NOTE TO USERS

This reproduction is the best copy available.

®

UMI

H2GS;
A Hybrid Heuristic-Genetic Scheduling Algorithm for
Static Scheduling of Tasks on
Heterogeneous Processor Networks

Mohammad Daoud

A Thesis in the
Department of Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of
Master of Applied Science at
Concordia University,
Montreal, Quebec, Canada

December 2004

© Mohammad Daoud, 2004

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04364-4
Our file Notre référence
ISBN: 0-494-04364-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

H2GS; A Hybrid Heuristic-Genetic Scheduling Algorithm for Static Scheduling of Tasks
on Heterogeneous Processor Networks

Mohammad Daoud

The majority of published static scheduling algorithms are only suited to homogeneous
processor networks. Little effort has been put into developing scheduling algorithms
specifically for heterogeneous processors networks. It is easy to prove, using
counterexamples, that the best existing heterogeneous scheduling algorithms [1, 12]
generate sub—optifnal schedules. Hence, there is much room for the development of better

scheduling algorithms for heterogeneous processor networks.

This report presents and tests a novel hybrid scheduling algorithm (H2GS) that utilizes
both deterministic and stochastic approachés to the problem of scheduling. H2GS is a
two-phase algorithm. The first phase implements a heuristic algorithm (LDCP) that
identifies one near-optimal schedule. This schedule is used, together with a small number
of other schedules as the initial population of the second customized genetic algorithm
(called GATS). The GATS algorithm proceeds to evolve even better schedules. The most
important contributions of our research are: (i) the development of a new hybrid
algorithm, which primes a customized genetic algorithm with a near-optimal schedule
produced by a heuristic (LDCP); (ii) The hybrid algorithm succeeds in generating task
schedules with completion times that are, on average, 6.2% shorter than those produced

by the best existing scheduling algorithm, on the same set of test data.

1it

Acknowledgment

First of all, I would like to thank my supervisor Dr. Nawwaf Kharma. It has been a
privilege to work under his guidance. I am grateful for his support, encouragement and
invaluable suggestions during this work.

I am also infinitely grateful for the support and encouragement offered to me by the
HQSF.

Finally, I would like to thank my family for their endless love and support.

v

Table of Contents

Table of Tables..... vi
Table of Figures vii
Chapter 1: Introduction 1
Chapter 2: Problem Description 3
Chapter 3: Related Work 6
3.1. Task Scheduling for Distributed Computing SYStEImL........eovieiiiirireiieneeec e eeee e 6
3.1.1. Heuristic scheduling algovithimsccoccoioiiiiiiiiiiiiii e e 6
3.1.2. Guided random scheduling algOFPIIAINSc.coiiiiioiii ettt 9
3.1.3. Hybrid scheduling algoTithinsc...ccocoiiiiiioiiiiii it 10

3.2. Task Scheduling for DHECS ..ottt et sttt sttt et san e 12
3.2.1. Dynamic level scheduling (DLS) algorithmc..cccocoiiieiiiiiiiiiiiiei e 12
3.2.2. Heterogeneous earliest finish time (HEFT) GIGOTItAm...........c.ccoooviiiioinciniiiciieiccenn e 13
Chapter 4: The Proposed Algorithm 15
4.1, The Longest Dynamic Critical Path (LDCP) Algorithimcooceciiirviineniiicceieee e 15
4.1.1. Task Priorities in DHEGCScccccoiiiiiiitiiiit et 16
4.1.2. The LDCP Algorithm OSSOSO VRO SOV UR TRV 19
4.1.2.1. Task Selection PRASE..........ocii ittt ettt s ettt s 20

4.1.2.2. Processor SEleCTION PRESEc..uiiiiiii e ettt ettt st a et 25

4.1.2.3 Status UPAALE PRASE ...viviieiit et cieteet et ettt se et saab e sbae e ae e e et e e s e et ete st be st ene s anesenteenereerens 26

4.1.2.4. The Proposed LDCP AIZOTIHIN .c...coovioiiiiiiiiiiiienicenr et e cene e s 29

4.2. Genetic Algorithm for Task Scheduling (GATS) ..o e e 30
4.2.1. Schedule ERCOAING ..ot 31
4.2.2. TRIEEQLIZATION ...ttt bt e 33
4.2.3. Fitness EVAIUATION «.......cccooiiiiiimiiiiiii ettt et te ettt ettt et ettt ettt st eaae e s 33
4.2.4. Selection aid ELITISM.........c..cooiiiioieeee ettt ettt et 34
4.2.5. SWAP CFOSSOVET ..c..oiiiiiiii ittt 34
4.2.6. SWAD MULAITON ...t e e 36

4.2.7 Termination CFITETIOMccoioi ettt ettt et e et ae et et ettt eeanea e e nnees 37
Chapter 5: Scheduling Example 38
Chapter 6: Results and Analysis 56
6.1 Performance MEtIICSoiriiiiii ettt ettt ettt e st s ree st e et s e se et e e saesessnenrene 56
0.2 Experimental Set-TP ... et er e sne s e a 58
6.3 Performance RESULLSccociiiiiiiiice ettt ettt et es e st ea et snesr s s eebaeresnene 60
6.3.1 Comparison of Schedule LenGtRS.coccicciriiiiiiiiieit ittt 60

6.3.2 Comparison Of SPEEUDccociiiiiiii i e 65

6.3.2 Comparison Of EffICIENCYcccccuviiiiniiieic ettt ettt 68

6.3.2 Comparison of RUNIING TIMEccoocerimiiiiit ittt ettt 70
Chapter 7: Conclusion and Future Work 72
7.1 COBCIISION ettt et e b b e e b et b e e a e e e smessa e e s e r e eaas 72
T2 FULUIE WOTK oottt e et et e e et e e saeeseasr e nesbmn s ansenn s 76
References 77

TABLE 1:
TABLE 2:
TABLE 3:
TABLE 4:
TABLE 5:
TABLE 6:
TABLE 7

TABLE 8:

Table of Tables

COMPARISON OF AVERAGE NSL WITH RESPECT TO N .eeeiiiviieeieeeeiiiieeee et eeeeeeaaieeeevenaeeseiaeaaans 62
COMPARISON OF AVERAGE NSL WITH RESPECT TO CCR ...ooovvieiiieieie ettt 62
COMPARISON OF AVERAGE NSL WITH RESPECT TO M oot 62
COMPARISON OF AVERAGE SPEEDUP WITH RESPECT TO N cuveeiiiiiitiiiieeeies e ceveeeeneesvees e envseeaneeans 65
COMPARISON OF AVERAGE SPEEDUP WITH RESPECT TO CCR ...ttt 66
COMPARISON OF AVERAGE SPEEDUP WITH RESPECT TO M .v.vveieeeeeiceeeeieeee e eeenn s 66
COMPARISON OF AVERAGE EFFICIENCY WITH RESPECT TO N.uuvveiiiiiiieeeeeiieieeeeriiie s e envveeseivaennns 69
COMPARISON OF AVERAGE EFFICTENCY WITH RESPECT TO CCR ... 69

vi

Table of Figures

FIGURE 1. (A) ADAG THAT REPRESENTS A DISTRIBUTED APPLICATION (B) A COMPUTATION COST MATRIX OF
A DHECS THAT IS COMPOSED OF TWO PROCESSORScctitiitiiiiiiit sttt eiae s st secemneamieeaien e e 4

FIGURE 2. (A) DAG OF A DISTRIBUTED APPLICATION (B) COMPUTATION COSTS ARRAY (C) TASK GRAPH
CONSTRUCTED BASED ON THE COMPUTATION COSTS OF TASKS ON PROCESSOR Py (D) TASK GRAPH

CONSTRUCTED BASED ON THE COMPUTATION COSTS OF TASKS ONPROCESSOR Pj cvvvvevrvvviecreenirercnes 18
FIGURE 3. THE SELECT TASK PROCEDUREccuiiiitiiiottioicectiena e aie et ere et et cesmesamis et smesaesesieesieesacenmcaneenns 25
FIGURE 4. THE ASSIGN TASK TO PROCESSOR PROCEDURE ...cteeuieiieiritireieireinineeseesteeiesessteeeesensensemmeansenes 26
FIGURE 5. THE UPDATE_STATUS PROCEDURE.........citiiiiitiitiiii it ietiaeie s e steestaeeoeeaenanessbeanessbaeseeemneenneesnenenans 28
FIGURE 6. (A) DAGP (B) DAGP | .ottt ettt a etttk eb b b s se e et ease e 29
FIGURE 7. THE LDCP ALGORITHM ..ottt erieetees e erae et eeesaiate e taeatsesmeeeaneasseaseennasaeaeeeanmanneasens 30
FIGURE 8. THE GATS ALGORITHM ..ottt ittt cice et et tee st ssaese e en e e s ee e eeemceemaeeine sinen 31
FIGURE 9. (A) A SCHEDULING EXAMPLE (B} + (C) CHROMOSOME EXAMPLESccvrutererieriirerieneeiereenenerineens 32
FIGURE 10. THE SWAP CROSSOVER OPERATORccimiiiriitiereiettvterreneirtiaeareeseenseseseeneseasessesrsnsenseansenesasssenses 36

FIGURE 11 (A) A DAG OF A DISTRIBUTED APPLICATION (B) A COMPUTATION COST MATRIX OF A DHECS... 38

FIGURE 12. (A) THE SCHEDULE GENERATED BY THE DLS ALGORITHM (SCHEDULE LENGTH = 65.5), (B) THE
SCHEDULE TRACE OF THE DLS ALGORITHM....cocviiiiiiiiiiiiiniiiiiio e iecnne s et siesn e s s aenes 42

FIGURE 13. (A) THE SCHEDULE GENERATED BY THE HEFT ALGORITHM (SCHEDULE LENGTH = 65.5), (B) THE
SCHEDULE TRACE OF THE HEFT ALGORITHMcciiitiiiiiiiiiieiete e seie e teaae e retseae s e s sneeaeaeaeeseeaneeans 43

FIGURE 14. (A) THE SCHEDULE GENERATED BY THE LDCP ALGORITHM (SCHEDULE LENGTH = 64), (B) THE
SUMMARY OF SCHEDULE TRACE OF THE LDCP ALGORITHMcciitiiiiaiieesiiraieeaneasesesiaseeaneessessassenns 44

FIGURE 15 . (A) DAGP AT STEP 1 OF THE LDCP ALGORITHM (B) THE NODES ATTRIBUTES OF DAGP,, AT STEP
1 OF THE LDCP ALGORITHM (C) DAGP,; AT STEP 1 OF THE LDCP ALGORITHM (D) THE NODES
ATTRIBUTES OF DAGP; AT STEP 1 OF THE LDCP ALGORITHM ...eoiviiiieiiieie e ceeeeeeieeeeeeereeeeeeteeeeennnean 44

FIGURE 16. (A) DAGP, AT STEP 2 OF THE LDCP ALGORITHM (B) THE NODES ATTRIBUTES OF DAGP, AT STEP
2 OF THE LDCP ALGORITHM (C) DAGP, AT STEP 2 OF THE LDCP ALGORITHM (D) THE NODES
ATTRIBUTES OF DAGP AT STEP 2 OF THE LDCP ALGORITHM....cccottiimtieiiaenneiaerenaeeeneraeeenaesneeseesenas 45

FIGURE 17. (A) DAGP, AT STEP 3 OF THE LDCP ALGORITHM (B) THE NODES ATTRIBUTES OF DAGP, AT STEP
3 OoF THE LDCP ALGORITHM (C) DAGP, AT STEP 3 OF THE LDCP ALGORITHM (D) THE NODES
ATTRIBUTES OF DAGP; AT STEP 3 OF THE LDCP ALGORITHMcoutiiiitirierteiaeeeeieenieeareeveeeceneeemeenns 46

FIGURE 18. (A) DAGP, AT STEP 4 OF THE LDCP ALGORITHM (B) THE NODES ATTRIBUTES OF DAGP, AT STEP
4 OF THE LDCP ALGORITHM (C) DAGP, AT STEP 4 OF THE LDCP ALGORITHM (D) THE NODES
ATTRIBUTES OF DAGP; AT STEP 4 OF THE LDCP ALGORITHM.....ccocciiiniiiierieiaeeatenecaereeeres e eveeneenens 47

FIGURE 19. (A) DAGP AT STEP 5 OF THE LDCP ALGORITHM (B) THE NODES ATTRIBUTES OF DAGP, AT STEP
5 OF THE LDCP ALGORITHM (C) DAGP; AT STEP 5 OF THE LDCP ALGORITHM (D) THE NODES
ATTRIBUTES OF DAGP | AT STEP 5 OF THE LDCP ALGORITHMcciiiiiiiiieiiiiniieneieesereestieeeeseseevevenen s 48

