A MODEL FOR COMPOSIBLE AND EXTENSIBLE
PARALLEL ARCHITECTURAL SKELETONS

MOHAMMAD MURSALIN AKON

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOorR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

DECEMBER 2004

© MOHAMMAD MURSALIN AKON, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04438-1
Our file Notre référence
ISBN: 0-494-04438-1
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

A Model for Composible and Extensible Parallel Architectural
Skeletons

Mohammad Mursalin Akon

Application of pattern-based approaches to parallel programming is an active area
of research today. The main objective of pattern-based approaches to parallel pro-
gramming is to facilitate the reuse of frequently occurring structures for parallelism
whereby a user supplies mostly the application specific code-components and the
programming environment generates most of the code for parallelization. Parallel
Architectural Skeleton (PAS) is such a pattern-based parallel programming model
and environment. The PAS model provides a generic way of describing the archi- '
tectural /structural aspects of patterns in message-passing parallel computing. Ap-
plication development using PAS is hierarchical, similar to conventional parallel pro-
gramming using MPI, however with the added benefit of re-usability and high level
patterns. Like most other pattern-based parallel programming models, the benefits
of PAS were offset by some of its drawbacks such as difficulty in: (1) extending PAS
and (2) skeleton composition. SuperPAS is an extension of PAS that addresses these
issues. SuperPAS provides a skeleton description language to describe a skeleton in
a generic way. Using SuperPAS, a skeleton developer can extend PAS by adding
new skeletons to the skeleton repository (i.e., extensibility). SuperPAS also makes
the PAS system more flexible by defining composition of skeletons. In this thesis,
we describe the model and description language for SuperPAS and elaborate its use

through examples.

iii

Acknowledgments

I would like to thank my supervisor, Professor Dhrubajyoti Goswami, for being my
supervisor. His guidance, support, and encouragement throughout my studies in
Concordia made him more than a guru to me. I am also thankful to Professor Hon
Fung Li for being my unofficial supervisor. Without his mind-blowing ideas, thinking
power, patience and time, I would not be able to be confident in writing this thesis.

I would like to acknowledge students of the course COMP628: Computer Sys-
tems Design of Spring 2004 session for their participation in usability testing. Their
comments about the SuperPAS system were beneficial.

My special thanks go to my parents, my brother and my wife for their moral
support throughout my research. Finally, I am grateful to the great Almighty for

everything in my life. All praise is for the Him.

v

Contents

List of Figures » viii
List of Tables ix
1 Introduction 1
1.1 Pattern-based Parallel Programming 3
1.2 Objective of This Research 4
1.3 Organization of the Thesis 5

2 Preliminaries 6
2.1 Pattern-Based Parallel Programming Systems 6
211 Frameworkso 6

2.1.2 Enterprise e 7

213 COPS . . . e 8

214 ASSIST o e 8

2.2 ThePAS System e 8

3 Introduction to SuperPAS 13
3.1 Motivationo 13
3.2 Categorization of the Users of SuperPAS System 14
3.3 Development Steps in SuperPAS 15
3.4 Introduction to the SuperPAS Model 16

3.5

3.4.1 Overview e e e e e e 16

3.4.2 The Virtual Processor Grid 17
3.4.3 Mapping A Pattern onto A VPG, 18
344 Denotations oL 20
3.4.5 Primitives 21
3.4.6 Composition. 21
3.4.7 Labeling 26
Comparison with Related Works 26
351 MetaCOPS o 27
3.5.2 ASSIST e 28
3.5.3 Comparison From a Developer’s Perspective 29

The Skeleton Description Language, Examples and Current Imple-

mentation 34
4.1 'The SDL for Abstract Skeletons 35
4.1.1 The Grammar ot 35
4.1.2 Discussion of the SDL 38
4.2 The SDL for Concrete Skeletons 44
4.2.1 The Grammar I 44
4.2.2 Discussion of the Grammar 45
4.3 Example Design of Abstract Skeletons 47
4.3.1 Abstract Pipeline Skeleton 48
4.3.2 Abstract Mesh Skeleton, 50
4.3.3 Abstract Cube-Connected-Cycles Skeleton 52
4.3.4 An Abstract X-Tree Skeleton 54
4.3.5 Abstract Singleton Skeleton 56
4.4 The Current Implementation. 56
4.5 An Image Convolution Application o8

vi

4.5.1 Problem Description
4.5.2 Concretizing Abstract Skeletons

4.5.3 Code-Complete Modules

5 Usability and Performance Issues

51 Usability e
5.1.1 Environment 0 .
51.2 Results. o
51.3 Analysis

5.2 Performance

6 Conclusion

Bibliography

vii

64
64
64
66
66
67
67
68

70

72

List of Figures

© 00 ~ O Uk~

11
12
13
14
15
16

PAS skeletons and their components
Mapping Wavefront Pattern ina VPG
Mapping of AT of a Pipeline pattern onto a VPG and the VPG onto
physical processors
A composed skeleton for image processing
Composing skeletons towards performance
The skeleton space
Aliasing inaskeleton L.
Fusion and linkage paradigm of aliasing
An aliasing example L
One level of skeleton hierarchy
Designing the abstract Pipeline skeleton
AMeshpattern
The Cube-Connected-Cycles pattern
Designing X-Tree skeleton through composition
Design of an image convolution application

The first level skeleton hierarchy for an image convolution application

viii

59

List of Tables

1 Primitives available to initialize and membership functions 39
2 Some basic primitives available to public primitives 42
3 Some basic primitives available to private primitives 43
4 Performance 68

X

Chapter 1

Introduction

With time, computer hardware is getting inexpensive and faster. At the same time,
scientists are investigating increasingly complex problems with finer level of detail,
requiring larger computing power, sophisticated algorithms and cutting-edge software.
Research in High Performance Computing (HPC) is exploring different aspects of
available and foreseeable technology to realize those complex problems.

Parallel application design and development is a major area of focus in the domain
of high performance computing. With the advent of fast networks of workstations and
PCs, it is now becoming increasingly possible to develop high-performance parallel
applications using the combined computing powers of these networked-resources at
a reasonable price-performance ratio. In practice, it can be found that most of the
top 500 supercomputing machines [1] are built using off-the-shelf processors. Contrast
this to the situation, a few years back parallel computing was confined only to special-
purpose parallel computers, each priced high enough to be affordable only by major
research /academic institutions. Consequently, availability of high-speed networks and
fast general-purpose computers are facilitating towards the mainstream adoption of
parallel computing.

However, it must be noted that development of parallel programs is complex. This

has always been one of the major obstacles to the mainstream adoption of parallel

computing. There are diverse reasons for the aforementioned difficulty in parallel

programming:

¢ There is no single standard architecture and standard programming model for
parallel computing. Unlike sequential computers, which follow the Von Neu-
mann model of computation, different parallel architectures support different
parallel programming models (e.g., data-parallel, data-flow, control-parallel,
systolic). Each programming model gives birth to a group of new languages,
compilers, compilation techniques and a group of programmers proficient in

their use.

e There is no standard to measure the performance of a parallel program, in theory
or in practice. Sometimes, researchers use LogP [2] or its descendant models
but they are not always sufficient to model all possible parallel programming

paradigms or models.

¢ There exists no standard parallel programming tool to develop, debug and pro-
file parallel programs. As a result, the parallel programmers often develop their

own specialized tools.

e For long time, researchers has been exploring different programming languages
for parallel programming. Many extension to existing programming languages
(C-Linda (3], HPF [4], CC++ [5], etc) as well as many freshly designed pro-
gramming languages (NESL [6], Orca (7], PARLOG 8], ZPL [9], etc) has been
proposed. As a consequence, it requires higher learning time for the program-
mers to learn the language extension or the new language. At the same time,

the codes written in those languages are not always reusable.

Numerous researches have been conducted to overcome some of the above men-

tioned difficulties. This research focuses on a specific approach to network-oriented

parallel (cluster) programming that is based on frequently used parallel design pat-

terns.

1.1 Pattern-based Parallel Programming

The concept of design patterns has been used in divgrse domains of engineering,
ranging from architectural designs in civil engineering [10] to the design of object
oriented software [11,12]. In the area of parallel computing, (parallel) design pat-
terns specify recurring parallel computational problems with similar structural and
behavioral components, and their solution strategies. Examples of such recurring
parallel patterns are: static and dynamic replication, divide and conquer, data par-
allel computation with various topologies, compositional framework for control- and
data-parallel computation, pipeline, singleton pattern for single-process (single- or
multi-threaded) computation, systolic and wavefront computation.

Patterns in parallel computing have often been employed not only at the design
level but also at the implementation level as reusable components. Several parallel
programming systems have been built with the intent to facilitate rapid development
of parallel applications through the use of design patterns. Some of these systems are
CODE [13], Frameworks [14], Enterprise [15], Tracs [16], DPnDP [17], COPS (18],
PAS [19], and ASSIST [20].

Most of the previous researches in this direction focused on the algorithmic / be-
havioral aspects of patterns, popularly known as algorithmic skeletons [21]. Algorith-
mic skeletons are best expressed using the various functional and logic programming
languages [22,23].

In contrast, Parallel Architectural Skeletons (PAS) [19, 24] specifies the architec-
tural/structural aspects of patterns. The PAS model describes the various attributes
of a message-passing parallel pattern in a generic and application-independent fash-

ion. Unlike algorithmic skeletons, architectural skeletons in PAS can be very well

expressed using object-oriented language(s). For instance, the PAS model has been
fully implemented using C++ without necessitating any language extension. Conse-
quently, the PAS approach is well suited to the main-stream of parallel application
developers where the popular object-oriented languages like C++ and Java are the
languages of choice.

Application development using PAS is hierarchical, and is similar to conventional
parallel programming using MPI [25] and PVM [26]. However, PAS provides the
added benefit of re-usability. A developer, depending upon the specific needs of a
parallel application, chooses the appropriate skeletons, supplies the required param-
eters and application-specific code. Architectural skeletons supply most of the code
that is necessary for the low-level and parallelism-related issues. In other words, archi-
tectural skeletons take care of application-independent parallel programming aspects
whereas the developer largely supplies the necessary application code. Consequently,
there exists a clear separation between application dependent code and application

independent issues (i.e., separation of concerns).

1.2 Objective of This Research

Though reusability is a useful benefit, the lack of extensibility and the lack of sup-
port for pattern composition are some of the major concerns associated with most of
the pattern-based approaches to parallel programming, including PAS. Most existing
systems support a limited and fixed set of patterhs that are hand-coded into those
systems. Generally, there is no provision for adding a newly designed skeleton with-
out understanding the entire system and writing the skeleton from scratch (i.e., lack
of extensibility). So, if a required parallel computing pattern demanded by an appli-
cation is not supported, generally the designer has no alternate way but to abandon
the idea of using the particular approach altogether (lack of flexibility).

SuperPAS, introduced in [27], is an extension of the PAS system and it addresses

the drawbacks mentioned previously. It provides a model for designing new skele-
tons. Besides, it also supports a skeleton description language (SDL) to realize the
SuperPAS model for designing skeletons. Using SuperPAS, a skeleton designer can
extend PAS by adding new skeletons to the repository (i.e., extensibility). SuperPAS
also makes the PAS system more flexible by defining composition of skeletons, where
two or more existing skeletons can be composed into a new skeleton.

The SuperPAS model and environment are targeted for two different groups of
users: (1) skeleton designers who design new skeletons from scratch or through com-
position, and add the new skeletons to the skeleton repository, (2) Application de-
velopers who use the skeletons already available in the skeleton repository. Unlike
a skeleton designer, an application developer does not need to have any knowledge
about the SDL and he/she can directly develop application using C++. On occasions,

a skeleton developer and an application developer may be the same person.

1.3 Organization of the Thesis

The thesis describes the SuperPAS model, the associated SDL and its use. The thesis
is organized as follows: Chapter 2 provides a brief introduction to the PAS model.
Chapter 3 introduces the SuperPAS model and necessary theories. The following
chapter describes the SDL along with its grammar. That chapter also includes design
of several example abstract skeletons and development of one application in Super-
PAS system. In chapter 5, we discuss the performance issues of SuperPAS-based
applications from different perspectives. Finally chapter 6 concludes the thesis with

a discussion about future directions.

Chapter 2
Preliminaries

This chapter is divided into two sections. In the first section, we briefly introduce
several pattern-based parallel programming systems. The second section is dedicated
to an introduction of the PAS [19,24] system. That section also discusses different

components of the PAS system that are going to be used in rest of the thesis.

2.1 Pattern-Based Parallel Programming Systems

In this section, we give a very brief introduction to several pattern-based parallel
programming systems. In the following subsections, we discuss about Frameworks [14,

28], Enterprise [15], COPS [18] and ASSIST [20].

2.1.1 Frameworks

In the late 80s Frameworks [14,28] was developed at the University of Alberta. Frame-
works is an early system that successfully exploited the idea of using commonly oc-
curring parallel structures in parallel application development. It was specifically
designed to restructure existing sequential programs to exploit parallelism on work-
station clusters. The Frameworks programming model supports separation of spec-
ifications by segregating the application specific sequential code from the parallel

structure of the application, which can be developed separately.

Patterns in Frameworks are called templates. In the Frameworks programming
model, an application consists of a set of modules that interact with one another via
calls similar to remote procedure calls (RPCs). Messages between modules are in
the form of user defined frames. Each module consists of a set of procedures, one of
which is the entry procedure and is the only procedure called by other modules in the
application. A module also contains local procedures, callable only within the mod-
ule. Developers create modules by selecting appropriate templates and application
procedures. Arbitrary process graphs can be created by interconnecting resulting
modules. Each module is written in an extension of C, augmented by features to

support remote procedure calls.

2.1.2 Enterprise

Enterprise [15] was also developed as a successor to Frameworks. It is not just a
parallel programming tool; it is a complete parallel programming environment with
a complete tool set for parallel program designing, coding, compiling, executing,
debugging and profiling.

