TViz: A Taxonomy Visualization Tool

Pedro Maroun Eid

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April 2005

© Pedro Maroun Eid, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04443-8
Our file Notre référence
ISBN: 0-494-04443-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

TViz: A Taxonomy Visualization Tool

Pedro Maroun Eid

The Semantic Web is an emerging science in the world of computer information
processing. RACER, a robust semantic web engine, represents the core of a semantic web
system. The engine offers various inference services that return information about a given
ontology, for instance, to compute its associated taxonomy of concept names. The
taxonomy is generated in a form called the “TBox subsumption hierarchy” although it is
not necessarily a true hierarchy. Since humans are more comfortable reading a graphical
structure than a textual one, RACER needs a visualization tool in order to visualize
taxonomies after processing them. Also, a graph delivers statistical information in
addition to its easy interaction capabilities.

In this thesis, we present TViz, a tool capable of visualizing large numbers of
nodes representing the TBox subsumption hierarchy, using the Cone Tree layout. TViz,
customized for taxonomy visualizations, gets its input from a text file that is created after
streaming the information from RACER. TViz consists of three components: (1) a parser
that parses the information obtained from the RACER server using a specific grammar,
(2) an engine that simplifies and changes the non-hierarchical structure into a hierarchical
tree, and (3) a graphics engine that graphs the hierarchical tree using the Cone Tree
layout. The graphics engine handles the graphics, the user interface, and tools and is
written using OpenGL and GLUI multiplatform libraries. TViz implements useful tools
for an easy exploration of a dense environment such as the Compass, the Local View and
the Information Window and is implemented using standard C/C++ multiplatform

libraries.

il

Acknowledgements

I take this opportunity to thank all those who accompanied me all through these years of

study as well as provided me with moral, intellectual, and financial help.
A special thanks to my great supervisors Dr. Peter David Grogono, Computer Graphics,
and Dr. Volker Haarslev, Semantic Web, for their support, guidance, and encouragement

towards the realization of this research thesis.

And, finally, many thanks to the Concordia Community, my great and lovely home

Montreal, and all my friends, fellow students, and supporting family.

iv

“Do not follow where the path may lead.
Go, instead, where there is no path

and leave a trail,”
Ralph Waldo Emerson

To Chawki, Josette, Georges, and Honorée Claris. ..

...with all my love and appreciation.

Table of Contents

Table of Figures....coceeveeireensenccnssnensseccsanssnncssnnses setsestessatesunsesarssarestssnteannsnnane viii
Table 0f TADIES c..uccniivereriiiriienrcinrecnciecstniieseiieiireseesessiesseisesssisstessessssssssssssssssses ix
Table of EQUAtIONSccvvcervmineeirceniierinnenissecscessensseecssenesasiens cereessareessentnsnnnesantene X
1 Introduction....... teeesssesssessaessanesssaesannesseeaaessaneasesantsratebbsas Rt s ebbes bae s an s naes N |
LT ODBJECIIVE .ttt e et et sbe st re b neesa e 1

L2 APPIOACH.....ooiiiiiiiii e 2

1.3 Background.........c.coooiiviiiiiiicciictciscie ettt 4

1.3.1 HYPErbOLic TFEES........ceeieiiieiieeeeeeeeeeeeeeee e 5

1.3. 2TV MAPS ... 7

1.3.3 C0NE THEES ...t 8

1.3.4 Other TeCRRIGUESccooeeeeeeeieeiieeeeeeeeeeee e 9

L.3.5 SUMMATY ...ttt 11

1.4 A First AHEMPLcoviuiiiiiiiciict ettt 12

1.5 CUITENT VETSION.eiuioiiiiiiiieiteiee et ettt ettt et eaeaenens 15

2 THE PAISEr..ucunneeiciercetcinsnisitesinssisesssssassssssasssssesssassssssssassnssestassasesassssonssasnsssnne 16
2.1 The GIammATcoccoirriiiiinriieeee ettt ee et eneaes 16

2.2 The Symbol Table........ccoiiriiiiiiiiieceee e 20

2.2.1 TRE SIFUCTUFE. ...ttt 21

2.2.2 THIPLES ... 22

3 The Cone TYeEC....uuueiviererieienntiresaisasisuesesssssssssssssssssssssssnsssnessessssesnessessssssssnsssessesees 24
3.1 The Cone TIee STIUCTUTE........coviiviiireieireee ettt 24

3.0 The HielArchyc..occooeeiiioiaieieeeeeeeee et 24

vi

312 TRE LAYOUL ...t 26

3.1.2.1 The Cone Base Radius......ccccoceririiiiiiiiniiiiniiniciiceenn 27

3.1.2.2 3D Node PoSItion......ccoereriereniieiienenieeeeecicinnccceeen 28

3.2 The Cone Tree INterfacecoovvoveiieiiiiiiiec e 31
3.2.1 The TrEE GFAP ... 32

3.2.2 OpenGL PickiNg........c.cccvicuiiieiiiiiiiiiciece e 33

3. 2.3 L0CAl NOAE VIEW.......c..ccvieeieieeeiseet et 34

3.2.4 NOde SeArChingoooeeeeeiiei ittt 34

4 The Grapher .. ceciiniiieniecsinninnincsiiniiiisssisesinssssssnsssssssssssssones 36
4.1 The Main VIEW ...ocioiiiiiieieiice ettt 36

4.2 The Main View GLUT Controls.........cccovoieiiimeiiiiiieicene e 39

4.3 THE COMPASS...ceeiuireieeiieeiie ettt ettt et et neesiee e s ba e sareeaneesbesannees 42

4.4 The LoCal VIEW.....ciuiiiiiiiiiiiiiii ittt s 43

4.5 The Information window and the Console..........ccoooviiireneriiiineceeee 45

4.6 Thé DIiver PIOZIAM ...ccccuiiiiiiiiiiie ettt 47

5 Stress GeRNerator ... meeineeiriscenisntmintisiniesseerssseesssssisssenssssssesssesesssnarsssssesssesesssssss 49
6 TSt CASC.uuuecrerereerreererrecsensseneessecssissnisssssuesssissnsssesssessssssessnessessassssessassness .51
T USET OULPUL .cueeereineiercrnncnrssrsssanssissssrsssiossssssssossstssssssssssssisssasssasassassssassosiossesessessasssss 54
8 FUtUre WorK..ueeiiiiiinnennncniensnnisnncsncssnssssensssssssssssessssssssasssnssssasasanses 56
9 CONCIUSION cuveeernrriiniinsiinsenssencrecssnnsssncssesssnesssnnssnnessasssnssssnesssessanssssassansesaasas . 60
10 ReEfEreNCeS...covuveeiriesneerrrnesssnnsanisnessiessissisissseisssessssssssnsssessssssssnssssessanssssssssssssasssansasses 61

Vil

Table of Figures

Figure 1: System scalability and dataset SIZ€..........ccceeiiiininieiniieiiiccsce 5
Figure 2: A graph in 3D Hyperbolic space (H3)........cocooviniiiiiiiice 6
Figure 3: Tree Map Layout and Enclosure Propertyccoocevviiiiinncniiiiinii, 7
Figure 4: The 3D StepTree Applcation..........ccceviiiiiiiiiiiiininicciise e 7
Figure 5: Cone Tree layout ... 8
Figure 6: Zarrad's TBox Visualization Tool.........ccoccooineiiiiiiniiiieeeeee 9
Figure 7: OilViz3D Prototype for a 179 nodes tree..........ooovveiiiiiiiiiiciiiiccice, 10
Figure 8: Previous version of TViZ......ccccciiiiiiiiiiiiiiiiiinc i 13
Figure 9: a Triple eXample........cooeviriiininceicieeeet e e 16
Figure 10: The Symbol Tablecoocoviiiiiiiii 21
FIigure 110 A TTIPIE c.eoeeiieeie et et st et anees 22
Figure 12: Carriere and Kazman............ccooceiiiiiiiiiiiiiiiiiicccic s 28
Figure 13 : Main View of “galen.tree”ccccooviiiiiieneniiee e 37
Figure 14: The GLUI Controls WindoW...........ccocvvvierieiieeiieenee et snesae e 39
Figure 15: The Compass Window (10Cal).........cccceviiniiniiiiiiiniiici e 42
Figure 16: The Compass Window (general).........cccccovrieirininnerninnienieeneeieseesee e 42
Figure 17: The Local View WINAOW ..o e 44
Figure 18: The Information Windowcccoooiiiiiiiiiiii e 45
Figure 19: The Console WINAOWccoiiiiiiiiiiiiiiie et e 46
Figure 20: TViz: A Taxonomy Visualization Tool..........c.cccceiiienininiiiiice 55
Figure 21: TViz: A Taxonomy Visualization Tool 2...........cccceeivverincininniene e, 55

viii

Table of Tables

Table 1: Grammar used to parse the tree files ..., 17
Table 2: Lexer definitionsccceireoiriniriiiii e 18
Table 3: SOrted SEQUENCE......c.ceiiiririririccicee e s 25
Table 4: Test NOde SPeCifiCAtIONSc.vervvrierrierieierieeie et sene e 51
Table 5: Performance Table.........coovviiiiiiiiiiiiieeie e 52
Table 6: Frame Ratescoccoeiiiiiiiiiici et e 53

1X

Table of Equations

Equation 1: Carriere and Kazman and our Version............cccceovvveneneeiiinniicecceninens 27
Equation 2: Calculating POSTHONSc.cccveriiiiriiiiiiiee e e 29
Equation 3: Maximum CirCUm{ETIeNCE.ceecvieiiierireiieiiceiee e eteestieesee e esaie v seneans 30
Equation 4: Initial RAAIUScccoeiiiiiiiiiiiiiie ettt et 30

1 Introduction

1.1 Objective

"The Semantic Web is an extension of the current web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation.” -- Tim Berners-Lee, James Hendler, Ora Lassila, The Semantic Web,
Scientific American, May 2001.

