Secured Communication Through the NAT-PT

Kedar Chandra Das

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University

Montreal, Quebec, Canada

August 2005

© Kedar Chandra Das

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-16255-2
Our file Notre référence
ISBN: 978-0-494-16255-2
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Secured Communication through NAT-PT
Kedar C. Das

This thesis deals with the study of Network Address Translation-Protocol
Translation (NAT-PT), its limitations, and the way of avoiding the
drawbacks of the protocol. NAT-PT is a transition mechanism for
establishing communication between an IPv6 network and legacy systems.
RFC 2766 describes the semantics of this mechanism. However, the
proposed mechanism as described by RFC 2766 has a number of serious
drawbacks that are of primary concern to its users. Due to these
limitations, this mechanism is not widely accepted by the Internet
community. Some of the most critical limitations of the proposed NAT-PT
have been identified as end-to-end security, scalability, DoS attacks, etc.
NAT-PT does not allow network layer and, in some cases application layer
end-to-end security. As a result, the use of NAT-PT increases the threats to
the existing vulnerable network security. The current study addresses the
security related drawbacks of the existing NAT-PT model, and proposes a
modified NAT-PT model. The modified model is able to establish secured
communication between IPv6 and IPv4 as well as to correct other problems
that may arise from the use of the existing NAT-PT. In addition, the current
study also outlines a formal validation of the NAT-PT model with a model
checker tool SPIN, which is a very powerful validation tool for distributed

systems.

1ii

Acknowledgement

I would like to thank my supervisor, Professor J. William Atwood, for his
valuable guidance, financial support, and advice. Besides, he recruited me
to work on a research project at Ericsson Research, Montreal, Canada, and
working on that project at Ericsson Lab, I got practical exposure to the
various aspects of telecommunication and networking. Moreover, it was a
great opportunity for me to be a coauthor with my supervisor for two
publications on the project that we worked on at Ericsson. I am really
grateful to him for this. I am also thankful to Ericsson Research, Montreal

for allowing us to work on the project in their labs.

I wish to thank all the people of the Computer Science Department for their
help and cooperation during my study at Concordia. Finally I would like to
thank my friend Sulata Mojumder, who helped me doing linguistic

correction of my thesis.

iv

Table of contents

LIST OF FIGURES

VIII

CHAPTER 1 : OVERVIEW AND OBJECTIVE OF THE RESEARCH WORK 1

1.1 INTRODUCTION

1.2 TRANSITION MECHANISM

1.3 TRANSITION MECHANISMS PROPOSED BY IETF
1.3.1 DUAL STACK OR DUAL IP LAYER

1.3.2 TUNNELING

1.3.3 TRANSLATION

1.3.3.1 The Existing Translation Mechanism
1.3.3.2 Drawbacks of the Proposed Translation Mechanism
1.4 THE OBJECTIVE OF THE CURRENT RESEARCH
1.4.2 MIDCOM

1.4.2 SNMP

1.4.3 VALIDATION

1.5 THESIS ORGANIZATION

1.6 SUMMARY

CHAPTER 2 : TRANSITION MECHANISM AND NAT-PT

2.1 NAT-PT

2.1.1 ADDRESS TRANSLATION

2.1.2 PROTOCOL TRANSLATION

2.1.3 APPLICATION LAYER GATEWAY

2.1.4 NAT-PT CONCEPT WITH AN EXAMPLE

2.1.4.1 Session Originating in IPv4 side
2.1.4.2 Session Originating in IPv6 side
2.2 SUMMARY

QO VO NOOUIOTL s b W —

[e———

[-—
\V]

12
12
13
14
14
15
16
18

CHAPTER 3 : LIMITATIONS OF NAT-PT AND PROPOSED SOLUTIONS 20

LIMITATIONS
SCALABILITY PROBLEM
PROTOCOL TRANSLATION LIMITATIONS
END-TO-END SECURITY
PREFIX ASSIGNMENT
DNS-ALG
SOURCE ADDRESS SPOOFING ATTACK

W 0w ww

1
1
1
.
1
1
1

O U W

20
20
20
21
21
22
22

3.1.6.1 Attacker in the NAT-PT Stub Domain
3.1.6.2 Attacker outside of NAT-PT Stub Domain
3.2 POSSIBLE SOLUTIONS

3.2.1 SCALABILITY PROBLEM

3.2.2 END-TO-END SECURITY

3.2.3 PREFIX ASSIGNMENT

3.2.4 DNS-ALG

3.2.5 SOURCE ADDRESS SPOOFING ATTACK

3.2.5.1 Attacker in the NAT-PT Stub Domain
3.2.5.2 Attacker outside of the NAT-PT Stub Domain
3.3 SUMMARY

22
23
24
24
24
25
26
27
27
28
28

CHAPTER 4 :MIDDLE BOX COMMUNICATION (MIDCOM) FRAMEWORKS30

4.1 WHATIs MIDCOM?

4.2 MOTIVATION FOR MIDCOM

4.3 MIDCOM FRAMEWORK

4.4 MIDCOM MIB

4.5 AGENT REGISTRATION FOR NOTIFICATION

4.6 MIDCOM TRANSACTIONS AND RELEVANT TABLES
4.7 MIDCOM PROTOCOL

4.7.1 SNMPv3 as MIDCOM PROTOCOL

4.7.1.1 Secure Communications and MIDCOM Protocol
4.8 NAT-PT wiTHIN MIDCOM FRAMEWORK

4.8.1 NAT-PT

4.8.2 SECURITY SERVER/SECURITY PROXY

4.8.3 APPLICATION LAYER GATEWAYS (ALGS)

4.8.4 PROTOCOL TRANSLATOR

4.9 SUMMARY

CHAPTER 5 : NAT-PT WITH SNMP FRAMEWORK

5.1 SNMP FRAMEWORK

5.2 FUNCTIONAL ANALYSIS OF NAT-PT

5.3 DiIsTRIBUTED NAT-PT witH SNMP

5.4 HoOW DOES THE MODEL WORK?

5.4.1 FUNCTIONAL ANALYSIS OF NAT-PT wiTH SNMP FRAMEWORK
5.4.1.1 Session Originating in IPv4 Network

5.4.1.2 Session originating in IPv6 network

5.5 WHY T™WO PROXIES?

5.6 SUMMARY

CHAPTER 6: PROMELA MODEL FOR NAT-PT AND VALIDATION

30
30
31
34
34
35
36
36
38
38
38
39
42
43
43

45

45
46
47
48
49
49
57
65
67

69

6.1 INTRODUCTION

6.2 PROMELA

6.3 PROMELA FOR NAT-PT WORKING ENVIRONMENT
6.3.1 PROCESSES

6.3.2 CHANNELS

6.3.3 VARIABLES

6.4 BEHAVIOR MODEL

6.4.1 NAT-PT

6.4.1.1 Waiting State

6.4.1.2 SPV4 SNMP Message Process State
6.4.1.3 V4 Network Packet Process State
6.4.1.4 V4 Network Packet requiring service of an ALG
6.4.1.5 SPV6 SNMP Message Process state
6.4.1.6 V6 Network Packet Process

6.4.1.7 ALG SNMP Process

6.4.2 SECURITY PROXY

6.4.2.1 Initial State

6.4.2.2 Initiate Session

6.4.2.3 Terminate Session

6.4.2.4 Route Message to NAT-PT

6.4.2.5 Send SNMP Message to NAT-PT
6.5 VALIDATION RESULT

6.6 SUMMARY

CHAPTER 7 : CONCLUSION AND SUGGESTED FUTURE WORK

7.1 WHAT WE ACHIEVED

7.2 WHATIS NEW?

7.3 How DOES PROPOSED MODEL REMOVE DRAWBACKS OF NAT-PT?
7.3.1 SCALABILITY PROBLEM

7.3.2 END-TO-END SECURITY

7.3.3 SOURCE ADDRESS SPOOFING ATTACK

7.3.4 PERFORMANCE

7.4 FUTURE WORK

BIBLOGRAPHY
APPENDIX A: NAT-PT ENVIRONMENT SETUP AND TESTING

APPENDIX B: Managemnet Information Base or MIB

APPENDIX C: FUNCTIONAL ANALYSIS OF THE EXISTING NAT-PT

69
70
70
70
71
72
74
75
75
76
78
78
78
79
79
79
79
80
80
80
81
81
81

83

83
83
84
84
85
87
88
88

90

93

97

124

List of Figures

Figure 1.1 IPv4 Headerooiiniiiiiniiii e 2
Figure 1.2 IPv6 Headeroiviiiiiiiiiiiiii e 2
Figure 2.1 Communication between IPv4 and IPv6 through NAT-PT 15
Figure 4.1 MIDCOM agents interfacing with a MiddleBox..........c..c........... 33
Figure 4.2 SNMPv3 Operating as MIDCOM Protocol........c.cccceeveveninnenennnnn. 37
Figure 4.3 Message Flow through MiddleBoxcooooviiiiiiiiinn . 41
Figure 5.1 SNMP Managed Network Architecturecoooiiiiiiil, 45
Figure 5.2 Distributed NAT-PT with SNMPccoooviiiiiiiiiiieene 47
Figure 5.3 Message Flow Diagram of a session originated in IPv4............. 52
Figure 5.4 Flow Diagram of Packets required the Service of an ALG 55
Figure 5.5 Message Flow Diagram of a session originated in IPv6 host 60
Figure 5.6 Flow Diagram of Packets required the Service of an ALG 64
Figure 5.7 Environment with Multiple NAT-PTSccccovviiiiiiiiiiiiiiiiienans 66
Figure 6.1 State Diagram for NAT-PT Part 1.........c.coooiiiiiiiiiiiinninenne, 76
Figure 6.2 State Diagram for NAT-PT Part 2cccoiiiiiiiiiiiiiiiiiiieeennn, 77

viii

Chapter 1 : Overview and Objective of the research

work

1.1 Introduction

In order to resolve critical limitations of the existing Internet Protocol
version 4 (IPv4), The Internet Engineering Task Force (IETF) proposed a
new Internet Protocol Standard--Internet Protocol version 6 (IPv6) or the
Next Generation Internet Protocol (IPng). Address space limitation is one
of the main drawbacks of IPv4. The Internet community realized that 32-
bit IP addresses would no longer be available very soon. Since the new
IPv6/1Png (128 bit address space) architecture solves the several
problems including the address space problem of IPv4 in an effective
way, early adoption of this new protocol is already taking place, and

widespread adoption is expected over the next few years.

1.2 Transition Mechanism

The Transition Mechanism is an interim arrangement, which allows
coexistence of IPv4 and IPv6 networks. Because of the vast size and
coverage of the Internet, it is not possible to execute a rapid and centrally
coordinated migration from IPv4 architecture to IPv6. This necessitates a
gradual and smooth migration of the Internet Protocol from IPv4 to IPv6.

Hence, it is essential that both IPv4 and IPv6 coexist and work

consistently and reliably with each other. Again at the same time IPv4
and IPv6 are not compatible with each other. They differ in IP Header
format. The following figures depict the incompatibility of IP Header

format of IPv4 and IPvG.

Version IHL Service Type Total Length
Identifier Flags Fragment Offset
Time to Live Protoco! Header Checksum

Source Address (32 bits)

Destination Address (32 bits)
Options and Padding

Figure 1.1 IPv4 Header

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address (128 bits)

Destination Address (128 bits)

Figure 1.2 IPv6 Header

Due to the incompatibility of IP Header formats, and the coexistence of
the both type of protocols, there must exist some mechanisms to
interface between IPv4 and IPv6 networks. These mechanisms have been

termed as Transition Mechanism for IPvG.

The IETF specifications for IPv6 contain detailed information concerning
the transition issues. Most of the documents are presented in the form of
RFCs, and some information is available as Internet Drafts. The RFC
2893 published by the IETF has specified a set of mechanisms for
smooth, stepwise and independent transition. These mechanisms are
suitable for true internetworking, coexistence, easy address mapping and

name service migration, for example.

1.3 Transition Mechanisms Proposed by IETF

The IETF identified a number of transition techniques, and these
techniques basically fall into three categories:
Dual-stack: This technique requires that both the protocols (IPv4 and

IPv6) coexist in the same devices and networks.

Tunneling: According to this mechanism the packets from IPv6 network
are shielded with IPv4 header and tunneled across IPv4 network to
another IPv6 network. That means it establishes communication between
two IPv6 networks across IPv4 networks. This technique helps to avoid

order dependencies when upgrading hosts, routers, or regions.

Translation: This transition method allows IPv6-only devices to

communicate with IPv4-only devices.

Each transition mechanism addresses a specific problem and thus
applies to a specific situation. Thus, they are supplementary to each
other and not complimentary. A Complex situation may require a

combined application of all the above mechanisms.

1.3.1 Dual Stack or Dual IP layer

The most straightforward procedure to satisfy the requirement for full
intersystem compatibility is to include a complete IPv4 implementation
alongside new IPv6 systems. This is what we call an IPv6/IPv4 node.
Such a node is able to transmit both IPv4 and IPv6 packets and thus

able to interact with all IP systems in the network.

The dual stack approach does not necessarily imply that the system
should contain two separate protocol stack implementations; rather it
will contain duplicated IP layer. It is imperative that a dual stack node
has both IPv4 and IPv6 addresses assigned to it. It also includes
“Resolver” libraries capable of dealing with A, AAAA, or A6 records. From
the application point of view, there are still two separate APIs and
whether IPv4 or IPv6 APl is to be used depends on the destination

address.

1.3.2 Tunneling

This transition mechanism establishes communication between two IPv6

networks through 1Pv4 network(s). In this approach, two IPv6 networks

must be equipped with encapsulating and de-capsulating nodes. These
encapsulating and de-capsulating nodes are usually the gateway of the
two communicating networks, and they must be dual-stack. The source
network encapsulates IPv6 packets within IPv4 packets; the
encapsulated packet pass through IPv4 networks as IPv4 packets, and
finally the destination network de-capsulates the encapsulated packet.
As it apparently seems that the IPv6 packet passes through a tunnel, the
transition approach is known as Tunneling. RFCs 2529, 3053, and 3056
provide the complete specifications and descriptions of different types of

tunneling.

1.3.3 Translation

This transition mechanism establishes communication between IPv4 and
IPv6 networks. IP address and IP header formats in IPv6 are different
from those of 1Pv4. Therefore, the IPv4 node does not understand the
IPv6 IP header, and vice versa. So to establish communications between
two address realms, there needs to be a translator in between two types

of network.

1.3.3.1 The Existing Translation Mechanism

The Internet Engineering Task Force (IETF) proposed IPv6 protocol
specifications and different transition mechanism standards through

Internet Drafts and “Request for Comment” (RFC). RFC 2766 outlines the

only existing framework for translation mechanism. According to the
framework specified in RFC 2766, British Telecommunication (BT)
developed NAT-PT for FreeBSD, and it works fine. We have set up testing
environment in the networking lab at Concordia, and we tested NAT-PT
for establishing communication between IPv6 and IPv4 networks. We

tested NAT-PT for HTTP server and HTTP client applications.

1.3.3.2 Drawbacks of the Proposed Translation Mechanism

In the current research, we will focus on NAT-PT details, its limitations
and devise mechanism to overcome these limitations. Chapter two
describes the NAT-PT in detail as described in RFC 2766. Like any other
system, NAT-PT as specified in RFC 2766 is not flawless. Rather, it
brings several serious concerns for its user. Among them the security is
the most important hitch, because NAT-PT breaks end-to-end security.
Other than security, there are also several other concerns such as
scalability problem, DoS attack etc. Chapter three identifies and

discusses the problems of the existing NAT-PT in detail.

1.4 The Objective of the Current Research

The objective of the current research is to develop a modified NAT-PT
model, which will be able to establish communication between IPv4 and

IPv6 networks securely and efficiently.

Through our research work, first we will identify and analyze the reasons
behind the vulnerabilities of NAT-PT as mentioned in the previous
section, and then propose a new framework for NAT-PT, which will

remove or minimize most of the problems of the existing framework.

We will see in Chapter 2 that the NAT-PT translates IP header, so it is not
possible to apply existing end-to-end network layer security for NAT-PT.
As an alternative measure to address end-to-end security, we can divide
the NAT-PT environment into several regions—IPv4 end host to IPv4
trusted host, IPv4 trusted host to the NAT-PT to IPv6 trusted host, and
the IPv6 trusted host to IPv6 end host, establish security among the
smaller regions separately, and then deploy a mechanism so that all the
individual secured regions work together seamlessly. The NAT-PT within
a framework of distributed nature will implement that mechanism. In
order to make NAT-PT working as a distributed system, I have taken into

consideration of the frameworks described in the following subsections.

1.4.2MIDCOM

RFC 3234 defines a MiddleBox as “any intermediary box performing
functions apart from normal, standard functions of an IP router on the
data path between a source host and destination host”. The MiddleBox

Communication (MIDCOM]) protocol is the framework for the MiddleBox;

and the MIDCOM requires application intelligence for its operation.
According to the definition of MiddleBox, the NAT-PT box is categorized
as a MiddleBox, and the framework for the NAT-PT box is MIDCOM. We,
therefore, implement NAT-PT as an application of the MiddleBox
Communication (MIDCOM) framework. The MIDCOM framework requires
a protocol to achieve its commitment while the protocol has not been
chosen yet the Simple Network Management Protocol (SNMP) is the
leading contender. So at this point we will develop our MIDCOM model

for NAT-PT using SNMP.