There are a number of improvements in Enterprise over Frameworks. Patterns
in Enterprise are at a much higher level of abstraction than in Frameworks. The
three-part templates in Frameworks are combined into single units in Enterprise and
- are called assets, which are named to resemble operations in a human organization.
For example, the asset named department represents a master-slave pattern in the
traditional parallel programming terminology. A fixed collection of assets is provided
by the system, which can be combined to create an asset diagram to represent the
parallel program structure. Each asset is associated with a piece of application code
consisting of procedures with sequential flow of control. Assets can be hierarchically
combined to form a parallel program. Features like future variables enable more con-

currency. A number of other features and tools improve the usability and portability

aspects of the system.

2.1.3 COPS

Again, COPS [18] system was developed at the University of Alberta. COPS is a
layered development system, where the uppermost layer provides the parallel design
pattern abstraction to the developer. At this layer, a user subclasses a pattern and
fills in the hook methods to reflect application specific details. The two lower layers
are for performance tuning, where the developer can look at the generated code (both
in an intermediate language and a native language) and fine tune to the needs of the
final program. Unlike Frameworks and Enterprise, COPS is a parallel programming

model for shared memory systems.

2.1.4 ASSIST

Lastly, ASSIST [20], developed at University of Pisa, is a skeleton-based system that
allows a user to define arbitrary graphs, whose nodes are either sequential or parallel
modules. Those parallel modules are denoted as parmods. The edges of the graph are
channels of interactions among parmods. The edges have the semantics of channel
of stream. Parmods are defined to be able to express the semantics of more common
data-parallel and task-parallel patterns. Development in ASSIST is bottom-up where
parmods are flat graph connecting virtual processors. ASSIST provides a way to
design reusable components. A reusable component is a graph and when reused,
the user must correctly interface that component with other components to have a

complex program.

2.2 The PAS System

Goswami et. al. introduced Parallel Architectural Skeletons or PAS [19,24] at the

University of Waterloo. This system specifies the architectural/structural aspects of

patterns as skeletons. A skeleton in PAS encapsulates the structural/architectural
attributes of a set of specific patterns in parallel computing. Each PAS skeleton is
parameterized, where the value of a parameter is determined during the application
development phase. As an example, a k-dimensional data-parallel Mesh skeleton,
provided by PAS, encapsulates the structural aspects of a data-parallel Mesh pattern,
together with the associated communication-synchronization primitives. Some of the
parameters of the skeleton are: the number of dimensions of the mesh (i.e., &), and
the length of each dimension. These parameters are bound to actual values during
the application development phase.

During the rest of the discussion, a PAS skeleton with unbound parameters is
called an abstract skeleton or an abstract module (the term module reflects the modular
structure of a skeleton, and will be discussed shortly). An abstract skeleton becomes
a concrete skeleton or a concrete module, when the parameters of the skeleton are
bounded to actual values during the application development phase. A concrete
skeleton is yet to be filled with application-specific code. A concrete skeleton which
is completely filled with application-specific code is called a code-complete parallel
module or simply a module (the term skeleton is omitted here because with application
code, it is no longer a skeleton). As it will be discussed shortly, a parallel application
is a hierarchical collection of modules.

Figure 1(a) roughly illustrates the various phases of application development us-
ing PAS. As shown in the figure, different parameter bindings to the same abstract
skeleton can result in different concrete skeletons. A concrete skeleton inherits all
the properties associated with the abstract skeleton. Besides, it has proper values
bound to each of the parameters, depending on the needs of a given application. In
object-oriented terminologies, an abstract skeleton can be described as the general-
ization of particular design patterns. A concrete skeleton is an application-specific

specialization of a skeleton.

Abstract skeleton

Coucmtization/ “ i \\Concrctization
S e S ¢
Concrete Internal
% skeleton primitives T reeneeet -

v v E:oncme skeletolrt

Application code

Application code
N

N
(a) Abstract skeleton, concrete skele- (b) Different compo-
ton and code complete module nents of a skeleton

Figure 1: PAS skeletons and their components

Irrespective of the pattern type, an abstract module (i.e., an abstract skeleton),
Am, consists of the following set of attributes. Figure 1(b) diagrammatically illus-
trates the attributes of an abstract skeleton and a concrete skeleton, where the skele-

ton represents a 2-D Mesh topology.

o Representative represents the module in its action and interactions with other
modules. Initially, the representative is empty and is subsequently filled with

application-specific code (refer to the following discussion).

e Back-end of an abstract module A,, can formally be represented as { A1, Ame,
.+y Amn}, where each A,,; is itself an abstract module. The type of each A,,; is
determined after the abstract module A,, is concretized. Note that collection of
concrete modules inside another concrete mod.ule results in a (tree-structured)
hierarchy. Consequently, each A,,; is called a child of A,,, and A,, is called the
parent. The children of an module are peers of one another. In this literature,

the children of a skeleton are also referred as computational nodes of the skeleton

10

or associated patterns.

e Topology is the logical connectivity between the modules inside the back-end.

It also includes the connectivity between the children and the representative.

e Internal primitives are the pattern-specific communication / synchronization
/ structural primitives. Interaction among the various modules is performed
using these primitives. The internal primitives are the inherent properties of
the skeleton and they capture the parallel computing model of the patterns as

well as the topologies.

There are pattern-specific parameters associated with some of the previous at-
tributes. For instance, if the topology is a Mesh, then the number of dimensions of
the Mesh is one parameter, and the connectivities for the nodes at the edges (i.e.,
wrapped around / unwrapped) are another parameter. Fixing these parameters,
based on the needs of an application, results in a concrete module. A concrete mod-
ule C;, becomes a code-complete module when (i) the representative of C,, is filled
in with applicaﬁion-speciﬁc code, and (ii) each child of C,, is code-complete. This de-
scription obviously indicates that application development using PAS is hierarchical.

Clearly, all of the previously described attributes of an abstract skeleton are in-
herited by the corresponding concrete skeletons as well as a code-complete modules.
In addition, we define the term external primitives of a concrete or a code complete
module as the set of communication / synchronization / structural primitives using
which the module (i.e., its representative) can interact with its parent (i-e., repre-
sentative of the parent) and peers (i.e., representatives of the peers). Unlike internal
primitives, which are inherent properties of a skeleton, external primitives are adapt-
able, i.e., a module adapts to the context of its parent by using the internal primitives
of its parent as its external primitives. While filling in the representative of a concrete

module with application-specific code, the application developer uses the internal and

11

external primitives for interactions with other modules in the hierarchy. Examples
of some of these primitives for a Mesh structured topology are SendToNeighbor(...),
RecvFromNeighbor(. ..), ScatterPartitions(. ..), GatherResults(...), etc. Chapter 4
includes descriptions of several example skeletons along with their different attributes.

A parallel application developed using PAS is a hierarchical collection of (code-
complete) modules. The root of the hierarchy, i.e., a code-complete module with no
parent, represents a complete parallel application. Each non-root node of the hierarchy
represents a partial parallel application. Each leaf of the hierarchy is called a singleton
module (and correspondingly, a singleton skeleton for the abstract counterpart).

Interactions among modules are based on pattern-specific message-passing prim-
itives, which make the PAS model suitable for a network cluster. The high-level
abstractions provided by a skeleton hide most of the low-level details which are com-
monly encountered in any parallel application development.

In this chapter, we briefly described several pattern-based parallel programming
systems. We also discussed about the PAS model, on top of which SuperPAS model is
designed. Interested readers can find a comprehensive description of the PAS model,
detailed examples and comparison with other pattern-based systems in [19,24]. In

the next chapter, we give an informal introduction to the SuperPAS system.

12

Chapter 3

Introduction to SuperPAS

In this chapter, we introduce SuperPAS. We start in the next section by describing
the reasons that motivated us to research towards SuperPAS. Section 3.2 categorizes
the users of the SuperPAS system and distinguishes their roles. Section 3.3 describes
the steps involved in the development of a parallel application using SuperPAS. Sec-
tion 3.4 discusses the model of the SuperPAS system. Finally, a comparison between

SuperPAS and the similar systems is given in Section 3.5.

3.1 Motivation

Like most other pattern-based parallel programming systems, the original PAS system
repository of (abstract) skeletons was built by hand-coding and there was no provision
for adding new skeletons without writing them from scratch using the associated
high-level programming language (e.g., C++). The drawback of this approach is
that writing a skeleton from scratch is not easy. It requires in-depth knowledge of the
programming model and the implementation of the entire system. This is the reason
that the original PAS and all other similar systems are not extensible or very difficult
to extend.

One of the motivations behind SuperPAS is to make PAS extensible. In a nutshell,

13

SuperPAS is an extension of the PAS model that facilitates design of abstract skele-
tons from scratch. It includes a Skeleton Description Language (SDL) to describe
an abstract skeleton according to the SuperPAS model. Using the SDL, a skeleton
designer can add new abstract skeletons to the skeleton repository with minimum
efforts. Using it, the designer can also specify skeleton specific primitives and pa-
rameters. Moreover, the SuperPAS model allows a skeleton designer to compose two
or more existing skeletons into a new composite skeleton. More about composite

skeleton is discussed in Section 3.4.

3.2 Categorization of the Users of SuperPAS Sys-

tem

SuperPAS distinguishes the users of the system into two groups. The skeleton design-
ers (in short, designers) are in the first group. A designer designs and implements
required‘skeletons using SuperPAS SDL. A designer is supposed to be a parallel pro-
grammer, who has good understanding in writing parallel programs as well as has in
depth knowledge of the SuperPAS model and the SDL.

The second group of users is the application developers (in short, developers). Ap-
plication developers use the skeletons, designed by the skeleton designers, to develop
various parallel applications. Due to the availability of the required skeletons in the
skeleton repository, the application development procedure becomes simple. Applica-
tion developers are also parallel programmers with very little or no knowledge about
the SuperPAS SDL.

The degree of experience and expertise of a skeleton designer is assumed to be
higher than an application developer. In fact, in an organization, one person can
be both skeleton designer and application developer at the same time. From this
categorization, it is clear that the original PAS was targeted to the application de-

veloper group. It provided a systematic and natural way of using parallel skeletons

14

to develop parallel applications. On top of the PAS system, SuperPAS targets the
users in the skeleton designer group and provides them a systematic way to design
abstract skeletons.

The SuperPAS system requires that the designers not only investigate the prop-
erties of a skeleton and design it, but also ensure the correctness of the designed
skeleton. This is an important requirement to ensure that the application develop-
ers concentrate only on the development phase rather than worrying about violating

constraints of the used skeletons, while developing the parallel application.

3.3 Development Steps in SuperPAS

In SuperPAS, the development process starts with a skeleton designer writing the
abstract skeletons using the SDL. During the design step, the designer determines
the structures, parameters and primitives of the patterns to be implemented in the
skeleton. Then the designer expresses those properties of the patterns of the skeleton
in SDL and this results in an abstract skeleton. The designer may then store the
designed skeletons in the skeleton repository. As is discussed in the previous section, it
is the responsibility of the designer to ensure the correctness of the designed skeleton.
Correctness of a skeleton is ensured by confirming the correctness of the topology of
the skeleton as well as the correctness of the primitives for any allowable values of
the parameters of the skeleton.

When an application developer designs and develops a parallel application, she
chooses the proper skeletons from the skeleton repository, concretizes them, and fi-
nally fills them with application specific code to create the final parallel application.
To concretize an abstract skeleton written in SuperPAS SDL, the developer can either
directly modify the abstract skeleton code (in SDL) or use the provided tools. Then
the developer uses the SuperPAS tools to generate C++ codes for the concretized

skeletons. In fact, there is no semantical differences between the generated C++

15

concrete skeletons and concrete skeletons of the original PAS system.

To help the designer and the developer of the system, the SuperPAS programming
environment provides standard tools to: (1) verify the SDL syntax of an abstract
skeleton, (2) concretize an abstract skeleton, and (3) translate a concrete SDL skeleton
into C++ code. The generated C+- code framework for concrete skeletons provides
a complete object-oriented interface for the application developers. The SuperPAS
tools and the SuperPAS runtime system hide most of the underlying complexities of

the system.

3.4 Introduction to the SuperPAS Model

In this section, we introduce the SuperPAS model in an informal way. We describe

the model with several short examples for ease of understanding.

3.4.1 Overview

SuperPAS model incorporates PAS model and adds extra layers over it. This intro-
duces a new type of users to the PAS system (skeleton designer), whose sole job is
to design new abstract skeletons. The views of a skeleton designer and a application
developer can be best illustrated with the views of a microprocessor designer and
a microprocessor user (programmer). While designing a microprocessor, a designer
perceives the SST and MSI circuits as the basic building blocks (primitives). Whereas
a user of that processor can perceive only the instructions designed into the processor,
not the SSI / MSI circuits.

In SuperPAS, a skeleton designer is provided with a set of abstract computa-
tional nodes and a rich set of basic communication and synchronization primitives
to establish communication and synchronization among the nodes. At first, the de-
signer decides about the parallel patterns to be implemented into each intended new

skeleton. Then she maps the parallel components of each pattern onto the available

16

computation nodes. She also establishes connectivities among the mapped nodes
to reflect the connectivities among the parallel components of the pattern. Those
connectivities are built on top of the basic connectivity (communication / synchro-
nization) primitives provided by the SuperPAS system. Those higher level primitives
are specific to the associated pattern (and hence skeleton). Mapping the structures
of all the patterns of the skeleton onto the abstract computational nodes, along with
the higher level pattern specific primitives, results in an abstract skeleton.

Now, when an application developer picks up an abstract skeleton, she can perceive
only the abstract topology and pattern specific primitives of each of the patterns of
the abstract skeleton. The fine grain building blocks (basic abstract computational
nodes and basic communication primitives) are completely hidden from her. Rest of

the section elaborates this overview in details.

3.4.2 The Virtual Processor Grid

SuperPAS provides a set of multidimensional grids (described as abstract computa-
tional nodes in the last subsection) to embed the topology or structure of patterns
of an abstract skeleton. Usually one pattern is embedded onto one multidimensional
grid. Each node of the grid can be considered as a virtual processor. In this thesis,
we use the terms node of a grid and virtual processor interchangeably. The multidi-
mensional virtual processor grids or VPGs are equipped with generic communication
primitives. Those primitives include primitives for synchronous and asynchronous
peer-to-peer communications. Moreover, collective or group communication and syn-
chronization primitives like broadcast, scatter, gather, reduce, all-to-all send-receive
and barrier are also supported.

