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Abstract

A Tight Two-Way Fluid-Structure Coupling for Aeroelastic Computations
in the Time Domain

Claude Lepage, Ph.D.
Concordia University, 2004

A three-dimensional implicit finite element Euler/Navier-Stokes solver based on
the Arbitrary Lagrangian-Eulerian formulation has been developed for fluid-structure
interactions, moving and deforming bodies, and aeroelastic calculations. The flow
solver is complemented by a built-in moving grid algorithm which allows the compu-
tational grid for the fluid to move simultaneously with the moving body, without the
need for global mesh regeneration and solution interpolation. The flow solver is cou-
pled to a stress solver in a tight fashion at each time step, although both solvers exist
independently and are used as black boxes. The aerodynamic loads and the structural
displacements are transferred between the two solvers in a conservative fashion using
the concept of a virtual grid, which guarantees the conservative transfer of both the
pressure and the viscous shear stresses and also lends itself to complex geometries
featuring non-matching grids at the fluid-solid interface. The level of tightness of the
coupling on the aeroelastic response is investigated and the efficiency and accuracy
of different solution strategies are discussed. The technology has been validated on

well documented aeroelastic configurations.
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Chapter 1

Introduction

The design of modern aircraft, using lighter and thinner, hence more flexible materials,
has stimulated the development of state-of-the-art numerical models for the accurate
prediction of the aeroelastic phenomena that affect the aerodynamic performance,
the maneuverability, and the controllability of the aircraft, as well as the internal
maximum stresses occurring in its components. Typical aeroelastic evaluations of
this nature include the study of external flows, such as the analysis of flutter over
wings or the galloping of transmission cables, and, for internal flows, the vibration of
turbomachinery blades. In the latter case, blade excitations, of large amplitude and
traveling at the blade passing frequency, constitute an important phenomenon for
which the interaction between rotor-stator rows can excite different structural modes
in torsion and bending, leading to high-cycle-fatigue and to premature structural
failure. The study of moving rigid or flexible bodies in an air stream, such as the
deployment of flaps and ailerons on a wing, constitutes another class of fluid-structure

interactions.

In general fluid-structure interaction cases, the aerodynamic forces influence the

motion of the structure (or its deformation), which in return affects the characteristics
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of the flow field. The role of aeroelasticity is to examine the limits of stability of the
structure subject to wind-induced excitations. There are perhaps no better words
than those of Smith and Kadambi [1] to describe flutter, here in the context of blade
flutter: “Flutter occurs as a dynamic instability in which the blade motion becomes
self-excited by extracting energy from the flowing fluid. This condition may develop
when the aerodynamic forces become in-phase with and eventually lead the blade

motion.”

Traditionally, analytical methods based on the linearized equations for potential
flow have been used in the study of aeroelastic problems of simple geometry, for
example in the study of flow-induced oscillations of a rigid flat plate, based on quasi-
unsteady linear aerodynamics. Still today, this approach prevails in the classroom to

teach the fundamental mechanisms of flutter.

From a modern industrial perspective, the study of aeroelastic problems has taken
a decisively computational turn, making use of state-of-the-art computational fluid
dynamics (CFD) and computational structural dynamics (CSD) solvers to determine
the stability limits of flow-induced vibrations for complex configurations such as air-
craft and turbomachinery blades. The approach taken to solve the coupled problem
mostly depends upon the capabilities of the flow and the stress solvers, while seek-
ing a cost-effective balance between the turnaround analysis time and the available

computing resources.

Today, boundary element methods are widely used in industrial aeroelastic sim-
ulations, in particular the doublet lattice method available in MSC/NASTRAN! as
part of the aerodynamic solver. Such a method solves the aeroelastic problem in
the frequency domain (eigenvalue analysis) and offers attractively low computational

costs, although it is recognized that Fuler and Navier-Stokes solvers better represent

IMSC/NASTRAN is a trademark of The MacNeal-Schwendler Corporation.
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the true nonlinear behavior of the flow, critical in aeroelastic computations in the
transonic regime. This latter class of aerodynamic solvers are nonlinear and necessi-
tate a solution in the time domain, which can lead to prohibitive computational costs.
The main goal of this thesis is to develop such a state-of-the-art aeroelastic solver
based on the Euler and Navier-Stokes equations, with the fluid and the stress solvers
constituting by themselves the building blocks for the elaboration of the aeroelastic

gystem.

Aeroelastic calculations are still mostly used today, in the aerospace industry in
general, as a design evaluation tool, rather than as a design tool per se. Computa-
tional aeroelasticity (CAE) enables the development of mechanisms for wing flutter
suppression via active control surfaces [2], analyses over full fighter aircraft [3] and
helicopter blades [4], and, for internal flows in turbomachines, the determination of
the effects of engine noise on the vibrational modes of the fan blades. At this stage,
it is perhaps reasonable to view the present method as a means to analyze the final
design of a configuration, based on preliminary aeroelastic predictions of the doublet

lattice method, for example, rather than to use such a tool in the design phase.

1.1 Literature Survey

As viewed from the CFD community, the achievements in computational aeroelastic-
ity have paralleled the developments of the flow solvers, while essentially taking the
availability of the stress solver for granted. A solution approach in the time domain
is employed — the only feasible approach using a nonlinear flow solver. From the CSD
world’s viewpoint, emphasis is given to a solution approach in the frequency domain,
exploiting the linearity of the stress solver and using linearized aerodynamics models,

which retain the fundamental features of the air stream, but which may neglect the
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fine details of the flow field. This thesis reflects the stance of the aerodynamicist:

studying the aeroelastic problem in the time domain.

In aeroelastic computations, one is generally not interested in inelastic effects and
in large displacements leading to the fracture of the structure — two phenomena
which normally occur beyond the flutter point. Thermal effects, important for tur-
bines, are negligible for compressors, for fans, and for external flows. Thus, for stress
analysis, the theory of small displacements often suffices to accurately model the
structure, as governed by the Navier equations for a linear isotropic and isothermal
elastic material, with the use of specialized elements such as shells and plates. These
equations are linear and hence are numerically easier and less expensive to solve for
than the nonlinear Euler and Navier-Stokes equations governing the fluid. They are
commonly solved using the Rayleigh-Ritz discretization method with selected bending

and torsional modes (modal analysis).

The modeling of the fluid, on the other hand, requires more in-depth attention.
In performing a wing flutter analysis, for example, the objective is to find the limits
of stability for the entire envelope of flight, from take-off to cruise. At low speeds, a
linearized theory can predict the flutter speed precisely, but at higher speeds, in the
transonic regime, the compressible Euler or Navier-Stokes equations must be used to
correctly capture the nonlinearities of the flow and to accurately determine the flutter
boundary curve. It has been observed that the flutter dynamic pressure decreases as
the Mach number increases until Mach = 1, reaching a minimum (the well-known
transonic flutter dip), then increases sharply beyond Mach = 1 (see figure 1.1). The
determination of this critical point is essential in establishing the safe flight envelope

of the aircraft.

The aerodynamic computational models with aeroelastic applications to external

flows have evolved, in parallel with the evolution of computing power, from the tran-
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Figure 1.1: Representation of a Wing Flutter Boundary Curve (Qualitative).

sonic small-disturbance (TSD) theory based on the potential flow equations [5, 6],
to the compressible Euler equations [5, 7, 8, 9], and finally to the compressible thin-
layer and turbulent Navier-Stokes equations [10, 11, 12]. These developments have
progressed from 2-D to 3-D steady, to time-linearized, and then to fully unsteady mod-
els, using structured and unstructured grids, for external flows over airfoils, wings,

and aircraft configurations.

The transonic small-disturbance and full potential flow equations, widely used to
study inviscid flows, are, however, deficient despite their attractively low computa-
tional requirements. In particular, for the very popular linearized TSD equations,
the deformations of the structure are imposed via the surface flow tangency condition
v -n = 0, which takes the form

oo 1 DY
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where @ is the perturbation velocity potential (¢ = Uy (z+®) is the velocity potential)
and Y(x,t) describes the surface of the deforming body [13]. Consequently, the

computational domain does not change as the body deforms, limiting the theory to

thin slender wings.

More sophisticated models make use of the Euler and Navier-Stokes equations
which incorporate nonlinear effects. While these aerodynamic models can account
for rotational (vortical) flows and can capture shock waves, the computational re-
quirements are greatly magnified and must therefore be justified. Unlike the TSD
equations, the structural deformations are accounted for directly in the Euler and
Navier-Stokes equations, which are in this case most commonly recast using the Ar-
bitrary Lagrangian-Eulerian (ALE) formulation. True aeroelastic computations with
two-way feedback are carried out: the aerodynamic forces produce an instantaneous
deformation of the structure and these flow-induced displacements alter the flow.
Since the deformations are effected in the computational (physical) domain, some
sort of remeshing of the domain must take place such that the computational domain
follows the motion or the distortion of the structure. It is recalled that no remeshing
of the domain is required for the TSD theory. In spite of this added complication,

bodies of arbitrary shape and complexity can be now treated.

Fewer publications exist on aeroelastic analyses of internal flows through cas-
cades and turbomachines, in comparison to the numerous publications reported for
external flows. A review paper by Fransson and Verdon [14] describes numerous
standard configurations for two-dimensional cascades. Transonic flows through two-
dimensional oscillating cascades are reported in [15, 16] for potential flow methods
(linearized unsteady potential, vortex panel method,...), in [17, 18] for Euler cal-
culations, in [19, 20] for viscous-inviscid interaction calculations using an integral

boundary layer model, and in {21] for thin-layer Navier-Stokes calculations. Applica-
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tions to three-dimensional cascades are presented in [22, 23, 24] for Euler calculations

coupled to a finite element stress solver and in [25, 26] for Navier-Stokes calculations.

More advanced aeroelastic calculations of three-dimensional turbomachinery con-
figurations are hindered by the level of complexity of the physical problem (see
Rao [27] for a detailed discussion). In particular, rotor-stator interactions are at
the source of the pressure disturbances which excite the blades and, to analyze such a
problem, substantial extensions to the CFD solver are required to model rotating and
non-rotating components simultaneously [28, 29]. For the study of blade vibrations in
turbomachinery, it is sufficient to consider only one blade and to use cyclic symmetry
to obtain the solution for the entire blade row, in the particular case where all blades
vibrate following the same pattern (fundamental mode). However, for more complex
vibrational modes, the entire row of blades must be analyzed, thus multiplying the
size of the problem and the solution time by the number of blades in a row. In
multistage axial, centrifugal, or mixed jet engines, rotor-stator interactions mandate
modeling several rows of blades. These notably computationally intensive unsteady
simulations, in particular for turbulent Navier-Stokes calculations, have been, in many

cases, beyond the scope of the computing resources available to most industries and

even major research laboratories.

1.2 Scope of Research

It is apparent from the conducted literature review that advanced three-dimensional
CFD codes for Euler and Navier-Stokes aeroelastic calculations have been developed
in a number of research laboratories. The code ENSAERO, based on the finite dif-
ference method (FDM) and developed at the NASA Ames Research Center by the

team headed by G.P. Guruswamy, has been used at Lockheed Martin Aeronautical
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Systems for the flutter analysis of wings and aircraft [12]. The finite element edge-
based aeroelastic code AU3D [25], developed at Imperial College, is tailored to the
analysis of flows in turbomachines [26]. (The use of the finite element method, un-
like the finite difference method, offers significant advantages from the aspect of grid
generation of complex geometries using unstructured meshes.) Another substantial
effort in aeroelasticity is by the group headed by C. Farhat at the University of Boul-
der, Colorado, with applications to external flows with high-speed flight maneuvers
of fighter aircraft [30]. Significant contributions have also been made by this group
in the development and study of the theoretical properties of algorithms in computa-
tional aeroelasticity (convergence, stability, accuracy, robustness) [31, 32, 33, 34, 35].
Finally, R. Lohner’s team has achieved success in general fluid-structure problems
involving moving bodies, such as detonation problems, the deployment of parachutes,

the launching of missiles, and in vascular flow applications [36, 37, 38].

A common denominator of the aforementioned works is that they all rely on
in-house CIFD solvers. On the other hand, the use of commercial stress packages, in
particular MSC/NASTRAN, is more common. A second consensus among these state-
of-the-art aeroelastic solvers is the use of implicit schemes, which are unconditionally
stable and allow for the use of large time steps for accurate cost-effective calculations.
Significant efforts have also been committed in parallelizing these solvers to reduce

the overall turnaround analysis time.

The primary goal of the thesis is to develop a cost-effective fluid-structure cou-
pling algorithm which links an implicit finite element three-dimensional unsteady
Navier-Stokes flow solver to a finite element stress solver for general fluid-structure
interactions of rigid and elastic bodies moving in air, in view of aeroelastic calcula-
tions of internal and external flows. Such systems are to be simultaneously solved for

the fluid and the structure in a fully coupled time-accurate fashion. In the process,
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the issues to be addressed are the importance of the structural deformations on the
fluid solution and the need for a tight coupling between the two solvers to obtain a
stable and time-accurate solution. Innovative ideas are presented for the smoothing
of the displacements in the mesh movement algorithm, for the inclusion of the viscous
shear stresses in the calculation of the aerodynamic forces, and finally for the transfer
of the aerodynamic loads in a conservative fashion across the flow and the stress grids

when the two grids do not necessarily match at the fluid-solid interface.

At the basis of this work is the three-dimensional implicit finite element Navier-
Stokes solver, FENSAP, developed at the CFD Laboratory by a team of research
associates and graduate students. Substantial contributions of the author include
the parallelization of the flow solver on shared-memory architectures, in addition to
the implementation of the time-marching capabilities for the simulation of unsteady
flows, followed by extensions to support moving grids for aeroelastic calculations.
Furthermore, a rudimentary but complete stress code based on the Navier equations
of linear elasticity was developed by the author. In some cases, simplified structural
models described by systems of ordinary differential equations are used. Details about
the two in-house solvers are given in chapters 2 and 3, with emphasis given to the

aspects pertaining to the aeroelastic capabilities of the codes.

In the first issue to be addressed, the effects of the structural deformations on the
flow solution will be studied, as opposed to neglecting the motion of the structure,
albeit small, in the calculation of the unsteady aerodynamic forces. An approach
based on the Arbitrary Lagrangian-Eulerian (ALE) formulation [39, 40, 41, 42] is
selected in which the aerodynamic mesh adjusts itself dynamically, without remeshing,
to the deforming structure. The implementation of the ALE formulation requires
modifications to an existent unsteady Eulerian flow solver to add the mesh movement,

(ALE) terms to the governing equations and to provide a mechanism to move the
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interior points of the grid such that it follows the motion of the structure. No re-
interpolation of the flow solution is required since the time derivative in the equations
for the fluid is modified to account for the time evolution of the flow quantities along

the trajectory of the grid points, while maintaining the accuracy in space and time.

While the use of the ALE formulation is the most common approach used in the
field of aeroelasticity for treating deforming structures, an alternative approach is
the space-time weighted-residual Galerkin finite element formulation, popularized by
Tezduyar et al. [43, 44, 45], in which the shape functions are taken to vary in space
and time. Time differentiation is performed via the shape functions, as opposed to
using semi-discrete multi-step or Runge-Kutta formulas for the temporal terms. The
space-time discretization permits for time-dependent deformable elements, without
explicitly adding terms in the equations (as for the ALE formulation). This concept is
not investigated in this research for practical reasons. As mentioned previously, this
work on aeroelasticity was initiated based on an already existing flow solver and it was
concluded that the space-time formulation proposed by Tezduyar was not amenable
to the structure and the philosophy of the FENSAP code. A comparative study of

the two approaches would, however, be of great value.

Both approaches mentioned above require the implementation of a grid movement
algorithm in order that the mesh for the air follows the movement of the structure. A
possible simplification, which short-circuits the need for grid movement, is to impose
“transpiration” velocity boundary conditions on the surface of the moving body, as
given by the speed of the body, as would be done in the linearized potential flow theory
for thin bodies (recall equation (1.1)). That is, instead of specifying the displacements
on the body (and having to move the grid), a correction to the flow velocity of the
fluid on the surface of the body is imposed to account for the deforming body. The

approach has been applied to the Euler equations by modifying the surface normal, as
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given by the structural dynamics solver and used in the calculation of the fluid fluxes
at the wall, without having to actually deflect the surface and move the grid [46].
This approximation, which is suitable only for small displacements, is not extendible
to general fluid-structure interactions for which the imposed motion of the structure

can be of large amplitude. The approach is thus not considered in this work.