1.4.2 SNMP

SNMP is the acronym for “Simple Network Management Protocol”. The
SNMP, an Internet standard, defines methods for governing network
management and the monitoring of network devices and their functions.
It is a well-matured and proven protocol for network managemént.
Although the NAT-PT is an operational protocol, the distributed NAT-PT
system requires a level of managerial services. SNMPv3 also ensures
secured communication between SNMP agents and SNMP manager. This
feature is essential for establishing secured communication through
NAT-PT. In addition, SNMP is a highly robust protocol. The main
objective of our research is to modify the existing NAT-PT framework so

that it can establish secured and efficient communication between IPv4

and IPv6 networks. Hence, we have chosen SNMP as the protocol in the

framework for our distributed NAT-PT.

We will develop a distributed NAT-PT model using SNMP. NAT-PT will
work as SNMP agent and ALGs and other modules will work as SNMP
manager. The primary objective is to develop a secured NAT-PT. So, we
will obviously select SNMPv3 as the communication protocol between the
NAT-PT agent and the manager. The proposed model contains three
security regions—IPv4 to security proxy, security proxy to NAT-PT host to
IPv6 security proxy, and IPv6 security proxy to IPv6 end host. These
three security regions will work seamlessly among themselves to ensure

authenticity and the integrity of data exchanged through NAT-PT.

As the distributed NAT-PT works within the SNMP framework, it requires
Management Base Information (MIB). I wrote a MIB for NAT-PT using the

Abstract Syntax Notation dot 1 (ASN.1).

1.4.3 Validation

Completeness and logical consistency are the two most important criteria
for a model. We have verified our proposed model with SPIN model
checker tool. It supports high-level language called PROcess MEta
LAnguage (PROMELA), and it is very suitable for tracing the logical

design errors in distributed system. We have defined the procedures and

rules of the model using PROMELA and verified that all the processes of

the model can interact successfully.

1.5 Thesis Organization

RFC 2766 specified NAT-PT semantics in detail. In Chapter 2, I describe
the existing NAT-PT as specified in RFC 2766. I elaborate the limitations,
and drawbacks of the existing NAT-PT in Chapter 3. Chapter 4 describes
the MIDCOM framework as outlined in RFC 3303. Chapter 5 describes
SNMP, and the distributed NAT-PT within SNMP framework in detail.
Chapter 6 explains validation of the proposed model. Then I summarize
the present works and point out the direction for future work in Chapter
7. As mentioned in subsection 1.3.3.1, we tested NAT-PT, and the
detailed description of the test environment setup and test procedure is
given in Appendix A. The full MIB (NAT-PT MIB) is given in Appendix B.
Appendix C gives the overview of the functional analysis of the existing

NAT-PT.

1.6 Summary

This chapter serves as the background of the research work. It gives a
brief idea about IPv6, what is transition mechanism and what are the
proposed transition mechanisms. We have seen that all the transition
mechanisms proposed by IETF fall into three categories—Dual Stack,
Tunneling, and Translation. We are interested in translation mechanism.

Then we have set out the goal of the research. This chapter opens a

10

section, which describes the validation procedure of the research work.

Finally it outlines the organization of the thesis.

As we are interested in translation mechanism, Chapter 2 presents the

ins and out of translation mechanism and NAT-PT.

11

Chapter 2 : Transition Mechanism and NAT-PT

This chapter gives a brief overview about transition mechanism (NAT-PT),

and then elaborates it with an example.

2.1 NAT-PT

NAT-PT stands for “Network Address Translation-Protocol Translation”.
Here the NAT-PT refers to the translation of IPv4 header including IPv4

address into semantically equivalent IPv6 header, and vice versa.

2.1.1 Address Translation

The address translation means the replacing of IPv4 addresses of a
network packet with IPv6 addresses, and vice versa. The source and
destination address of a network packet must be either IPv4 or IPv6, not
mixture of the two types. The IPv6 IP address is not backward
compatible. So a packet with IPv4 as source address and destination
address cannot be forwarded to an IPv6 network. Similarly a packet with
IPv6 as source and destination addresses cannot get into an IPv4
network. Therefore, to establish communication between the IPv6 and
IPv4 worlds, there should be a mechanism in between IPv4 and IPv6
network to change the source and destination addresses from either 1Pv4
to IPv6 or IPv6 to IPv4. This mechanism is the core part of NAT-PT. It
uses a pool of IPv4 addresses, and when a session is initiated across the

V4-V6 boundaries, the NAT-PT assigns an IPv4 address to the

- 12

communicating IPv6 node. This is called address mapping between IPv4
and IPv6 addresses. This mapping is dynamic and exists until the end of
the session. The IETF proposed two flavors of NAT-PT—Traditional and
Bi-directional. The traditional NAT-PT requires that the session be
initiated just from one direction—from IPv6 network, however, the bi-
directional NAT-PT is free from that session initiation limitation, and it is
practically suitable for all situations. Hence, we are interested in Bi-

directional NAT-PT.

When an IPv6 node initiates a session to communicate with an IPv4 node
in an external domain, the NAT-PT assigns an IPv4 address from the
address pool to the IPv6 node. This assigned address will work as the
source IP address. This means the original source IPv6 address is now

translated to an equivalent IPv4 address.

2.1.2 Protocol Translation

Given that all the fields of IPv6 headers are not the same as that of IPv4
header, NAT-PT translates IP/ICMP headers to make end-to-end IPv6 to
IPv4, and vice versa communication possible. For any packet outbound
from the IPv6 domain, other than the source IP address translation, the
NAT-PT also changes other fields of IP header, and the checksums of
TCP, UDP, and ICMP header in such a way that the packet becomes

semantically equivalent to an IPv4 packet without loss of inforrnation. In

13

the same way for inbound packets to IPv6 domain, the NAT-PT translates
the destination IP address, and the other fields as mentioned above, and

the packet becomes an IPv6 network packet.

2.1.3 Application Layer Gateway

Several applications such as DNS server and SIP send IP addresses and
other information that varies from IPv4 to IPv6, in payload of network
packet. So in addition to IP header translation, it is necessary to
translate payload of a network packet for establishing communication
between two applications in different address realms. NAT-PT does not
snoop payload, so it is application unaware. NAT-PT environment uses X-
ALG to alter payload. X stands for specific application and ALG is the
acronym of “Application Layer Gateway”. DNS-ALG, FTP-ALG, SIP-ALG

are examples of application specific ALGs.

2.1.4 NAT-PT Concept with an Example

Let

Node IPv6-A have an IPv6 address -> FEDC:BA98::7654:3210
Node IPv6-B have an IPv6 address -> FEDC:BA98::7654:3211
Node IPv4-C have an IPv4 address -> 132.146.243.30

NAT-PT have a pool of addresses of 120.130.26.1 and 120.130.26.2.

14

NAT-PT Server with
a pool of IPv4
addresses

IPv6 Network IPv4 Network

iPv4--C

Figure 2.1 Communication between IPv4 and IPv6 through NAT-PT

2.1.4.1Session Originating in IPv4 side

For example, let IPv4-C attempt to initialize a session with node IPv6-A
by making a name lookup ("A" record) for Node-A. The name lookup that
means DNS query goes to the local DNS and from there it is propagated
to the DNS server of the IPv6 network through NAT-PT and DNS-ALG.
NAT-PT will look for the mapping between destination address of the
name lookup packet, and the IPv6 DNS server address. If the said
mapping exists, NAT-PT will replace the destination address of the packet
with mapped IPv6 address and the source address with
PREFIX:132.146.243.30. The PREFIX is a 96 bit fixed one. Then the
DNS-ALG intercepts the payload of the packet, translates the query type
from "A" to "AAAA" or "A6", and then NAT-PT forwards it to the DNS

server in the IPv6 network.

15

DNS-ALG intercepts the payload of the DNS response to find the resolved
address of the Node-A, and will advise NAT-PT to create mapping
between the IPv6 address of Node-A, and an address from the pool (say it
is 120.130.26.1). Then DNS-ALG will replace the A6 and

FEDC:BA98::7654:3210 with A and 120.130.26.1 respectively.

NAT-PT will forward the translated response to Node-C, which will
initiate a session as follows:
SA=132.146.243.30, source TCP port = 1025

DA=120.130.26.1, destination TCP port = 80

As NAT-PT already holds a mapping between FEDC:BA98::7654:3210
and 120.130.26.1, receiving the packet NAT-PT can translate the packet
to:

SA=PREFIX::132.146.243.30, source TCP port = 1025
DA=FEDC:BA98::7654:3210, destination TCP port = 80

And the communication can now proceed as normal.

2.1.4.2Session Originating in IPv6 side

Let say Node-A wants to set up a session with Node-C. Node-A starts it
by making a name look-up ("AAAA" or "A6" record) for Node-C. Since

Node-C may have IPv6 and/or IPv4 addresses, the DNS-ALG on the NAT-

16

PT device splits the original “AAAA/A6” query into “A” query and
“AAAA/A6” query, and forwards both the queries to the external DNS. In
this case the NAT-PT will receive response from external DNS for “A”
record. As the return value is for “A” record, the DNS-ALG will add the
fixed PREFIX to the return value (IPv4 address) to convert the IPv4 DNS
response to IPv6 DNS response, and forward it to the Node-A. Hence, the
Node-A receives an IPv6 DNS response, and the resolved IP address looks
like PREFIX::IPv4_Address. For this example DNS response looks as
below:

Node-C AAAA PREFIX::132.146.243.30 or to

Node-C A6 PREFIX::132.146.243.30

Now Node-A can use the resolved IP address like any other IPv6 address
and communicate with IPv4-C, and the V6 DNS server can even cache it
as long as the PREFIX does not change.

Node IPv6-A creates a packet with:

Source Address, SA=FEDC:BA98::7654:3210

Destination Address, DA = PREFIX::132.146.243.30

IPv6 network needs to be pre-configured so that all packets containing
the PREFIX::/96 in the destination address must go to the NAT-PT
gateway, where it is translated to IPv4 format. The NAT-PT peels off the

PREFIX of the destination address to get the actual IPv4 address of the

17

Node-C. It also allocates an IPv4 address from address pool (say it
120.130.26.1), creates mapping between FEDC:BA98::7654:3210 and
120.130.26.1, and saves the created mapping into NAT-PT mapping
table. Along with the address mapping NAT-PT stores other information
related to the session. The mapping remains in the mapping table for the

lifetime of the session.

The translated IPv4 packet has SA=120.130.26.1 and
DA=132.146.243.30. The NAT-PT will use session information to
recognize any returning traffic, and it will replace the source address by
SA=PREFIX::132.146.243.30, and the destination address by
DA=FEDC:BA98::7654:3210. Now it is easy to route this packet inside

the IPv6-only stub network.

2.2 Summary

This chapter describes Network Address Translation and Protocol
Translation (NAT-PT) in detail. NAT-PT has two parts—Network Address
Translation, and Protocol Translation. With the help of Application Level
Gateway (ALG), NAT-PT provides services to applications, which carry IP
address as the payload of network packet. In this chapter we have looked
at ALG, and why do we need it. Then this chapter describes NAT-PT with
a specific example, which explains the network packet flow from IPv4 to

IPv6 network through NAT-PT and vice versa.

18

Our objective is to develop a NAT-PT model, which will address the
drawbacks of the existing NAT-PT. So we will see the drawbacks of the

existing NAT-PT model in Chapter 3.

19

Chapter 3 : Limitations of NAT-PT and Proposed
Solutions

This chapter describes the limitations of proposed NAT-PT along

with a number of proposed solutions to overcome these limitations.

3.1 Limitations

The following are the major drawbacks of the NAT-PT—

3.1.1 Scalability Problem

NAT-PT will translate all the requests and responses pertaining to a
session between IPv6 and IPv4. Therefore, all the requests and responses
pertaining to a particular session must be routed via the same NAT-PT
router. In some cases, the volume of network traffic may exceed capacity
of the NAT-PT router, and consequently the single router may not be able

to handle network traffic efficiently.

3.1.2 Protocol Translation Limitations

IP Header in IPv4 differs from that of IPv6, and it requires protocol
translation. However, this translation is not straightforward. For
example, the IPv4 option headers semantics and syntax have been

changed significantly in IPv6.

20

3.1.3 End-to-end Security

The proposed NAT-PT as described in RFC 2766 suffers from the
drawback of end-to-end network layer security. Also transport and
application layer security may not be possible for applications that carry
IP addresses to the application layer. This is an inherent limitation of the

Network Address Translation function.

When I1Pv6-only node-A initiates a session to establish communication
with IPv4 only node-C, the packet from node-A will contain
FEDC:BA98::7654:3210 as the source address, and
PREFIX::132.146.243.30 as the destination address. The computations
of IPSec (ESP or AH) and TCP/UDP/ICMP checksum depend on the
source and destination address of the packet. To establish
communication between IPv4 and IPv6 network, NAT-PT replaces the
IPv6 address of the node-A with an IPv4 address (120.130.26.1) that has
no relation to the original address of the node-A. The recipient node-C
will not understand the original IPv6 address and there is no way for

recipient to verify the TCP/UDP/ICMP checksums.

3.1.4 Prefix Assignment

NAT-PT uses a prefix to translate an IPv4 address into an IPv6 address.
However, RFC2766 does not describe how an IPv6 node learns the prefix

that is used to route packets to the NAT-PT box. Here the solution is to

21

add the prefix to the routing table of the IPv6 nodes so that IPv6 nodes
can forward any packet containing the destination address constructed
from prefix to the NAT-PT box. The use of fixed prefix may cause
reachability problem, which will arise if the NAT-PT box were to shut
down. Again somehow providing a fake prefix to IPv6 nodes, an attacker

will be able to steal all of the node’s outbound packets to IPv4 nodes.

3.1.5 DNS-ALG

Bi-directional NAT-PT requires DNS-ALG, which translates A record into
AAAA or A6 record and vice versa. Since DNS-ALG modifies the payload

of DNS query or response, DNS-SEC will not work with NAT-PT.

3.1.6 Source Address Spoofing Attack

We consider two cases:
1. Attacker is in the same stub domain as the NAT-PT (IPv6 side of
the NAT-PT)

2. Attacker is outside of the NAT-PT stub domain.

3.1.6.1 Attacker in the NAT-PT Stub Domain

An attacker in the IPv6 side of the NAT-PT sends a packet destined for an
IPv4-only node-C on the other side of NAT-PT, and the attacker forges its
source address to be an address that is topologically inside the stub
domain. This address may belong to another node, or it may be

unassigned.

22

3.1.6.1.1 Address Depletion Attack

RFC 2766 describes the DoS (Denial of Service) attack. If the IPv6
attacker sends many such packets, each with a different source address,
then the pool of IPv4 addresses may get used up, and exhausted

resulting in a Denial of Service attack.

There are also several other attacks such as reflection attacks, resource
exhaustion attacks, and broadcast/multicast attacks. Reflection attack
occurs when the attacker uses an IPv6 address of existing node as the
source address of the packet. Then targeted IPv6 node will be the
recipient of a reflection attack, as IPv4 node will send response packets
to the victim node. On the other hand, if IPv6 source address set to that
of a non-existent node, then the return packets will be dropped, which
will cause resource exhaustion attack. If the IPv6 source address is a
multicast address then the return packet from the IPv4 node will be sent

to the multicast address, resulting in a multicast attack.

3.1.6.2 Attacker outside of NAT-PT Stub Domain

An attacker is on the IPv4 side of the NAT-PT sends a packet destined for
an IPv6-only node-A, which is behind NAT-PT, and the attacker forges its
source address to be an address that is topologically in the IPv4 side of
the NAT-PT. The Attacker may use an address belonging to another node,

or unassigned one as the source address of the packet. In this case all

23

the same attacks are possible as the case described in the previous

section.

On the other hand, it is not difficult for an attacker to know the IP
address of the NAT-PT. In this case, an attacker that knows the IP
address of the NAT-PT box can send packets directly to the box. It can
use NAT-PT resources, preventing legitimate IPv6-only nodes from

accessing NAT-PT services.

3.2 Possible solutions

The following techniques may be applied to avoid the problems as
described in the previous section. Some of these techniques have been
extracted from Internet drafts, and the mailing lists of different IETF
working groups. New techniques have also been devised and included

here as part of the current research.

3.2.1 Scalability Problem

We can use mNAT-PT to avoid this problem. We explored the solution of
this problem through our proposed model described in Chapter 5.

3.2.2 End-to-end Security

End-to-end security is not possible with NAT-PT. The reason is outlined
in section 3.1.3. However, our proposed model provides an alternative

solution to this problem.

24

3.2.3 Prefix Assignment

The following techniques were stated in [DNSALG] and [mMNATPT], as well
as in e-mail communication on the v6ops mailing list. DNS servers and
DNS-ALG may be used in outgoing connections to return the prefix
information to the IPv6 node. This is a way to avoid the problem of a
statically pre-configured prefix. For example—

When an IPv6-only node wishes to initiate communications with an IPv4-
only node, its resolver library would send an “"AAAA” query. This query
can be passed through the DNS-ALG, which would receive an “A” record
in response. In this case, the DNS-ALG can pre-append the appropriate
prefix for the NAT-PT and translate “A” record into an “AAAA” or “A6”

record and return it to the IPv6 node.