FIGURE 20. (A) DAGP, AT STEP 6 OF THE LDCP ALGORITHM (B) THE NODES ATTRIBUTES OF DAGP, AT STEP
6 OF THE LDCP ALGORITHM (C) DAGP; AT STEP 6 OF THE LDCP ALGORITHM (D) THE NODES
ATTRIBUTES OF DAGP| AT STEP 6 OF THE LDCP ALGORITHM......iiiiiieiiieesiiieeriescerecieesnreenersssssesenesas 49

'FIGURE 21. (A) DAGP(AT STEP 7 OF THE LDCP ALGORITHM (B) THE NODES ATTRIBUTES OF DAGP, AT STEP
7 OF THE LDCP ALGORITHM (C) DAGP; AT STEP 7 OF THE LDCP ALGORITHM (D) THE NODES
ATTRIBUTES OF DAGP| AT STEP 7 OF THE LDCP ALGORITHM......cccvtioiiiiiiaiiriieeenreesnreieesneeaesenensnerees 50

vii

FIGURE 22. (A) DAGP, AT STEP 8 OF THE LDCP ALGORITHM (B) THE NODES ATTRIBUTES OF DAGP, AT STEP
8 OF THE LDCP ALGORITHM (C) DAGP, AT STEP 8 OF THE LDCP ALGORITHM (D) THE NODES
ATTRIBUTES OF DAGP | AT STEP 8 OF THE LDCP ALGORITHMouiiiiiiiiiiecie e esiiee e a e 51

FIGURE 23. (A) DAGP, AT STEP 9 OF THE LDCP ALGORITHM (B) THE NODES ATTRIBUTES OF DAGP, AT STEP
9 OF THE LDCP ALGORITHM (C) DAGP; AT STEP 9 OF THE LDCP ALGORITHM (D) THE NODES
ATTRIBUTES OF DAGP | AT STEP. 9 OF THE LD CP ALGORITHMcoiiiiieieiiieiiitieeeeiie v ae e eeree e naeeees 52

FIGURE 24. (o) DAGP, AT STEP 10 OF THE LDCP ALGORITHM (B) THE NODES ATTRIBUTES OF DAGP, AT
STEP 10 OF THE LDCP ALGORITHM (C) DAGP AT STEP 10 OF THE LDCP ALGORITHM (D) THE NODES
ATTRIBUTES OF DAGP; AT STEP 10 OF THE LDCP ALGORITHMuviiiirieaiiiiiiiieaeieresenieieeseireeeseeesennees 53

FIGURE 25. (A) DAGP AT STEP 11 OF THE LDCP ALGORITHM (B) THE NODES ATTRIBUTES OF DAGP, AT
STEP 11 OF THE LDCP ALGORITHM (C) DAGP; AT STEP 11 OF THE LDCP ALGORITHM (D) THE NODES
ATTRIBUTES OF DAGP| AT STEP 11 OF THE LDCP ALGORITHMoocuiiieiirerenierenirereeesrieeniereereesenenaeees 54

FIGURE 26. (A) THE CHROMOSOME THAT ENCODES THE SCHEDULE GENERATED BY THE LDCP ALGORITHM
(B) THE BEST CHROMOSOME EVOLVED BY THE GATS ALGORITHM (C) THE SCHEDULE GENERATED BY

THE H2GS ALGORITHM {SCHEDULE LENGTH =01.5) . iuiiiiiiieitier ettt 55
FIGURE 27. AVERAGE NSL WITH RESPECT TO DAG SIZEoiiiiiiiiiieeciee ettt ae e seeeseaa s sennaes 63
FIGURE 28. AVERAGE NSL WITH RESPECT TO CUR ..cvviiiiieiiesceeieeecereneie s aee e et et eeieesvaesmaesenaseaeeiaea s 63
FIGURE 29. AVERAGE NSL WITH RESPECT TO NUMBER OF PROCESSORSvveerireerssioirerennireersineesssieeessserenens 64
FIGURE 30. AVERAGE SPEEDUP WITH RESPECT TO DAG SIZE ..tiieiiirieiiiireeeeier e sertesee st tassen s s sstaensane e 66
FIGURE 31. AVERAGE SPEEDUP WITH RESPECT TO CCR...oviuveiriieriietirtinites s srvceasevesttessenessserseasssaesssesnranass 67
FIGURE 32. AVERAGE SPEEDUP WITH RESPECT TO NUMBER OF PROCESSORScceovviireeriierrirnsnesnesbannennnns 67
FIGURE 33. AVERAGE EFFICIENCY WITH RESPECT TO DAG SIZE.....ceiiciiiiiisieieicierieeeseressieesneresseeassessseessaeens 69

FIGURE 34. AVERAGE EFFICIENCY WITH RESPECT TO CCRoviiiiiiiiiii i ieeeeraerees e e rereeeee e eeseaesse s vnnens 70

viii

Chapter 1: Introduction

A Distributed Heterogeneous Computing System (DHECS) consists of a group of
diversely capable machines connected via a high speed network, which suppor‘ts the
execution of a set of tasks that have various computation requirements. The performance
of DHECS depends on a variety of factors such as machine architecture, network

topology and workload characteristics [18].

Scheduling is a key issue in the DHECS operation. It is also an important problem in
other domains such as economics, transportation, manufacturing, software development,
project management and operational research. In its most general form, scheduling 1s the
process of allocating a set of tasks to a set of available resources, and arranging the
execution of these tasks on each resource to obtain optimal performance. Often, the

scheduling process must not violate a set of predefined constrains [1].

In task scheduling algorithms for DHECS, the application is represented by a Directed
Acyclic Graph (DAG), in which nodes represent tasks and edges represent data
dependencies between tasks. The label of a node reflects the computation cost of the
associated task, while the label of an edge expresses the time needed for data to pass from
one end of the edge to the other. Tasks must be scheduled and assigned to machines in a
way that minimizes the total execution time, or the schedule length, of the application,

and without violating the data dependencies between tasks [1].

Scheduling algorithms are broadly classified into two classes: static and dynamic. When
all information needed for scheduling, such as execution times of tasks, data
dependencies and sizes of data transfers are known in advance, the scheduling algorithm
is described as static. This scheduling process takes place during compile time. On the
other hand, in the dynamic model tasks are allocated to processors upon their arrival, and

scheduling decisions must be made at run time [3, 5, 21].

In general, the scheduling problem is NP-complete, meaning that there is no known
algorithm that finds the optimal solution in polynomial time. The existing algorithms can
deal with various special cases of the problem. Typically, these algorithms take a long
time to execute in cases where the size of the problem is large or/and when there are

many constrains 3, 4, 5, 11, 14, 16, 22, 23, 25].-

Chapter 2: Problem Description

Static task scheduling for a DHECS 1is the problem of assigning the tasks of a distributed
application to a set of diversely capable machines, and specifying the start execution time
of the tasks assigned to each processor. This must be done in a way that respects the
precedence constrains among tasks. An efficient schedule is one that minimizes the total
execution time of the program, or the schedule length of the application. All the

information needed to perform scheduling is assumed to be known in advance.

A distributed application is represented by a DAG (T,E,D), where T is a set of n tasks, E
is a set of e edges and D is a n X n communication cost matrix . Each t; € T represents a
task in the DAG, and each edge (;;) € E represents a precedence constraint, such that the
execution of t; € T cannot be started before t; € T finishes its execution. Each edge (;;) €
E is associated with a communication cost d;; € D that specifies the amount of data that
must be transferred from t; to t;. However, since the intra-processor bus speed is much
higher than the inter-processor network speed, the communication cost between two tasks
scheduled on the same processor is taken as zero. If (;;) € E, then t; is a parent of t; and t;
is a child of t;, where {t;, t;} € T. A task with no parents is called an entry task, and a task

with no successor is called an exit task.

The target DHECS architecture is represented by a set P of m heterogeneous processors.
The m x n computation cost matrix C stores the execution costs of each task. Each

element ¢;; € C represents the estimated execution time of t; on p; (€ P). In a

homogeneous distributed system, the execution time of a task is the same for all the
processors. Further, all processors are assumed to be fully connected. Hence, each
processor can communicate directly with any other processor in the network. Moreover,
communications between tasks are assumed to be contention free, which allows for
deterministic scheduling. Communication between processors occurs via independent

communication units: this allows for concurrent computation and communication.

Figure 1. (a) A DAG that represents a distributed application (b) a computation cost matrix of a DHECS that is composed of

two processors

Figure 1 represents an example of a distributed application and a DHECS that is
composed of two processors po and p;. The distributed application is visualized by the
DAG shown on figure 1(a), and the computation cost matrix of the two processors is
displayed in figure 1(b). In the table displayed in figure 1(b), a value in the iy, column and

jm TOW represents the computation cost of t; on p;.

A task can start execution on a processor only when all data from its parents become

available to that processor; at that time the task is marked as ready. The schedule length

is defined as the longest finish time of the DHECS processors, when all the tasks of the

application are scheduled.

Chapter 3: Related Work

3.1. Task Scheduling for Distributed Computing System

The problem of task scheduling 1s known to be NP-complete for arbitrary DAGs [5, 10,
11, 14]. However, because of its key importance, several algorithms were developed to
solve it, with various degrees of performance and complexity. Many of these algorithms
place restrictions on the structure of DAGs, size of tasks, communication costs and

number of processors [5].

The goal of static scheduling is to allocate a set of tasks to a group of processors such that
the schedule length is minimized, and the precedence constrains among the tasks are
preserved [1, 7]. Static scheduling algorithms can be broadly classified into three main

categories: heuristic algorithrﬁs, guided random algorithms and hybrid algorithms.

3.1.1. Heuristic scheduling algorithms

Heuristic scheduling algorithms find near-optimal solutions in less than polynomial time.
A heuristic algorithm moves from one point in the search space to another, following a
particular rule. Such algorithms though efficient, search some paths in the search space,
and ignore others [3]. Heuristic scheduling algorithms can be‘ subdivided into three

subgroups: list-based heuristics, clustering heuristics, and duplication heuristics [1, 3, 7].

In list-based scheduling heuristics, each task is assigned a given priority. The tasks are
inserted in a list of waiting tasks, such that tasks with higher priority are placed before
those with lower priorities. Three steps are then repeated until all the tasks in the list are
scheduled: task selection, processor selection and status update. The highest-priority
ready task is removed from the list and selected for scheduling during the first step. Next,
the selected task is assigned to the processor that minimizes a predefined cost criterion. In
homogeneous computing environment, the earliest start time criterion, in which the task
is assigned to the processor that minimizes its start execution time, can be employed.
Finally, the status of the system is updated. At the end of this process, a valid schedule is

obtained [1, 3, 7, 16].

List-based scheduling heuristics differ mainly in the way used to assign priorities to tasks.
These heuristics try to find critical tasks and assign them higher priorities. The most-
critical ready task is first selected and assigned to the most suitable processor. Many list-
based scheduling heuristics work only if a predefined simplifying assumption is
maintained. Some assumptions can be justiﬁed in particular contexts, but others cannot
be satisfied in real-time applications. Homogeneous processors, an unlimited number of
processors and no precedence constraints among tasks are examples of these simplifying
assumptions [8]. Examples of list-based algorithms are: the Modified Critical Path (MCP)
élgorithm [20], the Mapping Heuristic (MH) algorithm [13] and the Dynamic Critical

Path (DCP) algorithm [7].

Clustering heuristics trade off iter-processor communications cost with parallelization,
by allocating heavily communicating tasks to the same processor. In this type of
heuristics, task clustering is performed prior to the actual scheduling process. During the
clustering phase, a task graph is clustered under the assumption of an unbound number of
processors. Tasks that are assigned to the same cluster are executed on the same
processor. Scheduling starts by verifying the number of resulting clusters. If the number
of clusters is greater than the number of available processors, clusters are merged so that
the number of the remaining clusters equals the number of processors. Next, clusters are
mapped to the available processors, and local execution of tasks within each processor is

determined [1, 4, 15].

During the clustering phase, clustering algorithms are not restricted by the constraint of a
limited number of processors, which generally holds in the operation of list-based
algorithms. Clustering algorithms can employ low-complexity load-balancing to map
clusters to processors. Hence, the resulting complexity of clustering algorithms tends to
be lower than that of list-based algorithms [4]. Examples of clustering algorithms are
Dominant Sequence Clustering (DSC) [18], Edge-Zeroing (EZ) [19] and Mobility

Directed (MD) [20].