The Semantic Web is the combination of large amounts of information and
meanings to create an efficient representation of data that can be shared among machines.
This is useful mostly to allow machines to efficiently find the information required by
web users. The Semantic Web is mainly composed of four components: ontologies,
semantic web engines, knowledge bases, and agents. “An ontology defines the common
words and concepts (meanings) used to describe and represent an area of knowledge, and
so standardizes the meanings.” [32] An ontology is processed using the semantic engine’s
inference services to yield a consistent knowledge base. A knowledge base is a formal
version of the ontology. Users will then interact with the engine, through an agent, which
carries their query and retrieves the relevant data from the engine. Ontology creators now
need some tool that gives them an idea about the overall structure of their ontologies in
order to verify whether or not they are well elaborated and meaningful. The ontology is
passed to the semantic engine which reveals the consistency and the latter produces an
associated knowledge base. A knowledge base is normally constituted of two important
parts: the ABox and the TBox. The ABox, standing for Assertional knowledge box, holds

information about individuals or instances of concepts. The TBox, standing for

Terminological knowledge box, holds information about the concepts and the
subsumption hierarchy information. The best way to know if the representation of the
original ontology is correct or to look at whatever data it holds is to examine some kind
of representation of that TBox. The semantic web engine has a function that streams the
TBox subsumption hierarchy. This stream is then dumped into a text file, known by the
extension “.tree”. This text file can contain many thousands of nodes and can be as large
as one gigabyte. The user will eventually get confused when reading this large text file.
The dataset size of a manual interaction of a user trying to figure out this set’s relations or
connections is known to be at most 30 nodes [10]. So, eventually, there is a need for a
tool that shows this dataset visually along with the connections between its nodes. Also, it
would be used to deliver some statistics about the nodes to be graphed like the

concentration of nodes on different levels.

1.2 Approach

The goal of this research is to visualize a huge number of nodes which represent a
semantic structure. This structure is generated by RACER, a semantic web engine that is
given an ontology as input and after processing it yields a non-hierarchical tree-like
representation. A node in this tree-like structure may have multiple parents. The
implementation of this project was performed using a component based design. First, a
parser was created that parses the input according to a specific grammar. This input, if
correct, would be available in a table called the “symboltable” using a list data structure.
The' symboltable holds a set of triples as defined by the requirements of the input and

accumulates all information concerning a certain concept in its corresponding triple node

in the symboltable. A triple is defined to be a record that holds information about the
node, its parents, and its children. Next, the symboltable is processed by the engine of the
application and is checked for logical consistency; the structure should be changeable to a
hierarchical entity. This non-hierarchical structure is then converted to a hierarchical tree
that will be used in the layout algorithm. This is done by removing all the factors that
make it non-hierarchical, ¢.g. any multiple inheritance should be made to follow a single
parent. Finally, this hierarchical entity is graphed in a certain layout. One of the best
layouts suitable for huge hierarchies is the Cone Tree hierarchical layout [14]. This layout
models the nodes, their parents and their children in a cone shaped layout.

The main layer that binds all the components of the project is the “Grapher”. This
code has the function of passing an input data file representing the tree to the parser
which in turn parses the input, that is, it checks the input for lexical and grammatical
errors, and as a result, stores it in the symboltable. Then the “Grapher” passes this table to
the Cone Tree Interface where it is processed and made hierarchical. The Cone Tree
Interface initializes a Cone Tree Structure with static attributes, ready to be graphed.
Finally, the display function of the “Grapher” graphs the tree and maintains a user
interface to allow users to perform some common user tasks for browsing and exploring
the tree. Some tools are added to the main hierarchy viewer to make users comfortable
with their exploration. The idea of these tools came from the needs that adventurers have
when they go on any common exploration of an unfamiliar region. The three most
tmportant things these explorers would need to have are a map, a locator that gives them
their location and a datasheet that specifies specific data about important points to look

for. Using the same kind of reasoning, tools for the system were created and these

include: the Compass which acts as a locator, the Local View which acts as a detailed
view of the node in focus, and the Information Window that displays some text info about
the actions users are taking and the node that they are focused on. Many more features
are implemented in the main viewing window, for example, picking and searching for a
specific node. As a final step to test the whole, a synthetic data generator, called the
“Stress Generator”, was created to stress the application and detect its limits. Finally, a
test application was created to test multiple instances of the Stress Generator on TViz.
These resulted in a set of output values which are presented for usability statistics. All of

these are discussed further in this thesis.

1.3 Background

Previous research that is relevant to this project concentrated mainly on the
display of large hierarchies in 3D computer graphics. Various methods were suggested in
different technical papers, in addition to many cognitive studies, that deal with the human
mind’s understanding of graphical and especially large graphical structures. A lot of
efficient algorithms and layouts work very well in 2D, however, concerning the capacity
of nodes to be displayed, it is obvious that 3D can visualize much more; so 3D
visualization was adopted. Previous research suggests efficient layouts for displaying
huge hierarchies (>1000 nodes). Now it is clear that one can fit many more nodes into the
space using 3D rather than 2D, however, the question is, will there be user
comprehension of this dense visual space? Using a specific layout, the graph can be
visualized in a structured way. The idea is to visualize something useful but to be careful

not to overtax the user’s cognitive processing capabilities. In the following, we review

most of the commonly used graphing layouts and methods to visualize large datasets in a

structured way along with similar research that was conducted around the same topic.

1.3.1 Hyperbolic Trees

The Hyperbolic tree layout, a

System Scalability, De

new and well known layout to display
large hierarchies as explained by Hong
[17], draws very large structures, up to

around 120,000 nodes. Hyperbolic

N P LRI] trees have been under study since 1995

node count; log scale

by Lamping et al. [19]. A pioneer in
Figure 1: System scalability and dataset size

hyperbolic trees is Tamara Munzner
[10 and 20]. Munzner, in 2000, developed a highly stable system; referred by H3, as her
PhD implementation. H3 mainly graphs internet hyperlink structures of websites. It
scaled to datasets of over 100,000 nodes by carefully choosing a spanning tree as a layout
backbone. As a performance rating, H3 displayed 110,000 edges in 12 seconds given
DFS input [11]. The scalability of H3 with respect to other existing systems is shown in
Figure 1 taken from [10]. As Munzner described, larger trees tend to display as large
neighborhoods instead of the global overview which might lead to cognitive
disorientation of the user. Hyperbolic trees have innovative algorithms; they are simple
structures that make it fast and easy to process large hierarchies. The main idea behind

hyperbolic trees is to map the hierarchical structure onto a hyperbolic function or on

hyperbolic space. H3 uses a projective model to project the infinite space onto finite 3D

Euclidean space. Another model would be the conformal model, also called Poincaré

disc, which preserves angles while plotting the connecting lines onto arcs.

The projective model distorts angles while

i
V’%”W” ‘ keeping lines straight as shown in Figure 2
/

A" = also courtesy of [10]. It allows the encoding

‘x}, ~;;%3‘:§7! ;

into 4x4 matrices that can be used to represent

hyperbolic transformations. The main reason

for using this model is to allow 4x4 matrix
operations to be done using the optimized 3D

Figure 2: A graph in 3D Hyperbolic space libraries on modern computers and graphics

(H3)
processors. This mapping behaves as a Focus

+ Context view that shows the local connections of the parents and children of the node
in focus while still giving some information about the general layout of the tree. Far
nodes appear packed on the circumference. All what is in between has a kind of
interpolation effect due to the hyperbolic function mapping. Hyperbolic trees have to be
graphed using hyperbolic space in 3D or hyperbolic functions in 2D. Although they are
fast and can manage the visualization of many nodes, they tend to disorient users because
the layout does not give them a sense of where their position is with respect to the whole
space or tree. The root node would appear similar to any child node with the same

number of children.

1.3.2 Tree Maps

Tree Maps, another famous
2D layout introduced in 1991 by
Johnson et al. [12], divide the space

of each node among its children and

then subdivide recursively until the

whole screen space represents the

Figure 3: Tree Map Layout and Enclosure Property given nodes as shown in Figure 3

[33]. However, this layout is best used in software visualizations and business. Some
implementations of tree maps have been realized in 3D and these allow the viewing of
layers representing the underlying levels as shown in Figure 4 [31].

The drawback in this layout is that it does not
| ' present connections between the nodes. This

layout optimizes the use of the available space but

it makes it much harder for the viewers to

understand the relational structure of the whole

entity. Tree Maps are considered to be an

Figure 4: The 3D StepTree Application

enclosure kind of graphing since they include
sub-nodes in the node space of their parents usually represented by rectangular areas for

optimized area use.

1.3.3 Cone Trees

Cone Trees [14] has been initiated in 1991 by Robertson et al. It has been under

development for many years and many improvements have been suggested.

Figure 5: Cone Tree layout

Cone Trees give a straightforward hierarchical representation of the entity in question.
They do not alter any of the visual hierarchy representing the semantic meaning of the
text. This property is very appealing visually and logically to the user. The drawback
using this kind of layout is that it is harder to graph nodes in 3D than it is in 2D so the
algorithms are a little more complicated and take more time in processing. The largest
number of nodes graphed for a directory structure using the Cone Tree layout given by
Carri¢re and Kazman in [15] is 5000 and, as the authors described, the far nodes with
respect to the viewer’s eye are no longer identifiable starting with datasets larger than
1000 nodes. Tulip, “a huge graphs visualization framework™ [16], is being developed in

the University of Bordeaux 1, France since late 2002. Tulip is built to handle 1,000,000

elements theoretically and is able to visualize 110,000 nodes representing a UNIX file
system in less than a second as stated by the author. Tulip implements an improvement to
the Carriere and Kazman algorithm by finding the optimal enclosing circle that is an
amelioration to the enclosing circle used in the Carriére and Kazman algorithm. Finding
the optimal enclosing circle is a special case of the general “Smallest enclosing ball”

problem as described in [16] and is out of the scope of our research.

1.3.4 Other Techniques

Many other techniques described in different technical papers [25 — 30] have been
developed but either they present too much information which makes users unable to
clearly reach their objectives or the nodes are drawn in a non-hierarchical layout, which
is not what cognitive science recommends for the understanding of graphs and
information visualizations. These can only be used by experienced users and eventually

they will also face problems using it.

Figure 6: Zarrad's TBox Visualization Tool

Concerning the study of visualizing semantic web taxonomies, some research has
been done in the field. Some visualize RDF-based information and ontologies such as in
[5 and 6] and others conducted the same research but with unsatisfying results for large
datasets. Zarrad [7], in his master thesis, tried to visualize the same datasets but using a
layer layout structure in 2D. He encountered some obvious problems such as cluttering,
dense spaces and cognitively unreadable graphs when the datasets exceeded 200 nodes as

shown in Figure 6 taken from his research thesis.

0ilviz3D

re Guit

Suit

al
R s ntrol Device

Figure 7: OilViz3D Prototype for a 179 nodes tree

Some other work is also being done in parallel to this study in Manchester
University. The work involves the same subject and is closely related to this thesis.

Khalid [34] is working on the same concept but with a different approach. The

10

implemented visualization program, OilViz3D presented in Figure 7, has been integrated
into OilEd®. After testing the prototype, we noticed that the layout might grow infinitely
in Buclidean space which makes it hard and sometimes impossible for users to perceive
large graphs. A spring embedder algorithm is used to stabilize the graph according to
connections and densities of nodes after the tree is drawn with the appropriate
connections between the children. This stabilization procedure, after reaching its
balanced state, should give the smallest possible tree. Moreover, their graph exploration
technique is slow since the user can only browse by hierarchy jumping from the parent to
the child and vice versa. This technique needs more computational resources than other
available exploration techniques and becomes worse as users browse deeper in large
trees. Hence, it does not take advantage of the powerful graphics hardware currently
present in modern computers. Also, OilViz3D does not implement tools such as

searching and picking. It uses OpenGL and Java for rendering the graph.