The DNS-ALG can also monitor the state of a number of NAT-PT boxes
and return the prefixes of those that are running. However, solutions
stated above may cause other problems also. If the prefix is provided by
the DNS-ALG, then IPv6 network will not be aware of that prefix. When
an IPv6 node receives a packet with a source address of the format
prefix:ipv4 address, it will not be able to respond to the message unless
its routing table is not configured dynamically or NAT-PT box does not
become a default gateway for any IPv6 node. mNATPT will not work with

the default gateway solution.

25

3.2.4 DNS-ALG

The Internet draft mentioned in the reference described the following
solutions for DNS-ALG:

DNS-ALG translates DNS record. So the end host (IPv6 node or IPv4
node) will not be able to verify the signature on a DNS record. However, if
the host sets the "AD is secure” bit in the DNS header, then it is possible

for the local DNS server to verify the signatures.

Another option for DNS-ALG is to verify the received records (like a DNS
resolver), translate them, and sign the translated records (like a DNS

server).

A third option would be for a host to have an IPSec security association

with the DNS-ALG to protect DNS records.

In this case my suggestion is to implement DNS-ALG with V6 DNS
server, and the existing DNS server can be modified to accommodate
DNS-ALG. A DNS query may be from IPv4 network via NAT-PT or original
IPv6 DNS query. PREFIX of the source address will distinguish these two

types of DNS queries.

26

3.2.5 Source Address Spoofing Attack

This type of attack is not introduced by the NAT-PT. It also exists in the
present IPv4 network. So at this point this type of attack is not our main
concern. However, the Internet draft describes the following possible

solutions.

3.2.5.1 Attacker in the NAT-PT Stub Domain

3.2.5.1.1 Ingress Filtering

Ingress filtering by NAT-PT will prevent an attacking node in its stub
domain that forges its source address from performing a reflection attack
on nodes in other stub domains. However, this does not prevent such an
attacker from performing a reflection attack on other nodes in the same

stub domain. This is not an attack introduced by NAT-PT.

3.2.5.1.2 Employing NAPT-PT

Instead of NAT-PT, NAPT-PT may be employed to get around the address
depletion attack. NAPT-PT stands for Network Address and Port
Translation—Protocol Translation. It translates TCP/UDP ports of IPv6
nodes into TCP/UDP ports of the translated IPv4 addresses. However, as
the draft points out, IPv4-node-initiated NAPT-PT sessions are restricted

to one server per service.

3.2.5.1.3 Access Control List

27

NAT-PT should be given a list of nodes to which NAT-PT will offer its
translation services. IPSec security association might be another option

between the NAT-PT and node to which it will offer its services.

3.2.5.2 Attacker outside of the NAT-PT Stub Domain

3.2.5.2.1 Filtration

NAT-PT should filter out packets from outside that claim to have a
source address behind NAT-PT. These are the attacks that are not

introduced by NAT-PT.

3.2.5.2.2 Discard Packets

NAT-PT should drop packets that are sent directly to its IP address
rather than being routed to it via the PREFIX. If NAT-PT maintains a list
of nodes to which it will offer its services, this type of attack will be
minimized as well. Or for further security, an IPSec security association
could be required between NAT-PT and nodes to which it will offer its

services.

3.3 Summary

The NAT-PT proposed by IETF suffers from several drawbacks. This
chapter analyzes them in detail. NAT-PT breaks End-to-End security. In
addition, scalability problem, problem due to the prefix assignments,

etc., are also serious concerns for NAT-PT users. This chapter also

28

outlines the possible ways of resolving the limitations of the existing

NAT-PT.

As we are interested in developing Middle Box Communication (MIDCOM)

Framework for NAT-PT, Chapter 4 describes proposed MIDCOM protocol

in detail.

29

Chapter 4 : Middle Box Communication (MIDCOM)

Framework

4.1 What is MIDCOM?

MIDCOM is a framework for a device known as middle box that requires
the application intelligence for its operation. RFC 3033 defines the
MIDCOM framework. NAT-PT box can be considered as a middle box that
works on Network layer data; hence, NAT-PT can be an application of

MIDCOM framework.

4.2 Motivation for MIDCOM

RFC 3033 mentions the following points as the motivation for MIDCOM:
Tight coupling of application intelligence (ALG) with MiddleBox (NAT-PT
box) makes maintenance of MiddleBox hard with the advent of new

applications.

Built-in application awareness typically requires updates of operating

systems with new applications or newer versions of existing applications.
Operators requiring support for newer applications will not be able to use

third party software/hardware specific to the application and will remain

at the mercy of their MiddleBox vendor to make the necessary upgrade.

30

Embedding intelligence for a large number of application protocols within
the same MiddleBox increases complexity of the MiddleBox and is likely
to be error prone and degrade in performance. Hence, if ALGs and other
modules are tightly coupled with NAT-PT, then with the change of
application the corresponding ALG will be required be changed, and as
ALG is coupled with NAT-PT, the operators will be dependent on the
vendor of NAT-PT, which may be unrealistic. Again scalability problem
may be solved using the MIDCOM architecture. Tightly coupled NAT-PT
system will do all the translation and computation sequentially; this will
slow down the network performance. On the other hand, MIDCOM
architecture will enable the system to process and translate network

packets concurrently.

4.3 MIDCOM Framework

RFC 3303 describes the MIDCOM architecture and framework. MIDCOM
is a model that will consist of Middle Box and trusted third parties’
application. Application intelligence of the Middle Box will be delegated to
the trusted third parties. These third party applications will assist Middle
Box in performing its operations. As a result the application intelligence
will not be required to be embedded in the MiddleBox. This trusted third
party is referred to as the MIDCOM Agent. That means MIDCOM

framework consists of two types of entities--MiddleBox and MIDCOM

31

agent. The MIDCOM protocol is the means of communication between

MiddleBox and MIDCOM agents.

A MiddleBox consists of several layers such as interface layer, function
layer, policy layer, etc. Function layer implements one or more of the
MiddleBox functions selectively on multiple interfaces of network device.
Varieties of MIDCOM agents will be able to communicate with MiddleBox
function using MIDCOM protocol. MiddleBox upper layer is the MIDCOM
protocol interface layer between MiddleBox and MIDCOM agents. That
layer facilitates the communication between MIDCOM agents and the
specific MiddleBox function. MIDCOM protocol must establish selective
communication between MIDCOM agent and one or more middle box
functions on the interface. The following diagram identifies a possible
layering of the service supported by a MiddleBox and a list of MIDCOM

agents that might interact with it.

Firewalls, NAT, NAT-PT, VPN turineh‘ng etc. are some examples of
MiddleBox application or services. The MiddleBox applications are known
as MiddleBox functions. Each function may have different function
specific policy rules. For example, Firewall function specific rule is
Access Control Lists (ACL), and NAT-PT function specific rules are

address-maps and session-state, etc. Again each rule may include

32

MiddleBox function specific attributes, such as timeout values, NAT-PT

translation parameters, etc.

MIDCOM Protocol

Middlebox

Middlebox functions

Middlebox Managed
Resources

Figure 4.1 MIDCOM agents interfacing with a MiddleBox

According to MIDCOM proposal, application specific MIDCOM agents
may be the co-resident on the MiddleBox or external to the MiddleBox.
Examples of Application specific MIDCOM agents are SIP-ALG, DNS-
ALG, etc. These agents assist MiddleBox in performing functions unique
to application and MiddleBox service. For example, an application
specific MIDCOM agent such as DNS-ALG, assisting a NAT-PT
MiddleBox, performs payload translations, whereas a MIDCOM agent
assisting a firewall MiddleBox requests the firewall to permit access to

application specific, dynamically generated session traffic.

33

4.4 MIDCOM MIB

MIDCOM MIB provides a means for MIDCOM agents to control
MiddleBox resources and for MIDCOM manager to asynchronously notify
the MIDCOM agents of relevant state changes. MIDCOM functions are
independent of MIDCOM MIB. These may be vendor specific. However,
MIDCOM MIB will have rule-change parameters and a pointer to the
application specific MIB objects. MIB for MIDCOM functionalities will
actually contain the detailed objects. For instance, multiple agents might
end up using the same NAT-PT BIND, yet each agent might define their
own Lifeﬁme parameter and directionality for the bind. As a result, the
agent specific Bind identifier is set uniquely, independent of the NAT-PT
native bind. Yet, the agent specific bind has a pointer to the NAT-PT

bind.

MIDCOM MIB is designed to meet the MIDCOM requirements (RFC
3304). A set of MIB objects, one per each MiddleBox resource type, is
defined to run MIDCOM transactions. The resulting resources, along
with rule-changing parameters and a pointer to FW/NAT-PT MIB objects

are maintained as MIB tables, one for each resource type.

4.5 Agent Registration for Notification

midcomAgentTable, a MIDCOM MIB object, is designed to keep records of

all the agents that engage in a MIDCOM session with the

34

MiddleBox.Each active row of the table corresponds to a MIDCOM ageﬁt.
The agent includes the notification parameters within this row to allow
MiddleBox to send asynchronous notifications back to the agent. Also
included is an agent-unique MiddleBox Identifier a MiddleBox should use

to identify itself during the notifications.

4.6 MIDCOM Transactions and Relevant Tables

MIDCOM transactions may be divided into group transactions and
resource transactions. A transaction is atomic and the results of a
transaction are saved into relevant tables at the end of the transaction.
The same agent may review results of a transaction conducted by an
agent anytime prior to executing another transaction of the same kind.

midcomTransGroupTable is defined to allow multiple agents to
simultaneously add or delete Group identifiers and set group-wide
parameters such as Lifetime and Max Idle time. The agent transfers
results of the transaction into midcomGroupTable for later reference and
further parameter modification. midcomTransBindTable,
midcomTransNatSessionTable, and midcomTransFilterTable are defined
to allow multiple agents to simultaneously request MiddleBox resources
and set parameters such as Lifetime and Max Idle time. Results of the
transactions are transferred respectively into the relevant resource table,

namely midcomBindTable, midcomNatptSessionTable and

35

midcomFiltertable for later reference and further parameter modification

by the agent.

4.7 MIDCOM Protocol

The communication protocol between MIDCOM agent and a MiddleBox is
known as the MIDCOM protocol. It allows the MIDCOM agent to invoke
services of the MiddleBox and allow the MiddleBox to delegate

application specific processing to the MIDCOM agent.

Several protocols can be considered as strong candidate to be chosen as
MIDCOM protocol. Among them SNMP, COPS, COPS-PER, RSIP,
DIAMETER are important. Different Internet drafts evaluated these
protocols as MIDCOM protocols. Although each protocol meets the
requirements to some extent, however, SNMP has been chosen as the
ultimate MIDCOM protocol. Compared to the other evaluated protocols,
SNMP is very mature and well understood. It is a proven truth that
SNMP can operate well in numerous different real-world scenarios. There
are also a lot of mature toolsets available for quickly and reliably

realizing SNMP managers and agents.

4.7.1 SNMPv3 as MIDCOM protocol

The following diagram is the MIDCOM operational model when SNMPv3

is adopted as the MIDCOM protocol.

36

el GateWay |

4

Application I Asynchronous
Requests via | Notifications
SNMPv3 ' via SNMPv3
Middiebox |

Legend: — — — SNMP Used as MIDCOM Protocol

------------ Interface between the SNMP agent
and the MIB module

The MIB methods of the MIDCOM MIB
accessing the Middlebox function
specific objects

Figure 4.2 SNMPv3 Operating as MIDCOM Protocol

The above SNMP based model includes MIDCOM MIB and MiddleBox

function MIB objects.

37

4.7.1.1 Secure Communications and MIDCOM Protocol

MIDCOM protocol must establish communication between the agents
and the MiddleBox reliably. SNMPv3 provides the facilities for secured

communication.

SNMPv3 is designed to provide secure communications between two end-
points. It defines MIB modules to allow the monitoring and configuration
of all these security features. They are defined in RFC 3411-RFC 3418,

and RFC3410 provides an overview of these capabilities.

4.8 NAT-PT within MIDCOM Framework

To accommodate NAT-PT within MIDCOM framework, the functionalities
of NAT-PT can be decomposed as below:

e NAT-PT main module

e Security Module/Security Proxy

e Protocol Translator

e Application Layer Gateways

4.8.1 NAT-PT

MiddleBox will implement this module. It is the main module of NAT-PT
mechanism. This module will read the network packet from IPv4 and
IPv6 interfaces, check mapping, create mapping if necessary, generate

message to get the services of MIDCOM agents (Figure 4.3). The

38

communication between MIDCOM agents and MiddleBox will be
performed through MIDCOM protocol. MiddleBox will communicate with
out of path agents. With the help of MIDCOM agents the NAT-PT will get
completely translated packet, and it will forward the packet to the

destination address.

4.8.2Security Server/Security Proxy

NAT-PT does not allow end-to-end security. So to establish secured
communication between IPv4 and IPv6 networks, the most reliable
method is to deploy security proxy in between the two networks of
different address realms. The framework will resemble to a network of

like client/server communication through relaying.

Security Server/Proxy will work as an agent of the proposed middle box.
So if any node from IPv4 side wants to establish communication with
IPv6 side, IPv4 node has to establish client server communication with
the security Server/Proxy. Figure 4.3 describes the flow diagram through
MiddleBox. Once client-sever connection has been established,
subsequent packets will be allowed to pass to the MiddleBox; otherwise
all packets will be discarded. In addition, the Security Proxy will check
the mapping of NAT-PT, if a mapping between the destination address of
the packet and an IPv6 address exists; security agent will allow the

packet to pass to the NAT-PT box. This agent will be able to apply its

39

intelligence to resolve the scalability problem. If multiple NAT-PTs
(mNAT-PT) are available, then proxy server will find one NAT-PT that is
not overloaded with traffic. If the IPv6 network is behind a firewall, the
proxy server will update the MiddleBox firewall access control list so that
the network packet from IPv4 side can pass to IPv6 side. Considering all
the points described above, the functionalities of security proxy can be
summarized as below:

If communicating parties require security, secured Client/Server
connection will be established between proxy server and IPv4 node or
between proxy server and IPv6 node before establishing connection
between IPv4 and IPv6 network. Secured connection means the
authenticity of the communicating parties. The existing network security
protocols can ensure secured connection between an IPv4 client and an
IPv4 security server. IPSec is one of the most recommended security

protocols. Security Proxy will work as MIDCOM agent.

For any subsequent packet originating in IPv4 side, the proxy server will
check the mapping between the destination address of the packet and
IPv6 address, and if the said mapping exists, the proxy server will allow
the packet to pass to the NAT-PT. For a packet originating in IPv6 side,
the proxy server will check the mapping of the source address to an 1Pv4

pool address.

40

218 Security Proxy

Source
Node MIDCOM agent)

il ;
. :
' Connection MIDCOM Message *

(Agent to Manager) .

% -o Reguest, _ gy .

> .

MIDCOM Message .

Request (Manager to Agent) -
Accepted .

Packet from End Host to NAT-PT via
Security Proxy (SP)

e & % 0 &

pe MIDCOM Message
« {Manager to Agent)

>

» MIDCOM Message
. (Agent to Manager) |
-

-

- Translated Packet from NAT-PT to End
Hos

¢
’
]
'
t
]
¢
'
]
'
'
]
]
]
'
¢
'
¢
]
]
]
]
(]
'
’
-

T it S

* o 0 0

- -,

. Connection
s Termination MIDCOM Message

& L N B K N N N N I
(Agent to Manager) -
' >

Figure 4.3 Message Flow through MiddleBox

Security proxy will manage the firewalls. Given that security proxy is a
MIDCOM agent, it should be able to communicate reliably with
MiddleBox. It will update the firewall access control list. It will ensure the

scalability of NAT-PT in the case of mNAT-PT.

This method has the advantage that it will always work as long as both
clients have connectivity to the server. For simplicity, we can use two

proxy servers—one in IPv4 network and another in IPv6 network. If it is

41

the case of single proxy server, it must have two network protocol stacks
-IPv4 and IPv6. As the one side of proxy server supports IPv4, any client
B from IPv4 network will be able to establish secured connection between
the client and the proxy using existing network security protocols. It is
also true for any IPv6 node. Its obvious disadvantages are that it
consumes the server's processing power and network bandwidth
unnecessarily, and communication latency between the two clients is
likely to be increased even if the server is well connected. The TURN
protocol [TURN] defines an implementation method relaying in a

relatively secure fashion.

4.8.3 Application Layer Gateways (ALGs)

NAT-PT requires the services of one or more ALG(s). It is the
responsibility of the ALG manager of the NAT-PT to find the appropriate
ALG. The ALG manager will check the source and destination port of the

packet to do it.

Examples of several Application Layer Gateways (ALGs) are DNS-ALG,
FTP-ALG, SIP-ALG, etc. To relieve the NAT-PT from the burden of heavy
workload any ALG can be implemented as a MIDCOM agent. However,
those agents will be out of path agents. So any communication between
MIDCOM agents and MiddleBox should start from MiddleBox (NAT-PT).

MiddleBox will use MIDCOM protocol to communicate with any ALG. The

42

security of communication will be ensured by MIDCOM protocol itself.
MiddleBox will use PDP to find the identification of the MIDCOM agent,

the residence of ALG.