Finally, duplication scheduling algorithms try to execute key tasks redundantly to reduce
inter-processors communications, and hence reduce the waiting time of dependent nodes.
Various algorithms try to blend duplication heuristics with both list-based and clustering

heuristics, to improve their performance. However, this improvement in performance

comes at the cost of increase of complexity [1, 3, 4, 6, 16]. Some duplication algorithms
have a problem of significant growth in required processors as DAG size increases. Other
algorithms overcome this problem by duplicating takes selectively instead of duplicating
all possible ancestors of a given node. Examples of this type of heuristics are: Selective
Duplication (SD) algorithm [4], Critical Path Fast Duplication (CPFD) algorithm [16],
Button up Top down Duplication Heuristic (BTDH) algorithm [17] and Duplication

Scheduling Heuristic (DSH) algorithm [24].

3.1.2. Guided random scheduling algorithms

Guided Random search techniques use random walks combined with guiding information
to investigate the search space of the problem. Such techniques exploit the knowledge
gained from previous search results to guide the search process. Among the various
Guided Random techniques, Genetic Algorithms (GAs) are the most widely used for the

task scheduling problem [1].

A GA is a stochastic search technique that simulates the mechanisms of natural evolution.
It operates on a population of solutions, or individuals, and employs a set of genetic
operators. These opereitors operate on the individuals in the population to evolve new
solutions. The genetic search process begins by initializing a population of individuals.
Each individual corresponds to a particular candidate solution for the problem. During
the evolution process, a new population of individuals is created through mating and
mutation. However, according to evolutionary principles, the fittest individuals are more

able to survive and generate offspring. At each generation, the evolutionary process goes

through a simple set of stages: evaluating each individual, selecting individuals for the
mating pool and applying genetic reproduction operators to create a new population [3,
26, 27].

The typical heuristic scheduling techniques move from one point in the search space to
another using a particular transition rule. In multimodal scheduling problems, this point-
to-point transition may mislead the search process. GA-based scheduling techniques
overcome this problem by working on a population of points in parallel. Hence this
minimizes the probability of converging to a local optimum [3]. On the other hand, a
poor representation of the scheduling problem may lead to difficulties in finding good

solutions within a reasonable period of time.

In contrast to the heuristic scheduling techniques which require direct information about
the DAG and processors to decide the next scheduling step, GA-based scheduling
techniques operate on individuals that encode possible candidate schedules. They care
about the structure of each individuai not about the actual encoded schedule. However, to
guide the search process, a GA needs to know how “good” the encoded schedule is. The
technique developed by A. Zomaya et al. [3] is an example of this class of scheduling

techniques.

3.1.3. Hybrid scheduling algorithms

Hybrid scheduling algorithms combine both heuristic scheduling algorithms and GAs.
The Genetic List Scheduling (GLS) Algorithm [28] is an example of this class of

algorithms. In GLS, tasks are scheduled on the available modules and communications

10

are mapped to the available buses. The resource set is composed of the available modules
and buses, while the user set is composed of the tasks and communications of an
application. A GA is used first to evolve a set of priorities. These evolved priorities are
used by a list-based scheduling algorithm to generate a schedule. Each individual in the
GA population encodes two sets of genes: user priorities and user-resource priorities. The
user priorities genes encode priorities of all users, and these are used to select users for
scheduling. Once the selected user is assigned to a resource, the user-resource priorities

are considered.

11

3.2. Task Scheduling for DHECS

Most static task scheduling algorithms described in the literature assume a homogeneous
target system; hence static task scheduling for DHECS 1is relatively unexplored. In
addition to the tradeoff between the gained parallelism and the resulting inter-processors
communications, a DHECS scheduling algorithm has to consider the various execution
times of the same task on different processors. In this section two scheduling algorithms
that support DHECS, the Dynamic Level Scheduling (DLS) algorithm [12] and the

Heterogeneous Earliest Finish Time (HEFT) algorithm [1], are presented.

3.2.1. Dynamic level scheduling (DLS) algorithm

The DLS algorithm uses a quantity called Dynamic Level DL(n;p;), which is the
difference between the maximum sum of computational costs from task n; to an exit task,
and the earliest start execution time of n; on processor p;. In this algorithm, the earliest
start execution time of n; on p; 1s defined as the maximum of the ready time of n; on p; or,
in other words, the time when all input data of n; become available to p;, and the time
when p; finishes the execution of its already scheduled tasks. The DLS algorithm does not

schedule tasks between two previously scheduled tasks.

The DL values change during the scheduling process. At each scheduling step, the

algorithm evaluates the DL values for all combinations of ready nodes and available

12

processors. The ready node and available processor pair that has the highest DL value 1s

chosen for scheduling.

To accommodate DHECS, the computational cost of a task is taken as the median of the
execution times of that task over all processors. Moreover, a new quantity is added to the
equation of DL(n;p;) to account for the various execution times of the same task on
different processors. This quantity is the difference between the median execution time of
ni‘ over all processors, and its execution time on p;. The time complexity of the general

DLS is O(m x n°), where m is the number of processors and # is the number of tasks.

3.2.2. Heterogeneous earliest finish time (HEFT) algorithm

The HEFT algorithm starts by setting the computational costs of tasks and
communicational costs of edges to their mean values. Each task is assigned a value called
upward rank. In this algorithm, the upward rank of a task n; 1s the largest sum of mean
computational costs and mean communicational costs along any directed path from n; to
an exit task. A task list is then generated by sorting all tasks by decreasing order of their

upward rank; ties are decided on a random basis.

At each scheduling step, the unscheduled task with the highest upward rank value is
selected and assigned to the processor that minimizes its finish execution time, using the
insertion-based scheduling policy. When a processor p; is assigned a task n; the
insertion-based scheduling policy considers all possible idle time slots on p; to find a time

slot that is capable of the execution time of n;. This must be done without violating the

13

precedence constrains among tasks. An idle time slot on processor p; is defined as the idle
time space between the start execution time and finish execution time of two tasks that
were successively scheduled on p;. The search starts from a time equal to the ready time
of n; on p;, and proceeds until it finds the first idle time slot with a sufficient large time
space to accommodate the computational cost of of n; on p;. If no such sufficient idle time
slot is found, the insertion-based scheduling policy inserts the selected task after the last

scheduled task on p;.

The HEFT algorithm has a general time complexity of O(m x e€) where m is the number
of processors, and e is the number of edges. The time complexity for dense DAGs, in
which the number of edges is proportional to n* (where 7 is the number of tasks), is O(n*

X m).

14

Chapter 4: The Proposed Algorithm

The Hybrid Heuristic-Genetic Scheduling (H2GS) algorithm is a hybrid scheduling
algorithm that combines two algorithms to produce a near optimal séhedule. First, the
H2GS algorithm runs a heuristic scheduling algorithm, called the Longest Dynamic
Critical Path (LDCP) algorithm, to generate a task schedule. The schedule generated by
the LDCP algorithm is located at an approximate area near the optimal solution, in the
search space. Next, a Genetic Algorithm, called Genetic Algorithm for Task Scheduling
(GATS), improves the LDCP-generated schedule by searching around it, to discover

better optimal (or near-optimal) schedules.

As in the algorithms mentioned earlier, our approach has a set of assumptions. The
processor network 1s assumed to be fully connected, and each processor has dedicated
communication hardware, so that communication and computation can take place
simultaneously. Moreover, computation costs of tasks are assumed to be linear. In other
words, if the computation cost of task t; on processor p; is higher than that on processor
Pr then the computation costs of any task on p; is higher than or equal to that on

Processor p.

4.1. The Longest Dynamic Critical Path (LDCP) Algorithm

This section is subdivided into two subsections. In the first subsection, the problem of

identifying priorities of tasks in DHECS is introduced. Next an effective attribute, called

15

LDCP, which effectively identifies the most important tasks in a DHECS, 1s explained. In

the second subsection, the Longest Dynamic Critical Path (LDCP) algorithm is described.

4.1.1. Task Priorities in DHECS

The performance of a list scheduling algorithm depends highly on the method used to
assign priorities to tasks. At each scheduling step, a task must be assigned a high priority
if the selection of this task for scheduling during the current scheduling step leads

ultimately to a shorter schedule length.

For a homogeneous computing environment, the critical path (CP) attribute of a DAG
provides an effective method for assigning priorities to tasks. For a given DAG, the CP is
defined as the path from an entry task to an exit task that has the greatest sum of
computation and communication costs. The sum of computation costs of the tasks located
on the CP determines the lower bound of the final schedule length. Hence, an efficient
scheduling algorithm requires proper scheduling of the tasks located on the CP. On the
other hand, when two tasks are scheduled on the same processor, the communication cost
between them is zero. Consequently, the CP changes dynamically during the scheduling
process. A task located on the CP at a particular scheduling step may not be located on
the CP in other steps. To overcome the dynamic behavior of CP, Kwok et al. [7] used an
efficient way to select tasks for scheduling. In their algorithm, the Dynamic Critical Path
(DCP) is used. The DCP is simply a CP that considers the cancellation of communication
costs among tasks scheduled in the same processor. The DCP identifies the most

important task for sbheduling at each scheduling step.

16

In DHECS, the various computation costs of the same task on different processors
present us with a problem: the DCP computed using the computation costs of tasks on a
particular processor may differ from the DCP computed using the computation costs of

tasks on another processor.

For example, consider the application DAG and the computation costs array in figures 2.a
and 2.b. Here, the task graph in figure 2.c is constructed using the computation costs of
tasks on processor pg, while the task graph in figure 2.d 1s constructed using the
computation costs of tasks on processor p;. In other words, processors pg and p; are used
as reference processors to construct the task graphs in figures 2.c and 2.d respectively. At
the beginning of the scheduling process, the DCP extracted form the task graph in figure
2.c is composed of tasks ty, ts, ts, while the DCP extracted form the task graph in figure
2.d 1s composed of tasks ti, tp, ts. Both DCPs share two tasks, t; and t4, and differ by one
task. Therefore, a complete scheduling algorithm has to consider the various DCPs that

are computed using the computation costs of tasks on all processors.

The problem of identifying a single DCP can be addressed by employing one reference
DCP. The reference DCP can be computed using the computation costs of tasks on a
reference processor. At each scheduling step, the reference DCP is used to select a task
for scheduling. However, an inconsistency problem will result in the processor selection
phase. The selected task, which 1s selected using the computation costs of tasks on a

reference processor, is assigned to a processor using its actual computation costs over all

17

processors. Another way to address the problem of variable DCPs is to use the mean
value of computation costs of a task over all processors to compute a reference DCP.
However, the resulting reference DCP will not accurately identify the most important

tasks.

(©) (d)

Figure 2. (a) DAG of a distributed application (b) computation costs array (c) task graph constructed based on the

computation costs of tasks on processor po (d) task graph constructed based on the computation costs of tasks on processor p,

One important attribute that can be used to compute priorities of tasks in DHECS
precisely is the Longest Dynamic Critical Path (LDCP). The LDCP is explained in

Definition 1.

18

Definition 1. Given a DAG with n tasks and e edges, and a DHECS with m
heterogeneous processors, the Longest Dynamic Critical Path (LDCP) during a particular
scheduling step is a path of tasks and edges from an entry task to an exit task that has the
largest sum of communication costs of edges and computation costs of tasks over all
processors; In addition, the communication costs between tasks scheduled on the same

processor are assumed zero and the resulting execution constrains are preserved.

For example,» Consider again the application DAG and the computation costs array in
figures 2.a and 2.b. At the beginning of the scheduling process, the DCP computed using
the computation costs of tasks on processor pg is composed from the tasks to, t,, t4 and has
a length of 16. On the other hand, the DCP computed using the computation costs of
tasks on processor p; is composed from the tasks t;, t, t4 and has a length of 23. Hence, at
the beginning of scheduling process the LDCP is composed from the tasks t,, t;, t4 and

has a length of 23.

The LDCP identifies a set of tasks and edges that play an important role in determining a
provisional schedule length. Hence, to generate an efficient schedule, tasks on the LDCP

must be assigned relatively high priorities.

4.1.2. The LDCP Algorithm

The LDCP algorithm is a generic list-based scheduling algorithm for a finite number of
heterogeneous processors. In the LDCP algorithm, each scheduling step consists of three
phases: task selection, processor selection and status update. In the task selection phase, a

task is selected for scheduling, using the LDCP attribute. Then, during processor

19

selection, the selected task is assigned to the processor that minimizes its finish time.

Finally, the system parameters are updated, concluding the 3-phase algorithm.

4.1.2.1. Task selection phase

As described before, the LDCP identifies a set of tasks that play an important role in
determining the provisional schedule length. To compute the LDCP, a Directed Acyclic
Graph that Corresponds to a Processor (DAGP), which is explained in definition 2, is
constructed for each processor in the system. These DAGPs are constructed at the

beginning of the scheduling process.

Definition 2. Given a DAG with n tasks and e edges and a DHECS with m heterogeneous
processors {po, Pis ---» Pm1}, the Directed Acyclic Graph that Corresponds to processor p;,
called DAGP;, is the task graph constructed using the structure of the DAG, with sizes of

tasks set to their computation costs at processor p;.