1.3.5 Summary

Our review summarized the works and the different methods used to visualize
large datasets. The applications already created to visualize semantic web taxonomies do
not accomplish their task in an efficient way with large datasets and there is room for
better tools. More claborate methods for graphing large datasets have been discussed
such as the Hyperbolic Tree, the Tree Map, and the Cone Tree layouts. As a first attempt
to our solution, another kind of implementation was tried and is discussed in the
following section. Later, we adopted the Cone Tree layout for its capability to handle
very large datasets in very little time as compared to the other layouts. It also conserves

the look of the hierarchical structure and allows easy graph manipulation and exploration.

11

This layout needs a hierarchical dataset; to solve this problem, we had to change the non-
hierarchical entity into a hierarchical one. The way this will be executed will be discussed

later in this thesis.

1.4 A First Aftempt

Previous versions to our current solution were constructed as part of
experimentation that led to the final result of this research. Basically the parser
component had very little changes throughout the versions because it was well defined
since the beginning. Previous versions all questioned the effectiveness of the resulting
graph layout or visualization. The two previous versions were fruitful experiments but
insufficient towards reaching the goal of our research. These experiments had problems
in their effectiveness as a viewing layout and were unusable for large trees. A lot of
cluttering resulted along with immense processing times because of the graph layout that
was not using the screen space effectively and the recursive algorithms that overexploited
system memory. Studies and changes were made until the current version was considered
to be a good tool for visualizing TBox subsumption hierarchies created by RACER.

One of the previous versions was a 2D connected graph that represents the
taxonomy in question. In this layout, the nodes were put on random positions on the
screen, and connecting lines linked the nodes together. This graph layout was a test
platform for more research to have a lookout of common problems we could encounter. It
showed to be unreadable in the case of more than around 30 nodes. Another layout had to

be considered for our goal of efficiently visualizing around 15,000 nodes.

12

Another version then was thought of and realized. Since the taxonomy starts with
top and ends with bottom, the whole layout could be represented as a circle in 2D or as a
sphere in 3D. The top node would be placed on the North Pole, the bottom node would be
placed on the South Pole, and all the in-between nodes would be placed consequently
somewhere in between. In this case, a good layout would be a layered layout that could
sort the nodes each on its respective layer and finally graph these nodes on static layers

constructed on the circumference of the sphere as shown in Figure 8.

FHEWOMAN

Figure 8: Previous version of TViz

However, we faced three main problems dealing with this layout. The first problem was
the occasional existence of a heavily densed layer when the tree had many of its children
appearing at a certain depth (on this layer). This heavy layer was considered to be good

statistical information but it was not easy to interact with. This also made the sphere

13

layout unusable for certain datasets. The second problem was that, since our layout
represents nodes as cubes and relationships of nodes as edges and the interconnections
between the nodes were an important part of the graph, the sphere layout was not
showing these explicitly; the edges were hard to order and this resulted in too many
crossings. When the nodes are sorted into their layer list even though all the lists were
sorted in the same manner, their logical connections were unreadable. A node on one side
of the sphere was to be connected to a lower layered node on the other side of the sphere
while its parent is also on the other side. Fixing this was a complex problem and needed
calculations about how tb graph the layer list along with some decisions about where to
start on the circumference of the sphere. More code had to be added to the already
complex algorithms. The sphere layout easily handled 1000 nodes with their connections,
but they were not perceivable. The third problem was the processing time of our
algorithms. The algorithms for the layered sphere layout were not affordable with respect
to what has been found in the review about other visualization methods. They were
recursive algorithms to go into a certain depth and extract all the nodes in the tree which
are considered to be at this depth. In case of multiple inheritance, the solution was that a
node already put on a layer is not put in any layer again. For large trees of more than
2000 nodes, our algorithms made Windows-based machines run out of memory after
hours of processing times. This layout also made trees of more than 500 nodes very
cluttered and heavy to the cognitive mind of the user. The sphere layout was simply not
interesting for our problem and certainly cannot handle the large datasets that we were

targeting.

14

1.5 Current version

The current version of the project is the fruit of all the previous experiments. It is
built by interconnected components written all in C/C++ being able to be used again in
similar projects. Throughout the whole process of construction, we kept in mind further
portability of the project to other system platforms, mainly UNIX/X-windows and Mac
OS®. This is why we built the project with standard libraries and OpenGL along with
GLUT and GLUI. All of these components are recognized to be platform independent.

The project is intended to be used as a tool for visualizing taxonomies as
described under our goal section above. Subjects of ontologies vary from personal to big
companies and their number is constantly increasing. So, it is clear that the market of the
project is broad and could lead to a very interesting state of requests. Therefore, the tool
should be as a whole usable, fast, and efficient to meet its needs and the users’
expectations. It should be customized for semantic web datasets. It should also provide an
easy interface for novice users and advanced tasks for experts. This whole version is

- discussed in details in the following sections of this thesis.

15

2 The Parser

2.1 The Grammar

The first component of the project is a parser that is capable of reading a
consistent input from a file. Optimally, this parser would have to parse input from a

network stream. An example of this input would be:

(WOMAN (PERSON) (OLDLADY))
Figure 9: a Triple example

This example represents a simple Triple that defines a notion called WOMAN which has
PERSON as a parent node and OLDLADY as a child node. The problem with this
representation is that there may be further details discovered later while parsing, for
example, another child for WOMAN. In this case, the parser should not crash when
finding the concept already defined. Throughout this thesis, we will denote a concept
name(s) by NodeNames represented by one unique name that defines the node and its
Synonyms, if they exist. A node might have many parents as well as many children. It is
at a later phase where multiple inheritance is dealt with to ensure proper layout. The
parser is constructed using the BisonFlex compiler generator. According to [1 and 2],
Bison is one of the most efficient compiler generators ever created. BisonFlex was
chosen because of its ease of use, easy debugging, and capability of handling very large
sets of information in reasonable time. RACER outputs the information to be visualized
in text mode through a network connection by simply querying it with “(taxonomy)” over
a TCP connection. The result of this query is then dumped into a file. Our compiler then

reads from this file. In case of a network connection, a small application would be used to

16

connect to RACER and dump the taxonomy into a file which is then given to TViz. We

define the grammar that is used to read the input and to ensure its syntax in Table 1.

1 Triples: /*empty*/ 20 RNameList: NAME

2 | Triples '(' NodeNames Parents Children ') | 21 | NAMETAG

3 ; 22 | RNameList NAME

4 Parents: NAME 23 | RNameList NAMETAG
5 | NAMETAG 24 ;

6 | '(' NodeList ') 25 NodeNames: NAME

7 ; 26 | NAMETAG

g Children: /*empty*/ 27 | '(" NameList ")’

9 | NAME 28 ;

10 | NAMETAG 29 NameList: NAME

11 | '(' NodeList)' 30 | NAMETAG

12 ; 31 | NameList NAME

13 NodeList: RNodeNames 32 | NameList NAMETAG
14 | NodeList RNodeNames 33 ;

15 ;

16 RNodeNames: NAME

17 | NAMETAG

18 | '(' RNameList '

19 ;

Table 1: Grammar used to parse the tree files

Line 2 in Table 1 shows the grammar definition of a Triple. Triples are defined one after
the other and are recognized by their enclosing parentheses. They hold three main
components: the NodeNames, the Parents, and the Children. NodeNames is made of a
Name or a NameTag along with some synonyms, if they exist, as shown in the definition
starting on Line 25 of Table 1. A Name or a NameTag both represent one single name.
The only difference between these notions is that NameTags are names enclosed by “|”,
e.g. “|dog|”. NameTags can also have anything in them including a quotation mark, a
parenthesis, or any irregular character. A Name, on the other hand, is a strict combination
of letters and digits. Name and NameTag definitions are presented in Table 2. Parents, if
made of one Name or one NameTag, could appear without being enclosed by

parentheses. However, once the definition is made of many nodes, it would be called a

17

nodelist and it should be enclosed by parentheses. A nodelist means a definition of one or
many nodes. Now a node as said before could be a Name or a NameTag, however, it
could also be made of a namelist. A namelist is a node that has many names separated by
an empty space defining a unique nodename and its synonyms. A namelist has to be
enclosed in parentheses. For instance, the definition of a node that has only one parent
but this parent is a namelist would be: (nodename ((oneparentl oneparent2))). If the
parentheses are omitted, it would be considered to have two different parent nodes rather
than one with two names. A namelist is made of one or many Names or Nametags.
Children have exactly the same definition as Parents do with only one exception. A node
or Triple has to have at least one parent defined whereas it might have no children
defined. Since different actions should be taken for a namelist that defines a nodename
and for a namelist that defines a parent or child, then these two definitions are split. As
shown in Table 1, a namelist defined as a nodename and a namelist defined as a.parent or
child have both the same grammatical structure but are only split in order to allow the

consequent actions to be called respectively by the parser.

%%

delimiter [\t\n]

WS {delimiter}+
comments (-*\n)

NameTag — "|"((*"{"]I(\")+"]"
Name [\t\n\(D)]+

%%

{comments} {/*delete || do nothing*/}

{NameTag} {TrecParserlval.nm = (char *) strdup(yytext); return NAMETAG;}
{Name} {TreeParserlval.nm = (char *) strdup(yytext); return NAME;}
{ws} {/*delete || do nothing*/}

. {return TreeParsertext[0];}

%%

Table 2: Lexer definitions

18

Each definition in the grammar has a different associated action. A namelist that is found
as a nodename is dealt with differently than a namelist that is found as a parent or child.
Table 2 defines the lexer regular grammar, this grammar is just used to recognize Names
and NameTags and return them to the parser. It is also made to discard white spaces
denoted by ‘ws’ and comments. Comments are known to be starting with a “;” at the
beginning of the line and ending at the end of the line. Anything other than those defined
are returned to the parser and the parser would judge if the input is relevant or not. For
example, enclosing parenthesis other than those found inside NameTags are not taken
care of in this lexer, they are passed as is to the parser which decides their relevance and
meaning.