4.8.4Protocol Translator

The Protocol Translator will translate the IP header from IPv4 to IPv6 and
vice versa. IP headers are not the same in IPv4 and IPv6. Any packet
traversing through NAT-PT requires the services of Protocol Translator,
and it is mandatory. So the Protocol Translator should be implemented
as one module of NAT-PT instead of implementing it as an MIDCOM
agent. Both the ALG Manger and Protocol Translator are the parts of the
NAT-PT, so after reading the packet, NAT-PT will communicate with
appropriate ALG, and then invoke the Protocol Translator. In that case
the IP header translation and payload translation may be done

concurrently.

4.9 Summary

This chapter describes MIDCOM architecture, protocol for MIDCOM.
According to the networking terminology, Middle Box is a device, which
requires application intelligence for its operation; and MIDCOM is a
framework middle box. RFC 3033 defines the MIDCOM framework.
MIDCOM framework consists of Middle Box and trusted third parties’
application. These third party applications will assist Middle Box in

performing its operations. NAT-PT will reside in a Middle Box and work

43

as MIDCOM application. This chapter also explains how to develop
MIDCOM framework for NAT-PT. For adopting NAT-PT with MIDCOM
framework, we have to decompose NAT-PT system into NAT-PT main
module, Security Module/Security Proxy, Protocol Translator, and
Application Layer Gateways. This chapter contains the detailed

description of how all the modules will work within MIDCOM framework.

We have chosen SNMP as MIDCOM protocol for NAT-PT model. Hence,
the next chapter will describe SNMP protocol, and then our proposed

NAT-PT model.

44

Chapter 5 : NAT-PT with SNMP Framework

5.1SNMP Framework

The Simple Network Management Protocol (SNMP) is an application layer
protocol that facilitates the exchange of management information
between two types of SNMP entities—SNMP manager and SNMP agents.
So, an SNMP supported network must have two types of applications—

SNMP managers and SNMP agents. Figure 5.1 describes SNMP managed

Network Architecture.

SNMP Agent

SNMP Agent_ &)
Protocol Engine m

SNMP Agent
SNMP Agent
Protocol Engin

Legend: ___ SNMP Manager uses get or set command to
communicate with SNMP agent

SNMP Agent uses notifications to trap manager
= = « (Communication between two SNMP Managers

NP vIvRISRYY

eswesewws Communication between two SNMP Agents

Figure 5.1 SNMP Managed Network Architecture

45

Agents are the entities that interface to the actual device being managed.
An agent is actually software and it resides in a managed device. An
agent has local knowledge of management information and translates

that information into a form compatible with SNMP.

Network Management System (NMS) executes applications called SNMP

manager that monitor and control managed devices.

A managed device is a network node that contains an SNMP agent, and
resides on a managed network. Network components such as Bridges,
Hubs, Routers, printer, network workstations or network servers, etc.,
are examples of managed devices. These managed devices contain
managed objects. These managed objects might be hardware
configuration parameters, performance statistics, even network packet
payload and so on, that directly relate to the current operation of the
device or the system in question. These managed objects are arranged in
what is known as a virtual information database, called a Management
Information Base (MIB). SNMP allows managers and agents to

communicate for the purpose of accessing these objects.

5.2 Functional Analysis of NAT-PT

The functional analysis of the NAT-PT will be helpful for adopting NAT-PT

into SNMP framework. For the purpose of completeness and better

46

understanding, I added the complete description of the functional

analysis of the NAT-PT (according to RFC 2766) in appendix C.

5.3 Distributed NAT-PT with SNMP

Our ultimate goal is to put NAT-PT in a MiddleBox; hence we will keep

the same decomposition of NAT-PT as described in Chapter 4.

-BeCurity Proxy for
IPV6(SNMP

Manager)
Secured /

r IPv4
3 Session
1 '

: Network

-
y o 'éfv ’
IPviUode-B |
End Hpsi ’
1IPv6 - Fession
Network
_ Security Proxy for
DNS AG 1IPv4 (SNMP
SIP ALG Manager)
(SNMP
(SNMP Manager)

Manager) g

Legend:

it COommunication between IPv6 End Host and Security Proxy
-l = » = P Communication between IPv4 End Host and Security Proxy
i =P Network Packet flow between NAT-PT and IPv6 Host
~afp— - Network packet flow between NAT-PT and IPv4 Host
——pe- SNMP Message from manager to Agent

* @ » SNMP notification from Agent to Manager
~ap—pp Network packet from Security Proxy to NAT-PT

Figure 5.2 Distributed NAT-PT with SNMP

47

That means the decomposition will be as below:
e NAT-PT main module
e Security Module/Security Proxy
e Protocol Translator

o Application Layer Gateways

5.4 How does the Model work?

Figure 5.2 describes the proposed model of distributed NAT-PT with
SNMP. All the network packets, that need to be translated, must traverse
through NAT-PT, which will read the packets and maintain information
required for other modules. Therefore, according to the proposed model
only the NAT-PT will work as SNMP agent; all other modules are SNMP
managers. It is not a contradiction to our ultimate goal--MIDCOM
protocol. Although NAT-PT is an SNMP agent, however any packet
traversing through NAT-PT must pass through security proxy, which is
an SNMP manager. Security Proxy will read just IP header and security
header of a packet. The following sections describe the scenario of packet
flow. End hosts will establish secured communication with Security
Proxy that will provide NAT-PT a clue to generate decryption key to
decrypt the encrypted message for a particular session. Security Proxy
will use SNMP messaging system to send the clue information to NAT-PT.
This clue information depends upon the algorithm used for encryption

and decryption of the message and the key management policy. The

48

following subsections 5.4.1 and 5.4.2 describe the functionalities of NAT-

PT and the NAT-PT with SNMP framework.

5.4.1 Functional Analysis of NAT-PT with SNMP Framework

We will define several objects in NAT-PT MIB, which will make NAT-PT
working under the SNMP framework. The following are the essential
objects for our NAT-PT framework—

NAT-PT Address Pool Table (natptIPv4AddressPool), NAT-PT Static
mapping Table (natptStatMapping), ¥ NAT-PT Mapping Table
(natptMapping), NAT-PT Session Info Table (natptSessioninfo), NAT-PT
Received Packet Info table (natptRecievedPacketinfo), NAT-PT Packet for
Sending (natptPacketForSending), @ NAT-PT Notification = Object
(natptNotification). We will describe these objects in detail in NAT-PT MIB

chapter.

Network packet may be classified depending on various criteria. However,

NAT-PT functionalities will not be changed based on each criterion.

5.4.1.1 Session Originating in IPv4 Network

5.4.1.1.1 Security Proxy for IPv4 Network (SPv4)

The figure 5.3 describes the data flow for a session originated in IPv4
network. SPv4 will have a list of IPv4 addresses, which are the pool

addresses of NAT-PT. The establishment of any new session will require

49

one free IPv4 address in the address pool. SPv4 will always maintain an
updated address list. If mNAT-PTs are deployed, SPv4 will maintain

another list for load balancing.

The end host of IPv4 network will establish secured session with Security
Proxy before starting communication through NAT-PT. Then the Security
Proxy/Server will do the following—

After receiving a session initiating packet from any host of IPv4 network,
SPv4 will analyze the packet to get the IP header, security header, and
the address of the target host of the packet. Then it will authenticate the
IPv4 host. If the packet passes security screening, it will check its
address list to find either there is a free address in the list or not. If a free
address is available in the list, SPV4 will send an SNMP message to the
NAT-PT to verify whether the address of the target host is in the mapping
table or not, and to block one IPv4 pool address for the forthcoming
session. If the target host address is in the mapping table then it will
store session information for the session, and send an acknowledgement
to the sender of the session initiating node. For each session there will be
a session ID, and the SPv4 will use pre-defined algorithm to generate
session ID using source address, source port, and the security info for
the session. The session initiating packet should contain the security
parameters, and the address of the target host address. After sending

acknowledgement, it will construct an SNMP message with the Session

50

ID, decryption key for the session, the source address, and the address of
the target host. It will send the SNMP message to the NAT-PT using
setRequest command to set values for the parameters of newly created
session. At the same time the SPV4 will send a request to SPV6 to
forward security info for the IPv6 end host to the NAT-PT. The request
message is an SNMP message containing the session ID, target IPv6 host,

and other relevant session parameters.

If there no is free pool address, then the session cannot continue. If
multiple NAT-PTs (mNAT-PT) exist, then security proxy can locate

another NAT-PT with a free pool address.

For any subsequent packet from IPv4 host for which the session has
been created, it will check the destination address of the packet. If the
destination address is in either NAT-PT Static Mapping table or NAT-PT

Mapping table then proceed, otherwise drop the packet.

At the end of the session SPv4 will receive a session ending information
and it will construct an SNMP message with the Session ID to terminate
the session and return the IPv4 pool address to the address pool used by
NAT-PT. It will also update its own address list. SPv4 will use timer for

making timeout of idle sessions.

51

ICMP packet does not require be checked whether it is session initiating
or session ending or it is in the middle of the session. SPv4 will just

forward the ICMP packet to the NAT-PT.

' SNMP Message
Session Packel { (Manager to Agent)

e Y

-
*
.
3
.

’
'
'
|
'

SNMP Message

Agent to Manager
SessionOK (A9 ger)

---------c<

SNMP Message
(Manager to Agent)
-

s v e 9 o 20 2 s 0 e

SNMP Message (Manager to Manager)

-

. SNMP Message
¢ (Manager to Agent)

Data Packet fromyIPv4 End Host to
NAT-PT yia SPV4

Data Packet From NAT-PT to IPvE
End Host via SPVE

"""A

Data Packet Fr?m NAT-PT to IPv4
End Host via SPV4

Data Packet From IPVE End Host to
NAT-PT via SPVeé

vt CUTTECTTEETE EEP e

® o o o o]0 ¢ & @

Session SNMP Message
Termination (Manager to Agent‘

.

'
¢
¢
'
]
'
]
!
'
'
]
(]
'
'
'
'
'
'
!
]
]
!
!
4
™
'
]
'
]
]
'
]

Figure 5.3 Message Flow Diagram of a session originated in IPv4

The source and destination port will identify the ALG required for the
packet. If there is any ALG for that packet, security proxy will construct
SNMP message (used between two SNMP managers) to inform the

corresponding ALG to translate the payload of the packet.

52

5.4.1.1.2 NAT-PT

NAT-PT module will work as SNMP agent. So it will send notification to
SNMP managers, take necessary actions according to the message from
the SNMP managers. NAT-PT will also read the packet and analyze the
packet as described below—

The NAT-PT will read IP header to get the source address, destination
address, source port, and destination port of the packet. Then it will
create a session ID with the source address, source port and the security
info of the packet. It will use the same algorithm as used by the Security

Proxy.

The NAT-PT will get the security information from NAT-PT Session info
table using Session ID received in the previous step. It will also store the

checksums value of the transport layer protocol.

Then ALG manager of the NAT-PT will check whether there is any ALG
for the packet or not. The source port or destination port of the packet
will identify an ALG. If the packet requires the services of ALG, the NAT-
PT will read, decrypt the payload of the packet, and update the [NAT-PT
Received Packet Info] table. It will overwrite the previous information

stored in the MIB table against the same session ID.

53

If the NAT-PT does not receive setRequest or getRequest message from
SNMP managers regarding the current packet, it will construct an SNMP
notification message and send the notification to SNMP managers (ALG
and other modules). The notification message will include the packet ID
and time stamp, and Transport layer protocol, SYN Flag, etc. The
contents of the message will depend on the receiver to whom the

notification is being sent.

Afterward the NAT-PT will invoke the Protocol Translator module, which
will translate the IP header of the packet. The Protocol Translator may be
collocated with the NAT-PT or may be in a different host directly
connected to the NAT-PT host. If the Protocol Translator is not collocated
with the NAT-PT, then an Inter Process Communication method may be
used for communication between the NAT-PT and the Protocol

Translator.

Protocol Translator will translate the IP header from IPv4 to IPv6 and vice
versa. The NAT-PT will pass IPv4 header to the Protocol Translator that
will get the mapping address from the mapping table and replace the
IPv4 destination address with the IPv6 address. It will then create IPv6
source address concatenating PREFIX with IPv4 source address. Then it
translates the IPv4 header into IPv6 header according to the protocol

specifications. For TCP packet Protocol Translator recalculates TCP

54

checksums and for UDP it recalculates UDP checksums. After the
translation of IP Header, the Protocol Translator will return the

translated header to the NAT-PT module.

5.4.1.1.3 ALG

Figure 5.4 describes the flow diagram for packets requiring the service of
an ALG. NAT-PT will determine whether a particular packet will require
the service of an ALG or not. If the received packet requires the services

of ALG(s), NAT-PT will update the payload field of the [NAT-PT Received

SNMP Message (Manager to Manager)

‘ """""" |

. : 3
] . .
0 Packet Req. ALG »]
: } . SNMP Message :
M . (Managet to Agen} s
. — 4
] .)
0 . .
' . SNMP Message, with Payload ¢
. . (Agent to Manager) :
1 i >
] . .
» . .
: + SNMP Message with Translated :
. : Payload :
4 : (Manager to Agent) .
0 - ’
] . .
' . ’
‘ . *
' : Translated Data .
- . Packet .

Figure 5.4 Flow Diagram of Packets required the Service of an ALG

55

Packet table] and send notification to the concerned ALG. After receiving
the notification ALG will save the Packet ID and do the following—

First ALG will construct an SNMP Message, which will consist of Packet
ID received from NAT-PT, and payload object ID of MIB. It will issue
getRequest command to get the payload of the IPv4 packet. Then it will

translate the payload according to the protocol specification.

ALG will convert IPv4 Address (if any) of the payload into IPv6 address
just concatenating PREFIX before the IPv4 address as
PREFIX::IPv4_Address. After the translation of the payload, the ALG will
issue setRequest command to update the payload field of the [NAT-PT

Packet For Sending] table.

5.4.1.1.4 Packet Forwarding

Thereafter, the NAT-PT will construct the IPv6 message, apply IPSec to
the packet and then forward the packet to the Security Proxy for IPv6
that will route the packet to the destination address. The source address
of the packet will be PREFIX::IPv4_Address and the destination address
will be an IPv6 address obtained from the mapping table. In addition,
NAT-PT can terminate a session, and return the pool address to the
address pool. The termination of a session will depend on the idle time of

a session, or the instruction from Security Proxy.

56

5.4.1.2 Session originating in IPv6 network

5.4.1.2.1 Security Proxy for IPv6 Network (SPV6)

The figure 5.5 describes data flow datagram for a session originating in
IPv6 network. The end host of IPv6 network will establish a secured
session before starting any communication through NAT-PT. Thereafter,
the security proxy will do the following:

Like SPv4, SPv6 will also have a list of IPv4 addresses, which are the pool
addresses of NAT-PT. The establishment of any new session will require
one free IPv4 address in the address pool. SPv6 will always maintain an
updated address list. If mNAT-PTs are deployed, SPv6 will maintain

session list for load balancing.

After receiving a session initiating packet from any host of IPv6 network,
SPv6 will analyze the packet to get the IP header, security header, and
the address of the target host of the packet. The destination address of
the packet may be in the form of PREFIX::IPv4_Address or IPv6 Address.
SPv6 will authenticate the IPv6 host. If the source of the packet is
genuine, it will check its address list to find either there is a free address
in the list or not. If a free address in the address list is available, then
SPV6 will send an SNMP message to the NAT-PT to block one IPv4 pool
address for the forthcoming session. The next step is to create a Session

ID. Using a defined algorithm, SPV6 will create a session ID with the

57

source address, source port, and security info of the packet. SPV6 will
then store session information for the created session, and send an
acknowledgement to the sender of the session initiating node. The
session initiating packet should contain the security parameters, and the
address of the target host address. After sending acknowledgement, the
SPV6 will construct an SNMP message with the Session ID, decryption
key for the session, the source address, and the address of the target
host. It will now send the constructed SNMP message to the NAT-PT
using setRequest command to set values for the parameters of newly
created session. At the same time the SPV6 will send SNMP messages to
SPV4 and other SNMP managers to inform about the newly created
session. The request message is an SNMP message (Message format
Manager to Manager) containing the session ID, target IPv6 host, and

other relevant session parameters.

If there is no free pool address available, then the session cannot
continue. Alternatively, if multiple NAT-PTs (mNAT-PT) exist, then

security proxy can locate another NAT-PT with a free pool address.

For any subsequent packet from IPv6 host for which the session has
been created, SPV6 will check the source address of the packet. The
source address may or may not exist in the mapping table. If the source

address does not exist in the mapping table, it will create a mapping

58

between the IPv6 source address and the previously blocked IPv4 pool
address. It will issue an SNMP message to set the values for the created
mapping. After the creation of the mapping, SPv6 will reset the flag of the

blocked address as “In Use”.

The source and destination ports of a network packet will identify the
ALG required for the packet. If there is ALG for that packet, the security
proxy SPV6 will construct a message (used between two SNMP managers)
to inform the corresponding ALG manager to translate the payload of the

packet.

59

Session Packet

NAT-PT

SNMP Message
(Manager to Agent)

SessionOK

SNMP Message
(Agent to Manager)

-l

SNMP Message
(Manager to Agent)

.
.
.
.
3
(3
.
.
»
L]
Py
[y
3
.
»
[

SNMP Message (Manager to Manager)

SPV4

5
5

|
’
!
¢
i*
]
'
]
’
'
]
]
'
’
'
’
.
]
s
L
.
s
'

. .
. SNMP Message
* (Manager to Agent)
-
Data Packet from. IPv€ End Host to . Data Packet From NAT-PT to IPv4
NAT-PT yia SPVE : End Host via SPV4
—y
Data Packet From NAT-PT to IPv€ +Data Packet From IP y4 End Host to
End Host via SPVE : NAT-PT via SPV4

e .