Through the course of this report, the task t; is _used to refer to the 1y task in the
application DAG. The node n; in DAGP; corresponds to task t; in the application DAG
with its size set to the computation cost of t; on processor p;. Hence, node n; on DAGP;

identifies the task t; on the application DAG.
For example, DAGP, and DAGP; for the application DAG and the heterogeneous system

described in figures 2.a and 2.b, are shown in figure 2.c and 2.d respectively. Node n; in

DAGP, corresponds to task t; in the application DAG with its size set to the computation

20

cost of task t, on processor py. Node n; in DAGP; identifies task t, in the application

DAG.

For each DAGP, all nodes are assigned upward rank (URank) values to reflect their

priority within that DAGP. The upward rank 1s explained in definition 3.

Definition 3. The upward rank of a node n; on a task graph DAGP;, denoted as

URank;(ny), is recursively defined as:

URank ;(n)=w;(n)+ max {c;(n,n,)+URank;(n,)} €))

n, esucc(n;)

where succj(n;) is the set of immediate successors of n; on DAGP;; wj(n;) is the size of n;

in DAGP;; ¢j(n;,ny) is the communication cost between n; and ny in DAGP;.

The immediate successor of n; in DAGP;, which satisfies the maximization term in

equation 1, is called the upward rank associated successor (URAS) of node n;.

The URank values of the nodes in a given DAGP are computed recursively by traversing
that DAGP upward starting from exit nodes to entry nodes. The URank value of an exit

node is equal to its size.

For example, consider again DAGP, shown in figure 2.c; The URank value of node ny,
which is an exit node, is equal to its size, which is 2. The URank value of node n, is equal
to 15, which can be computed by adding the URank value of node n, (8) to the
communication cost between node n; and node n; (1) and the size of node n; (6). Node n;

is the URAS of node n;.

21

Since we recursively compute the URank values of the nodes in a given DAGP upward
starting for the exit nodes, the node or nodes, with the highest URank value will always

be entry node or nodes.

Theorem 1. The node that has the highest URank value over all DAGPs identifies

the entry task of the LDCP.

Proof. If node n;, which is located on DAGP; has the highest URank over all
DAGPs, then the length of the LDCP is equal to the URank value of node n,.

Hence, node n; identifies the first task on the LDCP.

Theorem 2. If the tasks on an LDCP are being identified recursively downward
starting from the entry node, and node n; in DAGP; is used to identify the last
identified task on the LDCP, then the URAS of node n; on DAGP; identifies the

next task on the LDCP.

Proof. If node n; on DAGP; identifies task t, on the LDCP and its URAS is node
ni, then the URank value of node ny is equal to the length of the portion of the
LDCP that extends between the exit task of the LDCP and the task located
immediately after task t, on the LDCP, Hence, n; identifies the next task after t, on

the LDCP.

The entry task of a LDCP is determined by locating node n; on the corresponding DAGP
with the highest URank value over all DAGPs. The remaining tasks on the LDCP can be

identified by recursively traversing the DAGP that contains node n;. The process of

22

transversal starts from node n; and moves downward. During the process of transversal,

the nodes that identify the tasks on the LDCP are located using theorem 2.

For example, refer again to the application DAG and the computation costs array in
figures 2.a and 2.b. At the beginning of the scheduling process, node n; in DAGP, has an
URank value of 23, which is the highest over all nodes in DAGP; and DAGP;. Hence, t;
1s the entry task of the LDCP. In DAGP; node n; is the URAS of node n; so task t; is the
second node in the LDCP. In the same way, task t4 can be identified as the last task in the

LDCP.

Definition 4. During a particular scheduling step, let the set of nodes N be used to
identify the tasks on the LDCP. The unscheduled node in N with the highest URank value
is defined as the key node. The DAGP in which the nodes in N are located is called the

key DAGP.

Definition 5. During a particular scheduling step if the key node has unscheduled
parents, then the unscheduled predecessor of the key node with the highest URank is

defined as the parent key node.

At each scheduling step, the key node and the parent key node are used to select a task
for scheduling. Ties are broken by selecting the task with the highest number of output

edges first; if more than one task exists, the tie 1s broken on a random basis.

Theorem 3. Let a task t; be assigned to a DHECS with m processors in which the

q fastest processors have assigned tasks, while the m-q slowest processors have

23

no assigned tasks. If g<m, then the finish execution time of t; is minimized when t;

is assigned to one of the (q+1) fastest processors.

Proof. Let EFTI be the earliest finish time of t; on the (q+2)u fastest processor,
and Let EFT2 be minimum earliest finish time of t; on the q+1 fastest processors.

Then, EFTI is greater or equal to EFT2.

Based on theorem 3, a set of processors and its corresponding set of DAGPs, called
active- processors and active-DAGPs, are defined and considered at each scheduling
step. At the beginning of the scheduling process, the active-processors set is composed of
the fastest processor in the system, and is considered to select and schedule the first task
for scheduling. In the consequent steps, each time a task is assigned to an empty
processor, the fastest empty processor is added to the active-processors set. When all the
available processors in the system are included in the active-processors set, no more
processors are added to the active.—processors set. The active-DAGPs set 1s composed of
the DAGPs that correspond to the processors in the active-processor set. Each time a
processor is added to the active-processors set, its corresponding DAGP is added to the

active-DAGPs set.

For example, refer again to the application DAG and the computation costs array in
figures 2.a and 2.b. At the beginning of scheduling process, the active-processors set and
active-DAGPs set are composed from the Py and DAGP, respectively. Hence, DAGP,
will not be considered to select the first task for scheduling. Nodes ng, n, and ng in
DAGP, are used to identify the LDCP. Hence, the set N is composed from nodes ng, n;

and ny. Since node ng is unscheduled yet and it has the highest URank value over all

24

nodes in N, it is marked as the key node. Node ng has no unscheduled parents, hence task
to will be selected for scheduling.

The procedure for selecting a task for scheduling is outlined in figure 3.

Select Task()

“start:
1. if active-processors set has no empty processors then
2. if more empty processors are available then
3. Add the fastest empty processor to the active-processors set
4. Add DAGP that corresponds to the fastest empty processor to the
active_DAGPs set
end if
end if

Find the key DAGP in the active-DAGPs set

Find the key node in the key DAGP

9. if the key node has no unscheduled parents then
10. Identify the selected task using the key node
11. else

12. Find the parent key node

13. Identify selected task using the parent key node
14. end if

15. return selected task

AN

end:

Figure 3. The Select_Task procedure

4.1.2.2. Processor selection phase

In this phase, the selected task is assigned to a processor in the active-processors set that
minimizes its finish execution time. The insertion-based scheduling policy, which is

described before, is used to select an appropriate processor to execute the selected task at

25

the most suitable time. The procedure for selecting a processor to execute the selected

task is presented in figure 4.

Assign_Task _To_Processor(t;)
start:
1. for each processor p; in the active-processors set do
2. Compute the FET of t; on p; using the insertion based policy
3. Assign t; to the processor p; that minimizes its FET
4. return p;
end:

Figure 4. The Assign_Task_T0_Processor procedure

4.1.2.3 Status update phase

When a task is scheduled on a processor, the state of the system must be updated to
reflect the new changes. The scheduling of a task t; on a processor p; means that the
computation cost of t; is no more unknown. Hence the sizes of the nodes that identify t;
must be set to the computation cost of t; on p; on all DAGPs. Moreover, the
communication costs between tasks scheduled on the same processor become zero. Thus,
the communication costs of all edges, which extend between a node that identifies t; and a

node that identifies one of its parents that is scheduled on pj, are set to zero.

For example, refer again to the application DAG and the computation costs array in

figures 2.a and 2.b. At the beginning of scheduling process, task to is scheduled on

processor po, both DAGPy and DAGP; must be updated to reflect the actual size of task

26

to. On the other hand, since no tasks are previously scheduled on processor po, there is no

need to update the communication costs of the edges.

The insertion of a task t; into a processor p; will result in new execution constrains. The
execution constrains and the order in which the previously scheduled tasks had been
selected for scheduling, must be considered during the computation of priorities of tasks.
These constrains are shown on all DAGPs by adding a zero-cost edge from the node that
identifies the last scheduled task on p; to the node that identifies t;. Moreover, when a task
is assigned to processor pj, temporary zero-cost edges are added to DAGP; from the node
that identifies the last task scheduled on p; (task ty) to the ready nodes on DAGP; that do
not communicate with t,. This must be done after removing the pervious temporary zero-
cost edges from DAGP;. The temporary zero-cost edges are considered when calculating

the URank value of the nodes.

Definition 5. A dummy node on DAGP; is a node that does not have a non-dummy

successor node, and defines a task that is scheduled on a processor other than p;.

For a particular processor p;, a dummy node on DAGP; is already scheduled at another
processor; moreover, any/all of its successors are already scheduled at other processors.,
Since the URank values on DAGP; are used to identify the LDCP based on the
computation costs of tasks at p;. The dummy nodes must not be considered during the
computation of URank values on DAGP;. Hence, by the end of each scheduling process,

the dummy nodes on all DAGPs are identified and their computation costs are set to zero.

27

The insertion of a task t; into a processor p; will affect the URank values of the nodes that
identify t; and the nodes that identify the previously scheduled tasks. Hence, by the end of
each scheduling step the URank values of the nodes that identify the currently scheduled
task and the previously scheduled tasks are updated over all DAGPs.

The procedure for updating the status of the system after scheduling the task ti on

processor p;j, is formalized in figure 5.

Update_Status(t;, p;)

Start:
1. Update the size of the node that identifies task t; on all DAGPs.
2. Update the communication costs on all DAGPs.
3. Add the execution constrains, which results from assigning t; to pj, to all

DAGPs.

4. Remove the temporary zero-cost edges that were inserted in the previous
scheduling step, from all DAGPs.

5. Add the temporary zero-cost edges, which results from scheduling t; in pj, to

all DAGPs.

Identify and remove the dummy nodes from all DAGPs.

7. Update the URank of the nodes that identify the currently scheduled task and
the previously scheduled tasks on all DAGPs.

>

end:

Figure S. The Update_Status procedure

In our reference example, when task ty is scheduled on processor pg, task ty is the first
scheduled task in the system. Hence, there is no need to insert any execution constrains to
DAGP nor DAGP;. However, a temporary zero-cost edge must be added to DAGP,

from node ng to node n;. In both DAGP, ahd DAGP], no nodes are marked as dummy.

28

DAGP, and DAGP; after scheduling task t; on processor py are shown in figure 6.2 and

6.b respectively. The temporary zero-cost edges are represented by dotted lines.

Figure 6. (a) DAGP, (b) DAGP;

4.1.2.4. The Proposed LDCP Algorithm

Using the procedures discussed above, the proposed LDCP algorithm is formalized in
figure 7. The LDCP algorithm has a general time complexity of O(m x n’) where m is the

number of processors, and # is the number of tasks.

29

LDCP_Algorithm()
start:

1. Using the application DAG and the computation costs array, construct DAGPs
for all processor in the system. '

2. while not all nodes are scheduled do
3. Call Select_Task() and record the selected task in selected task.
4, Call Assign_Task_To_Processor(selected task) and record the selected
processor in selected processor.
5. Call Update_Status(selected_task, selected processor).
6. end while
end:

Figure 7. The LDCP algorithm

4.2. Genetic Algorithm for Task Scheduling (GATS)

In this section, the Genetic Algorithm for Task Scheduling (GATYS) is introduced. The
GATS accepts the output of the LDCP algorithm as its own input. The schedule that is
produced by the LDCP algorithm is located at an approximate area in the search space
around the optimal schedule. The GATS searches around that approximate area to
improve the schedule. GATS can work on top of any other heuristic scheduling algorithm

to optimize below. The operation of the GATS algorithm is formalized in figure 8.

GATS()
start:

1. Create the initial population using the schedule generated by the LDCP
algorithm.
while termination criteria is not met do
Evaluate the fitness of the chromosomes in the population.
Copy the best 10% of the population chromosomes to the elitism set.
Select chromosomes from the population to the mating pool.
Apply the swap crossover operator on the chromosomes in the mating pool.
Apply the swap mutation operator on the chromosomes in the mating pool.
Combine the chromosomes in the mating pool and elitism set to generate the
new population.
8. end while

NN R

end:

' Figure 8. The GATS algorithm

4.2.1. Schedule Encoding -

The structure of task scheduling problem, which is composed from the application DAG
that must be allocated to a set of processors, makes the using of binary encoding
inefficient. In GATS, a 2-dimensional string chromosome is used to encode a schedule.
The 2-dimensional chromosome is composed of a number of substrings; each substring
represents a processor in the system. Each substring represents the tasks assigned to an
individual processor. For example, consider the application DAG and computation cost

matrix shown in figure 2, the schedule shown in figure 9.a is encoded in the chromosome

shown figure 9.b.

