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ABSTRACT

Implicit Geometric Representation of Gas Turbine Blades For Optimal Shape

Design

Tarek Mansour, M.A.Sc. Student

Concordia Unviersity, 2005

Shape optimization requires proper geometric representation of the blade pro-
file; the parameters of that representation are usually taken as design variables in
the optimization process. Therefore the geometric model must be robust, flexible,
efficient and accurate in representing both the global and local design spaces in order
to obtain a successful optimization.

This work is concerned with the development and integration of two geometric
representations of turbine blade profiles that are appropriate for aerodynamic opti-
mization. The first model is the Modified Rapid Axial Turbine Design (MRATD)
model where the blade is represented by five low-order curves that satisfy fifteen de-
signer parameters; this model is suitable for a global search of the design space. The
second model is based on a Non-Uniform Rational B-Spline (NURBS) parametriza-
tion that implicitly represents the MRATD profile and the implied designer pa-
rameters; this model can be used for a local shape refinement. The two models
are presented and are assessed for flexibility, accuracy and curve smoothness when
representing several typical turbine blade profiles. The models are also assessed
in terms of their effect on the blades aerodynamic performance as measured by the

pressure distribution along the blade surfaces. The usefulness of the MRATD model



is demonstrated in the global shape optimization of a subsonic cascade. The NURBS
parametrization provides a means to control the blade profile locally, e.g., the blade
curvature near a point smoothened by adjusting the NURBS control points and
corresponding weights defining the given region. Finally, a 3D blade design model
that uses the NURBS skinning technique is developed and assessed in terms of its
precision and smoothness. This 3D model sets the foundation towards developing a

robust scheme for 3D aerodynamic optimization.
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Chapter 1

INTRODUCTION

Progress in computer technology, as well as maturity of analysis and optimization
methods have made the optimization design process much more practical and readily
available for a growing number of industries. It is becoming an attractive alterna-
tive to traditional design methodologies that are expensive, time consuming, and
are strongly dependent on the designer experience and knowledge. Aerodynamic
optimization for turbomachinery applications, such as gas turbines, is of particular
importance for the aerospace industry since small improvements in aerodynamic ef-
ficiency and performance can translate into significant savings. An imperative step
in developing a practical and robust optimization procedure consists in developing

a suitable geometric representation of the blade profile.

The development and application of a geometric representation for turbine
blades is not a trivial task since turbine blades can have very diverse shapes de-
pending on the design requirements. For example, the turbine blade of a gas turbine
engine can have very high turning angles of up to 135°, the leading edge (LE) and

trailing edge (TE) can be either sharp (e.g., impulse blade) or round (e.g., inlet



guide vane); the profiles can also vary drastically in the spanwise direction due to
loss considerations as well as spanwise work distribution. Furthermore due to the
very high stresses that they must endure and the extremely high temperatures ex-
iting from the combustor, designers sometimes end up with very convoluted blade
shapes. It is a challenge to successfully formulate a representation that is simple,
yet highly flexible and robust so as to allow an aerodynamic shape optimizer to
automatically explore all possible regions of the design space and avoid unrealistic

blade shapes.

1.1. Aerodynamic Optimization Problems in Tur-
bomachinery

Generally, for aerodynamic optimization of turbine or compressor blades, the de-
signer may seek to maximize efficiency and/or minimize pressure ratio while meeting
the structural as well as the aerodynamic constraints (maximize aerodynamic load-
ing and minimize total engine weight). In order to accomplish this task, one must
have an optimization routine that is built on three critical elements: the geometric
model that approximates the blade profile and whose parameters are the design vari-
ables, the analysis tool based on which the objective function is evaluated, and the
optimization tool that drives the optimization process. Each element has a specific
task to accomplish and all three work in unison to reach the design objectives. If one
of the three elements fails in its task or is not suited for the specified optimization

problem, it is unlikely that the design objectives will be reached.

The optimization process consists of a loop starting from the original geometry

and iterating between different geometries in search of the optimal shape. It is the
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task of the geometric model to generate all these geometries. Depending on the
type of optimization (global or local), the design model has to be simple, flexible,

efficient, robust and accurate in order to be suitable for aerodynamic optimization.

Once a geometry is generated, the process control goes to the analysis tool
to compute the objective function. This can be a numerical solver that simulates
the flow in the blade passage and then computes the objective function based on
the flow field. However, it can also be an approximation model such as a Response
Surface Method (RSM), e.g., Artificial Neural Network (ANN), that would take a
specific geometry and compute the objective function. Usually, for an aerodynamic
optimization, what is sought from the analysis tool are the efficiency, the total
pressure loss, the mass flow rate, the pressure ratio and the inlet and exit flow
angles. It is to be noted that this is usually the most costly computation in the

optimization process.

Finally, process control goes to the optimization tool which is required in or-
der to search and locate the optimal design. It does so by modifying the geometric
model design parameters to generate different geometries. The optimization algo-
rithms that can be used are very diverse, although some are more appropriate than
others depending on the task. For example, global search techniques such as Ge-
netic Algorithm (GA) and Simulated Annealing (SA) are remarkably well suited in
locating regions in the design space.where an optimum would be found, and this
without getting trapped in some local minimum. On the other hand, they perform
poorly when they must locate the exact point of optimal design. In contrast, local
search techniques such as gradient search methods, Newton’s method and Sequen-
tial Quadratic Programming are very capable in locating local optima but usually

fail when searching for the global optimum. Usually, a combination of a global
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search method followed by a local search method is the ideal strategy in order to
successfully and accurately locate the global optimum design in a complex design

space.

1.2. Defining the Optimization Problem

In order to determine if a design is optimal, the optimization scheme computes an
objective function that must be minimized. The function is usually of the following

form:

F = wie, + waeg + ... + wpey, (1.1)

where F' is the objective function to be minimized, w; is a weight coefficient and ¢;
is the design objective. The optimization scheme can be single-objective (n = 1)
or multi-objective (n > 1). If it is single-objective, the weight coefficient can be
removed but when it is multi-objective, the weight coefficients need to be chosen

very carefully since this will have a significant impact on the optimal shape.

Further the optimization schemes can be single-point or multi-point. A single-
point optimization is required when the geometry is expected to perform optimally at
a single design condition. Conversely, a multi-point optimization is required when
the geometry needs to perform adequately over a range of design and off-design
conditions. A multi-point optimization adds some complexity to the problem since
the geometry has to be tested at multiple design conditions, increasing the number

of iterations required and expanding the design space to be explored.

Finally the optimization can be multi-disciplinary, that is, it seeks to optimize

a geometry based on two or more engineering disciplines. In turbine blade design

4



optimization, the engineering disciplines that are most likely to be optimized concur-
rently are aerodynamics, thermodynamics, heat transfer and structural dynamics.

This significantly increases the complexity of the optimization problem.

1.3. Turbine Blade Shape Representation

This work focuses on developing turbine blade geometric models suitable for aero-
dynamic optimization, that is, the models must be simple, efficient, robust, accurate
and flexible (both in a local and global sense). These requirements are not easily met
by the current models used in industry and quoted in the literature. Furthermore,
it is impractical if not impossible to develop one model that can be used for both
global and local optimization problems. Therefore, two turbine blade geometric

models will be developed in this work.

One model, the so-called Modified Rapid Azial Turbine Design (MRATD)
model, is developed for use in the context of global optimization problems which is
essential in order to efficiently, and accurately explore the entirety of the feasible
design space. The MRATD model starts with the RATD model, originally devel-
oped by Pritchard [1], and modifies it to better represent turbine blade profiles and
to suit current design practices as well as automatic shape optimization. These
modifications allowed for a more flexible and reliable geometric model that would
enhance the quality of the optimization results.

The second model, which uses NURBS, is developed to allow for further explo-
ration of the design space locally. This step in the optimization process is essential
in order to accurately target the optimum design point for a given global blade

geometry.



Both models have been developed, implemented and assessed for their smooth-
ness, flexibility, efficiency, robustness and accuracy, which are all necessary proper-

ties when dealing with optimization problems.



Chapter 2

THE MODIFIED RAPID AXIAL
TURBINE DESIGN MODEL

In this chapter, we explore the means by which a low-fidelity, low order model
that uses designer parameters, is generated. When creating a new turbine blade
design, the designer starts with only a few blade parameters, which are also used
as design parameters that describe the geometry globally (e.g., inlet and exit blade
angles, stagger angle, minimum trailing edge radius, maximum thickness, throat
area). Therefore, the design space to be explored can be significantly large, and
it is critical that the model being used is able to entirely cover that space with
accuracy and flexibility. However, when dealing with automated optimization, other
important criteria to consider are the number of design parameters in the model and
the model robustness in terms of generating feasible geometries. Incorporating many
parameters might increase the flexibility of a model, but to the detriment of the
optimizer performance. Generally, a larger number of design parameters translates
into a more complex design space, hence a more difficult optimization problem that
might also have many infeasible regions. These conditions led to the development of
a low-fidelity model based on the RATD model, originally developed by Pritchard

[1], which was modified to suit current design practices as well as automatic shape



optimization.

2.1. RATD Model Design Methodology

Numerous techniques have been developed throughout the years in order to describe
airfoil shapes. These include the NACA airfoil profiles (where a thickness distribu-
tion is wrapped around a camber line), the Joukowski airfoil, Bézier representation
[2], B-splines [3], etc. These representations were originally used in external flow
applications and some were lately used in internal flow. Although they are effective
in certain aspects, most of these techniques are not convenient for representing a
turbine blade, particularly for optimization purposes. Some of these models lack
flexibility, while others incorporate too many design parameters adding excessive

complexity to the model.