' -

' E]

’ Session SNMP Message

L. _ginlirla.t_ign_ (Manager fo Agent‘.

coccolmecedecencenaenne e e .-

iPv4

Figure 5.5 Message Flow Diagram of a session originating in IPv6

host

At the end of the session, SPv6 will receive session ending information

and construct an SNMP message with the Session ID to terminate the

session. It will then return the IPv4 pool address to the address pool

used by NAT-PT. It will also update its own address list. SPv6 will use

timer for making timeout of idle sessions.

60

ICMP packet does not need to be checked whether it is session initiating
or session ending or the packet is in the middle of the session. The SPV6

will just forward the ICMP packets to NAT-PT.

5.4.1.2.2 NAT-PT

After receiving a message from SPv6, NAT-PT will read the packet IP
Header, and create session ID using the same method as used by SPv6.
It will get the security information from [NAT-PT Session info] table using

the created session ID.

The ALG Manager will check whether there is any ALG for the packet or
not. The source port or destination port of the packet will give the
information about ALG. If the packet requires the services of an ALG,
NAT-PT will read, decrypt the payload of the packet, and update the

[NAT-PT Received Packet Info] table.

NAT-PT will check the [NAT-PT Received Packet Info] table to find
information for an existing packet with the same session ID. If there is

any, the NAT-PT will overwrite the previous one and update the values of

different fields of that table.

IPv6 source address may or may not exist in the mapping table. If it

exists, then the source address may be in the static mapping table or in

61

the dynamic mapping table. If the IPv6 source address exists in the [NAT-

PT Static Mapping] table, the packet is either a DNS response or a DNS

query.

In the case of a DNS response, DNS ALG will require an IPv4 address
from the address pool to create mapping of the resolved IPv6 address and
an IPv4 pool address. The NAT-PT will then issue an SNMP notification
for the DNS-ALG. The notification message will include an IPv4 address
from the IPv4 address pool. The IPv4 pool address will be one that has
been blocked before by the SPv4 at the time of establishing secured

session.

In the case of DNS query, there should be a mapping between the source
address and an IPv4 pool address in the mapping table. If the IPv6
source address exists in the [NAT-PT Mapping] table, the NAT-PT will not
require creating a new mapping. It will just translate the packet as usual.
~ Otherwise the NAT-PT will create a mapping between an IPv4 address,
which has been blocked by Security Proxy, from the pool of IPv4
addresses, and the source IPv6 address; and write that entry to the [NAT-
PT Address Mapping] table. By this if the NAT-PT does not receive any
getRequest message from DNS ALG, it will send notification to the DNS

ALG.

62

Then NAT-PT will store mapping information into the mapping table and
wait for the response from the SNMP manager, i.e., from the DNS-ALG.
After receiving the response from the DNS-ALG, it will send the payload

to the DNS-ALG using SNMP message format.

The NAT-PT will invoke the Protocol Translator module, which will
replace the IPv6 source address with an IPv4 address. It creates IPv4
destination address peeling off the PREFIX from the IPv6 destination
address of the packet, and replacing the IPv6 destination address with
the newly created IPv4 address. It will recalculate transport protocol
checksums. The Protocol Translator converts the IPv6 Header to IPv4
Header according to the protocol specifications, and it returms the

translated IP Header to the NAT-PT module.

63

5.4.1.2.3 ALG

Figure 5.6 describes the flow diagram for packets requiring the service of
an ALG. ALG will receive an SNMP notification message from either SPV6
or NAT-PT. After receiving the notification, the ALG will save Session ID
and Packet ID, IPv4 address (if any) and other information. Figure 5.6
describes the data flow diagram for packets that require the service of an

ALG.

o]

|

Figure 5.6 Flow Diagram of Packets required the Service of an ALG

64

; T
» . ’
: : :
pocmmmmmeme- SNMP Meésage (Manager to Manager) s
8 = ».
. Packet Req. ALG . :
: jPageinen.pte] Snjue .
: . (Manylgeeﬁ??ogﬁgen) :
. — -
| .]
] . s
: : SNMP Message; with Payload :

. Agent to Manager]
' . (Ag ger) -
» : »
» : .
: : SNMP Message with Translated §
. . Payloiad :
. . (Manager tb Agent) .
] - ’
. * .
. . ’
e : .
: . Translated Data ’
. . Packet H
. roreccmen—. ---

Then the ALG will issue getRequest command to get the payload of the
IPv6 packet. It will translate the payload according to the protocol
specification, and replace IPv6 Address (if any) of the payload with IPv4
pool address. It will issue setRequest command to update the payload

field of the [NAT-PT Packet For Sending] table.

5.4.1.2.4 Packet Forwarding

At this stage, the NAT-PT will construct IPv4 message, and apply IPSec to
the packet and forward the packet to the security proxy, which will send
the packet to the destination address. The source address of the packet
will be IPv4 pool address and the destination address will be an IPv4
address of the end host. SPv4 or SPv6 or NAT-PT will be able to terminate
any session depending on the value of SYN flag or idle time of the
session. After terminating a session, NAT-PT will return the IPv4 address

to the address pool.

5.5 Why two Proxies?

The model with Security Proxy will resolve scalability problem of NAT-PT
in two ways. SNMP architecture allows many-to-many communications
between SNMP managers and agents. Given the fact, to handle large
volume of network traffic there may be situations where multiple NAT-PT
may be required to be deployed. If it is the case, the Security Proxy will
control incoming data traffic and balance the load among NAT-PT servers

by directing sessions to the most suitable server available. As a result,

65

traffic will be distributed among NAT-PT servers uniformly. On the other
hand, Security Proxy is an SNMP manager, and the NAT-PT is an SNMP
agent; so Security Proxy will be equipped with facilities to monitor the
status of all NAT-PT servers. Hence, if a NAT-PT fails during a session,
the session initiating Security Proxy will be able to transfer the same
session to another NAT-PT, and the session can continue without

interruption. Figure 5.7 will explain the facts clearly.

Security Proxy for
IPv4 (SNMP
Manager)

Security Proxy for ,
IPv6(SNMP ¢

IPv6
Networ

IPv4
Network

Legend

Interrupted Session

======P Reestablished Session

Figure 5.7 Environment with Multiple NAT-PTs

66

Suppose a session has been created with NAT-PT-2, and at some point of
the session and for some reasons, the NAT-PT-2 is no longer able to
translate network packets. Hence, the communication between IPv4 and
IPv6 end hosts must stop. The deployment of multiple NAT-PTs will avoid
the problem. The Security Proxy has all session information, so it can
divert the same session through another NAT-PT (say NAT-PT-1) and
communication can continue. It is obvious that the system with two
proxies will be more flexible and fault tolerant than the system with a

single proxy is.

5.6 Summary

We used SNMP as the means of communication protocol between
MIDCOM agent and MIDCOM manager. So this chapter first describes
the architecture of the SNMP comprehensively. Then the several sections
of this chapter illustrated our proposed NAT-PT model in detail. After the
sections of the proposed model, in some sections of this chapter we
looked at how the proposed model would work. With the help of packet
flow diagrams, those subsections explain network packet flow through
the proposed model. The last section of this chapter gives the reasoning

behind the using of two security proxies in the proposed model.

We proposed a modified NAT-PT model, and the next step is to validate

the model. So Chapter 6 outlines the validation procedure of the model.

67

68

Chapter 6: PROMELA Model for NAT-PT and

Validation

6.1 Introduction

NAT-PT translates the IP Header of network packets; therefore, it
provides services to the network layer. To realize the service of NAT-PT
we developed a model, which was described in chapter 5. In fact the
model we developed describes a set of consistent procedures and rules.
Those procedures and rules specify the behavior of the NAT-PT system.
From that model it is possible to develop a finite state machine, which
will be sufficient for description, but it is not convenient to work with
that model. Here we used the formal language PROMELA to describe

those procedural rules.

This chapter will present the formalization of NAT-PT specification to
build a PROMELA model and to verify the correctness. Our goal of this
verification is to prove the completeness and logical consistency of the

model.
To avoid the complexity we deliberately abstract our validation process

from other issues of protocol design, such as message format, message

encoding, decoding, etc. The validation model defines the interactions of

69

processes that are required for a complete NAT-PT working environment.
Like any standard validation model it does not resolve implementation

details.

6.2 PROMELA

PROMELA defines a validation model in terms of three specific types of
objects—Processes, Channels, and Variables. Processes are by definition
global objects whereas variables and channels can be either global or
local to a process. Channels are the communication mechanism between
PROMELA processes. Like any other programming language, variables
store system information either locally to a process or globally to all the

processes for a system.

6.3 PROMELA for NAT-PT Working Environment

6.3.1Processes

We have described the NAT-PT working environment with six PROMELA
processes. These processes are IPv4 host (process v4), IPv6 host (process
v6), security proxy for IPv4 network (process SPV4), security proxy for
IPv6 network (process SPV6), NAT-PT (process natpt), Application Layer
Gateway (process alg) processes. These six processes represent the

formal program of procedure rules for the abstract model of NAT-PT.

70

6.3.2 Channels

Channels are the communication mechanism among PROMELA
processes. We have not classified channels depending on the type of
messages; rather we have defined two types of channels-one for receiving
and another for sending messages. For example the process natpt will
receive any message from process SPV4 through a fixed channel
from_SPV4, and it sends messages to SPV4 using channel to_SPV4.
Channels are passed as parameters of the processes. The following are
the channel we have used in our program:

To_SPV4: V4 node uses this channel to send messages to SPV4, and
SPV4 receives messages from this channel.

From_SPV4: V4 receives messages from SPV4, and SPV4 sends messages
to V4 node through this channel.

To_natptV4: SPV4 sends messages to NAT-PT and NAT-PT receives
messages from SPV4 through this channel.

From_natptV4: SPV4 receives messages from NAT-PT and NAT-PT sends
messages to SPV4 through this channel.

To_alg: NAT-PT sends messages to ALG, and ALG receives messages from
NAT-PT using this channel.

To_natptV6: SPV6 uses this channel to send messages to NAT-PT and
NAT-PT receives messages from SPV6 through this channel.
From_natptV6: SPV6 receives messages from NAT-PT and NAT-PT sends

messages to SPV6 through this channel.

71

To_SPV6: V6 node sends messages to SPV6 and SPV6 receives messages
from V6 node through this channel.
From_SPV6: V6 node receives messages from SPV6 and SPV6 sends

messages to V6 node using this channel.

6.3.3 Variables

PROMELA variables represent data that can be global, and local. For our
validation purpose we defined several global variables and many more
local variables. Our validation contains two types of global variables—
constant and structure. Structure represents the message formats and
most of the constants are flag values. As we want this model to be as
simple as possible we used IP address as integer, record type of DNS
message just as byte. For the DNS type, ‘A’ means AAAA or A6 and ‘a’

means A record.

Although, we want this model to be as simple as possible, yet it should
be sufficiently powerful to represent all types of coordination problems
that can occur in the NAT-PT working environment. For this reason I
tried to simulate the exact situation, and I defined the following global
structure for IP Header and Message format:

IP_Header: It is a global data structure, which represents the IP Header

of network packet. Protocol Translator of NAT-PT translates the IP

72

Header from IPv4 to IPv6 and vice versa. So IP Header is important for
the validation.

Message: It is a global data structure, which represents the payload part
of network packet. We made it generic so that it can represent any type
of payload—such as payload for DNS packet, and payload for ICMP
message.

Session: It is a data structure to represent the payload of a session info
exchange packet.

SNMP_Message: It represents the SNMP message format. For commands
like setting request, getting request, or trap, SNMP entities exchange
message with message format.

SNMP_ALG: It is also global data structure used as SNMP message
format. We separated it from the other just for simplicity. Other than the
global data structure we define several data structures local to NAT-PT,
SPV4 and SPV6 processes. NAT-PT works as an SNMP agent, so it will
maintain MIB. The data structures actually simulate Management
Information Base (MIB). These are as described below—

ipheader_natpt: This data structure stores IP Header information, and
NAT-PT uses that information for the purpose of translation.
ipv4_ipv6_mapping: It holds the mapping between an IPv6 address and
an IPv4 pool address. Each entry in this structure is just for one session.
session_info: It is also structure type data structure used for storing

session info of a session.

73

payload_natpt: Like ipheader_natpt, its purpose is to store payload,
which requires the service of an ALG.

pool_addr: It represents the address pool table of NAT-PT.

According to the proposed design, the security proxy works as an SNMP
manager, so it will have control over SNMP agent, and it can issue
“set_Request” command to get information from NAT-PT. However, the
issuing of commands frequently might be expensive for a system. To
make the system efficient, security proxy uses its own record (database)
and updates time to time. To present the record of the security proxy I
defined several structured type variables, which should be local to the
security proxy. As the structure type object cannot be defined locally in
PROMELA I placed them globally. These are given below:

Session_Object: It keeps the session information for a particular
session.

pool_addr: It contains the same information as the NAT-PT pool_addr
does. Security Proxy is not supposed to initiate a session if there is no

free pool address in the pool address table.

6.4 Behavior Model

Figures 6.1 and 6.2 describe the state diagram for NAT-PT. The flow of
control levels for all running processes, the specification of all values of

for local and global variables, and the contents of message channels

74

define a state of a model. Again the ordered set of states represents the
behavior of a validation model. The PROMELA model for NAT-PT

comprises of several states. These are the essential part of the model.

6.4.1 NAT-PT

6.4.1.1 Waiting State

At the very beginning it will be waiting for a network packet. The network
packet may arrive at the NAT-PT from any direction. The NAT-PT starts
its activities upon receiving any packet from SPV4, SPV6 or ALG. If NAT-
PT receives a message from SPV4, the message may be categorically of
two types—one SNMP message originated in SPV4 and the other network
packet originated in IPv4 side. The next flow of control will depend on the
type of received message. If it is an SNMP message, the control will move
to the SNMP_Process state, and so on. NAT-PT is symmetric with its two
security proxies. So when the NAT-PT receives messages from SPV6, the
flow of control will be exactly same as when it receives messages from
SPV4. The communication between NAT-PT and ALG will be only through
an SNMP message. So when NAT-PT receives any message from ALG, the
control will move to the ALG_SNMP_Process state. However, at the very
beginning NAT-PT is not supposed to receive any packet from ALG. If it

does not receive any message it will not do anything.

75

6.4.1.2 SPV4 SNMP Message Process State

Upon receipt of an SNMP message from SPV4, the control will jump to
this state.

Updating

Updating
Sessior

Waiting
State

Updating
waiting

Processing
Message
reqd ALG

Updating
NAT-PT
MIB

Updating
timeout

Figure 6.1 State Diagram for NAT-PT (Part 1)!

The processing of the SNMP message will depend upon the objective of
the message. The objective may be either to initiate a session, terminate
a session, or to send V4 key for a session initiated by IPv6 side. If the
objective is to initiate a session, the control will jump to
V4_Session_Initiate state. Similarly for the other cases the next states

may be either V4_Session_Terminate or V4_Key_Update. In any case the

! Figure 6.1 describes the state diagram _for NAT-PT when it receives message from SPV4
and the message is either a network packet requiring the service of an ALG, or an SNMP
message.

76

NAT-PT will update its MIB tables. The NAT-PT will inform the SNMP

manager (SPV4) of the processing result, and the control will return to

the initial state.

Updating
NAT-PT
MIB

104 1sonbayas

Waiting

peojAed
10} 3sonbaxMisb

Updating
) NAT-PT MiB
[¢))
3
[7]
(]
=
el
o
&
Processing .
V4 packet /Check mapping
and security
2
% C
[3
© Q
B -
T 2
v 3
3

Figure 6. 2 State Diagram for NAT-PT (Part 2)2

2 Figure 6.2 describes the state diagram for NAT-PT when it receives message from SPV4

and the message is a network packet not requiring the service of an ALG, or when the
NAT-PT receives an SNMP message from an ALG

77

6.4.1.3 V4 Network Packet Process State

When NAT-PT receives any network packet from V4 network via SPV4,
and the packet does not require service of an ALG, the control will move
to this state. NAT-PT will replace IPv4 header with IPv6 header, encrypt

the message, and forward it SPV6, and control returns to the initial state.

6.4.1.4 V4 Network Packet requiring service of an ALG

When NAT-PT receives any network packet from V4 network via SPV4,
and the packet requires the service of an ALG, the control will move to
this state. The NAT-PT will save the IP Header and Payload, send
notification to the ALG, wait for response from the ALG. The control will

move to the initial state.

6.4.1.5 SPV6 SNMP Message Process state

The NAT-PT will be in this state when it receives an SNMP message from
SPV6. Like the SPV4_SNMP_Message_Process state, the objective of the
SNMP message may be to initiate a session, to terminate a session or to
send V6 key to the NAT-PT. The processing of the SNMP message will
depend upon the objective of the message. Like an SNMP message from
SPV4, the objective of the received SNMP message determines the next

state where the control will flow. Depending upon the objective of the

78

message, the control will move to the V6_Session_Initation,
V6_Session_termination or V6_Key_Update. The processing may be
successful or unsuccessful. In any case, the NAT-PT will inform the

SNMP manager (SPV4) and the control will return to the initial state.