We make a very careful decision about choosing the set of basic communication
primitives for the VPGs. We choose to make our primitives a super set of the commu-

nication primitives in the prominent parallel programming environments. Qur choice

17

is influenced by the research article [29], MPI standard [25], PVM documentations [26]
and our experience with PAS and other pattern-based systems.

Furthermore, the choice of the regular grid structure for the virtual processor grid
(VPQG) is also not arbitrary. There are several factors which influenced the selection

of this structure:

1. A grid is a simple regular structure, which enables a uniform addressing schema

to address each node of the grid.

2. The processor grid is a very popular parallel processor structure. A wide col-
lection of suitable communication-synchronization primitives for such structure

can easily be found in the existing literature.

3. A regular structure, commonly associated with a pattern, can be easily unfolded

and mapped onto another regular structure (i.e., onto a grid).

In the existing literature [30-32], many of such mapping of pattern onto processor
grid can be found. Moreover, an irregular structured pattern (e.g., an arbitrary
graph) can also be mapped onto a grid by explicitly mapping each structural block,
e.g., each node and associated connectivities of that pattern onto the virtual processor

grid explicitly.

3.4.3 Mapping A Pattern onto A VPG

Now, when the designer wants to design a skeleton, at first she needs to map the
structure of each of the patterns of the skeleton onto a VPG. Figure 2 shows such
a mapping. In this example, the designer wants to design an abstract Wavefront
skeleton which is actually an implementation of the Wavefront pattern. Figure 2(a)
is the visualization of the Wavefront pattern. Note that, a visualization of a pattern
gives the abstract view of the pattern. At the same time, it shows the abstract

topology of the parallel components of the pattern.

18

Representative Communication
primitives

Null nodes
_. Implicit
_..J representative

VPG nodes

size

(a) Wavefront Pattern -(b) The VPG (c) Wavefront Skeleton

Figure 2: Mapping Wavefront Pattern in a VPG

From a visualization, the designer has to make several design decisions. At first,
she should decide about the parameters of the pattern. For example, the structure of
a Wavefront pattern becomes generic if the size (the number of rows or the number
of columns) of the pattern is considered to be a parameter rather than some fixed
constant. In this example, we designate this parameter as size.

In Wavefront, the choice of a two dimensional VPG (refer to Figure 2(b)) is
(probably) obvious because it provides an one-to-one mapping of the computational
nodes of the pattern onto the nodes of the VPG. Finally, Figure 2(c) shows the actual
mapping. From the figure, it can be found that even after limiting the height and
width of the VPG (to the parameter size), there are virtual processors where no
computational node of the pattern is mapped onto. Those virtual processors are
called null virtual processors or null nodes.

The embedding of a pattern onto a VPG is complete when the associated commu-
nication, synchronization and structural primitives are defined. In Figure 2(c), some
of the communication primitives are marked. Examples of communication primitives
in a Wavefront pattern (as well as in as Wavefront skeleton) are: (1) receive a mes-

sage from the representative, (2) send a message to the left neighbor, (3) receive a

19

Mapping by
runtime system

n-stage Pipeline pattern

Stage 0 Stage 1 Stage (n— [Ty Sy T S S = S

Embedding the structure by the designer

Processors Cluster

Figure 3: Mapping of AT of a Pipeline pattern onto a VPG and the VPG onto
physical processors

message from the top neighbor, etc. Examples of structural primitives are: (1) is a
node located at the first column, (2) is a node located at the last column, (3) is a

node located on the diagonal, etc.

3.4.4 Denotations

In this subsection, we formally introduce some terminologies that we are going to
use throughout the thesis. In the SuperPAS model, the (abstract) structure of a
pattern (as in Figure 2(a)) is designated as abstract topological space (AT) of the
pattern. The abstract topological space is composed of zero or more abstract parallel
computational nodes of the pattern along with their connectivities (represented by a
connectivity function 7). The mapping function, M, maps nodes of .A7 onto the
virtual processors of the VPG space (designated as VPG). Provided M and T, it is
easy to establish the connectivities among the mapped non-null virtual processors of
the VPG and can readily be expressed as M.T.M™1. The embedding of a AT onto
a VPG results in a abstract mapped space (designated as P), as shown in Figure 2(c).
Note that, P contains only the non-null nodes and hence represents the back-end of
a skeleton. This is to mention here that null-nodes do not impose any extra overload
on the run-time system, as no resources are allocated for them. The approach taken
by SuperPAS is shown pictorially in Figure 3 in the process of developing a parallel

application involving a Pipeline skeleton.

20

3.4.5 Primitives

In SuperPAS, the connectivity function (7) and the mapping function (M) are used
together to design pattern specific primitives. Combining all primitives from all the
patterns, implemented in a skeleton, results in skeleton specific internal primitives.
SuperPAS divides the primitives of a pattern (and in-turn of an abstract skeleton)
into two categories: private and public primitives. The private primitives of a pattern
can only be used by the representative of the associated skeleton and are not inherited
by the children of that skeleton. On the other hand, public primitives are available
only to the children of the skeleton as external primitives. In case of the Wavefront
pattern, receiving a message by the representative from the node at last column is a

private primitive whereas sending a message to the left neighbor is a public primitive.

3.4.6 Composition

SuperPAS model supports the idea of composition of abstract skeletons. Composition
is the way to compose simpler abstract skeletons into a complex one. In the following
paragraphs, we describe the motivation behind incorporating the idea of composition

as well as the model of composition.

Motivation Behind Composition

A large-scale parallel application is often a composition of multiple patterns. Some-
times it is more desirable to have a single composite skeleton rather than a collection
of smaller skeletons, provided that the composite skeleton will be used for develop-
ing variations of similar applications, i.e. the composite skeleton will be a reusable
component.

A typical example can be found in the domain of image processing applications.
In many cases, such an image processing application can be divided into following

three stages:

21

Forstege | For stege 7 For stage 3

Figure 4: A composed skeleton for image processing

1. Convert the image from pixel domain to frequency domain using (Forward)

Fourier Transformation

2. Do some specific operations (examples: convolution, de-noising of the trans-

formed image, etc) and

3. Finally, get the processed image in pixel domain using Inverse Fourier Trans-

formation

A parallel (Forward and Inverse) Fourier Transformation algorithm can be imple-
mented using the Cube Connected Cycles (CCC) [33] or the Butterfly patterns. Op-
erations like convolution and de-noising are usually implemented using data-parallel,
master-slave or some other simple and / or complex patterns. The three steps of
image processing can be composed into a single skeleton as is shown pictorially in
Figure 4.

Readers should note that composition is different from construction of skeleton hi-
erarchy during concretization. Composition is performed on abstract skeletons to cre-
ate a composite abstract skeleton. Composition is performed by the skeleton designers
whereas the skeleton hierarchy is constructed by the application developers. Compo-
sition may require an in-depth knowledge of the abstract mapped spaces, whereas the

creation of the skeleton hierarchy does not. Mapping a concrete skeleton onto a child

22

Pipeliné skeleton

: Wavefront pattem :
Wavefront pattérn L e e :

Wavefront skeleton A composite skeleton

(a) Two separate skeletons {b) A composite skeleton

Figure 5: Composing skeletons towards performance

of another concrete skeleton usually increases the height of the skeleton hierarchy in
an application. However, use of composite skeletons to develop applications usually
reduces the height of the skeleton hierarchy.

Another reason for having composite skeleton is performance. Let us consider the
example in Figure 5(a), where a Wavefront and a Pipeline skeleton are shown. The
output of the rightmost child of the Wavefront is sent back to the representative; the
representative routes it to the representative of the Pipeline skeleton, which in-turn
again routes to the first stage of the Pipeline. Composition of these two skeletons is
shown in Figure 5(b). From the figure, it is evident that in this example, composition
reduces the number of routing requirement by 1 as compared to the skeletons in

Figure 5(a).

Model of Composition

In simple word, composition of skeletons .S; and S; into skeleton Sy, results in a union
of the parameters and abstract mapped spaces in S; and S;. Say, skeleton S; is
composed of abstract mapped spaces Py, P, ..., Pmi and S; is composed of Pij,
Paj, -+ Pnj. Then S will be composed of Py, Pai, - - -5 Py Pijs Pajs -« Py

We define the skeleton space (S) of a skeleton as a space which is exactly big

23

Plane 1: abstract
mapped space of
Wavéfront pattern

.’

Plane 2: extesided
abstract mapped space of
Pipeline pattern

Figure 6: The skeleton space

enough to hold all the abstract mapped spaces of that skeleton. Formally, let us
assume that a skeleton S’ consists of the abstract mapped spaces P;, P,, ..., Pn.
Assuming that the abstract mapped space P; is a k; dimensional space (i.e., result
of mapping an abstract topological space of a patten onto a k; dimensional VPG),
the skeleton space, S, would be of a K = max{k; | 1 < ¢ < N} + 1 dimensional
space. Semantically, to create the skeleton space, an abstract mapped space P; is
extended from k; dimension to K — 1 dimension. While extending the dimension, the
higher K — 1 — k; dimensions are made limited to size 1 to ensure consistency. The
length of the K-th dimension of the skeleton space, S, is N and the extended abstract
mapped space of P; is placed on the i-th entry of the K-th dimension. Note that, the
application developer can perceive only the skeleton space and the associated abstract
mapped spaces. Further detail remains hidden from her.

Figure 5(b) is redrawn in Figure 6 to reflect the idea of the skeleton space. The
skeleton space includes the abstract mapped spaces of the Wavefront pattern and
the Pipeline pattern. Among those abstract mapped spaces, the mapped space for
the Wavefront is of the highest dimension, which is two. As a result the skeleton

space is of three dimension. As shown in the figure, the first plane of the skeleton

24

A composite skeleton

Figure 7: Aliasing in a skeleton

space includes the mapped space of the Wavefront pattern whereas the second plane
includes the mapped space of the Pipeline pattern.

In order to achieve more flexibility, SuperPAS provides aliasing. Aliasing is the
way to combine two nodes from two different abstract mapped spaces of a particular
skeleton. The idea is shown in Figure 7. Aliases in SuperPAS are expressed using
aliasing function (designated as A). The choice of a function rather than a generic
relation is governed by simplicity of understanding and use.

SuperPAS provides two modes of aliasing: (1) fusion paradigm and (2) linkage
paradigm. In the linkage paradigm two aliased nodes are connected via a channel and
both of the nodes remain as separate entities. On the other hand, in fusion paradigm,
two aliased nodes are unified into one node. As a result, that unified node becomes
members of both of the abstract mapped spaces, where the original nodes belong to.
Examples of fusion and linkage paradigm of aliasing are shown in Figure 8.

To describe the idea formally, let us assume that Sg is the skeleton space of
skeleton S and P;, P; and Py are three abstract mapped spaces of S. Lets P, C P,
where | € {i,7,k}. The aliasing function is defined as, A : B, — P, where m,n €
{i,5,k} Am # n. Say, A(p;) = p; and A(p;) = px, where p; € P, Al € {i,5,k}. In
the fusion paradigm of model, those two aliasing imply A(p;) = pr. However, this

implication is not true for the linkage paradigm.

25

. : |
0O . O
D O b O . % 0
g 1] Bl
@j O EEE pag k- 0

0J I L]

Abstract mapped space i ’ Abstimct mapped space j Abstract mapped space i Abstract mapped space j Abstract mapped space i i Abstract mapped space j

(a) ~Two abstract (b) Aliasing in Fusion (c) Aliasing in Linkage

mapped spaces paradigm paradigm

Figure 8: Fusion and linkage paradigm of aliasing

3.4.7 Labeling

In PAS, a labeling function, L, labéls each of the nodes (children in the back-end)
of a concrete skeleton, C'S, with instances of other abstract skeletons. Labeling can
also be considered as specifying the types of the children in the back-end. Now, say,
in an occasion A(p;) = p; and L(p;) = ASs, where AS; is an instance of an abstract
skeleton. If the aliasing function, .4, follows the fusion paradigm, £(p;) must also be
AS;. However, in linkage paradigm of aliasing, p; can be labeled without considering
the labeling of p;, as in this paradigm p; and p; are considered to be two separate

entities.

3.5 Comparison with Related Works

Most of the pattern-based systems proposed in the literature do not address the issue
of extensibility. This issue has been addressed by a few recent systems only, such as:
’ASSIST [20] and MetaCOPS [34]. In this section, we compare SuperPAS with both
of the systems. At first, we revisit the ASSIST and MetaCOPS programming models.
Then all the three systems are analyzed from the viewpoint of a parallel application

developer.

26

3.5.1 MetaCOPS

COPS is one of the most recent pattern-based parallel programming environments.
MetaCOPS is the tool that made COPS system extensible. MetaCOPS takes a gen-
erative design pattern approach to design a new pattern for the COPS system. The
main target of the COPS as well as the MetaCOPS system are the ability to incorpo-
rate user-defined capabilities (generality), the ability to adapt all possible architec-
tures and above all, the ability to generate applications that can be tuned for high
performance computing.

COPS divides the design process of a parallel application into several steps. At
first, the designer identifies the design pattern required for the target parallel appli-
cation and picks the pattern template from the library. Then she adapts the selected
pattern template by choosing proper values for each of the parameters of the tem-
plate. A template parameter can take one of values specified by the designer. This
application oriented customization makes possible to generate optimized framework
code through a conditional code generation procedure.

The application developer then provide the application-specific sequential hook
methods and other non-parallel code to build the final parallel application. Then
performance of the parallel application is monitored and if it is not satisfactory,
generated parallel code is inspected at a lower layer of abstraction where all the a
high-level and explicit parallel object-oriented code is exposed. The developer needs
to identify and modify the code that is clogging the performance. At the last step,
the performance of the application is re-monitored and if it is still not acceptable,
the application developer needs to modify the implementation of the used high-level
primitives optimized for her target architecture.