The parser is a tool that recognizes certain strings and performs an associated
action when one is found. Therefore, we should also carefully define the actions that
should be taken in the case of a token being detected. The name of a node is considered
to be unique. A namelist is considered to be basically a unique name with some
synonyms. For instance, when a new triple is found, the name, also known as nodename,
of this node is checked if it is already defined and either locates its definition or defines
it. In case of a namelist, the parser searches also the synonyms because the same namelist
can be ordered differently at every occurrence. If we take the example explained in the
previous paragraph, the namelist can be either a definition of a nodename or a parent or
child. If it is a definition of a nodename, then the parser should look if this namelist is
already defined or not. If it is a parent or child then we need to take the located nodename
and check its data. Then, using the location of the node, the parser inserts new found data

under that node’s position. If, for example, a node appears with one of its children once

19

and then it appears again with another child, each child is inserted when found under the
same node space. When a node’s child is to be inserted, the parser checks if that child
does not already exist in the children list of that node. The child is inserted in the node’s
list of children and, at the same time, the node’s child inserts the node’s name as one of
its parents. This would result in a lot of repetitive data but would also make sure that
none of the nodes in the tree is missing information that belongs to it. The nodes are
inserted in a list data structure, called the “symboltable”, in the way they are ordered in
the file or in the way they are read from the input. Since we are using a list structure and
adding nodes as we are finding them in the input, the result is an unsorted list which is
slow to process by having to deal with the parents and children links that connect the
nodes together. Thus, further sections in this thesis will describe the ways used to
translate to an array structure and how a linktable is used to sort this array for faster node
position calculations. These topics will be discussed in the engine part of the research
which is responsible for translating the non-hierarchical unordered structure into an
ordered hierarchical dataset ready to be graphed. The next section will describe the

symboltable mentioned above and its details.

2.2 The Symbol Table

The parser interacts with one structure called the “symboltable”. This structure is
a list data structure which holds and can handle all the tasks nceded to define a node with
its attributes and its relations. The symboltable is a globally defined table, using the
‘static’ scope. It is used in the whole project to access node details. The symboltable is,

however, a dynamically sized linked list that is capable of holding any number of nodes

20

given. There are two main interfaces for the symboltable in this project. One is the use of
the list structure to define and maintain the concepts and notions found in the input by the
parser, and the other is the fetching of information to be used in the layout calculations
and in the information display. After the system runs through the parsing stage, the

symboltable is never altered again and is only used as a reference.

2.2.1 The Structure

The first interface of the symboltable includes functions such as creating a new
record which is basically a Triple in the table. This Triple is always added to the end of
the list if it 1s not defined earlier. The reason for this is that if the list search for this Triple
resulted in no node defined earlier, then adding it at the end is basically the fastest way to
add a node to this list without having to change any previous index references. When a
new Triple is inserted, the newly created id is returned. Otherwise, if the node is already

defined in the symboltable, then the node’s id is returned by the lookup function.

In both cases, an id is returned and this permits other
TOP TableHead
[functions to use this id to enter related information in that
NIL
I node’s space. The node’s id is just a data type of type
BOTTOM . _ ,
: ‘long’ that defines the position of this node in the
Nodel respective linked list. The id’s ‘0°, ‘1’ and ‘2’ are reserved
!
i (3 2 3 b < b .
End Node e for the “TOP’, ‘NIL’ and ‘BOTTOM’ nodes respectively
NU'LL which should exist physically or logically in any

Figure 10: The Symbol Table hierarchical structure. This is done to preserve the sequence
of appearance in the symboltable of these critical nodes. ‘NIL’ only links ‘TOP’ and

‘BOTTOM’. If bottom-up layout is adapted, then ‘BOTTOM is the active starting point

21

and if top-down layout is adapted, then “TOP’ is the active starting point. This flexibility
makes the symboltable easily usable by any layout graphing engine. Triples are defined
in the following section. Figure 10 shows the symboltable’s definition. The second
interface is a direct access to the information where a pointer to the whole symboltable is
passed to the other system tools. Those would be able to use it to fetch information they
need about a specific node, e.g. the number of children this node has. However, rather
than dealing directly with the linked list, the symboltable has methods to give a sense of
abstraction to the tools using it. These methods also include some useful functionality
such as error and integrity checking. These would be used to extract statistics such as the
number of nodes on a specific level and to manipulate instances of nodes such as

inserting a new node.

2.2.2 Triples

Eelations
Nods Name Synonyms P Child
ique St - - Carents Juidrers
q trng uque 3 utque [Ds utique IDs
I [[
I I I
Synonym 2 D2 D2
! I !
i I i
Last Synonym Last ID Last ID
I I I
NULL NULL NULL

Figure 11: A Triple
The symboltable, as said before, is a linked list of triples. Each node in the

symboltable is made of three parts: the node name, the list of synonyms found for this

22

node name, and the relations of this node. These are shown in Figure 11. The nodename
string and its synonyms can be made of any number of characters as long as they fit in the
user’s active system memory. These are stored using their full strings to be able to refer
to them later and be able to compare them with other instances that hold similar names or
synonyms. The synonyms of a node are represented by a linked list because we cannot
foretell how many synonyms a node has before the end of the parsing stage. In case that a
node does not have any synonyms, then no list is created at all. Synonyms might be found
as we proceed in reading the input file as is the case with any new information.
Consequently, the symboltable is easily manipulated and controlled by only inserting
what is new. The relations of a node include two more linked lists and these are called the
children list and the parents list. The parents list will eventually contain at least one
instance by the end of the parse of a single triple because of the requirements of the
grammar. It is assumed that the parser would take care of checking the input before
inserting it into the symboltable. The relations’ lists are both stored as ids. This means
that we cannot change the sequence of the nodes in the symboltable without checking the
parents and children lists and making the necessary corrections. The parents and children
lists are built by trading memory with speed. We allow redundancy only to have faster

data access.

23

3 The Cone Tree

3.1 The Cone Tree Structure

The Cone Tree Structure is a strict hierarchical structure that contains the same
number of elements existing in the symboltable. Since the symboltable holds all the
possible existing elements whether they are linked to something or not and that the parser
would take care of inserting elements that correspond to the grammar definitions stated
above in Section 2.1, then at least one instance of each element of the existing
symboltable entries should be found in the Cone Tree Structure, if there is no break in the

logical hierarchy.

3.1.1 The Hierarchy

Any inconsistency found while parsing relating to the grammar will be reported
but the logical interpretation of the tree cannot be found at parsing time and should be
dealt with while constructing the Cone Tree Structure. For example, there might be a set
of nodes generating a loop that might be disconnected from the whole graph. In this case,
the parser cannot detect this situation but the Cone Tree Structure will recognize it. The
symboltable is an unordered, non-hierarchical structure as it can hold multiple inheritance
and is created as the file is being read. To graph using a Cone Tree layout, we need a
strict hierarchical structure. In our implementation, to transfer the non-hierarchical
symboltable to the hierarchical Cone Tree Structure, the algorithm in Table 3 is used.
This algorithm yields a sorted list of nodes in the order of processing so that no

dependent node is processed before processing the nodes it is depending on. This

24

algorithm sorts out the parsed nodes into a drawing list. The resulting list defines a top-
down layout because the topmost nodes are all drawn and any further repetitions of these
nodes in the logical structure would be omitted. The total number of nodes that the
sequence list is initialized with is defined by the symboltable size to ensure that all the
defined nodes will appear in the sequence list. The sequence list is actually a logical
queue data type, where the nodes are inserted at the end and the processing happens from

the front.

sequencelist = top node;

node = sequencelist[0]; Y >
while(not end of sequencelist) TGS | SF et | clpeatjeajcn
{
for(all children of node)
{ .
if(child is not already drawn)
{
mark child as drawn in the drawnnodes list;
add child to the end of sequencelist;
}
}

node = next node of sequencelist;

}

Table 3: Sorted Sequence

This simple algorithm is used to transfer the logical hierarchy into a strict hierarchical
one; no node is to appear twice in the graph. This algorithm supposes that as long as the
total number of nodes is not reached, then the list always contains a child inserted from
another node at the end of the list. If a break in the tree exists in the logical structure, the
index used to add the children at the end of the sequence list and the index where the
current node is being processed may overlap. A simple test condition would ensure that,
if the two indexes overlap, a logical break in the tree would be detected. This overlap

would happen in logical hierarchies which contain cycles or some unconnected set of

25

nodes to the whole tree. In this stated case, the Cone Tree Structure would return an error
and no graphical tree is generated; the input is considered erroneous. The algorithm in
Table 3 is easily upgradeable and with only changing the first assignment of topnode to
bottomnode along with checking the parents instead of the children in the internal loop,
this algorithm would yield in a bottom-up sequence list which could be used through the
whole process again to yield a bottom-up graphic representation. However, a bottom-up

layout was not implemented in our current solution.

3.1.2 The Layout

The Cone Tree Structure uses the Carriere and Kazman algorithm [15] to set up
attributes to graph the resulting hierarchical structure. The Cone Tree Structure is an
array of nodes with the same size as the symboltable size. Each node is assigned a 3D
position and a list of its graphical children as well as some attributes that contain
important information to be used for graphing the layout and for some statistics. The
Cone Tree Structure has two main methods to yield in a 3D position for each node. Both
methods use the node sequence array that was constructed using the sorting algorithm
shown in Table 3. Before any of these methods are accessed, an algorithm, explained
later, binds the symboltable linked list nodes with their corresponding positions in the
sequence list. This binding algorithm creates a structure called the linktable. It is much
faster to access nodes using their pointers rather than having to browse through the linked
list to reach the node in question. This linktable makes it much faster to access the
corresponding node in the symboltable and binds the node’s pointer with its occurrence

in the sequence list. It is used throughout the Cone Tree Structure.

26

3.1.2.1 The Cone Base Radius

The first method, called generateRadiusBasedTreeLayout(), is called to setup the
Cone Tree with the linktable as an argument. It starts by initializing the sequencelist
which has one and only one instance of each of the symboltable nodes. This sequence is
then used in the whole Cone Tree Structure and by the next function, described later in
this text, as a guide to the order of processing of the nodes. This makes each of these
functions run as a linear process rather than having to manipulate the n-branched tree.
ComputeNodePositions() is a function that assigns the positions to the nodes based on the
Carriére and Kazman algorithm. This function is split into two parts. The first part
calculates the radius of each cone, which represents a node and its children, and stores the
largest child radius of each node needed for further calculations. The radiuses are
calculated based on a predefined initial radius. Since our tree is logically ending by the
bottom node always, then a good method of calculation would be to set the bottom node
to the initial radius. All graphically connccted nodes to ‘BOTTOM” would be assigned
that initial radius and calculations continue further on up the tree using the equations in

the following table:

N
GH‘”IEZ‘_‘E‘;!‘L” R ~ i
v
- Cn BR=R+IcR
fn = i;t

Equation 1: Carriére and Kazman and our version

On the right of Equation 1, Zr,. represents the sum of the children’s radiuses which
Vi

yields in an approximation to the half of the required circumference of the current cone.