In the second issue to be addressed, a Navier-Stokes simulation is necessary to
accurately represent the viscous flow phenomena present in turbomachines, such as
vortical and separated flows, in order to quantify the importance of the viscous effects,
including stall, on the flow and on the ensuing response of the blades. In addition,
a Navier-Stokes solution accounts for the complete viscous stress tensor acting on
the surface of the blades, as opposed to only considering the surface pressure forces,
provided that these viscous shear stresses are fed to the stress solver. Although the
technology will not be demonstrated in this thesis for applications in turbomachinery,

the concepts hereby developed for viscous flows will still be directly applicable.

Finally, in the third issue, the tightness of the fluid-structure coupling is investi-
gated. In early studies, time-dependent flow pressures on stationary grids were fed
to a stress solver and the consequent aeroelastic behavior analyzed over several cy-
cles of oscillations. While state-of-the-art independently developed flow and stress
solvers were used without changes, there is, in such a loose coupling, no continuous
two-way feedback between the fluid and the structure. To consider the effects of the
deformation of the structure on the unsteady aerodynamic forces, the motion of the
structure must be fed back to the flow solver, assuming capabilities to treat deform-
ing structures, and new time-dependent aerodynamic forces can then be computed
over several cycles. This process can be iterated; however, such a loose coupling,
performed over a large time interval (several cycles of oscillations), requires that the

unsteady calculations be repeated at every coupling instance, leading to prohibitive
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computational costs, without guarantees that a time-accurate solution of the coupled

system has been attained.

An implicit coupling algorithm is proposed in which the two systems are solved
in a segregated fashion, but with the structural and the aerodynamic information
exchanged in a tight two-way coupling as often as at every Newton iteration of the
flow solver at each time step. Performed in this fashion, such a tight coupling with
the stress solver incurs no significant additional costs to the fluid solver since the
nonlinear fluid problem, solved using an implicit method, will converge in about
the same number of iterations per time step, with or without coupling. Repeated
calculations at the same time step are thus avoided by continuously updating the
position of the structure while iterating on the nonlinear fluid problem, resulting in a
very cost-efficient direct approach. Convergence of the two systems at each time step

guarantees time-accurate solutions.

The coupling of the two solvers is controlled by the coupling driver — an external
interface responsible for managing the execution of the flow and the stress solvers, on
one hand, and transferring the aerodynamic loads and the structural displacements
from one grid to the other, on the other hand. The two solvers thus do not commu-
nicate directly with one another, but do so through the intermediary of the driver.
This segregated approach promotes the independent development of the two codes
and their execution in serial or in parallel, subject to minor modifications to enable
inter-code communications for efficiency purposes. The coupling driver is comple-
mented by an interpolation module for the transfer of the aerodynamic loads and of
the displacements across the grids. Unfortunately, algorithmic complexities can arise
when interpolating data across non-matching grids and care must be taken to ensure
conservation of the instantaneous total energy of the system. The generalization of

the interpolation module using the concept of a virtual grid eliminates the need for
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matching grids and also broadens the range of applications to structures of arbitrary
complexity. Moreover, the use of unstructured grids is compatible with the use of

mesh adaptation for enhancing the quality of the flow solution.

1.3 Outline of Thesis

The mathematical and the numerical models for the flow and the stress solvers are
described in chapters 2 and 3, respectively. The fluid flow is modeled by the Euler or
laminar Navier-Stokes equations based on the ALE formulation, discretized using the
implicit weak-Galerkin finite element method on unstructured grids. Extensions to
the flow solver to account for the structural displacements are detailed. They encom-
pass the extension of the governing equations for the fluid using the ALE formulation,
on one hand, and the grid movement scheme to smooth the CFD grid locally to con-
form to the deformations of the structure, on the other hand. Further capabilities to
calculate the viscous shear stresses are implemented in the solver. All details about

the flow solver are given in chapter 2.

The displacements are obtained by solving the Navier equations by the Rayleigh-
Ritz method, assuming small displacements and a linear isotropic material. The
time discretization is based on the f—Newmark method. The linear nature of the
Navier equations allows for the use of a modal analysis based on the natural modes
of vibration of the system, using the superposition principle. The modal analysis is a
very efficient and attractive approach for time-marching analyses, since the governing
partial differential equations can be reduced to a small system of decoupled ordinary
differential equations. However, it requires the solution of a generalized eigenvalue
problem to initially obtain the natural frequencies and the corresponding eigenvectors

of the system. The details about the stress solver are provided in chapter 3.
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Chapter 4 focuses on the aspects of the fluid-structure coupling. The coupling
driver is a stand-alone code which invokes, as black boxes, the flow and the stress
solvers. In particular, the coupling driver is responsible for synchronizing the action
of the two solvers and for extracting the aerodynamic loads and the structural dis-
placements on the surface of the structure and passing them as inputs to the solvers.
Since the surface grids for the air and the structure usually do not match, the grid for
the air being in general finer, the coupling driver is complemented by a surface inter-
polation module which interpolates, from one grid surface to the other, the structural
displacements in a nodal fashion and transfers the aerodynamic loads in a face-based

conservative manner.

Numerical examples are given in chapter 5 to demonstrate the capabilities of the
algorithms and to verify the methodologies. Many of the configurations presented are
two-dimensional, for practical reasons, given the long computational times. Three-

dimensional results are shown for the case of wing flutter.

The contributions of the thesis are summarized in chapter 6, along with the con-
clusions. Future developments, beyond the scope of the thesis, are outlined in this

final chapter.



Chapter 2

Description of the Flow Solver

The basic equations describing the flow model are presented in this chapter, as well as
the numerical method employed for their discretization and their solution. Special at-
tention is devoted to the aspects of the algorithms which are specific to fluid-structure
interaction problems, such as the extension of the governing equations for the fluid,
based on the Arbitrary Lagrangian-Eulerian formulation, the implementation of the

mesh movement algorithm, and the calculation of the aerodynamic loads.

The model for the fluid is based on the three-dimensional compressible unsteady
Navier-Stokes equations. Throughout this work, the appellation “Navier-Stokes” or
“Fuler” equations shall refer to the system consisting of the continuity, the momen-
tum, and the energy equations. In the limit of negligible viscosity, the Euler equations
are recovered and, in many cases, they are solved instead of the Navier-Stokes equa-
tions, given their lower computational costs. Despite the neglected viscous effects, the
Euler equations can account for shock waves, which constitute the dominant nonlin-
ear effect in predicting the transonic dip phenomenon of the flutter boundary curve.
At this stage in the development of the flow solver, unsteady high-speed turbulent

flow calculations are not available.

15



CHAPTER 2. DESCRIPTION OF THE FLOW SOLVER 16

The general formulation of the flow solver FENSAP is given in section 2.1. The
use of the Arbitrary Lagrangian-Eulerian formulation, which permits to include the
effects of the deformation of the structure on the flow solution, is stated in section 2.2.
In section 2.3, the stabilized weak-Galerkin finite element discretization of the Navier-
Stokes equations is given. The flow solver is complemented by the grid movement
algorithm, the focal point of section 2.4. Finally, in section 2.5, details are given

relative to the calculation of the aerodynamic loads on the surface of the structure.

2.1 Flow Governing Equations

The compressible Navier-Stokes system of equations are non-dimensionalized by in-

troducing the dimensionless variables

x Y z tUq
= yI:_____ o= L = I
loo’ loo’ loo’ loo
! D ' u ! v ’ w ! T
- y U =, U=, W= o, T = Bl .
P = Uz Uy, U, U : T (2.1)

P 7 H ! K ! P

pl = =, K=y, C,= 3

Poo Hoo Koo P CPoo

where [, is the characteristic length of the physical problem and where the physical
quantities Usw, Toor Poos Hoor Koo, and Cp are, respectively, the free stream flow
speed, the temperature, the density, the dynamic viscosity, the thermal conductivity,
and the specific heat capacity of air, at infinity. Omitting the primes /, the non-

dimensional form of the equations becomes, in the Cartesian framework,

czll-§~%zt{—-Ver(p’uj)ﬂ.:O
ﬂ%’%’ﬁ _ %3;_ -V (pwi) + (pvivy) ; = —pi+ IQ%:; (1) ;, 1=1,2,3, .
pCp (idjt: - %15 : VT-{-’UJ'TJ) = (Yoo—1)MZ (i% - %}.;_ - Vp+u;p;
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where
Tij = B (Vig +vji) + Adijvee,  (2p+ 31 =0), (2.3)
b=p2( e +e)+ (2 +e, + )]+ MV-v), (2.4)
ov;  Ov,
=y (2.5)

€5 =
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and the Mach, the Reynolds, and the Prandtl numbers are defined, respectively, as

? 3 -

UOO l o0 o
~RT. Hoo Koo

The Euler equations are obtained in the limiting case when Re, — 00, p— 0, and
K — 0.
The system is closed by the equation of state (non-dimensional)

__ T
T oM,

p 2.7)

for an ideal gas. The thermodynamic properties of the gas are taken to vary with the

temperature, according to Sutherland’s laws for the dynamic viscosity (dimensional)

o (_1’_)3/2 (Too+110.4K> 2.8)

boo  \Too T +110.4K '
and the thermal conductivity (dimensional)

K (_T_)Bﬂ (Tm+133.7K> 2.9)

Koo \Too T+1337K /° '

The coefficient of specific heat capacity at constant pressure, Cp(T), is obtained from
tabulated data from Black and Hartley [47] for an ideal gas, as plotted in figure 2.1 in
the range 100K < T < 1000 K. The ratio of specific heats, v = C,/C,, is obtained
from C, and C, = Cp, — R, where R = 287J/(kg-K) is the gas constant.

This system consists of 9 equations in 9 variables: the pressure p, the velocity

components vy, va, Vs, the temperature T, the density p, the dynamic viscosity u,
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Figure 2.1: Cp and v as Functions of Temperature T [47].

the thermal conductivity x, and the specific heat at constant pressure C,. In the
solution process, the pressure, the velocity, and the temperature are first obtained;
then, the thermodynamic variables p, u, s, and C, are updated. In some special
cases, such as steady inviscid flows without heat transfer, the total enthalpy may
be taken as being constant throughout the flow field. In this case, the temperature
is obtained from the definition of the total enthalpy instead of solving the energy
equation. However, in aeroelastic applications and unsteady flows involving moving
bodies, this assumption is not justified since energy is being exchanged between the

fluid and the structure.

For flows characterized by subsonic inflow conditions, the free stream velocity and
the temperature are imposed at the inlet and a static pressure is imposed at the far
exit. For supersonic inflow conditions, all variables are imposed at the inlet. At a

wall, either a temperature profile or a heat flux rate is imposed, in addition to the
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no-slip condition for viscous flows or the flow tangency condition for inviscid flows.

The non-dimensionalization of the equations is important from the numerical point
of view. Looking ahead, for an implicit discretization, a system of linear equations
must be solved. The matrix being large and sparse, the system is solved using a
preconditioned iterative solver of the conjugate‘ gradient family. The effectiveness of
the preconditioner, needed to provide convergence of the system, is closely related
to the scaling of the variables. In particular, it is desired that the primary variables

solved for, here p, vy, v, v3, and T, be of the same order of magnitude O (1).

Moreover, it is important to be aware of the non-dimensionalization of these vari-
ables in order to recover the correct physical quantities when extracting from the
solution file the aerodynamic forces needed for the coupling with the stress solver.

Similarly, the displacements must be converted to the proper units for the flow solver.

2.2 Arbitrary Lagrangian-Eulerian Formulation

The governing equations (2.2) for the fluid have been extended to account for moving
grids using the Arbitrary Lagrangian-Eulerian (ALE) formulation {39, 40]. In essence,
the partial derivative with respect to time of any quantity f has been replaced in

the equations by the ALE time derivative, given by
of _df dx

= — 2.1
ot dt dt v/ (2.10)
o d . e .
where it is understood that p7 denotes the time derivative taken along the trajectory
of a grid node moving at the speed o

dt
It must be clearly understood, within the ALE framework, that the equations

for the fluid are still defined in an inertial frame of reference. The moving/deforming
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bodies are immersed in the fluid domain which is at rest relative to a far-field observer.

For applications in turbomachinery, the use of the ALE formulation is applicable in
: Lo dx : , o :

the same fashion with o being the relative grid velocity in the rotating frame of

reference.

. : : d . . i
By taking the grid velocity field E}-E equal to the fluid velocity v, the classical
Lagrangian description of flow is obtained. The purely Lagrangian framework is
deficient in the sense that the mesh can become highly tangled when the nodes move
at the velocity of the fluid following the trajectories of the fluid particles. On the other
hand, =
and, —

In the Eulerian framework, on moving meshes, the domain must be remeshed and the

= 0 on a stationary grid and the Eulerian description of flow is recovered.

solution must be interpolated at every time step to account for the deformation of
the computational fluid domain which conforms to the moving structure. In the ALE
formulation, the nodes on the body move at the speed of the moving and deforming
body, with the interior grid points moving in an arbitrary fashion, but in such a way
as to prevent mesh tangling. Further, the flow variables are advanced in time along

the nodal trajectories without the need for an explicit interpolation step.

. . . dx . :
In finite volume implementations, the new term — - Vf is lumped with the

dx -
convective term V- (fv) to take the form V- |f (v = (f = p for continuity,
f = pv for momentum, f = pH for energy). Although a source vector arises from
this formulation, this formulation is required for the conservative calculation of the
unsteady fluxes on the moving grid, with the fluid moving through the cell at a relative

. . dx . o
convective velocity v — e In the present finite element context, the modification

to the time derivative using equation (2.10) provides a simpler implementation.

Finally, the boundary conditions of the flow solver are extended to account for
moving boundaries. For the Navier-Stokes equations, the no-slip boundary condition

dx
v = 0 at a wall becomes v = e For the Euler equations, the flow tangency
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boundary condition v -n = 0 (no-penetration) becomes v -n = dj}tf -n. In the
weak-Galerkin finite element formulation, described in the next section, the latter
condition is naturally imposed via the contour integral of the continuity equation.
Any deformation or motion of the structure is thus reflected in the flow boundary

conditions and will be accounted for in the flow solution.

2.3  Finite Element Formulation

A semi-segregated solution approach is adopted for the solution of the primitive vari-
ables p, v1, vg, v3, T. This choice of solution variables facilitates the imposition of
velocity and pressure boundary conditions at the inlet and the exit, in comparison to
using the conserved variables p, pvi, pvs, pus, pe, where e is the energy of the fluid.
The continuity and the momentum equations are first solved together in a strongly
coupled fashion for p, vy, vo, v3. The temperature T is then obtained from the en-
ergy equation, either from the assumption of constant total enthalpy (valid when the
flow is steady with no moving bodies or when there is no heat transfer) or by solving
the full energy equation using the weak-Galerkin finite element method. Finally, the
thermodynamic variables p, C,, u, and & are obtained from the equation of state
for an ideal gas, tabulated data for C, as a function of T, and Sutherland’s laws for

the dynamic viscosity and the thermal conductivity, respectively.

The weak-Galerkin finite element formulation is obtained by integrating the gov-
erning equations with respect to a weight function W, taken to be the same as the
shape functions /N interpolating the solution, and integrating the spatial terms by
parts using the divergence theorem. This effectively transfers the order of differenti-
ation from the spatial terms (convective and diffusive) to the weight function, hence

allowing for the use of lower-order elements. In this context, linear shape functions
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are used in space, but since equal order of interpolation is used for all nodal degrees
of freedom, artificial viscosity is added to the system for stabilization purposes. In
particular, the regularization of the continuity equation by the pressure allows the
continuity and the momentum equations to be solved in a coupled manner in terms
of the pressure and the velocity when the solution to the energy equation is lagged.