6.4.1.6 V6 Network Packet Process

The NAT-PT with security proxies makes a symmetrical network. So the
processing states for network packet received via SPV6 will be as same as
for the packets received from SPV4, the name of the states will be bit

different—such as Route_To SPV4.

6.4.1.7 ALG SNMP Process

If the NAT-PT receives any SNMP message from ALG, the control jumps
to this state. ALG may request information from the NAT-PT, or it can
send the translated payload for NAT-PT. If required, NAT-PT will update

MIB tables and control will return to the initial state.

6.4.2 Security Proxy

The following are the states of the Security Proxy—

6.4.2.1 Initial State

This is the waiting state. In this state the Security Proxy (either SPV4 or
SPV6) waits for the incoming message. It may receive message from IPv4

host (if SPV4) or IPv6 host (if the security proxy is SPV6), or from NAT-

79

PT. Depending on the message the security proxy receives, it moves to

the next state.

6.4.2.2 Initiate Session

The Security Proxy will receive a session initiation request from an end
host. At this state the security proxy will authenticate the requesting
node, verify resources for the forthcoming session, initiate a session, and

inform NAT-PT. It will confirm the requesting node.

6.4.2.3 Terminate Session

Like the session initiation, the Security Proxy will receive a session
termination request from an end host. At this state the security proxy
will authenticate the requesting node, release the resources for the

session, and inform NAT-PT. The control will return to the waiting state.

6.4.2.4 Route Message to NAT-PT

If the Security Proxy receives any message other than a session initiation
request, it will forward the message to NAT-PT. However, before
forwarding the message, the Security Proxy will ensure the authenticity
and integrity of the message. As the end host and the Security Proxy use
same network protocol either it is IPv4 or IPv6, we assume that any end
host can communicate with Security Proxy using the existing network
security measures reliably. After forwarding the message to the NAT-PT,

the control will return to the waiting state.

80

6.4.2.5 Send SNMP Message to NAT-PT

The Security Proxy sends SNMP message when it receives any session
request from an end host, and it may be for session initiation and
session termination. Other than this the Security Proxy will send V4 Key
for the session initiated by SPV6 or send V6 Key for the session initiated

by the SPV4.

6.5 Validation Result

The interactions between processes prove the absence of dead lock, live
lock of the model. The model also verified assertion violation, invalid end

state and in all cases the test results are positive.

6.6 Summary

This chapter formalized NAT-PT specification to build PROMELA model
and to verify the correctness, completeness, and logical consistency of
the model. At the beginning, this chapter introduced PROMELA. And
then we have seen that a PROMELA model consists of three types of
objects—Processes, Channels, and Variables. After the introduction, the
chapter describes what processes, channels, and variables are used for
NAT-PT model. The section 6.4 explains the behavior model of the NAT-
PT system. The section 6.5 concluded the chapter with the validation

result.

81

In the Chapter 7 we will summarize what we achieved, and what will be

our direction for future work.

82

Chapter 7 : Conclusion and Suggested Future Work

7.1 What we achieved

In this section we will see what we achieved through this research work.

We can summarize our achievement as described below:

J Analyzed the existing NAT-PT model and its drawbacks.

e Explored standard framework for adopting NAT-PT into the
framework.

e Proposed a modified NAT-PT model.

¢ Specified how it would work.

e Validated the model.

¢ Wrote a NAT-PT MIB for the model.

7.2 What is New?

We developed a new NAT-PT model. In this section we will explore the
difference between the existing NAT-PT and our proposed model. We can
summarize the differences between the proposed model and the existing
one as below:
e Our proposed NAT-PT model works as a distributed system, but
the existing one is not a distributed system.
« For the integration of a new application to the NAT-PT

environment, it will not be required to recompile the system,

83

whereas in case of the existing NAT-PT, if we want to integrate any
new application we have to recompile the whole NAT-PT system.

e The proposed model addresses the vulnerability to the security
threats of the existing NAT-PT system.

o The proposed model will not suffer from scalability, and load
balancing problem, where as these drawbacks are the serious

concerns of the existing NAT-PT.

In the next section we will see how the proposed model will serve better

than the existing one.

7.3 How does Proposed Model remove drawbacks of NAT-

PT?

The advantages of distributed NAT-PT have already been described in
Chapter 4 and 5. This chapter describes how the distributed NAT-PT

avoids the limitations mentioned in Chapter 3.

7.3.1Scalability Problem

All the requests and responses of a particular session must traverse
through the NAT-PT for which the session has been created. If the
volume of traffic is huge, the single NAT-PT router may not be sufficient
to handle huge network traffic efficiently. Multiple NAT-PTs (mNAT-PT)

may be deployed to get around to that problem. The proxy server will do

84

load balancing among different NAT-PT boxes to avoid scalability
problem. Again, our proposed proxy server will work as an SNMP
manager; it will be able to monitor any SNMP agent under its
jurisdiction. If a particular session is interrupted due to the problem of
the NAT-PT box for which the session has been created earlier, the
security proxy will monitor it and create the same session with one of the
other operating NAT-PT boxes. So scalability problem may be avoided

with the deployment of security proxy.

7.3.2End-to-end Security

Security is an important concern for Internet community. The existing
Internet community is vulnerable to different security threats. Moreover,
the use of NAT-PT architecture will add the security treats described in
Chapter 3 on top of the existing network threats. Chapter 3 describes
that the most important drawback of the NAT-PT proposal is the lack of
end-to-end network layer security. Moreover, transport and application
layer security may not be possible for applications that carry IP
addresses to the application layer. This inherent limitation of the
Network Address Translation function can be avoided by deploying a
proxy server. According to the proposed model, any node from either IPv6
or IPv4 network will have to establish a secure session with the proxy
server. The proxy server will ensure the authenticity of the

communicating node. Only after the establishment of the secured

85

session, the network packets from either side will be forwarded through
the NAT-PT. If a node fails to establish secured session with the proxy

server, it will not be able to get the translation services of the NAT-PT.

IPSec may be used to establish secured session between the
communicating node and the proxy server. IPSec provides security
services for either IPv4 or IPv6, but not for the both at the same time. We
proposed two proxies—one for IPv4 and another for IPv6. So it is possible
to use existing network layer security system such as IPSec to establish
secured communication between IPv4 host and IPv4 Proxy Server, and

the same for the IPv6 part of the network.

Proxy server is also a NAT-PT module. It will work as an SNMP manager.
Therefore, proxy server will communicate with NAT-PT through SNMP
messages. We have mentioned that SNMPv3 will ensure the security of

the messages between proxy server and NAT-PT.

NAT-PT verifies the data integrity of network packets traversing through
it. It requires a cryptographic key to decrypt the data. Because the IP
security Architecture, which provides various security services for
network traffic at the IP layer, is based on cryptography. So the key
management is an important aspect of the IPSec. There exist two

important key management specifications associated with the IPSec—the

86

Internet Security Association and Key Management Protocol (ISAKMP)
and the Internet Key Exchange (IKE). Which key management protocol
will be used and how it will be used is an implementation choice. The
cryptographic key may be exchanged between the security proxy and a
communicating node or between the NAT-PT and a communicating node.
In the first case the key should be shared with NAT-PT, otherwise the
NAT-PT may not be able to read any encrypted packet traversing through
it. Security proxy will share the key with NAT-PT via SNMP messages. As
the secured session will be established between the proxy server, and a
communicating node, the second choice may not be practical. Although
distributed NAT-PT does not ensure the end-to-end security, however,
the above analysis clearly indicates that the threats due to lack of end-
to-end network security can be avoided through the use of a distributed

system.

7.3.3 Source address spoofing attack

Chapter 3 describes that vulnerability of any network to this type of
attack is not introduced by NAT-PT. The use of NAT-PT architecture
might just worsen the situation; however, the use of [PSec between the
proxy server and a communicating node will mitigate these possible

additional threats.

87

7.3.4Performance

The proposed NAT-PT as described in RFC 2766 works sequentially; that
means NAT-PT first translates IP header of the packet, then checks for
ALG and invokes ALG, if any, for its services. However, the protocol
translator, and ALG(s) of the distributed system can work concurrently.
Exchange of SNMP messages among SNMP components will mount the
overhead of the distributed system. It is expected that the concurrent
computation and processing of the messages will remove that overhead.
Here we can expect performance improvement by the use of distributed

NAT-PT.

7.4 Future Work

Developing a good Implementation framework for the proposed model is
the future work of the proposed model. We can start implementation
from the scratch, or with the prior permission we can use NAT-PT
developed by British Telecom (BT). BT developed NAT-PT for FreeBSD.
Since we are interested in Linux, we can make it portable for Linux. For
the development of a complete system, it is necessary to systematically
go through the steps mentioned below:

A. Requirement analysis

B. Designing a protocol model

C. Validating the model with appropriate validation tool

D. Designing the software

88

=

Implementation of the software
Performance test

Writing MIB for the distributed system

T o

. Getting SNMP Engine

ol
.

If necessary change the SNMP

J. Register the MIB and SNMP manager and agents with the SNMP

engine.

As a part of the present research, we completed the steps A, B, C, and G.
The step D can be started from C. We used SPIN model checker to
validate the protocol model. Steps H, I, and J are trivial and not

complicated at all.

89

BIBLOGRAPHY

(1]

2]

[3]

[4]

[5]

(6]

[7]

[8]

(9]

RFC 2460 Internet Protocol, Version 6 (IPv6) Specification

www.ietf.org/rfc/rfc2460.txt

RFC 2893 Transition Mechanisms for IPv6 Hosts and Routers

www.ietf.org/ifc/rfc2893.txt

RFC 3053 IPv6 Tunnel Broker, www.ietf.org/rfc/rfc3053.txt

RFC 3056 Connection of IPv6 Domains via IPv4 Clouds,
www.ietf.org/rfc/rfc3056.txt

RFC 2766 Network Address Translation - Protocol Translation (NAT-

PT) www.ietf.org/rfc/rfc2766.txt

RFC 2185 Routing Aspects Of IPv6 Transition

www.ietf.org/rfc/rfc2185.txt

RFC 2401 Security Architecture for the Internet Protocol

www.ietf.org/rfc/rfc2401 .txt

RFC 2402 IP Authentication Header www.ietl.org/rfc/rfc2402.txt

Internet Draft: NAT-PT Applicability http://www.join.uni-

muenster.de/Dokumente/drafts /draft-satapati-v6ops-natpt-

applicability-00.txt

[10]RFC 3303 MiddleBox communication architecture and framework,

www.ietf.org/rfc/rfc3303.txt

[11]RFC 3304 MiddleBox Communications (MIDCOM) Protocol

Requirements, www.ietf.org/rfc/rfc3303.txt

90

[12]Internet Draft: MiddleBox Communications (MIDCOM) Protocol

Evaluation, hitp://www.ietf.org/proceedings/I-D /draft-ietf-midcom-

protocol-eval-06.txt

[13]Internet Draft: MIDCOM Protocol Semantics,

http://www.ietf.org/proceedings/I-D /draft-ietf~-midcom-semantics-

04.ixt
[14] Internet Draft: Evaluation Of DIAMETER Against MIDCOM
Requirements,

http: / /mirrors.isc.org/pub/www.watersprings.org/pub/id /draft-

tavlor-midcom-diameter-eval-O1.txt

[15] Internet Draft: Using SNMP as MIDCOM Protocol,

http://mirrors.isc.org/pub/www.watersprings.org/pub/id /draft-

quittek-midcom-snmp-eval-00.txt

[16]Internet Draft, MiddleBox Communications (MIDCOM) Protocol

Managed Objects Analysis, http://www.ietf.org/proceedings/I-

D /draft-ietf-midcom-mib-analvsis-00.txt

[17] Internet Draft: MiddleBox Communications (MIDCOM]) Protocol

Managed Obijects, hitp://bgp.potaroo.net/ietl/idref/draft-barnes-

midcom-mib/

[18] Internet Draft: Peer-to-Peer communication across MiddleBoxes,

http: / /ietfreport.isoc.org/all-ids /draft-ford-midcom-p2p-00.txt

[19]RFC 3410 Introduction and Applicability Statements for Internet

Standard Management Framework, www.ietf.org/rfc/rfc3410.txt

91

[20]RFC 3411 An Architecture for Describing Simple Network
Management Protocol (SNMP) Management Frameworks,

www.ietf.org/rfc/rfc3411.txt

[21]RFC 3413 Simple Network Management Protocol (SNMP)

Applications, www.ietf.org/rfc/rfc3413.txt

[22]RFC 3418 Management Information Base (MIB) for the Simple
Network Management Protocol (SNMP),

http: / /www.ietf.org/rfc/rfc3418.txt

[23]Internet Draft-Definitions of Managed Objects for Network Address

Translators (NAT), hitp://www.ietf.org/internet-drafts/draft-ietf-nat-

natmib-09.txt

[24]Linux-based User space NAT-PT (Network Address Translation -

Protocol Translation) ETRI/PEC - IPv4/IPv6 Translation Technology -

NAT-PT - Overview

[25]net-SNMP httip://www.net-snmp.org/

[26]SNMP Tutorial: The Management Information Base (MIB),

http:/ /www.dpstele.com/protocol/2000/nov_dec/snmp_mib.html

[27]The SPIN MODEL CHECKER Primer and Reference Manual by

Gerard J. Holzmann

[28]MODEL CHECKING with SPIN, http://spinroot.com/

[29]ASN.1 Information Site http://asnl.elibel.tm.fr/en/index.htm

92

APPENDIX A: NAT-PT Environment Setup and Testing

We set up testing environment for NAT-PT at the HPLS network lab of the
computer science department. NAT-PT works between IPv4 and IPv6
networks. For it's testing we need one IPv6 LAN, one IPv4 LAN and
border router in between these two networks. We use the same OS—
Linux for all hosts. Our testing environment consists of the following

network segments—

IPv6 LAN

It consists of just one IPv6 node—plum, and the fully qualified domain
name is plum.ipv6.con. As it is an IPv6 node we disabled IPv4 address on
this machine. Its IPv6 address: 3ffe:: 2bO:doff:fedd:cea4, the scope is
global, and the network interface card: ethO. We installed Apache http

server to turn it into http server host.

IPv4 LAN

It also consists of just one IPv4 node—forest, we have not changed its
domain name. Its fully qualified domain name is forest.cs.concordia.ca.
Its IP address is 132.205.45.24. In the same way we installed Apache

http server on it.

93

Border Router

It is NAT-PT host. Although we use the terminology Border router, but
actually it does not use protocol stack router software from operating
system to route a packet. Rather NAT-PT itself forwards a packet to the
destination host. So the disabling of ip_forwarding of the Border Router
is must for NAT-PT. We set up the “cherry” as the host for the NAT-PT.
Its network interface card ethO and ethl are connected to the IPv4 and
IPv6 LAN respectively. So we configured ethl so that it can support IPv6
protocol, and we also disabled its IPv4 address. The IP address assigned

to ethO is 132.205.45.162, and that to ethl is 3ffe::2e0:2ff:fe24:4472

IPv6 DNS Server

We installed IPv6 supporting DNS server (BIND 9.2) on the IPv6 node. We

configured the DNS server for IPv6 protocol.

IPv4 DNS server
We did not make any change in the IPv4 DNS server; as a result we could

use the real DNS server assigned for IPv4 network (for the node “forest”).

Configuration

We have two IPv4 addresses for IPv4 address pool. These are-

142.133.71.16 and 142.133.71.17

94

We used 142.133.71.17 for the static mapping between IPv6 DNS server
address and IPv4 pool address. We included that IPv4 pool address in the
resolv.conf file as one of the DNS server of the IPv4 node. Pool addresses
are not connected to any interfaces; so the arp request for any pool 1P
address will not resolve to MAC address. We modified the routing table
entry of “forest” so that any packet with any pool address as the
destination address is forwarded to “cherry”. When any packet arrives at
cherry with a pool address as the destination address, the NAT-PT
intercepts the packet, and forwards to the destination address according
to the mapping. As in our case, plum hosts all IPv6 server applications,
NAT-PT forwards any packet originated in the IPv4 side directed to IPv6

node, to plum.

The NAT-PT converts any IPv4 address to IPv6 address by prefixing a
PREFIX (96 bits) before IPv4 address. Our simple prefix is
aaaa:bbbb:cccc:dddd:eeee:ffff. We edited the /etc/resolv.conf file of plum
as described below:

Search ipv6.con cs.concordia.ca

Nameserver 3ffe::2b0:doff:fedd:cea4

Nameserver aaaa:bbbb:cccc:dddd:eeee:ffff::132.205.44.61

132.205.44.61 is the IP address of the real IPv4 DNS server.

95

We modified the routing table of plum, because any packet of which
destination contains the PREFIX, should be forwarded to the NAT-PT.
From this destination address the NAT-PT peels off the PREFIX and gets

the IPv4 address to forward the packet to the destination address.

With the setup and configuration described above, we tested the NAT-PT

for http server and client applications.

96

APPENDIX B: Management Information Base or

MIB

Introduction

Managed objects are accessed via a virtual information store, termed as
the Management Information Base or MIB. MIB objects are generally
accessed through the Simple Network Management Protocol (SNMP).
Objects in the MIB are defined using the mechanisms defined in the

Structure of Management Information (SMI).