Pritchard [1] was successful in the development of a relatively simple but real-
istic and practical model for turbine blade geometry representation, and this appears
as a promising alternative to other low fidelity blade shape representations that are
available in the literature. The model, identified as the Rapid Azial Turbine Design
(RATD) model, is not only very simple and straightforward to use, it also provides
a minimum set of design parameters that can be used to obtain an extensive family
of turbine blade profiles. In his work, Pritchard [1] identified eleven geometric pa-
rameters that are necessary and sufficient in order to model an axial turbine blade
using circular arcs and cubic polynomials, and developed the basic methodology to
implement it. These eleven parameters include: the airfoil radial location, axial and
tangential chords, inlet blade and wedge angles, exit blade angle, LE and TE radii,

unguided turning, number of blades and throat area (see Fig. 2.1).



axaLcHoro G,

INLET 172
ANGLE

{ =

THICKNESS

INLET
BLAGE
ANGLE

B
TANGENTIAL
CHORD
v
uNGUIDED
TURNING

EXIT
BLADE
ANGLE

b Bow

‘I'RAH.IMG1

EDGE
RADIUS
TE

Figure 2.1: Design Parameters for the RATD Model.

The methodology behind the RATD model is simple and very efficient, which
makes it an attractive tool for aerodynamic optimization. The model basically
breaks down the blade into five distinct regions composed of the leading and trail-
ing edge arcs, the suction and pressure side surfaces both modeled with a cubic
polynomial and a circular arc for the uncovered part of the blade suction surface.
With the eleven parameters mentioned above, it is possible to determine the loca-
tions of the five key points shown in Fig. 2.2, which represent intersection points
between the five regions of the blade. Moreover, by imposing C'! continuity of the
blade profile at the intersection points, it is possible to determine uniquely the blade

shape.

The design procedure begins by the sequential calculation of the five key points

across the blade profile. The RATD model uses an iterative procedure to compute
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the blade geometry, which is necessary in order to remove the discontinuity at the

throat (point 2). This will be explained shortly.

To compute z,, y; and [; at key-point 1, the required design parameters are
Cs, Rre, Bout, and egyr. It should be noted that eoyr is not part of the design
parameter list. In fact, this is the variable that must be iterated upon in order to
remove the throat discontinuity. On the first iteration egy7 is initialized as

EoUuT = (2.1)

51
which is a good initial guess. The required values at each key point are the x and

y-coordinates and the angle of tangency. For point one, these values are computed

using laws of geometry as follows:

B = Bout — €ouT (2.2)
Iy = Cx - RTE(l + Sinﬂl) (23)
Y1 = Rrpcos By (2.4)

For point 2, the required parameters are Soyr, €our, ¢, R, Ng and 7. Again,
using laws of geometry, the tangency angle and x and y-coordinates are computed

as follows:

B2 = Pour — €ovr + ¢ (2.5)

o =C, — Rrg + (7' + RTE) sin fa (2.6)
21R

Yo = —]7\-;_ — (7 + Rrg) cos Bz (2.7)
B

The same procedure is repeated for the three remaining key points:

11



Bs = Bin — €In (2.8)

I3 = RLE(l — sin ,33) (29)

ys = Ct + Rppcos B3 (2.10)
Ba=PBiN — €N (2.11)

Ty = RLE(]- + sin ,34) (212)

Ys =Ct — Rrgcosfy (2.13)

Bs = Pour — €ouT (2.14)

Ty = Cz - RTE(l — sin ,35) (215)
ys = —Rrgcos b5 (2.16)

After this is complete, it is necessary to check whether there is a throat dis-
continuity. Therefore we locate the intersection point (zo1, yo1) between the lines

departing orthogonally from points 1 and 2 using the following relation:

_ (y1 —y2) tan f1 tan Bz + z1 tan B + o tan G,

2.17

o1 tan 0y — tan f; ( )
Ty — To1

=y — 2.18

Yor =1 tan G ( )

Ro1 = /(%1 — 701)% + (¥1 — yo1)? (2.19)

The y-coordinate at point 2, yys, is recalculated, this time using the geometrical

relations for circles:

YY2 = Yo1 + \[Rgl — (z2 ~ w01)?) (2.20)

12



If yy- is not equal to y2, then there is a throat discontinuity and eoyr must be

corrected using the following approximation in order to close the throat:

Y2
€our = €out(—— (2.21
( yyz) )
With epyr adjusted, the procedure is repeated once again starting from Eq.(2.2),

until the throat discontinuity is removed.

At this point, the five key points are joined using the curves shown in Fig. 2.2.

The circular arcs are defined using the parametric form:

Clu) = (z(u),y(u)). (2.22)
z(u) = Rcosu (2.23)
y(u) = Rsinu (2.24)

On the other hand, for the suction and pressure side surfaces, the coefficients
of the 3" order polynomial equation must be computed. The mathematical relations

are presented, using the pressure side surface as an example:

C(z) = ag + a1z + ayz® + azx® (2.25)
G = ta’nﬂ5 + tan /34 _ 2(y5 - y4) (2 26)

’ (x5 — x4)? (x5 — z4)® '

Ys — Ya tan (4

= — — 2 2.27
a2 (x5 —24)? 25— 124 as(2s + 224) (227)
ay = tan B4 — 2a,74 — 3a373 (2.28)
Qg =Yg — A1 T4 — agsvi - a3$2 (229)

With this, the blade geometry is completely modeled and the x and y-data-

points along the profile can be output for analysis. Finally, the following section
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will explain why this method of blade generation is not adequate for an optimization
task, and how a modified version of the RATD model can be a much superior design

tool.

2.2. The Designer Needs and the Modified RATD
Model (MRATD)

The RATD model was intended as a low fidelity model for the preliminary design
of turbine blades however, it lacks flexibility, smoothness, reliability and current
design needs. The goal of the RATD model was to have a tool that is simple and
flexible enough to readily model a variety of turbine blade families using only a
minimum number of design parameters so that the designer can easily generate
and analyze an extensive variety of practical turbine blade shapes with a minimum
number of parameters and minimum effort. Even though it was not intended for
the purpose of optimization, it has many qualities that make it an attractive blade
design model that can be used, after proper modification that are described later in
the section, in an automated optimization system. These modifications are aimed
to better represent current turbine geometry, and to allow for elliptic leading edges;
they are also aimed to eliminate infeasible shapes (when used in automatic shape
optimization) by adding suitable parameters to the model. The RATD model was
modified to address these needs and the resulting model is referred to hereafter as
the MRATD model. All the modifications to the RATD model will be explained in

detail next.

Testing of the RATD model was done by trying to approximate a variety of
existing turbine blade geometries given in [4]. The exercise revealed that the RATD

model lacks some flexibility and that it is very prone to providing infeasible blade
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profiles. The lack of flexibility was due to three factors that have been addressed in

the MRATD model.

2.2.1 Increasing the model flexibility

First, the suction and pressure side regions are linked by the common variable g5 so
that any change in that variable will affect the totality of the suction and pressure
side regions. In order to have more independent control over the pressure and
suction side regions, £;y is split into two parts: e;n ps and €;n,s5. The procedure
for calculating the parameters at the five key points remains the same , except that

for points 3 and 4, e/n,ss and €y ps are used respectively instead of e;y.

Second, the uncovered and pressure side surfaces are linked by the epyr vari-
able, which again, provides limited control of the pressure side region. To remedy
this, epyr is also split into epyr,ss and eoyr,ps- The new variables are used instead

of eoyr in Eq.(2.1) and for the computation of parameters at points 1 and 5.

Finally, it is observed that the values for e;n5 55 are very sensitive to and
severely constrained by the behavior of the suction side surface that has the tendency
to either overshoot resulting in an almost infinite thickness, or to cross the pressure
side surface which results in a negative thickness. This problem is resolved by adding
the thickness parameter T located at a point x = zr on the pressure side (see Fig.
2.1). The thickness is defined as the length of a line departing orthogonally from the
pressure side and ending on the suction side. The methodology used to implement

this design parameter is presented next.

Once the pressure side surface is defined, it is easy to determine the corre-

sponding y-coordinate at xr on the pressure side. From that point, we use a central
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difference scheme in order to compute the line that runs orthogonally from the pres-
sure side to the suction side. The length of the line is equal to T, the thickness at
that point. Therefore, we can determine the x and y-coordinates of a point located
along the suction surface. With this additional information, we have five boundary

conditions that can be used to determine the curve defining the suction surface.

With these modifications in place, the model’s flexibility is dramatically im-
proved. Furthermore, only three designer parameters are added to the model, thus
the simplicity of the model is not compromised. In fact, the parameters that are
added provide the designer with more control over the geometry, thus allowing a
much larger span for the upper and lower boundaries of ;5,55 while simultaneously
constraining the suction side surface using the thickness. These changes result in ex-
panding the feasible design space and simultaneously reducing the infeasible one to
improve the reliability of the MRATD model. Furthermore, the pressure side surface
can be modified independently of the suction side and uncovered surfaces in order
to adjust the cross-sectional area of the airfoil, which is critical when considering

the structural integrity of a turbine blade.

2.2.2 The suction and pressure surface representation

The next issue with respect to the RATD model is the choice of a better geomet-
ric representation to model the suction and pressure side surfaces. To design and
model smooth geometries, the use of high order polynomials is certainly not a good
choice. First, the curvature of high order polynomials can be relatively wavy and,
depending on its severity, might have a negative impact on the pressure distribution.
Furthermore, high brder polynomials have a tendency of generating wavy geometry,

resulting in noticeably infeasible blade profiles (see Fig. 2.3). It becomes awkward
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Figure 2.3: An infeasible geometry obtained by assigning an unrealistic

combination of design parameters and polynomial segments for the suction and
pressure sides.

to devise a strategy that will smoothen these functions and keep them well-behaved.

This problem is resolved by replacing them with conic profiles.