Each time a chromosome is decoded, the application DAG is used to preserve the

precedence constrains among the tasks of the encoded schedule. To decode a

31

chromosome, the application DAG is traversed downward, starting from the entry task.
At each decoding step, all ready tasks on the application DAG are defined and assigned
to processors according to their location among the substrings of the chromosomes. The
insertion-based scheduling policy is used to compute the start execution time of the
assigned tasks. If two, or more, ready tasks are located on the same substring, only the

first ready task on that substring is selected and assigned to a processor.

Pe P1
0 r /—\
to
7
R pO tp t t;
. pl tz t4
10 + 6’
5
tz
8
20 +
pO t3 t to
e pl 14 i
26 - :

(a) (c)

Figure 9. (a) A scheduling example (b) + (¢) chromosome examples

Using this decoding technique, the information encoded within the 2-dimensional
chromosome will always lead to a feasible schedule. Hence, this representation provides

for a dense search space, and hence an efficient search process.

The same schedule can be encoded using more than one chromosome. For example, both
chromosomes shown in figures 9.b and 9.c decode the same schedule shown in figure 9.a.

The directly encoded chromosome, in which the order of tasks in the encoding

32

chromosome is identical to the order of tasks in the encoded schedule, 1s used to create

the initial population.

4.2.2. Initialization

The first step in GATS is the creation of the initial population. GATS uses the LDCP
algorithm to create the first chromosome 1in the initial population. The schedule generated
by the LDCP is encoded, and the resulting chromosome is inserted into the initial

population. This guarantees a more directed search for GATS.

In addition, for each individual processor in the system, exactly one chromosome is
created and inserted into the initial population, such that all tasks in the encoded schedule
are randomly allocated to that processor. The rest of the chromosomes in the initial

population are created randomly.

The population size is determined before running GATS, and does not change during the
run. The minimum population size is equal to the total number of processors in the

system plus 1. The GATS used in the results section has a population size of 50.

4.2.3. Fitness Evaluation

The calculation of fitness of a chromosome is quite simple. First, each chromosome in the
population is decoded. Next, the fitness value of a chromosome equals to the inverse of

the length of its decoded schedule. The fact that fitness evaluation is simple significantly

33

enhances the performance of the GATS algorithm. This leads as we shall see in the

results section, to fast computation of near optimal schedules.

4.2.4, Selection and Elitism

Copies of the best 10% of the chromosomes in the population are copied without change
to the elitism set. This mechanism guarantees that the best chromosomes are never

destroyed by either the crossover or the mutation operators.

A rank-based selection mechanism with replacement 1s used to select chromosomes to the
mating pool. This rank-based selection assists in preventing premature convergence of
the population towards a sub-optimal point on the fitness surface. The size of the mating

pool equals to 90% of the population size.

4.2.5. Swap Crossover

Swap crossover works on the chromosomes in the mating pool; it works on two
chromosomes to produce two offspring chromosomes, each with genetic material from
both parents. For each parent, swap crossover randomly chooses one substring to apply
the crossover on it. Next on each chosen substring, swap crossover locates two crossover

points.

For each parent, swap crossover creates an intermediate modified chromosome copy

called the mask chromosome. In the mask chromosome, the task-slice located between

34

the two crossover points is deleted and replaced by a task-slice parent, which is
delineated by the two crossover points, from the other parent. If the inserted task-slice
contains a task that does not exist on the deleted task-slice, this task is marked as don’t

move (DM).

For example, consider the two chromosomes and two crossover points CP1, CP2, shown
in figures 10.a and 10.b. The mask chromosomes that correspond to the parent
chromosomes in figure 10.a and 10.b are shown in figures 10.c and 10.d respectively.

DM tasks in the mask chromosomes are indicated by the (*) sign.

To create the new chromosome, both the mask chromosome and its parent are traversed
string by string, starting form the first task at each substring. If the current task on the
parent is identical to the current task on the mask chromosome, then it is moved to the
offspring chromosome. However, if this task is marked as DM on the mask chromosome,
it is deleted from both the parent and mask chromosomes. If the current task on the parent
is different from the current task on the mask chromosome, only the current task on the
parent is moved to the offspring chromosome. Finally, before traversing to the next
substring, all the tasks left on the current substring of the mask chroinosomes are moved,
as is, to the offspring chromosome. Figure 10.e shows the offspring chromosome created
by the parent chromosome in figure 10.a and its mask chromosome in figure 10.c, while
the offspring chromosome shown in figure 10.f is created by the parent chromosome in

figure 10.b and its mask chromosome in figure 10.d.

35

In GATS, the swap crossover is applied with crossover probability of 0.7.

GP1 CP2
. 1A\
pol w0 Y © 3
P1 2 | t4 E
(a)
Pol to t2 4]
Pl t2* t4*
(c)
pof o]t | 8 t2 t4
P 3
(e)

4.2.6. Swap Mutation

Swap mutation works on the chromosomes in the mating pool to preserve the diversity of
the population. It randomly selects two tasks from a chromosome and swaps them. Swap

mutation 1s applied with probability of 0.5.

After applying the swap crossover and swap mutation operators, the chromosomes in the

mating pool are combined with the chromosomes in the elitism set to create the new

population.

36

CP1 CP2
Pof 2 4] u
P1 t3 t0

(b)
POl td t3 117]
P13 0§
(d)
Po[2 4 T 11] t3
“P1lto0
®

Figure 10. The Swap crossover operator

4.2.7 Termination Criterion

GATS runs for a predetermined number of generations. The GATS used in the results

section runs for 20 generations.

37

Chapter 5: Scheduling Example

In this section, a DHECS, shown in figures 11.a and 11.b, is used to illustrate the

effectiveness of the proposed scheduling algorithm. In this scheduling example, the

schedule generated by H2GS algorithm is compared to two other algorithms.

Figure 11 (a) A DAG of a distributed application (b) a computation cost matrix of a DHECS

Task | po P1
to 4 6
ty 15] 225
ty 4 6
ty 13] 195
ty 10 15
ts 7 10.5
te 8 12
t 6
tg 12 18
to 9
tio 9 13.5

(®)

The schedule generated by the DLS algorithm is shown in figure 12.a. For simplicity,

communication edges are not shown in the schedule. The task-processor pair that is

selected for scheduling at each scheduling step along with the associated DL value are

presented in the scheduling trace shown in figure 12.b. The generated schedule has a

length of 65.5.

38

The schedule generated by the HEFT algorithm along with its schedule trace, are shown
in figure 13.a and 13.b respectively. The generated schedule length is equal to the length
of the schedule generated using the DLS algorithm. Obviously, the task selection
procedure employed by HEFT algorithm for this DHECS example is not efficient. This is
because the algorithm uses the mean value of computation costs to compute the upward

rank of tasks, and hence to select tasks for scheduling.

The schedule generated by the LDCP algorithm is shown in figure 14.a. The schedule
length is 64 which is shorter than that of the DLS and HEFT algorithms. This is because
the LDCP selects a task for scheduling based on its importance in determining the

provisional schedule length.

A summary of the scheduling trace is shown in figure 14.b. The tasks selected at each
step along with the selected processors are shown in the second and third columns. The

DAGPs used to select the scheduled tasks are shown in the last column.

The detailed schedule traces at each scheduling step are shown in figures 15 to 25. At the
first step, DAGP,, shown in figure 15.a, is added to the active-DAGPs set. As shown in
figure 15.b, nodes ny and n; in DAGP, have the highest URank values. However, n; has a
higher number of output edges so it becomes the key node. Node n; is marked by KN in
the fourth column. Since n; has no unscheduled parents, it identifies t; to be selected for

scheduling. Since n; in DAGPy is used to identify the selected task, it is marked by an

39

asterisk in the first column. The set N is composed from the nodes n; n4 and ny as shown
in third column in figure 14.b. Hence, the LDCP is composed from the tasks t, t; and no.
Processor po, shown in the last column, is selected to execute task t; By the end of this
step, the size of n; in DAGP, and DAGP; is set to the computation cost of task t; at
processor po. The URank Value of node n; is updated in both DAGPs. A temporary zero-
cost edge, indicated by a doted edge, is inserted from n; to nyp on DAGP, as shown in

figure 16.a.

At the second step, DAGP;, shown in figure 16.c, 1s added to the active-DAGPs set.
Since node n; is already scheduled, it is marked by ‘S’ in the fourth column in the tables
shown in figures 16.b and 16.d. The size of node n; in both DAGPs, shown in figures
16.a and 16.c, is equal to the computation cost of t; at processor pg. Node ny in DAGP,
has the highest URank value over both DAGPs. Hence, ny becomes the key node and
hence it is marked by KN in the fourth column of the table shown in figure 16.d. Because
no in DAGP; is used to identify the selected task, it is marked by an asterisk in the first
column of the table in figure 16.d. Processor p; is selected to execute ty as shown in the
last column of the table in figure 16.d By the end of this step, the size of ny in DAGPy
and DAGP; is set to the computation cost of task t, at processor p;. The URank Values of
nodes ny and n; are updated in both DAGPs. In DAGP,, temporary zero-cost edges are
inserted from n; to n; and ne. In addition, in DAGP; temporary zero-cost edges are

inserted from ny to ny, n4, ns and ny.

40

At the third step, node ny in DAGP; has the highest URank value over both DAGPs. The
set N is composed from the nodes no, n3, ng and n;o in DAGP;, as shown in figure 17.d.
Node n3 in DAGP; is the first unscheduled nodé in N, so it comes to be the Key node.
Since n3 in DAGP; has no unscheduled parents, it identifies task t3 to be selected for
scheduling. By the end of this step, the size of n3 in DAGP; and DAGP; is set to the
computation cost of task t3 at processor p;. The URank Values of nodes ng, n; and nj are
updated in both DAGPs. In DAGP,, temporary zero-cost edges are inserted from n; to ng
and ng. In addition, in DAGP; temporary zero-cost edges are added from n; to ns, ng and

n7. The communication cost between node ng and nj3 is set to zero on both DAGPs.

At the fourth step, task tg is scheduled at processor po. Hence, by the end of this step, a
zero-cost edge is inserted from node n; to ng on both DAGPs. This edge is indicated by a

solid thick edge in figures 19.a and 19.c.

At the seventh step, the set N is composed from the nodes ng, n3, ng, n4, Ny and ne. Node
ng 1s defined to be the key node. Since ny has unscheduled parents, node ng becomes the
parent key node and is marked by PKN in the fourth column in figure 21.d. Node ng
defines task tq to be selected for scheduling, hence it is marked by an asterisk in the first

column in figure 21.d.
At the tenth scheduling step, task to is scheduled on processor py. Hence, nodes ny, ns, ny

and ny in DAGP, become dummy tasks. The dummy tasks are marked by a cross in

DAGP, as shown in figure 25.c.

41

The schedule generated by the LDCP algorithm is then encoded in the chromosome
shown in figure 26.a. The GATS inserts the chromosome that encodes the LDCP
generated schedule into its initial population. After running the GATS for 15 generations,
the chromosome that has the highest fitness value is shown in figure 26.b. This
chromosome is then decoded to generate the final schedule of the H2GS algorithm. The

generated schedule has a length of 61.5 and is shown in figure 26.c.

