the sample median
filter-based unbiased homomorphic system 371.75 578.49 342.18
Image recovered by the edge-adaptive Wiener
filter-based unbiased homomorphic system 605.47 465.39 213.6

coefficients of the filter are derived based on the type of distribution of the noise.

Next, we use the bias compensation proposed in this chapter in other homomorphic
systems that have been considered to reduce multiplicative noise, and Figures 2.12 - 2.17
give the corresponding qualitative results. Tables 2.3 and 2.4 give the quantitative results
for these unbiased homomorphic systems in reducing the multiplicative noise. It can be
observed from the tables that the sample mean filter based-unbiased homomorphic system
gives the same result as that of the proposed system when the noise is lognormally dis-
tributed. This should be the case since the GSFWO filter in the proposed system reduces
to a sample mean filter for a multiplicative noise with lognormal distribution. However,
for other types of noise considered, the proposed system gives a better performance. It can
also be observed from Tables 2.3 and 2.4 that the edge-adaptive Wiener filter-based unbi-
ased homomorphic system gives equally good or better results than the proposed system
when the noise has a lognormal distribution, whereas the later outperforms the former in
other cases. This is due to the fact that the Wiener filter used is adapted to the edges, and
hence does not blur the edges. It is also evident from the tables that the systems with the
bias compensation give better results compared to the those without the bias compensation.

This endorses the presence of the proposed bias compensation block.
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(a) Noisy image (b) Image recovered by the sam-
ple mean filter-based unbiased homo-
morphic system

(c) Image recovered by the sample (d) Image recovered by the edge-
median filter-based unbiased homo- adaptive Wiener filter-based unbi-
morphic system ased homomorphic system

Figure 2.12: Qualitative results using the ‘Pepper’ image showing the performance of the
various filters in reducing multiplicative noise having Gaussian distribution
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(a) Noisy image (b) Image recovered by the sample mean
filter-based unbiased homomorphic system

(c) Image recovered by the sample median (d) Image recovered by the edge-adaptive
filter-based unbiased homomorphic system Wiener filter-based unbiased homomorphic
system

Figure 2.13: Qualitative results using the ‘Goldhill’ image showing the performance of the
various filters in reducing multiplicative noise having Gaussian distribution
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(a) Noisy image (b) Image recovered by the sam-
ple mean filter-based unbiased homo-
morphic system

(c) Image recovered by the sample (d) Image recovered by the edge-
median filter-based unbiased homo- adaptive Wiener filter-based unbi-
morphic system ased homomorphic system

Figure 2.14: Qualitative results using the ‘Pepper’ image showing the performance of the
various filters in reducing multiplicative noise having uniform distribution
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(a) Noisy image (b) Image recovered by the sample mean
filter-based unbiased homomorphic system

(c) Image recovered by the sample median (d) Image recovered by the edge-adaptive
filter-based unbiased homomorphic system Wiener filter-based unbiased homomorphic
system

Figure 2.15: Qualitative results using the ‘Goldhill’ image showing the performance of the
various filters in reducing multiplicative noise having uniform distribution
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(a) Noisy image (b) Image recovered by the sam-
ple mean filter-based unbiased homo-
morphic system

(¢) Image recovered by the sample (d) Image recovered by the edge-
median filter-based unbiased homo- adaptive Wiener filter-based unbi-
morphic system ased homomorphic system

Figure 2.16: Qualitative results using the ‘Pepper’ image showing the performance of the
various filters in reducing multiplicative noise having lognormal distribution
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(a) Noisy image (b) Image recovered by the sample mean
filter-based unbiased homomorphic system

(c) Image recovered by the sample median (d) Image recovered by the edge-adaptive
filter-based unbiased homomorphic system Wiener filter-based unbiased homomorphic
system

Figure 2.17: Qualitative results using the ‘Goldhill’ image showing the performance of the
various filters in reducing multiplicative noise having lognormal distribution
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TABLE 2.4

MSE FOR THE VARIOUS FILTERS IN REDUCING MULTIPLICATIVE NOISE USING THE
‘GOLDHILL’ IMAGE

Mean Square Error Gaussian | Uniform | Lognormal
(MSE) Noise PDF | Noise PDF | Noise PDF
Image recovered by the sample mean
filter-based unbiased homomorphic system 406.15 367.1 193.87

Image recovered by the sample median
filter-based unbiased homomorphic system 280.25 407.62 209.04
Image recovered by the edge-adaptive Wiener
filter-based unbiased homomorphic system 512.89 410.35 199.18

2.7 Summary

In this chapter, we have generalized the SFWO filter introduced by Remzi Oten and Rui
Figueiredo in [5] to the case when the additive noise corrupting the signal is not symmetric.
This generalized SFWO filter is then used in an unbiased homomorphic system instead of
a linear filter to reduce multiplicative noise corrupting a signal. A study of the qualitative
and quantitative performance of the proposed GSFWO filter-based unbiased homomorphic
system in reducing multiplicative noise has been carried out using two standard images,
namely, the ‘Pepper’ and ‘Goldhill’, and compared to that of some of the existing ones. It
has been found that the proposed GSFWO filter-based system consistently outperforms the

others, irrespective of the type of distribution of the multiplicative noise.
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Chapter 3

Reduction of Speckle in Images using an

Unbiased Homomorphic System

3.1 Introduction

Images and videos captured using coherent imaging systems are corrupted by noise of a
multiplicative nature called the speckle. Synthetic aperture radar (SAR) imaging systems,
ultrasound imaging systems and LASER imaging systems are a few prominent examples of
coherent imaging systems. SAR and LASER imaging systems are generally used in satel-
lite and airborne vehicles to capture image and videos for various military and commercial
applications [26, 27]. LASER imaging systems also find applications in modern day medi-
cal surgery. Ultrasound imaging systems for years, have had its applications in the field of
medicine and health care. Moreover, many optical and infrared coherent imaging systems
are used in various military, medical and commercial field [27].

The speckle present in such images and videos hinder the process of understanding and
classification done by either a human interpreter or an automatic recognition system. Thus,
despeckling (reduction of speckle) of these images and videos captured by various coher-

ent imaging systems is of utmost importance. There have been different image restoration
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approaches proposed in the literature to reduce speckle in images. One of the earliest fil-
ters to reduce speckle was suggested by Lee [13], wherein a linear approximation of the
multiplicative noise model was used to obtain the filter. This filter was later found to be
a particular case of the filter proposed by Kuan et al. [11], which is based on the MMSE
criterion and obtained by modelling the multiplicative noise in the additive form. Frost et
al. [12] have suggested a filter to reduce the speckle based on an adaptive estimation of the
noise variance. An exponential weighting function, based on the sample noise variance,
was applied to the samples within the filter window. Gamma filter, presented in [6] is a
maximum aposteriori (MAP) estimator to reduce the speckle. It assumes that both the un-
corrupted signal and the speckle noise have a gamma distribution. The PDF of the intensity
of the speckle noise depends on the image formation process within the coherent imaging
system. However, it can be shown that in most cases the intensity of the speckle approxi-
mately has a gamma distribution [28]. The lognormal distribution can also be assumed to
be the PDF of the intensity of the speckle [6].

In this chapter, we consider the problem of reducing speckle using an unbiased homo-
morphic system wherein the speckle is assumed to be white, stationary and uncorrelated
to the uncorrupted signal, and has a lognormal distribution [29, 16]. If the GSFWO filter-
based unbiased homomorphic system is used to reduce the speckle, it reduces to the sam-
ple mean filter-based homomorphic system followed by the bias compensation, as noted
in Chapter 2. The sample mean filter, is optimal in both the MMSE sense and the MLE
sense, when used to reduce an AWGN. However, this design assumes that the uncorrupted
signal to the filter is of constant amplitude within a filter window, which may not always be
true. For this reason, we propose a nonlinear filter, which is referred to as the mean median
(MM) filter, to reduce the AWGN corrupting the signal to the filter. The output of the MM-
filter is obtained by a combination of the sample mean and the sample median estimates.
It is shown that a combination of the sample mean and the sample median estimates would

perform better than the sample mean filter in reducing AWGN, when the constant ampli-

44



tude condition of the uncorrupted signal within a filter window is not met. The proposed
MM-filter is then used within the unbiased homomorphic system instead of the mean filter
in order to reduce the speckle.

The organization of this chapter is as follows. Section 3.2 gives a brief overview of
the characteristics of the speckle noise. Section 3.3 presents the MM-filter. A comparison
of the performance of the MM-filter to that of a few other filters in reducing AWGN is
given in this section. In Section 3.4, the unbiased homomorphic system to reduce speckle
is introduced. In Section 3.5, the performance of the proposed filter to reduce speckle is

studied and compared to the performance of a few other existing filters.

3.2 Speckle Corruption in Coherent Imaging Systems

Coherent imaging system receives signals as a coherent sum of various reflected waves.
Speckle is generated due to the random interference between the returning coherent waves
reflected from an irregular surface, and appears as strong dark and bright granulations in
the image. This hinders both the manual and automatic image understanding capability and
thus, speckle reduction systems are required. Computationally simple speckle reduction
methods would be preferred, as reduced complexity is a boon for on-board and real-time
imaging using coherent systems. A fully developed speckle has the characteristics of a
random multiplicative noise [28].

Speckle reduction can be done in two ways, namely, multilook integration process and
image restoration process. In the multilook integration process, incoherent averaging of
signal frames, obtained from different segments of the signal frequency spectrum, is per-
formed [9]. Thus, if ‘L’ different segments of the signal spectrum are considered, an L-look
image is said to be produced. In an L-look image the standard deviation of the noise would
have decreased by a factor v/L, but the spatial resolution would have degraded by a factor

of L [9], which is also referred to as the equivalent number of looks (ENL).
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For a single look image, the intensity of the speckle is observed to follow negative expo-
nential distribution. But, as L — oo, the speckle intensity would tend to follow a Gaussian
distribution [28]. This is because of the fact that the addition of a large number of inde-
pendent random variables produces a Gaussian distributed random variable, irrespective of
the individual distributions. Howeyver, it can be shown that the speckle intensity approxi-
mately follows a gamma distribution in a multi-look image, when 1 < L < oo [9, 6]. The

mean-to-standard deviation ratio of a such a distribution satisfies the relation

( mean

standard deviation) = VL, a constant (3.1

It should be noted that the standard deviation used in (3.1) is normalized with respect to
largest greyscale value, i.e., 255 and the ENL L > 1. It has been found that the lognormal
distribution, which is easy to handle statistically, can also be used to approximate the shape
of PDF of the intensity of the speckle. According to [6], using either of the two distributions
would not produce a significant difference in the filter performance.

Multilook integration process in a coherent imaging system is done before the final
image is formed. However, this process usually results in minimal reduction in the speckle.
Hence, it is necessary to apply an image restoration process to the image signal after it
is formed by the coherent imaging system. The methods to reduce speckle in images,
discussed in this chapter, are all examples of the image restoration process.

As mentioned earlier, speckle corruption is modelled as a random white multiplica-
tive noise whose PDF follows a lognormal distribution. The multiplicative corruption is
obtained by multiplying each pixel of the original image by a unit-mean lognormally-
distributed random noise sample.

Thus, the speckle noise is modelled as

A=N.B (3.2)
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where A is the corrupted signal, B the uncorrupted original signal, and N a unit-mean
lognormally distributed multiplicative noise. The variance of the noise is given by %, where
L is the ENL.

The speckle corruption can be evaluated using the the signal to average mean square

error ratio, denoted by ﬁ and expressed as

S

sigs
MSE

=10 IOg [M

(3.3)

where M SE, is the average mean square error between the corrupted signal and the un-
corrupted original signal and sig, is the average signal intensity. Apart from this, the MSE
between the corrupted signal and the uncorrupted original signal can also be used to evalu-
ate the amount of corruption.

As mentioned earlier, noise /V has a lognormal distribution. A lognormally distributed

random variable can be synthetically generated using [6]

M
N = exp (Nle \/ 2logy, (m:’;’ > +1In (mLN)> (3.4)

where My and mpy are the mean and median values of the distribution, Nyorma 1S the

zero mean Gaussian random variable and N is the lognormal random variable. Without

loss of generality My can be assumed to be unity.

3.3 MM-Filter to Reduce Additive White Gaussian Noise

As mentioned in Section 3.1 and in Chapter 1, when a homomorphic system is employed to
reduce the speckle, it utilizes a filter to reduce the AWGN present after the natural logarithm
operation is carried out. The sample mean filter, which is optimal in both the MMSE sense
[4] and the MLE sense [1], can be used to reduce the AWGN. The GSFWO filter design

introduced in Chapter 2, which is based on the MMSE criterion, yields the sample mean
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filter when the additive noise is white Gaussian noise. This filter is designed with the
assumption that the uncorrupted signal is of constant amplitude within a filter window.
This assumption may not always be true and may result in blurring the edges when used on
images.

Edge-adaptive Wiener filter [7] is a popular filter used to reduce AWGN in images and
does filtering based on the local sample variance and the estimated variance of noise. It
essentially does sample mean filtering at the homogeneous regions of the image and does
not do any filtering at the heterogeneous regions. Hence, a significant amount of noise
might remain at the edges in an image recovered using the edge-adaptive Wiener filter. As
the information in a greyscale image is given by spatial variation of the intensity, edges are
key to the understanding of an image. Thus, a filter which leaves noise at the edges in an
image might not be desirable.

The additive noise corruption model, where the uncorrupted original signal z is as-

sumed to be of constant amplitude within a filter window, is expressed as

y(i) =z + n(7) (3.5)

where y(i) is the i observed sample and n(3) the corresponding white noise sample.

Both the sample mean filter and the edge-adaptive Wiener filter, which are the com-
monly used ones to reduce an additive noise with Gaussian distribution in images, have
drawbacks dealing with the spatially changing values of the uncorrupted signal to the fil-
ter. The sample mean filter causes blurring at the edges, whereas the edge-adaptive Wiener
filter leaves noise at the edges.