Conics are functions that are defined by the general relation:

az? + by* + 2hay + 2fx + 29y +c=0

(2.30)

They can be classified according to the coefficients of the above equation as follows

(assuming non-degenerate conics):

a = ab— h?
a=10
a>0

a>0anda=25b

a<0
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parabola
ellipse
circle

hyperbola

(2.31)
(2.32)
(2.33)
(2.34)

(2.35)



To implement the conics into the MRATD model for the pressure and suc-
tion side regions, five boundary conditions are needed. For the suction side, these
boundary conditions are the two end points and their respective slopes, as-well as
the point defined by 7. On the other hand, the pressure side is defined by only four
boundary conditions: the two endpoints and their respective slopes. In order to fit a
conic curve on the pressure side through the given boundary conditions, two options
are plausible. The first alternative would be to add an extra design parameter that
defines a point on the pressure side curve. This method has two disadvantages.
First, it will increase the number of design parameters which must be kept to a
minimum. Also, since the pressure side geometry is not critical, as long as it stays
relatively smooth, it is impractical to have more constraints define the pressure side
curve. A more convenient method is to use an approximate curve defined by the
37 order polynomial used in the RATD model, compute the y-position with zr and

use the given coordinates as the fifth boundary condition.

Several advantages result from the use of conics on the pressure and suction
sides. Other than the obvious improvements in curve smoothness, the model will
have a self-termination switch that is activated when infeasible values are assigned
to the design parameters. With the RATD model, these infeasible set of design
parameters resulted in wavy profiles, and detecting them proves to be quite chal-
lenging. Since conics cannot fit through a wavy set .of boundary conditions, it is easy
to devise an algorithm that will detect such conditions and terminate the program
immediately. Moreover, a NURBS parametrization is used to model the conics due
to a simpler implementation of the above strategy. More detail is provided in Sec.

3.6.
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2.2.3 Requirements for current designs

A final modification to the original RATD model is to replace the leading edge
circular arc with an elliptical arc. Current blade designs use elliptical arcs for the
increased smoothness obtained at key-points 3 and 4, as well as the improved flow
behavior over a wide range of incidence angles. The elliptical arc is described in
terms of two new design parameters (that will replace the radius of a circular LE
in the previous list), namely the minor and major axes of the elliptical arc. The

equation of an ellipse is:

A ) (2.36)

where a and b define the size and location of the minor and major axis. In order
to determine the x and y-coordinates of key-points 3 and 4, the derivative of Eq.(

2.36) must be computed:

/ x2
y= by/1— 52— (237)

—bx
= 2.38
V= aao gy (2.38)
Noting that €7y can be related to Eq.(2.38) as follows:
y' = tane;n, (2.39)
we end up with:
2
a“tanery (2‘40)

T =
\ﬂlz tan 2y + b?
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Figure 2.4: Design Parameters for the MRATD Model.

1L'2
y=b/1-— (2.41)

Using Eqs.(2.40, 2.41) with B;n, €/nss and €1y ps, it becomes possible to
locate key-points (zs,ys) and (z4,ys)-

With the implementation of the LE elliptical arc, we have completed our dis-
cussion pertaining to all the modifications performed on the RATD model. Figures
2.4 and 2.5 show schematically the added parameters and the modified curves of the

MRATD model.

2.3. Assessment of the MRATD Model

The modifications and the new features added to the RATD model, which are de-

scribed in Sec. 2.2, were intended to increase the flexibility and to improve the
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smoothness of the MRATD model. At this point, it is important to determine
if the changes made to the original model are valid and will in fact improve the

applicability of the model in design optimization.

First, in order to assess the flexibility of the model, eight existing blade ge-
ometries are approximated. These geometries are shown in Figs. 2.6 to 2.13 along
with their respective geometric error in units of axial chord. The flexibility of the
MRATD model is clearly demonstrated from these examples. It is capable of repre-
senting blades with high turning angles (Figs. 2.6, 2.7, 2.8), low turning angles (Figs.
2.11, 2.12, 2.13), high stagger (Figs. 2.7, 2.11, 2.12, 2.13), low stagger (Figs.2.8, 2.9)
and with elliptical or circular leading edges. Further since the functions used to
join the five key points are naturally smooth and well-behaved curves, rarely does
this model generate infeasible geometries. With the proper constraints set by the
designer, the optimizer can freely investigate a very wide design space without wast-
ing any time or resources on infeasible geometries such as the one in Fig. 2.3. This
important aspect of the new model allows the optimization to skip any infeasible
set of design parameters, unlike with the old representation, where the infeasible
geometries cannot be detected and the CFD flow simulation tool would run, only
to realize that the solution does not converge, wasting valuable hours of simulation

time.

Finally, to demonstrate the smoothness of the new model compared with the
original one, the curvature distributions on the suction side of the DFVLR blade are
evaluated using the MRATD and RATD models (see Fig. 2.14). The plots clearly
demonstrate the improved behavior of the conics representation with respect to the

polynomial functions.
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Original
= MRATD N
— — — - RATD N

MRATD Average Error = 2.23 E-3
RATD Average Ermor = 2.547 E-2

Figure 2.6:

The DFVLR blade geometry approximated
using the MRATD model [4].

MRATD Average Error = 1.04 E-3
RATD Average Emor= 1.32 E-2

Figure 2.7: The VKI blade geometry approximated

using the MRATD model [4].
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Original
- MRATD
— — — - RATD

MRATD Average Error = 3.68 E-3
RATD Average Error = 1.853 E-2

Figure 2.8: The ETU-4 section 1 (hub) blade geometry approximated
using the MRATD model [4].

Original
- MRATD
— — — - RATD

MRATD Average Error= 2,12 E-3
RATD Average Error = 1.23 E-2

Figure 2.9: The ETU-4 section 2 (8% span) blade geometry approximated
using the MRATD model [4].
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Original
. MRATD
— — — - RATD

MRATD Average Ervor = 2.33 E-3
RATD Average Error = 1.59 E-2

Figure 2.10: The ETU-4 section 3 (22% span) blade geometry approximated
using the MRATD model [4].

Original
. MRATD
— - — - RATD

MRATD Average Error = 2.39 E-3
RATD Average Emor= 1.3 E-2

Figure 2.11: The ETU-4 section 4 (48% span) blade geometry approximated
using the MRATD model [4].

25



Original
- MRATD
— — — - RATD

MRATD Average Error = 2.45 E-3
RATD Average Error = 1.52 £-2

Figure 2.12: The ETU-4 section 5 (74% span) blade geometry approximated
using the MRATD model [4].

Original
- MRATD
— — — - RATD

MRATD Average Eror = 2,01 E-3
RATD Average Error = 1.44 E-2

Figure 2.13: The ETU-4 section 6 (tip) blade geometry approximated
using the MRATD model [4].
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i

Figure 2.14: Comparison of the RATD vs MRATD suction side
curvatures for the DFVLR geometry approximation.

2.4. MRATD Model and Automatic Optimization

In the previous sections, the MRATD model was developed and it was assessed
in terms of flexibility and profile smoothness. Although the model is very capable
of coarsely approximating general turbine blade profiles, as well as providing for a
relatively smooth profile, it also has some limitations when uséd in an automatic
optimization scheme; since the model is a low order representation of the geometry, it
can only be used in sweeping the design space for global design parameters given by
the designer’s parameters. This section will discuss the advantages and limitations

of the MRATD model with respect to aerodynamic optimization.

The MRATD model is ideal for a global inspection of the design space due to its
flexibility; this was demonstrated in the previous section by approximating a number
of turbine blade geometry. Further, an optimum balance is reached between the
number of design parameters that were used for maximum flexibility and minimum
model complexity. Finally, most of the infeasible design space can be eliminated

using proper constraints, but without sacrificing any of the model’s flexibility.
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Furthermore, the model parameters are precisely the designer’s parameters
that are used in a typical design cycle. They refer to circular arc radii, profile
thickness, metal angles, wedge angles, throat area, number of blades, profile length,
profile height, and so on. This provides the designer with a very intuitive means of
varying the blade geometry, where the outcome of any modification can be predicted
quite easily. It also provides the optimizer with a model that best describes the
design space with a small number of design parameters, which results in an easier

task for the optimization process.

Finally, the MRATD design parameters are common ones regularly used by
the turbine blade designers. Designers can interpret flow conditions across a turbine
nozzle based on the values of the MRATD parameters. Even after completion of an
aerodynamic optimization, where the blade geometry was modified to improve the
flow conditions, an experienced designer can uhderstand and interpret the solution,

based on the MRATD parameters.

Nonetheless, the MRATD model has its inherent limitations that stem from the
fact that the blade shape is approximated with five low order curves. Therefore, the
model can only be used in a global search of the design space since the modification
of one of its design parameters will result in a global change in the geometry, thus
preventing the optimizer from exploring the effect of modifying local regions of the
blade profile. In fact, the capability of local shape control is necessary in flow
situations where local flow conditions must be improved, e.g., when removing or
weakening a shock in transonic flow cases; this capability will be developed in the

next chapter.

The other disadvantage is that the model has only C! continuity at the junction

points (five key points), i.e., there is a curvature discontinuity at these five junction
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points. This characteristic can have a negative effect on the suction side region,
especially at the throat location. Due to the sudden change in curvature at the
throat, and the diffusion taking place at the throat exit, a sharp rise in static pressure

may occur, increasing the chances for separation and higher aerodynamic losses.