Po P1
°r -
10 - ts t.
13 221.5
—
20 |-
ta
12
X ‘ step task processor DL
1 [1 o Po 435
2 t3 po 4175
3 t P 35
40
BN o 4 tg Po 12.25
° 5 ts P 325
so |- ¢ 6 ts Po -11
s 7 ty Po. -14
8 t, P -19.25
60 |- 9 t P1 -29
:; 10 th Po -33
655 11 to Po -50.5
(a) (b)

Figure 12. (a) The schedule generated by the DLS algorithm (schedule length = 65.5), (b) the schedule trace of the DLS

algorithm

42

0

'l
10 o Y
15
20 k- L—J 1;3.5
L‘ priority in
e node upward rank the task list
oL () - t 68.5 1
e 18 66.75 2
t, 315 6
a0 b |43 t; 58.5 3
. t, 34 5
1o ‘ s 17.25 8
“r ~— ts 31.25 7
t 13.5 9
L t 3725 4
to 7.5 11
655 1o 11.25 10
(a) (b)

Figure 13. (a) The schedule generated by the HEFT algorithm (schedule length = 65.5), (b) the schedule trace of the HEFT

algorithm

43

Po P

i
= b
v L o Step Task Processor DAGP
* 1 t Po DAGP,
—~ 2 to Ps DAGP,
sor te 3 ts o DAGP,
. 4 ts Po DAGP;
ol - 5 t, Po DAGP,
%) 165 6 t, Po DAGP,
7 ts P DAGP,
“r 8 ts D1 DAGP,
9 t; po DAGP,
oo | 10 to Po DAGP,
oa L 11 to Po DAGP,
() (b)

Figure 14. (a) The schedule 'generated by the LDCP algorithm (schedule length = 64), (b) the summary of schedule trace of the

LDCP algorithm

Node URank, N Flag processor

No 59
*ny 59 1 KN Do
Nz 29
ns 50
Ny 30 2
Ns 14
Ne 27
ny 11
Ng 32
Ng 6 3
Nio 9
(@) (b)

Figure 15 . (a) DAGP; at step 1 of the LDCP algorithm (b) the nodes attributes of DAGP, at step 1 of the LDCP algorithm (c)

DAGP, at step 1 of the LDCP algorithm (d) the nodes attributes of DAGP, at step 1 of the LDCP algorithm

44

Node URank, N Flag Pprocessor

No 59
N4 74 S Po
Ny 29
N3 50
Ny 30
Ns 14
Ng 27
ny 1
ng 32
Ng 6
N1
(a) (b)

Node URank, N Flag Processor

*Ng 78 1 KN of)
ny 67 S ~ Pa
Ny 34

N3 67 2

o 38

Ns 205

Ng 35.5

ny 16

Ng 425 3

Ng 9

N4o 13.5 4

(©) ‘ (d)

Figure 16. (a) DAGP, at step 2 of the LDCP algorithm (b) the nodes attributes of DAGP, at step 2 of the LDCP algorithm (c)

DAGP; at step 2 of the LDCP algorithm (d) the nodes attributes of DAGP; at step 2 of the LDCP algorithm

45

Node URank, N Flag Processor

No 61 S P4
ny 65 S . Pe
Ny 29

N3 50

Ny 30

Ns 14

Ng 27

n; il

Ng 32

Ng 6

Nio 9

(b)

Node URank, N Flag Processor

Ng 78 1 S o
ny 67 S Po
n, 34

*ns 67 2 KN o)
Ny 38

Ns 20.5

Ne 35.5

n; 16

Ng 42.5 3

Ng 9

Nqg 13.5 4

(©) (d)

Figure 17. (a) DAGP, at step 3 of the LDCP algorithm (b) the nodes attributes of DAGP,; at step 3 of the LDCP algorithm (c)

DAGP, at step 3 of the LDCP algorithm (d) the nodes attributes of DAGP, at step 3 of the LDCP algorithm

46

Node URank, N = Flag Pprocessor

No 62.5 S P
ny 59 S Po
N2 29

N3 56.5 S P4
Ny 30

Ns 14

Ng 27

ny 11

Ng 32

Ng 6

Nio 9

(2) (b)

Node URanky, N Flag Pprocessor

No 73 1 S P4
ny . 67 S Po
n, 34

N3 67 2 S pr
Ng 38

Ns 20.5

Ng 355

ny 16

*Ng 42.5 3 KN Po
Ng 9

Nqo 13.5 4

(©) (d)

Figure 18. (a) DAGP, at step 4 of the LDCP algorithm (b) the nodes attributes of DAGP, at step 4 of the LDCP algorithm (c)

DAGP; at step 4 of the LDCP algorithm (d) the nodes attributes of DAGP; at step 4 of the LDCP algorithm

47

Node URankO N Flag Processor

Ng 72.5 1 S P4
ny 59 S Po
Ny 29
N3 66.5 2 S P4
Ny 30 4 KN Po
Ns 14
Ne 27
ny 11 ;
Ng 42 3 S Po
Ng 6 5
Nig 9

(a))

Node URank, N Flag Pprocessor

No 67 S P4
Ny 67 S Po
Ny 34
N3 61 S P+
ng 38
Ns 20.5
Ng 355
ny 16
Ng 36.5 S Po
Ng 9
N1g 13.5

© (d)

Figure 19. (a) DAGP, at step 5 of the LDCP algorithm (b) the nodes attributes of DAGP, at step 5 of the LDCP algorithm (c)

DAGP, at step 5 of the LDCP algorithm (d) the nodes attributes of DAGP, at step 5 of the LDCP algorithm

48

Node URanky N Flag Processor

No 81.5 1 S P4
ny 66 S Po
"Ny 29 5 KN Po
N3 75.5 2 S o
N4 39 4 S Po
Ng 14

Ne 27

ny 11

Ng 51 3 S Po
N 6 6

N4o 9

(a) (b)

Node URankO N Flag Processor

Ng 75.5 S oJ]
N 60 S Po
N, 34 7
N3 69.5 S P4
Ny 33 S Po
Ns 20.5
Ng 355
n; 16
Ng 45 S Po
Ng 9
N1o 13.5

() (d)

Figure 20. (a) DAGP, at step 6 of the LDCP algorithm (b) the nodes attributes of DAGP, at step 6 of the LDCP algorithm (c)

DAGP, at step 6 of the LDCP algorithm (d) the nodes attributes of DAGP, at step 6 of the LDCP algorithm

49

Node URank, N Flag Pprocessor

Ny 835 S P,
ny 68 S Po
Ny 31 S Po
N3 77.5 S P4
Ny 41 S Po
Ns 14
Ng 27
ny 11
Ng 53 S P
Ng 6
Nio 9
(a) (b)

Node URank, N = Flag Processor

Ng 84.5 1 S oF
ny 69 S Po
n, 132 5 S Po
N3 78.5 2 S oF
Ny 42 4 S Po
Ns 20.5
"Ng 35.5 PKN P1
ny 16
Ng 54 3 S Po
Ng 9 6 KN
Nyo 13.5

(© (d)

Figure 21. (a) DAGP,; at step 7 of the LDCP algorithm (b) the nodes attributes of DAGP, at step 7 of the LDCP algorithm (c)

DAGP, at step 7 of the LDCP algorithm (d) the nodes attributes of DAGP, at step 7 of the LDCP algorithm

50

Node URank, N Flag Pprocessor

No 81.5 S P1
ny 66 S Po
No 29 S Po
N3 755 S P4
Ny 39 S Po
Ns 14
Ng 31 S of
ny 11
Ng 51 S Po
Ng 6
Nig 9
(a) (b)

Node URank, N Flag Pprocessor

No 84.5 1 S o

ny 69 S Po

Ny 32 5 S Po

N3 78.5 2 S P4

N, 42 4 S Po
PK

*ns 20.5 N [oF

Ne 35.5 S P1

ns 16

Ng 54 3 S Po

N 9 6 KN

Ny 13.5

(c) ()

Figure 22. (a) DAGP, at step 8 of the LDCP algorithm (b) the nodes attributes of DAGP, at step 8 of the LDCP algorithm (c)

DAGP, at step 8 of the LDCP algorithm (d) the nodes attributes of DAGP, at step 8 of the LDCP algorithm

51

Node URank, N Flag Pprocessor

Ng 81.5 S ol
n, 66 S Po
n, 29 S Po
N3 755 S o]
N, 39 S Po
Ns 17.5 S ol
Ng 31 S P4
ny 11
Ng 51 S Po
Ng 6
Mo 9
(@) | (b)

Node URank, N = Flag Pprocessor

No 84.5 1 S P1
ny 69 S Po
N, 32 5 S Po
N3 78.5 2 S P4
Ny 42 4 S Po
Ns 26.5 S P4
Ng 36.5 S P4
*ny 16 PKN Po
Ng - 54 3 S Po
Ng 9 6 KN

N1o 13.5

(© (d)

Figure 23. (a) DAGP, at step 9 of the LDCP algorithm (b) the nodes attributes of DAGP, at step 9 of the LDCP algorithm (c)

DAGP, at step 9 of the LDCP algorithm (d) the nodes attributes of DAGP, at step 9 of the LDCP algorithm

52

Node URank, N Flag Pprocessor

Ng 81.5 S P4
N 66 S Po
n, 29 S Po
N3 75.5 S o
N4 39 S Po
Ns 17.5 S P4
Ne 31 S P4
n; 13 S Po
Ng 51 S Po
Ng 6

Nig 9

(a) (b)

Node URank, N Flag Pprocessor

No 84.5 1 S P4
ny 69 S Po
n, 32 5 S Po
N3 78.5 2 S o]
Ny 42 4 S o
ns 24 S P1
Ng 36 S P
ny 14 S Po
Ng 54 3 S Po
"Ng 9 KN Po
Nqo 13.5
() (d

Figure 24. (a) DAGP, at step 10 of the LDCP algorithm (b) the nodes attributes of DAGP, at step 10 of the LDCP algorithm (c)

DAGP, at step 10 of the LDCP algorithm (d) the nodes attributes of DAGP; at step 10 of the LDCP algorithm

53

Node URank, N Flag Pprocessor

No 75.5 1 S off
ny 60 S Po
n, 23 5 S Po
Ns 69.5 S oF
Ny 33 4 S Po
Ns 26.5 S P4
Ns 38.5 S P+
n; 19 6 S Po
Ng 45 3 S Po
Ng 15 7 S Po
*Nyg 9 8 KN Po
(a) (b)

Node URank, N Flag Processor

Ng 67 S P4
n, 515 S Po
n, 19.5 S Po
Ns 61 S P+
N4 - S Po
Ns - S oF
Ne 355 S P1
nz oo S Po
Ng 36.5 S Po
Ng - S Po
Nio 13.5
(©) (@)

Figure 25. (a) DAGP, at step 11 of the LDCP algorithm (b) the nodes attributes of DAGP, at step 11 of the LDCP algorithm (c)

DAGP, at step 11 of the LDCP algorithm (d) the nodes attributes of DAGP, at step 11 of the LDCP algorithm

54

Po 2]

o r Z) m
roole Ly
S
20 ts
Ui
0 [t]u[nlw|v]o[uo] =T %
pl {10 |3 [6] t5 o
wl 12 >—<
(@)
‘ N’
so | o
9
po [w]B]uolw|e|8][T7]0] N v
pl tl | t4 t5 61.50
(b) O ©

Figure 26. (a) The chromosome that encodes the schedule generated by the LDCP algorithm (b) the best chromosome evolved

by the GATS algorithm (c) the schedule generated by the H2GS algorithm (schedule length =61.5)

55

Chapter 6: Results and Analysis

In this section, we present a performance comparison of LDCP and H2GS algorithms as
well as the two algorithms reported in section 3.2. For this purpose, the LDCP algorithm,
the H2GS algorithm, the HEFT algorithm and the DLS algorithm are simulated. A set of
randomly generated task graphs are generated and used as the workload for evaluating
the algorithms. This section is divided into three subsections. First, the performance
metrics used to evaluate the algorithms performance, are described. Second, the
generation of the random task graph is explained. Finally, the performance of the four

scheduling algorithm is studied.

6.1 Performance Metrics

The performance metrics chosen for the comparison are Normalized Schedule Length
(NSL) [4], speedup [1], efficiency [4] and running time of the algorithms. The four

metrics are explained below:

o Normalized Schedule Length (NSL). For the first comparison, we used the NSL
produced by the LDCP algorithm, the H2GS algorithm, the HEFT algorithm and
the DLS algorithm. For DHECS, the NSL of a given schedule is defined as the
normalized schedule length to the lower bound of the schedule length. The NSL

of a schedule is calculated using equation 2.

56

Schedule Length

Zci,a

GECH e

NSL =

2)

The CPiywer 1s defined as the CP of the unscheduled application DAG, based on
the computation cost of tasks on the fastest processor p,. The denominator of
equation 2 is equal to the sum of computation costs of tasks located on CPjyer,
when they are executed on p,. This denominator gives the absolute lower bound
of the schedule length. For a given application DAG, the scheduling algorithm
that generates a schedule with the lowest NSL value, is the best algorithm from a
performance point of view. The average NSL value over a set of application

DAG:s, is used to study the performance of the algorithms.

Speedup. The speedup of a task schedule is defined as ratio of the schedule
length obtained by assigning all tasks to the fastest processor p,, to the parallel
execution time of the task schedule. The speedup value of a task schedule is

calculated using equation 3.

Zci,a
Speedup = bel 3
peedp Schedule Length ®)

Efficiency. The efficiency of a task schedule is defined as the ratio of the speedup
value to the number of processors used. The efficiency calculation is presented in

equation 4.

57

Efficiency = Speedup

x100 (4)
Number of processor used

¢ Running Time. The running time of a scheduling algorithm is defined as the
execution time needed to produce the output schedule. The average running time

over a set of application DAGs is studied for the four scheduling algorithms.

6.2 Experimentalv Set-Up

In our simulated environment, four different DHECSs are used to evaluate the
performance of the algorithms. A random DAG generator is used first to generate a set of
application DAGs for each one of the four DHECS:s. This random DAG generator has a
set of input parameters that determine the characteristics of the generated DAGs. Next,
the four scheduling algorithms are run to schedule the generated DAGs on each DHECS.
Finally, the performance of the scheduling algorithms is evaluated using the performance

metrics.