The section describes the NAT-PT MIB, and I have written it following the
information provided in Internet draft “draft-ietf-natpt-natptmib-09.txt”.
In this document I followed SMIv2 standard to write Management

Information Base (MIB) for device implementing NAT-PT function.

MIB Objects

We know that the SNMP managers and agents exchange information
using MIB objects. For the NAT-PT model we defined several MIB objects.

The following are the key objects used in NAT-PT MIB—

natptIPv4AddressPoolTable

It will consist of topple (IPv4_Addresses, flag).

97

natptStatAddrMapTable

Address mapping is an important factor for NAT-PT configuration. NAT-
PT looks up address map entries in order to determine the translation
parameters for each packet traversing the NAT-PT box. The table will
contain the mapping between 1Pv4 and IPv6 address, and the destination
port of the packet and a port number assigned by NAT-PT. Address map

entries may be defined in this MIB using natptStatAddrMapTable.

Default timeouts, Protocol table and other scalars

Protocol specific idle NAT-PT session timeouts are defined in DefTimeouts
object in the NAT-PT MIB. The scalars, natptAddrMapNumberOfEntries
and hold the number of entries that currently exist in the Address Map

table.

natptAddrMapTable

Entry to this table will indicate each NAT-PT session. natptAddrMapTable
is indexed by natptSessionlndex. Statistics for NAT-PT sessions are also

maintained in the same table.

98

natptIPHeaderTable

The formats of IP Header in IPv4 and IPv6 are not same. So IP Header of
each packet traversing through NAT-PT device should be translated. This
table will contain information about IP Header, the origin network,
checksums, and session ID, and the Protocol Translator will use that

session ID.

natptPayLoadTable

This table will be used by ALGs if the payload required to be translated.

It will consist of topple (natptSessionIndex, natptpayLoad).

natptReceivedPacketTable

The fields of this table are—
natptReceivedPacketID, natptSessionlID, natptiPv4Header,

natptIPv6Header, natptlPv4Payload, natptIPv6Payload

NAT-PT will read network packet received from either SPv4 or SPv6 and

update the values for the different fields.

natptPacketForSendingTable

The fields of this table are—

99

natptPacketForSendingID, natptSessionID, natptIPv4Header,
natptIPv6Header, natptlPv4Payload, natptIPv6Payload,

natptPacketStatus.

The SNMP managers and the different modules required for NAT-PT will
update the values of the fields of this table. This table will contain the

translated IP Header and the Payload (if require).

Notifications

NAT-PT will use this object to notify SNMP managers in case of necessity.
natptPacketDiscard notifies the end user/manager of packets being

discarded due to lack of address mappings.

A Management station may use the following steps to configure entries in

the NAT-PT-MIB—

1. Create an entry in the natptinterfaceTable specifying the value of
iflndex as the interface index of the interface, which NAT-PT is being
configured. Specify appropriate values, as applicable, for the other
objects e.g. natptlnterfaceRealm, natptinterfaceServiceType, in the

table.

100

2. Create one or more address map entries sequentially in reduced order

of priority in the natptStatAddrMapTable.

3. To configure NAT-PT for TCP, UDP and ICMP protocols, the

management station can set the protocol specific scalars.

4. The Address Mapping and Address-Port Mapping Table will have the
entries created due to this NAT-PT configuration. A Management
Station may also, if deemed necessary, create Address Mapping or an
Address-Port Mapping entry and link those entries to the appropriate

address map configured.

Definitions

NAT-PT-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY,
OBJECT-TYPE,
Unsigned32,

Gauge32,

Counter64,

TimeTicks,

mib-2,

IpAddress,

Integer32,

NOTIFICATION-TYPE
FROM SNMPv2-SMI

Timelnterval,

TEXTUAL-CONVENTION
FROM SNMPv2-TC

101

MODULE-COMPLIANCE,
NOTIFICATION-GROUP,
OBJECT-GROUP

FROM SNMPv2-CONF
StorageType,
RowStatus

FROM SNMPv2-TC
ifIndex

FROM IF-MIB
Ipv6Address, Ipv6lfiIndexOrZero

FROM IPV6-TC;

SnmpAdminString
FROM SNMP-FRAMEWORK-MIB
InetAddressType,
InetAddress,
InetPortNumber
FROM INET-ADDRESS-MIB;

natptMIB MODULE-IDENTITY
LAST-UPDATED "20040206"
ORGANIZATION "Concordia University”
CONTACT-INFO
"Kedar Das
Concordia University
kc_das@cs.concordia.ca”
DESCRIPTION
"This MIB module defines the generic managed objects for NAT-PT"

natptMIBObjects OBJECT IDENTIFIER ::= { natptMIB 1 }

NatptProtocolType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"It is a list of protocols that are supported by the NAT-PT."

SYNTAX INTEGER ({

none (1), -- not specified

other (2), -- none of the following
icmp (3),

udp (4),

tep (5)

}

NatptSessionStatelnfo ::= TEXTUAL-CONVENTION
STATUS current

102

DESCRIPTION
"It is a list of session state associated with NatptProtocolType. Any
change in this TEXTUAL-CONVENTION should also be reflected in
the definition of NatptProtocolType."
SYNTAX INTEGER {
other (1),
icmp (2),
udpStart (3),
udpMiddle (4),
udpEnd(5),
tepStart(6),
tcpMiddle(6)
tcpEnd(6)
}

NatptSessionld ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"A unique id that is assigned to each session by a NAT-PT."
SYNTAX Unsigned32 (1..4294967295)

NatptPacketID ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"It is a unique ID assigned to each packet by a NAT-PT."
SYNTAX Unsigned32 (1..4294967295)

NatptMapMode ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"It is an indication whether the mapping is an address mapping or
an address-port mapping.”
SYNTAX INTEGER {
addressBind (1),
addressPortBind (2)
}

-- Default Values for the NAT-PT Protocol Timers

natptDefTimeouts OBJECT IDENTIFIER ::= { natptMIBObjects 1 }

-- UDP related NAT-PT configuration

103

natptUdpDefldleTimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
UNITS "seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The default UDP idle timeout parameter.”
DEFVAL { 300}
::= { natptDefTimeouts 1 }

-- ICMP related NAT-PT configuration

natptlecmpDefldleTimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
UNITS "seconds”
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The default ICMP idle timeout parameter.”
DEFVAL { 300 }
::= { natptDefTimeouts 2 }

-- Other protocol parameters

natptOtherDefldleTimeout OBJECT-TYPE

SYNTAX Unsigned32 (1..4294967295)

UNITS "seconds”

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"The default idle timeout parameter for protocols represented by
the value other (2) in NatptProtocolType."

DEFVAL {60}

::= { natptDefTimeouts 3 }

-- TCP related NAT-PT Timers

natptTcpDefldleTimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)

104

UNITS "seconds”

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"The default time interval, a NAT-PT session for an established TCP
connection is allowed to remain valid without any activity on the
TCP connection."

DEFVAL { 86400 }

::= { natptDefTimeouts 4 }

natptTcpDefNegTimeout OBJECT-TYPE

SYNTAX Unsigned32 (1..4294967295)

UNITS "seconds”

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"The default time interval, a NAT-PT session for a TCP connection
which is not in the established state is allowed to remain valid
without any activity on the TCP connection.”

DEFVAL { 60 }

::= { natptDefTimeouts 5 }

-- The Static Address Mapping Table

natptStatAddrMapTable OBJECT-TYPE
SYNTAX SEQUENCE OF NatptAddrMapEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table lists static address map required for NAT-PT."
::= { natptMIBObijects 3 }

natptStatAddrMapEntry OBJECT-TYPE

SYNTAX NatptAddrMapEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"This entry represents an address mapping between an IPv4
address and IPv6 address. The IPv4 address will be a pool address
and the IPv6 address is the address of the IPv6 real DNS server.”
::= { natptAddrMapTable 1 }

NatptStatAddrMapEntry ::= SEQUENCE {

natptStatAddrMaplndex NatptAddrMapld,
natptStatAddrMaplPv4Addr InetAddress,

105

natptStatAddrMapIPv6Addr InetAddress,
natptStatAddrMapRowStatus RowStatus
}

natptStatAddrMapindex OBJECT-TYPE

SYNTAX NatptAddrMapld

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"Along with iflndex, this object uniquely identifies an entry in the
natptStatAddrMapTable. Address map entries are applied in the
order specified by natptStatAddrMapindex.”

1= { natptStatAddrMapEntry 1 }

natptStatAddrMaplPv4Addr OBJECT-TYPE

SYNTAX InetAddress

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"This object specifies the first IPv4 address used in the static
mapping.”

1= { natptStatAddrMapEntry 2 }

natptStatAddrMapIPv6Addr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object specifies the IPv6 address of the IPv6 DNS server."

;= { natptStatAddrMapEntry 3}

natptStatAddrMapRowStatus OBJECT-TYPE

SYNTAX RowStatus

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"The status of this conceptual row. Until instances of all
corresponding columns are appropriately configured, the value of
the corresponding instance of the natptAddrMapRowStatus
column is motReady'. None of the objects in this row may be
modified while the value of this object is active(1)."

REFERENCE

106

"Textual Conventions for SMIv2, Section 2."
::= { natptStatAddrMapEntry 4 }

-- Address Map section

natptAddrMapNumberOfEntries OBJECT-TYPE

SYNTAX Gauge32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"This object maintains a count of the number of entries that
currently exist in the natptAddrMapTable."

::= { natptMIBODbjects 4 }

-- The NAT-PT Address MAP Table

natptAddrMapTable OBJECT-TYPE

SYNTAX SEQUENCE OF NatptAddrMapEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"This table holds information about the currently active NAT-PT
Mappings.”

::= { natptMIBObjects 5 }

natptAddrMapEntry OBJECT-TYPE

SYNTAX NatptAddrMapEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"Each entry in this table holds information about an active address
BIND. These entries are lost upon agent restart.”

::= { natptAddrMapTable 1 }

NatptAddrMapEntry ::= SEQUENCE {

natptAddrMaplPv6Addr Ipv6Address,
natptAddrMaplIPv4Addr InetAddress,
natptAddrMapld NatptBindld,
natptAddrMapTranslationEntity NatptTranslationEntity,
natptPoolAddrindex NatptAddrMapld,
natptAddrMapSessions Gauge32,
natptAddrMapMaxlIdleTime Timelnterval,
natptAddrMapCurrentlidleTime TimeTicks,

107

natptAddrMaplIPv4Translates Counter64,

natptAddrMapIPv6Translates Counter64,

natptAddrMapRowStatus RowStatus
}

natptAddrMapIPv6Addr OBJECT-TYPE

SYNTAX Inet6Address

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"This object represents the IPv6 address of an IPv6 node, which
maps to the IPv4 pool address represented by
natptAddrMapIPv4Addr."

::= { natptAddrMapEntry 1 }

natptAddrMapIPv4Addr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object represents an IPv4 pool address.”
::= { natptAddrMapEntry 2 }

natptAddrMapld OBJECT-TYPE

SYNTAX NatptBindld

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"This object represents a mapping id that is dynamically assigned
to each mapping by a NAT-PT.

::= { natptAddrMapEntry 3 }

natptAddrMapTranslationEntity OBJECT-TYPE

SYNTAX NatptTranslationEntity

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"This object represents the direction of sessions for which this
mapping is applicable and the endpoint entity (source or
destination) within the sessions that is subject to translation using
the MAP.”

::= { natptAddrMapEntry 4 }

natptPoolAddrIindex OBJECT-TYPE

SYNTAX NatptAddrMapld
MAX-ACCESS read-create

108

STATUS current

DESCRIPTION
"This object is a pointer to the natptPoolAddrTable entry (and the
parameters of that entry) which was used in creating this MAP.”

::= { natptAddrMapEntry 5 }

natptAddrMapSessions OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object represents the number of sessions currently using this
::= { natptAddrMapEntry 6}

natptAddrMapMaxldleTime OBJECT-TYPE

SYNTAX Timelnterval

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"This object indicates the maximum time for which this bind can
be idle with no sessions attached to it."

::= { natptAddrMapEntry 7}

natptAddrMapCurrentldleTime OBJECT-TYPE

SYNTAX TimeTicks

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"At any given instance of time, this object indicates the time that
this bind has been idle with no sessions attached to it."

::= { natptAddrMapEntry 8 }

natptAddrMaplPv4Translates OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The number of packets that were successfully translated using
this bind entry."”

::= { natptAddrMapEntry 9 }

natptAddrMaplIPv6Translates OBJECT-TYPE

SYNTAX Counterb4
MAX-ACCESS read-only

109

STATUS current

DESCRIPTION
"The number of IPv6 packets that were successfully
translated using this map entry.”

::= { natptAddrMapEntry 10}

natptAddrMapRowStatus OBJECT-TYPE

SYNTAX RowStatus

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"Until instances of all corresponding columns are appropriately
configured, the value of the corresponding instance of the
natptAddrMapRowStatus column is 'notReady’. None of the
writable objects except natptAddrMapMaxldleTime in this row may
be modified while the value of this object is active(1)."

REFERENCE

"Textual Conventions for SMIv2, Section 2."
1= { natptAddrMapEntry 11 }

-- IPv4 Pool Address Table

natptIPv4AddrPoolTable OBJECT-TYPE

SYNTAX SEQUENCE OF NatptlPv4AddrPoolEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"This table holds information about Pool addresses."”
::= { natptMIBObijects 6 }

natptiPv4AddrPoolEntry OBJECT-TYPE

SYNTAX NatptlPv4AddrPoolEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"Each entry in this table holds information about each pool
address and its status.”

::= { natptIPv4AddrPoolTable 1 }

NatptIPv4AddrPoolEntry ::= SEQUENCE {

natptlPv4PoolAddr InetAddress,
natptPoolAddrInUseTime TimeTicks,
natptiPv4PoolAddrStatus BIT
natptiPv4PoolAddrBlockedStatus BIT

110

natptiPv4PoolAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object specifies the IPv4 addresses used for NAT-PT pool.”
::= { natptIPv4AddrPoolEntry 1 }

natptPoolAddrinUseTime OBJECT-TYPE

SYNTAX TimeTicks

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"At any given instance of time, this object indicates the time that
how long a pool address has been in use."”

::= { natptAddrMapEntry 2 }

natptIPv4PoolAddrStatus OBJECT-TYPE

SYNTAX INTEGER{

InUse (0),

Free (1)

}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object identifies whether the pool address is free or in use.”

DEFVAL {Free}
;1= { natptlPv4AddrPoolEntry 3 }

natptIPv4PoolAddrBlockedStatus OBJECT-TYPE

SYNTAX INTEGER {

Blocked (0),

Not-Blocked(1)

}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object identifies whether the pool address is blocked or not."

DEFVAL { Not-Blocked }
::= { natptIPv4AddrPoolEntry 4 }

111

-- The NAT-PT Session Table

natptSessionlnfoTable OBJECT-TYPE

SYNTAX SEQUENCE OF NatptSessionEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"This table holds information about the currently active NAT-PT
Session”

::= { natptMIBObjects 5 }

natptSessionEntry OBJECT-TYPE

SYNTAX NatptSessionEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"Each entry in this table holds information about each active
session. These entries are lost upon agent restart.”

::= { natptSessionTable 1 }

NatptSessionEntry ::= SEQUENCE {

natptSessionlD NatptSessionld,
natptSessionPacketCounter Counter64,
natptSessionPacketOriginNetwork INTEGER,
natptSessionTime TimeTicks,
natptAddrMapld NatptBindlId,
natptSecurityParameter BIT STRING
natptSessionMapRowStatus RowStatus

}

natptSessionlD OBJECT-TYPE
SYNTAX NatptSessionld
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object uniquely identifies each session."
::= { natptSessionEntry 1 }

natptSessionPacketCounter OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object gives the number of the active sessions."

112

::= { natptSessionEntry 2 }

natptSessionPacketOriginNetwork OBJECT-TYPE
SYNTAX INTEGER {
IPv4 (0),
IPv6 (1)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object identifies the origin of the packet, that means
either it is IPv4 or IPv6."
::= { natptSessionEntry 3 }

natptSessionTime OBJECT-TYPE

SYNTAX TimeTicks

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"At any given instance of time, this object indicates the session
time."

::= { natptSessionEntry 4 }

natptAddrMapID OBJECT-TYPE
SYNTAX NatptBindIld
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This is a pointer to the natptAddrMap table."
::= { natptSessionEntry 5}

natptSessionSecurityParameter OBJECT-TYPE
SYNTAX BIT STRING
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object identifies the security parameter of the packet.”
::= { natptSessionEntry 6 }

natptSessionRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION

113

"The object indicates the status of this conceptual row. Until
instances of all corresponding columns are appropriately
configured, the value of the corresponding instance of the
natptSessionRowStatus column is 'motReady’. None of the write
able objects except natptSessionTime in this row may be modified
while the value of this object is active(1)."

REFERENCE

"Textual Conventions for SMIv2, Section 2."
::= { natptSessionEntry 7}

-- The NAT-PT Received Packet Info table

natptRecievedPacketIinfoTable OBJECT-TYPE

SYNTAX SEQUENCE OF NatptReceivedPacketInfoEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"This table holds the payload of each packet for each NAT-PT
Session"

::= { natptMIBObjects 6}

natptReceivedPacketInfoEntry OBJECT-TYPE

SYNTAX NatptReceivedPacketInfoEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"Each entry in this table holds the packet payload of each session.
These entries are lost upon agent restart.”