To allow for more control over local regions of the blade shape without losing
the nice features of the MRATD model (in particular the designer’s parameters that
determine the global blade profile and are used by designers to assess any given
design), a second geometric representation is superposed onto the MRATD model.
That second representation allows for local control of the blade shape representation
and also allows for higher order continuity to be imposed at junction points. This

is presented, discussed and implemented in the next chapters.
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Chapter 3

NURBS PARAMETRIZATION
OF THE MRATD MODEL

The MRATD model provides for a good baseline blade geometry given the small
number of design parameters required to define it. However, the conic arcs used to
describe the suction side and the uncovered surface cannot inherently allow enough
flexibility for local blade shape refinement. Therefore an implicit parametric rep-
resentation of the MRATD model using a minimum number of design parameters
becomes essential in order to reduce aerodynamic optimization effort while main-
taining a high level of accuracy and flexibility and expressing the design variables in
terms of the designer’s parameters. From these conditions, two known alternatives
are available, Non-Uniform Rational B-Splines (NURBS) and B-Splines. The latter
are a subset of NURBS but due to their distinct properties they are often considered

as separate entities.

3.1. Why use NURBS?

Due to a number of reasons, the more general representation given by NURBS

would be a better choice for the parametrization than the B-spline function. First,
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NURBS can represent conic shapes exactly, which is not the case for B-splines.
When conducting aerodynamic analysis on the blade profile, this level of accuracy
at the leading and trailing edges is crucial. Second, with the weights as additional
parameters, we can have higher flexibility, which allows for a better inspection of
the design space during optimization. Ghaly and Mengitsu [5] demonstrated the ad-
vantages of using NURBS, as opposed to using B-splines, for the representation of
gas turbine blades when dealing with shape optimization. In their work, they were
able to obtain results that are accurate to within machining tolerance when ap-
proximating a target geometry using NURBS with as low as nineteen control points
for the DFVLR turbine cascade [4]. Furthermore, the aerodynamic performance ob-
tained on the original profile was almost identical with that obtained on the NURBS

approximated profile thus corroborating for the goodness of the approximation.

3.2. NURBS Functions

Before explaining the method used to develop the model, a brief definition of NURBS
functions will be provided. For a more detailed account of NURBS, Piegel [6]
provides an interesting and simplified approach to this sometimes-confusing topic.

NURBS, or Non-Uniform Rational B-Splines, are defined as:

_ iz Nip(w)Piw;
Z}Lo Njp(u)w;

C(u) (3.1)

where C(u) are the x and y-coordinates of the curve being generated, n is the number
of control points P; , w; the weights and N; p(u) are the basis functions defined on

the nonperiodic and nonuniform knot vector [6]:
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U= {a,...,a,u,,,H,...,um_p_l,b,...,b}

p+1 p+l
The value of N;,(u) is based on two variables, the knot value u, as well as the

degree p of the function and is defined as [6]:

1 ifu, <u < ugg,
Nio(u) = (3.2)

)

0 otherwise

U — U; U; —Uu
Nip-1(w) + —FE Ny (w) (3.3)

Nip(u) = —
Uitp — Ui Uitp+1 — Uit

An example of a curve generated by a NURBS function is shown in Fig. 3.1.
This example demonstrates a few of the important qualities of NURBS functions.
First, the end points of a NURBS curve will always coincide with the first and last
control points. Second, a NURBS function will always lie within its corresponding
control polygon. Finally changing the position of any control point will have the

effect of stretching the affected region of the NURBS curve in that same direction

[6]-

Three steps are required to compute the x and y-coordinates of a point on a

NURBS curve [6]:

1. Find the knot span in which u lies
2. Compute the nonzero basis functions N;,(u) using Egs. (3.2 ,3.3)

3. Substitute for u, N;,, P; and w; into Eq. (3.1)
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Figure 3.1: NURBS function and its corresponding control polygon.

3.3. Derivatives of NURBS

Derivatives of a NURBS curve have to be computed in order to impose higher order
continuity across the 5 key points of the blade profile. The continuity of a NURBS
curve at a point is determined by the degree p of the function and its multiplicity &
at the given point; mainly the function is p — k£ times continuously differentiable at
any point. Before proceeding, a clarification is to be made pertaining to the four-
dimensional representation of a NURBS function. In essence, a NURBS function is
a four-dimensional curve projected on a three dimensional space, by mapping C*(u)

from the origin to the hyperplane W =1 [6].

IR a4 if W #0,
C=H{C"} = H{X,Y,2,W} = (737 %) (3.4)

direction (X,Y,Z) if W =0

Let us now develop a formula that will express the derivatives of C(u) in terms
of the derivatives of the non-rational curve C*(u) [6].

Let
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e _ A@w)
=" =W

(3.5)

Then

) = HOAE AW

_ w(w)A'(w) - w'(w)w(u)C(u)
w(u)?

_ A'(u) — w'(u)C(u)
w(u)

and using Leibnitz’ rule [6]

A®(u) = (w(u)C(u))® = Z <I;>w(i)(u)c(k—i) ()

i=0

k

= w(u)C® (u) + Z (l;) w® (1) C*=) (u)

=1

from which we obtain

AW - ¥, ()wPwC* ()

P = w(w)

(3.6)

where the derivatives of A and w are computed as follows [6]:

n—k
ABP@W) =3 Ny (w)PPw® (3.7)
=0
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Piwi ifk= O,
AP = (3.8)

p-k=1__ plk=1), (k-1 k-1)  (k—1)y .
Yirpii— u,+k( i+l )wfm)) - Pz(' )w((i) )) ifk>0

and

w® (u) = Z i p—k(u)w (3.9)
Wy if k= 0,

w® = { (3.10)
Pkl (wgfﬂl)) - w(z) )) ifk>0

Uitp+1— Uitk

3.4. Curve Interpolation

Another important topic to develop is curve interpolation to point data. In order to
fit a B-spline curve through a set of data (NURBS functions cannot be interpolated
since the problem is overdefined), we must solve for a set of linear equations obtained

from [6]

Q. =C(m) = Z N p (W) P; (3.11)
Suppose we are given a set of points Q, where k = {0,1,2,...,n}. We start

by computing the Ty and u; as follows [6]:

and

d=|Qu— Ql (3.12)



where d is the total chord length [6].

ﬂk=ﬂk_1+l—QL_dQ¢l k=1,...,n-1 (3.13)
and
Uy = =u,=0 Um—p = = Uy, =1
1j+p—1
uj+p=1~)zm j=1,...,n—p (3.14)
i=j

Using Eq. 3.11, it is now possible to set up the (n + 1) x (n + 1) system of linear

equations and solve for P; [6].

In the case where the derivatives have to be imposed at specific knots on the
curve, Eq. 3.6 provides the remaining set of linear equation that can be added to

the original (n + 1) x (n + 1) matrix [6].

3.5. Knot Insertion, Knot Removal and Degree

Elevation

The next topic to be discussed pertains to knot insertion (also known as knot refine-
ment when referring to multiple knot insertions), knot removal, and degree elevation.
Knot insertion is used in order to add more flexibility to a given NURBS curve. By
adding knots, one increases the number of control points defining the curve, without
modifying any of the curve characteristics (the curve and its derivatives are main-

tained). Further, it is also necessary when merging two or more knot vectors in
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order to obtain a common knot vector for multiple curves, which is required when
constructing NURBS surfaces. On the other hand, knot removal is required in or-
der to remove unnecessary knots, for instance, after merging two NURBS curves to
form one. Finally, degree elevation is necessary when merging two curves of differ-
ent degree p, into one curve. The lower degree curve can have its order elevated
without modifying any of the curve characteristics allowing for the merger of the
knot vectors [6].

We begin our discussion with knot insertion. Inserting knots into the knot

vector without disturbing any of the curve properties implies that [6]

n n+1
> Nip(WP¥ =3 Nip(w)QY (3.15)
=0 i=0

where N, ,(u) are the new set of basis functions after the knot insertion. Suppose

the knot inserted is @ where @ € [ug, ug+1), then we can write the new knot vector

ﬁ = {ﬂo = UQg,-..- ,ﬂk = uk>ﬂk+1 = ﬂ,. .. vﬂm+1 = um} and [6]
k k+1 o
> NpwPP = > Nip(w)QY (3.16)
i=k—p i=k—p

for all u € {ug, uk+1), and

N;p(u) = N, p(u) i=0,....k—p—1 (3.17)

Ni,p(u) = N,-+1,p(u) i=k+ 1, ..,

Equations 3.16 and 3.17, as well as the linear independence of the basis functions,

imply that [6]:
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PY=QY  i=0,....k—p—1 (3.18)
PY=QY, i=k+1,...,n (3.19)

Now consider the N; ,(u) for i = k —p,... k. They can be expressed in terms

of the N;,(u) when i =k —p,...,k + 1 by (the proof is omitted) [6]

N p(u) = _“_‘_“i__ﬁl.,p(u) + :M;“—Tvi r1,(w) (3.20)

Ujppr1 — Ui Uippt2 — Uip1

Substituting Eq. 3.20 into Eq. 3.16 to get [6]

U~ Ug—p — Upy2 — U ==

—_— P Nk_ (U) +— Nk~ +1 (U) Pw_

PP p+lp k—p
Ug41 — Uk—p Uk+2 — Uk—-p+1

U — Uk—pt1 +7 Uk43 — U = w
+ (— = Ni-pr1p(u) + ——————Ny_pr2,(v) Pk—p+1
Uk+2 — Uk—p+1 Uk+3 — Uk—p+2

U—U =5 Upypi2 — U w
+ ( —'—Nkyp(u) + —_ S Nk_*_l,p(u) Pk
Uk+p+1 — Uk Uk+p+2 — Ukl

= Nipp(W)Qr_, + - - . + Nip1,5(0)Qpyy

Rearranging and replacing the knot vector U by U we get [6]
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0=y (Q, — PL,)

-~ U — Uk—p+1 Ug+1 — U
+ Nk—p+1 (Q}é’-pﬂ - “I)—P;cu—p-#l - _;P}:}—p
Uk+1 — Uk—p41 Uk+1 — Uk—p+1

U — Uy Uktp — U

Py —

k
Uk+p — Uk Uk+p — Uk

I, (Q;: - ) F Nen Q¥ PY)  (3.21)