The sample median filter is known for its edge preserving property and is optimal in
the MMSE sense when the additive noise has a Laplacian distribution [1]. It is also an
unbiased, consistent estimator of a signal corrupted by an additive noise having Gaussian

distribution, but is not the minimum variance unbiased (MVU) estimator [21]. The sample
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mean filter is the MVU estimator when the noise has a Gaussian distribution and hence,
has a better noise reduction capability. Thus, a judicious combination of sample mean
and sample median estimates might provide a better noise reduction as well as a better
preservation of the edges.

The observed corrupted signal y in (3.5) can be depicted as a random variable having
the same distribution as that of n, but with a mean z. Consider an image signal and let
the filter window be currently over a part of the image where an edge is present. Let the
original signal have two different amplitudes within the filter window, say, z; and z,. Then,

we can express the corrupted signal within the filter window as
y(i) = [z1 ® 2] + n(3) (3.6)
where [z1 @ x2] stands for either x; or z; depending on the value of ¢. Therefore
PDF(y) = PDF([z1 ® z3]) * PDF(n) 3.7

In (3.7), the index 7 has been dropped for simplicity. P DF(.) stands for the probability
density function of the corresponding random variable and * stands for convolution. The
PDF of n is Gaussian with a zero mean, since n is assumed to be an AWGN.

The PDF of n is given by

—-n

1 2
fn(n) = Ty &P ( 507 ) (3.8)

After carrying out the convolution operation in (3.7), we get the PDF of y to be

_H (—emP\ 1-H  (~(y—z)
1 = g oo () + e ((UE) 69)

where H gives the weight of the impulse corresponding to ;. Hence, 1 — H will be the

weight of the impulse corresponding to z as the total area under any PDF curve is unity.
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As mentioned earlier, y in (3.5) can be depicted as a random variable having the same
PDF as that of n, but with a mean z. As the process of noise reduction is nothing but
estimating the value of x, the process can also be portrayed as the estimation of the location
or the mean of the PDF of the random variable y.

The asymptotic relative efficiency [ARE] [1], which is a tool to compare the efficiency
of estimates in estimating the location of any distribution (say f) will be used to show that
a combination of the sample mean and sample median estimates could be a better estimator
of a signal corrupted by Gaussian noise than the sample mean filter, when the constant
amplitude assumption of the uncorrupted signal within a filter window is not met.

The measure ARF is used to analytically compare the performance of two estimators
in estimating a parameter 6 of a distribution f. In our case, the parameter to be estimated
is the location of f. But, to use ARE, the estimators should be asymptotically normal. An
estimator 7" working on s observed samples is said to be asymptotically normal if for large
samples (s — 00), the distribution of 1/s(8, — 6) tends weakly to the normal distribution,
having a zero mean and a variance V' (7, f) [1], where 6; is the estimate of # based on s
samples. The variance V' (7, f) is called the asymptotic variance.

The asymptotic relative efficiency is given by [1]

ARE = M (3.10)

V(E2, f)

where V(k, f) stands for the asymptotic variance corresponding to the estimator , f being
the PDF, and E; and E; the estimators, whose performances are to be compared.

In our case, f is the PDF of the observed corrupted signal. F; and E, are respectively
the sample mean and sample median estimates, since our goal is to take advantage of the
noise reduction property of the sample mean filter and the edge preservation property of
the sample median filter. Fortunately, both the sample mean and the sample median es-
timates are asymptotically normal [1] and thus, ARE can be used for the analysis. The

AREF corresponding to sample mean and median estimates, will henceforth be denoted by
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AREwmM.

The value of ARFEy;;y is 0.6367, when the PDF f is Gaussian and has zero mean and
unit variance [1], whereas ARE) s is calculated to be equal to 2 [31], when the distri-
bution f is Laplacian and has a zero mean and unit variance. The sample mean (sample
median) estimate corresponds to the MLE or the MVU estimate, if the observed signal has
a Gaussian (Laplacian) distribution [1, 21].

A value of ARFE), less than unity indicates that the sample mean filtering would
provide a better estimate of the location of the PDF of the observed corrupted signal than
the sample median one, whereas a value greater than unity implies that the sample median
filter would give a better estimate. Thus, if it is shown that ARFE),, corresponding to the
distribution in (3.9) can have any value above or below unity, it would essentially indicate
that a combination of the sample mean and sample median estimates would perform better
than a sample mean estimate in the AWGN reduction.

In (3.9), without loss of generality, we can shift the f,(y) by —%+22 to get

0= e (F) e ()

o2mo 202 o2ro 202

where a = #15%2. Again, without loss of generality we assume the standard deviation o to

be unity. Then, we have

fy) = \/%exp (_(yz_ a)2> + 1\/_; exp (—(y;— a)2) (3.11)

Now, we have to determine the ARFEs) for the PDF in (3.11), i.e., f = f,(y). Proceeding

from (3.10), as given in [1], we have

V(mean, f) [ IF(mean)’dF

AREuu = V(median, f) [ IF(median)*dF

(3.12)

where I F stands for influence function defined for a particular estimate and for a given
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distribution, and F' is the CDF corresponding to f. Using the definitions of I F' given in
[1], the expressions of I F' for the sample mean and the sample median estimates are derived

as follows:

IF(mean) =y (3.13)
IF(median) = %@ (3.14)

where () is a constant given by
Q=F"1 (%) (3.15)

Using (3.13) and (3.14) and after some simple mathematical manipulations, we get

/IF(mean)2dF =1+ a? (3.16)
. 1
/IF(medmn)2dF - Q) (3.17)

Therefore, substituting (3.16) and (3.17) in (3.12), we get

V(mean, f)

AREy = V(median, f)

= (1 +a®)4f%(Q) (3.18)

The quantities ¢} and ¢ may range from —oo to co, whereas H has the range 0 < H < 1,
depending on the amplitude of the elements within the filter window. The value of CDF at

y = @ is given by integrating the PDF f,(y) in (3.11) as given below:

0 - 1 (a1 [ ()0
= H/Q a\/_exp< 2y%)dy1+( — H) _C:a\/—%exp(:éz)dm

H[erf(Q—a)-i—%] +(1—H)[erf(Q+a)+-;-]
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- % + H[erf(Q — a)] +(1-H) [erf(Q + a)] (3.19)

Now, to find the value of @), the expression F'(Q) = % from (3.15) is used in (3.19), which

yields

Hlert(Q - a)| + (1 - H) [erf(@ + a)| =0 (3.20)

When a = 0 the distribution is Gaussian and (3.20) reduces to

H[erf(Q)]+(1—H)[erf(Q)] -0
erf(@) = 0

Thus, @ = 0 is obtained. Now, from (3.11), it is evident that when a = 0, f,(y)
becomes a Gaussian distribution. Thus, when () = 0 and a¢ = 0 are substituted in (3.18),
the value of ARFE ;s obtained is 0.6367, as should be the case for a Gaussian PDF,

When there is an edge within the filter window, i.e., the concerned PDF is of the form
given in (3.11), we show that the ARFE)y, could have any value greater than or less than
unity. Let the edge present be such that one-half the number of elements in the filter window
have an amplitude z; and the rest an amplitude ;. In this case, the value of H = 0.5. Using
the fact that erf(—g) = —erf(g), we obtain from (3.20) a value of Q = 0, when H = 0.5.

Substituting the values H = 0.5 and y = @ = 0 in (3.11), we get

1 —a?
£,(0) = \/_Q_WGXP(T) = f(Q) (3.21)
Thus, substituting (3.21) in (3.18), we get
AREpp = 2 (14 a®)exp (- a?) (3.22)

T
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From (3.22), it can be easily shown that the value of ARE)y, is less than unity with the
maximum value as 0.6367 for the case when H = 0.5 and for any value of a. Now, let us
consider another possible case, when a = 2 and H = 0.7. By substituting these values of
a and H in (3.20) we obtain () = 1.6. Then, by substituting the value of y = @) = 1.6 in

(3.11), we get

0.64656

fy(1.6) = Ner: = f(Q) (3.23)

Thus, substituting (3.23) in (3.18), we get

AREy = 1.33 (3.24)

Thus, it is evident that ARF)y, can have values above or below unity, if an edge is
present within the filter window, that is, when the signal within the filter window cannot
be considered to be constant. Hence, an intelligent combination of the sample median and
the sample mean estimates might give an asymptotic variance, whose value is less than
that when either the sample mean or sample median estimate is used individually. Thus,
this combination might give a better estimation of the location of the PDF of the random
variable y.

Thus, we can conclude, that the sample mean estimate is the MLE or the MVU estimate
of an image corrupted by AWGN, only when no edge or no spatial variation is present
within the filter window. An intelligent combination of the sample mean and the sample
median estimates could perform better in reducing the noise in image without blurring the
edges. This combination filter will henceforth be referred to as the mean median (MM)
filter. An attractive feature of this MM-filter, is that it is a smoothly trimmed filter [32],
which applies a soft thresholding on the samples during the filtering process, and thus

would not totally reject or accept any sample in the filter window.
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3.3.1 Ciriteria to Combine the Mean and Median Estimates

In this subsection, three criteria are presented for combining the mean and median estimates
to remove AWGN. The first two criteria are based on an unbiased weighting of the sample
median and the sample mean estimates. The third criterion is based on some modifications
to the edge-adaptive Wiener filter equations.

The first two criteria can be expressed as follows. Let y represent the coefficients of the

MM-filter. It can be expressed as

— CYmean + ﬂ’)’median

e (3.25)

where Ymeqn represents the coefficients of the sample mean estimator, Ypedian those of the
sample median estimator, and « and 3 are the weights used to obtain the coefficients of the
MM -filter. Let o be the standard deviation of the Gaussian noise. This standard deviation
is estimated over the given image using the median of absolute deviations (MAD) formula,
given by ¢ = 1.483MAD [17]. Let o} be the standard deviation of the observed corrupted
image. The standard deviations ¢’ and ¢, are normalized with respect to the maximum

greyscale value (255) to obtain normalized variances ¢ and oy, respectively.

Criterion 1:

Let us recall that the sample mean filter has a better noise reduction capability, whereas
the sample median filter is known for its edge preserving capability. Thus, intuitively, the
weightage should be assigned such that when the noise content is high, the sample mean
filtering dominates, whereas the sample median filtering would dominate if the noise is
less. Hence, a possible choice for the weights is

1
a=c’andf= = -1
a

It can be seen that as o2, the variance of the noise, increases, the weightage given to the
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coefficients of the sample mean filter (sample median filter) increases (decreases). It can be
shown that the sample mean filter dominates over the median filter as long as o2 > 0.618,
otherwise the sample median filter takes over. As L, the ENL of a coherently generated im-
age, cannot be less than unity, it can be shown that ¢ < 0.693, from the relation between
the variances of the lognormal distribution and the transformed Gaussian distribution. It is
evident from the weights that this criterion does not take into account the amount of edge
details present in the image. Thus, incorporating the edge content of the image by mod-
ifying the weights, a second criterion of combining the sample mean and sample median

estimates is proposed below.

Criterion 2:

o? 1 o?
a=a2-—2—andﬂ=(—5—1>--0—‘%

of o
This criterion takes into account the amount of edge content in the original image which is

represented by the standard deviation o;.

Criterion 3:

In this criterion, a minor modification is carried out in the edge-adaptive Wiener filter
equations [7], such that the sample mean filter dominates in the smooth areas and the sam-
ple median filter in the edge areas of the image in contrast to the traditional edge-adaptive
adaptive Wiener filter, wherein no filtering is performed in the edge areas.

Let a be the signal corrupted by noise and b be the original uncorrupted signal. The

additive noise model is given by

a=b+n

where 7 is the zero mean AWGN noise. Let b be the recovered signal. The filter equation
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of the traditional edge adaptive Wiener filter is given as [7]

R a}; -2
be) =+ () - ala) — ) 326)
T,y
where
1
u= Z a(nl, 1%2)
MwNw n1,n2€Azy
and
1
o, = T Z a®(ny,ng) — p?

n1,n2€Az,y
where A, , represents all the pixel positions within the filter window of size M,, x N,, with
the center at (x,y) and v is the variance of the corrupting noise 7.
We add an extra term to (3.26) in order to find the estimate l;, such that noise reduction
takes place at the edges without significant blurring effect. The MM-filter estimate obtained

by modifying (3.26) is given as

2

b) = (1= Vao) (+ (25 alo) - ) + VagmedlRl G20

2
Oz

where med[R) stands for the median value among the elements of an array R given by

R = [(a(n1,n2) — p)] V (ny,mp) € Agy

2 - 2 . . . . . . . -
In the above, V., = [%2&] , with the notation [Z, ] signifying normalization with
z,y

————

respect to the maximum value amongst the values of Z,,, .,, where (n;, ns) corresponds to

the pixel positions within the filter window A .
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3.3.2 Performance of the MM-Filter in Additive White Gaussian Noise

Reduction

In this subsection, qualitative and quantitative results of the MM-filter in reducing AWGN
from corrupted images are presented. The performance of the MM-filter is compared with
that of the sample mean filter [17] and the edge-adaptive Wiener filter [7]. The complexity
of the filters is given in terms of the time taken by the filters to process an image of size
512x512. The filters were implemented using MATLAB in windows operating system on a
machine with a 2.5 GHz processor. The quantitative results are presented using a figure of
merit (FOM) as given in [30] and the MSE between the the desired response and the actual

output. The FOM is calculated as [30]

N
1

1 3.28

max(NA,NB);1+Vd2(i) x 100 (3:28)

EP(%) =

where A and B are two images representing the edge maps (binary images where ‘1’ rep-
resents an edge pixel and ‘O’ represents a non-edge pixel) of the desired response and the
actual response, N4 and Np are the number of edge pixels in the edge maps A and B, re-
spectively, v is an arbitrary penalty parameter for offset edge pixels, which is chosen equal

to 10 as in [30], and d is given by

d(i) = I(3) — J(i)

In the above, I and J are one dimensional arrays obtained respectively from the two di-

mensional arrays A and B as follows

I = [A(m/,n)]VA(m/,n/) =1

J = [B(m/,n)]VAm n')=1
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where

In the above, M x N is the size of the images. The lengths of the arrays F and G will be
equal to number of edge pixels N4in edge map A. The FOM R assumes values 0% — 100%,
with R = 100% achieved when the desired image and the actual image are the same. The
MSE is calculated as

1l v . Y

MSE = —— ; ; (AR(i, ) — BR(i, 7)) (3.29)

where AR is the desired response and BR is the actual response. M X N is the size of
the images AR and BR. Note that the MSE and the FOM values corresponding to a noise
corrupted image are obtained using the uncorrupted original image and the noise corrupted
image.