::= { natptReceivedPacketInfoTable 1 }

NatptReceivedPacketInfoEntry ::= SEQUENCE {

natptReceivedPacketID NatptPacketID,
natptReceivedPacketOrigin INTEGER,
natptReceivedPacketIPv4Header BIT STRING,
natptReceivedPacketlPv4HeaderLenght INTEGER,
natptReceivedPacketIPv6Header BIT STRING,
natptReceivedPacketlPv6Header Length INTEGER,
natptReceivedPacketProtocol NatptProtocolType,

natptReceivedPacketIPv4Checksums BIT STRING,
natptReceivedPacketIPv6Checksums BIT STRING,
natptReceivedPacketIPv4PacketPayload BIT STRING,
natptReceivedPacketIPv4PayloadLenght INTEGER,

natptReceivedPacketIPv6Payload BIT STRING,
natptReceivedPacketIPv6PayloadLenght INTEGER,
natptReceivedPacketProtocol NatptProtocolType,

114

natptSessionlD NatptSessionld,
natptReceivedPacketMapRowStatus RowStatus
}

natptReceivedPacketID OBJECT-TYPE
SYNTAX NatptPacketID
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object uniquely identifies the packet of the payload.”
::= { natptReceivedPacketInfoEntry 1 }

natptReceivedPacketOrigin OBJECT-TYPE
SYNTAX INTEGER {
IPv4 (0},
IPv6 (1)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object identifies the origin of the packet, that means
either it is IPv4 or IPv6."
::= { natptReceivedPacketInfoEntry 2 }

natptReceivedPacketIPv4dHeader OBJECT-TYPE

SYNTAX BIT STRING

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"If the value of the packet origin is 1 the value of this object
will be null.”

::= { natptReceivedPacketInfoEntry 3 }

natptReceivedPacketIPv4HeaderLength OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"As IPv4 packet header length is variable, it will give the
exact size of the packet header.”

::= { natptReceivedPacketInfoEntry 4 }

natptReceivedPacketIPv6Header OBJECT-TYPE
SYNTAX BIT STRING

115

MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If the value of the packet origin is O the value of this object
will be null.”
::= { natptReceivedPacketInfoEntry 5}

natptReceivedPacketIPv6HeaderLength OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"If the value of the packet origin is O the value of this object
will be zero.”

::= { natptReceivedPacketInfoEntry 6 }

natptReceivedPacketProtocol OBJECT-TYPE
SYNTAX NatptProtocolType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object will identify the Transport Layer Protocol of the
packet.”
::= { natptReceivedPacketInfoEntry 7}

natptReceivedPacketIPv4Checksums OBJECT-TYPE

SYNTAX BIT STRING

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"If the value of the packet origin is 1 then the value of this
object will be null.”

::= { natptReceivedPacketInfoEntry 8}

natptReceivedPacketIPv6Checksums OBJECT-TYPE

SYNTAX BIT STRING

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"If the value of the packet origin is O then the value of this
object will be null.”

::= { natptReceivedPacketInfoEntry 9}

natptReceivedPacketIPv4PacketPayload OBJECT-TYPE
SYNTAX BIT STRING

116

MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If the value of the packet origin is 1 then the value of this
object will be null.”
::= { natptReceivedPacketinfoEntry 10}

natptReceivedPacketIPv4PayloadLenght OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object will give the exact size of IPv4 packet payload.”
::= { natptReceivedPacketInfoEntry 11}

natptReceivedPacketIPv6PacketPayload OBJECT-TYPE
SYNTAX BIT STRING

MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If the value of the packet origin is O then the value of this
object will be null.”
::= { natptReceivedPacketInfoEntry 12}

natptReceivedPacketIPv6PayloadLenght OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object will give the exact size of IPv6 packet payload.”
::= { natptReceivedPacketInfoEntry 13}

natptReceivedPacketProtocol OBJECT-TYPE

SYNTAX NatptProtocolType

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"This object will identify the Transport Layer Protocol of the
packet.”

::= { natptReceivedPacketInfoEntry 14}

natptSessionlD OBJECT-TYPE

SYNTAX NatptSessionld
MAX-ACCESS read-create

117

STATUS current
DESCRIPTION

"This object identifies the session of the packet.”
::= { natptReceivedPacketInfoEntry 15 }

natptSessionPayloadRowStatus OBJECT-TYPE

SYNTAX RowStatus

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"The object indicates the status of this conceptual row. Until
instances of all corresponding columns are appropriately
configured, the value of the corresponding instance of the
natptSessionPayloadRowStatus column is 'notReady’. None of the
writable objects except natptSessionTime in this row may be
modified while the value of this object is active(1)."

REFERENCE

"Textual Conventions for SMIv2, Section 2."
::= { natptReceivedPacketInfoEntry 16 }

-- The NAT-PT Translated Packet Info table

natptTranslatedPacketIlnfoTable OBJECT-TYPE

SYNTAX SEQUENCE OF NatptTranslatedPacketInfoEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"This table holds the payload of each packet for each NAT-PT
Session”

::= { natptMIBODbjects 6}

natptTranslatedPacketinfoEntry OBJECT-TYPE

SYNTAX NatptTranslatedPacketInfoEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"Each entry in this table holds the packet payload of each session.
These entries are lost upon agent restart.”

1= { natptTranslatedPacketinfoTable 1 }

NatptTranslatedPacketlnfoEntry ::= SEQUENCE {

natptTranslatedPacketID NatptPacketID,
natptTranslatedPacketOrigin INTEGER,
natptTranslatedPacketIPv4Header BIT STRING,

118

natptTranslatedPacketIPv4HeaderLenght INTEGER,

natptTranslatedPacketIPv6Header BIT STRING,
natptTranslatedPacketIPv6Header Length INTEGER,
natptTranslatedPacketProtocol NatptProtocolType,
natptTranslatedPacketIPv4Checksums BIT STRING,
natptTranslatedPacketIPv6Checksums BIT STRING,

natptTranslatedPacketIPv4PacketPayload BIT STRING,
natptTranslatedPacketIPv4PayloadLenght INTEGER,

natptTranslatedPacketIPv6Payload BIT STRING,
natptTranslatedPacketIPv6PayloadLenght INTEGER,
natptTranslatedPacketProtocol NatptProtocolType,
natptSessionlD NatptSessionld,
natptTranslatedPacketMapRowStatus RowStatus

natptTranslatedPacketID OBJECT-TYPE
SYNTAX NatptPacketID
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object uniquely identifies the packet of the payload.”
::= { natptTranslatedPacketInfoEntry 1}

natptTranslatedPacketOrigin OBJECT-TYPE
SYNTAX INTEGER {
IPv4 (0),
IPv6 (1)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object identifies the origin of the packet, that means
either it is IPv4 or IPv6."
::= { natptTranslatedPacketInfoEntry 2 }

natptTranslatedPacketIPv4Header OBJECT-TYPE

SYNTAX BIT STRING

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"If the value of the packet origin is 1 the value of this object
will be null.”

::= { natptTranslatedPacketInfoEntry 3}

119

natptTranslatedPacket]Pv4HeaderLength OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"As IPv4 packet header length is variable, it will give the
exact size of the packet header.”

::= { natptTranslatedPacketIinfoEntry 4 }

natptTranslatedPacketIPv6Header OBJECT-TYPE
SYNTAX BIT STRING
MAX-ACCESS read-create
STATUS current
DESCRIPTION
~"If the value of the packet origin is O the value of this object
will be null.”
::= { natptTranslatedPacketIlnfoEntry 5}

natptTranslatedPacketIPv6HeaderLength OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"If the value of the packet origin is O the value of this object
will be zero.”

::= { natptTranslatedPacketInfoEntry 6 }

natptTranslatedPacketProtocol OBJECT-TYPE
SYNTAX NatptProtocolType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object will identify the Transport Layer Protocol of the
packet.”
::= { natptTranslatedPacketInfoEntry 7}

natptTranslatedPacketlPv4Checksums OBJECT-TYPE

SYNTAX BIT STRING

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"If the value of the packet origin is 1 then the value of this
object will be null.”

::= { natptTranslatedPacketInfoEntry 8}

120

natptTranslatedPacketIPv6Checksums OBJECT-TYPE

SYNTAX BIT STRING

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"If the value of the packet origin is O then the value of this
object will be null.”

::= { natptTranslatedPacketIinfoEntry 9}

natptTranslatedPacketlPv4PacketPayload OBJECT-TYPE
SYNTAX BIT STRING

MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If the value of the packet origin is 1 then the value of this
object will be null.”
::= { natptTranslatedPacketInfoEntry 10}

natptTranslatedPacketiPv4PayloadLenght OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object will give the exact size of IPv4 packet payload.”
::= { natptTranslatedPacketInfoEntry 11}

natptTranslatedPacketlPv6PacketPayload OBJECT-TYPE
SYNTAX BIT STRING

MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If the value of the packet origin is O then the value of this
object will be null.”
::= { natptTranslatedPacketInfoEntry 12}

natptTranslatedPacketiPv6PayloadLenght OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object will give the exact size of IPv6 packet payload.”
::= { natptTranslatedPacketInfoEntry 13}

natptTranslatedPacketProtocol OBJECT-TYPE

121

SYNTAX NatptProtocolType
MAX-ACCESS read-create
STATUS current
DESCRIPTION : _
"This object will identify the Transport Layer Protocol of the
packet.”
::= { natptTranslatedPacketInfoEntry 14}

natptSessionlD OBJECT-TYPE
SYNTAX NatptSessionld
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object identifies the session of the packet.”
::= { natptTranslatedPacketInfoEntry 15}

natptSessionPayloadRowStatus OBJECT-TYPE

SYNTAX RowStatus

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"The object indicates the status of this conceptual row. Until
instances of all corresponding columns are appropriately
configured, the value of the corresponding instance of the
natptSessionPayloadRowStatus column is 'notReady'. None of the
writable objects except natptSessionTime in this row may be
modified while the value of this object is active(1)."

REFERENCE

"Textual Conventions for SMIv2, Section 2."
::= { natptTranslatedPacketInfoEntry 16 }

-- Notifications section

natptMIBNotifications OBJECT IDENTIFIER ::= { natptMIB O }

-- Notifications

natptMIBNotificationGroup NOTIFICATION-GROUP
NOTIFICATIONS {
natptPacketID

122

natptIPv4PoolAddr
natptPacketIPv4TolPv6
natptPacketlPv4TolPv6SrcPort
natptPacketIPv4TolPv6DestPort
natptPacketiPv6TolPv4
natptPacketIPv6ToIPv4SrcPort
natptPacketIPv6TolPv4DestPort

}
STATUS current

DESCRIPTION
"Agent will send notifications to managers using the above group of
notification objects.”

::= { natptMIBGroups 6 }

END

Security Considerations

The managed objects in this MIB may contain confidential information.
The Security Proxy and the NAT-PT will exchange security information
among them using MIB objects. Secured Environment is very important
consideration for secured NAT-PT. SNMPvl and SNMPv2 do not provide

features for such a secure environment.

We recommmend here that the implementers consider the security features
as provided by the SNMPv3 framework ([RFC3410], section 8), including
full support for the SNMPv3 cryptographic mechanisms (for

authentication and privacy).

123

APPENDIX C: Functional Analysis of the existing

NAT-PT

Packet originating in IPv4 network destined to
IPv6

Transport Layer Protocol/the packet type: TCP, UDP, ICMP etc.
Session state info of the packet: Session initiating, Session Ending and

the Packet is in the middle of the session.

TCP

Case Session Initiating

e Drop the packet.

Case Middle of the session

Check the address-mapping table to find the destination address in

the table. If destination address exists, proceed.

¢ Get the IPv6 address corresponding the destination address from the
mapping table.

¢ Replace the IPv4 destination address with the IPv6 address.

e Create IPv4 source address concatenating PREFIX with IPv4 source

address.

¢ Translate IPv4 header into IPv6 header.

124

e Check the destination port number to find either is there any ALG or
not. If there is any ALG call it to translate the payload according to
the protocol specification.

e Write the packet to the destination address

Case Session Ending

Follow all the steps mentioned for the case of Middle of the session, and

remove the destination address from the mapping.

UDP

Case Session Initiating

Check the static mapping table and if the destination address exists in

the table—

¢ Get the IPv6 addresses corresponding to the IPv4 destination address
from the table

¢ Replace the IPv4 destination address with the IPv6 address.

e Create IPv4 source address concatenating PREFIX with IPv4 source
address. The address format looks PREFIX::IPv4_Address.

e Translate IPv4 header into IPv6 header.

e Check the destination port number to find either is there any ALG or
not. If there is any ALG, call that ALG to translate the payload
according to the protocol specification.

e Write the packet to the destination address

125

Case Middle of the session

e Check the address-mapping table to find the destination address in
the table. If the destination address exists, proceed.

e Get the IPv6 address corresponding the destination address from the
mapping table.

¢ Replace the IPv4 destination address with the IPv6 address.

¢ Create IPv4 source address concatenating PREFIX with IPv4 source
address.

e Translate IPv4 header into IPv6 header.

e Check the destination port number to find either is there any ALG or
not. If there is any ALG call it to translate the payload according to
the protocol specification.

e Write the packet to the destination address

Case Session Ending

Follow all the steps mentioned for case Middle of the session, and remove

the destination address from the mapping.

ICMP

ICMP packet does not require be checked either it is session initiating or
session ending or it is in the middle of the session.
¢ Check the address-mapping table to find the destination address in

the table. If destination address exists, proceed

126

e Get the IPv6 address corresponding the destination address from the
mapping table.

¢ Replace the IPv4 destination address with the IPv6 address.

e Create IPv4 source address concatenating PREFIX with IPv4 source
address.

e Translate IPv4 header into IPv6 header.

e Write the packet to the destination address

Packet originating in IPv6 network destined to
IPv4

The transport layer protocol/the packet type: TCP, UDP, ICMP etc.
Session state of the packet: Session initiating, Session Ending and the

Packet is in the middle of the session.

TCP

Case Session Initiating

Check the mapping table to find either the source IPv6 address of the
packet exists in the mapping table or not. There may be two cases—

IPv6 source address may exist in the mapping table. In that case IPv6
source address may exist in the static mapping table or in the dynamic

mapping table.

127

Case Static mapping table

In that case it will be DNS response from IPv6 DNS server.

Get the IPv4 address corresponding to the IPv6 address from the
static mapping table and replace the source IPv6 address with the
IPv4 address taken from mapping table.

As it is DNS response to a DNS query, the destination address must
be the form of PREFIX::IPv4_address. So peel off the PREFIX to get the
IPv4 destination address, and replace the destination address with

that address.

Case Dynamic Mapping table

In that case the packet will be a response for IPv4 packet originated in

IPv4 network.

Get the IPv4 address corresponding to the IPv6 address from the
dynamic mapping table and replace the source IPv6 address with the
IPv4 address taken from mapping table.

IPv6 source address may not exist in the mapping table—

Get an IPv4 address from the pool of IPv4 addresses, and create a
mapping between the source IPv6 address and the address taken from
the pool.

Replace the IPv6 source address with the IPv4 pool address.

Get the IPv4 DNS server address from the static mapping, and replace

the destination address with the IPv4 DNS server address.

128

Translate IPv6 header into IPv4 header.

Check the destination port number to find either is there any ALG or
not. If there is any ALG call it to translate the payload according to the
protocol specification. If the packet is a DNS response then get IPv6
address of the queried node from the answer section of the DNS
payload.

Get an IPv4 address from the address pool and create a mapping
between the IPv6 address of the answer section and 1Pv4 pool address.
Replace that IPv6 address with 1Pv4 address.

Write the packet to the destination address

Case Middle of the session

Check the dynamic address-mapping table to find the source address
in the table. As the packet is in the middle of a session, the source
address should be in the address-mapping table. If the source address
exists, proceed as below otherwise drop the packet.

Get the mapped IPv4 address corresponding to the source address
from the mapping table.

Replace the IPv6 source address with the IPv4 address.

Create IPv4 destination address peeling off the PREFIX from the IPv6
destination address of the packet.

Translate IPv6 header into IPv4 header.

129

Check the destination port number to find either is there any ALG or
not. If there is any ALG call it to translate the payload according to

the protocol specification.

Write the packet to the destination address

Case End of the session

Check the dynamic address-mapping table to find the source address
in the table. As the packet is in the end of a session, the source
address should be in the address-mapping table. If the source address
exists, proceed as below otherwise drop the packet.

Get the IPv4 addresses corresponding to the source address from the
mapping table.

Replace the IPv6 source address with the IPv4 address.

Create IPv4 destination address peeling off the PREFIX from the IPv6
destination address of the packet.

Translate IPv6 header into IPv4 header.

Check the destination port number to find either is there any ALG or
not. If there is any ALG call it to translate the payload according to
the protocol specification.

Write the packet to the destination address
Remove the mapping entry from the table and return the pool

address to the IPv4 pool address.

130

ICMP

ICMP packet does not require to check either it is session initiating or

session ending or it is in the middle of the session.

¢ Check the address-mapping table to find the source address in the
table. If source address exists, proceed

e Get the IPv4 address corresponding to the source address from the
mapping table.

¢ Replace the IPv4 destination address with the IPv6 address.

s Create IPv4 destination address peeling off the PREFIX from IPv4

destination address.

Translate IPv6 header into IPv4 header.

Write the packet to the destination address.

131