Fori=k—-p+1,...,k, we set

;= — 3.22
“ Uiyp — Uy ( )
and note that
1 —qy= 22 "% (3.23)
Uitp — Ug

Using the linear independence of the basis functions, and substituting Egs. 3.22 and

Egs. 3.23 into Eq. 3.21, yields [6]

Qx_p =Pi_,
Q;.”zaz-P;”+(1—ai)P;”_1 k—p+1_<_ZSk
Qi =P¢ (3.24)

Using Egs. 3.18 and 3.24, we get the following relation for computing the new

control points [6]

Q¥ = aPY + (1 - )PV, (3.25)
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where

(
1 ifi<k-p
%= B ifk—p+1<i<h (3.26)
0 ifi>k+1
\

We continue now with the discussion of knot removal, which uses the same
basic ideas as knot insertion. A repeated knot is removable ¢ times, if the curve
C"¥ is CP~** continuous at u = u,, where s is the multiplicity. It is important to
note that the continuity must be with respect to C*(u), not its projection C(u)
which can be continuous even though C*(u) is not. Let u = u, # u,41 be a knot
of multiplicity s, where 1 < s < p. The equations for computing the new control

points for one removal of u are [6]

P} - (1-)P;,

1
Pl = r-p<i<sr-p-s-1)
a@;
:I_:’O-—a}?1 1
pl—=_J4 It —(2r-p—-s—-2)<j<r—s
7 (1—0[_7‘) 2
with
ap = —2 "% k=i (3.27)

Uk+p+1 — Uk

If one wishes to remove u = u, multiple times, the following equations should

be used [6]

Pl — (1 - ;)P 1
P! = (1~ a)Pi r—p—t+1§i§§(2r—p—s—t)
Q;
P! — Pt 1
P;.=Té,);+l 5(2r—p—s—t+l)§j§r—s+t—1
j
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with

ap=—2TY gy (3.28)
Uk+p+1 — Uk

The final matter to be discussed is that of degree elevation. Let CJ'(u) =

v o Nip(w)P? be a pth-degree NURBS curve on the knot vector U. In order to
=0 P 1

elevate the degree of the curve, the following relation must hold [6]

CZ’(U) = $+1(U) = ZNi,p+l(u)Q;u (3.29)
i=0

where the C7, ; (u) is the new degree-elevated curve, Q;’ the new set of control points
and 7 is the new index number for the control points. C'(u) and C},,(u) are the
same curve both geometrically and parametrically. The three unknowns in Eq. 3.29

are Q¥, 7 and U, the new knot vector [6].

Determining 7 and U is a trivial matter. Assume that the original knot vector

U has the form [6]

U={ug, - -, Um}t={a,-..,0,u1,...,Up, ..., Us,...,Usb,... b}
S—— S———r S N —~
p+l my ms pt+1

in order to maintain the continuity conditions of the original curve, the same knot

must have multiplicity m; + 1 for Cpy;(u). This yields [6]

i=n+s+1



where 7 = m + s + 2. The only remaining problem is to compute the {Q;}.

Firstly, the NURBS function is broken down to its Bézier components by using
knot insertion. The Bézier control points of the segments are obtained by inserting
each interior knot until it has multiplicity p. Then the Bézier segment is degree
elevated [6].

Let

14
Cp(v) = > Bip(u)P;
i=0
be a pth-degree Bézier curve, where [6]
— Py n—i
B;p(u) = <Z>u (1-uw) (3.30)

Its representation as a (p + 1)th-degree curve is

p+1

Cpir(u) = Z B pi1(u)Q; (3.31)
i=0

Setting these equal and multiplying C,(u) by (u + (1 — u)) yields [6]

p+1 P
Z Bip1Q; = (u+(1- u)) Z B; ,P;
i=0 i=0
p
=Y (1 - w)Bip + uB;,P; (3.32)
=0

Applying Eq. 3.30, we obtain [6]

42



pt+1
2 (p ; 1) Wl —wtQ,

B = ,Z:; (ZZ) (u*(1 — u)P* 7 4 (1 — w)P P, (3.33)
= g (’:) (W'(1— w7 P+ g (2 P 1) Wl —uP P,
(3.34)

Equating coefficients of u*(1 — u)P*1~* yields

USGINAN

and

) p+1
(ifl) ¢t
) el
it follows that [6]
Q=(Q1-0a)Pi+0P;, (3.35)
where
Q. : =0 +1
i = i=0,...,
p+1 p

Finally, all the excess knots should be removed using the knot removal tech-

nique described earlier [6].

43



3.6. Representation of Conics using NURBS

We end our discussion of NURBS with one of the most interesting and attractive
properties of these functions: their ability to represent conics exactly. The general
implicit equation of a conic curve is given by Eq. 2.30. Again, we note that five
boundary conditions are needed in order to define a given conic curve. The boundary
conditions used in this model are the coordinates of the start and end points (P
and P5) and their tangent directions (T¢ and T), as well as the coordinates of one

point located on the conic curve (P) [6].

The conic curve can be defined by three control points and a second degree

NURBS curve, thus the knot vector has the following format [6]

U ={0,0,0,1,1,1}

The coordinates of the two end points intersect with the coordinates of the
first and last control points. The remaining control point location is determined by
intersecting the two tangent lines Ty and T,. Setting wy = ws = 1 and the only
missing item is w;. Omitting the derivation, the remaining weight is computed as

follows [6]

(1-u)*(P - Pg) - (P, —P)+u*(P —Py) - (P, ~P)
2u(l — u)|Py — PJ?

. a o IPOQ'
U= a_”QPz (3.37)

and Q is defined as the point of intersection between the lines connecting points

wy =

(3.36)

where

Py with P, and P; with P (see Fig. 3.2). The following facts pertaining to the
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Figure 3.2: A conic curve defined by its five boundary conditions.

sign of the weight should be noted. If the value of w; is greater than 1.0, then
the curve represents a parabola or a hyperbola. If w; is between 0.0 and 1.0, then
the conic is an ellipse. Finally, if w; is less than 0.0, then the boundary conditions
define a conic with an outside convex hull [6]. This further implies that the given
boundary conditions define an infeasible blade geometry and should be corrected.
This property allows us to incorporate a termination criteria for the blade design

tool that is based on the sign of w;.

Now consider if T and Ty are parallel lines. In such a case, w; = 0 and P,
will be parallel to Ty. The following relation is used to determine the magnitude of
P1 [6]

1 2’11,0(1 - ’LL())

P = W(P -Q) fluw)= A-witd (3.38)

With this, we have completed the essential concepts used for developing the

NURBS parametrization of the MRATD model.
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3.7. NURBS Parametrization Strategies

When used in conjunction with optimization, NURBS offer some clear advantages
namely, flexibility, accuracy and efficiency all at once. This being said, the next
task would be to determine the best way NURBS can be implemented in order to
represent the initial geometric model described in the previous section. Two possible
approaches can be taken: either to fit one NURBS function across the entire blade
profile, or to fit five distinct NURBS functions that would replace the five section

curves of the MRATD model. Both approaches are discussed next.

3.7.1 One-NURBS curve blade shape representation

The first technique to parametrize the MRATD model using NURBS would be to fit
one NURBS function through the entire geometry. The basic methodology behind

this technique will be explained first.

Given a curve, we begin by specifying a number of data points lying on the
curve. Using the NURBS interpolation technique described in Sec. 3.4, we can
fit a B-spline curve through the given set of data points. Afterwards, a specified
number of control points are eliminated, based on the curvature distribution, so that
in higher curvature regions, more control points will be placed in order to have a
good curve fit, while in the lower curvature regions less control points are required.
Finally, an optimization routine is implemented in order to optimize the remaining
control points coordinates and their weights for maximum accuracy. This method

was developed by Mengistu and Ghaly and is described in more detail in [5].

When the blade profile is fitted with one NURBS function, the resulting profile

is smooth and continuity of the blade shape and its derivatives is implicitly implied
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across the entire profile except at the end points of the given closed curve, making
this approach easier to implement than the second. However, fitting a NURBS
function across the blade profile requires an optimization in itself. Furthermore
the entire profile is an approximation of the original, and it is relatively difficult
to preserve the original designer parameters (the 15 MRATD model parameters)

embedded within the NURBS parametrization.

3.7.2 Five-NURBS curve blade shape representation

To allow for the exact representation of the conic sections, and allow for the im-
plicit representation of the designer’s parameters, the 5-NURBS representation of
the blade profile is described in this subsection. Special attention will be given at
the points joining these curves so as to insure continuity conditions across critical
regions such as the suction side. The steps used for implementing this technique are

explained first.

The first step is to use the technique described in Sec. 3.6 in order to define
the NURBS parameters that will be fitted through every conic section of the blade
geometry except for the suction side. The reason being that more control is usually
required on the suction side, where the flow is much more sensitive than on the
pressure side, therefore we would like to impose C? continuity across the junction

points 2 and 3 (refer to Fig. 2.5).

The second step is to compute the first and second derivatives using Eq. 3.6
at key points 2 and 3. Using these derivatives as well as the methodology described
in Sec. 3.4, we determine the NURBS parameters that will fit a curve through the
suction side with C? continuity across points 2 and 3. The selection of the data

points is again based on the curvature distribution of the suction side curve.
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The third step consists of, if needed, the addition of control points on the
uncovered surface of the blade as well as the pressure side region in order to improve
the geometric model flexibility. We use the knot addition methodology described in
Sec. 3.5.

Step four joins the five NURBS curves together into one single curve by joining
the knot vectors. This requires that the degree p of all the sections be equal to pee
belonging to the suction side curve; the implementation of this degree elevation

method is described in Sec. 3.5.