The random DAG generator has the following input parameters:

o DAG size, n, which is the number of tasks in the application DAG.

¢ Communication to computation cost ratio, CCR. It is defined as the average

communication cost divided by the average computation cost of the application.

58

Parallelism factor, o [1]. The number of levels of the application DAG is
calculated by randomly generating a number using a uniform distribution with a
mean value of v/, and then rounding it up to the nearest integer. The width of
each level is calculated by randomly generating‘ a number using a uniform
distribution with a mean value of ax~/n , and then rounding it up to the nearest

integer. A low o value leads to a DAG with a low parallelism degree [4].

The computation cost heterogeneity factor, 4. A high % indicates high variance of
the computation costs of a task, with respect to the processors in the system, and

visa versa. If the heterogeneity factor is set to 0, the computation cost of a task is
the same for all processors. The average computation cost of a task t; (;v;) 1S
randomly generated using a uniform distribution with a mean value of W . It is
~presumed to be an approximation of the average computation cost of the
application DAG. If there are m processors in the DHECS, the computation cost

of a task t; for each processor is set by randomly selecting m computation cost

values of t; from the range below:

(-3

The m selected computation cost values of t; are sorted in an increasing order. The

computation cost value of t; on processor pp is set to the first (i.e lowest)

59

computation cost. The computation cost of t; on processor p; is set to the second

value. This processor allocation continues until all processors are processed [1].

The four DHECSs are composed of 2, 4, 6 and 8 processors respectively. For each
DHECS, the generated workload suite consists of 500 random generated DAGs, with 5
different DAG sizes varying form 20 to 100 nodes with an increment of 20 nodes. For
each DAG size, there are five different CCR values: 0.1, 0.5, 1.0, 2.0, and 5.0, four «

values: 0.5, 1.0, 2.0, and 5.0, and five A values: 0.1, 0.2, 0.4, 0.6 and 0.8.

6.3 Performance Results

The performance comparison of the LDCP, H2GS, and HEFT and DLS algorithms is
done in a number of ways. First, the NSLs produced by these algorithms are compared
with each other with respect to various DAG sizes, CCR values and numbers of
processors. Second, the speedups obtained by these four algorithms are compared against
each other by varying the number of nodes, CCR value and number of processors. And
finally, the efficiency of schedules generated by the four scheduling algorithm is studied

with respect to the number of nodes and the CCR value.

6.3.1 Comparison of Schedule Lengths

The NSLs produced by each algorithm for each DAG size, CCR value and number of
processors are shown in tables 1, 2, and 3, and figures 27, 28 and 29, respectively. Every

result for a DAG size is an average of 400 application DAGs (5 CCR values x 4 «

60

values x 4 m vales x 5 h values). Every result for a CCR is an average of 400 DAGs (5 n
values X 4 « values x 4 m vales x 5 & values). And finally, every result for a number of
processors is an average of 500 DAGs (5 n values x 5 CCR values x 4 « values X 5 &

values).

As shown in tables 1, 2, and 3, and figures 27, 28 and 29, the performance of the LDCP
algorithm outperforms both the HEFT and DLS algorithms. The GATS algorithm takes
the schedule generated by the LDCP algorithm and improves it to produce an even

shorter schedule than that produced by the LDCP algorithm.

The average NSL value of the LDCP algorithm, on all generated application DAGs, 1s
shorter than that of the HEFT and DLS algorithms by 4.8% and 2.1% respectively.
Moreover, the average NSL value produced by the H2GS algorithm is shorter than that of

the HEFT and DLS algorithms by 8.8% and 6.2% respectively.

The performance of the GATS algorithm degrades at higher application sizes. At higher
numbers of nodes, the size of the search space becomes larger and the GATS algorithm

requires more generations to find better schedules.

A large CCR value tests the ability of the algorithm to deal with communication-intensive
applications. The differences between the schedule length generated by the H2GS
algorithm and those generated by the two other algorithms become more pronounced at

larger CCR values.

61

The LDCP algorithm, using the LDCP attribute, identifies the heavily communicating
tasks. Next, the insertion-based scheduling policy, implemented by the LDCP algorithm,
determines if allocating those tasks to the same processor leads to a reduction in their
finish execution time. The insertion-based scheduling policy allocates those tasks to
processors that reduce their execution time. Moreover, the GATS algorithm further
eliminates inter-processor communication if such elimination leads to a shorter schedule

length.

TABLE 1: Comparison of Average NSL with Respect to n

N DLS HEFT LDCP H2GS
20 2.771 2.716 2.630 2.294
40 3.362 3.265 | 3.189 3.028
60 3.782 3.662 3.564 3.484
80 4.059 3.959 3.893 3.817
100 4.277 4.148 4.094 4.017

TABLE 2: Comparison of Average NSL with Respect to CCR

CCR DLS HEFT LDCP H2GS
0.1 2.762 2.760 2734 2.704
0.5 2.866 2.842 2.797 2.756
1.0 3.134 3.056 2.990 2.939
20 3.771 3.635 3.561 3.510
5.0 5.719 5.457 5.288 4.730

TABLE 3: Comparison of Average NSL with Respect to m

DLS HEFT LDCP H2GS
5.119 4.977 4.905 4752
3.564 3.435 3.353 3.197
3.065 2.987 2.920 2.786
2.853 2.799 2.719 2.578

o o s NIT

62

—a—DLS
—x—HEFT
—>—H2GS
-
7] |
4
Q
o
o
Q
>
<<
2 T T I I i
0 20 40 60 80 100 120
Number of Nodes
Figure 27. Average NSL with respect to DAG size
5 —A— ELS
—x—HEFT
5.5 /A
//é —o—LDCP
L0 ——H2GS
@ 45 _—
pd
S 4
: P
g 3.5 :
iy -
2.5
2 T T T T T
0 1 2 3 4 5 6

Figure 28. Average NSL with respect to CCR

63

—»DLS
- —%—HEFT
—o—LDCP

4.5 - E& —x—H2GS
4 AN

5.5

.|
n
pd - o
3 AN
()]
8 35
[«}]
> \\
< 3 %
2.5 —— e
2 T T T T
0 2 4 6 8 10
Number of Processors
L N

Figure 29. Average NSL with respect to number of processors

As the number of processors in the system increases, the computation cost of the
application DAG is distributed between more processors. Hence, the generated schedule
length becomes shorter. However, as the workload is distributed between more
processors, the impact of the communication cost becomes higher. The differences
between the schedule length generated by the H2GS algorithm and those generated by the
two other algorithms become higher at larger numbers of processors. Hence, the

performance advantage of the H2GS algorithm is even greater for large numbers of

processors (up to 8).

As explained before, the H2GS algorithm identifies heavily communicating tasks. Those
tasks are allocated to the same processors only if such an allocation leads to a shorter

schedule length. The LDCP algorithm allocates each task to a processor that minimizes

64

its finish execution time. Moreover, The GATS algorithm improves the allocation of
tasks to generate a shorter schedule. The H2GS algorithm maintains a balance between
exploiting the available processors in the system, and reducing inter-processor

communications, to generate shorter schedules.

6.3.2 Comparison of Speedup

Tables 4, 5, and 6, and figures 30, 31 and 32, show the speedup gained by the four
algorithms with respect to DAG size, CCR and number of processors receptively. The
average speedup gained by the LDCP algorithm, on all generated application DAGs, is
greater than that gained by the HEFT and DLS algorithms by 5.7% and 2.7%
respectively. Moreover, the average Speedup gained by the H2GS algorithm is greater

than that gained by the HEFT and DLS algorithms by 8.3% and 5.3% respectively.

As the application DAG increases, the number of nodes that can be executed, at the same
time, in parallel becomes higher, and hence the gained speedup increases. Higher CCR
values lead to higher communication costs, and hence the gained speedup decreases. As
the number of processors in the system increases, the available computation recourses

become higher, leading to higher speedup values.

TABLE 4: Comparison of Average Speedup with Respect to n

N DLS HEFT LDCP H2GS
20 1.652 1.709 1.761 1.870
40 2132 2.202 2.259 2.314
60 2.386 2.460 2.543 2.602
80 2.589 2.654 2717 2.760
100 2.749 2.820 2.887 2.923

65

TABLE 5: Comparison of Average Speedup with Respect to CCR

CCR DLS HEFT LDCP H2GS
01 3.198 3.215 3.260 3.294
0.5 2.913 2973 3.051 3.123
1.0 2.457 2.567 2.655 2.708
2.0 1.902 1.978 2.034 2.052
5.0 1.040 1.112 1.168 1.291

TABLE 6: Comparison of Average Speedup with Respect to m

m DLS HEFT | LDCP | H2GS
2 1308 | 1.348| 1379 1.409
4 22181 2205| 2353| 2402
6 2600| 2680| 2765| 2850
8 3.082| 3154| 3236| 3.313
3 —2—DLS
v g %é —x—HEFT
o 2:6 P ::ZZZ
§ 24 //WE
- p 7
5, y
4
< 4
1.6
1.4 . ; x r |
0 20 40 60 80 100 120

Number of Nodes

Figure 30. Average speedup with respect to DAG size

——-DLS

4 6 8

Number of Processors

10

—x—HEFT
3 — - —o—LDCP
S —x—H2GS
T 25 DR\ S
Q
Q
Q.
w 2 3
[J] \
D
S 15
g \\?
<
1
0.5 [r ‘
0 2 3 4 5 6
CCR
Figure 31. Average speedup with respect to CCR
—a—DLS
3.5
—x—HEFT
3 ////%f —o—LDCP
; e e
o 25
[o X
2 %
> 2
< 15
1 T [T T

67

Figure 32. Average speedup with respect to Number of Processors

6.3.2 Comparison of Efficiency

Tables 7 and 8, and figures 33 and 34 show the efficiency gained by the DLS, HEFT,
LDCP and H2GS algorithms with respect to the DAG size and CCR respectively. The
average efficiency gained by the LDCP algorithm i1s better than that gained by the HEFT
and DLS algorithms by 5.7% and 2.5% respectively. Moreover, the average efficiency
gained by the H2GS algorithm is better than that gained by the HEFT and DLS
algorithms by 8.5% and 5.2% respectively. These efficiency results reflect the superiority

of the H2GS algorithm over all others.

As shown figure 33, at the beginning, as the number of tasks in the system increases the
gained efficiency increases. However, after a while, increasing the DAG size will not

further improve the gained efficiency.

When the DAG size is small, increasing the DAG size leads to increasing the number of
tasks that can be executed, at the same time, in parallel. Hence, as the DAG size
increases, the tasks can be distributed between the processors efficiently. However, when
the number of tasks that can be executed in parallel becomes higher than execution ability
of the system, any further increasing of the DAG size will not improve the efficiency of

the system.

68

As shown in figure 34, increasing the CCR leads to lower efficiency values. Since,
increasing the CCR value leads to higher communication costs between tasks, the

resulting task schedule is longer and the gained efficiency is lower.

TABLE 7: Comparison of Average Efficiency with Respect to n

n DLS HEFT LDCP H2GS
20 0.444 0.460 0.476 0.506
40 0.526 0.548 0.560 0.574
60 0.555 0.574 0.590 0.602
80 0.563 0.578 0.592 0.603
100 0.574 0.585 0.595 0.604

TABLE 8: Comparison of Average Efficiency with Respect to CCR

CCR DLS HEFT LDCP H2GS
0.1 0.695 0.697 0.707 0.713
05 0.649 0.659 0.675 0.686
1.0 0.570 0.591 0.608 0.618
2.0 0.467 0.492 0.505 0.510
50 0.281 0.306 0.321 0.357
065 —a-DLS
—x—HEFT
0.6 e ¢ X —o—LDCP
[
© 055 ~
=
3]
S ///(/
« 05
5 /
>
: 7/
045 -
i 0.4 T T ¥ T T
0 20 40 60 80 100 120

Number of Nodes

Figure 33. Average efficiency with respect to DAG size

69

_a_DLS

0.8
—x—HEFT
0.7 - ——LDCP
——H2GS

©
fop)
I

o
LN
Il

Average Efficiency
o
(&)1

©
w

o
N

CCR

Figure 34. Average efficiency with respect to CCR

6.3.2 Comparison of Running Time

Tables 9 and figures 35 show the average running of the DLS, HEFT, LDCP and H2GS
algorithms with respect to the DAG size. The average running time of the LDCP
algorithm is higher than both the HEFT and DLS algorithms by 230.5% and 72.4%
respectively. The average running time of the H2GS algorithm is higher than the HEFT

and DLS algorithms by 435.3% and 179.1% respectively.