27

R would be the radius that the children nodes need to be graphed on. We call this.radius
the rendering radius. R is basically summing up the two equations found on the left-hand
side of Equation 1 that are presented by Carricre and Kazman. When added with the
largest child radius of the node that is currently being processed, R would ensure the
sufficient space needed by the node’s cone so that cones from other nodes would not

overlap with it.

7L We denote the largest child

: ‘ N radius by IcR. We call this
5

d y enclosing radius the conebase

—— Conebase radius
BR radius denoted by BR. The

graphical difference between

' Eendering radius
. ” 4 R
; - .. .
hin - the two radii, R and BR, is
Figure 12: Carriére and Kazman presented in Figure 12.

3.1.2.2 3D Node Position

The second part calculates the positions of each node starting from the top
position. The top node has a statically defined position. The children of ‘TOP’ would be
the next to be assigned positions and so forth until the end of the tree is reached using the
sequence list as a guide. The position of each node is determined by first calculating an
angle ¢ between two nodes, then assigning the node position with respect to the parent
position with a height value that goes down the tree. The angle between two children
nodes is determined by the arc that these children are taking on the circumference of the

rendering radius of their parent. The angle ¢ between two nodes and the position of the

28

child being processed are linearly computed by a polar coordinate system assignment
using the formulas on the right of Equation 2. These functions ensure the proper
positioning of children with respect to their parent according to the Carri¢re and Kazman
algorithm. However, with this layout, a tree can grow deep and wide to a state where it
passes much beyond the bounds of the viewing frustum of the user. Therefore, the depth
of the tree is made static by assigning a static position to the bottom node and calculating
h as the distance between the top and bottom nodes divided by the total number of levels

obtained for the whole tree graph.

BR, | + BR,
‘9:'-1,:' =
+71, R
P,, =P, +Rxcos(9_,)

P,, =P, +Rxsin(3)

P,=P —h

Equation 2: Calculating Positions

This technique makes the height of the tree constant for all trees on a given coordinate
system. The width of the tree cannot be determined by a similar technique because it
depends on the set of radiuses that were calculated and is basically summing them up the
tree in the way they were constructed and computed. Altering the initial radius would
yield in smaller widths of the whole tree but to know what the initial radius should
exactly be needs extensive study based on the number of nodes on one level and their
layout. A way to make the radius of the whole graph semi-static is bounding it by
considering that all the nodes in the tree are under the top node. This means that there is
one single parent. If this is the case then the largest circumference would be known since

it is defined by Equation 3. And this would simply lead to the maximum radius this tree

29

would occupy in space (worst case). Therefore, one might think that choosing an initial
radius would be good using Equation 4 where R would be the static radius of the whole
tree. However, this calculation often results in a bad layout since most subsumption
hierarchies have rather large subtrees. Our experiment lead to a bound tree but which is
distorted by height. The strategy of using the total number of nodes to determine what the
initial radius should be remains an open problem which surely involves further research.
However, for the time being, we chose to preserve the nice looks of the tree rather than

fixing the radius which results in a not-so-interesting visualization.

L. , X
C... =2xinitialRadius x totalNumberOfNodes initialRadius = xR
totalNumberOfNodes
Equation 3: Maximum Circumference Equation 4: Initial Radius

If any error occurs during any of the discussed processes, the called function
would return -1 as an error notification. This error would be most of the time due to
logical errors in the input. One of the best features the generateRadiusBasedTreeLayout()
and the ComputeNodePositions() have is that they are decoupled in a way that makes it
possible to easily inﬁplement other layouts such as the bottom-up graph layout discussed
earlier or even other kinds of layouts. The two functions are both linear in terms of
execution process; each node is processed only once. The parent node determines its
radius from the sum of its children’s radiuses which are supposed to be already computed
because the sequence list ensures that no node which is a child of a node appears before
its pafent. And, similarly, the node positions are computed using the same architecture by
specifying the top position and then generating positions for its children and so on as

shown in Equation 2.

30

3.2 The Cone Tree Interface

The Cone Tree Interface is an interface to create, manipulate, and graph the
interpreted tree created using the Cone Tree Structure. The Cone Tree Structure ensures
that the tree is a strict hierarchy. One of the most important jobs that the Cone Tree
Interface does is decoupling the actual symboltable from the Cone Tree Structure by
constructing a linktable that links the nodes in the symboltable with their corresponding
Cone Tree nodes. This is done by keeping a pointer in the linktable to every node in the
symboltable at the setup time of the Cone Tree Interface. This makes all nodes fast and
casily accessible through one interface and renders both structures coherent. It is more
sensible to use the linktable rather than accessing both structures independently. The
Cone Tree Interface need only be given a symboltable structure. The interface then sets
up the linktable to bind the corresponding nodes of the symboltable and of the Cone Tree
Structure together. ’It then passes this linktable to the initialization of the Cone Tree
Structure. An earlier version initialized the Cone Tree Structure first using the
symboltable as a reference and then constructed the linktable to be only used in the
graphing function for fast rendering access. This method was found to be slow when
constructing the Cone Tree Structure so a better way is to initialize it by using the
linktable instead of the symboltable. This technique resulted in huge performance
differences in the construction of the Cone Tree Structure and in a good software
engineering practice. In case the symboltable is changed, only the Cone Tree Interface

would need to be updated. So in the current version, The Cone Tree Interface passes the

31

linktable to the Cone Tree Structure to initialize it and to build up the Structure

corresponding to the symboltable.

3.21 The Tree Graph

The Interface then performs some internal computations and sets up a graphing
function to graph the whole tree similar to any basic OpenGL graphics function. This
function, when called with some attributes such as size, should display the Cone Tree
Structure in 3D using OpenGL. This function is straightforward in its graphing procedure
because the nodes stored in the Cone Tree Structure have all been assigned a 3D position
in space. After a node is graphed, it is linked by a straight line to its parent using the
parent’s position. The graphing function also takes care of displaying statistics as colors
in the graph. The graphing function has three attributes. The first attribute called the
radius is used as a scale for the whole graph. The second attribute, the object size,
determines the size of the object, currently a cube, representing a node in the tree.
Previous experiments showed that a cube is one of the fastest objects to render versus
other 3D objects. And finally, the last attribute, called labels, displays the node id which
is the node’s index in the array. The node names are not displayed in this function
because they use a lot of processing, take too much graph space, and make the graph very
slow to interact with. Other ways that display nodes names will be discussed later in this
thesis. The Tree graphing function uses color to help users in graph exploration. Using
color, the user is able to easily identify and recognize important parts of the tree. The
basic color model used is divided in two parts. The first is the node color. This color is
given only by the node’s depth in the tree. The top node has a green-blue color, the

bottom node has a pure blue color, and the middle nodes are given colors according to

32

their position in the tree. The second is the edges colors. The edge colors which are
clearly easier to distinguish than node colors because they occupy more space in the
graph are used to display some statistics such as the largest node and its depth. The colors
would range between dark red for the largest node in the tree to very light red for the
smallest. This color is combined with equal green and blue colors defining the depth of
the node. The edges colors are based on the statistics of the parent, so all the edges of one
parent are displayed with the same color. This makes the cone of the largest deepest node

appear in dark red and that of the biggest node closest to top being close to white.

3.2.2 OpenGL Picking

The same function discussed above also implements OpenGL picking. Picking is
a keyword for object selection using an input device such as a mouse. A user picks
something when he clicks on it or when the object is the nearest in the area of selection
with respect to the user’s viewpoint. The Cone Tree Interface has two rendering modes.
The first is GL_ RENDER where the graph of the Cone Tree Structure is displayed as any
static object that can be manipulated through standard modeling transformations. The
second is GL_SELECT where the Cone Tree Structure is displayed as it would be for
GL _RENDER but with identifier assignments to selectable objects. glLoadName() is
called for each object that the user can select. When the Cone Tree Interface is set with
RenderMode() to GL_SELECT, the graph is drawn in selection mode as described and
this makes it easy for the picking matrix to interpret the exact position of the node the
user picked. Usually picking is called only once when the mouse button is clicked, but it
is up to the driver program to ensure that the right rendering mode is set. When a node is

selected by the picking mechanism implemented in OpenGL, a blue sphere is drawn

33

around the picked node in the graph and its label is activated to make it easy to be

distinguished in the whole tree.

3.2.3 Local Node View

Another main function available in the Cone Tree Interface is the graph of a
single node (local). However, this graph is not a graph using the Cone Tree Structure
because of multiple inheritance in which very significant information is lost when the
strict hierarchy is created. Therefore this node graph needs to be graphed in a different
layout than the Cone Tree layout. A simple layout is used supposing that the graphed
node is displayed in the middle of the window with two cones one heading upwards and
the other downwards. The upwards cone represents the parents of the node, in case of
only one, that parent is drawn right above the node being graphed. Similarly, the
downwards cone represents the children of the node. The graph of a node also uses the
same color model as the tree graph. This function is also used as one whole object that
the user can manipulate such as any standard OpenGL object graphing function. The
graphselectednode() function uses the graphnode() function which uses the Local View
layout described to graph the selected node that was picked using OpenGL picking. Some
useful set and get functions are also available to help the user get important information

used for graphics and maintenance.

3.2.4 Node Searching

The last important feature the Cone Tree Interface holds is the search function
where two kinds of searches can be done. The first is using the requested node id. This

search only checks if the requested id exists in the symboltable and, if it does, it sets it as

34

the selected search node. The second type of search is using the node name. This search
tries to find the requested string as a name or as a synonym and sets the node found that
holds that name or synonym as the selected search node. The search node function
returns an information string that could be used to display the status of the search. For
example, if a node is found to contain the requested string, a message would be returned
saying: “Node with ID 345 is found to contain string...". If a search result is found, it is
assigned to the Cone Tree Interface which changes the tree graph; a red sphere is put to
encircle the selected search node. The Cone Tree Interface is considered to be a bridging
class between the Cone Tree Structure and the Grapher which will be discussed in the

following section.

35

4 The Grapher

To display the graph and manipulate it interactively, a component that takes care
of graphics and user input, called the Grapher, was implemented. It has six main parts: a
main view window called Taxonomy Visualization, a controls window containing some
interaction capabilities to the main view, a tool called the Compass, the Local View
window, the Information window along with the Console, and, finally, the driver
program.

When explorers are wandering in some region, they basically need three things to
carry with them; a compass, a map, and some description about special places they may
encounter in that region. This metaphor is used here in our project. The main view and its
controls represent the real world or region with the explorer being able to move to where
he wishes. The Compass combines two tools for the explorer and these make him aware
of where he currently is located and how the whole region looks like. The Information
and Local View windows give the ability to the wanderer to get relevant information and

a local detailed view about points in the space that he is interested in.