At this point, it is essential to point out that template parameters in COPS are
not same as the skeleton parameters in PAS. A template parameter can take one

of the values, specified by the template designer. Moreover, parameters in COPS

27

provides choices from the behavioral perspective. For example, in a mesh pattern
template, each mesh element can have either four or eight neighbor and depending on
the choice, made by an application developer, each node communicates with either
four or eight neighbors.

MetaCOPS provides a GUI-based interface to design a pattern template. Using
MetaCOPS, a designer specifies a placeholder name of the templaté to design. She
also specifies the parameters of the template and all allowable values for each of those
parameters. The designer then needs to write code for all possible combination of
choices of parameters. In fact, the COPS system does a conditional code generation
based on the codes written by the designer and values of the parameters chosen by
the user. This approach ensures correct and optimized code for all possible instances
of a particular pattern template.

The initial implementation of COPS as well as MetaCOPS was for shared memory
multi-processor systems. The applications developed in COPS were multi-threaded
Java applications. As the major parallel architectures are distributed memory systems
(clusters of workstation) [1], authors of COPS extended it for those systems, keeping

the original interfaces unchanged [35].

3.5.2 ASSIST

ASSIST is a programming environment targeted to the development of parallel and
distributed high-performance applications. The main goals of ASSIST are: high-level
programmability and software productivity for complex multidisciplinary applica-
tions, performance portability across different platforms and finally effective reuse of
existing parallel software components.

In the ASSIST programming model a parallel program can be expressed by a
generic graph, where each node or component can be a parallel module or a sequen-

tial module. The parallel module or parmod is able to express the semantics of more

28

common data and task parallelism and nondeterminism, frequently found in the par-
allel patterns. Composition of parallel and sequential modules is performed through
edges of the graph where an edge is represented by a stream, i.e. ordered sequences,
possibly of unlimited length, of typed values. The ASSIST model allows each of the
parallel components of an application to communicate with external components.

A composed modules, expressed by a graph P, can be, reused as a component of
a more complex component or program). The composition is correct provided that
P is correctly interfaced to the other modules of @, i.e. the types of input and output
streams must be compatible.

An ASSIST sequential module represents the simplest form of behavior of a de-
terministic data-flow. A parmod consists of a set of virtual processors which are
independent or cooperating entities. A set of virtual processors act as parallel com-
puting engines. Different virtual processors in a parmod can perform same or different
tasks. If there is an input at the input-section of a parmod and if the input satisfies
the input constraints, the parmod becomes active.

Implementations of the ASSIST model for network of workstations and Grids are
reported [20,36]. The users of the system use a coordination language, called ASSIST-
CL, to develop applications in ASSIST. Actions performed by a virtual processor or
a sequential module is written in either C, C++ or in Fortran. ASSIST component

can communicate with existing external CORBA components.

3.5.3 Comparison From a Developer’s Perspective

In this subsection, we compare all the three systems from the perspective of a parallel
application developer. Here, we assume that a parallel application is complex and
is a composition of several patterns. While developing a parallel application, the
user may want to replace a sequential component of the application with a parallel

one or vice-versa due to the flexibilities or limitations of the underlying hardware

29

architecture.

The COPS system suffers from the lacing support of pattern composition. It does
neither supports composition during pattern design phase or application development
phase. So, development of a complex parallel application requires to design a new
pattern that represents the composition of all the patterns needed in the target ap-
plication. In fact, it is hard to denote this newly designed pattern as pattern because
it is too much application oriented (specialized). As a result, a developer needs to
invest her time and effort to design the complex application from scratch even though
the required building blocks of the application exist as several smaller patterns.

The ASSIST model is more relaxed from this perspective. It allows reuse of
an already designed component, provided that they are interfaced properly. As a
result, it is certainly possible to replace a sequential or parallel module with another
sequential or parallel module without re-designing the whole application from scratch.

Unfortunately, ASSIST does not support nesting of parallel modules, i.e. a virtual
processor of a parmod can not be replaced with another parmod. As a result, if a
problem requires a parmod to be parallelized further, a re-design of the whole parmod
is mandatory.

On the other hand, SuperPAS and PAS models allow composition of skeletons at
both design and use phases. Either the designer can design a complex and big skeleton
for a specific application or the developer can pick the required skeletons and build
a skeleton hierarchy for the target application. The models provide inherent support
for replacing a component of a program with another component, possibly composed
of another hierarchy of components.

The ASSIST model supports only three kinds of topology among the virtual pro-
cessors of a parmod, i.e. multi-dimensional array, none (they work independently of
each other) and one (sequential component with features like non-determinism, etc.).

The multi-dimensional array topology can easily express data parallelism whereas

30

none topology can easily express independent task parallelism. But in real life, a
parallel application is a complex composition of both of them. In ASSIST, it requires
a lot of efforts to describe such complex compositional structures. In contrast, Super-
PAS provides pattern independent communication / synchronization primitives and
the designer expresses the required topology by designing proper high-level pattern
specific primitives.

Neither of COPS and ASSIST supports design of patterns or reusable compo-
nents with parametric structure (for example, a £ dimensional mesh rather than a
two dimensional mesh). Though COPS allows parametric behavior, ASSIST demands
explicit declaration of connectivities among concurrent modules. As a result, the user
of the patterns either needs to design her solution space conforming to the restricted
structure of the given pattern in the repository or needs to design other patterns
according to her needs. The SuperPAS model allows skeletons with parametric struc-
tures and topologies and the user just needs to tailor the required skeleton according
to the application requirements by specifying proper values for the associated param-
eters.

The regular topologies (or structural patterns) found in the domain of parallel
computing covers so great number of problems that researchers started to think about
architectures that support those regularities. This resulted in architectures with spe-
cific processor topologies, for example processors connected in mesh or hypercube
topology. But a computation of one pattern runs inefficiently on an architecture that
follows a different pattern. Moreover, most of the parallel applications are composi-
tions of more than one patterns. As a result, researchers found a way around to embed
the patterns in software components. The SuperPAS model is partial in favoring the
designers to describe such a regular structure (as discussed in Sub-section 3.4.2).
without compromising the generality to express an arbitrary structure. As a pattern

/ skeleton design tools neither COPS or ASSIST favors the designer to design those

31

regularities, found in the parallel patterns.

We believe that the intention of the ASSIST model is to develop parallel appli-
cations rather than reusable components. In the ASSIST model, an application or a
parallel component is represented by a graph of sequential and / or parallel modules,
where the topology among the modules are fixed. The model allows the actual com-
putation, performed by each of the modules, to be left empty (to be fillable by the
end user), at the same time it demands the communication channels to be a stream
of some specific type. Though the former proposition allows reusability, the later
proposition requires the knowledge about the ultimate use of the components. As an
ad hoc tool to develop a parallel ’application, ASSIST may be beneficial, but it fails
to prove its worthiness as a model / tool to design reusable components.

The ASSIST model is implemented on MPI as well as on Grid [37]. The PAS run-
time system is built on top of LAM-MPI. In fact, LAM-MPI can exploit features of
clusters and Grids. According to [1], most of the top super computers are built using
commodity of the shelf hardware set and as a network of possibly multi-processor
workstations. Note that MPI is an open standard and has been implemented for all
major parallel computer systems. To cover the major user community, the authors
of the COPS system reported a working run-time system on network clusters; at
the same time their implementation conformed to the initial design of the run-time
system for shared memory architectures. The use of expensive JavaSpace and costly
synchronization methods is believed to prbne to performance bottleneck. Moreover,
the use of Jini technology makes the system not portable among different hardware
platforms.

In this chapter, we discussed about the motivation behind SuperPAS. We cate-
gorized the users of the system and described their roles in the development process.
We also described the model of the SuperPAS system and finally in the last section

we compared this system with other closely related systems. In the next chapter, we

32

describe the Skeleton Description Language (SDL) and some other implementation

and design oriented issues.

33

Chapter 4

The Skeleton Description
Language, Examples and Current

Implementation

SuperPAS model is supported with a Skeleton Description Language (SDL) which is
used by the skeleton designer to design abstract skeletons. An application developer
‘may also use SDL to concretize an abstract skeleton directly. C++ code for a concrete
skeleton is generated from the SDL code after concretization.

In this chapter, we discuss about the Skeleton Description Language (SDL). We
describe different SDL constructs using examples. In Section 4.1, the SDL for ab-
stract skeletons, targeted for the skeleton designer, is discussed. In the next section,
we discuss about the added SDL constructs, targeted for the application developer,
to concretize the abstract skeletons. Subsequently, we describe the design procedure
for several skeletons in Section 4.3. In Section 4.4, some issues of the current imple-
mentation is highlighted. Finally, Section 4.5 demonstrates development of a parallel

application using SuperPAS.

34

4.1 The SDL for Abstract Skeletons

In this section, we discuss about the grammar of the SDL, intended to design abstract

skeletons. We also discuss several examples codes and elaborate them based on the

discussion of the model, described in the previous chapter.

4.1.1 The Grammar

Following is the grammar of the SDL, written in the Backus-Naur Form (BNF). Note

that, the start symbol of the grammar is abstract_skel.

abstract-skel

param-decl

param-type

id-list

expression

logical-OR-exp

logical-AND-exp

internal-OR-exp

external-OR-exp

AND-exp

[param-decl] [pattern-alias-decl]

param-type id-list ’;’

param-type id-list ’;’ param-decl
’float’ | ’boolean’ | ’integer’
identifier [’=’ expression]

identifier [’=’ expression] ’,’ id-list
logical-OR-exp
logical-OR-exp ’?’ expression ’:’ expression
logical~AND-exp

logical-OR-exp ’||’ logical-AND-exp
internal-OR-exp

logical-AND-exp ’&&’ internal-AND-exp
external-OR-exp

internal-OR-exp ’|’ external-OR-exp

AND-exp

external-OR-exp ’"’ AND-exp

equality-exp

AND-exp &’ equality-exp

35

equality-exp

relational-exp

shift-exp

additive-exp

multiplicative-exp

cast-exp

unary-operator

postfix-exp

argument-list

relational-exp

equality-exp ’==’ relational-exp
equality-exp ’!=’ relational-exp
shift-exp

relational-exp ’<’ shift-exp
relational-exp ’>’ shift-exp
relational-exp ’<=’ shift-exp
relational-exp ’>=’ shift-exp
additive-exp

shift-exp ’<<’ additive-exp
shift-exp ’>>’ additive-exp
multiplicative-exp

additive-exp ’+’ multiplicative-exp
additive-exp ’-’ multiplicative-exp
cast-exp

multiplicative-exp ’*’ cast-exp
multiplicative-exp ’/’ cast-exp
multiplicative-exp ’J’ cast-exp
postfix-exp

unary-operator cast-—exp

s IR IR VL I

constant

identifier

identifier ’(’ argument-list ’)’
’(’ expression ’)’

expression

argument-list ’,’ expression

36

constant := integer-const | float-const | bool-const
bool-const := ’false’ | ’true’
pattern-alias-decl := pattern-decl

| alias-decl

| pattern-alias-decl pattern-decl

| pattern-alias-decl alias-decl
pattern-decl := ’pattern’ identifier ’(’ dimension ’)’

’{’ pattern-desc ’}’

dimension := expression
pattern—-desc := pattern-prop-desc ’;’

| pattern-desc ’;’ pattern-prop-desc
pattern-prop-desc := limit-desc | local-fnc-desc

| init-fnc-desc | private-prim-desc

| public-prim-desc | member-desc

limit-desc ;= PLIMITS’ ’=’ *{’ limit-list ’}’
limit-list 1= expression

| limit-list ’,’ expression
local-fnc-desc := ’LOCAL’ ’=’ ’{’ local-cpp-code ’}’
init-fnc-desc := JINITIALIZE’ ’=’ identifier
private-prim-desc := PRIVATE’ ’=’ ’{’ private-cpp-code ’}’
public-prim~desc := ’PUBLIC’ ’=’ *{’ public-cpp-code ’}’
member-desc := ’MEMBER’ ’=’ identifier
alias-decl := ’alias’ ’{’ alias-desc ’}’
alias-desc := alias-prop-desc

| alias-desc ’;’ alias-prop-desc
alias-prop-desc := alias-local-fnc-desc | alias-fnc-desc
alias-local-fnc-desc := ’LOCAL’ ’=’ ’{’ alias-local-cpp-code ’}’

37

alias-fnc-desc := 'RULE’ ’=’ identifier

4.1.2 Discussion of the SDL

In this subsection, we discuss different language constructs through examples. While
elaborating the examples, we put more emphasis on the semantics rather than the
design procedure. The next section is entirely dedicated towards the design procedure
of several skeletons.

integer size; // the parameter -> N
// the Wavefront pattern: abstract mapped space
pattern Wavefront(2) { // associated 2 dimensional VPG
LOCAL ={
void init(void) { // the initialize function
// set the dimensions
for (int i = 0; i < GetDimension(); i++)
SetDimensionLimit (i, size);

bool member (const Location & 1) { // the membership function

// 1101, 1[1], ... indicate position of a node in a dimension
// in a row major order, i.e. 1[0] is for the lowest
// dimension, 1[1] is for next dimension, etc.

if (1[1] <= 1[0]) // row number <= column number
return true;
return false;

}
IﬁITIALIZE = init; // set the name of the initialization function
MEMBER = member; // set the name of the membership function
PRIVATE ={ ... }; // private primitives
PUBLIC = { ... }; // public primitives

The above SDL code is for an abstract Wavefront skeleton. An Wavefront skeleton
is an implementation of the Wavefront pattern. Figure 2, in the previous chapter,
shows how the abstract topological space of a Wavefront pattern is mapped into a
two dimensional VPG space. The figure also shows the final abstract mapped space.

As discussed in Subsection 3.4.3 of Chapter 3, the parameter size is declared at
the beginning of the SDL description. The SDL supports three types of parameters:
boolean, integer and float. The declaration of parameters is followed by the definition
of abstract mapped spaces of the patterns in the skeleton. As Wavefront skeleton
implements only one pattern, i.e. the Wavefront pattern, and hence the definition of

that pattern follows the parameter declaration.