Smaller MSE signifies a better noise reduction property, whereas a larger FOM signifies
a better edge preservation feature. The MM-filters obtained using all the three proposed
criteria are considered. To show the qualitative results, the original ‘Crowd’ image is first
synthetically corrupted by adding white Gaussian noise. Then, image recovery is carried
out using the above mentioned filters to reduce AWGN.

In Figure 3.1, the ‘Crowd’ image is corrupted by a Gaussian noise of variance 0.01
(normalized with respect to maximum greyscale value, i.e, 255), which is considered to be
a low level corruption. It is evident that the mean filter smooths out the edges, whereas the
edge-adaptive Wiener filter does no filtering at the edges leaving behind noise. As can be
seen from the qualitative results, the proposed MM-filter, using any one of the three criteria
does a better balancing between the edge preservation and noise reduction. The MM-filter

based on Criterion 3 is the best among the three proposed MM-filters when it comes to
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(b) Image corrupted by Gaussian noise of variance  (c) Image recovered using the sample mean filter
0.01 (normalized)
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(d) Image recovered using the edge-adaptive Wiener (e) Image recovered using the MM-filter (Criterion 1)
filter

(f) Image recovered using the MM-filter (Criterion 2) (g) Image recovered using the MM-filter (Criterion
3)

Figure 3.1: Qualitative performance of the various filters in reducing AWGN of variance
0.01 (normalized) in the ‘Crowd’ image
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(b) Image corrupted by Gaussian noise of variance (c) Image recovered using the sample mean filter
0.025 (normalized)
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(d) Image recovered using the edge-adaptive Wiener (e) Image recovered using the MM-filter (Criterion 1)
filter

(f) Image recovered using the MM-filter (Criterion 2) (g) Image recovered using the MM-filter (Criterion
3)

Figure 3.2: Qualitative performance of the various filters in reducing AWGN of variance
0.025 (normalized) in the ‘Crowd’ image
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MSE, FOM AND THE TIME TAKEN TO PROCESS AN IMAGE OF SIZE 512X512 FOR

TABLE 3.1

THE VARIOUS FILTERS IN REDUCING AWGN IN THE ‘CROWD’ IMAGE

For images
recovered by recovered by
For noise the sample the edge-adaptive
corrupted images mean filter Wiener filter
Time taken - ~ 5 seconds ~ 8 seconds
Noise variance | MSE | FOM % | MSE | FOM % | MSE | FOM %
0.01 650.51 | 11.339 | 151.46 | 20.198 | 111.59 | 51.517
0.025 1629.6 | 4.2043 | 191.6 | 16.295 | 192.85 | 36.953
0.075 4870.7 | 0.64044 | 321.99 | 8.5431 | 435.27 | 18.643
For images
recovered by recovered by recovered by
MM - filter MM - filter MM - filter
(Criterion 1) (Criterion 2) (Criterion 3)
Time taken ~ 6 seconds ~ 6 seconds ~ 13 seconds
Noise variance | MSE | FOM % | MSE | FOM % | MSE | FOM %
0.01 144.77 | 39.037 | 144.79 | 39.073 | 116.07 | 45.227
0.025 219.48 | 24.696 | 219.56 | 24.726 | 176.85 | 33.77
0.075 435.51 | 11.698 | 435.84 | 11.694 | 365.25 | 17.146

edge preservation. Figure 3.2, where the ‘Crowd’ image is corrupted by a larger amount of
Gaussian noise with variance 0.025 (normalized with respect to maximum greyscale value,
i.e, 255), also shows similar results. Thus, it is evident that the MM-filters remove the noise
satisfactorily both in the homogeneous regions and also in the edge areas of an image.This
results in proper noise reduction while avoiding the blurring.

The quantitative results are shown in Table 3.1. Complexity of each filter is given in
the table in terms of their processing time. It is assumed that, the processing time of the
filters increases with the increase in the complexity. It is seen that sample mean filter
is the least complex filter, whereas the proposed MM-filter based on Criterion 3 is the
most complex among the filters considered for comparison. As can be seen from the same

table, the MM-filters obtained using Criteria 1 and 2 provide much better FOM values
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than the sample mean filter, signifying that the MM-filter does a better edge preservation.
The complexity of these filters are comparable to that of the sample mean filter. It can
be observed that among the three criteria of MM-filter, Criterion 3 gives the best balance
between the mean square error and the figure of merit values. Thus, the quantitative results
of the proposed MM-filter suggests that it provides a balance between noise reduction and
edge preservation. On the other hand, the sample mean filter is good at noise reduction,

whereas the edge-adaptive Wiener filter is good at avoiding blurring.

3.4 MM-Filter-Based Unbiased Homomorphic System to
Reduce Speckle

In this section, a homomorphic system using the MM-filter introduced in the previous sec-
tion is presented in order to reduce speckle in images. As given in Section 3.2, the speckle

noise corruption is modelled as

as = bs-ns (3.30)

where as is the observed corrupted signal, bs is the original uncorrupted signal and 7s is
the multiplicative white noise with lognormal distribution (speckle). The problem is to get
an estimate bs of bs from the observed signal as.

As explained in Chapter 2, when the unbiased homomorphic system employing the GS-
FWO filter shown in Figure 2.3 is employed to reduce the speckle, the system reduces to an
unbiased homomorphic system employing the sample mean filter. However, as the design
of the GSFWO filter assumes that the uncorrupted signal to the filter is of constant ampli-
tude within the filter window, the proposed MM-filter is used in its place in the unbiased
homomorphic system to reduce the speckle. The block diagram of the proposed unbiased

MM-filter-based homomorphic system to reduce the speckle is shown in Figure 3.3.
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as MM-filter ‘ Bias . L bs
compensation

Figure 3.3: Unbiased homomorphic system to reduce speckle employing the MM-filter

The description of the proposed filter to reduce the speckle is as follows. The observed
corrupted signal as is first subjected to the natural logarithm. As explained in Chapter
2, the multiplicative noise is change to an additive one by this transformation. As the
multiplicative noise is assumed to be white, the additive noise will also be white [22].

The MM-filter is then applied to reduce this additive white noise, which is Gaussian
distributed. As shown in Section 3.3, the MM-filter would work better when the signal
is not constant within the filter window, which is generally true in most cases. The out-
put from the MM-filter is then subjected to the exponentiation operation. Finally, the bias
compensation as explained in Section 2.5.3 is applied to the signal resulting from the ex-
ponentiation operation. The unbiased estimate bs of the original uncorrupted signal bs is

obtained at the output of this bias compensation.

3.5 Performance of the Proposed and Some Existing
Filters in Reducing Speckle

In this section, a comparative study of the performance of some of the existing filters and the
proposed system is carried out. Both the quantitative and qualitative results are considered.
A comprehensive review of the speckle removal filters for images has been presented in [6]
and [9]. The filters considered for comparison are as follows:

(1) Lee filter [13]

(2) Filter proposed by Kuan et al. [11]

(3) Filter proposed by Frost et al. [12]
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(4) Gamma filter [14]

(5) Homomorphic system employing an edge-adaptive Wiener filter [7]

The ‘Pepper’ image, two nearly uncorrupted SAR images and two unprocessed images
generated by a coherent imaging system are considered for the qualitative analysis. One
of the two unprocessed images corrupted by speckle is a SAR image obtained from earth
resource satellite (ERS). Figures 3.4-3.6 present a qualitative performance of the various
filters for speckle reduction. In these cases the uncorrupted signal is combined with the
speckle noise by doing pixel-wise multiplication. On the other hand, Figures 3.7 and 3.8
show the qualitative performance of the filters on images generated from coherent imaging
systems having unknown amount of speckle already present. In Figures 3.5 and 3.6, SAR
images, respectively, with low and high amount of edge details are considered.

The mean square error and the figure of merit described in Section 3.3.2, are used
to present the quantitative results. These values of MSE and FOM are presented for the
‘Pepper’ image and the two nearly uncorrupted SAR images. As mentioned earlier, a
low MSE signifies a good noise reduction property, whereas a higher percentage of the
FOM signifies a good edge preservation property. Tables 3.2-3.4 give the values of the
quantitative results when the three uncorrupted or nearly uncorrupted images are used.
Note that the MSE and the FOM values given in the tables corresponding to the noise
corrupted images are obtained using the uncorrupted original images and the corresponding
noise corrupted images.

Analysis of the complexity of speckle reduction filters is of crucial importance, as most
of these filters are required to operate in an on-board or a real-time system [33]. A study of
the complexity of the filters is provided in Table 3.5. Each of the existing filters discussed
above and the proposed filter are implemented using MATLAB in windows operating sys-
tem on a machine with 2.5GHz processor. The time taken to process an image of size
512x512 is obtained. The number of addition, multiplication, comparison and other oper-

ations is used as a criterion to measure the complexity. The operation of the square root is
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implemented using the well known Newton iterative method, and that of the exponentiation
and natural logarithm is implemented using the Taylor series expansion.

As mentioned earlier, the Lee filter (LF) [13] is one of the earliest filters used for the
reduction of the speckle. It is evident from Figures 3.4-3.6, that even though the filter does
not result in blurring the image, it tends to leave a significant amount of noise behind. The
filter applied on the unprocessed images containing speckle, as shown in Figures 3.5 and
3.6, provide the same result. The quantitative results given in Tables 3.2-3.4 support the
qualitative results and hence one would not be encouraged to use Lee filter as a reliable
tool for reducing the speckle. As seen from Table 3.5, the complexity of the Lee filter is
moderate, with the most time consuming process being the square root operation.

The filter proposed by Kuan et al. (KF) [11], which will henceforth be referred to as the
Kuan filter, is nothing but a generalized Lee filter. Although there is not much difference
between the qualitative performance of the two filters, the quantitative results given in
Tables 3.2-3.4 show clearly that the former outperforms the later. However, the Kuan filter
still leaves significant amount of noise in the recovered image. As seen from Table 3.5
the complexity of the Kuan filter is slightly greater than that of the Lee filter, and can be
considered as moderately complex.

The filter proposed by Frost et al. (FF) [12], which will henceforth be referred to as
the Frost filter, has been stated to be the best spatial domain state-of-the-art filter to reduce
speckle in an image [6]. This is evident from the reduction in the MSE obtained by various
filters given in Tables 3.2-3.4. However , when FOM is compared, the existing Gamma
filter and the edge-adaptive Wiener filter-based homomorphic system are found to perform
better than the Frost filter. It is evident from the qualitative results presented in Figures
3.4-3.8, that the edge-adaptive Wiener filter-based homomorphic system and the Gamma
filter perform better than the Frost filter, which results in a considerable amount of blurring
of the edges. However the Frost filter performs better than the Lee filter and the Kuan filter.

One very important drawback of the Frost filter, which can be seen from Table 3.5, is that it
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has large complexity. It has very slow processing speed, and hence, might not be prefered

in applications where speed is crucial.
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(b) Image corrupted by speckle (ENL=20)
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(d) Image recovered by the Kuan filter
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(f) Image recovered by the Gamma filter
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(g) Image recovered by the edge-adaptive Wiener filter-based ho-
momorphic system

L

(h) Image recovered by the MM-filter (Criterion 1) based unbi-
ased homomorphic system
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(i) Image recovered by the MM-filter (Criterion 2) based unbiased
homomorphic system

5 S o e -~

(j) Image recovered by the MM-filter (Criterion 3) based unbiased
homomorphic system

Figure 3.4: Qualitative performance of the various filters in reducing speckle in the ‘Pepper’
image
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(a) Nearly uncorrupted SAR image

i

(b) Image corrupted by speckle (ENL=3.333)
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(c) Image recovered by the Lee filter

(d) Image recovered by the Kuan filter
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(e) Image recovered by the Frost filter

(f) Image recovered by the Gamma filter
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(g) Image recovered by the edge-adaptive Wiener filter-based ho-
momorphic system

(h) Image recovered by the MM-filter (Criterion 1) based unbi-
ased homomorphic system
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(i) Image recovered by the MM-filter (Criterion 2) based unbiased
homomorphic system

(j) Image recovered by the MM-filter (Criterion 3) based unbiased
homomorphic system

Figure 3.5: Qualitative performance of the various filters in reducing speckle in a nearly
uncorrupted SAR image having small amount of edge detail
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(b) Image corrupted by speckle (ENL=10)
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(d) Image recovered by the Kuan filter
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(f) Image recovered by the Gamma filter
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(g) Image recovered by the edge-adaptive Wiener filter-based ho-
momorphic system

(h) Image recovered by the MM-filter (Criterion 1) based unbi-
ased homomorphic system
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(i) Image recovered by the MM-filter (Criterion 2) based unbiased
homomorphic system

& P ﬁ 3 : Lt o TN . . B

(j) Image recovered by the MM-filter (Criterion 3) based unbiased
homomorphic system

Figure 3.6: Qualitative performance of the various filters in reducing speckle in a nearly
uncorrupted SAR image having large amount of edge detail
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Gamma filter (GF) is one of the better filters to reduce the speckle, and it especially
works well when the scene is mostly homogeneous. This is evident from Figure 3.5, where
the scene is mostly homogeneous, and also from Table 3.3. But as evident from all the other
figures, Gamma filter tend to leave noise at the edges, which constitute significant details
of an image. But, denoising performance of the Gamma filter in homogeneous region is
better. The Gamma filter has a moderate to high complexity as can be seen from Table 3.5.