4.1 The Main View

The main view window is the main visualization window that the user interacts
with using the main view controls. This window is rendered using OpenGL and is
capable of visualizing more than 100,000 nodes with their edges at a rate of Sfpson a 1.4
Centrino processor with 512MB RAM and an NVidia GeForceFX 5200GO running

WindowsXP®. An example can be seen in Figure 13. With OpenGL, it basically relies

36

on the graphics hardware and how many million texels it can render per second. Texels is
a term for texture elements. The main view works best in full screen mode were OpenGL

has control over the whole screen; there are no graphical tasks to be given to other

processes.

.,
S
-
s
™,
%

g
o
g

"

T
oy,
o
LXE3
-
.,

T
=
-
=2
X,
.
.
'y
3
N
\
:

Figure 13 : Main View of “galen.tree”

The main view sets up the viewing volume and the transformations needed for the user to
interact with the graph. It has an implemented camera structure prototype that takes care

of camera style movements used from CUGL, Concordia University Graphics Library

37

[35]. Although, this camera style movement code is still a prototype and under test, it is
still useful for our project. The main view also has special capabilities when nodes are
selected using a search or using OpenGL picking. The main view directly centers the
selected node so that the user would know what he selected and this would be a shortcut
to easier navigation to that node. With some appropriate transformations, the main view
uses a single call to the Cone Tree Interface class, specifically to the graphConeTree()
method with the appropriate attributes it needs. This allows us to give users the right view
they are requesting or expecting from the interface. The graphConeTree() function as
described above is a linear function that processes each node once and, using the node’s
statically calculated position in space, renders it along with its edge that is connecting it
to its parent. The selected and searched nodes are distinguishable in the whole tree since
they appear by specially colored spheres rather than cubes along with their visible
automatically activated labels. In Figure 13, the main view shows a focus on selected
node #1836 of “galen.tree” which yielded in a total number of 2,752 nodes graphed at a
rate of 50fps. The tree graph could have an overall cone view with the top node being on
the top of the cone and all sub cones forming the rest of the cone. The nodes are
displayed as cubes and the edges are direct lines connecting the node to its graph parent.
The graph parent is surely one of the parents of the node. The right parent for a node is
selected when the node sequence is created (see Cone Tree Structure). Finally, this
function gives a dynamic fps rate to keep the user informed about the current rendering
complexity of the graph. This rate is recalculated at every single display procedure that

OpenGL performs and is shown in the title bar of the main view window.

38

4.2 The Main View GLUI Controls

GLUI, Graphics Library User Interface, is totally compatible with GLUT, Graphics
Library Utility Toolkit. As explained in [8 and 9], it is platform independent and works in
conjunction with GLUT. The main view GLUI controls window is totally built with
GLUL It implements user interface that only affect the main view window explained in
the previous section. This window has four main interaction sections: the graphics
controls section, the switches section, the search section and the application controls
section. The graphics controls section presented in Figure 14 has user interaction

controls to allow the user to interact with the tree graph in a logical way.

Figure 14: The GLUI Controls Window

These controls include rotations and translations of the whole graph in all the respective
axes. Rotate Focus, however, does not work unless a focus or node is selected using
picking. Buttons to scale up or down arc also available to the user if he would like to
have a fast general view of the structure of the tree. Movement here is a control that
affects all graphics controls in their movement interval. When Movement is pressed, the
movement interval is multiplied by 10. This could be useful in very large graphs. Pick
Node is a control that exploits OpenGL picking to pick a labeled node using the mouse

click. When a node is effectively selected, the main view window translates this node to

39

the middle of its screen. Moreover, the Rotate Focus, Trace to Node and Goto Focus
buttons are enabled. The picking matrix selects all nodes that appear within a small arca
under the cursor of the mouse click and stores all hits in a special array. The node that our
system selects would be the nearest node to the viewer in terms of depth at that area
under the mouse cursor. For the time being the Goto Focus and Trace to Node buttons are
not fully functional. The Goto Focus button uses the camera class in CUGL to smoothly
animate the translation sequence from the point of start to the point of finish when a node
is picked. The Trace to Node button should distinctively color edges that form a path to
the selected node from the top node.

The switches section holds controls for general windows options. These include:
the reset view button, the labels button and the Free Fly Mode button. The reset button is
supposed to reset and center the view in the main window wherever the user is and
whatever he is trying to do. This is a very useful button for lost users. This button
basically reset all graphics parameters to their initial values. If a node is picked, this node
will be centered and viewed from the top when the reset button is clicked. If no node is
selected, the main view window will show the initial view where the eye is somewhere
on the positive y-axis and pointing to the origin of the graph. The (0, 0, 0) position or
origin is midway between thé top and the bottom nodes. The Labels button switches the
labels in the main window on and off. This is a nice feature for small graphs to directly
know the nodes and what they are connected to, but is not advised in large graphs
because of its huge impact on frame rate performance. For this reason, the Labels are
switched to off initially. The label of a node that appears next to its cube representation in

the main view window is basically its unique identifier. The last switch is meant for users

40

who would like to manually explore the tree without having to use the GLUI controls
window. When Free Fly Mode is enabled, the main view window uses the mouse and the
arrow keys to perform user requested actions. The mouse rotates the graph and the arrow
keys use the camera class to move in the space. More keyboard controls are available and
arc explained in the Console window that accompanies the application. Basically
everything the GLUI controls can perform is tunneled down through a keyboard function
with its assigned keyboard switch to perform the action. So, for example rather than
clicking on the pick node button, users can just tap the ‘p’ key on the keyboard and this
would do the same thing. This is done to give the user an advanced and probably faster
way to navigate through the structure. This is also very useful in full screen mode where
interaction is much smoother due to OpenGL being in control of the whole screen.

The search node section contains a radio group to select the method of search, a
text box input field to allow users to enter information relevant to their choice in the radio
group, a search button, and, finally, a select button. There are two search mechanisms
currently available: ‘by id’ or ‘by name’. By id basically means that users are expected to
enter a number representing the index of a node. Using the input, the system will search
and get the node having this number as its identifier in the list. The id of a number is
basically its index in the array. ‘By name’ means that the user is expected to enter a string
that identifies a node using its name or one of its name’s synonyms. When the search
button is clicked, the system scarches all strings it holds for the requested set of
characters. If a node is found, the searched node is assigned to the Cone Tree Interface

which in its turn renders the tree using this extra attribute. The select button would then

41

be enabled to allow users to assign the searched node as a selection to the system. Users
would then be able to perform similar actions as if they selected the node using picking.
The application controls section holds controls to perform general application
actions such as opening a new file and quitting the application. The Exit button simply
cleanly shuts down the application and erases all used memory. The Open button has the
ability of opening another .tree file, parsing it, and graphing it. However, this control is

currently disabled.

4.3 The Compass

The Compass is a window that keeps a general view of the tree and the position of
the user so that he would always know where he currently is and what he is looking at.
As explained before, an exploring user needs this kind of tool to be able to easily
navigate in a huge space without getting lost. The Compass gives a general view of the
whole layout of the graph tree along with an object representing the eye position of the

viewer (user) and where it is heading (focusing at).

By

Figure 15: The Compass Window (local) Figure 16: The Compass Window (general)

42

Figure 15 shows the focus and the eye position along with the surroundings. Figure 16
shows a general view of the same tree with the eye position marked as the blue dot. The
Compass window has some independent controls which allow users to customize the
view of the window using the arrow keys and the mouse. The mouse rotates the Compass
display. The arrow keys translate it in the global x and y planes. The page up and page
down buttons scale the display in the Compass window to give users more control on the
details they would like to see. The Compass is a very useful tool to lost users since by
just looking at it, they would know where they are in the space and what they are looking
at and with some easy Main View manipulations, the users would adjust the view to point

to what they need to see.

4.4 The Local View

Along with the Compass window, users need one more important tool that
provides a detailed description of what they are looking for. The Local View uses the
information captured at compilation time of the taxonomy to provide some important but
omitted details while drawing the Cone Tree. The Local View is basically made of three
parts: the parents, the focused node, and the children. The backbone structure of this view
is basically two cones where one is inverted on the top of the other corresponding to the
same reasoning that a node can have one or many parents and a node may have one or
many children as shown in Figure 17. We have mentioned before that a node may have
no children; in this case, we link the node to the logical “bottom” node and it is
considered to have one child. If a node has one parent, then this parent is drawn in the

center of the base of the inverted top cone. If the node has more than one parent, these are

43

drawn on the circumference of the base of the inverted top cone. The same rules apply to
the bottom cone. The resulting layout would be logically easy to understand and, hence,

users would be comfortable in discovering relationships in the graphed tree.

Figure 17: The Local View Window

This view uses the colors used in the main view corresponding to each node to clearly
identify relationships between the nodes. Therefore, if a node has two parents, those
parents will have the same colors assigned to them in the main view window. This
presents important information, for example, a node that has a dark and light parent
means that this node has a path in both the top part and bottom part of the tree. Therefore,
processing would lead to this node in two different ways. Similarly, the children nodes
are graphed on the base of the bottom cone using the same properties. A node can have
children which are not visible in the tree graph. As mentfoned above, no node can appear

twice and, in case of multiple inheritance, a node would exist under two parents. The

44

main view shows this node under the parent that is assigned to it using the sequence list
described in Section 3.1.1 of this thesis. On the other hand, when looking at the Local
View of that node, both parents will be apparent each with its respective properties with
colors indicating their positions in the tree. And when the Local View of the parent is
viewed, this parent will hold all the children including the one that graphically belongs to
another parent up in the tree. Graphical information is not considered to be enough for
text based datasets. Name strings and statistical data are considered important. This is
why an information window and a console are explained in the next section to provide

further useful information to users.

4.5 The Information window and the Console

The Information window is a graphically generated text window that displays text
using OpenGL and GLUT. The first line in the Information window provides information
about the selected node. The last line in the window is considered to be a status line that

informs the user about the action that was currently taken and some properties.

Selected Node: 1936 | 5elected Node: -1

Wods narie = 01387 Total nucnber of nwides graphed: 2752

SymnyToS: LR TOF has 12 childzen
NONE EOTTOM has 1624 parerts
urabey of Childeén =T]

Children’s Nares =

1363 C1380 C3249 C2F50 C2251 C2357 01253
Turobes of Pazeris = 1

Pavents” Names | =

C1386

Labels are nosw Tuyried oo

Figure 18: The Information Window

45

Two screenshots of the Information window display in different situations are shown in
Figure 18. When no node is selected, the Information window displays the status of the
tree, including the total number of nodes, the top node’s children number, and the bottom
node’s parents number. When a node is selected, information about that node is
displayed. The selected node ID on the first line changes to display the corresponding
node ID of the selected node. If no node is selected, -1 is displayed to say that no node is
selected. The Information window then continues to present users with information about

that node.

parzed 2080 nodes...
gparﬁed 2588 nodes. ..