38

Table 1: Primitives available to initialize and membership functions

int GetDimension(void) Returns the dimension of the pattern space
int GetDimensionLimit(int Returns the boundary limit of _dim-th di-
-dim) mension

void SetDimensionLimit(int Sets the the boundary limit of _dim-th di-
_dim, int _val) mension to _val

In the rules of the language construct, pattern-decl, dimension determines the
dimension of required VPG. In the above code, the dimension of the VPG is chosen
to be 2. The initialization and membership function are declared to be init and
member through the SDL constructs INITIALIZE and MEMBER respectively. Both of
these functions must be defined inside the LOCAL construct scope. The initialization
function can be used to do validity checking of the values of parameters and boundary
conditions of the dimensions of the VPG. The designer may impose some correctness
constraints here. In the example SDL code, the init function sets the lengths of both
of the two dimensions of VPG to size.

The membership function takes an address of a node, represented via the Location
object, and returns whether that node is a non-null node. In the case of the Wavefront
pattern, a node can be addressed as (7,), where i and j are the row and column
numbers respectively. Now, if 4 < j, the node is a non-null node, otherwise the node
is null. In the SDL, it can found that the membership function returns true for all
the nodes which satisfy the stated condition.

Several built-in functions are available to the initialization and membership func-
tion. All the three functions in Table 1 are available to the initialize function whereas
only the first two are available to the membership function.

The code for PUBLIC and PRIVATE language construct are expanded below. Those
two constructs represent the private and public primitives respectively. In the code,

SendToChildAt and RecvFromLastChild are the private primitives. On the other

39

hand, SendLeft, RecvRight, SendRepresentative, IsAtDiagonal, etc. are the public

primitives of the pattern (and hence of the skeleton).

integer size; // the parameter -> N
// the Wavefront pattern: abstract mapped space
pattern Wavefront (2) { // associated 2 dimensional VPG

LIMITS = ...;

LOCAL = { ... };
MEMBER = ...;

// private primitives
PRIVATE = {

// send a message to a child located at <nRow, 0>
bool SendToChildAt(int nRow, Msg & m) {

Location 1;

1[0] = 0, 1[1] = nRow;

return SendChild(l, m);

// recv a message from the child located at <nSize - 1, nSize - 1>
bool RecvFromLastChild(Msg & m) {

Location 1;

1[0] = 1[1] = nSize - 1;

return RecvChild(1l, m);

}
};
// public primitives
PUBLIC = {
// COMMUNICATION PRIMITIVES
// send from node <i, j> to <i + 1, j>
void SendLeft(Msg &mm) {
Location 1 = GetLocation();
1[1] = 1[1] + 1;
SendPeer (1, mm);

// receive from node <i - 1, j> at <i, j>
void RecvRight (Msg &mm) {

Location 1 = GetLocation();

111 = 1[1] - 1,

RecvPeer(1l, mm);
}
// send from node <i, j> to <i, j + 1>
void SendDown(Msg &mm) { ... }
// receive from node <i, j - 1> at <i, j>
void RecvUp(Msg &mm) { ... }
// send from node <i, j> to <i + 1, j + 1>

void SendDiagonalDown(Msg &mm) { ... }
// receive from node <i - 1, j - 1> at <i, j>
void RecvDiagonalUp(Msg &mm) { ... }

// receive from the representative
void RecvRepresentative (Msg &mm) {
RecvParent (mm) ;

// send to the representative
void SendRepresentative (Msg &mm) {
SendParent (mm) ;

Y

// STRUCTURAL PRIMITIVES

// is at the first column

bool IsAtFirstColumn(Msg &mm) {
Location 1 = GetLocation();
return 1[0] == 0;

// is at the last row

bool IsAtLastRow(Msg &mm) {
Location 1 = GetLocation();

40

Wavefront patteri

A composite skeleton

Figure 9: An aliasing example

return 1[1] == nSize - 1;

// is along the dialonal, i.e., <N - 1, *>
bool IsAtDiagonal(Msg &mm) {

Location 1 = GetLocation();

return 1{0] == 1[1];

// is the last node, i.e., <N - 1, N - 1>
bool IslLastNode (Msg &mm) {
Location 1 = GetLocation();
return 1[0] == nSize - 1 &% 1[1] == nSize - 1;
}
};
}

It should be noted that the higher level pattern-specific primitives implemented
by the designer are built on top of the basic primitives provided by the SDL. For
example, the RecuRight primitive uses a built-in primitive: RecvPeer. Table 2 and
Table 3 list some of the basic built-in primitives that can be used to construct higher
level pattern-specific public and private primitives respectively.

Let us now concentrate on aliasing. Here, we revisit the example of Figure 7,
which is redrawn in Figure 9 for better illustration. As can be seen in the figure,
the lower-right most node of Wavefront pattern is aliased with the first stage of the
Pipeline pattern. In the following SDL code, aliasing is performed through the com-
bine function, specified through the RULE construct. The definition of the function is
given inside LOCAL. The function performs the aliasing by calling the built-in function
AddAlias. This function takes two nodes from two different abstract mapped spaces

as arguments and aliases them.

integer Size, nStages;

41

Table 2: Some basic primitives available to public primitives

int GetDimension(void)

Returns the dimension of the pattern space

Location GetLocation(void)

Returns the address of the calling node in
the VPG

bool SendPeer(Location &I,
Msg &m)

Does a blocking send of message m to the
peer with address [

Future ISendPeer(Location &1,
Msg &m)

Does a non-blocking send of message m to
the peer with address [

bool RecvPeer(Location &I,
Msg &m)

Does a blocking receive of message m from
the peer with address [

Future IRecvPeer(Location &I,
Msg &m)

Does a non-blocking receive of message m
from the peer with address [

bool BCastPeer(vector
<Location> &vl, Msg &m)

Does a broadcast of message m to all the
peers with any of the address in address
vector vl

bool ScatterPeer(vector Scatter messages. Message vm][i] is sent to
<Location> &vl, Msg vm) node with address vl|i]

bool GatherPeer(vector Gather messages. Message vmli] is re-
<Location> &vl, Msg vm) ceived from node with address vl[i]

bool BarrierPeer(vector Barrier all the peers in the vl list include

<Location> &vl)

the calling nodes.

bool SendParent(Msg &m)

Does a blocking send of message m to the
representative

bool ISendParent(Msg &m)

Does a non-blocking send of message m to
the representative

bool RecvParent(Msg &m)

Does a blocking receive of message m from
the representative

bool TRecvParent(Msg &m)

Does a non-blocking receive of message m
from the representative

bool BarrierParent(Msg &m)

The child counter-part for the function
BarrierChild

42

Table 3: Some basic primitives available to private primitives

int GetDimension(void)

Returns the dimension of the pattern space

bool SendChild(Location &1,

Does a blocking send of message m to the

Msg &m) ‘ child with address [

Future ISendChild(Location Does a non-blocking send of message m to
&1, Msg &m) the child with address [

bool RecvChild(Location &I, Does a blocking receive of message m from
Msg &m) the child with address ! ,
Future TRecvChild(Location Does a non-blocking receive of message m
&1, Msg &m) from the child with address [

bool BCastChildren(vector Does a blocking send of message m to all

<Location> &vl, Msg &m)

the children with any of the address in the
address vector vl

bool ScatterChildren(vector
<Location> &vl, Msg vm)

Scatter messages in message vector vm.
Message vmli] is sent to the child with ad-
dress vl[1]

bool GatherChildren(vector
<Location> &vl, Msg vm)

Gather messages in message vector vm.
Message vmli] is received from the child
with address vl[i]

bool BarrierChildren(vector
<Location> &vl)

Barrier all children in the address vector vl
with the parent node

43

// the Wavefront pattern
pattern Wavefront(2) {

}
pattern Pipeline(1) {
}
alias {
LOCAL =
void combine(void) {
Location 1WF, 1Pipe;
// the lower-rightmost node of wavefront
1WF[0] = Wavefront.GetDimensionLimit(0) - 1;
1WF[1] = Wavefront.GetDimensionLimit(1) - 1;
// the first stage of pipeline
1Pipe[0] = Pipeline.@etDimensionLimit(0) ~ 1;
AddAlias(&Wavefront, 1WF, &Pipeline, 1Pipe);
}
}
RULE = combine;
}

4.2 The SDL for Concrete Skeletons

In this section, we describe the additional grammar of the SDL, required to concretize

abstract skeletons. We also discuss the grammar with an example.

4.2.1 The Grammar

The grammar of the SDL for concrete skeletons in BNF form is shown in the following.
Besides, it introduces some new symbols and rules. The start symbol of the grammar
concrete-skel. Complete SDL grammar is composed of the following grammar
together with the grammar discussed in subsection 4.1.1

Refer to Subsection 4.1.1, if rules to expand a non-terminal is omitted in the
grammar below. Note that, rules mentioned here prevails over the rules mentioned

in the last section.

concrete-skel [param-decl] [pattern-alias-label-decl]

pattern-alias-label-decl pattern-alias-decl | label-decl

id-list identifier ’=’ expression

44

| identifier ’=’ expression ’,’ id-list
label-decl := ’label’ ’=’ ’{’ label-desc '}’
label-desc := label-local-fnc-desc | label-fnc-desc

| label-fnc-desc | label-local-fnc-desc
local-fnc-desc := ’LOCAL’ ’=’ ’{’ label-cpp-code ’}’

label-fnc~desc := 'RULE’ ’=’ identifier

4.2.2 Discussion of the Grammar

The concretization procedure is top-down. The application developer chooses ap-
propriate skeletons from the repository of abstract skeletons. Then she bounds the
parameters of the skeleton with appropriate values and decides about the type of
the children of the skeleton. Defining the type of children results in construction of
skeleton hierarchy.

The concrete skeleton CSy; of the abstract skeleton ASy, can be expressed with
the set {PV(N;), LS(N;)}. If prm is a parameter of the skeleton ASy,, (prm,val;) €
PV (N;), where parameter prm is bounded with the value val;; and if [is a non-null
node in the skeleton space of the skeleton, (I, ASy,) € LS(N;), where [is labeled
with ASyy, the k-th instance of the abstract skeleton AS),. Note that this definition
results in a recursive and top-down concretization procedure. Each of the ASyy,, used
to label the children of C'Sy;, is required to be concretized unless AS,, is an abstract
Singleton skeleton.

Let us consider the skeleton hierarchy of Figure 10(a), decided by an application
developer. According to her decision the first stage of the Pipeline is labeled with
the MIS (Master and Identical Slaves) skeleton. The second and the third stages
are labeled with DP (Data Parallel) and MNIS (Master and Non-Identical Slaves)
skeletons respectively.

The above hierarchy can be expressed in a LISP expression as shown below.

myPipeline (; myPipeline is an instance of Pipeline skeleton

45

3 set number of stages to three

s 3
myMIS, ; the first stage is labeled with an instance of MIS skeleton
myMIS, ; the second stage is labeled with an instance of DP skeleton
myMINS ; the third stage is labeled with an instance of MNIS skeleton

Now say, the developer decides to have at most 10 slaves for the myMIS skeleton
and to label each of the slaves with myFDSingleton, an instance Singleton skele-
ton. Here the purpose of myFDSingleton is to detect faces in a picture. After this

refinement, the above expression can be refined to following.

myPipeline (; myPipeline is an instance of Pipeline skeleton
R ; set number of stages to three
myMIS(; the first stage is labeled with an instance of MIS skeleton
10, ; 10 slaves

myFDSingleton ; slaves are of myFDSingleton

myMIS, ; the second stage is labeled with an instance of DP skeleton
myMINS ; the third stage is labeled with an instance of MNIS skeleton

The SDL implementation simulates same concepts with three components: (1) an
expression for the hierarchy, (2) expressions to set the values of each of the skeleton
parameters, and (3) a labeling functions that labels each of the non-null node of the
skeleton with a skeleton in the next level of the hierarchy. The SDL expression of the
example hierarchy of Figure 10(a) is shown in Figure 10(b).

In the expression for the hierarchy, the developer is specifying the names of the
skeletons which are available to become the children of the concrete Pipeline skeleton.
Beside the hierarchy, she also needs to mention that MIS skeleton (child type 0) should
take the place of the first stage whereas DP (child type 1) and MNIS (child type 2)
should take the place of the second and third stage respectively. This mapping is
expressed in SDL through the following label code block.

00 integer Stages = 3; // bind the parameter: 3 stages
01 // the pipeline pattern
02 pattern Pipeline(1) {

03 A

04 }

05 label {

06 LOCAL = {

07 void labelChildren(void) {

08 Location 1;

09 for (int i = 0; i < Pipeline.GetDimensionLimit(0); i++) {

46

Stage 1 H Stage2 }__.{ Stage 3
I 1 11
4; 4; Pipeline skeleton

‘\D \‘"[:I
Pipeline {

MIS skeleton MNIS skeleton MIS { }’ Ch'lld Type 0
DP skeleton DP { i }, P — Chlld Type 1
l}\;[elgsel:liiiasler and identical Slaves MNIS { } Chlld Ty p € 2
DP :Data Parallel }
MNIS: Master and Non-Identical Slaves
(a) Pictorial View of Hierarchy (b) Hierarchy in SuperPAS

Figure 10: One level of skeleton hierarchy

10 1fo] = i;

11 AddLabel{&Pipeline, 1, i);
12 ¥

13 }

14 3

15 RULE = labelChildren;

16 }

In the above code, the labeling function, labelChildren (specified through RULE
construct), labels each of the children of Pipeline skeleton with a type, i.e. with
a concrete skeleton. Type of node 7 (line 10) of the abstract mapped space of the
Pipeline pattern is also ¢ (the third argument of AddLable at line 11). After concretiz-
ing the Pipeline skeleton, the developer needs to decide about concretizing each of the
children skeleton of the Pipeline (i.e., DP, MIS, MNIS) and then the children of those
children and so on, until she reaches to the leaves with instances of the Singleton

skeletons, which has no back-end and hence no children.

4.3 Example Design of Abstract Skeletons

In this section, we describe the design procedure of several abstract skeletons. The

designed skeletons are Pipeline, Mesh, Cube-Connected-Cycles, X-Tree and Singleton

47

<5 lei' '
(o - SO Do D G B

(a) The pipeline (b) One dimensional (c) The abstract mapped
pattern VPG space

Figure 11: Designing the abstract Pipeline skeleton

skeleton.