A homomorphic system employing an edge-adaptive Wiener filter (HAWF), is the only
kind of homomorphic system which has been used for speckle reduction. As evident from
Tables standard3.2-3.4, this filter performs well, when the noise is less. It also gives good
a FOM result. Its complexity is less, and hence, its processing time is also less as shown
in Table 3.5. But, as can be seen from the qualitative results presented in Figures 3.4-3.8,
this homomorphic system like the Gamma filter leaves a significant amount of noise at the
edges in an image. Thus, it might be preferable to use this filter when the noise content can
be expected to be less.

First of the proposed filters used to reduce speckle is the unbiased homomorphic system,

HMMEFC1, employing the MM-filter based on Criterion 1 of Section 3.3.1. This filter has
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“(b) Image recovered by the Lee filter

(c) Image recovered by the Kuan filter
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(d) Image recovered b the Frost filter

"(e) Image recovered by the Gamma filter
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(f) Image recovered by the edge-adaptive Wiener filter-based homomorphic system

- (g)Ia recovered byt MM.-filter (Cr1tr1 1) based unbiased hoorplc system
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(h) Image recovered y the -ﬁte (teo ' based unbiased homomorphic system

i) Image recovered by the MM-filter (Criterion 3) based unbiased homomorphic system

Figure 3.7: Qualitative performance of the various filters in reducing speckle in an unpro-
cessed image generated using a coherent imaging system
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(a) Image taken by a SAR system corrupted by speckle

a very low complexity. The filter performs well, qualitatively in that it is good in removing
the noise and satisfactorily preserving the edges. Thus, the filter does not have the problem
of noise residual encountered in most of the filters discussed. The quantitative results of
this filter, given in Tables 3.2-3.4, shows that it has good performance in reducing the MSE
and also when the speckle content is less, a higher percentage of FOM.

The second proposed filter used is the unbiased homomorphic system, HMMFC2, em-
ploying the MM-filter based on Criterion 2. The performance of this filter is similar to that
of the homomorphic system, HMMFCI1. Qualitatively, they both show very similar char-
acteristics. This filter also has a low complexity and performs well in reducing the MSE
figure.

The third proposed filter used is the unbiased homomorphic system, HMMFC3, em-
ploying the MM-filter based on Criterion 3. This is a filter with low to moderate com-
plexity. As seen from Figures 3.4-3.8, this filter gives the best qualitative performance for

the images considered. Thus, among the three proposed unbiased homomorphic systems,
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(c) Image recovered by the Kuan filter
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(d) Image recovered by the Frost filter

(e) Image recovered by the Gamma filter
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(f) Image recovered by the edge-adaptive Wiener filter-based ho-
momorphic system

&

(g) Image recovered by the MM-filter (Criterion 1) based unbi-
ased homomorphic system
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(h) Image recovered by the MM-filter (Criterion 2) based unbi-
ased homomorphic system

(i) Image recovered by the MM-filter (Criterion 3) based unbiased
homomorphic system

Figure 3.8: Qualitative performance of the various filters in reducing speckle in an unpro-
cessed image obtained from earth resource satellite (ERS) SAR system
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HMMFC3 seems to provide the best combination of the mean and median estimates from
the point of view of reducing speckle. The quantitative results given in the tables are good
especially when the noise content is high.

One important thing to note is that, most of the computation of the proposed unbiased
homomorphic systems is taken up by the quick sorting function which on average uses 35
comparisons. The processing time can be considerably reduced by implementing the filter

on a processor, using a parallel sorting scheme such as shear sorting [34].
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TABLE 3.2

MSE AND FOM FOR THE VARIOUS FILTERS IN REDUCING SPECKLE IN THE ‘PEPPER’
IMAGE

For noise For images recovered by

corrupted images LF KF
Noise var | ENL [ MSE | FOM % | MSE | FOM % | MSE | FOM %
0.05 20 | 609.18 | 18.748 | 549.06 | 24.674 | 504.65 | 25.129
0.1 10 | 1006.3 | 11.412 | 1377.1 | 15.125 | 1164.2 | 14.99
0.2 5 1643.9 | 5.6628 | 1580.4 | 12.423 | 11785 | 12.327
03 3.33 {1 2200.7 | 3.5021 | 1725.6 | 11.877 | 1169.7 | 11.254
04 25 | 2700.2 | 1.7966 | 1690.8 | 11.954 | 1077.5 | 10.836
0.5 2 3184.7 | 1.0199 | 2034 11.29 | 1201.7 | 10.055
0.6 1.67 || 3628.7 | 0.6994 | 2025.2 | 11.256 | 1165.5 | 9.5532
0.7 1.429 | 4071.2 | 0.4182 | 1924.8 | 10.384 | 1122.7 | 9.0027
0.8 1.25 || 4528.5 | 0.256 |2060.7 | 10.365 | 1174.7 | 8.6144
0.9 1.11 |[ 4950.1 | 0.138 2174 | 9.9245 | 1225.1 | 8.6457
1 1 5359.7 | 0.0953 | 2167.1 | 9.6855 | 1244.8 | 8.4565

For images recovered by

FF GF HAWF
Noise var | ENL || MSE | FOM % | MSE | FOM % | MSE | FOM %
0.05 20 128.45 | 26.347 | 141.97 | 50.012 | 94.269 | 45.474
0.1 10 163.67 | 23.368 | 181.45 | 41.302 | 143.16 | 41.102
0.2 5 239.76 | 16.718 | 245.03 | 30.604 | 267.82 | 32.054
03 3.33 || 308.55 | 13.792 | 322.86 | 25.482 | 402.94 | 27.177
04 25 | 376.26 | 13.357 | 399.23 | 23.36 | 551.74 | 25.109
0.5 2 447.18 | 12.203 | 497.56 | 22.419 | 720.95 | 21.554
0.6 1.67 || 518.53 | 12.59 | 582.02 | 22.845 | 912.78 | 20.667
0.7 1.429 || 607.85 | 11.543 | 674.28 | 21.176 | 1126.3 | 18.775
0.8 1.25 || 668.65 | 11.398 | 785.94 | 19.653 | 1375.5 | 16.984
0.9 1.11 || 74441 | 11.29 | 872.21 | 16405 | 1676.6 | 15.485
1 1 824.3 | 11.511 |977.11 | 14.858 | 1934.7 | 14.227
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For images recovered by

HMMFC1 HMMFC2 HMMEFC3
Noise var | ENL | MSE |FOM % | MSE | FOM % | MSE | FOM %
0.05 20 64.73 | 58.53 65.9 58.56 |209.28 | 29.543
0.1 10 | 95.032 | 52.722 | 96.139 | 52.545 | 228.24 | 28.631
0.2 5 158.33 | 40.659 | 158.35 | 40.584 | 265.05 | 24.049
0.3 333 |1 229.16 | 31.258 | 227.95 | 31.392 | 304.03 | 21.562
0.4 25 | 298.43 | 23.364 |297.99 | 24.408 | 345.18 | 20.274
0.5 2 37044 | 17.69 | 373.07 | 19.232 | 400.79 | 18.162
0.6 1.67 || 425.63 | 13.821 | 430.11 | 15917 | 454.69 | 17.981
0.7 1.429 || 494.74 | 9.8391 | 500.02 | 11.482 | 525.66 | 16.318
0.8 1.25 | 556.44 | 8.3086 | 559.05 | 9.1905 | 601.02 | 15.387
0.9 1.11 || 628.53 | 7.448 | 6283 | 7.4466 | 695.21 | 14.754
1 1 709.65 | 7.017 |713.16 | 7.044 | 804.67 | 13.419

TABLE 3.3

MSE AND FOM FOR THE VARIOUS FILTERS IN REDUCING SPECKLE IN A NEARLY
UNCORRUPTED SAR IMAGE HAVING SMALL AMOUNT OF EDGE DETAIL

For noise For images recovered by

corrupted images LF KF
Noise var | ENL | MSE | FOM % | MSE { FOM % | MSE | FOM %
0.05 20 632.8 | 12.916 | 426.13 | 21.317 | 394.92 | 21.373
0.1 10 | 1068.4 | 8.1561 | 1032.6 | 14.147 | 882.17 | 13.798
0.2 5 1729.4 | 3.9939 | 1291.2 | 10.776 | 981.29 | 10.238
03 3.33 | 2284.4 | 2.0435 | 1291.1 | 9.2149 | 911.29 | 8.7273
0.4 2.5 2791 | 1.0297 | 1390.4 | 8.2397 | 927.66 | 7.6083
0.5 2 33229 | 0466 | 14944 | 7.3143 | 949.81 | 6.7073
0.6 1.67 | 3657.5| 0.2612 | 15584 | 7.209 | 964.38 | 6.2479
0.7 1.429 || 4050.8 | 0.2302 | 1607 | 6.4502 | 982.22 | 5.8871
0.8 1.25 || 4413.2 | 0.1325 | 1722.7 | 5.8693 | 1020.1 | 5.438
09 1.11 || 4802 | 0.0808 | 1766.4 | 59942 | 1049 | 5.1684
1 1 5161.8 | 0.0291 | 1780.2 | 5.4615 | 1069.6 | 5.0481
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For images recovered by
FF | GF | HAWF
Noise var | ENL | MSE | FOM % | MSE | FOM % | MSE | FOM %
0.05 20 || 224.46 | 20.511 | 196.17 | 46.11 | 140.88 | 54.456
0.1 10 || 252.78 | 16.479 | 204.34 | 46.372 | 185.07 | 47.634
0.2 5 307.02 | 12.014 | 266.19 | 36.899 | 303.79 | 38.417
03 333 || 368.24 | 9.4921 | 308.76 | 28.993 | 403.37 | 32.745
0.4 25 | 422.65| 8.9763 | 355.02 | 25.715 | 5234 29.9
0.5 2 468.46 | 8.1035 | 403.94 | 22.019 | 647.76 | 27.225
0.6 1.67 | 529.88 | 7.5087 | 428.02 | 24.689 | 796.71 | 24.437
0.7 1.429 || 586.45 | 6.9529 | 483.77 | 21.644 | 954.47 | 22.529
0.8 1.25 ) 625.58 | 7.1198 | 535.61 | 19.566 | 1146.2 | 21.572
0.9 1.11 }| 697.75 | 6.5081 |591.76 | 15.674 | 1359.9 | 18.39
1 1 758.16 | 6.9732 | 641.65 | 14.156 | 1615.6 | 17.017
For images recovered by
HMMEFC1 HMMFC2 | HMMEFC3
Noise var | ENL | MSE | FOM % { MSE | FOM % | MSE | FOM %
0.05 20 1629 | 52.829 | 161.94 | 52.801 | 278.97 | 32.181
0.1 10 | 185.17 | 48.05 | 184.78 | 48.222 | 291.67 | 30.702
0.2 5 234.67 | 37.809 | 232.7 | 38.749 | 322.41 | 27.935
03 3.33 || 292.37 | 28.194 | 288.89 | 29.461 | 349.25 | 25.507
04 2.5 [ 355.56 | 19.463 | 351.27 | 21.744 | 386.47 | 23.452
0.5 2 416.16 | 13.283 | 415.52 | 16.126 | 417.03 | 2148
0.6 1.67 || 472.44 | 10.319 | 477.58 | 12.335 | 456.54 | 19.706
0.7 1.429 || 525.54 | 8.1326 | 53539 | 9.723 | 501.18 | 19.953
0.8 1.25 || 574.69 | 6.5795 | 584.68 | 7.2917 | 546.81 | 16.745
0.9 1.11 || 638.86 | 6.2864 | 642.15 | 6.3879 | 616.03 | 14.491
1 1 708.76 | 5.6616 | 696.19 | 5.9623 | 694.74 | 13.027
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TABLE 3.4

MSE AND FOM FOR THE VARIOUS FILTERS IN REDUCING SPECKLE IN A NEARLY
UNCORRUPTED SAR IMAGE HAVING LARGE AMOUNT OF EDGE DETAIL

For noise For images recov ered by
corrupted images LF | KF
Noise var | ENL | MSE | FOM % | MSE |FOM % | MSE | FOM %

0.05 20 || 77426 | 9.59 97452 | 16.832 | 898.62 | 17.2

0.1 10 || 12764 | 6.032 | 2457.52 | 10.251 |2083.8 | 10.22
0.2 5 21294 2376 | 2893.6 | 9578 | 21674 9.629
03 3.33 || 2921 0.836 | 30935 | 9.263 | 2115.1| 9.266
04 2.5 3696 | 0.3158 | 34204 | 9.356 |21769 | 9.453
0.5 2 44459 | 0.1528 | 3591.7 | 9.338 |2183.2 | 9.423
0.6 1.67 || 5183 | 0.0124 3779 9.36 | 22213 | 9476
0.7 1.429 || 5954.9 | 0.00206 | 3926.2 | 9.255 | 2250.5| 9.432
0.8 1.25 || 6649.2 | 0.00248 | 4008.7 | 9.378 | 2277.7| 9.735
0.9 1.11 | 7364.8 0 4105.7 | 9.216 |2340.7| 9.576

1 | 8034 0 4266.1 | 9.332 |2401.7 | 9.282

For images recovered by
FF | GF | HAWF
Noise var | ENL || MSE [ FOM % | MSE | FOM % | MSE | FOM %
0.05 20 || 23699 | 31.76 |242.62 | 37492 | 1983 | 45.102
0.1 10 || 306.92 | 25.966 | 350.43 | 40.224 | 296.09 | 39.761
0.2 5 453.14 | 19.156 | 585.53 | 39.537 | 518.34 | 32.667
0.3 3.33 || 573.53 | 15.319 | 828.66 | 35.548 | 769.56 | 29.122
04 25 | 73746 | 13.847 | 1084.3 | 32.043 | 10715 | 26.54
0.5 2 868.47 | 14.491 | 1379.7 | 30.889 | 1368.2 | 25.634
0.6 1.67 || 1019.9 | 12.218 | 1653.7 | 29.653 | 1795.5 | 23914
0.7 1.429 || 1137.7 | 11981 | 1959.3 | 23.72 | 22314 | 21.392
0.8 1.25 | 1266.3 | 12.41 | 2223.3 | 22.894 | 26804 | 19.771
0.9 1.11 || 1428.3 | 12.094 | 2500.1 | 20422 | 3214.2 | 18.638
1 1 15332 | 11.415 | 2760.6 | 17.752 | 3822.7 | 17.876