The transformed integral equations are:

Continuity:

dp dz; Op _

(2.11)
/W {ha [(61 + 62) 62193 }dV /W{ha E1 + 62)19 fgf’,j] ”j}ds
Momentum, 1 =1,...,3:
dpv; dz; ( Ov; 3,0
{ di ( GZE] v 85[7]' dv
2
+/ W)j {p’l}j’l)i -+ 5ijp — '—M—* ('Uij -+ Uji -— "5ij'vk k> } dV
% Re \'” 3 ’
(2.12)
—/W{pv~v~+(5~p— B (v- i+ v — 254} )}n-dS =
s il i Reoo 4,7 9yt 3 ij Vk,k 'j
LW (e + @) v —gaglhdv - [ WA (6 + &) vy — Gigln;} S
Energy:
dT’ dz; 5 (dp dz;
oo G+ (- ) o= Ommis (5 + (- ) )

K (Voo — 1)M, K
g O = DM —® WT.n.dS =
/V{ReooProo s Reo, }dV+ sReooProoMT’]nde
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13
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d
The ALE time derivative d_ft of a dependent variable is taken along the trajectory

of the moving node; for example, the first-order implicit discretization is
A SO — )
a—z = tn+1 _ tn )

(2.14)

High-order implicit discretizations in time are straightforward to construct, since no

interpolation of the solution on the meshes at previous time levels is required.

The 1%, 2% and 3* order formulas are summarized in table 2.1 using variable
time steps, although uniform time steps are most commonly used. In practice, only
the 27 order formula is used, since the 1% order one is too diffusive and the 3
order one is highly dispersive. The same formulas are employed in calculating both

the time derivatives of the physical flow variables (p, p, v;, T) and the grid velocity
dx

?d—t_.
In the stabilization terms,
ndp
Vi =Y N;(Vi), (2.15)
j=1
where

1 suppl)  ndp _

~ e
(Vg)j = "7 Z V}ez VNklcent(je) 9 (2.16)

7 je=l k=1

for any flow variable g. The coefficients €}, €¥, €I, €, €5, and €. control the amount
of first- and second-order numerical dissipation in the continuity, momentum, and
energy equations, respectively. The term h“ represents a local length scale A of the
element, raised to the power & (o = 0 or 1). The formulation allows for varying

artificial viscosity coefficients, using a detector based on solution gradients to switch

from first- to second-order numerical dissipation [48].

In the solution strategy, the discretized governing equations are solved iteratively,

using Newton’s method, in terms of the incremental changes Ap, Awvy, Avy, Auvs,
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Order G
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B+a) M (24a) f1 1 frt
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Table 2.1: Implicit Multi-Step Time Discretization Formulas: At = ¢, — t,,
tn - tn-1 = (1 + O{)At, tn,1 - tn_g = (1 + ,B)At

AT of the solution. From the Newton iteration k to k+1, at time t"*1, the solution

is advanced according to:

Plvy = P?13§1+ Ap,

vl’(l,;ll) = U1(k) + Awy,
Uz?;:;ll) = Uz?;:gl + Avy, (2.17)
’1)3?];:_11) = ‘Ug?,:)—l + A’Ug,

+1 +1
Tety = Ty +AT
Once the solution has converged at the time step n -+ 1, after a certain number
of Newton iterations k& = 1,2,..., the solution is advanced to the next time step

n + 2. The importance of iterating within a time step comes from the fact that the

Navier-Stokes equations are nonlinear and that the scheme is implicit. This iterative
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strategy will be exploited during the coupling of the CFD code with the stress solver
(see chapter 4).

The local influence matrix for an element, after the Newton linearization of the

fully coupled fluid problem, takes the form

Cp Ch, Cy, Cyy Cr Ap Tp
My p My My wy, My, My Av, Ty,
Myp My, My, Myw, Myz || Avy | == r, | (2.18)
Mysp Mygpy Mg, Muygpy Moy Awvs Tug
E, E,, E,, E,, Er AT rT
The grid velocity term % -V f is omitted in the construction of the Jacobian matrix

arising from the Newton linearization, since it has minimal effects on the global
convergence rate. It is emphasized that this new term %— -V f is included in the
residuals, so neglecting it in the matrix affects only the convergence rate and not the
accuracy. The coefficients of the influence matrix, as well as supplementary details

about the discretization procedure, are available in the FENSAP documentation [49].

The right-hand-side vector represents the residuals of the equations, which, when
driven to zero, give the solution to the stabilized discrete equations of the weak-
Galerkin problem (including artificial dissipation). The common solution procedure
consists of gradually decreasing the coefficients of artificial dissipation, using the solu-
tion obtained at one cycle as the restart solution for the next cycle. The ultimate goal
is to minimize the amount of numerical viscosity added to the original equations, such
as to approach the true physical solution of these equations, which has no artificial

dissipation.

In the semi-segregated strategy, the pressure and the velocity field are first ob-
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tained by solving the global system

K, K, K,, K,, Ap Tp
K’Ul P K'Ul U1 thvz Kvl,vs Avl . Ty (2 19)
K v2,p K v2,V1 K V2,02 K v2,V3 AUZ Ty
Kv3,p Kvs,vl Kva,vz Kvs U3 AU?» Tug

resulting from the assembly of the elements. Next, the temperature is obtained by

solving the system
(Kr) (AT) = — (rr). (2.20)

It must be noted that the coefficients of the approximate Jacobian matrix in the
Ap — Av system are derived assuming a frozen total enthalpy state, in accordance
with the assumption of constant total enthalpy, even when the energy equation is
solved in terms of the temperature. Such a linearization does not seem to adversely
affect the global convergence rate of the nonlinear problem when the energy equation

is solved in a segregated manner.

The linear systems which arise from the assembled systems (2.19) and (2.20) yield
large sparse matrices that are solved using a preconditioned Generalized Minimal
Residual (GMRES) iterative solver, with the choice of the preconditioner depending
upon the problem at hand. In time-marching applications, a diagonal preconditioner
often proves to be a cost-effective strategy since the presence of the unsteady terms,
proportional to 1/At¢ on the main diagonal of the matrix, favorably enhances the
spectral properties of the matrix and thus improves the convergence rate of the linear
solver. An Incomplete LU factorization (ILU) can also be used as a preconditioner,
but the extra robustness of the ILU preconditioner is in general not needed for time-
marching problems with small time-steps. In comparison to a diagonal preconditioner,
the ILU preconditioner requires much more memory for its storage and the application

of the preconditioner by the inversion of the LU triangular blocks is costlier.
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For a steady-state solution, as stated previously, the overall solution strategy
consists of solving the system of discretized equations by driving the residuals to
zero while gradually reducing the amount of artificial viscosity. This steady-state
solution is then used as the starting solution for the unsteady flow problem, for a
moving body problem or for an aeroelastic configuration, using the smallest artificial

viscosity coeflicient at the last cycle of the steady-state solution.

The accuracy of the solution can be enhanced by adapting the computational grid.
On unstructured grids, using triangular (in 2-D) or tetrahedral (in 3-D) elements, the
mesh adaptation tools developed at the CFD Laboratory provide mesh refinement
and coarsening, edge swapping, and nodal displacements [50, 51, 52]. The mesh
adaptation process is external to the flow solver and is invoked between artificial
viscosity cycles during the calculation of the steady-state solution. After several
solution-adaptation cycles, an adapted and eventually optimal grid can be found
for the steady problem. However, this process being a static one, new difficulties
are encountered when applying the technology to unsteady flows. First, the cost
of external mesh adaptation is quite high, since the changes in the topology and
the connectivity of the grid at every time step require the CFD code to repeat its
initialization. Second, errors are introduced from the interpolation of the solution on
the previous grid to the newly adapted grid. While these errors are washed out during
the steady-state mesh adaptation process, by repeated solution-adaptation steps, they
can only be washed out in an unsteady approach by determining the optimal grid at
every time step. This process would require several steps of adaptation within a single
time step. Lastly, the interpolation of the solution across grids at different time levels,
needed in order to apply high-order multi-step time-integration formulas as listed in

table 2.1, introduces errors in the solution and can prevent time accuracy.

In some of the applications presented in chapter 5, mesh adaptation has been
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used for the steady-state solution only. When the displacements of the structure
are small, the grid adapted for the steady-state solution can remain adequate for
accurate aeroelastic calculations. Despite that it is not optimal at every instant in
time, the adapted grid still yields, at a cheaper cost, much more accurate results than

an unadapted one.

2.4 Grid Movement Algorithm

The role of the mesh movement algorithm is to adjust the computational grid for the
fluid such that it follows smoothly the deformation of the structure, as depicted in
figure 2.2. Clearly, without mesh movement of the interior grid points, the elements
near a moving wall would deform and, eventually, the presence of highly distorted
or inverted elements would lead to the breakdown of the flow solver. Also, from the
calculated movement of the grid, the nodal velocity field 4—5 is computed before being

di
fed into the governing equations (2.2) for the fluid.

Figure 2.2: Representation of the Movement, of the Grid Following the Motion
of a Body.
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A number of grid movement strategies are reported in the literature. The mesh
is moved either using an algebraic mapping, using a smoothing operator, or using
global remeshing or unsteady mesh adaptation. The use of an algebraic mapping,
for example a rigid-body rotation or a translation, is very efficient, but is specific to
simple geometries and known motions. The use of global remeshing or unsteady mesh
adaptation is, naturally, the most robust technique, but for three-dimensional complex
geometries, the cost of these operations is simply prohibitive, since any change in
the topology of the mesh requires a full re-initialization of the data structures of
the implicit flow solver. Moreover, global remeshing requires the interpolation of
the solution from the old grid to the new one, thus leading to possible losses in
the conservation of the flow variables (mass, momentum, energy). Nonetheless, it is
acknowledged that global remeshing is the most robust approach and that it has been
successfully used with large deformations [36, 37|, but its cost cannot be justified in

the context of small displacements in aeroelasticity.

Neither of the two options discussed above are optimal, from the point of view
of generality and efficiency, and a strategy based on a grid smoothing operator is
exploited and extended in the present work. In essence, the displacements in the
interior of the fluid domain are smoothed by solving Laplace’s equation V?u = 0
for each of the three components of the displacements, in a buffer zone around the
body (see figure 2.3) [53]. The boundary conditions are of the Dirichlet type. The
grid displacements are prescribed on the surface of the moving body, as given by
the structural code. Zero displacements are imposed in the “far-field”, away from
the body. Once the displacements have been obtained over the entire grid, the new

position of the nodes is simply determined as x"*! = x" + u.

The idea of grid smoothing using a Laplacian operator as in the above is not new.

Indeed, Anderson et al. [54] give an introductory overview of the concepts of elliptic
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Figure 2.3: One-Zone Mesh Movement Strategy.

grid generation using Laplace’s equation. An algebraic, yet totally equivalent, coun-
terpart to the differential approach is the spring analogy [55], which is, in principle,
an explicit Jacobi point-relaxation discretization of Laplace’s equation consisting of

averaging the displacements around each node until convergence.

The use of Laplacian smoothing retains the original topology of the grid. Unlike
global remeshing or unsteady mesh adaptation, there are no incurred losses in accu-
racy due to solution interpolation from the previous to the next grid since there is
simply no solution interpolation step in the proposed smoothing scheme. The Lapla-
cian smoothing is generally applicable to the most complex geometries, including
multiple bodies, without increasing the level of difficulty, even in three dimensions.
Finally, it is emphasized that the smoothing operations are performed on the dis-
placements. The concentration of grid points and the stretching of cells resulting
from anisotropic mesh adaptation are not destroyed by the mesh movement smooth-
ing operations. The explanation is simple: the Laplacian smoother is applied to the

relative nodal displacements, not to the absolute nodal positions.
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In this work, the mesh movement algorithm is embedded inside the flow solver, as
opposed to implementing it from within the fluid-structure coupling driver. In this
way, the communication costs across the coupling driver and the flow solver can be
minimized, since only the structural displacements at the nodes on the surface of the
structure are passed to the flow solver, rather than passing the displacements at all
the nodes of the fluid grid. In addition, the mesh movement algorithm can directly
benefit from the parallelism strategies implemented in the flow solver. In contrast, the

coupling driver requires little computing resources and can run on a single-processor

work station.

In the same spirit as the flow solver FENSAP, an implicit finite element dis-
cretization of the Laplacian operator is preferred for its robustness, as opposed to
using an explicit approach. Perhaps one drawback of the use of the differential ap-
proach for mesh smoothing is the fact that a large system of equations must be solved.
However, since each component of the displacement vector is solved separately, the
memory storage for the matrices is not significant and, in fact, the memory from
the implicit Navier-Stokes solver can be reused. Moreover, the resulting matrices are
symmetric positive definite and a classical conjugate-gradient solver with diagonal

preconditioning suffices to solve the systems efficiently.

For an insightful physical interpretation of elliptic grid smoothing, an analogy can

be drawn to the Navier equations of linear elasticity for small displacements, given

as:
1 Qe 1 0Oe 1 Qe
2 —_— = 2 —_— = 2 —
Vu+1-—21/6$ 0, VU+1—21/8y 0, Vw+1_2yaz 0, (2.21)
0 0 d
where € = o + = + T and v is the Poisson ratio. If the displacement field
Jr  dy Oz

is “divergence free” (¢ = V -u = 0), in analogy to an incompressible fluid, the

system reduces to solving Laplace’s equation for each of the three, now decoupled,
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components u, v, w of the displacement field, akin to treating the air as an isotropic

linear elastic medium. This is exactly the smoothing procedure previously outlined.

For small displacements, typical of aeroelastic deformations, the above strategy,
termed a one-zone mesh movement strategy, is generally adequate to smooth the
displacements without introducing mesh degeneracies. However, even if the displace-
ments indeed appear small relative to the reference length of the structure, they can
be quite large relative to the local length scale of the grid, in particular for elements
near a wall in high Reynolds number flow calculations or near a stagnation point
or singularity in Euler flows. For large displacements, absolute or relative, the one-
zone approach is deficient and soon leads to mesh degeneracies usually occurring near
salient corners of the geometry, such as at a sharp trailing edge, as seen in figure 2.4.
Further, nonlinearities are introduced by repeatedly smoothing the grid on the dis-
placed grid. As illustsated for a pitching airfoil, after several periods of oscillations
of the periodic motion, the grid can become highly distorted near the trailing edge,

making it unsuitable for accurate flow calculations (see figure 2.4c).
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Figure 2.4: One-Zone Mesh Smoothing: Zoom of %;he Trailing Edge of an Airfoil:
(a) Original Grid; (b) At Angle of Incidence of about 4°; (c) After
4 Cycles of Oscillations.



CHAPTER 2. DESCRIPTION OF THE FLOW SOLVER 33

The need for a more robust node movement scheme has clearly been identified in
the literature. For example, Mittal and Tezduyar [56] surrounded a simple moving
body by a small region of elements moving rigidly with the body, the inner zone, and
then applied regular smoothing outside this buffer zone, the outer zone. The motion
was, however, restricted to simple rotations and translations, in two dimensions,

described by known algebraic mappings.

A novel generalization [57] of the two-zone smoothing approach is proposed in
the hope to prevent the premature breakdown of the flow solver due to mesh degen-
eracies, when working with complex three-dimensional configurations. In an inner
zone immediate to the body, defined by all nodes within a certain distance from the
body, see figure 2.5, Laplace’s equation is solved with the displacements specified on
the body, as before, but with Neumann boundary conditions -g% = 0 on the ex-
ternal boundary of the inner zone (dashed line in figure 2.5). This is approximately
a “no-shear” boundary condition whose effect is to essentially move the grid points
rigidly with the body, but with minimal shear. The Neumann boundary condition
is trivially incorporated into the variational approach by neglecting a contour inte-
gral in the weak-Galerkin formulation. In the outer zone, constructed from layers of
elements growing around the inner zone, as determined by the connectivity of the
grid (structured or unstructured), grid smoothing is performed as in the single-zone
approach, with Dirichlet boundary conditions on all boundaries. The displacements
are specified at the interface between the inner and the outer zones from the solution

obtained in the inner zone and with zero displacements imposed in the far-field.