4.3.1 Abstract Pipeline Skeleton

In Figure 11(a), the structure of the Pipeline pattern is shown. A Pipeline pattern
is composed of the representative and N stages: stage 0 to stage N — 1. Each stage
receives a problem from the previous stage, computes the solution and sends the
result to the next node. The first and last stages are little bit exception of this rule,
where the first stage receives the problem from the representative and the last stage
forwards the solution back to the representative.

The structure of the stages suggests that an one dimensional VPG is sufficient to
map the stages very well. In Figure 11(b) an one dimensional VPG is shown. Finally,
in Figure 11(c), the mapping of the Pipeline pattern on top of the VPG is shown.

The number of stages in the Pipeline is a design choice and hence a parameter. The
number of stages can be represented with an integer expression and in this example
is represented by the parameter nStages. As shown in Figure 11(c), the trivial way
of mapping the pattern onto the VPG is to map the stage 7 of the Pipeline pattern
on top of the VPG node with address < ¢ >. As a result, node with address < 0 >
is the place holder for the first stage whereas < nStages — 1 > is the place holder for
the last stage.

The private primitives for this skeleton are the primitives for the representative:

48

(1) send to the first stage i.e., the representative sends the problem to the node with
address < 0 > and (2) receive from the last stage i.e., the representative receives the
solution computed by the node with address < nStages — 1 >.

For node < i >, except the node for the last stage, a primitive send to the next
stage means a send to node < ¢+1 >. For the last stage the same primitive means send
to the representative. In similar way, the receive from the previous stage primitive can
be defined. Those two primitives are the public primitives for the Pipeline skeleton.

Finally, the SDL code for the abstract Pipeline skeleton is given bellow.

// File name: pipeline.skel
// The Pipeline skeleton
integer nStages;
// Pipeline pattern inside Pipeline skeleton
pattern pipeline(1) {
LIMITS = {nStages};
LOCAL = {
// everybody is non-null after setting the limit
bool members(const Location &1) {
return true;
}

};

// returns the members in the pattern space
MEMBER=members,
// private primitives
PRIVATE= {
// receive from last stage
void RecvFromLastStage(Msg &mm) {
Location 1;
1[0] = nStages - 1;
RecvChild(1l, mm);

// send to the first stage

void SendToFirstStage (Msg &mm) {
Location 1;
1[0] = 0;
SendChild(1l, mm);

1;
// public primitives
PUBLIC= {
// receive from previous stage
void RecvPrev(Msg &mm) {
Location 1 = GetLocation();
if (1[0] == 0) { // if first stage
RecvParent (mm) ;
} else { // otherwise
1[0] = 1f0] - 1;
RecvPeer(1, mm);

// send to next stage
void SendNext(Msg &mm) {
Location 1 = GetLocation();
if (1[0] == nStages - 1) { // if last stage

49

Figure 12: A Mesh pattern

SendParent (mm) ;

} else { // otherwise
1[0l = 1[0] + 1;
SendPeer (1, mm);

4.3.2 Abstract Mesh Skeleton

The Mesh pattern is one of the most common pattern in parallel computing. It
represents the data-parallel paradigm of parallel computing. This pattern is also
known as the Cube pattern. The Mesh skeleton represents a generic k-dimensional
Mesh pattern. The application developer decides about the proper dimension for her
Mesh pattern, according to the needs of the application and hence & is a parameter.
Figure 12 shows a three dimensional Mesh pattern.

A node of the pattern is addressed with a k-tuple integer: (ag—1,...,a1,ao), where
a; is the position of that node in the i-th dimension. Each node has a neighbor
in each direction. A direction is represented by the vector [dx—1,...,dq,dp], where
di € {-1,0,+1} for 0 < 1 < k and d; # 0;3i. The neighbor of (ak_i,...,al,ao) in
the direction [dy_1, ..., dy, do] is (a}_y, ..., a}, ay), where a} = a; + d; for 0 < i < k.

There is a choice to make about the neighboring nodes of the nodes at the edges

a0

of the Mesh. The first choice is not to have a neighbor in a direction that results in
an address, out of the abstract mapped space. The second choice is to always have
a neighbor node. In this case, all the edges are considered to be wrapped around. A
little thinking will reveal that this choice about neighboring node is also a parameter
for this pattern.

In case of data-parallel computation, an parallel computational node of the Mesh
pattern usually share (communicate) information between neighbors. This commu-
nication is certainly the public primitives. The representative usually partitions the
problem into sub-problems and scatters the sub-problems among the parallel com-
putational nodes. At the end of the computation, the parallel computational nodes
returns the result back to the representative. The representative gathers the solutions
of the sub-problems and merges them to have the global solution. This description
of the Mesh pattern defines the private and public primitives. The abstract skeleton
description in SDL is given below.

// File name: mesh.skel
// The Mesh skeleton
integer k; // k-dimensional Mesh
bool fWrapping; // wrapping at the edge
// Mesh pattern inside Mesh skeleton
pattern Mesh (k) {
// application developer should define LIMITS
// otherwise they will take default values
// LIMITS = { ... };
LOCAL = {
bool is_member(const Location & 1) {
return true;

}
};
MEMBER = is_member;
PRIVATE = {

void GeneratelLocation(vector <Location> &vl, Location &1, int dim) {
if (dim < 0) { // base condition
vl.push(1);
} else {
for (int i = 0; i < GetDimensionLimit(dim); i++) {
1[dim] = 1[dim] + {1;

GenerateLocation(vl, 1, dim - 1);

}
1
// scatter message to children in row major order
bool ScatterToChildren(Msg * vm) {

// prepare the receiver vector

vector <Location> vl;

Location 1;

GenerateLocation(vl, 1, GetDimension() - 1);

51

return ScatterChildren(vl, vm);
}
// Gather from Children in row major order
bool GatherFromChildren(Msg * vm) {
// prepare the receiver vector
vector <Location> vl;
Location 1;
GenerateLocation(vl, 1, GetDimension() - 1);
return GatherChildren(vl, vm);
}
};
PUBLIC = {
// COMMUNICATION PRIMITIVES
// send to a neighbor towards a direction
void SendNeighbor(int * direction, Msg &mm) {
Location 1 = GetLocation();
for (int i = 0; i < k; i++) {
int deviation = direction[i] == 0 ? 0 : direction[i] < 0 ? -1 : 1;
1[i] = 1[i] + deviation;
if (fWrapping)
1[i] = (1[i] + GetDimensionLimit(i)) % GetDimensionLimit(i);

}
ISendPeer (1, mm);

// receive from a neighbor towards a direction
void ReceiveNeighbor (int * direction, Msg &mm) {
Location 1 = GetLocation();
for (int i = 0; i < k; i++) {
int deviation = direction[i] == 0 ? 0 : direction[i] < 0 ? -1 : 1;
1[i] = 1[i] + deviation;
if (fWrapping)
1[i] = (1[i] + GetDimensionLimit(i)) % GetDimensionLimit (dim);

RecvPeer (1, mm);

void RecvRepresentative(Msg &mm) {
RecvParent (mm) ;

// send to the representative
void SendRepresentative(Msg &mm) {
SendParent (mm) ;

}
// STRUCTURAL PRIMITIVE
/ is a node at the begining edge of dimension ’dim’
bool IsAtBeginning(int _dim) {
Location 1 = GetLocation();
return 1[dim] == 0;

// is a node at the ending edge of dimension ’dim’
bool IsAtEnding(int _dim) {
Location 1 = GetLocation();
return 1[dim] == GetDimensionLimit(dim) - 1;
}
1

4.3.3 Abstract Cube-Connected-Cycles Skeleton

Cube-Connected-Cycles pattern (CCC) [31,38] is an interesting pattern. A k di-

mensional CCC consists of k x 2% computational nodes. A CCC is k dimensional

52

(3.0 (1,0)

Figure 13: The Cube-Connected-Cycles pattern

cube where each corner of the cube is a ring of k elements. In Figure 13, a three
dimensional CCC is shown.

Each computational node of the pattern can be addressed with two integers (3, 7),
where 28 < 4 < 0 and k£ < j < 0. Neighbors of (3, 5), in the same ring (i.e., the i-th
fing), are (i, m) and (¢,n), where m = (j + 1) mod k and j = (n + 1) mod k. Node
(¢, 7) has another neighbor in p-th ring with address (p, j), where p =i @ 2577, je. p
is calculated by inverting the j-th most significant bit of i.

We already know that each of the nodes in the CCC can be addressed using two
tuple integers (4, j). The ranges of value ¢ and j can take are also known. So, each of
the nodes of the CCC can be represented by a node in a two dimensional space and
node (i, j) of the CCC can be addressed as < i,j > in that two dimensional space. As
the discussion suggest, the number of columns and rows of the VPG will be bounded
to k and 2* respectively. Now, constructing the primitives is simple as both of the
M and T are known.

// File name: sccc.skel
// the CCC skeleton
integer k;
// the abstract mapped space for CCC pattern
pattern ccc (2) {
LIMITS = {k, integer(pow(k, 2))};
LOCALS = {

53

bool mem (const Location &1) {
return true;

}
L

MBER = mem;
PRIVATE = {

bool SendCCCNode(int x, int y, Msg &m) {
Location 1;
1[0] = x, 1[1] = y;
return SendChild(1, m);

}

bool RecvCCCNode(int x, int y, Msg &m) {
Location 1;
1[0l = x, 1[1] = y;
return RecvChild(l, m);

¥
PUBLIC = {
// for node <i, j>
// send to node <i, (j + 1) mod k>
bool SendNextNodeInRing(Msg &m) {
Location 1 = GetLocation();
1[0 = (L[0] + 1) % k;
SendPeer (1, m);

// send to node <i, (j + k - 1) mod k>
bool SendPrevNodeInRing(Msg &m) {
Location 1 = GetLocation();
100] = (A0 + x - 1) % k;
SendPeer (1, m);

}

// send to node <i XOR 2~(k - j), j>

bool SendNextNodeOutRing(Msg &m) {
Location 1 = GetLocation();
1011 = (111 ~ int(pow(2, (k - 1[01))));
SendPeer(1l, m);

// receive from node <i, (j + 1) mod k>
bool RecvNextNodeInRing(Msg &m) {
Location 1 = GetLocation();
1{0] = (1[0l + 1) % k;
RecvPeer (1, m);

}

// receive from node <i, (j + k - 1) mod k>
bool RecvPrevNodeInRing(Msg &m) { ... }

// receive from node <i XOR 2°(k - j), j>
bool ReceiveNextNodeOutRing(Msg &m) { ... }

4.3.4 An Abstract X-Tree Skeleton

In this subsection, we shall design an abstract X-Tree [39,40] skeleton by composing
a Binary Tree and a Linear List skeleton. The simplest version of the X-Tree pattern
is shown in Figure 14(a). In the pattern, each leaf of a binary tree is connected to

the neighboring leaves.

54

Binary Tree

Level 0
Level 1 .
. Level k-1 Z : i
ver vee Level k } fength

(a) Thé X-Tree pattern (b) Composing Binary Tree and Linear
List skeletons

Figure 14: Designing X-Tree skeleton through composition

Say, we already have a Binary Tree and a Linear List skeleton in the repository.
Those skeletons implement the Binary Tree and Linear List pattern respectively. The
abstract mapped space of both of the skeletons are built on-top of two one dimensional
VPG. In Figure 14(b), the number shown beside each of the parallel computational
nodes indicates the address of the node where it is mapped onto.

As shown in the figure, the height of the tree in the Binary Tree pattern is a design
choice, i.e. a parameter for the Binary Tree skeleton. Similarly, the length of the list
is a parameter for the Linear List skeleton. Let us assume that in SDL code those
two parameters are represented as height and length.

The Figure 14(b) also shows the aliases required to compose two skeletons to build
the targeted X-Tree skeleton. If the height of the tree is k-1, i.e. the highest level is
k, the leaves would have addresses from 2F — 1 to 25! — 2. To compose a Linear List
with a Binary Tree, a Linear List must be of length 2% = (2F+! —2) — (28 — 1) 4-1.
Node 7 of the abstract mapped space of Binary Tree should be aliased with node j
of the abstract mapped space of Linear List, where ¢ = 28 — 1 + j and 0 < j < 2*.
Following SDL code reflects this idea.

integer height; // from Binary Tree skeleton
integer length = integer(pow(2, height ~ 1)); // if height=k+1, length=2"k
// the Binary Tree pattern

51

pattern BinaryTree(1) {

}
pattern LinearList(1) {
}
alias {
LOCAL =
void doAlias(void) {
for (int j = 0; j < length; j++) { // 0 <= j < 27k
Location 1BT, 1LL;
// for node from binary tree: 2°k - 1 + j = length - 1 + j
1BT[0] = length - 1 + j;
// for node from linear list: j
1LL{0] = j;
AddAlias(&BinaryTree, 1BT, &LinearList, 1LL);
}
}
}
RULE = doAlias;
}

4.3.5 Abstract Singleton Skeleton

Abstract Singleton skeleton is probably the simplest skeleton. It does not have any
back-end and hence no parameters and no primitives. As a result, an abstract Sin-
gleton skeleton has no SDL code, as shown below.

// File name: singleton.skel
// the Singleton skeleton -> it has no back-end and
// hence no abstract mapped spaces and primitives

4.4 The Current Implementation

The current implementation of the SuperPAS run-time system is written on top of
LAM-MPI [41] version 7.0, which is an MPI-2 implementation. Though the system is
not tested, we believe that it will also work well on any other MPI-2 implementations.
The translator that translates concrete skeletons in SDL into C++ code is written
using Perl [42]. The translator is built on top of a recursive descend LL1 parser. The
SuperPAS tools use features supported by the POSIX compatible operating systems.
The system also uses standard *NIX development tools like make, GNU [43] C++

compiler, etc.