Parse Suooesded Sycoess
i The parsing time is: |,

| Thank You for using

Pedro’s Premiere Tadnonomy Parser
built with Bison Flex 1.5

Initiating ConeTree...

Initiating Link Table with 2?52 Rodes. cavunuuun
Generating Cone Tree Lavout.

Sort ing node sequence

Syncronizing Children

Comput ing node positions...
[Comput ing radivzes
Caloglationg positione c.owessesesvanssnnnn

The Cone Tree Bulld took: B.048seos

begin
Click and move House to move Model...

| 'ht to show hull
| 'c" for sphere layout
; ’[' *1* to scale model
£ to multlpl% movement by 18
" oto reset a setttnga
' to togale labe
* for picking
5" for searching
d’ for tracing to selected node
J' to navigate to selected nodereshaping...

T
|

Initializing Cone Graphic
| Tamonory Ulbuallzattons... ‘28,818 secondsoframe

Figure 19: The Console Window

The node’s string name is displayed then any known synonyms are written below. The

number of parents that the selected node has and a list of the string names of those

46

parents are then displayed underneath. Similarly, the children number is displayed along
with a string list of those children. The Information window is still a basic window that
uses OpenGL capabilities to display text. This is why a more elaborate information tool
that follows the progress of the application, its preprocessing, and its status is used. The
Console is the command line tool that the application uses to run. The Console is an
operating system tool and is shown in Figure 19. The Console window, even before
graphing and using OpenGL is able to provide the user with some information about the
current state and processing and about the preprocessing status. The Console has been
implemented with progress fields that inform the user about each 3% of the application’s
sub-processes. The Console also provides information about current actions and keyboard
controls that users can use to interact with the graphics without having to use the GLUI

window provided.

4.6 The Driver Program

The application uses a driver program that first takes the path and name of a file
from the arguments given to the program and then assigns it to the constructed parser.
The parser, when called, processes this file according to the rules assigned and performs
actions on found patterns. The parser creates a global symboltable that would be used
throughout the application. The driver program then passes a reference of the
symboltable to the Cone Tree Interface which in its turn creates the Cone Tree Structure
and binds the nodes in the symboltable with the corresponding nodes in the Cone Tree
Structure. Creating the Cone Tree Structure takes three steps: assigning the node

sequence to be used to graph the layout, finding the radius of each node, and computing

47

the position of each node in 3D space. All these are done using the Carriere and Kazman
algorithm as explained thoroughly in Section 3.1 above. When the Interface has finished
all processing and computations, the driver program creates the graphics window along
with its control tools and information tools and the graphics is ready to interact with. If
any problem while executing these processes is found, may it be logical or an error in
processing, the driver program specifies the error encountered and exits by returning

control to the operating system.

48

5 Stress Generator

The Stress Generator is an application that was constructed specifically for this
project. The goal of this application is to provide synthetic datasets to give to TViz and
test its capability to process very large datasets with random distribution of nodes in the
logical tree. The Stress Generator has three input variables. The first is the token name
that the user wants the node to start with; this can be one or many characters. All nodes
created will start with this token followed by an automatically generated number that
makes the node unique. Second is the branching factor which is a number that designates
the maximum allowed number of children for a node. And third is the list size which
when multiplied by the branching factor, gives the effective size of the dataset that will
be created. The application starts by creating two static arrays; one Boolean and the other
Integer. The Boolean array keeps track of nodes which have reached their branching limit
and those not. The Integer array keeps track of how many children each defined node has
been assigned. Since defining nodes with at least one parent is sufficient to render a
dataset acceptable and conformant to our regular grammar, then only that property is used
to make our program simple. Each node is assigned a single parent from the previously
defined nodes. Choosing from the previously defined nodes preserves the correct overall
logical connection of the entity created by eliminating any loops or cycles that may
occur. The Integer array is updated accordingly by incrementing the chosen parent’s
children number by one. Upon each iteration cycle, the number of children that would be
assigned for each parent is randomized and, if that number is reached, the Boolean array
is updated and another parent is chosen. If the randomized number is not reached, the

node 1s assigned a parent from the previously defined parents and the Integer array is

49

updated. When all nodes in the defined interval are processed, the Boolean array will
have false values for nodes which have no children assigned. Therefore, we simply assign
them as parents of the bottom node which is written as the last statement in the dataset.
Using this technique, the Stress Generator is able to create very large datasets in a matter
of milliseconds. The synthetic datasets were at first manually inspected for their
underlying logic and were found to be totally compatible with our taxonomy datasets.
However, one clear issue resulted in a delay in the processing time when the bottom node
in large files is reached by TViz for processing. Because the number of connections that
link two nodes together created by the synthetic generator is equivalent to the total
number of nodes in the entity and that defined nodes are given more chance than those
that are not defined yet, the Boolean array will hold a certain number of false values with
respect to the whole entity. In the worst case, we would expect a massive n-1 parents to
TOP if the branching factor is large enough. Therefore, the bottom node results in a very
big string that has to be parsed by TViz. This huge string takes a bit of time using our
Bison Flex parser. But eventually, the result will always be correct. In real taxonomy
datasets, such huge bottom nodes are not common which make the parsing of the file
reasonably faster. The user could clearly distinguish a stall period at the end of a large
synthetic dataset before the parsing is announced as completed. This is not often the case
with real sets. We can deduce from this fact that Bison Flex parsers work best with small
strings. The Stress Generator is a very useful test tool that would test our research
application and its limits. A test case has been formulated using the Stress Generator in

the following section.

50

6 Test Case

A test program has been created to give test results and performance outputs for a
set of inputs. This test program is a basic C++ program that creates datasets using our
Stress Generator and gives the created dataset to TViz. The test program was run on a

medium-end computer having the properties shown in Table 4.

Table 4: Test Node Specifications

While processing, TViz sent its output to a file rather than to the console and this
collection of output files were then manually processed to yield in performance Table 5.
The table shows that TViz is a reasonably fast tool for generating graphs from the

synthetic data created considering the huge datasets given to it. The large strings

51

Processing time (secs)

encountered while parsing the bottom node definition as explained in the Stress
Generator section yields in some rundown in the performance of the Bison Flex
generated Parser. Real datasets are surely to be even faster than the results declared in

Table 5.

Processing Times in seconds

3000 PR ”f’””'"”“"‘f“fff”w*?‘”f””“f“"w””wm'““”“’“"MMW"”'W"""’“W”WW'

2500

2000
- Parsing times
1500 4.
~, ~#-Cone Tree Build time
1000 4

500

0 20000 40000 60000 80000 100000 12
Number of nodes

o

000

Table 5: Performance Table

An application is said to be usable if it satisfies the display frame rate
performance standards for interactivity. The minimum acceptable frame rate per second
or fps for a smooth interaction is 12fps. Table 6 shows the frame rate performance on our
test hardware. It is clear that our algorithms run much faster than the parser and this is
relative to the structure of the input files as described earlier, the carefully optimized
processes used in our algorithms, and, finally, to fast memory access in contrast to hard

storage devices such as hard disks that are used by the parser.

52

Frame times

0.25 i f bt i R s E]
g 1 !
I
| I
] :
P I
02 L !
]
I
/| |
]
I
3 1 ‘
] 0.15 3
— I
o / : ‘
I
E / | —e—Frame times
L r.y[, ; ! ne times
3 1
a
g 0.1 v vf]‘
i: 1
JJ |
I
I
i
0.05 - :
I
i
I
o4 I
I
t
0 +
0 20000 40000 60000 80000 100000 120000

Number of Nodes

Table 6: Frame Rates

Table 6 shows that our application is usable with very good performance with up
to 40,000 nodes datasets. 100,000 nodes give poor performance but the application is still
considered usable since it responds at a Sfps rate. One can immediately notice the
stepping in this table and this is due to the graphics hardware that has a static streaming
capability. If the hardware is not able to stream all the required information in respective
frame time, it automatically jumps to a lower frame rate and this next frame rate can
handle a couple more tens of thousands of polygons. The frame rate is strictly dependent
on the hardware. With better graphics hardware, a better frame rate will surely occur and

hence better user interaction.

53

7 User Output

This project was distributed to a set of users to be tested and some feedback was
returned. The main concerns of users were basically expected because of the domain of
application of this system. Many users did not understand what the application serves for
and why it should be used. The application is intended to be used by people who design
and construct ontologies; in other words, for specialists in the field. People who do not
know about Semantic Web and ontology design would have hard times guessing what the
application would be used for. This document could be used as an introduction to what
this application does, why it is used for and how it works.

Some interface issues were suggested as well, for example, the use of multiple
windows versus the whole application being integrated into a single window. The way it
is currently done was explained to be essential because advanced users would like to have
a full screen view of the tree rather than being docked in a window. Moreover, this allows
the user to have separate control over each window. We received good feedback about
the GLUI Controls window as well as the presentation and the professional look of the
application as a whole. The GLUI Controls window is a straight-forward interface that
allows users to directly understand what each control does and is used for. The colors and
the layout of the different windows of the application make it visually configurable and

appealing suiting both professional and amateur users.

54

Figure 21: TViz: A Taxonomy Visualization Tool 2

55

8 Future Work

We categorized the improvements into three categories: the research, the layout,
and the interface.

Concerning research, Cone Trees have proved to be effective for the hierarchical
visualization of large datasets. Regarding the Carriére and Kazman algorithm and the
Cone Tree algorithm in general, there was no reference in any of the papers read about
how to graphically limit the tree in 3D space and not letting it grow as the datasets grow.
In our study, the whole tree currently is static in its depth. The distance from the top node
to the bottom node is set to “2” for all trees. All nodes within the tree have a depth
position between ‘-1’ and ‘1° where the center of the tree is considered to be at ‘0°. The
initial view of the tree when the application is started is in the direction of ‘0’ and having
‘-1’ and ‘1’ viewable in the view window. However, making the tree statically bound
graphically is a more difficult problem. The tree computes the radius of a given node
using the number and the size of the radii of each of the nodes that are children of this
node. Thus, if we want to make the tree graphically bound by width, we have to carefully
choose the initial radius set to the ‘BOTTOM’ node. Some experiments were discussed at
the end of Section 3.1.2.2; however, it remains an open problem to find a suitable value
depending on the layout of the tree being processed. This initial radius should also keep a
balance between the height and the width of the tree without visually distorting it.