The extent of the inner and outer zones may not span the entire grid. In fact, for
efficiency purposes, it is not desired to move the grid in the entire fluid domain, but to
restrict the smoothing operations to as small a domain as possible around the moving

structure. (In the implementation, the size of each zone is specified by the user.) In
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outer zone

Figure 2.5: Two-Zone Mesh Movement Strategy.

the proposed two-zone approach, two problems of smaller size are solved as opposed
to one problem of larger size in the single-zone approach. This makes the two-zone
approach slightly more efficient computationally than the one-zone approach, since
the work required grows as O (N?), where N is the number of moving nodes. Overall,
the cost of mesh movement is of the order of one or two percent of the cost of one

Newton iteration of the flow solver (for Laplacian smoothing only).

As a variation of the two-zone approach, the Navier equations (2.21) are solved
in the inner zone with true no-shear boundary conditions 7-n = 0 on the interface
between the inner and the outer zones. The choice of Poisson’s ratio for the grid is
arbitrary, and a value of v = 0.30 is used by default. (The success of this approach
depends strongly on the new boundary conditions and mildly on the value of v.)
This mesh movement strategy proved to successfully smooth the displacements in
all attempted cases, but at a much higher cost than the decoupled approach using
Laplace’s equation, since the three components of the displacements must now be
solved in a coupled manner. The resulting matrix arising from the discretization is still

symmetric positive definite, but unlike the Laplacian solver, an ILU preconditioner
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(specifically, Cholesky, without fill-ins) is more cost-effective to solve the new system

than a diagonal preconditioner.

Another alteration of the two-zone approach consists of solving the equation
V- (kVu) =0 (2.22)

in the outer zone, with

k(z,y,2) =1 (2.23)

+ dio + d(z, y, 2)
representing a grid stiffness, where d is the minimum distance from a point (z, y, 2)
to the nearest wall and diy is a small tolerance. The exact choice of equation (2.23)
is not important, as long as it is a monotonically decaying function. Near the body,
the stiffness is large and the motion is mostly rigid. Far from the body, the stiffness is
nearly unity and the displacements decay smoothly to zero. That is, the large relative
displacements are effected away from the body where the cells are large, while the

high stiffness near the body helps to preserve the shape and quality of the small cells.

The enhanced robustness of the two-zone grid-moving procedure is attested by
imposing a large amplitude motion to an oscillating airfoil. The inner zone contains
all nodes within a distance 0.2¢ from the surface of the airfoil, of chord ¢; the outer
zone is composed of 14 element connectivity levels (see figure 2.6). The initial grid
and the grid at the maximum amplitude are plotted together in figure 2.7. Although
the details of the grid are not discernible on this scale, the displacements are indeed
smooth and no mesh distortion occurs. Needless to say, the one-zone approach fails

radically in this case as it cannot sustain deflections of such magnitude.

Equal success has been obtained in three-dimensions for a flexible wing in bending
and in torsion. The deflection of a straight wing with a parabolic airfoil section is

shown in figure 2.8a for the first torsion mode (second natural mode of vibration).
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Figure 2.6: Two-Zone Grid Movement Around an Oscillating Airfoil: (a) Inner

zone; (b) Outer zone.

The deflection is amplified to illustrate the extent of the movement supported by
the two-zone grid movement technology. Cuts of the grid are shown in figure 2.8b,
where it can be seen that the grid has moved smoothly following the motion of the
wing, although the stretched elements near the sharp leading and trailing edges of
the wing indicate that any larger motion would soon exceed the limitations of the
method (Laplacian smoothing in the inner zone). The use of the Navier equations in
the inner zone eliminates all mesh distortions near the wing tip. In practice, however,
the structural deflections are much smaller and the viability of the mesh movement
algorithm would not be jeopardized. Further, the use of a finer grid near the surface

of the wing would increase the smoothness of the grid motion.

From the conducted numerical experiments, the use of the grid stiffness damping
proved to be indispensable in three dimensions where cell distortion can occur in all
three directions. Its usage prevents, more precisely, the collapse of cells in the outer

zone at the border with the inner zone. In two dimensions, such a treatment was not
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Figure 2.7: Two-Zone Grid Movement Around an Oscillating Airfoil: Initial
and Final Grids Superposed (k = 1).

required for the grid motions considered. Moreover, with this type of mesh movement
in the outer zone, it no longer becomes necessary to solve the more expensive Navier
system in the inner zone to obtain smooth displacements. In fact, by a judicious
choice of the stiffness function k, it should be possible to eliminate the need for the

two-zone approach and use the simpler one-zone approach in most cases.

As a last comment about the advantages of the two-zone Laplace smoothing algo-
rithm, the future considerations to turbulence modeling using wall functions cannot
be neglected. At this point, it is believed that the two-zone mesh movement approach
is favorable in maintaining a suitable y* value at the wall since the mesh is moved
mostly rigidly in the inner zone. Thus, any initial suitable y* distribution should

not be destroyed.
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Figure 2.8: Two-Zone Grid Movement Around a Wing in Torsion: (a) Initial
and Final Positions of the Wing; (b) Cuts of the Grid Near the Tip
of the Twisted Wing.

Finally, the grid velocity field % must be obtained from the displacement field,
as needed in the governing equations (2.2). As the ALE acronym suggests, the grid
movement should be arbitrary. However, in a series of papers, Farhat et al. sug-
gest that the discretization of the governing equations may restrict the way the mesh
velocity is computed [58, 32]. More precisely, the fundament of the Geometric Conser-
vation Law (GCL) states that a constant uniform flow field must satisfy the discretized
equations. If this condition appears trivial, it is not always so at the discrete level,
in particular in the context of the finite volume method when unsteady fluxes must
be in equilibrium on the moving control volumes (see [58, 32]). The GCL thus re-
stricts the way the grid can be moved and, in addition, failing to satisfy the GCL can
lead to small high-frequency fluctuations/oscillations about the mean unsteady flow.

To satisfy the GCL, one computes a consistent grid velocity by dividing the volume
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swept by a control volume by the size of the time step, while the motion (position)
of the grid itself is still arbitrary. However, satisfying the GCL not only restricts the
way the grid speed is calculated, but also imposes restrictions on the time-stepping

scheme, thus inhibiting (or complicating) the use of common multi-step high-order

time-integration schemes.

In the present finite element formulation, a quick investigation of the ALE deriva-
tive in equation (2.10) confirms that the GCL is always satisfied for a constant flow
(Vf = 0) and thus the grid velocity 5‘%{ and the time-integration scheme can indeed
be chosen arbitrarily. Whence, backward multi-step formulas in time are used to
compute the grid velocity field, even on deforming boundaries where dE}E could be
extracted from the stress solution instead. High-order formulas can be employed in a
straightforward fashion if copies of the grid are stored over a few time levels. While
a first-order approximation for %}tg could suffice and would be more economical,

since the grid would be stored at only one time level, a formula consistent with the

time-integration scheme (same order) is used by default.

2.5 Calculation of the Aerodynamic Loads

The aerodynamic loads {t} = [7]n are calculated over the wall boundary faces from

the definition of the stress tensor

(2.24)

Ou;  Ou; 20
Tij:—p&j—{—,u( “ uj Uk>

ow; T B *935m,
The stress tensor is evaluated inside the flow solver, since the velocity field is needed
on the surface of the body and inside the fluid domain to compute the derivatives
of the velocity in equation (2.24). If computed in a post-processing step, outside the

flow solver, the entire grid and solution must be processed, as opposed to processing
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only the data on the surface of the body. The in-house development of the flow solver,

in this work, easily allows for the calculation of the full stress tensor at minimal cost.

The calculation of the stress tensor from equation (2.24) gives rise to certain
complications. The use of linear shape functions in the finite element solution for the
pressure and the velocity yields continuous nodal pressures, but discontinuous nodal
derivatives for the velocity and the stress components, since the derivatives Ou are

8113,;
discontinuous at element boundaries. To circumvent this problem, nodal values of

the stress tensor can be obtained by averaging the one-sided values in the elements
surrounding a node, weighted by the area of these elements. However, integrating the
averaged stresses, linearly interpolated over the faces, will not yield the same loads

as if the stress tensor were integrated over the faces.

To overcome this difficulty, the components of the resultant loads ¢ = 7;n;
are integrated over each face of the body, giving a consistent face-based piece-wise
constant load over each face. The components t,, t,, and %, of the loads (per unit

area) on a face f are defined as

1
ta(rf) — Em/s(f) (ToxNa + ToyNy + TuzN,) dS

1
4 = <5 /5 ., (uala + Tyyny + 7ym.) dS (2.25)

1
) = :—S—(E/sm (TeaTg + Toyny + T22n,) dS

where (ng, ny, n;) is the unit normal vector pointing outward from the surface of the
structure (inward the fluid domain). The evaluation of the loads in this way makes
it possible to transfer the aerodynamic loads in a conservative fashion from the flow

solver to the stress solver.

The representation of the aerodynamic loads by a constant function over a face
raises a question of accuracy. Ideally, it would be desirable to assign a piece-wise con-

tinuous linear distribution of the loads, for both the pressure and the shear stresses,
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on the surface of the structure, but such that the forces are conserved globally. The
pressure is already defined in a continuous fashion by the use of linear shape func-
tions and causes no difficulty. A consistent linear reconstruction of the shear stresses
is proposed in the work of Gresho [59], consisting of evaluating the shear stresses
from solving an auxiliary system based on the surface integrals of the weak-Galerkin
problem, but these ideas will not be elaborated in this work, since the only viscous
test case presented in the thesis does not require such a reconstruction. As it will
be seen in chapter 5, for the oscillating cylinder test case, only the total lift on the
cylinder is required as a “generalized force” acting on the cylinder. The lift, being
calculated inside the flow solver, is integrated over all faces based on the computed
solution for the linearly distributed pressure and velocity. A reconstruction of the
loads on a face by face basis is thus not needed in this case since the loads are applied
globally rather than locally. One can however object to such a statement and argue
that the use of “consistent” shear stresses, computed & la Gresho, would improve
the accuracy of the calculation of the total lift in the flow solver. Experience gained
in the calculation of the heat fluxes @@ = —xVT - n using Gresho’s “consistent”
reconstruction, as opposed to using the definition of ), proves the contrary for low
Reynolds number flows. For such “mild” flows, the temperature profile is linear in
the boundary layer and the gradient VT is evaluated just as accurately using ei-
ther method. Since the velocity profile is also linear in the boundary layer, as is the
temperature, there is no indication that Gresho’s approach would be more accurate
in the case of laminar flow, provided that the flow is well-resolved on a sufficiently
fine grid. The simplicity of using equation (2.24) directly prevails, at the moment.
However, for high Reynolds number turbulent flows, characterized by strong velocity
and temperature gradients in the boundary layer, Gresho’s approach could prove to
be more accurate. In particular, when using wall elements in the turbulence model,

the evaluation of the first derivatives in equation (2.24) requires the differentiation of
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the specialized logarithmic shape functions in the wall element.

The face-based representation of the loads as used in this work is not totally
optimal for Euler flows when only the pressure intervenes. Why use piece-wise face-
based loads for the pressure when it is linearly interpolated? A node-based transfer
of the loads using a linear distribution should prove to be more accurate than a
piece-wise constant distribution of the pressure, even though the total loads on the
structure remain the same. The extension of the node-based representation of the

aerodynamic loads remains for the future, as a special case for inviscid flow.

One main objective of this thesis — to provide the mechanisms to study the effects
of the viscous stress tensor for Navier-Stokes calculations — has thus been fulfilled. A
closer look at the viscous effects will be given in chapter 5 for the case of an oscillating
cylinder at Re = 200. Based on physical intuition, one is led to postulate that the

viscous shear stresses would aid to damp the motion of the structure.



Chapter 3

Description of the Stress Solver

The Navier equations of linear elasticity for an isotropic material are used as the
stress model, based on the assumption that the structural deformations of the flexible
structure are small. Thermal effects in the structure are not modeled at the present.
For the external flow of a wing in flutter, or for a fan or a compressor blade, the
thermal effects may be rightfully neglected, but in a turbine, in which the blades are

cooled, thermal effects must be incorporated in the analysis.

The Navier equations of linear elasticity are discretized using the Rayleigh-Ritz
finite element formulation. For the class of problems studied, a modal analysis is
adopted, integrating the equations in time using the f—Newmark scheme. The de-
scription of the discretization and of the solution algorithm using the modal analysis
are given in section 3.1. Additionally, a 2-D thin plate model using specialized ele-
ments is presented for the structural analysis of the wing flutter case in chapter 5.

The details of this model are presented in section 3.2.

Particular attention is given to the evaluation of the aerodynamic loads during

the coupling with the flow solver.

43
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3.1 Isotropic 3-D Linear Stress Model

The finite element formulation of the stress code is based on the energy formulation.

The total energy is

I = %Aﬂ{ﬁ}T{ﬁ}dV + %/v {e}T[C] {e} dV + /V{FB}T{U}dV _ /S{t}T{U}d«S (3.1)

where, for an isotropic material,

( ) r y
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Vex 0 0 0 0 H 0
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Poisson’s ratio. Simplifications give

{E}T [C] {6} = A (eﬂ?m + Eyy + 622)2 + 2” (63209: + ezy + Ezz) + 84 ('7;32 + rygm + ’ng) ? (33)

where the components of strain are:
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(3.4)

in Cartesian coordinates. The third term in the expression for the total energy (3.1)
represents the work done by the body forces {Fg}, with gravity and centrifugal forces
due to rotation being examples. Body forces are ignored in this work. The surface

integral in I represents the work done on the structure by the external forces, in
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occurrence the aerodynamic forces, where t; = 7;;n; are the components of the stress

tensor t acting along each of the coordinate axes.

The system is discretized using the Rayleigh-Ritz finite element method, by taking

the variation of the energy functional, yielding a linear system of the form
[M]{a} + [Dl{a} + [K]{u} = {S}, (3.5)

where [M] is the mass matrix, [D] is the damping matrix, [K] is the stiffness matrix,
and {S} is the vector of external forces. The damping matrix is zero in this system,
but dynamical and mechanical damping, of the form [D] = ap[M]+ ax[K], can be

added to the system.

At this point, it is essential to clearly state the form of the external forces vector
{S}, since it is at the basis of the mechanism by which the coupling with the fluid
solver is effected. Labeling the work done on the structure by the external forces as

Ip = - / {t}*{u}dS, and writing the displacements as
s

u(x,t) = D_N;(X)u;(t), v(xt) =3 N;(x)u;(t), wlx,t)= D N;i(xwit), (3.6)

J

the local vector of forces for one element with boundary face S®) is

4 _(Z{B_J 3\ 4 / thde At
Ou, 8(s)
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(SO} = ¢ Ef =1 [ wNdS (3.7)
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\ awﬂ / \ ~/$(s)tz J /

The global vector {S} is constructed by summing the contributions {S®)} over
all stress faces s = 1,...,n,. The shape functions N; are defined on the surface
of the structure and correspond to the shape functions used in the Rayleigh-Ritz

discretization of the stress model.
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The components i, t,, and t, of the loads (per unit area) are defined as
{t} = [r]n, where n is the unit normal vector pointing outward from the surface of
the structure (inward the fluid domain) and

Bui a’UJ]' 2 Buk
—_ 5@'"‘“—
Oz + Oz, ]385Ek>

is the aerodynamic stress tensor, as described in section 2.5. However, here, the loads

Tij = —POij + 1 ( (3.8)

which are defined on a fluid face S must be integrated over a stress face S0,
Complete details about the transfer of the loads in a conservative manner from the

fluid grid to the stress grid will be given in chapter 4.

The system of ordinary differential equations (3.5) are integrated in time using
the second-order accurate f—Newmark method [60]. This implicit multi-step scheme
is derived by using a central finite difference formula for # and 1 about #" and
averaging u and S over the three time steps "1, ", "1 .

un—l—l — 2" + un—l

v Af? ’
I un+1 . un-l
. 2At ’ (3.9)
n . n+1 n n—1
u 3 (u +u” +u ) ,
1
n n+1 n n—1
st = 3 (8" +8"+8m71).