99



For images recovered by

HMMEFC1 HMMEC2 HMMEC3
Noise var | ENL MSE | FOM % | MSE | FOM % | MSE | FOM %
0.05 20 141.72 | 49.181 | 141.5 | 49.065 | 475.24 | 33.907
0.1 10 199.1 49.2 | 198.11 | 49.005 | 509.46 | 32.698
0.2 5 320.5 | 38.492 | 31597 | 38.888 | 575.57 | 30.745
0.3 3.333 || 450.48 | 32.173 | 442.61 | 33.389 | 637.85 | 29.923
04 2.5 395.43 | 25237 | 589.3 | 26.742 | 71942 | 27.448
0.5 2 730.56 | 19.912 | 734.44 | 21.708 | 803.07 | 27.977

0.6 1.6667 | 871.12 | 17.686 | 900.61 | 17.139 | 909.26 | 25.495
0.7 1.42857 || 987.76 | 15.389 | 1036.8 | 15.007 | 1010.2 | 23.842

0.8 1.25 1112.6 | 14483 | 1159.4 | 13.816 | 1146.8 | 21.443
0.9 L111 | 1257.8 | 14.361 | 1277.8 | 13.88 | 1325.8 | 20.933
1 1 1425.2 | 13.021 | 1405.7 | 12.551 | 1516.2 | 18.774

3.6 Summary

In this chapter, we have introduced a new filter referred to as the MM-filter in order to re-
duce the additive white Gaussian noise (AWGN). The estimation of the uncorrupted signal
by the MM-filter has been achieved by using a combination of the mean and the median
estimates of the uncorrupted signal. Three criteria have been given to perform the combi-
nation judiciously. A study of the qualitative and quantitative performance of the proposed
MM -filter in reducing the AWGN has been carried out and compared with the sample mean
filter and the edge-adaptive Wiener filter. The MM-filter has been found to perform better
noise reduction and edge preservation than the others. This MM-filter has then been used
within the unbiased homomorphic system, presented in Chapter 2, to reduce the speckle.
The qualitative and quantitative performance of the proposed MM-filter-based unbiased
homomorphic system in reducing the speckle has been analyzed and compared with that
of a few other known filters. The proposed system has been found to perform considerably

better than the others.
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TABLE 3.5

COMPUTATIONS PER INPUT SAMPLE

COMPLEXITY OF THE VARIOUS FILTERS IN REDUCING SPECKLE IN TERMS OF THE
TIME TAKEN TO PROCESS AN IMAGE OF SIZE 512X512 AND THE NUMBER OF

Time taken Number of | Number of | Number of
Filter to process multiplication | addition | comparisons
a 512x512 image (m) (a) (c)
LF = 46 seconds 16 78 1
KF ~ 47 seconds 19 79 1
FF ~ 1150 seconds 708 148 0
HAWF = 10 seconds 7 100 2
GF ~ 60 seconds 21 79 4
HMMEFC1 ~ 7 seconds 30 26 35
HMMEFC2 = 7seconds 30 28 35
HMMEFC3 ~ 17seconds 11 101 35
other operations complexity
Filter (0) (m+a+c+0)
LF 1 square root 96
KF 1 square root 100
FF 25 square roots & 25 exponential 906
HAWF 1 exponential & 1 logarithm 111
GF 3 square roots 107
HMMFCl1 1 exponential & 1 logarithm 93
HMMEC2 1 exponential & 1 logarithm 95
HMMEFC3 1 exponential & 1 logarithm 145
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Chapter 4

Additive White Gaussian Noise

Reduction in Videos

4.1 Introduction

Videos are generated using coherent imaging systems mounted on air-borne vehicles, which
are used for applications such as terrain monitoring, surveillance and soil analysis [26].
Coherent systems are also used to generate videos for the purpose of various commercial,
military and medicinal applications. As discussed in Chapter 2, images generated by coher-
ent imaging systems are corrupted by speckle. Hence, the frames of a video captured using
a coherent imaging system gets corrupted by speckle. The MM-filter-based homomorphic
system, presented in Chapter 3, can readily be applied to each frame of the video to reduce
the speckle. But, in such a filtering process the presence of correlation between the frames
of the video is not exploited.

The process of filtering a video exploiting the interframe (intraframe) correlation is
called temporal (spatial) filtering. To reduce the speckle in videos, a homomorphic system,
which involves both spatial and temporal filtering, is considered in this thesis. As discussed

in Chapter 3, a homomorphic system used to reduce speckle employs a filter that minimizes
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the AWGN after the natural logarithmic operation.

In this chapter [36, 37], the problem of reducing the AWGN from videos is considered.
One major aspect of temporal filtering to reduce the AWGN in videos is the way in which
it tackles the interframe motion. Many researchers have proposed spatiotemporal filters
for the AWGN reduction in videos [35]-[41]. One obvious way of designing a filter is to
consider the video as a 3D signal and extend the techniques of designing 2D filters to the
design of 3D filters. The authors in [35] have extended the 2D alpha trimmed filter and
the 2D K-nearest neighborhood filter to the corresponding 3D filters and have presented a
comparison of their performance.

In [39], the authors have not only presented a 3D linear minimum mean square error
(LMMSE) filter but also proposed a 3D adaptive weighted average (AWA) filter. The per-
formance of these two filters have also been compared. In [40], to reduce noise in videos,
a method incorporating temporal Kalman estimates and spatial Wiener estimates has been
proposed. In [41], to obtain the estimate of the uncorrupted signal, Hadamard transform
is first applied in the temporal direction to the corrupted signal to remove the correlation
between the successive frames, followed by the use of the edge-adaptive Wiener filter to
smooth the frames.

All the filters mentioned above are motion compensated filters, i.e., these filters use
motion estimation and compensation techniques to deal with the interframe motion. As
motion estimation and compensation are computationally very expensive [8, 42], one would
be interested in avoiding such a process, when noise reduction is of prime concern. A fast
denoising scheme is needed, since in many cases the receiver might have to work under
real-time conditions. In [38], a 3D rational filter, which does not require motion estimation
and compensation, has been proposed and its real-time implementation shown.

In this chapter, two low-complexity filters that do not use motion estimation and com-
pensation techniques are proposed to reduce AWGN in videos. These filters consist of a

temporal estimation part and a spatial estimation part; both the spatiotemporal and spatial
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estimates are used to get the final estimate of the uncorrupted signal.

The organization of the chapter is as follows. An overview of the temporal filtering in
videos using the sample mean filter and the scalar Kalman filter [43, 44] is given in Section
4.2. In Section 4.3, the algorithms of the proposed filters are presented. In Section 4.4, the
performance of the proposed filters to reduce AWGN in videos is studied and compared to

the performance of a few other existing filters.

4.2 Temporal Filtering in Videos

In general, there are two approaches that are used for video filtering. In the first method, a
3D window consisting of elements from the current frame and the previous and succeeding
frames is considered. These elements are then used to get an estimate of the uncorrupted
current frame. The second method involves a 2D spatial filtering in the current frame
and 1D filtering in the temporal direction. These spatial and temporal estimates are then
combined to get the estimate of the uncorrupted current frame.

In this section, a brief study of the temporal filtering is presented. As discussed in
Chapter 3, when a signal is corrupted by an AWGN, the sample mean filter gives an optimal
estimate under the assumption of the signal being constant within the filter window. Motion
in videos is represented by the change in intensity along the temporal direction. Hence,
the presence of the motion would make the constant amplitude assumption invalid. In
general, techniques to compensate the motion are used prior to the filtering. Ideally, once
the interframe motion is dealt with, the change of intensity along the temporal direction
should be zero and hence, the constant amplitude assumption within a window can be
made. Such a case is considered in this section for the analysis of temporal filtering. We
shall now show that the 1D scalar Kalman filter when used as the temporal filter is an

optimal estimator like the sample mean filter, but has a much less storage requirement.
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A signal corrupted by an AWGN can be modeled as

r=I1+N 4.1

where [ is the uncorrupted original signal, NV is a zero mean AWGN and z is the observed

corrupted signal. The model in (4.1) can be written as

x=1I+o0ov 4.2)

where o is the standard deviation of the noise /V, and v a zero mean unit-variance Gaussian

noise. The squared error between the corrupted and the uncorrupted signals is given by

(x —I)? =o0%? (4.3)

It can be inferred from (4.3) that for a signal corrupted by an additive noise, the squared
error between the noisy and uncorrupted signals is directly proportional to the variance of
the noise.

Now, let z, and z; represent the first and second noisy frames. Let (3, j) represent the
position of a pixel in a frame. Writing the expressions for x; and z; in the form given by

4.2), we get

2o(i,5) = Io(i,) + ovo(i, )

z1(1,j) = I(i,5) +ou(i,j) (4.4)

where it is assumed that the AWGN corresponding to xg is independent of that corrupting
Zp, but having the same standard deviation . Ideally, when the interframe motion has been
compensated for, we have Iy(i,j) = I;(i,7) = I(i,5) . Let us consider the use of the

sample mean filter as the temporal filter to reduce the AWGN in z;. The application of the
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filter in the temporal direction results in the estimate of x, as

zo(1, §) ;xl(i,j) = I(3,7) + %(vo(i,j) + v1(4, §)) (4.5)

Let vy + v; = v/2V4. It is known that the sum of independent Gaussian processes produces
another Gaussian process [23]. Thus, V/ is a unit-variance zero-mean white Gaussian noise.

Therefore, (4.5) can be rewritten as

where ¢/ = 7 » and Xi(i,5) = w is the estimated value at the pixel position
(i,7) of the second frame. As can be seen, the standard deviation of the noise is decreased
by a factor /2.

Next, let us consider the reduction of noise in x4, the third frame. Ideally, when the
interframe motion has been compensated for, we have Iy(i,5) = 1(¢,5) = I(i,j) =
I(3,7). The application of the sample mean filter in the temporal direction (using all the

previous frames) results in the estimate of z; as

xo(4,5) + 21(4, J) + 22(4, 5)
3

= 10,3) + 3(w(i,3) + 010, 5) + i) @)

Let, vo + v; + v, = +/3V,. Then, as mentioned before, sum of independent Gaussian
processes produces another Gaussian process. Hence, V5 is a unit-variance zero-mean white

Gaussian noise, and (4.7) can be rewritten as

Xa(i,5) = I(4,7) + 0"Va(i, j) (4.8)

24

where ¢’ = % » and Xo(i,5) =

wo(i,j)+x1g,j)+x2(i’j) is the estimated value at the pixel

position (4, j) of the third frame. Proceeding in a similar manner, it can be easily shown

that, if the first r frames are considered for the reduction of noise in the r**frame z,_; using
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the sample mean filter, the estimated r** frame can be expressed as
.o . o .
Xr-—l(%]) = I('La]) + —\/—_r‘/r—l(z:]) (49)

showing that the standard deviation of the noise is decreased by a factor 1/r. Hence, it is
desirable to include as many previous frames as possible for the temporal estimation. It
is evident from (4.9) that the reduction in the noise variance is proportional to the number
of frames considered. But, this involves the storage of all the previous frames being con-
sidered and a heavy computation needed for the motion compensation required among the
different frames.

We now consider the temporal scalar Kalman filter used in [40], given by the following
equations:

Initialization:

fo|—1(i,j) = x0(4,5)

£o-1(6,7) = VAR[zo — Io] = VAR(no) (4.10)

Measurement updates:

gn[n—l(i:j)
§nin-1(4,J) + Rn

A A A

Ion(ir7) = Jogo-100,3) + Ka(iy 3) (06 ) = Fains6, )

gnln(iaj) = gnln—l(i’j)"Kn(i-j)fnln—l(i7j) (4.11)

Kn(i,5)

Time updates:

A ~

In+1|n(iaj) = Inln(ZaJ)
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In the above equation, R, is the variance of the noise in the (n + 1) frame, and Q,,(4, j)
the variance of the difference between the n* frame and the (n + 1) frames calculated
within a neighborhood window centered at (4, j) after the interframe motion has been com-
pensated, fn|n is the required estimate of I,,, the (n + 1)”‘ frame of the uncorrupted video,
and &,,(%, §) is the corresponding variance of the error of the estimate calculated within
the neighborhood window centered at (3, j).

Since we have assumed ideal motion compensation, the value of @, (2, ) will be zero
at every update. Thus, the measurement and time updates given respectively by (4.11) and

(4.12), reduce to the following simplified form:

| &n1(i,5)
Balod) = e G + '
Io(id) = Inalid) + Kn(6,9) (2(0,5) = s (3,
fﬂ(l’]) = €n—1(i>j) - Kn(za])gn—l(z’]) (4.13)

where I, is the required estimate of I,,, and &,(¢, j) the variance of error of the estimate
within the filter window. Let us consider the first two frames, i.e., when n = 1. Then
I,_1 = zo. Also, &n-1(1,7) (&o(3, 7)) is assumed to be equal to o2, the variance of the
noise. It can be easily seen that the value of K, (i, j) equals % Thus, when the first two
frames are considered, using (4.13), we get

zo(1,5) + 71(4, J)
2

Birg) = 206, 9) + 5 (1(6,5) = 20(6,)) = = X65) @19

and
51(1,]) — 50(17]) — %60(2,]) = %60(%]) = %o’2

Thus, &,(%, ) becomes half the original noise variance. Since we have assumed that the
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AWGN corrupting all the frames have the same variance, R, will be equal to o2, the noise
variance. Thus, by substituting the value of £;(%, j) and R; in the expression for K, (i, j)

in (4.13), we get K5(i, j) = 5. Thus, using (4.13), we get

hiig) = h3)+5(6,9) - B, 5)
CL'O(Z,]) +-T1(7/,j) 1 .. .’170(?,,]) +.’L’1(’I,,])
- 2 * 5(””2(”7) B ) )
= = X5(i, ) (4.15)

.’L'()('L,]) + Il(%]) + xZ(l;j)
3

It can be observed that (4.14) and (4.15) are equivalent to (4.5) and (4.7), respectively.
If the temporal 1D scalar Kalman filter is further extended to 7 frames; following the same
procedure used as above it can be shown that I,_1 (¢, j) = X,_1(4, ), where X,_;(i, 5) is
given by (4.9). Hence, the Kalman filter gives the same reduction in the noise variance as
that yielded by the sample mean filter. However, an attractive feature of the 1D Kalman
filter is that at each update, it requires the storage of only two frames and the motion
compensation between these two frames, thus reducing the complexity significantly. It
should be noted that the performance of the Kalman filter in reducing the noise is heavily

dependent on the accuracy of the motion estimation and compensation.