56

The implementation supports the SuperPAS model with fusion aliasing only. In-
stantiation of an abstract skeleton means copying the file of the abstract skeleton in
SDL to the application project directory. The composition is performed by copying
SDL sources from more than one abstract skeletons into a new file.

The library object Msg is a universal container to encrypt any type of messages.
Data structure a message, to be sent / receive, should be represented by an object,
inherited from Msg. The user must overwrite two methods of that inherited object:
Marshal and Unmarshal. In fact, in those two methods, the user specifies what
composes the message and how to send and receive each component of the message.

Say, we like to have an object representing a gray scale image. A gray scale
image has three properties: (1) height, (2) width and (3) gray scaled pixel data. The
following MsglImage object is a candidate object to represent such an image. As the
object is inherited from the Msg object and as the methods Marshal and Unmarshal
are overwritten according to the need, the object can be used as argument to any of

the communication functions, provided by the SuperPAS run-time system.

class Msglmage : public Msg {
int width, height;
int * data;
public:
MsgImage(void) : Msg(), width(0), height(0), data(NULL) { }
MsgImage(int _height, int _width) : Msg(), height(_height), width(_width) {
data = ...;

3

// from gd image library

MsgImage(const gdImagePtr im) : Msg(), height(gdImageSY(im)), width(gdImageSX(im)) {
// copy the data from gd library

}

void SetImage(const gdImagePtr im) { ... }
int GetWidth(void) { return width; }

// other methods

// FOLLOWING METHODS MUST BE OVER WRITTEN
// to marshal this object
void Marshal(void) {
// marshal width
MarshalData(width);
// marshal height
MarshalData(height);
// marshal image data
MarshalData(data, width * height);
}
// to unmarshal this object
void Unmarshal(void) {
// unmarshalling must be in same order of marshalling

57

// unmarshal width

UnmarshalData(width);

// and height

UnmarshalData(height);

if (data) delete []data;

data = new int{width * height];

// we have proper memory, now unmarshal image data
UnmarshalData(data, height * width);

Representative of a skeleton access the private primitives directly, whereas, it
accesses the public primitives (i.e. primitives of the parent skeleton) through a special
instance of an object, named Ezternal. So, External.SendNext(...) can be used to
send message to the next stage (assuming that Pipeline is the parent in the skeleton
hierarchy). Note that, the root skeleton of the hierarchy has an Ezternal object with
no methods available and leaves of the hierarchy (i.e instances of Singleton skeleton)

do not have any private primitive available for use.

4.5 An Image Convolution Application

Image convolution is an important application in the domain of image processing [44].
Here we describe the step by step procedure to develop a parallel image convolution

application using SuperPAS.

4.5.1 Problem Description

In an image convolution application, a mask is applied to each of the pixels of the
image. The simplest way to make the procedure parallel is to divide the whole image
into several parts (into columns and rows) and distribute different parts to different
processes and each process computes the convolution of the part of the image assigned
to it. The idea is shown in Figure 15(a).

Unfortunately, there are dependencies among those computing processes. Each

process needs to have some extra data from the neighboring processes as shown in

98

T T
' 1 1
I P I [
: : : partition Mask
F—q~—-f—=-—-=—-=-=== - - data
1 1 1
AT R B T ¥ i
[1 1 N I
ot 1 \ \:
1ot 1
[1 [I ey . e
1 1 1 : \ &
1 | [it
b o b ___ N data from
| ! [neighboring
| 1 1 partitions
(a) Dividing image (b) Data dependency

Figure 15: Design of an image convolution application

// File name: image_conv.htree

icmesh { // icmesh is an isntance of Mesh skeleton
icsingleton { // icsingleton is an instance of Singleton skeleton
}

Y 0—th Child Type for icmesh

Figure 16: The first level skeleton hierarchy for an image convolution application

Figure 15(b). Hence neighbors should communicate and exchange some data with

each others before starting the actual convolution operation.

4.5.2 Concretizing Abstract Skeletons

As the problem description suggests, our application demands a two dimensional
Mesh skeleton to be used. In the skeleton the representative will read the image and
mask file and distribute them among the children nodes. As for the children nodes
the convolution task is a sequential computation, the Singleton skeleton would the
perfect candidate. This first level hierarchy for this application is shown in Figure 16.

The Concordia Beowulf Cluster [45] consists of 10 dual-processor slave nodes. So,
for better performance, we choose to have 20 parallel computing processes, doing the
convolution. For input images size of 2048 x 1536 (2048 columns and 1536 rows) we

may choose to divide the images among 5 x 4 children. Based on this decision, we

59

can concretize the Mesh skeleton into icmesh concrete skeleton. The code for this

concrete skeleton is shown in the followings:

// File name: icmesh.skel
// An instance of Mesh skeleton is created by copying mesh.skel to icmesh.skel
// and performing necessary updates for concretization
// The icmesh skeleton
integer k = 2; // binding the parameter: two dimensional VPG
bool fWrapping = false; ?/ no wrapping at the edge
// Mesh pattern inside Mesh skeleton
pattern Mesh (k) {
LIMITS = {4, 5}; // 4 columns and 5 rows

}

We also need to specify a labeling function to label each children of the icmesh
skeleton with icsingleton, an instance of the abstract Singleton skeleton. The SDL

code block for this labeling is added at the end of the above skeleton definition.

// File name: icmesh.skel
ééﬁtern Mesh (k) {
}

label {
LOCAL = { :
void GenerateLocation(vector <Location> &vl, Location &1, int dim) {
if (dim < 0) { // base condition
vl.push(1);
} else {
for (int i = 0; i < GetDimensionLimit(dim); i++) {
1[dim] = 1[dim] + 1;
GenerateLocation(vl, 1, dim - 1);
}
}

}
void label(void) {
vector <Location> vl;
Location 1;
// generate all possible children locations
GenerateLocation(vl, 1, GetDimension() - 1);
// for all children
for (int i = 0; i < vl.size(); i++) {
// label with icsingleton (0-th child type)
AddLabel (&mesh, v1[i], 0);

}
};
RULE = label;
}

Now at the second level of the hierarchy, concretizing the icsingleton skeleton,
an instance of Singleton skeleton, needs no binding of parameters and no labeling of
children, as the Singleton skeleton does neither have any parameter nor have any back-

end. The resulting SDL code for the concretized icsingleton skeleton is as follows:

60

// File name: icsingleton.skel

// An instance of Singleton skeleton is created by copying singleton.skel
// to icsingleton.skel

// the Singleton skeleton -> it has no back-end and hence no pattern spaces
// and primitives

4.5.3 Code-Complete Modules

Before writing the code complete modules, the developers needs to generate the C++
code for the skeleton hierarchy, she has developed, using the supported tools. The
tools will generate one C-++ file for each of the skeletons having the same name as
the concrete skeleton.

The developer only needs to fill-up the code for the representative of each skeleton.
The C++ code for each skeleton contains an object, called Skeleton. The Rep method
of each of the Skeleton object is interpreted as the representative of the corresponding
skeleton.

In the image convolution application, the icsingleton.cpp and icmesh.cpp C++
files are for icsingleton and icmesh skeleton respectively. Here, we will use the Ms-
gImage object, defined in the last section, for communication purpose. The code-

complete icsingleton module would look like as follows.

class Skeleton : ... {

public:
Skeleton(...) : ...
// NEWLY ADDED METHODS (BY DEVELOPER) BEGINS
void RecvRight(Msg &m) {
static int * p = {+1, 0}; // right node in a 2-d mesh
External.RecvNeighbor(p, m);

}

void RecvDown(Msg &m) {
static int * p = {0, +1}; // down node in a 2-d mesh
External .RecvNeighbor(p, m);

void RecvDiagonal(Msg &m) {
static int * p = {+1, +1}; // diagonal node in a 2-d mesh
External.RecvNeighbor(p, m);

}
void SendLeft(Msg &m) {
: static int *x p = {-1, 0}; // left node in a 2-d mesh
External.SendNeighbor(p, m);

}
void SendUp(Msg &m) {

static int * p = {0, -1}; // up node in a 2-d mesh
External.SendNeighbor(p, m);

61

}

void SendDiagonal(Msg &m) {
static int * p = {-1, -1}; // diagonal node in a 2~d mesh
External.SendNeighbor(p, m);

}
bool IsAtFirstColumn(void) {
return External.IsAtBeginning(0);

}
bool IsAtLastColumn(void) {
return External.IsAtEnding(0);

}
bool IsAtFirstRow(void) {
return External.IsAtBeginning(1);

}
bool IsAtLastRow(void) {
return External.IsAtEnding(1);

3
// ADDED METHODS ENDS
void Rep(void) {
/ Fill in with your code
MsgImage imageIn, imgi, mask; // To receive the main image and the mask
MsgImage sm[3]; // to send to neighbor
MsgImage rm[3]; // to receive from neighbor

// receive the mask
External.RecvRepresentative(mask);

// receive the part of the image from parent
External.RecvRepresentative(imageIn);

// send to the neighbors

if (!IsAtFirstColumn()) {
// prepare sm[0] to send to the left node
SendLeft (sm[0]);

if (1IsAtFirstRow()) {
// prepare sm[1] and sm[2] to send to
// the up and diagonal nodes respectively
SendUp(sm[1]);
SendDiagonal(sm[2]);

// receive from the neighbor
if (1IsAtLastColumn()) %
// prepare rm[0] to receive from the right node
RecvRight (rm[0]);

it (!IsAtLastRow()) {
// prepare rm[1] and rm[2] to receive from
// the down and diagonal nodes respectively
RecvDown(rm[1]);
RecvDiagonal (rm[2]);

}

// combine rm[0..3] and imageln in imgi

))'now convolute
MshImage imgo(imgi.dx(), imgi.dy());
Convolute(imgi, mask, imgo);

// now compute imgQut from imgo

// imgOut contains only that part of imege that is required to send
MsgImage imageOut(imageIn.dx(), imageIn.dy());

62

// now send the result
External.SeridRepresentative(imageQut);

}
};

int main(void) {

y

The code-complete icmesh module would look like as follows.

void Rep(void) {
/ Fill in with your code
MsgImage imgMain, mask;
// read the image from file into imgMain object
// and the mask in mask object
// now partition the image
int nParts = GetDimensionLimits(0) * GetDimensionLimits(1);
MsgImage * imgParts = new MsgImage[nParts];
... // and divide imgMain among imgParts
// now send to the children
ScatterToChildren(imgParts);

// now gather the convoluted image parts from children
GatherFromChildren(imgParts);

// combine back the main image from parts in the imgMain object

// and write the result back to a file

This completes the development procedure. The developer may now compile and
run the application.

In this chapter, we described the implementation of the SuperPAS model and
elaborated through several examples. In the next chapter, we discuss about some

usability and performance related issues.

63

Chapter 5

Usability and Performance Issues

This chapter is divided into two sections. In the first section, we address the issue
of usability of SuperPAS. We also describe the conducted experiments and results.
In the second chapter, we address the issue of performance of applications developed

using SuperPAS.

5.1 Usability

The main reason of introducing PAS and in-turn SuperPAS is to have a more usable,
pattern-based parallel programming system. In this section, the usability issues of
SuperPAS are elaborated.

To measure the usability of the SuperPAS system, we conducted an experiment
on a group of graduate students. We elaborate our experiment environment, results

and conclusions in the following three subsections.

5.1.1 Environment

To conduct the usability experiment, we choose a group of twelve graduate students.
At the time of the experiment all the students in the test group were enrolled in a
introductory parallel and distributed systems course. We assumed that as graduate

students they have sufficient background to learn, adapt and use new systems. In the

64

specified introductory course, the students were introduced to the different parallel
hardware systems as well as different parallel programming models and environments.

_ At first, students were introduced to the MPI (Message Passing Interface) model
of parallel programming through a tutorial of one hour. Then they were asked to
develop a parallel image convolution application on the Concordia Beowulf Cluster.
As the students had no background of programming with MPI, the total development
time was divided into two parts: (1) the learning time to learn details (beyond the
tutorial) about the MPI environment and (2) the coding and debugging time to write
the code for the application and debug it, if necessary.

Later on, an one hour tutorial was arranged to introduce the group to the Super-
PAS model and to SDL. Then the students were asked to develop the same applica-
tion, but this time using SuperPAS. Students were asked to divide their efforts into
three parts: (1) the learning time to learn about the SuperPAS and SDL, (2) the
skeleton design time to design the required abstract skeletons and (3) the application
development time to concretize the required skeletons and fill them with application
specific codes.

Note that when the students were asked to develop the applications, they were
provided with the required framework to read and write back an image file. They
were also provided with the functions to convolute an image. The required algorithms
(1) to divide the original image among the parallel processes, (2) to convolute each
part of the divided image and (3) to combine convolute image partitions into one final
convoluted image are also discussed elaborately.

Moreover, the source of the sequential program to convolute an image was posted
along with the problem statement. In the given code, an image was represented with
an object, named I'mage. An Image object represents an image (or part of an image)
by storing the height, width and pixel data. The object was equipped with different

methods to access different properties of the image. In the given sequential code

65

of the program, the convolution operation was performed on an Image object. The
code was arranged in this way to increase the reusability of the given code and also
to ensure that students were able to emphasize more on parallelizing the application

rather than learning in depth technical details.

5.1.2 Results

We asked the students to provide us some usability information. We were interested
about different metrics, we described in the last subsection. We were also interested
in code size, as another reusability factor. In this subsection, we summarize the
information provided by the students.

Students reported that their average learning time to have a grasp of MPI envi-
ronment was 11.4 hours. On the contrary, the learning time for SuperPAS was 15.2
hours. It took around 19.4 hours of time, on the average, for the students to write the
image convolution program using MPI. To develop the required skeletons, the student
needed to spend on an average 15.3 hours of time whereas they spent approximately 9
hours to concretize the abstract skeletons and to write the code-complete application.

Students also reported that they reused 40% code from the sequential program
when they developed the parallel program on MPI environment. This reusability
measure remains same (i.e., 40%) when SuperPAS system was used to develop the
program. The student also reported that given the parallel MPI source code, the

reusability factor went up to 80 ~ 90%.