When the blade profile is fitted with five NURBS functions, we have a more
accurate representation of the leading and trailing edges, the uncovered part of
the suction surface and the pressure surface since a NURBS function can represent
conic curves exactly. Furthermore, the original design parameters from the MRATD
model can be easily preserved during and after optimization. In fact, the five key
points of the MRATD model are always located at the same knot positions within
the knot vector, and there slopes are also preserved, thus preserving the geometric
constraints imposed by the MRATD designer parameters. This is a clear advantage
to turbine designers who are much more comfortable dealing with those geometric
parameters than with NURBS parameters, i.e., control points and weights, however
such an approach involves an explicit implementation of continuity of the shape
and even higher derivatives across the points joining any two NURBS functions.
Further, continuity and curve smoothness issues arise when an attempt to remove
the multiplicity points is made. These problems are discussed in greater detail in

Ch. 4.

Nonetheless, since the advantages offered by the second approach are more

practical for turbine blade designers, the second approach was chosen over the first.
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Figure 3.3: A NURBS approximation of the DFVLR geometry [4].
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Figure 3.4: A NURBS approximation of the VKI geometry [4].

Several profiles are obtained with the NURBS parametrization and are shown to-

gether with their control polygons in Figs. 3.3 through 3.10.

3.8. NURDBS Model Smoothness Assessment

In order to evaluate the suitability of the above-mentioned approximations, i.e., the
one-NURBS versus the five-NURBS curve approximation, two criteria can be used

namely, the curve smoothness as measured by the curvature (which can strongly
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Figure 3.5: A NURBS approximation of the ETU-4 section 1 geometry [4].
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Figure 3.6: A NURBS approximation of the ETU-4 section 2 geometry [4].

Figure 3.7: A NURBS approximation of the ETU-4 section 3 geometry [4].
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Figure 3.8: A NURBS approximation of the ETU-4 section 4 geometry [4].

Efade protie
— —@ — - Controt potygon

Figure 3.9: A NURBS approximation of the ETU-4 section 5 geometry [4].
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Figure 3.10: A NURBS approximation of the ETU-4 section 6 geometry [4].
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impact the flow field) and the pressure field along the blades as obtained from
a CFD analysis. These two criteria will provide valuable information about the

accuracy and the quality of each approximation.

For this work, the DFVLR turbine blade, which is a typical subsonic turbine
cascade, is chosen as the study case. Its geometry is given in [4] as a set of z and
y-coordinates. Several geometric features of the blade are also provided, and that
helped to determine the remaining set of designer parameters, all of which are used
as input to the MRATD model. It is important to note that obtaining the orig-
inal DFVLR profile exactly is not critical, since the objective is not to compare
the original DFVLR geometry with the MRATD approximation, but to compare
the MRATD profile with the one-NURBS and five-NURBS curve approximations.
Nonetheless, it is quite possible to produce a geometry that is almost exactly that
of the DFVLR by optimizing the z and y-coordinates of the control points and the
weights in the NURBS parameterization, as was shown in Mansour and Ghaly [7].
Once the design parameters are determined for the MRATD model, it is necessary to
define the five-NURBS curve parameterization in terms of degree, number of control
points and continuity of the function. To determine those NURBS properties, one
must keep in mind that we are comparing two different NURBS approximations. To
have a fair comparison, this involves the development of two fairly similar NURBS
functions in terms of degree of curve, and number of control points, while maintain-
ing the smoothness of the curve at all locations. For the one-NURBS approximation,
a 3rd order curve is used, with 23 control points around the entire profile, of which
6 are used for the suction side. On the other hand, the five-NURBS curve uses a
combination of NURBS functions and B-spline functions. Note also that, for every

degree of continuity imposed across junction points, an additional control point is
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necessary. This means that inherently, the five-NURBS curve approximation will
incorporate more control points on the suction side for the same level of accuracy
of the one-NURBS curve approximation. Also, since the one-NURBS curve is opti-
mized in order to minimize the number of control points, it is not surprising that a
smaller number of control points are needed as compared to the five-NURBS curve.
Therefore, the final result is a 3" order curve, with C? continuity and a total of 32

control points, of which 9 are used for the suction side.

To assess the smoothness of the NURBS approximations with respect to the
MRATD model, it is important to study the curvature. The curvature is an ex-
tremely revealing feature when it comes to curve smoothness, and in CFD, the
curvature of a profile will have a major influence on the flow-field properties such
as the static pressure or the isentropic Mach number. Aerodynamicists also use
the blade curvature profile to help them design suitable blade geometries. They
usually have a general idea of the curvature distribution they wish to have and try
to adjust the blade profile accordingly. Figures 3.11 and 3.12 show the curvature
plots for the five-NURBS, one-NURBS and MRATD representations. The curva-
ture is computed based on the z and y-coordinates of the blade using a three-point
approximation. One can easily recognize the leading and trailing edge regions as
well as the uncovered surface by the abrupt changes in curvature. Conversely, the
rest of the curvature distribution on the suction side is constrained between zero
and three, which are relatively small values considering the trailing edge peak of
220. By taking a closer look at the MRATD curvature plot, one can observe a very
smooth and well-behaved curve, except at the junction points where the curvature is
discontinuous. This is expected since the curve that is used for the suction side is a

conic section. Nonetheless, the two NURBS approximations still follow with relative

93



MRATD
------ 5 HURBS OF

150

100 -

Figure 3.11: The suction side curvature distribution of the 5-NURBS
approximation versus the MRATD model.
accuracy the same curvature as that of the MRATD model and succeed in capturing
the curvature jumps to different degrees, even though there is some relatively small
noise in the neighborhood of the LE, Throat and TE junctions. As will be shown
later, this noise in the curvature is on such a small scale that its effect on the flow

field is negligible.

Further, this noise can be significantly reduced by raising the degree of the
curve and by adding a greater number of control points. For instance, if we take the
five-NURBS parametrization as an example and the DFVLR profile used previously,
and fit a 10%* degree NURBS function through that geometry with 30 control points
on the suction side surface, we get the curvature profile shown in Fig. 3.13. This
figure clearly shows that the NURBS curve is very smooth, continuous and follows
the MRATD curvature distribution very precisely, especially on regions that are
away from the junction points. However, near the leading edge junction point on
the suction side, the NURBS function experiences a sharp overshoot in the curvature.
This problem is mainly due to the C? continuity condition imposed on the geometry

at key point 3. Nonetheless, this overshoot can be removed as shown in Ch. 4 by
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Figure 3.12: The suction side curvature distribution of the 1-NURBS
approximation versus the MRATD model.

modifying one control point.

3.9. NURBS Model Accuracy Assessment

To assess the two NURBS approximations, their effect on the pressure distribution
is presented in this section. A CFD analysis was carried out and the results thus

obtained are compared with those of the MRATD model.

In the CFD analysis, the steady two-dimensional turbulent compressible flow
in a linear cascade is simulated using a cell-vertex finite volume space discretization
method on an unstructured triangular mesh. The steady state solution is reached
by pseudo-time marching the Reynolds-averaged Navier-Stokes (RANS) equations
using an explicit five-stage Runge-Kutta scheme. Baldwin-Lomax turbulence model
was used to represent turbulence effects. Local time stepping and implicit residual
smoothing were used for convergence acceleration. The non-linear blend of second
and fourth order artificial viscosity was found to be successful in capturing shocks

and eliminating pressure-velocity decoupling with minimal numerical diffusion. The
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v Figure 3.13: The curvature distribution of the DFVLR blade using the
MRATD and a NURBS approximation with degree 10 and 30 control points on the
suction side surface.

method of characteristics was used to impose inflow and outflow boundary condi-
tions. The boundary conditions imposed at inlet are total pressure, total tempera-
ture and inlet flow angle. At the exit plane, the exit static to inlet total pressure is
specified. More details on the discretization method for inviscid flows can be found
in Ahmadi and Ghaly [8]. The implementation of RANS equations was provided by
Daneshkheh [9] in the form of a computer code that was used to analyze the cases

presented in this work.

For the DFVLR cascade, given in Fottner [4], the spacing-to-chord ratio is
0.687, the inlet and exit flow angles are 37.7° and —49°, respectively, and the exit-
static-to-inlet-total pressure is 0.79. This case was simulated as a laminar flow case
at a Reynolds number of 500. The CFD simulation was carried out on a relatively
fine mesh so as to capture accurately the leading/trailing edge regions and to resolve
the boundary layer region as well. The hybrid mesh, shown in Fig. 3.14, was used
in the three models presented in Sec. 3.8. It allows for an accurate resolution of the

boundary layer as well as the LE and TE regions, with a reduced number of wall
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Figure 3.14: The hybrid mesh used for the CFD analysis.

nodes, and without any significant mesh distortion. The residual error for every

simulation was reduced by six orders of magnitude.

The pressure distribution on the blade, which is shown for the three cases in
Figs. 3.15 and 3.16, is practically identical, except near the leading and trailing
edge regions, where one can observe a slight but negligible difference. These results
confirm the quality of the approximations, and support the assumption that the
curvature noise effects on the pressure are negligible. Furthermore, if one wishes to
obtain identical results as those of the MRATD model, one can impose C! continuity
across the junction points, thus exactly replicating the MRATD geometry at the

junctions by using NURBS.
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Figure 3.15: Suction side pressure distribution.
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Figure 3.16: Pressure side pressure distribution.
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Chapter 4

Shape Optimization Using the
MRATD Model

The MRATD model, which is a low-order global representation of turbine baldes,
and the five-NURBS parametrization, which gives a high order flexible and accurate
representation, were successfully developed and assessed for their flexibility, smooth-
ness and accuracy. However, in order to fully evaluate their performance, they need

to be tested in an aerodynamic optimization process.