The resultant scheme is:
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The first time step is advanced using a first-order scheme, since the f—Newmark

method is not self-starting. With

1 0 <0
g - 2 “Zt;“ at) (3.11)
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the startup scheme becomes

() = () (B ),y

where 1’ is the initial velocity of the body (assumed to be zero in this context).
The direct solution to equation (3.10) requires the inversion of a large sparse system
of linear equations at each time step. An iterative solver of the conjugate-gradient

family provides an effective solution approach.

Since the equations (3.5) are linear, a modal analysis can be used in which the

solution is decomposed into modes of the form

u(x,t) = U(x)e?,
v(x,t) = V(x)e#t (3.13)
w(x,t) = W(x)e#t,

The natural frequencies § are obtained by solving the generalized eigenvalue problem
~B*[M]+[K]=0 (3.14)

corresponding to the homogeneous, undamped system (3.5). By the nature of the
mass matrix [M] and the stiffness matrix [K], the eigenvalues of the system are all

real and positive.

Introducing the generalized coordinates {£€}, where {u} = [P]{¢}, and multiply-
ing equation (3.5) on the left by the matrix [P]T of the normalized eigenvectors of
equation (3.14), the system reduces to N decoupled ordinary differential equations:

[PI7 ((M){ia} + [D){it} + [K]{u}) = [P]"{S}
[T1{€} + (anrll] + ax[A]) {€} + [Al{€} = [PI{S}
for the N chosen modes, where the normalized eigenvectors satisfy the orthogonal-

ity properties [P)T[M][P]=[I] and [P)T[K][P])=[A] ([A] is the diagonal matrix

(3.15)
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of eigenvalues f2). These decoupled ordinary differential equations are integrated
in time using the S—Newmark scheme (3.10), which, in the modal analysis case,

simplifies to:

1] | amIl+ox[A]  [A]\ o 2]  [A]
(m?* 2At +‘§>5 = (zr ?)
1] | oumll]+axfA] _ [A]Y pns
- ( At 2At ‘—5)5
+ %P]T (Sn+1+sn Sn—l)'

(3.16)
Since the matrices [I] and [A] are diagonal, the ordinary differential equations (3.16)
are decoupled and can be solved without requiring the inversion of a large sparse

matrix.

In practice, only a few modes — the resonant modes at a particular regime —
may be studied at one time. (For a wing flutter analysis, flutter normally occurs
when the first bending mode coalesces with the first torsional mode.) This makes
the modal analysis a very attractive and effective method since no matrix inversion is
required. In a direct transient analysis, the solution to the system of equations (3.10)
requires the inversion of a large sparse symmetric matrix. Such a linear system can
be best solved using an iterative solver of the conjugate gradient family. The direct
transient analysis is thus much more expensive than the modal analysis for the time-
integration of the solution. However, the modal analysis requires the determination
of the generalized eigenvalues and eigenvectors of the system (3.14). In practice, only
the first few eigenvalues, the smallest ones, need to be determined since higher-order
modes are unlikely to be excited by flow-induced forces. Further, to capture these
high-frequency modes, a very small time-step would have to be used — several orders
of magnitude smaller than the time-step used for the first natural mode. In such a

case, the benefits from using an implicit scheme are lost.
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The generalized eigenvalue solver [61] used in this work has been developed jointly
by Mark Jones (mtj@vt.edu), at Virginia Tech, and by Merrell Patrick, at Duke
University. The package, written in FORTRAN, was retrieved from the Web site
http://www.netlib.org/lanz. This solver was found particularly attractive for its
usage of sparse matrix technology, based on a variant of the sparse matrix Compressed
Sparse Row (CSR) storage format for symmetric matrices, especially for large three-
dimensional configurations where the costs of the matrix storage can be prohibitive.
The use of a node reordering scheme, for example the reversed Cuthill-McKee algo-
rithm, proved essential in minimizing the bandwidth of the matrices in order to reduce
the workspace required by the eigenvalue solver. The algorithm for the solution of the
large sparse symmetric generalized eigenproblem Kz = AMz is based on Lanczos’
method and is capable of finding all eigenvalues in a given range or near some specified
value. These options are convenient to find a number of eigenvalues near zero, which
represent the low-frequency modes of interest for aeroelastic analyses. Eigenvectors

are also computed as part of the solution.

The eigenmodes can also be determined by an external code, for example using
NASTRAN [60]. The eigenvalues and eigenvectors are fed into the equation (3.16)
and the integration is performed with the supplied external aerodynamic forces. This
approach offers a complete control on the time-integration loop to establish an efficient
tight coupling loop with the flow solver (see chapter 4), which would otherwise not
be possible with NASTRAN alone. This procedure also provides a means by which
to validate the current work using NASTRAN.

3.1.1 Natural Frequencies of a Cantilever Beam

The natural frequencies of a cantilever beam (see figure 3.1) are computed as a basic

validation of the stress solver developed in this thesis. The test case is taken from
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Petyt [62], section 5.13.

7 0.6l m
3.66 m
0.30 m

Figure 3.1: Geometry of a Cantilever Beam.

The material properties of the beam are E = 2.068 x 10"' N/m?, v =0.30, and
p = 8058kg/ m®. The calculated frequencies are tabulated in table 3.1 for the first
three modes of vibration (mode 1: first bending in the z—direction; mode 2: first
bending in the y—direction; mode 3: second bending in the z—direction). The table
confirms the potential of the stress solver to reproduce the results obtained by Petyt
on the coarse 3 x6x12 grid using linear hexahedral elements with uniform mesh
spacing. It can also be observed from the results that the frequencies approach the
ezact solution as the grid is refined. (The ezact solution, referenced in Petyt [62], has

been obtained using slender beam theory.)

Although the frequencies can be estimated rather accurately using a large number
of linear elements, the cost of using excessively large grids becomes prohibitive when
solving a generalized eigenvalue problem. The cost-effectiveness of quadratic elements
is demonstrated in table 3.2, which gives a comparison of the accuracy achieved using
8-node linear versus 20-node quadratic hexahedral elements: a 12x24x48 grid using
linear elements (15925 degrees of freedom) is required to yield the accuracy achieved

using a 2Xx 3 x6 grid using quadratic elements (275 degrees of freedom). For any
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Mesh densities (nz xnyXxnz)

Mode | 3x6x12 | 6x12x24 | 12x24x48 | Petyt (3x6x12) | Exact
1 21.94 19.35 18.62 22.0 18.6
2 38.77 37.25 36.82 38.3 37.3
3 134.68 117.93 113.29 135.3 116.8

Table 3.1: Calculated Natural Frequencies (Hz) of a Cantilever Beam for Dif-

ferent Meshes Using Linear Hexahedral Elements.

practical application, the large bandwidth of the mass and stiffness matrices quickly
exceeds the capabilities of current computers if linear interpolation is used. Quadratic

interpolation is a must for accuracy and efficiency.

Mesh densities (nz xnyxnz)
Quadratic 2x3x6 | Linear 3x6x12
275 d.o.f. 364 d.o.f.
Mode | this work | Petyt | this work | Petyt | Exact
1 18.56 18.6 21.94 22.0 18.6
2 36.98 36.5 38.77 38.3 | 37.3
3 113.64 114.3 134.68 135.3 | 116.8

Table 3.2: Comparison of Calculated Natural Frequencies (Hz) of a Cantilever

Beam Using Linear and Quadratic Hexahedral Elements.

3.2 Orthotropic 2-D Thin Plate Model

The thin plate model used to analyze the AGARD wing 445.6 (see chapter 5) is

described in this section. The basic assumptions of the thin plate theory, stated in
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Petyt [62], are that o, = 0 (stress in transverse direction is zero) and that the normal

to the median plane remains normal to the median plane during the deformation:

Ow
u(z,y,z) = -z—(—a——,

ur (3.17)
v(z,y,2) = —z—w,

Oy

where w(z,y) is the displacement relative to the median plane in the z—direction.

The plate is subject to loads in the direction normal to the median plane.

With the above assumptions, the components of strain become:

] 28211) ) 0w ow
zr ™ TR I TH, = =25, zz T Ay
85132 v 8y2 ¢ 32 (318)
Yyz = 0’ Yex = O) Yoy = 0
and the strain energy simplifies to
1
U =3 [ 03T IDHxa, (3.19)
where
wﬂ?l‘
{X}=-23 wy, (3.20)
2Wy
and
E;, vyby 0
Dl=|v,B, E, 0 (3.21)
0 0 Gy
for an orthotropic material. The kinetic energy of the plate element is
T =2 [ i + p2? (a? + i) dV 3.22
=5, P + pz (wz-i—wy) : (3.22)

The work done by the external forces is

Ip = /S tow — 2 (tyw, + tywy) dS. (3.23)
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The presence of second derivatives for w in the strain energy U requires high-
order interpolation functions in the finite element discretization. A 4-node rectangular
plate element is defined, with w, w,, and w, defined at each node, using Hermite

interpolation functions of the form

N; = d+dz+dy+da? + doy + cdy’+ (3.24)
cszd + hay + czy? + byt + ¢ty + 3yt
for 7+ = 1,...,12. The 12 coeflicients ci in each of the 12 shape functions are

obtained by building and solving 12x 12 linear systems arising from evaluating N;,
; ON; .
_6_6]_\7_17 and T for 1=1,...,12, at the nodes (z;, y;), j=1,...,4. These linear
x
systems are inverted numerically, working directly in terms of global coordinates
"N —8—2& and N, without
oz?’ Ozoy’ Oy?

transformation from local to global coordinates. This is the non-conforming plate

(z, y) to conveniently compute second derivatives

element, labeled as such since w, and w, may not be continuous across the sides of
the element, although they are continuous at the nodes. A conforming element can be
built by introducing w,, as a fourth nodal degree of freedom, to ensure inter-element

continuity, but there is no significant gain in accuracy [63].

The vertical displacement is represented as

12
w =) Ny (3.25)
i=1
where the degrees of freedom are
{a} = {wla Wiz, Wiy, - - - W, Wa g, 7~U4,y}- (326)

The components of the mass matrix and the stiffness matrix are, respectively:

ON; ON;  ON; ON;
My = [pNiN; 4 po? [ S200 , OO0
K /V,O it Pz (83: ox + oy Oy ) e

2 AT 52 AT 287 22N, 92N 92N
8”N; 8°N; 8N, 8°N, amam>+ (3.27)

.. — 2 [P A
Ky /vz {DH dz® Oz + Dz ( or* Oy * oy* o1
&*N; 0*N; D 9*N; 6°N;
22 0y oy? % ady 9y
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for 4,7 = 1,...,12. The source term vector of aerodynamic forces is:

S, = /{tN (%N ty%]V)}ds. (3.28)

In usual implementations of the model, the plate element is assumed to have a con-
stant thickness h and integration in the z—direction is performed analytically before-
hand. However, in this work, in view of the 3-D coupling with the CFD code, nodal
values of the thickness are considered, giving a continuous structure (see figure 3.2).

In this case, numerical integration is carried out in the vertical z—direction.

Figure 3.2: Idealization of the Plate Element: (a) h Constant by Element;
(b) Nodal Values of h.

In the analysis, the degrees of freedom are defined on the plane z = 0 but the
aerodynamic forces act on both sides of the plate (on pressure and suction surfaces

for a wing). The external loads are conveniently decomposed as:

{t} = {tu} + {t:} (3.29)

ON; ON;
Si - /S {tu,zNi -z (tu’w—gﬂj— -+ tu"y—é;)} ds -+

and

_ (3.30)
/s {tl,zNi -z (tzm%N + tl,yaaj;fz)} ds.
In the modal analysis,
[THE} + (amlI] + ax[A]) {€} + [Al{g} = [PI7{S} (331)

= [PI"{Su} +[PI"{S1}.
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It is thus possible to have a full 3-D representation of the aerodynamic loads within
the framework of the “2-D” plate model. (Note: A 3-D 20-node hexahedral element

is introduced to reproduce the geometry in the evaluation of the external loads.)

3.2.1 Vibrations of a Thin Plate

The natural frequencies and deformation of a simply supported thin square plate (see
figure 3.3) are computed as a basic validation of the thin plate model implemented

in this section. The test case is taken from Reddy [63], example 12.1.

L w=0 w=0

Figure 3.3: Boundary Conditions for a Simply Supported Thin Square Plate.

The material properties of the isotropic plate are £ = 1.0x10%N /m2, v =0.25,
and p = 1.0x10*kg/m®. The width of the plate is a = 1.0m and its thickness is
h = 0.1m. The calculated frequencies @ = w\/;/—Ea2 /h are tabulated in table 3.3
for the first three modes of vibration for a 4x4 grid on the quarter plate. It can also
be observed from the results that the frequencies approach the reference computed

and exact solutions reported in Reddy [63].
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Mode | this work | Reddy | Exact
1 0.9218 | 0.9215 | 0.9295
2 4.4489 | 4.4436 | 4.5025
3 7.4252 | 7.4246 | 7.8670

Table 3.3: Calculated Natural Frequencies (Hz) of a Thin Plate.

The center deflection @ = wEh3/f.a* of the plate is computed for a uniform
transverse load f, = 100.0N/ m?. The equilibrium position of the plate is quickly ob-
tained by marching in time using the modal analysis, with a large value of dynamical
damping, ops. The result is presented in table 3.4 for the 4x4 grid. The result agrees

well with that of Reddy [63] based on classical plate theory using the non-conforming
element (CPT(N)).

this work | Reddy CPT(N) | Exact
@(0,0) | 0.04639 0.04643 0.04570

Table 3.4: Calculated Center Deflection of a Thin Plate.

3.2.2 Modal Analysis of the LANN Wing

The thin plate model is applied to the LANN wing [64, 65]. In the experiment, the
wing is made out of Armco Nitronic-40 stainless steel, but, for the purpose of this exer-
cise, the material properties of common stainless steel are used: E = 1.93x10' N / mz,
G =T750x10°° N/m®, v =0.287, and p=7860.0kg/m®. The cross-sectional and
planform views of the wing are given in figure 3.4. The wing span is 1.0m and its

root chord is 0.361 m. The sweep angle is 25° at the quarter-chord line.

Certain assumptions are made in view of a few modeling uncertainties. First,
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the thickness of the wing in the finite element model is reduced to obtain a more
representative total mass of the wing, since the core of the wing is hollow to permit
the placement of the instrumentation devices during the wind-tunnel experiments.
Second, the thin plate model in the current analysis ignores the camber and the angle
of attack of the wing. The model indeed sees a symmetric wing section with the
thickness defined about the median plane z = 0 and not about its true mean camber
line. Third, details are missing on the way the wing apparatus is mounted. In the
wind-tunnel experiment, a tongue extends perpendicularly from the wing at the root
and is attached to a vibrating device. These discrepancies are also observed in the
measured data at NLR [65] and Lockheed [64] (see table 3.5). In this analysis, the

wing is assumed to be fully clamped at the root.

L7/
LT

Figure 3.4: Cross-Sectional and Planform Views of the LANN Wing.

The first four computed natural frequencies are tabulated in table 3.5 and com-
pared with the experimental data. A 20x12 grid made of quadrilateral plate elements
is used. The various bending and torsion modes of vibration are shown in figure 3.5.
A notable difference is pointed out. Although there appears to be a good agreement

in the natural frequencies, the mode shapes are not the same for the third and fourth
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modes. In the experiment 64, 65], the third mode is a predominantly bending mode
while the fourth mode is a predominantly torsion mode. In the calculations, these two
modes are inverted, even though their natural frequencies deceitfully match. Despite
that the model does not appear to be properly calibrated, a very good agreement is
nonetheless observed between the results obtained using the plate model developed in

this thesis and those obtained using MSC/NASTRAN (based on the same modeling

assumptions).
Natural Frequency f (Hz)
Mode # | Lockheed | Lockheed NLR This MSC/

(measured) | (computed) | (measured) Work | NASTRAN

1 31.93 32.01 30.56 31.79 31.90
(bending) (bending) | (bending) | (bending) (bending)

2 115.75 117.60 104.46 120.60 121.67
(bending) (bending) | (bending) | (bending) (bending)

3 249.07 271.60 229.39 260.52 254.69
(bending) (bending) | (bending) | (torsion) (torsion)

4 292.12 291.70 292.95 288.70 293.17
(torsion) (torsion) (torsion) | (bending) (bending)

Table 3.5: Natural Modes of Vibration for the LANN Wing ([64, 65]).
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Mode 2: 2™ bending

Mode 1: 1% bending

=

29

Mode 3: 1% torsion

Figure 3.5: Mode Shapes for the LANN Wing for the First Four Natural Modes

of Vibration.