4.3 Fast Filters to Reduce Additive White Gaussian Noise
in Videos

In the literature, most of the filters proposed to reduce the AWGN in videos are motion
compensated filters. They have motion estimation and compensation as an integral part
to tackle the interframe motion. But as mentioned earlier and analyzed in [45], motion
estimation and compensation is a complex process that adds a great deal to the overall
computational load. Thus, it is desirable to avoid this process, when the reduction in noise

is a primary concern.
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In this section, two new filters to reduce the AWGN in videos are proposed based on a
structure, wherein both the spatial and the temporal estimations are first carried out and the
resulting estimates then suitably combined to get the final filtered output. In the proposed
filter structure, spatial filtering is first carried out followed by the temporal filtering. The
motion estimation and compensation process is avoided; instead, a change detection tech-
nique [46, 47] is used to deal with the interframe motion. The temporal filtering done at
each pixel of a frame are weighted depending on the amount of change that has occurred
at that position between consecutive frames. The two proposed filters to reduce AWGN in
videos basically have the same structure, but differ in the way the temporal estimation is

done.

4.3.1 Proposed Filter Structure

Let the frames of a noisy video signal a be represented by

ap = by + 1, (4.16)

where n gives the frame number with n > 0, b is the uncorrupted original signal (frame)

and 7 is the AWGN with zero mean. Figure 4.1 shows the proposed filter structure.

'

| Spatial Temporal Adaptive Combination
Estimation | » Estimation | o of Estimates
L] T N *

5:

-1

by

Figure 4.1: Basic structure of the proposed filters

In Figure 4.1, 8;'; signifies the spatial estimate of b, 13; the spatiotemporal estimate of
b, and 137, the final estimate of b,,. An edge-adaptive Wiener filter is applied to the frame
under consideration, to get the spatial estimate of the uncorrupted signal. This Wiener filter

is a pixel-wise adaptive filter based on the statistics estimated from a local neighborhood
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of each pixel. Once the noise reduction is achieved by exploiting the spatial correlation in
the frame, temporal filtering is carried out on the spatial estimate to take advantage of the
temporal correlation existing between successive frames. We now introduce two kinds of
temporal filters:

1. Temporal weighted Kalman filter:

Here, a 1D scalar Kalman filter is applied along the temporal direction. The 1D Kalman
filter is similar to that given in [40] and discussed in Section 4.2; however, the filter is
applied on the frame as a whole and the update equations are weighted according to the
motion at each pixel detected by employing a suitable change detection technique.

2. Temporal weighted running average filter:

In this case, a 1D running average filter is applied along the temporal direction. The
update equations of the 1D running average filter are weighted according to the motion
detected at each pixel using the change detection technique. While computing the running
average, these update equations are designed so as to give a greater importance to the
immediate previous frame than that given to the other previous frames.

An adaptive combination of spatial and the spatiotemporal estimates is done to make the
final estimate of the uncorrupted video, as shown in Figure 4.1. The adaptive combination
is based on the variance of the noise, the variance of the interframme motion and the size of
the frame. A detailed explanation of the spatial estimation, spatiotemporal estimation and

the their adaptive combination is given in the next few subsections.

4.3.2 Spatial Estimation

The spatial estimation is done using an adaptive filter, which uses a pixel-wise adaptive
Wiener method based on the statistics estimated from a local neighborhood of each pixel.
This filter is effective in preserving edges and does total smoothing when no edge is present.

Consider the noise model given in (4.16). The spatial Wiener estimate (33) for any frame is
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given by [7]
2 2

06,9) = 1+ T—5—(ali, ) ~ ) (@.17)

where

H = - Z n17n2

S
1 2 n1 ,'an)\

2 2
o = — E *(ng,m9) —

nl M2EA

i=1,23....5 j—LZ&“q&

In the above S; X S, is the size of a frame, A represents all the pixel positions within a filter
window of size s; X sy and v represents the standard deviation of the corrupting AWGN.
The local statistics employed are estimated using the elements within the filter window and
v is estimated over a frame using formula, v = 1.483MAD, where MAD is the median of
the absolute deviations [17]. For convenience a variable 3(i, j) is sometimes denoted by

(3% henceforth in this chapter.

4.3.3 Spatiotemporal Estimation

In this subsection, we describe the two proposed temporal filters, namely, the 1D weighted
scalar Kalman filter and the 1D weighted running average filter. As shown in Figure 4.1,
frames that have passed through the spatial filter are considered for temporal filtering. It
is to be noted that the temporal filters proposed are filters with low complexity and hence
faster, as they do not use motion estimation and compensation. Instead, the filters use a
change detection technique and work on the frame as a whole and not on its blocks. A nor-
malized difference between the spatial estimate of the current frame and the spatiotemporal
estimate of the previous frame is used as a measure of motion. We use the symbol nrm[A]
for the normalization of the elements of the array A with respect to the largest element and

VAR|B] for the variance (normalized with respect to the maximum greyscale value, i.e,
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255) of B.

4.3.3.1 Temporal Weighted Kalman Filtering

The equations of the 1D scalar Kalman filter are modified by using weights that are based

on the value of the measure of the interframe motion using the change detection technique

mentioned earlier. This modified Kalman filter works on the frame as a whole rather than

on its blocks. The resulting equations of the weighted Kalman filter are given as follows:

Initialization:

bh_1(ind) = 3,9
-1 VAR [ao — bo] = VAR 1] (4.18)
Measurement updates:
R, = VAR[n,]
dy nm(85 (3, 5) — b1 (3, 5)]
y ) &9 +R, y
Wi = -al)+ () @)
£n|n—1 255
j
&1 T Bn
bon(ind) = (1= K2) - (Blyna(6,9)) + (K - (B33, 9))
Eln = Gy — (KD) - (€0 (4.19)
Time updates:
Q. = VAR[d,)]
Bﬁl+1|n(l7.7) = B:ﬂn(Z)])
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In the above, IA)fLIn and &, are respectively the spatiotemporal estimate and the estimation
error matrix corresponding to the (n + 1)!* frame of the uncorrupted video, R, is the
variance of the noise corrupting the (n + 1) frame. As given in (4.18), the initial value
of the spatiotemporal estimate is set equal to the spatial estimate of the first frame. The
initial value of all the elements of the estimation error matrix is set equal to the variance
of the noise in the first frame. The elements of the matrix d,, has values in the range (0,1)
with O signifying no motion at the pixel and 1 signifying maximum motion. These values
are used to define the weight matrix W, which is used to carry out the spatiotemporal
estimation. The term z—ég, signifying the minimum greyscale value normalized with respect
to the maximum value, is used in the expression for W, to ensure the stability of the system
represented by the expressions in (4.19). As a result, the elements of matrix K, will always
be less than unity, i.e., K7 < 1.

Let the standard deviation of the noise corrupting the signal at the input of the temporal
filter be v;. Let us consider a factor A that gives the reduction in noise variance achieved
by carrying out the temporal estimation. Let the video signal be time invariant, in which
case we have d,, = 0. Now, when d,, = 0, (4.19) and (4.20) would be essentially same as
the update equations given in (4.13). As shown in Section 4.2, the standard deviation of the

noise reduces to A - v;, where the value of A is given by

1
vn+1

A= @.21)

where n > 0 is the frame number. It is evident from (4.21) that for a time-invariant video
signal, A — 0 as n — oo.

Next, a comparison of the proposed weighted 1D scalar Kalman filter represented by
(4.18), (4.19) and (4.20) with the Kalman filter proposed in [40] given by equations (4.10),
(4.11) and (4.12) is presented.

The first difference is that the proposed weighted 1D scalar Kalman filter work on
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the whole frame once, whereas the Kalman filter proposed in [40] works on each pixel
of the motion compensated frame considering a small neighbourhood window around it.
Furthermore, in (4.12), the time updates are obtained using the value of (), calculated
from all the elements in the filter window, which might not give an accurate measure of
the motion corresponding to that particular pixel. In the proposed Kalman filter, ), is
calculated using all the elements of the frame. Further, a weight matrix W,,, depend on the
interframe motion corresponding to each pixel is introduced. The measurement and time
update equations corresponding to the variance of the estimation error of the Kalman filter

proposed in [40] are given in Section 4.2. They are

é:jn = é.:jn—l_Kriii :len—l
i = &0+ QY (4.22)

Combining the two expressions in (4.22), we get

&3, = &7 - Ki¢d +Q7 ., - KIQI, (4.23)

nin n—1|n—1 n—1jn-1

The corresponding expression for the proposed Kalman filter for each pixel can be obtained

using (4.19) and (4.20) and is given by

€= € 0~ KIWIED  + QUL - KEWIQL, 429

nin n—1|n—1

A comparison of (4.23) and (4.24) reveals the fact that the amount of temporal filtering
applied is made adaptive to the motion at each pixel in the case of the proposed Kalman

filter.
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4.3.3.2 Temporal Weighted Running Average Filter

It is evident from (4.19) that the proposed 1D Kalman filter gives a weightage to all the
previous frames depending on the corresponding values of fffln and d¥. Intuitively, this
might make the filter sensitive to large interframe motion. In this subsection, we present
another temporal filter that gives a greater weightage to the immediate previous frame and
successively less weights to the other previous frames. Intuitively, this might make the
filter less sensitive to fast motion and avoid the accumulation of error. This proposed filter
is a 1D running average filter, where the change detection technique used is the same as
the one used for the proposed 1D Kalman filter. The corresponding update equations are as
follows

Initialization:

bt1(3, 5) = b3 (i, 4) (4.25)

Updates:

d? = nrm[b (4, 5) — b, (4, )]
m 14+1—d9
b (i,5) = b5, 7) (4.26)

In the above equations, IA)tn is the spatiotemporal estimate of the (n + 1)** frame of the
uncorrupted video. The initial value of the spatiotemporal estimate is set equal to the
spatial estimate of the first frame.

We now derive an expression for A introduced in the previous subsection for the 1D
weighted running average filter. Again, we assume that the video is time invariant, i.e,
d, = 0. The signal corrupted by the AWGN at the input of the temporal filter is modelled

as
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A

V¥ =b+krk=b+vw 4.27

where v, is the standard deviation of the noise x, while w is a zero-mean unit-variance
noise. Now, let us consider the first three input frames 35, 13{ and 35 to the temporal filter.
Let (7, j) represent the position of a pixel in a frame. Writing the expressions for be, I;i and

Bg in the form given by (4.27), we get

B5(i,7) = bo(i, ) + viwoli, §)
I;i(l,j) = bl(iaj)+vtwl(i,j)

b3(6,5) = ba(3,5) + viwa(i, §) (4.28)

Since we have assumed the variance of the noise corrupting each frame of the video to be
the same and the video to be time invariant, we get bo(%,j) = b1(z,7) = ba(3,5) = b(s,7)
and d,, = 0. Hence, from (4.26) when only the first two frames are considered, we get the
spatiotemporal estimate to be

166,5) = BODEICI _ i 5y 4 2, 5) + e 3,)

or
B (i, 5) = b(i, J) + %(A’(z‘,j)) 429)

where A’ is a unit variance noise and v/2A’ = (wy + w;). If we now consider b and the
third frame B;, we get the running average to be

i g) = LIBT3y 4 % (o) + enti))

which reduces to

117



where A is a unit variance noise and %@A = (%A’ + w3). From (4.30), A = (%)

As we keep augmenting frames in a similar manner the successive values of A from the

first frame onwards is given by 1, %, (1+4‘/§) , <5;\/‘/§§) , (5+392‘/§> and so on. The value of

A at the (n + 1) frame may be written as

1 n=>0
A= L3 (VA 4.31)
—L—(ﬁ)h_z n=123" -

Let us now consider the second expression in (4.31), it can be rewritten as

n—1

2 q
A==yt 21 =123 - (4.32)
"  (g— 1)~

where ¢ = 2/2. 1t is evident from (4.32) thatas n — oo, A — ﬁ = (.5469. Com-
paring this with that of the one obtained for A given by (4.21) corresponding to proposed
1D Kalman filter, it can be seen that as successive frames of a video are considered, the
reduction in noise variance of the proposed 1D running average filter is not as much as that
in the proposed 1D Kalman filter, under the assumption that the video is time invariant. In

fact, there is no appreciable reduction in the noise variance after 5 or 6 frames have been

used for the 1D running average filter.

4.3.4 The Final Estimate

An adaptive combination of the spatial and spatiotemporal estimates to get the final filtered
output is presented in this subsection. A novel criterion is used to determine whether the

spatiotemporal estimate should be weighted more than the spatial estimate or vice versa.
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The following equation shows the proposed method of combining the estimates

K2VAR|[d,] bere VAR[7,]

1ig RS (s
% = gvar@ I+ VARl 7t RIVARIL + VART

-B4(5,5) (433)

where K = %ﬁﬁl, by, the estimate of the (n + 1)** frame of the uncorrupted video.
In the combination of the spatial and spatiotemporal estimates, less weightage is given to
the spatiotemporal estimate when the variance of the matrix d,, representing the interframe
motion is high, since in this case the error to the spatiotemporal estimation would be large.
Also, less weightage is given to the spatial estimate when the noise variance is high, since
in this case the error to the spatial estimation would be large. The factor K associated with
VAR|[d,,] has been introduced to take into account the size S; x So of the frames, which
is also the size of the d,, matrix. The figure 352 x 288, which represents the size of a CIF

format video frame, is used to determine the value of K.