For very large instances in the layout, the same Cone Tree layout would be used
but with a hemisphere rather than a circle base at the bottom of the cone representing
cach node. This would surely handle more nodes in a smaller space. Also, this would be

especially useful if a lot of those children nodes had one or no children. The layout of the

56

tree as explained in the Cone Tree Structure section is built in a top-down manner by
graphing the children of the top first and then their children and so on. This layout can be
easily changed to a bottom-up approach that gives a different view of the same tree. This
would be interesting in the case that sensitive information and statistics can be found in
one of those layouts. So users would appreciate it if they could see the same tree in a
different view or perspective. Also, the Tulip improvement to the Carriére and Kazman
algorithm explained by Auber in [16] could be used to find the smallest enclosing circle
and would provide a better compactness of the tree. Other kinds of layouts which are not
cone tree layouts can be implemented such as the hierarchical hyperbolic tree layout
which was researched and implemented in H3 by Munzner [11].

The interface of TViz uses OpenGL to perform graphics. OpenGL is a fairly low
level language. The use of advanced graphics techniques such as the ones used in gaming
and specifically modeling would be very efficient in visualizing large numbers of
polygons. As mentioned, our layout represents a node by a cube and its link to its parent
by a straight line. Some advanced graphics structures such as Binary Space Partitioning
trees, or BSP trees, which minimize the number of elements to be drawn by not drawing
any non-visible elements (not passing it into the graphics pipeline) would certainly give
better performance in very large trees when the user is focusing on a specific part of the
tree. Applying a texture to each cube object that shows its name or label would also lead
to a good performance upgrade since, in our current implementation, each character of
the label is rendered alone. Modern graphics hardware can apply textures faster than they
can render the object being graphed. Another performance improvement when users are

viewing the tree at large would be to approximate the look rather than drawing all the

57

clements of the tree which are most probably not visible each by themselves. Another
method for testing if a node lies in the viewable area is to set a bounding box, or a
frustum culling technique, configured by the graphics window and by the tree settings.
This bounding box would set bounding plane values and would omit to draw any node
and its children that lie outside the bounds of the viewing volume. This works similarly to
the clipping planes to the viewing volume that are used in OpenGL’s graphics pipeline.
The only difference is rather than giving all the polygons to OpenGL and then letting it
manage the view, we are reducing the number of polygons sent into the pipeline and this
gives more performance to the application when viewing.

The Compass is a very useful tool as explained above. Since it provides an
overview of the whole structure, users should be allowed to directly change their position
by just specifying where they want to be on the Compass map. With a single mouse click
the user can be placed at the point or within the proximity of the point they wish to be.
This could also be done by smooth transition so that users would not get lost by the
rapidly changing perspective and gives them a better understanding of the structure of the
tree.

The Information window needs to be more dynamic and more text based.
Currently, the window is rendered with OpenGL by using an orthogonal projection and
text prints on raster positions on that window. That should be changed to a console-
similar window that handles text or a sheet window that graphically shows information
such as 100 children names for a selected node.

The interaction and malleability in the Cone Tree graph function is not optimized

and could handle a lot more than it does now. Rotations of parts of the tree are

58

implemented now as rotations for the whole tree at the focused point. This makes the
focused point fixed while the rest of the tree is rotating around it. A better
implementation would be to include interaction capabilities in the body of the graph
function and this would allow a rotation independent of the whole tree, in other words,
only a sub tree would be rotating when a rotation of the focus is executed. This would be
fully compatible with the Carriére and Kazman algorithm, since the rotation would not
affect other subtrees. Other capabilities could also be included in the function body such
as a choice of color to customize the appearance and a set of user operations imbedded in
this function that allow users to have specific control at the time of drawing a specific

node or edge.

59

9 Conclusion

The fruit of our research, TViz, is considered to be very useful and the tools
implemented allow users to browse any taxonomy. Specifically, Cone Trees are a good
way to represent hierarchical data since they provide a logical layout that embeds the
hierarchy. Although faster applications have been implemented for other types of
datasets, the user interface tools such as the compass used in this research are neither
implemented nor discussed in those applications as to date. The use of taxonomy
datasets, Compiler Design, Cone Trees, and OpenGL made TViz a unique application
that would be used on different platforms to explore reasoning and interpretations of
ontologies. TViz is expected to be used by Industry, corporate and individuals who would
make use of it to explore their ontologies and TBoxes. Semantic Web is becoming more
and more popular and has already taken steady places in important industry positions
such as mechanical part searching, document searching and so on. TViz is capable of
providing a visual information catalogue to browse the processing of the RACER
semantic engine which is both efficient and fast. TViz does not need any high end
machine and currently provides versions for Microsoft Windows®, Unix/X-windows,
Solaris and Mac OS. A high end machine would give even better results and faster output

in terms of both preprocessing time and display rates for large structures.

60

10 References

[1]
(2]
(3]
(4]
(3]
[6]
[7]
[8]
(9]
[10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]
(18]

(19]

A. A. Aaby, “Compiler Construction using Flex and Bison”, Walla Walla College,
Version of September 15, 2003.

V. Paxson, “Flex: The Fast Scanner Generator Manual Version 2.5”, the Regents of
the University of California, 1990.

S. Decker, M. Sintek, “The Semantic Web Portal”, www.semanticweb.org, internet
reference, 2003.

W3 organisation, “Semantic Web”, www.w3.0rg/2001/sw, W3 Consortium, internet
reference, 2004.

P. Mutton, J. Golbeck, “Visualization of Semantic Metadata and Ontologies”, in
Proceedings of the 7" International Conference on Information Visualization,
IEEE, No. 1093-9547, 2003.

A. Telea, F. Frasincar, G. J. Houben, “Visualization of RDF(S)-based Information”,
in Proceedings of the 7" International Conference on Information Visualization,
No. 1093-9547, 2003.

A. Zarrad, “The TBoxEditor”, Master Thesis, Concordia University, 2004.

D. Shreiner, M. Woo, J. Neider, T. Davis, “OpenGL Programming Guide”, Fourth
Edition, OpenGL Architecture Review Board, Silicon Graphics, 2004.

P. Rademacher, “GLUI: A GLUT-Based User Interface Library”, Manual, Version
2.0, June 1999.

T. Munzner, “Interactive Visualization of Large Graphs and Networks”, PhD
dissertation and slides, Stanford University, June 2000.

T. Munzner, “H3: 3D Hyperbolic”, in Proceedings of IEEE Symposium on
Information Visualization, 1997.

B. Johnson, B. Shneiderman, “Tree-Maps: A Space-Filling Approach to the
Visualization of Hierarchical Information Structures”, in Proceedings of IEEE
Visualization, pp. 284-291, 1991.

O. Kersting, J. Dollner, “Interactive 3D Visualization of Vector Data in GIS”, in
Proceedings of ACM GIS "02, pp. 107-112, 2002.

G. Robertson, S.Card, J. Mackinal, “Cone Trees: Animated 3D Visualizations of
Hierarchical Information”, in Proceedings of CHI "91, pp. 189-194, 1991.

J. Carri¢re and R. Kazman, “Interacting with Huge Hierarchies: Beyond Cone
Trees”, IEEE Symposium on Information Visualization, pp. 74-81, 1995.

D. Auber, “Tulip — A Huge Graphs Visualization Framework”, PhD thesis,
University Bordeaux I, France, 2002.

S.H. Hong, “COMP4408 Information Visualization”, course slides, University of
Sydney, Australia, 2004.

H. Koike, H. Yoshihara, “Fractal Approaches for Visualising Huge Hierarchies”, in
Proceedings of 1993 IEEE/CS Symposium on Visual Languages, pp. 55-60, 1993.

J. Lamping, R. Rao, and P. Pirolli, “A Focus+Context Technique Based on
Hyperbolic Geometry for Visualizing Large Hierarchies”, in Proceedings of ACM
SIGCHI 95, pp. 401-408, 1995.

61

[20]

[21]
[22]

(23]

(24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]
[33]

[34]

[35]

K. Lau, R. A. Rensink, and T. Munzner, “Perceptual Invariance of Nonlinear
Focus+Context Transformations”, in Proceedings of the First Symposium on
Applied Perception in Graphics and Visualization (APGV 2004), pp. 65-72, 2004.
G. W. Furnas, “Generalized Fisheye Views”, in Proceedings SIGCHI ‘86, ACM,
pp- 16-23, 1986.

M. Sarkar, and M. H. Brown, “Graphical fisheye views”, Communications of the
ACM, Vol.37 No. 12, pp. 73-84, 1994.

C. Ahlberg, C. Williamson, and B. Shneiderman, “Dynamic Queries for
Information Exploration: An Implementation and Evaluation”, in Proceedings of
CHI 92, pp. 619-626, 1992.

B. Salomon, M. Garber, M. C. Lin, D. Manocha, “Interactive Navigation in
Complex Environments Using Path Planning”, Communications of the ACM, No. 1-
58113-645-5, pp. 41-50, 2003.

S. Benford, I. Taylor, D. Brailsford, B. Koleva, M. Craven, M. Fraser, G. Reynard ,
C. Greenhalgh, “Three Dimensional Visualization of the World Wide Web”, ACM
Computing Surveys, Vol. 31, No. 4es, 1999.

H-Y. Lee, H-L. Ong, E-W. Toh, and S-K. Chan, “A Multi-Dimensional Data
Visualization Tool for Knowledge Discovery in Databases”, in Proceedings of
IEEE Conf. on Visualization, pp. 26-31, No. 0730-3157, 1996.

R.P. Klump, J.D. Weber, “Real-Time Data Retrieval and New Visualization
Techniques for the Energy Industry”, in Proceedings of the 35" Hawaii
International Conference on System Sciences, IEEE, 2002.

Q. V. Nguyen, M. L. Huang, “A Space-Optimized Tree Visualization”, in
Proceedings of the IEEE Symposium on Information Visualization, pp. 85-92, 2002.
P. Mutton, P. Rodgers, “Spring Embedder Preprocessing for WWW Visualization”,
in Proceedings of the 6" International Conference on Information Visualization,
No. 1093-9547, 2002.

E. Weippl, “Visualizing Content Based Relations in Texts”, IEEE, No. 0-7695-
0969-X, 2001.

T. Bladh, D. A. Carr, J. Scholl, “Extending Tree-Maps to Three Dimensions: A
Comparative Study”, in Proceedings of the 6" Asia-Pacific Conference on Human-
Computer Interaction (APCHI’04), 2004,

Michael Daconta, Leo Obrst, Kevin Smith, The Semantic Web, Wiley Publishing,
pp. 166-167, 2003.

B. Shneiderman, “Treemaps for space-constrained visualization of hierarchies,”
personal paper, December 26, 1998, updated May 18th, 2004.

Atta-ul-Manan Khalid, “OilViz3D”, University of Manchester, akhalid at cs dot
man dot ac dot uk, personal communication, supervised by Dr. Ulrike Sattler,
November 2004.

P. Grogono, Concordia University Graphics Library resources, Concordia
University, Department of Computer Science, release of May 10, 2004.

62