Chapter 4

Aeroelastic Calculations

The response of a flexible structure to the action of aerodynamic forces is usually
manifested by small-amplitude low-frequency oscillations. These flow-induced os-
cillations may decay in time, but sustained or undamped oscillations can lead to
high-cycle-fatigue and to structural failure. Although only aeroelastic problems in
the aeronautical field are included in this thesis, for aircraft and their components, it
is recognized that other systems such as transmission line cables, tall buildings, and
suspension bridges are equally affected by the impact of wind-induced vibrations.
Perhaps one of the most famous witnessed example of the destruction power of reso-
nant wind-driven forces is the collapse of the Tacoma Narrows Bridge in 1940. The
deformations of the bridge are pictured in figure 4.1 moments before the catastrophic

collapse [66]. The bridge has since been redesigned and rebuilt.

The goal of any aeroelastic analysis is to determine if a system in flight is struc-
turally stable under the action of the aerodynamic loads. Divergence, the first phe-
nomenon studied in classical texts in aeroelasticity [67, 68, 69], is a static instability
which considers only the effects of the elastic forces of the structure under the action

of steady aerodynamic loads, neglecting the effects of the inertial forces (dynamics)

60
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Figure 4.1: Wind-Induced Vibrations of the Tacoma Narrows Bridge [66].

of the structure. Basically, divergence is the point of failure of an elastic structure to

static aerodynamic charges.

The study of divergence is of little interest for practical aircraft configurations,
since dynamic instabilities are observed much before the onset of divergence. In
dynamic aeroelasticity, the inertial forces of the structure are studied and the response
of the structure due to the unsteady aerodynamic loads leads to oscillations. Flutter
occurs when sustained oscillations at constant amplitude are observed, signifying a
balance of energy exchanged between the fluid and the structure over a period of
oscillation. The onset of flutter is important since it defines the limits of dynamic

instability beyond which the structural system, extracting energy from the fluid,
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becomes unstable. Flutter must be avoided since it can lead to losses in efficiency of
the design and to losses in the maneuverability and the stability of the flight vehicle.
Furthermore, flutter can reduce the life expectancy of aircraft components. Stall
flutter, which occurs as a consequence of flow separation, is usually observed at high
angles of attack during maneuvers of fighter aircraft, over ice contaminated wings,
and in high speed turbomachinery blades. In other unstable motions, beats can also

be observed.

To assess the dynamic stability of a flight vehicle, one must first understand the
mechanisms leading to its instability. In brief, the system will become unstable and
subject to resonance when the aerodynamic forces become in-phase with the motion
of the structure, or, in other words, when the frequency of the unsteady flow matches
a natural frequency of oscillation of the structure. In this case, resonance occurs,
Jeading to unbounded oscillatory motion. For wing flutter, as studied in this thesis,
flutter occurs when the first bending mode coalesces with the first torsion mode of

the wing, upon excitation from the aerodynamic loads.

A brief overview of classical methods to determine the aeroelastic limits of fluid-
structure systems is presented in section 4.1. These methods solve the aeroelastic
problem in the frequency domain using an eigenvalue analysis. When the struc-
tural and/or aerodynamic operators are nonlinear and implemented in a segregated
manner, an analysis in the time domain is most appropriate and often is the only
recourse. The methodology in the time domain is described in section 4.2. Finally,
in section 4.3, details are expanded about the implementation of a fluid-structure
coupling algorithm which interfaces state-of-the-art flow and stress solvers in the aim

of performing aeroelastic computations in the time domain.
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4.1 Classical Methods in Aeroelasticity

In the previously cited classical textbooks on aeroelasticity, the calculation of the
dynamic flutter boundary is studied in the frequency domain for linear structural
and aerodynamic operators. For the stress model, the discretized equations take the

form
[M{a} + [D{a} + [K]{u} = {F}, (4.1)

where [M] is the mass matrix, [D] is the damping matrix, [K] is the stiffness
matrix, and {F'} is, in occurrence, the vector of external aerodynamic forces. This
is indeed the general form obtained for the discretized Navier equations, as seen in
equation (3.5). In general, the external forces depend on the position, the velocity,
and the acceleration of the structure and, thus, are implicit functions of the displace-
ments u. (The vector u may alternatively be thought of as a vector of generalized
coordinates.) The matrices [M], [D], and [K] have constant coefficients, independent

of u.

In the special case where the aerodynamic forces are linear in the displacements,

one can write
{F} = [MJ{1} + [Do]{0a} + [K.}{u}, (4.2)

where [M,], [D,], and [K,] are, respectively, the mass, the damping, and the stiffness
matrices for the aerodynamic model (with constant coefficients). Assuming a Fourier

representation for u, of the form
u = U(x)e™, (4.3)

the coupled undamped system formed by (4.1) and (4.2) leads to the generalized
eigenvalue problem

[A] - M[B] = 0. (4.4)
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The eigenvalues A give the resonant frequencies of the coupled system for the given
flow characteristics, for example at a given free stream velocity U, and dynamic
pressure (oo. (The matrices [A] = [M — M,] and [B] = [K — K,] depend on U,
and ¢ via [M,] and [K,].) The eigenvalue problem is then solved repeatedly over
a range of dynamic pressures for fixed free stream velocities, from which the flutter

boundary curve is determined (recall illustration in figure 1.1).

Classical methods for the determination of the flutter boundary in the frequency
domain are the V-g and the p-k methods [69]. These methods are generally employed
with closed form solutions obtained using the boundary element method (Fourier
transforms or Green’s functions) for the aerodynamic operator, following the lin-
earization of the flow equations. The success of the coupled eigenvalue analysis has
been demonstrated for linear flow operators, such as potential flow theory for in-
viscid, incompressible, irrotational flows. However, the determination of the flutter
boundary throughout the entire flight regime of an aircraft requires treating flow
nonlinearities: compressibility effects become important, fluid viscosity is no longer
negligible at high speeds, leading to turbulent boundary layers and flow separation,
and finally shock waves appear in the transonic regime. The desire and the need to
use the Buler or the Navier-Stokes equations to model the fluid violates the linearity
of the flow operator and leads to the breakdown of the coupled eigenvalue analysis.
One must then revert to an analysis in the time domain. Despite the difficulties to
treat nonlinearities, analyses in the frequency domain are nonetheless particularly at-
tractive, given their low computational costs in comparison with analyses in the time
domain. Such linearized analyses can thus be of great value for an initial assessment
of the aeroelastic stability of a system, but detailed analyses are recommended for a

final evaluation of a design.
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4.2 Time-Domain Aeroelastic Analysis

The determination of the flutter boundary in the time domain can be viewed as a
divide and conquer process. To start, the stability of a given configuration with
known structural properties is investigated under different aerodynamic loads. In
flight, the pilot controls the speed U, and the altitude of the aircraft, the latter
parameter defining the thermodynamic properties of air: temperature Ty, pressure
Poo, and density p. The two systems of equations are solved in the time domain
for various values of the pressure, and damped and undamped solutions are observed.
The solution of interest is the neutrally stable one where oscillations at constant

amplitude are measured - flutter.

In comparison with the eigenvalue approach, the iterative process involved in the
calculation in the time domain of the flutter point at a given speed U, is quite
costly, requiring the solution of the unsteady Euler or Navier-Stokes equations over
several periods of oscillations, typically over 10, to reach a periodic state, with 30 to
50 time steps per period of the highest mode modeled. The process is repeated over
a range of free stream velocities to determine the overall flutter boundary curve. The
time-domain aeroelastic analysis should thus be viewed as an analysis tool rather than
a design tool, given its high computational requirements. It is best employed for a
final assessment of an aeroelastic configuration, once preliminary flutter results have
been obtained using simplified aerodynamic and structural models that are much less

expensive, albeit less accurate.

The following procedure has been established for a complete fluid-structure cou-

pling for aeroelastic analyses in the time domain:

1. Compute the natural modes of vibration of the structure by solving the gen-

eralized eigenvalue problem (3.14). Retain the low-frequency modes likely to
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enter in resonance with the flow for the given characteristics of the problem
(free stream pressure for external flows, rotational speed of the blades for tur-

bomachinery flows).

2. Compute the steady-state aerodynamic solution, given U, and p.,. This gives
the initial external steady loads on the structure and provides the initial solution

for the unsteady simulation.

3. For the modes under analysis, use the modal transient response analysis to
march in time until a fully-developed unsteady response is observed for the
coupled fluid-structure problem, following an imposed initial small perturba-
tion to trigger flow unsteadiness. The coupling with the aerodynamic solver is

activated, with full two-way feedback between the fluid and the structure.

4. At the fixed free stream velocity Uy, repeat Step 3 by varying the free stream
pressure po,, based on the response of the structure at other imposed values
of the pressure, in order to determine the pressure at flutter at this free stream

velocity.

5. Repeat Steps 2-4 for different values of U, once again iterating on the pressure,
giving the pressure at flutter for a range of free stream velocities. This curve

defines the flutter boundary.

The use of the modal analysis, with selected modes, can yield very good results for
a large class of aeroelastic problems encountered in the field of aeronautical sciences.
The choice of the modal analysis, as opposed to the use of a complete transient
analysis, is mostly justified by its low computational costs. Since the high-frequency
structural modes are not likely to be excited by the low-frequency fluid response,

only the low-frequency modes may be included in the analysis, without compromise
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on the quality of the solution. On one hand, one recalls that the modal analysis
is inexpensive to use since it gives rise to a system of decoupled linear ordinary
differential equations, of size equal to the number of modes selected. On the other
hand, the direct integration of the full structural equations includes all vibrational
modes, and a sparse linear system must be solved at each time step, when using an
implicit formulation. The use of excessively small time steps, needed to capture the
high-frequency modes, negates the advantages of the implicit flow solver, in which case
an explicit flow solver would be more appropriate. The cost of repeatedly solving these
linear systems outweighs overwhelmingly the overhead cost of solving a generalized
eigenvalue problem, which is done only once. (An efficient generalized eigenvalue
solver for large systems is however much more difficult to implement than a matrix

solver and is rarely available in standard scientific libraries.)

The various implementation aspects of the fluid-structure coupling driver are now

elaborated in the remainder of this chapter.

4.3 Fluid-Structure Coupling Algorithm

In view of the inherently high, unavoidable, computational costs for the Euler and the
Navier-Stokes equations, a coupling driver is developed for time-accurate aeroelastic
calculations in the time domain, while trying to minimize the additional costs due
to the coupling with the stress solver. The approach consists of a time-marching
algorithm by which the structural equations and the flow equations are integrated
in time in a simultaneous fashion at each time step, even if the two solvers exist as
separate entities. As advocated in the introduction, the procedure features a two-way
coupling between the fluid and the structure, with the aerodynamic loads affecting

the motion of the structure, and vice-versa.
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The following considerations are addressed in the development of the coupling

driver:

1. Unification of the time-integration schemes used in the fluid and the stress

solvers: Are the time steps the same? Should they be?

2. Transfer of the structural displacements and of the aerodynamic loads across the
solvers: How can the displacements and the loads be interpolated such that the
work done by the fluid on the structure be conserved? How can the geometric

difficulties of non-matching grids be overcome?

3. Ezecution of the CFD and CSD external modules: How can the codes commu-
nicate among themselves in a synchronized and efficient manner? How tight

must the coupling be?

The fluid-structure coupling algorithm is implemented in a stand-alone program
which synchronizes the execution of the fluid (CFD) and the stress (CSD) solvers
and monitors the two-way exchanges of data, the displacements and the aerodynamic
loads, across the two solvers. In this way, the CFD and the CSD solvers do not
communicate directly with one another, but do so through the intermediary of the
coupling driver (see figure 4.2). This desired autonomy of the fluid and the stress
solvers allows to develop and upgrade the solvers independently, and, in addition,
permits to compute the solutions concurrently over a network of workstations to
reduce the overall computational time. This modular approach allows to easily sub-
stitute a solver for a different one, provided that a model-specific interface exists to

process the input and the output files for the grid and the solution.

In addition to the major changes to the CFD code to support aeroelastic cal-

culations (extension of the governing equations based on the ALE formulation and
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Figure 4.2: Schematic of the Fluid-Structure Coupling Driver.

implementation of the grid movement algorithm), minor changes are implemented to
enable inter-process communications between the solvers and the coupling driver, see
subsection 4.3.3, in order to avoid the overhead costs associated with restarting the
codes. Such costs include saving and loading the new grid and the solution at each

time step as well as re-initializing the data structures for the preconditioned linear

matrix solver upon a restart.

The fluid-structure coupling driver extracts, on one hand, the aerodynamic loads
from the flow solution and feeds them as external forces to the stress solver and, on
the other hand, extracts the displacements from the stress solution and feeds them
as transient boundary conditions to the fluid solver, through files, as described in the
appendices A and B. The interpolation of the displacements and of the aerodynamic
forces across the two grids on the surface of the structure is performed by the coupling

driver, outside the CFD and the CSD solvers, using the concept of a virtual grid.

The virtual grid may be thought of as a third grid which represents the surface
of the structure. The virtual grid is visible only by the coupling driver and it is
used solely for the purpose of interpolating the solution across the CFD and the CSD
grids. In the interpolation process, the displacements are interpolated from the CSD
grid to the virtual grid, then from the virtual grid to the CFD grid, and conversely

for the aerodynamic loads. The role of the virtual grid gains merit and value when
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interpolating the solution across non-matching grids. The complete details about the
construction of the virtual grid and its usage by the interpolation module are given
in subsection 4.3.2 and in appendix C. At this point, the above ideas concerning
the virtual grid should be sufficient to aid to the comprehension of the interpolation

process required in the coupling strategy.

The details of the coupling driver are examined in the next three subsections.
In subsection 4.3.1, the control loop for the time-integration is introduced. This is
the core of the coupling driver. In subsection 4.3.2, the interpolation module across
general non-matching grids is defined. Finally, in subsection 4.3.3, the use of stream

sockets as a tool for inter-process communication across the various codes is described.

4.3.1 Implicit Coupling Time Loop

The coupling is performed in an implicit fashion, where, at each time step, the fluid
and the stress solvers are invoked in an iterative fashion, possibly several instances
per time step, until the aerodynamic loads and the structural displacements are in
simultaneous equilibrium. The coupling time step is fixed and the same time step is
used in both the CFD and the CSD solvers, which are assumed to exist as independent

external modules.

The decision to invoke the CSD solver first and the CFD solver second, or wvice-
versa, is guided by physical intuition. Given the larger inertia of the structure, relative
to the air, the structure in motion (large momentum) should be less sensitive to small
perturbations of the surrounding air, while the air (small momentum) should respond
more quickly to small deflections of the body. At a new time step, the error introduced
by freezing the flow and advancing the position of the structure first should be less

than the one introduced if the solution sequence were inverted. Although a few
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iterations can be performed to reach equilibrium, and wash out these errors, extra
iterations can result if the CFD solution is first advanced from a frozen CSD state.
Numerical evidence indeed confirms the superiority of this approach. Nonetheless,

the ultimate choice on the sequence of integration can be overridden by the user.

The issues pertaining to the tightness of the coupling between the two solvers
are now discussed. In general, in a loose coupling, the CFD time step is chosen
to be smaller than the CSD time step, say to be AT/N, and the CFD solution is
integrated over these N time steps, at once, without feedback from the stress solver
at the intermediate CFD time steps. The response of the structure is updated only
at the coupling time step AT. The rationale of the loose coupling is to speed-up the
calculations by reducing the number of data exchanges. With the use of a small time
step, typical of an explicit CFD solver for stability purposes, a loose coupling can
yield potentially accurate solutions, since the discretization error is proportional to
AT. Despite using a small time step, the structural displacements cannot be said to
be in simultaneous equilibrium with the aerodynamic loads at all instants in time,

hence the name “loose coupling”.