The LDCP requires higher time to select the tasks for scheduling than both the HEFT and
DLS algorithms. The total running time of the H2GS algorithm is the sum of the running

times of both the LDCP and GATS algorithms.

70

TABLE 9: Comparison of Average Efficiency with Respect to

20

40

60

80

Number of Nodes

100

120

n DLS HEFT LDCP H2GS
20 41.467 26.822 | 119.356 | 163.444
40 109.522 | 34.278 | 195.483 | 307.441
60 179.744 | 78.967 | 342.704 | 537.301
80 269.478 | 148.711 | 504.419 | 822.610
100 496.578 | 283.111 | 728.373 | 1230.256
——DLS
1400
—%—HEFT
X
g 1200 / ——LDCP
i~ 1000 x— H2GS
o S
‘€ 800
c
& 600 e
p / /
2 400 /////A//A
Q
>
0 T H T T T

Figure 35. Average running time with respect to DAG size

71

Chapter 7: Conclusion and Future Work

7.1 Conclusion

Task scheduling algorithms are essential for obtaining high performance in
heterogeneous computing systemsi In general, static task scheduling is defined as the
process of allocating the tasks of an application (as represented by a Directed Acyclic
Graph or DAG) to a network of processors, and arranging the execution of these tasks in
order to minimize the completion time of the application. Static task scheduling has been
shown to be a NP-complete problem, and several algorithms have been proposed to deal
with it. However, most of the available algorithms are developed for homogeneous

computing systems.

Scheduling algorithms are classified into three main categories: heuristic algorithms,
guided random algorithms and hybrid algorithms. Heuristic scheduling algorithms find
solutions by moving from one point in the search space to another following a particular
rule. Such algorithms find near-optimal solutions in less than polynomial time. However,

these algorithms search some paths in the search space, and ignore others.
Guided random search algorithms combine the exploitation of previous results with the

exploration of new areas in the search space. Genetic Algorithms (GAs) are the guided

random search algorithms most widely used for task scheduling. GA-based scheduling

72

algorithms work on a population of candidate solutions in parallel. Hence, this reduces
the probability of prematurely converging to a locally optimum solution. However, the
execution time of such algorithms is higher than that of the heuristic algorithms. Hybrid
scheduling algorithms combine both heuristic scheduling algorithms and GAs. Such

algorithms find high quality schedules.

Most heuristic scheduling algorithms for distributed computing systems belong to the
list-based scheduling class. In list-based scheduling heuristics, each task is assigned a
priority and then inserted into a list of waiting tasks. Then, the unscheduled task with the
highest priority is selected and assigned to the most suitable processor. This process
continues until all the tasks in the waiting list are scheduled. The performance of list-
based scheduling algorithms 1s critically dependant on the method used to assign

priorities to tasks.

The Critical Path (CP) attribute provides an efficient method for assigning priorities to
tasks. However, when two tasks are scheduled on the same processor, the communication
cost between them is zero. Hence, the CP changes dynamically during the scheduling
process. The DCP, introduced by Kwok et al., overcomes this problem in homogenous
computing systems. It considers the cancellation of communication costs between tasks

scheduled on the same process.

In Distributed Heterogeneous Computing System (DHECS), the various computational

costs of the same task on different processors present a problem when the DCP is applied.

73

The DCP computed using the computation costs of tasks on a particular processor may
differ from those computed using the computation costs on other processors.

In this report, a novel hybrid scheduling algorithm called the Hybrid Heuristic-Genetic
Scheduling (H2GS) algorithm is introduced. The H2GS algorithm efficiently optimizes
task scheduling in DHECSs. It combines two algorithms to produce a high quality
schedule. First, the H2GS algorithm runs a list-based scheduling heuristics, called the
Longest Dynamic Critical Path (LDCP) algorithm. The LDCP algorithm generates a
near-optimal schedule. The LDCP algorithm employs a new attribute, called LDCP, to
calculate task priorities. This attribute identifies a set of tasks and edges that play an
important role in determining the provisional schedule length. At each scheduling step,
the LDCP algorithm selects the most important task for scheduling. Next, the insertion-
based scheduling policy is used to schedule the selected tasks on the processor that

minimizes its finish execution time.

A Genetic Algorithm, called Genetic Algorithm for Task Scheduling (GATS), accepts the
schedule generated by the LDCP algorithm as its own input. The GATS algorithm uses
the LDCP-generated schedule to create its first population. Next, the GATS algorithm
evolves this population to find better optimal (or near-optimal) schedules. The insertion
of the LDCP-generated schedule to the first population enables the GATS algorithm form
searching around an area in the search space that is close to or includes the optimal
schedule. Moreover, the GATS algorithm employs a set of genetic operators that are

specifically designed for the task scheduling problem. These operators search the search

74

space efficiently. Hence, the time required by the GATS algorithm to find an optimal or

near-optimal schedule is minimized.

The performance of the H2GS algorithm is compared to two of the best list-based
scheduling algorithms for DHECSs. These two techniques are called the HEFT algorithm
and the DLS algorithm. The H2GS, HEFT and DLS algorithms are simulated. A set of
500 randomly generated DAGs with various characteristics, are generated and used as the
workload for evaluating the algorithms. This workload is then run on 4 different

DHECS:S.

The LDCP algorithm outperforms both the HEFT and DLS algorithms. In terms of
schedule length, the average NSL of the LDCP algorithm is shorter than that of the HEFT
and DLS algorithms by 4.8% and 2.1%, respecti{fely. In terms of efficiency, the average
speedup gained by the LDCP algorithm is higher than that gained by the HEFT and DLS

algorithms by 5.7% and 2.7%, respectively.

The H2GS algorithm (including GATS) enhances the results gained by the LDCP
algorithm, on its own. The performance of the H2GS shows a significant improvement
over both the HEFT and DLS algorithms. The average normalized schedule length (NSL)
achieved by the H2GS algorithm is better than that of the HEFT and DLS algorithms by
8.8% and 6.2%, respecti;/ely. Moreover, the average Speedup gained by the H2GS
algorithm is greater than that gained by the HEFT and DLS algorithms by 8.3% and

5.3%, respectively.

75

7.2 Future Work

As part of our future work, we plan to investigate the scheduling of real-time applications
to a DHECS. Such applications include: Gaussian Elimination, Fast Fourier

Transformation and Molecular Dynamics Code.

Scheduling algorithms assume usually fully connected networks of processor. However,
this assumption cannot be met by all distributed computing environments. To address this
problem, we plan to extend the proposed algorithm to partially-connected networks of

heterogeneous processors.

The memory and disk access speed improvements are significantly lagged behind
advancements of CPU speed. Hence, this increases the penalty of data access operations,
such as page faults and I/O operations, relative to normal CPU operation. To improve the
performance of distributed computing systems, the scheduling algorithm must consider
the available memory and I/O resource on each processing unit. Moreover, the scheduling

algorithm should consider the data access requirements of the distributed application.

76

References

[1] H. Topcuoglu, S. Hariri, and M.Y. Wu, “Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing”, IEEE Trans. Parallel and
Distributed Systems, Vol. 13, No. 3, pp. 260-274, March 2002.

[2] Y. Zhang, A. Sivasubramaniam, J. Moreira, and H. Franke, ** Impact of Workload and
System Parameters on Next Generation Cluster Scheduling Mechanisms”, IEEE Trans.
Parallel and Distributed Systems, Vol. 12, No. 9, pp. 967-985, September 2001.

[3] A. Zomaya, C. Ward, and B. Macey, “Genetic Scheduling for Parallel Processor
Systems: Comparative Studies and Performance Issues”, IEEE Trans. Parallel and
Distributed Systems, Vol. 10, No. &, pp. 795-812, August 1999.

[4] S. Bansal, P. Kumar, and K. Singh, “An Improved Duplication Strategy for
Scheduling Precedence Constrained Graphs in Multiprocessor systems”, IEEE Trans.
Parallel and Distributed Systems, Vol. 14, No. 6, pp. 533-544, June 2003.

[5] Y.K. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed
Task Graphs to Multiprocessor;”, ACM Computing Surveys, Vol. 31, No. 4, pp. 406-
471, December 1999.

[6] B. Kruatrachue, “Static Task Scheduling and Grain Packing in Parallel Processing
Systems”, PhD thesis, Department of Computer Science, Oregon State University, 1987.
[71 YK. Kwok and 1. Ahmad, “Dynamic Critical-Path Scheduling: An Effective
Technique for Allocating Task Graphs to Multiprocessors”, IEEE Trans. Parallel and

Distributed Systems, Vol. 7, No. 5, pp. 506-521, May 1996.

77

[8] M. Grajcar, “Strengths and Weaknesses of Genetic List Scheduling for Heterogeneous
Systems”, Proceedings of the Second International Conference on Application of
Concurrency to System Design (ACSD’01), IEEE 2001.

[9] AY. Zomaya and Y.H. Teh, “Observations on Using Genetic Algorithms for
Dynamic Load Balancing”, IEEE Trans. Parallel and Distributed Systems, Vol. 12, No.
9, pp. 899-911, September 2001.

[10] Y.K. Kwok and I. Ahmad; “Link Contention-Constrained Scheduling and Mapping
of Tasks and Messages to a Network of Heterogeneous Processors”, Parallel Processing,
1999 Proceedings, 1999 International Conference on, IEEE.

[11} H. El-Rewini, T.G. Lewis, and H.H. Ali, Task Scheduling in Parallel and
Distributed Systems, Englewood Cliffs, New Jersey: Prentice Hall, 1994.

[12] G.C. Sih, and E.A. Lee, ”4 Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures”, IEEE Trans. Parallel and
Distributed Systems, Vol. 4, No. 2, pp. 175-187, February 1993.

[13] H. El-Rewini and T.G. Lewis, “Scheduling Parallel Program Tasks onto Arbitrary
Target Machines”, J. Parallel and Distributed Computing, Vo. 9, pp. 138-153, 1990.

[14] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman and Company, 1979.

[15] J. Liou and M.A Palis, “4 Comparison of Genetic Approaches to Multiprocessor
Scheduling”, Proceedings. Int’l Parallel Processing Symp, pp. 152-156, 1997.

[16] 1. Ahmad and Y.K. Kwok, “On Exploiting Task Duplication in Parallel Program
Scheduling”, IEEE Trans. Parallel and Distributed Systems”, Vol. 9, No. 9, pp. 872-892,

September 1998.

78

[17] Y.C. Chung and S. Ranka, “dpplication and Performance Analysis of a Compile-
Time Optimization Approach for List Scheduling Algorithms on Distributed-Memory
Multiprocessors ”, Processing Supercomputing, pp. 512-521, November 1992.

[18] M.Tan, HJ. Siegal. J. K. Antonio, and Y.A. Li, “Minimizing the Application
Execution Time Through Scheduling fs Subtasks and communication Traffic in a
Heterogeneous Computing System”, IEEE Trans. Parallel and Distributed Systems, Vol.
8, No. &, pp. 857-871, August 1997.

[19] V. Sarkar, “Partitioning and Scheduling Parallel Programs for Multiprocessors”,
MIT Press, Cambridge, MA, 1989.

[20] M. Wu and D. Dajski, "Hypertool: A Programming Aid for Message Passing
Systems”, IEEE Trans. Parallel and Distributed Systems, Vol. 1, pp. 330-343, July 1990.
[21] B. Hamudzadeh, L.Y. Kit, and D.J. Lilja, “Dynamic Task Scheduling Using Online
Optimization”, IEEE Trans. Parallel and Distributed Systems, Vol. 11, No. 11, pp. 1151-
1163, November 2000.

[22] E.G. Coffman, Computer and Jop-Shop scheduling Theory, New York: Wiley, 1976.
[23] M.W. Schaffter, “Scheduling Jobs with Communication Delays: Complexity Results
and Approximation Algorithms”, PhD thesis, Technical University of Berlin, Germany,
1996.

[24] B. Kuatrachue and T.G. Lewis, “Grain Size Determination for Parallel Processing”
IEEE Software, pp. 23-32, January 1988.

[25] A. Munier and C. Hanen, “Using Duplication for Scheduling Unitary Tasks on m

Processors with Unit Communication Delays”, Theortical Computing Science, 1997.

79

[26] D.E. Goldberg, Genetic Aigorithm in search, Optimization, and Machine Learning.
Reading Mass.: Addison-Wesley, 1989.

[27] M. Srinivas and L.M. Patnaik, “Genetic Algorithms: A Survey”, Computer, Vol. 27,
pp. 17-26,1994.

[28] M. Grajcar. “Genetic List Scheduling Algorithm for Scheduling and Allocation on a
Loosely Coupled Heterogeneous Multiprocessor System”, Proceedings of the 36th

ACM/IEEE conference on Design automation, pp. 280 — 285, 1999.

80