In this chapter we propose a strategy that will allow for an efficient, accurate
and robust optimization scheme. We begin with an aerodynamic shape optimization
using the low-order global blade representation, the MRATD model. This step is
necessary in order to effectively perform a global sweep of the design space, hence
improving the chances of locating regions where a potential optimal solution might
be found. Once a set of MRATD design parameters is found, we propose an approach
to continue with a local performance improvement using the NURBS parametriza-
tion. (This also demonstrates the power of the NURBS representation.) We propose
to take the global optimal case obtained from the MRATD model, locate the regions
where the blade profile behaves poorly and focus on improving the blade smoothness

near the LE.
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The optimization scheme used in this chapter is the object of the Ph.D. thesis
work of Mr. Mengistu, graduate student in the Mechanical and Industrial depart-

ment, who should be defending his thesis soon, [10].

4.1. Optimization Problem Definition

For this evaluation, the 3™ section of the ETU-4 turbine blade, a typical 3D blade
with a free vortex design, is used as a case study. Its geometry was given in [4]
as a set of z and y-coordinates. Several geometric features of the blade were also

provided, and that helped to determine certain designer parameters that are used

as input for the MRATD model.

The CFD analysis code is the same as the one described in Sec. 3.9. The
mesh used for this work is a semi-structured H-mesh with 12000 points. The CFD
simulations are stopped when the norm of the residual on the momentum equations
reaches 1078, which requires approximately 50 minutes of CPU time on a pentium
4 PC with 3 GHz and 2GB of RAM. The original and the approximated profiles are
shown in Fig. 2.10. The MRATD design parameters for the MRATD approximation
are listed in Table 4.1. The turbine blade rotates at 7500 rpm, and passes an air
mass flow rate of 7.8 kg/sec. The inlet pressure and temperature are 2.6 bar and
413 K respectively, the outlet pressure is 1.022 bar. The blade has an efficiency of
0.913 and a stage reaction of 0.5. From these data, the inlet conditions used in the
numerical simulation are: the total pressure and temperature of 135404.7 Pa and
341.7 K respectively, the absolute inlet velocity of 79.1 m/s at an angle of a; = 6.00°
(see Fig. 4.1).

For this optimization, the MRATD model is used to generate the blade profiles,

however the NURBS parametrization is used in generating the geometry that is
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Design Parameter | Value
Number of Blades 30
Radius 0.162 m
Axial chord 0.0396472 m
Tangential chord 0.031 m
Throat 0.01330
Unguided turning 12.00°
Trailing edge radius 0.00022
Inlet metal angle 39.4°
Exit metal angle -66.0°
Inlet wedge angle for suction side 15°
Inlet wedge angle for pressure side 30°
Outlet wedge angle for pressure side 2.5°
Maximum thickness 0.01065
Axial location of maximum thickness 0.35
Minor diameter of the ellipse leading edge 0.002
Major diameter of the ellipse leading edge 0.005

Table 4.1: Design parameters for the ETU-4 section 3 turbine blade.

Ub

wi

Figure 4.1: Velocity triangles for the ETU-4 section 3 turbine blade.
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Figure 4.2: Curvature of the NURBS parametrization of the section 3
ETU turbine blade (Original).
meshed and analyzed in the optimization scheme to ensure 2" order continuity at
the junction points. The NURBS parametrization for this case uses a 5 degree
curve with 13 control points on the suction side region. The curvature profile of the
NURBS parametrization is smooth everywhere across the suction side except at the

junction points where the curvature experiences a sudden jump (see Fig. 4.2).

The CFD results confirm the accuracy of the NURBS parametrization with
respect to the MRATD model in terms of pressure distribution (see Fig. 4.3). From
the CFD analysis, and the resulting pressure distribution, we are made aware of
some important flow properties. First the pressure side region behaves very well;
the flow is accelerating across that region of the blade, and the pressure decreases
gradually, eliminating any chances of flow separation. In contrast, the suction side
region, which is a much more sensitive region, behaves rather poorly, especially near
the junction points and is characterized by a diffusion region between 65% chord
and the TE where static pressure is rising. The sharp pressure fluctuations along
the blade surface can result in a poor flow behavior. This further indicates that the

suction side region needs to be redesigned in order to improve the blade performance.
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Figure 4.3: The pressure distribution of the section 3 ETU-4 blade geometry
using the the MRATD model and its NURBS parametrization.
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The objective of this exercise is to optimize the blade performance at the
design point. The optimization uses a genetic algorithm for a global sweep of the
design space. The objective function is a weighted sum of all individual objectives,
namely to maximize efficiency, minimize the total pressure loss, and is penalized
with all the constraints in order to maintain or increase the pressure ratio and
maintain the same operating conditions (i.e., fixed rotor speed, fixed inlet and outlet
boundary conditions). All the objective parameters are included in the objective
function, although the weights associated with each objective might vary according
to importance. As will be shown later, varying the weights has a significant impact

on the outcome of the resulting optimal blade shape.

The objective function in this case is computed using an artificial neural net-
work (ANN) which is a low-fidelity approximation model. This avoids using the
expensive and time consuming CFD code for computing the objective function in
the optimization cycle. To train and test this ANN model, fifty candidate profiles
are generated with the MRATD model by randomly varying the design parameters
by +25%. Of these fifty cases 35 are selected for ANN training and 15 for ANN
testing, with a total training time of 6 hours and a 3% maximum error of objective

function evaluation during testing.

4.2. Optimization Using the MRATD Model

Since the flow is most sensitive to the shape of the suction side region and the
uncovered surface, the MRATD design parameters controlling both of these regions,
namely the tangential chord, the throat, the unguided turning, the suction side inlet
wedge angle, the maximum thickness and the major diameter for the leading edge

ellipse, were selected as the design parameters.
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The results of the optimization are presented in Tables 4.2 and 4.3, as well as
Figs. 4.4 and 4.5. There are several optimal design solutions, designated as optimal;
to optimals, each one corresponding to a specific objective function. The objective
function is varied by modifying the weights associated to the various objective pa-
rameters. For all optimal cases, the design conditions for the blade are in general
equivalent to the original design specifications. From the results, we notice that the
most encouraging solution is optimal,. For that case, the pressure loss is reduced
by 0.386%, the efficiency is increased by 0.388%, the pressure distribution is almost
unchanged, the maximum mass flow rate was increased by 0.52% and the inlet and

outlet flow conditions are maintained to the original specifications.

A few remarks should be made at this point. First, note the global shape
change, depicted in Fig. 4.4, results from changing only six design variables. The
relatively low number of design variables allows the numerical optimization method
to find the global optimum. Given that the design variables are also the designer’s
parameters, any geometry that is generated during the optimization process is a
feasible geometry, which effectively limits the design space to feasible geometries

and ensures that the optimized geometry will also be a feasible one.

Let us also note that, if this geometry were to be parametrized using NURBS,
about thirty control points would be needed to represent the entire blade shape,
which would result in approximately sixty design variables, instead of 6 for the
MRATD representation. This would result in a much more complicated design space
and the optimizer might have difficulty carrying out the optimization or may not
produce a feasible blade geometry. Such an observation might explain the absence
of any literature on the use of NURBS in shape optimization that would result in a

global change such as the one shown in Fig. 4.4.
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Figure 4.4: The optimized profiles vs the original for section 3 of the ETU blade.
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Figure 4.5: The pressure distribution for all the optimal cases provided
by the optimization routine.
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Design Parameters | Original i Optimal 1 | Optimal 2 J Optimal 3

Tangential Chord 0.031 0.02639 0.02609 0.02653
Throat 0.01331 0.01388 0.01312 0.01316
Unguided Turning 12.0 12.92 9.95 12.3
SS Inlet Wedge Angle 15.0 12.63 14.83 14.44
Maximum Thickness 0.01065 0.01146 0.0122 0.0127
Major Diameter of LE Ellipse | 0.0020 0.001664 0.001828 0.002172

Table 4.2: Design parameters for the ETU-4 section 3 turbine blade.

Cases Ploss EfT. PR Mass | Inlet flow Exit flow
% % in/out angle, deg | angle, deg
Original | 17.263 | 91.674 | 1.51849 | 0.191 57.37 -65.83
Optimal 1 | 14.186 | 91.681 | 1.51000 | 0.201 56.02 -64.90
Optimal 2 | 16.877 | 92.062 | 1.51800 | 0.192 57.35 -65.93
Optimal 3 | 17.045 | 92.052 | 1.51851 | 0.191 57.47 -66.00

Table 4.3: Design parameters for the ETU-4 section 3 turbine blade.

It should also be noted that this case involves an already good design and
given that the flow is subsonic and attached, the only aerodynamic loss is the profile
loss due to boundary layer development. This type of loss is the hardest to reduce.
Nonetheless, the optimization process was able to suggest a better performing blade

shape.

4.3. Local Performance Improvement Using the

NURBS Parametrization

The global optimization results obtained in the previous section are very encourag-
ing, given that the original geometry has a high efficiency (91.67%), that the case

is subsonic and that only the global design parameters are used in the optimization
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scheme. Several optimal design points are determined, and the design is improved
with respect to the original one. Further, since the flow is subsonic across the entire
blade surface, increasing the efficiency by 0.388% is not a trivial matter since the
aerodynamic losses are mainly due to 2D viscous effects. Local optimization on the
other hand is necessary in order to narrow down the results to a global optimal point.
Work on local 2D aerodynamic optimization of turbine blades has been implemented
using B-splines or Bézier curves by [3, 11, 12]. Furthermore, it was demonstrated
in [13] that similar schemes that use NURBS as the parametrization function are
much more robust in finding an optimal geometry due to their increased flexibility
and accuracy.

By studying the curvature distribution and the aerodynamic characteristics of
the initialization geometry, one would determine the regions of the blade geometry
that require some improvement. For instance, after studying the curvature and the
pressure distribution of the optimized MRATD geometry, we observe certain unde-
sirable features (see Figs. 4.2, 4.5 ). This adverse behavior needs to be eliminated
in order to see any further significant improvement in the blade performance.