In a tight coupling, several CSD-CFD sub-iterations are performed within the same
implicit time step. By the nature of the nonlinear implicit flow solver, several Newton
iterations are required at a time step in order to converge the flow solution. Instead
of fully converging the Newton process at each update of the displacements, the idea
consists of updating the displacements from within the Newton loop of the flow solver.
That is, as the solution evolves as part of the nonlinear procedure, the corrections to
the flow variables will affect the position of the structure, which will change to reach
a new equilibrium with the evolving flow solution. There is no incentive to wait till
the Newton iterations have fully converged before updating the displacements, since

then the Newton loop has to be repeated to reach the new fluid-structure equilibrium.
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For explicit solvers, the above predictor-corrector strategy is not possible, since the
solution is advanced at once, without iteration, at each time step, and the tight

coupling simplifies to one coupling instance per time step.

The justification to adopt a specific coupling strategy is guided by the desire to
achieve the best quality solution at the minimal cost. It should be clear, at this point,
that a tight coupling is a superior approach, from the accuracy point of view, but
that the extra coupling instances required in a tight coupling will add to the total

cost of the simulation.

A tight coupling is advocated, in this work, with the use of implicit solvers, which
are unconditionally stable and which allow large time steps. It is recalled that the
cost per time step for an implicit CFD solver can be several times more than that
for an explicit solver. The strategy to use a small time step is, thus, not optimal
for implicit solvers, since the gain in using large time steps is negated. Given the
relatively small costs to compute the stress solution (using a modal analysis) and to
perform the coupling (interpolation and mesh movement), less than a few percent of
the total cost of the flow solver, there is no reason not to favor a tight coupling which
guarantees simultaneous convergence of the two solvers. Furthermore, this procedure
allows to use the same time step for both implicit solvers, without the need for a
cumbersome staggered time-integration scheme to ensure stability. Full flexibility
exists, nonetheless, to allow the use of different time steps for the two solvers and to

vary the number of fluid-structure coupling iterations to perform a loose coupling.

The advocated coupling algorithm is illustrated by the flow chart in figure 4.3.
Following the selected strategy, invoking the CSD module first, the current loads are
written to a file in a suitable format, as inputs to the stress solver, and the new
structural positions are computed by the stress solver. Next, the new structural

displacements are extracted from the stress solution file and loaded into the virtual
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grid by the coupling driver. In the second step, when the CFD module is invoked, the
nodal displacements over the fluid grid are computed from the nodal displacements
on the virtual grid and written in a suitable format for the fluid solver. The interior
of the grid for the fluid is moved from within the flow solver, where the entire fluid
grid is active in memory, prior to computing the new flow solution. The flow solution
is then advanced in time and the aerodynamic loads are transferred to the faces of the
virtual grid from the latest fluid solution, thus completing one CSD-CFD sub-cycle,
with all the information contained within the virtual grid object. The above process
can be repeated a few times within a time step, until the fluid and the structure are
in equilibrium. The loop is then advanced to the next coupling time step. A similar

implicit coupling procedure has also been outlined in other work [70)].

How tight must the coupling be? From the numerical experiments conducted, a
legitimate strategy consists of up to 3 to 4 coupling instances per time step. An equal
number of Newton iterations are performed between coupling instances, such that
convergence at the end of the time step is satisfied. In all practical test cases, this
meant about 2 to 3 Newton iterations per coupling instance. There is no real need
to update the structural position more often. This simultaneous convergence of the
two codes eliminates repeating calculations within a time step and the costs of the

computations are thus effectively reduced to the costs of an unsteady simulation.

The absolute change in work done by the aerodynamic forces on the structure,
defined as
n 1
Wikl = [Wethy - Wi (4.5)
Wit = [Fituphis, (4.6)
from one coupling sub-iteration k£ to another k+1, but at the same time step n+1,

is used as the global convergence criterion. This criterion, which combines both the

aerodynamic forces and the structural displacements, constitutes a good indicator
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of the global convergence. The relative error lAW(’,‘cfl) / W(’}:rll)l may equivalently
be employed in the convergence test. It is also understood that global convergence
requires the local convergence of the nonlinear flow equations. Local convergence is

not an issue for the stress solver, since the Navier equations are linear.

The advantages of keeping the two solvers as separate entities are manifold. It
is not practical, from the development and implementation point of view, to embed
the governing equations for the fluid and the structure into the same code. Such a
code would be difficult to maintain and too restrictive in its range of applications.
Instead, it is much more convenient to treat the fluid and the stress solvers as black
boxes, whether such codes are commercial codes or in-house codes, and to provide
an exterior coupling via an interface, as established in this work. Furthermore, it
should be clear by now that a tight coupling with simultaneous convergence of the

two solvers can be achieved, even in a segregated solution approach.

Finally, calculations tend to suggest that a restriction exists on the size of the
coupling time step if the motion of the structure is too large, even if the CFD and the
CSD implicit solvers are unconditionally stable. Such limitations on the size of the
coupling time step are not obvious to quantify and have s'eemingly not been reported

in the open literature.

Complete restart facilities are provided to save the state of the simulation in
case of an interruption, since it is seldom possible to perform the whole simulation at
once, due to constraints in the availability of the computing resources. A user-friendly
graphical interface written in TCL/TK has been developed to ease the management of
the numerous solution files for the CFD and the CSD codes as well as for the coupling
driver itself. A look at the graphical interface is displayed in figure 4.4. Although not
essential in performing aeroelastic calculations, this integrated graphical aid is very

useful to monitor the execution of the three codes in an effective manner.
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Figure 4.4: Graphical Interface for the Fluid-Structure Coupling Driver.
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4.3.2 Surface Interpolation Using the Virtual Grid

Without minimizing the importance of the time control loop, the focal point of the
coupling driver is without doubt the interpolation of the structural displacements
and of the aerodynamic loads across the CFD and the CSD grids. In the special
case where the grids for the CFD and the CSD surfaces match identically, that is the
nodes and the faces on both grids coincide, no interpolation is needed. However, it is
generally the case that the CFD and the CSD surfaces are made of a different number
of non-coincident nodes and elements (see figure 4.5). On one hand, it is common
to use a much finer grid for the fluid than for the solid, especially near the walls
for Navier-Stokes calculations. On the other hand, for the stress solver, quadratic
hexahedral elements are most often used, as opposed to linear tetrahedral elements
for the flow solver. Thus, not only are the wall faces of different types, but the degree

of the interpolation may be different too.

Another difficulty can arise if the discrete geometries described by the two grids
are not identical. For example, a coarse grid cannot describe a curved surface as
precisely as a fine grid, as shown in figure 4.6 for a fine and a coarse discretization of
an airfoil. In this case, it is customary to expect that some nodes on the fine mesh
will not lie on the surface of the structure described by the coarse mesh. These nodes
are then projected onto the surface of the fluid grid, since the latter is likely to better

represent the fine details of the geometry.

It would appear somehow ironic to devote, on one part, great efforts to construct
a sophisticated CFD code satisfying conservation of mass, momentum, and energy,
yet to transfer the aerodynamic loads in a non-conservative fashion. In view of the
mentioned geometric difficulties, the interpolation in a conservative manner of the
displacements and of the loads across non-matching grids promises to be a challeng-

ing task. Such generalization to non-matching grids is, however, needed, because
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Figure 4.5: Non-Matching CFD and CSD Grids for a Wing Surface.

the constraint of using matching grids is too restrictive for use with automatic grid

generation and mesh adaptation.

The difficulties associated with the use of non-matching structured and unstruc-
tured grids have been acknowledged in the literature. In their work, Farhat and his
co-workers [71] integrate the aerodynamic loads over a face of the stress grid using
Gauss-Legendre quadrature and evaluate the loads (in paper [71] only the pressure
for Euler calculations) at the Gauss integration points on the fluid surface. However,
some fluid faces may not contain any integration points and their contribution will
not be accounted for, thus preventing strict conservation of the loads. “Accuracy” can
be increased by increasing the number of integration points, but in all but fortuitous
cases, there is still no guarantee that the desired conservation properties sought in

this work will be satisfied.
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Figure 4.6: Non-Conforming CFD and CSD Surfaces for a NACA0012 Airfoil.

On the other hand, Lohner and his team have recognized the importance of con-
serving the aerodynamic loads and the work done by the fluid on the structure {72, 37].

The loads Fy(x) and Fy(x) are set equal in the weighted integral sense:
/ WE,dl' = / W F; dT (4.7)
T r

for a set of weighting functions {W}. Using a Galerkin finite element approach,
the integral on the left yields a consistent mass matrix to be inverted to obtain nodal
values of the stress loads F,. However, the difficulty lies in integrating the right-hand-
side vector with the weighting function W defined over a face on the stress grid and
the loads Fy being defined over a non-matching face on the fluid grid. Similarly
to Farhat’s work, an adaptive Gaussian quadrature method is used to evaluate the
right-hand-side vector of forces. By looping over the fluid faces, in this case, the
forces can be integrated in a conservative fashion, since all fluid faces are visited.
The accuracy of the evaluation depends on the coarseness of the stress grid and the

interpolation error of the stress weight functions at the integration points of the fluid
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faces. The above strategy has been used effectively with an Euler solver for which

only the (node-based) pressures had to be transferred.

The concept of using an intermediate grid, labeled wvirtual surface, for the rep-
resentation of the surface at the fluid-interface was proposed by Guruswamy [73].
Although its documented usage is vague, a structured ij—grid was used as the vir-
tual surface, for the case of a wing, to allow the use of surface splines for the direct
interpolation of the loads and the displacements. In this thesis, the concept of a
virtual grid is adopted for the representation of the moving surface of the structure
in contact with the fluid, but its implementation and usage are completely different.
The interpolation methodology based on the virtual grid, defined herein, first per-
mits to transfer the aerodynamic loads in a truly conservative manner, and, second,
extends naturally to include both the pressures and the viscous shear stresses for
Navier-Stokes calculations [74] by permitting to define face-based loads on the fluid
grid. Strict conservation is guaranteed locally, over each face of the stress grid, and
globally, over the entire fluid and stress surfaces. Consistent node-based loads are
obtained at the grid points on the stress grid. The interpolation module is part of

the coupling driver, hence it is independent of the CFD and CSD solvers used.

As briefly introduced earlier in section 4.3, the main idea is that the virtual grid is
a third grid describing the surface of the structure, as drawn in figure 4.7. The virtual
grid is an entity belonging to the coupling driver only, with both the displacements and
the loads being defined on it. The displacements are interpolated from the structure
grid to the virtual grid in a first step, then from the virtual grid to the fluid grid in
a second step. A more elaborate yet analogous strategy is adopted for the transfer of

the face-based aerodynamic loads.

These steps may appear cumbersome at first sight: Why not interpolate the dis-
placements from the CSD grid directly to the CFD grid (and vice-versa for the loads)
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Figure 4.7: Surface Interpolation of the Displacements and Loads and Repre-

sentation of the Virtual Grid.

without the intermediary of the virtual grid? The answer is that geometric difficulties
arise when the CFD and the CSD grids do not match, as it is generally the case. In
some abstract sense, the virtual grid may be viewed as a correspondence table with
pre-defined node-to-node, node-to-face, and face-to-face mappings which facilitates
the interpolation process. Since no calculations are actually performed on the virtual
grid, no errors are introduced in the solvers and it then becomes possible, having
imposed certain conditions on the construction of the virtual grid, to transfer the
aerodynamic loads in a conservative fashion. In brief, there is no direct connection

between the CFD and the CSD grids other than through the virtual grid.

In this work, the virtual grid is constructed from the union of the CFD grid and
the CSD grid at their surface of intersection. The construction process of the virtual
grid is such that the CFD and the CSD surface grids are subsets of the virtual grid.
More precisely, all nodes that belong to the CFD and the CSD grids on the surface

of the structure are present in the virtual grid. Further, all wall faces associated with
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the CFD and the CSD grids are made up of an integral number of faces of the virtual
grid. Specifically, any face of the virtual grid must lie entirely inside a CFD or a
CSD grid face. Such a face is not allowed to cut any face of the CFD and the CSD
grids. This construction facilitates the interpolation of the displacements, defined at
the nodes, and allows for the exact integration of the aerodynamic loads over the
surface of the structure in order to achieve conservation of the work done by the two

systems.

It is noted that the virtual grid is constructed only once as part of the pre-
processing steps prior to the start of the simulation. Even if the grids move, they
move together in the same fashion, along with the virtual grid, and it is not necessary

to reconstruct the virtual grid at any time step.

An edge-oriented algorithm is adopted for the construction of the virtual grid, us-
ing triangular faces, while preserving the integrity of the background CSD and CFD
surfaces. More precisely, the edges of the CSD grid are swept and new triangular
faces are introduced as a result of cutting CFD edges by CSD edges (see algorithm to
follow). This edge-based approach makes it possible for the CFD and the CSD sur-
faces to be made of triangular or quadrangular faces. Triangular faces, arising from
unstructured tetrahedral meshes, are the most common face type for CFD grids. Lin-
ear tetrahedral elements are rarely used in stress analysis codes; quadratic hexahedral

elements, with quadrangular faces, are preferred for accuracy purposes.

In the implementation of the algorithm which constructs the virtual grid, it is
assumed that the CFD grid is finer than the CSD grid. This assumption is irrelevant
to the outcome of the process, but, when the CFD grid is indeed finer than the CSD
grid, which in general it is, the decomposition process will execute faster since the
number of node searches will be reduced. The speed of execution, proportional to

the number of nodes on the surfaces of the two grids, is not a major concern since
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the virtual grid is constructed once at the beginning. However, for later use with
unsteady mesh adaptation, some optimization (ideally parallelization) will be desired

when the topology of the CFD grid changes frequently.

The efficiency of the algorithm rapidly deteriorates when the two surfaces (CSD
and CFD) are not conforming. Such a case is always present when the geometry
possesses curved surfaces. The CSD surface is then projected onto the CFD surface.
A loss in efficiency is incurred during the searches over the active faces of the virtual
grid when determining the face closest to the node to add. When the two surfaces
are “close”, the searches will end whenever the geometric distance between a point
and the surface is less than a prescribed threshold. In all other cases, an exhaustive
search over all faces must be conducted to safely identify the closest face, in particular
when the geometry contains small features. The implementation of an octree search

algorithm would greatly reduce the search operations and speed-up the algorithm.

The algorithm is summarized in the following 4 steps.

1. Use the CFD grid as the initial virtual grid, subdivided into triangular faces.

2. Add the nodes of the CSD grid to the virtual grid. If a node already exists,
the request is ignored. Otherwise, the virtual grid face containing this node
is subdivided into three new triangular faces by connecting the new node to
the three nodes of the face. Special care is taken when a node collapses onto
a vertex or an edge of an element to avoid creating new elements with zero
area. On non-conforming segmented geometries, the CSD nodes are projected
onto the fluid surface, since the latter is likely to be finer and more suitable to
represent the curved geometry of the body. At this point, all nodes of the CFD
and the CSD grids are contained in the virtual grid.

3. Scan the edges of the CSD grid to determine their intersection with the edges of
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the background virtual grid. As the elements of the virtual grid are cut, they are
traversed along each edge of the CSD faces. The splitting process is illustrated
in figure 4.8. Once the intersection point P of the two edges AB and ab has
been computed, split the virtual grid element in two triangles DAP and DPB
by joining the intersection point P to the third node D of the face. In a dual
step, create two more triangles PAC and PCB in the opposite element of the
virtual grid (the opposite element is the neighboring element sharing the cut
edge AB). These two “mirror” elements are used as a starting point for the
next cutting operation (thus avoiding costly searches over the grid). That is,

the edge ab must cut either PAC or PCB.

4. In a cleanup phase, construct the node-to-face and face-to-face pointers between
the virtual grid and the CFD and the CSD surfaces. While all nodes and all
faces of the virtual grid have been associated with the faces of the CFD grid
at some point during the construction of the virtual grid, the mappings to the
CSD grid are incomplete. For instance, a search is required to find which CSD
face contains a given virtual face whenever the latter was originally contained

inside a CSD face (not crossing its edges). A frontal search algorithm is used

to scan the faces.