5.1.3 Analysis

Beside the above results, the students were also asked to compare their experience of
using MPI and SuperPAS. In the following list, we comprehend the analysis of the

results (from the last subsection) and the comments from the students.
e The SuperPAS model for parallel programming is more complex than the MPI

66

model.

e The time to learn the SuperPAS model and the SDL is higher than that’s of
MPI model and MPI library.

¢ Developing parallel applications are significantly easy, if the required abstract

skeletons already exist in the repository.

e The SuperPAS system becomes more beneficial, if the application in hand is
complex with several skeletons and with a skeleton hierarchy of more than two

levels.

¢ The object-oriented interface (the Msg object) and skeleton specific primitives
for communication is easier to use than using the message passing functions in

MPI.

5.2 Performance

In this section, we present the performance of the programs developed using Super-
PAS. We also compare between different execution times of applications written using

SuperPAS and MPI.

5.2.1 Environment

We used a private cluster to run the test applications to measure the performance.
The cluster consists of 3 computers. Each computer has a single Intel Pentium 4
processor of 2.4 MHz and 256 MB of volatile memory. Those computers are connected
through a 100 Mbps network. All the three computers are running Red Hat Linux
version 9.0 [46] and LAM-MPI version 7.1 [41].

For the test purpose, we used the image convolution application that convolutes

30 images of with and height of 1280 and 1083 pixels respectively. We also developed

67

Table 4: Performance

Performance Metrics | MPI (second) | SuperPAS (second)
Time to complete image convolution 244.251 245.657
Total execution time to convolute images 244.536 246.358
Time to complete image processing 507.591 509.581
Total execution time to process images 508.238 510.643

another parallel image processing application to find the contours of objects in a
image. Again, we used 30 images of size 1773 x 2352 pixel as the test case. Each

image consists of a map of an area showing buildings and roads.

5.2.2 Results and Summery

Table 4 shows the performance of the applications written in both MPI and SuperPAS.
To measure each of the metrics, we considered an average of 10 runs. The first row
shows the time to execute the actual parallel image convolution algorithm. It does
not include the MPI or SuperPAS environment setup time whereas the second row
considers the environment setup time. The third row elaborates the time to run
the actual image processing algorithm without considering the environment setup
time whereas the times shown in fourth row includes the setup time. The setup
time in MPI or SuperPAS includes the time of creation of the process hierarchy and
communication channels (commaunicators, in MPI terminology).

From the second and forth rows, it may seem that the performance of SuperPAS
applications are slightly worse than the MPI applications. In fact, the environment
initialization step for a SuperPAS application is more complex than that’s of the
similar MPI application. However, it should be noted that this initialization takes
place only once in the life time of the application. Though the initialization time

grows with the complexity of the skeleton hierarchy, it will not increase with the

68

increment of the life time of the application.

From the times listed on the first and third rows, it can be found that SuperPAS
applications require around 0.411% and 0.392% more time respectively to have the
solutions of the given problems. This slowdown indicates approximately 6 minutes of
additional execution time for the applications running for a day. As the SuperPAS
run-time system consists of a very thin layer over MPI, this performance degradation
is expected. However, after contemplating the amount of slowdowns and the flexibility
of development of the applications, we conclude that applications developed using

SuperPAS do not show any noticeable performance degradation.

69

Chapter 6

Conclusion

Our research team is working towards making the PAS system a usable parallel pro-
gramming tool with the added benefit of reusability as compared to MPI. SuperPAS
is the first step towards that goal. SuperPAS is targeted to make PAS extensible and
more flexible. In this thesis, we propose a model for designing abstract skeletons for
the PAS system. This facility introduces a new category of users to the PAS system:
the skeleton designers.

The skeleton designers are provided with a set of virtual processor grids and a
rich set of communication and synchronization primitives. The designers specify the
abstract topology of a pattern on top of those virtual processors. The pattern specific
higher level communication and synchronization primitives are constructed using the
given basic and lower-level primitives.

We also propose a language to implement the SuperPAS model. Using this lan-
guage, users of the system can develop new skeletons according to the needs of the
targeted parallel application. We also developed sufficient tools to realize the model
in practice. According to the model, the underlying details are hidden from the users
of the skeletons, i.e. application developers, so that they can concentrate more on the
application development phase. The developed tools and run-time system are also

ensured to hold this property. The run-time system is a complete object-oriented

70

library. The system requires the users to fill in some specific methods and write their
own objects, if required.

We tested some applications, developed using the SuperPAS system, from both
the usability and the performance perspective. We have found that the SuperPAS
eases the development process for big and complex applications. We have also found
that in spite of the generality of the system, there exists no significant (less than 2%)
performance degradation of the applications, developed using this system.

Though the current implementation of the SuperPAS system is sufficient, it is
possible to add more features and tools to facilitate the users. Moreover, the model
and the implementation is yet to support the linkage paradigm of aliasing. Visual
tools would obviously further relax the development procedure. The system also lacs
the support of a debugger which is capable of providing a view, conforming to the
SuperPAS model, during the debugging time.

Besides SuperPAS, our research team is now working on several other issues of
PAS system. As discussed in the introduction, till now we do not have any well
designed performance modeling methods for parallel programs. Unlike parallel pro-
grams represented as generic graph, skeletons in parallel programs have some fixed
structure and some fixed communication / synchronization policies. Qur research
team is investigating the scope for performance modeling of these regularities in PAS
system.

The PAS model defines only the architectural aspect of a pattern inside a skeleton.
However, to measure the run-time cost of a parallel program, the behavior of the
pattern should be known. In the PAS system, skeletons handle the structural issues
whereas the developers define the behavior. Synchronous slicing is the method to
extract out the communication synchronization behavior of a given program. With
the help of the synchronous slicing and performance model, we expect to be able to

calculate the cost of a given parallel program.

71

Our team is also working on the issue of static and dynamic optimization of the
PAS system. Those issues are important when we intent to run an already developed
application on a newly bought parallel computer or when we start to design a parallel
application for some specific target machine. The research goals are to find the
model to optimize a given PAS-based parallel program for a parallel computer and
also to find the model to develop a optimized parallel program for a particular parallel
computer.

Hopefully PAS system will become an interesting and most used parallel program-

ming model and environment in the near future.

72

Bibliography

(1

2]

[7]

Top500. (2004) Top 500 supercomputer site. [Online]. Available: http:
//www.top500.org/

D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “LogP: Towards a realistic model of parallel
computation,” in 4th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, San Diego, CA, USA, May 1993, pp. 1-12.

J. Narem, “An informal operational semantics of C-Linda V2.3.5,” Department

of Computer Science, Yale University, CT, USA, Tech. Rep. 839, Dec. 1990.

C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. S. Jr, and M. E. Zosel,
The High Performance Fortran Handbook. MIT Press, 1994.

K. M. Chandy and C. Kesselman, “CC++: a declarative concurrent object-
oriented programming notation,” Research directions in concurrent object-

oriented programming, pp. 281-313, 1993.

G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha,
“Implementation of a portable nested data-parallel language,” Journal of Parallel

and Distributed Computing, vol. 21, no. 1, pp. 4-14, Apr. 1994.

H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum, “Experience with distributed
programming in Orca,” in IEEE CS Int. Conf. on Computer Languages, New
Orleans, Louisiana, Mar. 1990, pp. 79-89.

73

(8]

[12]

[13]

[14]

[15]

16

K. Clark and S. Gregory, “PARLOG: parallel programming in logic,” ACM
Transactions on Programming Languages and Systems, vol. 8, no. 1, pp. 1-49,

1986.

B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and W. D.
Weathersby, “The case for high level parallel programming in ZPL,” IEEE Com-
putational Science and Engineering, vol. 5, no. 3, pp. 76-86, Sept. 1998.

C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns,
Buildz’ngs, Construction. New York, USA: Oxford University Press, 1977.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns Elements of
Reusable Object-Oriented Software. New York, USA: Addision-Wesley Publish-

ing Company, 1994.

D. C. Schmidt, “Ace: an object-oriented framework for developing distributed
applications,” in In Proceedings of the 6th USENIX C++ Technical Conference,
Cambridge, Massachusetts, 1994.

J. C. Browne, M. Azam, and S. Sobek, “Code: A unified approach to parallel
programming,” IEEFE Software, vol. 6, no. 4, pp. 10-18, 1989.

A. Singh, J. Schaeffer, and M. Green, “A template-based tool for building ap-
plications in a multicomputer network environment,” in Parallel Computing 89,

North-Holland, Amsterdam, 1989, pp. 461-466.

J. Schaeffer, D. Szafron, G. Lobe, and I. Parsons, “The enterprise model for
developing distributed applications,” IEEE Parallel and Distributed Technology:
Systems and Applications, vol. 1, no. 3, pp. 85-96, 1993.

A. Bartoli, P. Corsini, G. Dini, and C. A. Prete, “Graphical design of distributed
applications through reusable components,” IEEFE Parallel and Distributed Tech-
nology, vol. 3, no. 1, pp. 37-50, 1995.

74

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

S. Siu and A. Singh, “Design patterns for parallel computing using a network of
processors,” in 6th International Symposium on High Performance Distributed

Computing (HPDC ’97), Portland, OR, Aug. 1997, pp. 293-304.

S. MacDonald, D. Szafron, J. Schaffer, and S. Bromling, “From patterns to
frameworks to parallel programs,” Parallel Computing, vol. 28, no. 12, pp. 1663—
1683, 2002.

D. Goswami, A. Singh, and B. R. Preiss, “From design patterns to parallel
architectural skeletons,” Journal of Parallel and Distributed Computing, vol. 62,

no. 4, pp. 669-695, 2002.

M. Vanneschi, “The programming model of assist, an environment for parallel
and distributed portable applications,” Parallel Computing, vol. 28, no. 12, pp.
1709-1732, 2002.

M. Cole, Algorithmic Skeletons: Structured Management of Parallel Computa-
tion. Cambridge, Massachusetts: MIT Press, 1989.

J. Darlington, A. J. Field, and P. G. Harrison, “Parallel programming using
skeleton functions,” in Lecture Notes in Computer Science, vol. 694, Munich,

Germany, June 1993, pp. 146-160.

I. Foster and R. Stevens, “Parallel programming with skeletons,” in ICPP’90,
1990.

D. Goswami, “Parallel architectural skeletons: Re-usable building blocks for par-
allel applications,” Ph.D. dissertation, University of Waterloo, Canada, Oct.
2001.

M. Forum. (2004) Message passing interface forum. [Online]. Available:
http://www.mpi-forum.org/

75

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

PVM. (2004) Parallel virtual machine. [Online]. Available: http://www.csm.

ornl.gov/pvm/

M. M. Akon, D. Goswami, and H. F. Li, “A parallel architectural skeleton model
supporting extensibility and skeleton composition,” in Second International Sym-

posium on Parallel and Distributed Processing and Applications (to be published
by LNCS), Hong Kong, 2004.

A. Singh, J. Schaeffer, and M. Green, “A template based approach to generation
of distributed application using a network of workstations,” IFEFE Transaction

of Parallel and Distributed Systems, vol. 2, no. 1, pp. 92-67, 1991.

F. Chan, J. Cao, and Y. Sun, “High-level abstractions for message passing par-

allel programming,” Parallel Computing, vol. 29, pp. 1589-1621, 2003.

F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. CA, USA: Morgan Kaufmann, 1992.

M. J. Quinn, Parallel computing: Theory and Practice. New York, NY, USA:
McGraw-Hill, Inc, 1993.

A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel Com-
puting. Addison Wesley, 2003.

F. P. Preparata and J. Vuillemin, “The cube-connected cycles: a versatile net-
work for parallel computation,” Communications of the ACM, vol. 24, no. 5, pp.

300-309, 1981.

S. Bromling, S. MacDonald, J. Anvik, J. Schaeffer, D. Szafron, and K. Tan,
“Pattern-based parallel programming,” in 2002 International Conference on Par-

allel Programming (ICPP-02), Vancouver, British Columbia, Aug. 2002.

76

[35]

[36]

[37]

[38]

[39)

[40]

[41]

[42]

K. Tan, D. Szafron, J. Schaeffer, J. Anvik, and S. MacDonald, “Using generative
design patterns to generate parallel code for a distributed memory environment,”
in ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, San Diego, California, 2003.

R. Baraglia, M. Danelutto, D. Laforenza, S. Orlando, P. Palmerini, P. Pesciullesi,
R. Perego, and M. Vanneschi, “Assistconf: a grid configuration tool for the
assist parallel programming environment,” in FEleventh Euromicro Conference
on Parallel, Distributed and Network-Based Processing, Genova, Italy, Feb. 2003,
pp: 193-200.

T. G. Project. (2004) Grid computing info centre. [Online]. Available:

http://www.gridcomputing.com/

R. Feldmann and W. Unger, “The cube-connected cycles network is a subgraph
of the butterfly network,” Parallel Processing Letters, vol. 2, no. 1, pp. 13-19,
1992.

A. M. Despain and D. A. Patterson, “X-tree: A tree structured multi-processor
computer architecture,” in Proceedings of the 5th annual symposium on Com-

puter architecture. ACM Press, 1978, pp. 144-151.

S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The X-tree: An index structure
for high-dimensional data,” in Proceedings of the 22nd International Conference
on Very Large Databases, T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and
N. L. Sarda, Eds. San Francisco, U.S.A.: Morgan Kaufmann Publishers, 1996,
pp. 28-39.

LAM-MPIL. (2004) Local area multicomputing. [Online]. Available: http:

//www.lam-mpi.org/

P. Wainwright, Professional Perl Programming. Birmingham, UK: Wrox, 2001.

77

[43] GNU. (2004) GNU’s Not UNIX. [Online]. Available: http://www.gnu.org/

[44] H. R. Myler and A. R. Weeks, The Pocket Handbook of Image Processing Algo-
rithms In C. Englewood Cliffs, N.J: Prentice-Hall, 1993.

[45] Department of Computer Science of Concordia University. (2004) Concordia

beowulf cluster. [Online]. Available: http://www.cs.concordia.ca/Beowulf/

[46] Red Hat, Inc. (2004) Red hat linux. [Online]. Available: http://www.redhat.

com/

78