In order to demonstrate the added flexibility of using NURBS functions in
order to modify the blade geometry, a simple exercise is carried out on the optimal,
geometry of section 3 of the ETU-4 blade. The curvature of this geometry at the
junction point between the LE and the suction side is characterized by a sharp rise,
that would be practically impossible to dampen using a low-order geometric model
(see Fig. 4.2). In order to eliminate that curvature jump, it is necessary to adjust the
control points and the corresponding weights that define that region. This exercise
is relatively simple to perform, since the curvature distribution will either improve
or worsen depending on the direction (negative or positive) and size of the change in

control point location and weight. An example of an improved curvature is shown
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Figure 4.6: Improved curvature of the NURBS parametrization of the
section 3 ETU turbine blade.

in Fig. 4.6, where one control point and weight were manually changed and resulted
in removing entirely the overshoot in curvature that was prevailing near the LE.
It should be noted that having the added flexibility of the weights in the NURBS
function was critical in order to obtain the given results.

Finally, in order to assess the impact of this curvature adjustment on the aero-
dynamic performance of the blade, a CFD analysis is carried out on both geometries.
The results, shown in Fig. 4.7, reflect an improved pressure distribution where the
flow experiences a more controlled and less severe pressure increase at the leading
edge on the suction side, which implies an increased loading of the blade. Further-
more, the aerodynamic efficiency increases by 0.055% to 92.117% and the pressure
loss is reduced by 0.327% to 16.55%. Such an improvement can be automatically

captured when using a local optimization scheme coupled to the present NURBS
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Figure 4.7: Pressure distribution of the ETU section 3 geometry original curvature
v.s. optimal LE curvature.

parametrization.
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Chapter 5

3D NURBS Parametrization of
Turbine Blades

In the previous chapters, two geometric models were presented and were assessed for
2D aerodynamic optimization. However, in highly loaded gas turbine blades, the flow
is strongly three-dimensional particularly when the chord to height ratio is large,
hence 3D aerodynamic effects become significant and should be accounted for in
order to capture accurately all the flow characteristics. In order to properly design a
3D turbine/compressor blade, the 2D sections at different radial locations can be first
designed and analyzed using the MRATD model and its NURBS parametrization;
this is followed by a CFD analysis of the 3D geometry. The 3D analysis can be
taken one step further by performing a 3D aerodynamic optimization of the blade
geometry. In this chapter, a 3D NURBS geometric model for turbine/compressor
blades is developed and assessed. This model should have the same characteristics
as those of the 2D models so as to be suitable for 3D aerodynamic optimization,
i.e., the model must be flexible, accurate, efficient and robust. It was found that
the NURBS skinning technique is one of the best possible solutions to fit a smooth
surface through several 2D blade sections stacked in the radial direction. First, the

model is presented in detail, and afterwards it is assessed in terms of smoothness
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and accuracy.

5.1. 3D NURBS Model

In order to design a 3D blade surface, an aerodynamicist usually starts by designing
several 2D blade profiles at different radial locations. A 3D geometry is then ob-
tained by fitting the 2D sections with a smooth surface using a given surface fitting
technique. Several techniques were studied for this work, and it was concluded that
the NURBS skinning technique allows for a more accurate, smooth and straightfor-
ward means of accomplishing this task. The methodology used to develop the 3D
model is thoroughly discussed next.

A NURBS surface is defined as follows:

S(u,v) = 2 ic0 2o Nip(u)Njig(0)Pi Wi,
, 2 im0 Z;'n=0 Nip(u) N; o(v) Wi 5

(5.1)

where S(u,v) are the z, y and z-coordinates of the surface being generated, n is
the number of control points in the u direction and m is the number of control -
points in the v direction, P;; are z, y and 2-coordinates of the control point, w; ;
the weights and N; ,(u) are the basis functions in the u direction and N, 4(v) are the
basis functions in the v direction defined on the non-periodic and nonuniform knot

vectors U and V [6]:

U={a a,u u b,...,b} V={c C,v ey Us—g—1,b,...,0}

p+ly oy Ur—p-1,Y, ..., sy by Ugtl, - y Us—q—-1 Yy 1

—_— N e’ N e’ S’
p+1 p+1 q+1 p+1

wherer=n+p+land s=m+qg+1.
In order to obtain the 3D surface using Eq. 5.1, each 2D NURBS function

must be correctly formed. Firstly, using the 2D NURBS parametrization and the
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Figure 5.1: The 3D ETU-4 Blade Generated Using NURBS Skinning Technique.

knot refinement techniques discussed in Sec. 3.5, all 2D NURBS parametrization
used for generating the 3D blade are made compatible in terms of number of control
points and identical knot vectors. Once this is complete, the curve interpolation
technique discussed in Sec. 3.4 is used in order to determine the new set of control
points in the radial direction. Therefore, the 3D blade surface is defined by the
2D blade sections that are stacked radially, and the z, y and z-coordinates of the
blade can be obtained and plotted. More detail about this technique can be found
in [6]. Figure 5.1 shows the approximate representation of the ETU-4 blade where
sections at various radial locations from hub to tip are shown in Figs. 2.8 to 2.13

respectively, as well as in Fig. 5.2.

5.2. 3D NURBS Model Assessment

In order to assess the 3D model in terms of accuracy and smoothness, the blade shape
and curvature evaluated at different 2D radial sections are examined. When moving
radially out from hub to tip, the blade shape and curvature should transit smoothly

at radial positions located between any two original stacked sections. Figures 5.3
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Figure 5.2: The 6 stacked sections used to generate the 3D surface
of the ETU-4 blade.

to 5.6 show the blade geometry and curvature at 32.7% and 59.8 % span of the
ETU-4 blade generated using the 5-NURBS parametrization technique applied to
the original 2D sections. The blade shapes, given in Figs. 5.3 and 5.5, look smooth
however a close inspection of the curvature distribution, given in Figs. 5.4 and
5.6, reveals some noise in the curvature at points where the original sections have
a multiplicity in the knot vector. Two approaches can be used to remove this
noise. One way is to eliminate the multiplicity in the knot vector and optimize the
five-NURBS curves representation using the approach developed in [5]. Another
approach would be to represent each of the 2D sections with one NURBS curve
again using the work of Ghaly and Mengistu [5].

A possible approach to designing 3D sections is to do it in two steps. Start first
with a global search of the 3D design space using the MRATD model at selected 2D
sections that are then fitted with a 3D NURBS to generate a continuous 3D blade
representation. The MRATD model ensures a small number of design variables
and the NURBS skinning technique ensures a smooth 3D profile. An alternate

approach to using the designer parameters at the selected 2D sections is to follow
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Figure 5.3: The ETU 3D blade profile at 32.7% span using
a 5-NURBS parametrization technique.
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Figure 5.4: Curvature of the ETU 3D blade at 32.7% span using
a 5-NURBS parametrization technique.
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Figure 5.5: The ETU 3D blade profile at 59.8% span using
a 5-NURBS parametrization technique.
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Figure 5.6: Curvature of the ETU 3D blade at 59.8% span using
a 5-NURBS parametrization technique.
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the approach developed by Lai and Yuan [14], where the 2D sections of the 3D blade
are designated as design parameters and they are manipulated using transformation
matrices in translation, rotation and scaling. Either of these two approaches allows
for a significant reduction in the complexity of the design space, eliminates a large
region of unfeasible designs, and allows enough flexibility for the optimizer to explore
different design alternatives.

Once the global optimum shape is obtained, local refinement of the blade shape
can then be done using the NURBS representation of the blades. Note that only
very few control points would be used in the local refinement of the already globally

optimized 3D blade geometry.
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Chapter 6

CONCLUSION

6.1. Completed Work

The target for this work was to develop an implicit geometric representation of gas
turbine blades that incorporate the designer parameters and yet is robust, flexible
and accurate so as to be used efficiently in automatic shape optimization. This led
to the development of the MRATD model, and a parametrization of that model
using NURBS functions. The flexibility of both models was measured by repro-
ducing several existing turbine blade profiles with remarkable accuracy. Also, the
smoothness and accuracy of the five-NURBS curve parameterization was also mea-
sured and compared with those of the MRATD model as well as the one-NURBS
representation. Differences between the five-NURBS curve and the one-NURBS
representations were found to have insignificant effect on the pressure field. In addi-
tion, the MRATD model was successfully implemented in an optimization scheme.
Several optimal blade geometries were obtained for different choices of the objective
function. The five-NURBS parametrization was also used in order to smoothen the

curvature at the leading edge near the junction point between the suction side and

80



the leading edge arc. This was accomplished through minor profile modifications
using the NURBS control points and as a result, the aerodynamic performance of
the blade was enhanced quite significantly.

Finally a 3D geometric model is developed and assessed based on the curvature
distributions obtained across the radial direction. Through the curvature analysis, it
is clear that the 5-NURBS parametrization is disadvantaged by the multiplicities in
the knot vector, creating discontinuities in the curvature at various locations across

the airfoil span.

6.2. Future Work

For future work, several issues need to be accounted for with respect to this work.
Firstly, a fully automated high-fidelity optimization process must be elaborated and
performed in order to fully validate the NURBS parametrization of the MRATD
model. Furthermore, a more detailed assessment of the 3D geometric model must
be performed. The model should be evaluated through a CFD analysis in order
to measure its performance with respect to existing blade geometries. Further,
a 3D aerodynamic optimization can be carried out to evaluate the feasibility of
such a method, and whether the model behaves adequately when the geometry
is modified. Finally, this work can be easily extended for compressor applications.
Acknowledging the fact that 2D compressor blade geometries can be modelled based
on a similar set of design parameters that one finds in the MRATD model, it would
be interesting to study how such a model would perform in an optimization scheme.
This work has set the foundation for the realization of the above mentioned future

objectives.
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