4.4 Performance of the Various Filters in Reducing AWGN
in Videos

In the previous section, we have proposed two filters based on the structure given in Figure
4.1 for reducing AWGN in videos. Both these filters use the edge-adaptive Wiener filter
for the spatial estimation, while the temporal estimation is carried out using either the
proposed 1D weighted scalar Kalman filter or the proposed 1D weighted running average
filter. These two filters will henceforth, be referred to as Wiener-weighted Kalman filter
and Wiener-weighted running average filter, respectively.

In this section, the performance of the proposed filters is studied and compared with
that of a few other existing filters. The existing filters considered for comparison are as
follows:

(1) 3D a-trimmed filter [35]
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(2) 3D K-nearest neighborhood (Knn) filter [35]

(3) 3D linear minimum mean square error (LMMSE) filter [48]

(4) 3D adaptive weighted average (AWA) filter [39]

(5) Joint Wiener and Kalman estimation (Wiener-Kalman filter) [40]

(6) Joint Hadamard transform and Wiener estimation (Hadarmard-Wiener filter) [41]

(7) 3D rational filter [38]
Except for the last one, all the above filters are motion compensated filters. In the process of
motion estimation and compensation the motion between the frames is first estimated, and
the estimate is then used to carry out the compensation. The motion estimation technique
used in this chapter for the motion compensated filtering is the exhaustive block matching
algorithm (EBMA) [8].

We use the peak signal to noise ratio (PSNR) to quantify the amount of noise corrupting

a video. The PSNR is given by

2
PSNR = 10log w—g‘% dB (4.34)

e

where ¥, is the peak (maximum) intensity value of the video signal and ag is the MSE

between the original and the corrupted signals, given by

ol = % > @(m,n, k) = y(m,n, k) (4.35)

k mmn

In 4.35, ¢ and ~y are respectively the intensity values of the corrupted and original videos,
and J is the total number of pixels in either video.

Figures 4.2-4.5 show the qualitative performance of the various filters. Each figure
shows an original frame (or field) of the video, the corresponding frame (or field) corrupted
by the AWGN and the ones recovered using the various filters. The original videos consid-
ered are the ‘Miss America’, ‘Flower Garden’, ‘Patrol Car’ and ‘Tennis’ sequences. Two

values of noise power are used to corrupt the original signal so that the input to the filters

120



have PSNR values of 20 dB and 25 dB.

From these figures, it can be seen that the motion compensated filters reduce the noise
effectively, but tend to blur the edges present in the frames (or fields) of the video. This is
due to the fact that perfect motion compensation estimation and compensation cannot be
achieved. Although the 3D rational filter does not blur the edges, it leaves behind significant
amount of noise at both the homogeneous and edge regions. As is evident from the figures,
the two proposed filters perform equally well in reducing the noise effectively, and in not
blurring the edges. Thus, on a qualitative basis, it may be concluded that the proposed filters
give the best results in reducing AWGN when compared to the various filters considered.

Tables 4.1 and 4.2 give the quantitative results of the various filters in reducing AWGN
in videos when the input has PSNRs of 20 dB and 25 dB, respectively. The original videos
considered in the tables are the ‘Miss America’ (MA), ‘Flower Garden’ (FG), ‘Patrol Car’
(PC), ‘Tennis’ (T), ‘Coast Gaurd’ (CG) and ‘Susie’ (S) sequences. The improvement in
PSNR (PSNRIi), that is the difference between the PSNRs of the recovered and corrupted
videos, obtained by applying the filters to the corrupted frames (or fields) is given in these
tables. The PSNR of the recovered video is calculated using (4.34), where 9 is the recov-
ered video.

The 3D LMMSE filter seems to give a slightly better performance than the proposed
filters in videos such as ‘Coast Gaurd’ sequence and ‘Flower Garden’, wherein there are
large high frequency components. On the other hand with the sequences like ‘Miss Amer-
ica’ and ‘Susie’ which have very little motion, the Hadamard-Wiener filter has a slight edge
over the proposed filters. However, on an overall basis it is evident that the performance of
the proposed filters consistently is about the same as or better than that of the other filters.
It is found that in most of the cases the proposed Wiener-weighted running average filter
has a better performance than the proposed Wiener-weighted Kalman filter. This could be

due to the fact that the latter is more sensitive to motion between the frames.
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(a) Original ‘Miss america’ frame no.5

(b) Frame corrupted by AWGN (PSNR=20 dB)

122



(c) Frame recovered by 3D rational filter

(d) Frame estimated by the proposed Wiener-weighted running average filter
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(e) Frame recovered by the proposed Wiener-weighted Kalman filter

(f) Frame recovered by 3D alpha trimmed filter
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(g) Frame recovered by 3D Knn filter

(h) Frame recovered by 3D LMMSE filter
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(i) Frame recovered by 3D AWA filter

(j) Frame recovered by Wiener-Kalman filter
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(k) Frame recovered by Hadamard-Wiener filter

Figure 4.2: Qualitative performance of the various filters using the ‘Miss America’ test
sequence
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(c) Field recovered by 3D rational filter

—

A .
-

(d) Field estimated by the proposed Wiener-weighted running average filter
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(k) Field recovered by Hadamard-

Figure 4.3: Qualitative performance of the various filters using the ‘Flower Garden’ test
sequence
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(a) Original ‘Patrol car’ field no.3

(b) Field corrupted by AWGN (PSNR=20 dB)
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(c) Field recovered by 3D rational filter

(d) Field estimated by the proposed Wiener-weighted running average filter

(e) Field recovered by the proposed Wiener-weighted Kalman filter
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(f) Field recovered by 3D alpha trimmed filter

(g) Field recovered by 3D Knn filter

(h) Field recovered by 3D LMMSE filter
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(i) Field recovered by 3D AWA filter

(j) Field recovered by Wiener-Kalman filter

(k) Field recovered by Hadamard-Wiener filter

Figure 4.4: Qualitative performance of the various filters using the ‘Patrol Car’ test se-
quence
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(a) Original ‘Tennis’ field no.9

(b) Field corrupted by AWGN (PSNR=25 dB)

136



(c) Field recovered by 3D rational filter

(d) Field estimated by the proposed Wiener-weighted running average filter

(e) Field recovered by the proposed Wiener-weighted Kalman filter
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(f) Field recovered by 3D alpha trimmed filter

(g) Field recovered by 3D Knn filter

(h) Field recovered by 3D LMMSE filter
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(i) Field recovered by 3D AWA filter

(§) Field recovered by Wiener-Kalman fiiter

‘‘‘‘‘‘

(k) Field recovered by Hadamard-Wiener filter

Figure 4.5: Qualitative performance of the various filters using the “Tennis’ test sequence
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Table 4.3 gives the time required by the filters to process a frame (or field) of a video
as a measure of their performance. The original videos considered are the same as in
the previous two tables. The simulations were carried out using MATLAB on a windows
machine with a 2.5 Ghz processor. It is seen from the Table 4.3 that the proposed filters
are as fast as the 3D rational filter, that is known to be real-time implementable, and much
faster than the other six filters. This is due to the fact that the process of motion estimation
and compensation needed for these six filters is not required for the 3D rational filter or the
proposed filters.

Figures 4.6-4.8 show the PSNR curves for the various noisy videos and those recovered
by the different filters. The original videos considered in these figures are respectively
the ‘Patrol Car’, ‘Flower Garden’ and ‘Susie’ sequences. The PSNR is calculated for each
frame (or field) of the video and plotted against the frame (or field) number to get the PSNR
curves. It is evident that the performance of the proposed filters is about the same as that

of the others
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TABLE 4.1

PSNRI OBTAINED BY USING THE VARIOUS FILTERS TO REDUCE AWGN IN VIDEOS
WHEN THE INPUT TO THE FILTER HAS A PSNR OF 20 DB

Sequences— MA CG FG PC SU TN
[CIF] | [CIF] | [PAL] | [PAL] | [PAL] | [PAL]
Filters | dB dB dB dB dB dB
3D aTrimmed 11.27 | 1.336 | 2495 | 3.5 | 10.756 | 3.431
filter
3D Knn 8.825 [ 3.217 | 4208 | 5.057 | 8.745 | 4.98
filter
3D LMMSE 11.114 { 3921 | 499 | 5984 | 11.385 | 7.396
filter
3D AWA 10.763 | 2.095 | 2.799 | 3.903 | 10.535 | 4.59
filter
Wiener-Kalman 11.625 | 4473 | 3.929 | 6.807 | 11.265 | 6.338
filter
Hadamard-Wiener | 13.471 | 4.168 | 3.321 | 4.21 | 13.919 | 5.053
filter
3D Rational 7.612 | 1.06 | 1.065 | 3.508 | 7.793 | 3.756
filter
Wiener-weighted 12.258 | 4.162 | 5.59 | 8.104 | 11.643 | 8.593
running average filter
Wiener-weighted 12.363 | 3.996 | 5.44 | 8.052 | 11.973 | 8.445
Kalman filter
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TABLE 4.2

PSNRI OBTAINED BY USING THE VARIOUS FILTERS TO REDUCE AWGN IN VIDEOS
WHEN THE INPUT TO THE FILTER HAS A PSNR OF 25 DB

Sequences— MA CG FG PC SU TN
[CIF] | [CIF] | [PAL] | [PAL] | [PAL] | [PAL]
Filters | dB dB dB dB dB dB
3D oTrimmed 8.248 | -3.682 | -2.406 | -1.386 | 7.467 | -1.433
filter
3D Knn 7.812 | -1.221| 0.178 | 1.18 | 7.437 | 0.988
filter
3D LMMSE 9422 | 1.679 | 3.223 | 4.261 | 9.726 | 5.276
filter
3D AWA 7.765 | -2.936 | -2.183 | -0.999 | 7.392 | -0.226
filter
Wiener-Kalman 10.187 | -0.248 | -0.219 | 3.733 | 9.533 | 2.722
filter
Hadamard-Wiener 11.366 | -0.653 | -1.514 | -0.664 | 11.671 | 0.194
filter
3D Rational 5.791 | -3.446 | -3.482 | -0.571 | 5.98 -0.29
Filter
Wiener-weighted 10.466 | -0.509 | 2.027 | 5.319 | 10.382 | 5.893
running averaging filter
Wiener-weighted 10.381 | -0.713 | 1.906 | 5.241 103 | 5.794
Kalman filter

142



TABLE 4.3

TIME TAKEN BY THE VARIOUS FILTERS TO PROCESS A FRAME (OR FIELD) IN ORDER
TO REDUCE AWGN IN VIDEOS

Sequences— MA CG FG pPC SU TN
[CIF] | [CIF] | [PAL] | [PAL] | [PAL] | [PAL]
Filters | Sec Sec Sec Sec Sec Sec
frame | frame [ _field field field field
3D oTrimmed 5.17 394 | 1092 | 11.135| 9.06 | 10.395
filter +2Cr | +2Cr | +2P7 | +2Pr | +2P7 | + 2PT
3D Knn 1897 | 15.75 | 40.08 | 41.04 | 33425 39.61
filter +2C7 | +2C7 | +2Pr | +2P7 | +2P7 | + 2P
3D LMMSE 21.11 | 16.83 | 42.63 | 43.035} 35.6 | 4297
filter +2Cr | + 2CT +2Pr | + 2PT +2P7 | +2Pp
3D AWA 6.30 5.27 14.8 14.9 12.79 | 15.285
filter +2Cr | +2Cr | +2P7 | +2P7r | +2P7 | +2Pr
Wiener-Kalman 3.2 2.74 | 6.575 | 6.575 5.86 | 6.595
Filter +Cr | +Cr +Pr +Pr +Pr +Pr
Hadamard-Wiener 51.11 | 47.07 | 101.24 | 102.11 | 95.59 | 97.75
filter +2Cr { +2Cp | + 2Py | +2Pr | +2P7 | + 2P
3D Rational 3.29 2.67 | 6905 | 7.395 5.72 | 7.055
filter
Wiener-weighted 34 2.75 6.74 6.63 59 6.64
running averaging filter
Wiener-weighted 3.13 2.69 | 6.565 | 6.545 | 5.835 | 6.515
Kalman filter

NOTE:
Cr = 210 seconds/frame stands for time required for motion estimation and compensation
in a CIF format video.

Pr = 575 seconds/field stands for time required for motion estimation and compensation
in a PAL format video.
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Figure 4.6: PSNR curves for various video filters using 9 consecutive frames of the ‘Patrol
Car’ sequence
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Figure 4.7: PSNR curves for various video filters using 9 consecutive frames of the ‘Flower
Garden’ sequence
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Figure 4.8: PSNR curves for various video filters using 9 consecutive frames of the ‘Susie’
sequence

4.5 Summary

In this chapter, we have proposed two novel fast filters to reduce AWGN in videos. These
filters consists of a spatial estimation part and a temporal estimation part along with a
change detection technique to detect the interframe motion, thus avoiding the complex
method of motion estimation and compensation. The final estimate is obtained by an adap-
tive combination of the spatial and the spatiotemporal estimates of the uncorrupted signal.
A detailed study of the quantitative and qualitative performance of the proposed filters in
reducing AWGN in videos has been carried out and compared to that of other existing fil-
ters. It has been shown that the proposed filters outperform the others both in terms of the

noise reduction capability and the processing time.
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Chapter 5

Reduction of Speckle in Videos using an

Unbiased Homomorphic System

5.1 Introduction

Speckle corruption is unavoidable in videos which are generated using coherent imaging
systems. As mentioned in Chapter 4, such systems are used to generate videos for military,
commercial and medical applications. In this chapter, the problem of reducing the speckle
in videos is considered [49, 37]. To the best knowledge of the author, such a problem has
been considered only in [41] and [50]. The authors in [41], have dealt with the problem of
reducing the noise that could be signal independent or signal dependent. They have shown
that in either case the Hadamard transform could be applied in the temporal direction to
the corrupted signal to remove the correlation between the successive frames, followed by
the use of the edge-adaptive Wiener filter to smooth the frames. In [50], a homomorphic
system has been used to reduce the speckle from a video. After the forward homomorphic
transform, the discrete cosine transform is applied in the temporal direction followed by the
application of the edge-adaptive Wiener filter to each frame. Both these schemes work on

the motion compensated frames and use a motion estimation and compensation technique.
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In this chapter, we propose a fast system to reduce the speckle in videos. The speckle
corruption in a frame of the video is considered to be independent that of other frames.
As speckle is a type of multiplicative noise, the structure of the unbiased homomorphic
system proposed in Chapter 2 is used. According to the properties of speckle presented
in Chapter 3, the problem of speckle reduction in a video is essentially a problem of re-
ducing the AWGN after the forward homomorphic transform, where the speckle noise is
assumed to be white. We use the structure of the fast filters proposed in Chapter 4 (see
Figure 4.1) to reduce the AWGN. The spatial filter applied to each frame is the MM-filter
proposed in Chapter 3. We use the 1D weighted running average filter that was introduced
in Chapter 4 as the temporal filter. The weights of this running average filter is based on
the interframe motion, which is detected using a change detection algorithm. It should be
noted that the proposed filter has a low computational complexity, since motion estimation
and compensation is avoided. This low complexity of the filter might facilitate its real-time
implementation, which is required in cases such as in coherent imaging system mounted
on an airborne vehicle. Finally, the backward homomorphic transform is applied followed
by the bias compensation proposed in Chapter 2 to obtain the unbiased estimate of the
uncorrupted signal.

The organization of the chapter is as follows. In Section 5.2, the proposed system to
reduce speckle in videos is presented. In Section 5.3, the performance of the proposed

system is studied and compared with that of the schemes presented in [41] and [50].

5.2 A Technique to Reduce Speckle in Videos

When images are produced by a coherent imaging system at certain intervals of time, it
forms an image sequence, i.e., a video. In general, it is assumed that the interval is high
enough that we can assume the speckle corruption in any frame is uncorrelated with that of

any other frame [51]. In this section, an algorithm to reduce speckle in videos is proposed.

147



Each frame in the video is corrupted by a speckle (lognormally distributed multiplicative

noise) and the speckle corruption in a filter window is modelled as
as(i) = 6 - ns(i) 5.1

where 7s(7) is a unit-mean lognormally-distributed white noise, 8 the uncorrupted original
signal and as(2) the corrupted signal. The first operation is to perform the natural logarith-
mic transform of the observed corrupted signal. Applying natural logarithm to both sides

of (5.1), we have

y(i) = = +n(7) (5.2)

Equation (5.2) is equivalent to (2.36) given in Chapter 2, where z = In 6 + m, m being the
mean of In7ns(¢). The zero-mean white noise 7(z) has a Gaussian distribution. The MM-
filter proposed in Chapter 3, which reduces noise effectively without blurring the edges, is
used as the spatial filter applied on the video frames to get the spatial estimate of z. The

spatial estimate is given by

2 =Y (i) (5.3)
j=1

where j gives the position of an element in the array obtained by arranging the r samples
of y within the filter window in an ascending order, i.€., y) < y@) < ...... < Y and vy
is an array of r elements, which are the coefficients of the MM-filter. The coefficients of
this MM-filter are based on the Criterion 1 presented in Section 3.3.1, as it is the simplest
of the three criteria and results in a low complexity filter. Thus, the coefficients are given

by
— A Ymean + ﬁf)lmedian
o+

54)
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where Y,eqn represents the coefficients of the sample mean estimator, Ymegian those of the
sample median estimator and the weights « and (3 are given by
9 1
a=0 andﬁ:;——l (5.5)
In (5.5), 02 is the estimated variance (normalized with respect to the maximum greyscale
value, 255) of the Gaussian noise in a frame.
Next, the spatially filtered frames are processed using a temporal filter. Hence, the
estimate obtained after the temporal filtering is the spatiotemporal estimate. The temporal
filter considered here is the 1D weighted running average filter introduced in Section 4.3

and repeated for convenience. The update equations of the filter are given by

Initialization:
4(3,5) = 25(4, §) (5.6)

Updates:

dn(']'v]) = mm[:%ft(i,j)_"i%——l(iaj)]
(1 —dn(4,7)) - (2h_,1(1, 7)) + 5,03, 5)
141~ dn(z',j)
T (6,3) = £4,(i,7) (5.7)

#(1,5) =

where 22 denotes the spatial estimate of the (n+ 1)** frame, ¢, the spatiotemporal estimate
of the (n + 1)**frame, and nrm[A] stands for the normalization of the elements of the array
A with respect to the largest element.

Next, the criterion described in Section 4.3.4 is used to adaptively combine the esti-
mates % and 2 to obtain the final estimate Z, of z,. The combination is done based on

the amount of interframe motion present and the amount of noise corrupting the frame. The
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estimate Z,, is given by (4.33) and repeated below:

K2VAR[d,)]

&n(i,7) = K2VAR[d,,] + VAR[,]

K2VAR[d,] + VAR[n,]

Ba(1,9) + Bn(i,5) (5.8)
where K = @M@, Ny, is the AWGN corrupting the (n+1)** frame, S1 x S2 is the size of
the video frames, and VAR(A) stands for the variance of the random variable A normalized
with respect to the maximum greyscale value of 255.

Once the estimate Z,, is obtained, the estimate of the original signal 6,, the (n + 1)t
frame of the video, can be obtained by applying exponentiation. But, this estimate would
have a biased mean as explained in Sections 2.5.2 and 2.5.3. Hence, the bias compensation
technique suggested in Section 2.5.3 is used to get the unbiased estimate 8, of 0,. The

overall algorithm to reduce speckle in videos is given in Figure 5.1.

5.3 Performance Analysis and Discussion

In this section, the performance of the proposed filter is studied and compared to the
Hadamard-Wiener filter and the homomorphic DCT-Wiener filter given in [41] and [50],
respectively. These two existing filters are motion compensated ones and as in Chapter
4, the motion estimation technique used here is the exhaustive block matching algorithm
(EBMA) [8]. We use the ENL described in Chapter 3, to quantify the amount of speckle
corrupting a frame of a video given as a input to the filters.

The signal to mean square error ratio (SMSER) is also used to measure the amount of

speckle corruption in a video. The SMSER of a video is given by

2

SMSER = 10 log avg dB (5.9)
where
1
2 _ 2
% =7 Xk: ; (W(m,n, k) —v(m,n,k)) (5.10)
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Figure 5.1: The proposed algorithm to reduce speckle in videos
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Yooy = %ZZ (¥(m,n, k))? (5.11)

k. mn
In the above, o2 is the MSE between the original signal y and the corrupted signal v, and
J is the total number of pixels in the video.

Both qualitative and quantitative performance of the various filters are considered in
this section. The quantitative measures used are as follows:

(1) Time taken by the various filters to process a frame of the video.

(2) The improvement in the SMSER (SMSERIi), which is the difference between the
SMSERSs of the recovered and corrupted videos.

Figures 5.2-5.4 present the visual performance of the various filters in reducing speckle.
In these figures, the frames are corrupted by combining the original signal with the speckle
by using pixel-wise multiplications. The original uncorrupted videos considered are a few
almost speckle-free SAR videos which we refer to as the ‘DC south’, the ‘DC north’ and
‘Gibson west’ sequences. Similar results are obtained using videos that are generated by
coherent imaging systems having an unknown amount of speckle, and these are shown in
Figures 5.5 and 5.6.

Table 5.1 gives the time required for processing a frame using the various filters. Tables
5.2-5.4 give the SMSERI results of the various filters in reducing speckle from videos. The
SMSER of the recovered video is calculated using (5.9), where 1 is now the recovered
video. Tables 5.2, 5.3 and 5.4 respectively correspond to the performance of the various
filters when the ENL values of the are 2, 5 and 10.

Figures 5.7-5.9, show the SMSER curves for the various noisy videos and those re-
covered by the different filters. The SMSER is calculated for each frame of the video and

plotted against the frame number to get the SMSER curves.
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(a) Original 'DC south’ frame no.5

(b) Frame corrupted by speckle (ENL=2)
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(c) Frame recovered by the proposed system

(d) Frame recovered by Hadamard-Wiener filter
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(e) Frame recovered by homomorphic DCT-Wiener filter

Figure 5.2: Qualitative performance of the various filters using ‘DC south’ sequence
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(a) Original *DC north’ frame no.6
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(b) Frame corrupted by speckle (ENL=5)

(c) Frame recovered by the proposed system
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(d) Frame recovered by Hadamard-Wiener filter

(e) Frame recovered by homomorphic DCT-Wiener filter

Figure 5.3: Qualitative performance of the various filters using ‘DC north’ sequence
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(a) Original ’Gibson west’ frame no.7

(b) Frame corrupted by speckle (ENL=10)
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(c) Frame recovered by the proposed system

(d) Frame recovered by Hadamard-Wiener filter
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(e) Frame recovered by homomorphic DCT-Wiener filter

Figure 5.4: Qualitative performance of the various filters using ‘Gibson west’ sequence

(a) Frame no.5 of a video captured by a coherent system
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(b) Frame recovered by the proposed system

(c) Frame recovered by Hadamard-Wiener filter
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(d) Frame recovered by homomorphic DCT-Wiener filter

Figure 5.5: Qualitative performance of the various filters using a sequence corrupted by
speckle of unknown ENL

(a) Frame no.7 of a video captured by a coherent system
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(b) Frame recovered by the proposed system

(c) Frame recovered by Hadamard-Wiener filter
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(d) Frame recovered by homomorphic DCT-Wiener filter

Figure 5.6: Qualitative performance of the various filters using a sequence corrupted by
speckle of unknown ENL

TABLE 5.1

TIME TAKEN BY THE VARIOUS FILTERS TO PROCESS A FRAME IN ORDER TO REDUCE
SPECKLE IN VIDEOS

Sequences— DC south | DC north | Gibson west
Filters | Sec Sec Sec
frame frame frame
The proposed homomorphic 5.484 5.524 5.522
MM-weighted running average filter
Hadamard-Wiener 470.771 | 471.802 472.617
filter
Homomorphic DCT -Wiener 137.153 136.74 138.55
filter
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TABLE 5.2

SMSERI OBTAINED BY USING THE VARIOUS FILTERS TO REDUCE SPECKLE IN
VIDEOS WHEN THE ENL OF THE INPUT IS 2

Sequences— DC south | DC north | Gibson west
Filters | dB dB dB
The proposed homomorphic 10.2408 | 10.1168 10.5733
MM-weighted running average filter
Hadamard-Wiener 7.3878 6.0857 6.8178
filter
Homomorphic DCT -Wiener 8.374 7.5345 7.79
filter
TABLE 5.3

SMSERI OBTAINED BY USING THE VARIOUS FILTERS TO REDUCE SPECKLE IN
VIDEOS WHEN THE ENL OF THE INPUT IS 5

Sequences— DC south | DC north | Gibson west
Filters | dB dB dB
The proposed homomorphic 9.7328 9.0204 9.818
MM-weighted running average filter

Hadamard-Wiener 4.4075 2.9502 4.0643
filter

Homomorphic DCT -Wiener 6.5944 5.4522 6.3288
filter

TABLE 5.4

SMSERI OBTAINED BY USING THE VARIOUS FILTERS TO REDUCE SPECKLE IN
VIDEOS WHEN THE ENL OF THE INPUT IS 10

Sequences— DC south | DC north | Gibson west
Filters | dB dB dB
The proposed homomorphic 8.6731 7.6825 8.9481
MM-weighted running average filter

Hadamard-Wiener 1.9273 0.3827 1.6508
filter

Homomorphic DCT -Wiener 5.6407 3.4776 4.8906
filter
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Figure 5.7: SMSER curves for various video filters to reduce speckle using 6 consecutive
frames of the ‘DC north’ sequence
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Figure 5.8: SMSER curves for various video filters to reduce speckle using 6 consecutive
frames of the ‘DC south’ sequence
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Figure 5.9: SMSER curves for various video filters to reduce speckle using 6 consecutive
frames of the ‘Gibson west’ sequence

The performance of the homomorphic DCT-Wiener filter, even though satisfactory,
tends to leave behind noise at the edges. Tables 5.2-5.4 and Figures 5.7-5.9 show that
its performance is consistently below that of the proposed one. Although the performance
of the Hadamard-Wiener filter with respect to noise reduction is satisfactory, it suffers from
the disadvantage that the edges are heavily blurred indicating the filter to be highly sensi-
tive to the errors in motion estimation. It is evident from the various tables and figures that,
on a overall basis, the proposed system outperforms the other two both on qualitative and
quantitative bases

The most attractive feature of the proposed system is its processing speed. It is evident
from Table 5.1, that the proposed system is far ahead in simplicity when compared to the
other two filters. This low complexity of the filter could facilitate its implementation in a

real time environment.
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5.4 Summary

In this chapter, we have proposed a fast unbiased homomorphic system to reduce speckle
in videos. A filter, which uses the MM-filter and the 1D weighted running average filter
for the spatial and temporal estimation, respectively, is used within an unbiased homomor-
phic system to achieve the speckle reduction. A study of the quantitative and qualitative
performance of the proposed system has been carried out and compared to that of the other
existing filters. It has been shown that the proposed system outperforms the others both in

terms of the noise reduction capability and the processing time.
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Chapter 6

Concluding Remarks

6.1 Conclusions

Multiplicative noise corrupting a signal makes the easily implementable linear systems not
suitable for the reduction of such a noise. Nonlinear systems, especially homomorphic
systems where a suitable filter is used between the natural logarithm function and the ex-
ponentiation, have the potential to deal with the multiplicative noise more effectively. The
primary contribution of this thesis has been the development of an order statistics-based
unbiased homomorphic system to reduce multiplicative noise.

First, the sample function weighted order (SFWO) filter has been generalized by relax-
ing the symmetry condition of the probability density function (PDF) of the noise. Then,
this generalized SFWO (GSFWO) filter, whose design is based on the PDF of the multi-
plicative noise, has been used w