A diagram illustrating the construction of the virtual grid is shown in figure 4.9.
It can be seen that the nodes of the virtual grid consist of all nodes of the CFD and
the CSD grids, plus the added nodes resulting from the intersection points of the
CFD and the CSD edges. The faces are reconnected after the introduction of the new

points.

The node and the face mappings, from the CFD grid to the virtual grid and from
the CSD grid to the virtual grid, are constructed once prior to the simulation and

they are used to avoid repeated searches during the interpolation process. (In three
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Figure 4.8: Splitting of an Edge in the Construction of the Virtual Grid.

dimensions, the cost of these searches can be significant.) The mappings are simple to
create since there exists a one-to-one correspondence among the nodes and the faces
do not intersect. The grids may be structured or unstructured, with quadrilateral or

triangular faces on the surface of the structure.

The algorithm to construct the virtual grid is demonstrated for a square domain.
Figure 4.10a shows two grids for the square domain, one grid hypothetically repre-
senting the fluid and the other representing the structure. The virtual grid resulting
from the union of the two grids is displayed in figure 4.10b. The coarseness of the
grids is intended for visualization purposes. In practice, the mesh for the fluid is
much finer than the mesh for the structure. The geometric properties of the virtual
grid are respected: all nodes and all edges belonging to the CFD and the CSD grids
are reproduced in the virtual grid. That is, each of the two grids, CFD or CSD, is a
subset of the virtual grid. The “poor” appearance of the virtual grid, caused by the
thin skewed elements, is purely of cosmetic concern. All elements are used as part of
the interpolation process only and not during the solution process of the CFD and

the CSD codes.
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Figure 4.9: Construction of the Virtual Grid (Thick Red Lines: CSD Grid; Thin
Blue Lines: CFD Grid; Dashed Lines: Added Edges to the Virtual
Grid).

The construction process of the virtual grid provides the basis to guarantee the
conservation of the loads and work done in the case where the CFD and the CSD
geometric surfaces coincide exactly. When the surface discretizations are not identical,
their areas will be different and conservation cannot be strictly achieved. For example,
figure 4.6 shows slightly different surfaces for the geometry of an airfoil, near its nose
where the curvature is pronounced. However, a scaling of the area of the projected
faces is imposed, face by face, to enforce conservation. This scaling is applied to the

shape functions of the loads during their interpolation.

The structural displacements, defined at the nodes of the CSD surface, are trans-
ferred to the matching nodes on the virtual grid. The displacements at the other
nodes of the virtual grid are obtained using linear interpolation over the triangular

faces. This simple interpolation process can introduce discrepancies if the order of
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Figure 4.10: Construction of the Virtual Grid for a Square Surface: (a) the CFD
and CSD Surfaces; (b) the Resulting Virtual Grid.

the interpolant is different from the shape functions used in the stress solver (for
example, quadratic shape functions on curved surfaces). Such a modeling error is
small and can easily be overcome if a knowledge of the shape functions is passed to
the interpolation module of the coupling driver. Finally, once the displacements have
been defined at all the nodes of the virtual grid, they are transferred directly to the
nodes of the CFD grid.

If the node-based displacements are easily interpolated, on the other hand, the
face-based aerodynamic loads require special attention to transfer them in a conserva-
tive fashion. First, the face-based loads t defined on the CFD surface are transferred
to the faces of the virtual grid. From equations (2.24) and (2.25), these loads include
both the pressure and the shear stresses, hence the present formulation lends itself to

viscous flow calculations without modifications.
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The somehow tedious reconstruction of the loads over the faces of the grid for the
structure is guided by the principle of conservation of work done. That is, within the
discretization error, the work done on the fluid surface must equal the work done on

the surface of the structure:

Wy = //A {8} fu}dd = //A ()" {u}dA = W,. (4.8)

Also, since the shape functions sum up to unity, conservation of work done also leads

to the conservation of the total forces on both grids.

The enforcement of conservation of work done is trivial when the discretizations
of the two grids match at the surface of contact. Delicate care must be taken when
the fluid and the structure faces are not identical, but, as a consequence of the way
the virtual grid is constructed, the integration of the loads is greatly simplified. A
difficulty however persists: for a virtual grid face A®) contained in a stress face A
the displacements wu; defined over the stress face are based on the shape functions

for A®) while the surface of integration is A®.

Recalling equation (3.7), obtained in the derivation of the Rayleigh-Ritz formula-

tion, the surface integrals

/A oA, /A A, /A  teNdA (4.9)

must be evaluated over each boundary face of the CSD grid. The difficulty arises in
that the shape functions N, are defined over the structure element, while the loads
iz, t,, and t, are defined over the fluid element. In the evaluation of the integral,
say for t;, the integral is broken as

/A NjdA = ZC; /A N, (4.10)
As illustrated in figure 4.11, the integral over a stress face A®) is the direct sum of

the integrals over the virtual grid faces A™") making up the stress face. Since the
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stress solver has no knowledge of the faces A®) on the virtual grid, these integrals
are pre-evaluated in the coupling driver, although this requires some knowledge about
the stress solver on the coupling driver’s side. It is important to state that the true
type of the face, quadrilateral or triangular, is used for the integration of the loads
on the CSD grid, with the appropriate shape functions. Triangular faces are only

introduced for the purpose of constructing the virtual grid.

Figure 4.11: Evaluation of a Surface Integral on the Virtual Grid: Break-up of

the Virtual Faces Over a Structure Face.

The integrals are evaluated using Gauss-Legendre integration, such as for ¢,

ngaus

/A(v)t(:)deA = Z ti”)(ék,nk) Nj(gkuﬁk) || wi (4.11)

k=1
where

& = ZNi(flc, )i,

(4.12)
e = ZNi(fk; M) T

with (&,7;) being the local coordinates of the nodes of the face AW in terms of

the local coordinates system of the face A®) and N; and N, the shape functions
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for the faces A®™ and A®) respectively. (See figure 4.12.) |Ji| is the determinant
of the Jacobian of the transformation (from global to local coordinates) and wy is
the Gaussian quadrature weight. In this work, using the solver FENSAP, the loads
are reported as piece-wise constant over each fluid face; hence, at least three Gauss
points are necessary to calculate exactly the weighted contribution of the loads on
the triangular face A® to each node of the face A®) since the shape functions N;
are bi-linear. In this fashion, the conservative integration of the loads is reduced to
a simple sum over the virtual faces of the stress faces. The loads are conserved over

each stress face and, consequently, globally.

(%,%,%)

(x.y,3)

Figure 4.12: Local Coordinates Systems for A® and A®).

4.3.3 Inter-Process Communication

In the past, restarting the solvers at each coupling instance has limited the exchanges
of information between the fluid and the stress solvers to once every few time steps,
resulting in a very loose coupling and the need for the use of very small time steps to

limit the losses in accuracy. A restart at every coupling instance can greatly penalize
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the overall performance of the code due to the overhead costs associated with writing
and reading the new grid and the restart solution and with initializing the data
structures required by the solvers. Further, these operations, performed sequentially,

can create a bottleneck in parallel computations.

With the objective to provide the tightest level of coupling in order to guarantee
simultaneous convergence of the two solvers at each time step at the lowest cost
possible, stream sockets [75] are used to enable inter-process communications between
the solvers and the coupling driver. Alternatively, the Message Passing Interface
(MPI) standard has also been adopted in aeroelastic codes [12], as opposed to using
stream sockets. The MPI library offers more flexibility than the use of stream sockets;
in particular, MPI allows for communication across computers and provides tools for
parallelization, which the current use of stream sockets does not support. Although
the advantages of the MPI library are apparent, stream sockets are still used, perhaps

since they are part of the standard libraries of the C programming language.

Inter-process communication requires slight modifications to the CFD and the
CSD codes, in order to implant instructions to accept socket connections to listen and
talk to the coupling driver. This restriction is not viewed, however, as a setback of
the implementation. In fact, one common denominator of all aeroelastic calculations
reported in the literature is the use of in-house developed CFD codes. The use of
commercial stress solvers (primarily MSC/NASTRAN) is more common. In view
of this observation, it is reasonable to assume that possibilities exist to implement
tools allowing inter-process communication, at least across the CFD solver and the

coupling driver.

At execution, the fluid and the stress solvers (the clients) are started in the back-
ground until they halt at suitable breakpoints, awaiting instructions from the COU-

PLING module (the server). When the COUPLING module is started, recall the
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flow chart in figure 4.3, messages are sent to the clients, via the stream sockets, one
socket per client, with specific directives to the clients. For instance, the COUPLING
module sends a message to the fluid solver to start a time step, then awaits the re-
sponse from the socket to signal the completion of the task (iteration or time step).
The stress solver is invoked in an identical fashion. It is emphasized that there is no

direct communication between the stress and the fluid solvers.

In addition of eliminating the need for a restart at every coupling instance, the
use of sockets further improves the overall efficiency of the implicit flow solver since
the CFD code remains active in memory across coupling instances. A quasi-Newton
method can be used over several coupling instances and across time steps. Freezing the
Jacobian matrix eliminates the costs of assembling the global matrix and of factoring
it to obtain the preconditioning matrix at every Newton iteration. Finally, although
the memory requirements are cumulated for the two solvers, when running on the
same machine with the two solvers resident in memory, such a constraint is soon

alleviated if the solvers are run concurrently on different machines.

The unavailability of inter-process communication does not prevent a tight cou-
pling between the solvers, say if a commercial code is used and its source code is not
available. In this case, the code is restarted at every coupling instance despite the
high overhead costs, the penalty being as high as doubling the overall execution costs,
or worse. However, since the flow solver already requires modifications to extend the
governing equations using the ALE formulation to account for the presence of moving
bodies, without which fluid-structure interactions lose their significance, it may be
assumed that access to the source code of the flow solver is possible, at least in a

limited fashion.

For now, only instructions to control the execution of the clients are passed by

sockets. The transfer of the loads and the displacements between the server and the



CHAPTER 4. AEROELASTIC CALCULATIONS 93

clients using sockets instead of files is a possibility, although it is not expected that
such a strategy would contribute to a significant reduction in the total execution time,
since the time spent during the coupling is a fraction of the time spent in the flow
solver. Overall, the cost of an aercelastic calculation is about the same as the cost of

the corresponding unsteady flow calculation.



Chapter 5

Numerical Results

Test cases are presented to demonstrate the scope and the validity of the aeroelas-
ticity methodologies developed in this thesis. In chapter 2, the efficiency and the
robustness of the grid moving algorithm were demonstrated. In this chapter, the test
cases are chosen to demonstrate the accuracy of the treatment of the ALE formulation
for moving and deforming bodies, at first for an imposed motion, without coupling
to a stress solver, and secondly, with two-way feedback and full coupling with the
stress solver for validation of standard aeroelastic configurations. In addition, sev-
eral experiments are conducted to investigate different solution strategies. Is a tight
coupling really necessary? What are the effects of neglecting the shear stresses from
the aerodynamic forces? Answers to these questions may help justify, or discourage,
the use of simplified methods and shortcuts to reduce the overall computing times of

aeroelastic calculations and flutter analyses.

The main difficulty encountered during the validation of this work was the lim-
ited availability of well-documented aeroelastic benchmarks, in particular in three-
dimensions. Moreover, the scope of these benchmarks had to lie within the modeling

capabilities of the stress and the flow solvers developed in this work, and the simula-

94
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tions had to run in a reasonable amount of time on the available computing resources.
One three-dimensional aeroelastic calculation of a wing in flutter is presented, for the
AGARD 445.6 wing. The other problems considered are two-dimensional in nature,
mostly for ease of visualization, grid generation, and for the reduced computing re-
sources required. It is noted that although the technology has been developed in the

three-dimensional framework, its application is identical in two and three dimensions.

5.1 Burgers’ Equation on a Moving Grid

The first result, although trivial in appearance, shows the consistency of the ALE
moving-grid technology for the 1-D Burgers viscous equation
ou dz\ Ou *u

— U~ | ==V

ot dt ) Ox ox

based on the ALE formulation (in non-dimensional form). The finite element dis-

(5.1)

~ cretization mimics the one in FENSAP (see section 2.3). The computational grid is

moved in time, see the figure 5.1a, with the prescribed grid speed

dr .
= = sin (2t) cos (z/2). (5.2)

The initial flow velocity distribution at ¢ = 0 is the step function

u(z,0) = 1, if x<0 (5.3)

0, if x>0
and the viscosity parameter is v = 0.10. The time step is At = 0.05. The evolution
of the solution is shown in figure 5.1b at ¢ = 0.5, 1.5, 2.5, 3.5 on the moving grid
and on a stationary grid. The numerical results also coincide with the exact solution,
even when the grid moves. Equally accurate results are obtained for different grid

motions, verifying that the node movement can indeed be chosen arbitrarily in the

interior of the domain. This fact is also verified for the other problems studied.
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Figure 5.1: Solution to Burgers’ Viscous Equation on a Moving Grid: (a) Evo-
lution of the Moving Mesh in Time; (b) Velocity Profile at Times
t=0.5, 1.5, 2.5, 3.5.

5.2 Pitching Airfoil

The problem studied is that of a transonic flow past a pitching NACA64A010 airfoil
section based on the NASA Ames model [76]. The NASA Ames model is 10.6% thick
and has a pointed trailing edge, as opposed to the analytical NACA64A010 geometry
which is 10% thick and has a square trailing edge.

In this problem, a rigid body pitching motion is prescribed and the unsteady flow
response is calculated. Such a problem demonstrates the capabilities of the flow solver
to handle transient moving mesh boundaries, including mesh movement in the interior
of the domain. However, there is no feedback from the flow field to the motion of the

body since the body motion is imposed.
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The pitch angle varies as
a(t) = ay, + o sin (wt) , (5.4)

or

a(7) = o + o sin (2k,7) (5.5)

. . . tU, .
in terms of the non-dimensional time 7 = ——C—Oﬁ The physical parameters (AGARD

Aeroelastic CT6, CI55 from [77]) describing the motion of the airfoil are:

oy = -—0.21° mean angle of attack,

ay = 1.01° amplitude of pitch,

w = 2nf angular frequency,

f = 34.4Hz frequency,

c = 0.500m chord length,

b = 0.250m semi-chord length,

ke = 5%2 = 0.202, reduced frequency,

Poo = 133912N/m? free stream pressure,

M, = 0.79 free stream Mach number,
U = g)k—cc = 267.50m/s free stream velocity.

The airfoil is rotated about the pivot point z = 0.248¢. Since the motion of the
airfoil is prescribed, there is no feedback from the fluid to the airfoil and a one-way
coupling is used every five fluid time steps. That is, the new position of the airfoil
is determined every 5Atf,,q, with quadratic interpolation of the airfoil’s position
at the intermediate time steps. This strategy reduces the number of times the mesh

movement solver is invoked.

The accuracy of the calculation strongly depends on the resolution of the shock

waves present in the flow. For enhanced accuracy, anisotropic mesh adaptation is
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used on an unstructured grid with triangular elements for the calculation of the initial
steady solution at a fixed zero angle of attack [51]. This adapted grid is used later
for the unsteady simulation, although it is not optimal since the shocks move along
the surface of the airfoil. Ideally, unsteady mesh adaptation (not available) should be
used in order to follow the flow features and to provide the most accurate numerical

solution. The final adapted mesh at ¢ =0s, a = 0° is shown in figure 5.2.

Figure 5.2: Zoom of the Adapted Mesh for the NACA64A010 Airfoil at ¢ = 0s,

o = (°.

Care was taken when adapting the mesh for the steady-state solution. Small
asymmetries in the adapted anisotropic unstructured mesh can lead to a slight asym-
metry in the solution due to the great sensitivity of the position of the shocks on
the pressure and the suction sides of the airfoil. In practice, such asymmetries are

transitory since the process of mesh adaptation is iterated until both the grid and
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the solution have converged, yielding, in this case, a symmetric optimal grid and
solution at convergence. However, since it is not feasible to adapt the mesh during
the unsteady simulation, the process of mesh adaptation is purposely incompletely
converged. Why? If the adapted elements are clustered in too thin a band around
the shock, the moving shock will leave this region of highly stretched cells and the
accuracy of the unsteady solution will be compromised. Although not perfect, it is
better, on average, to use a broader region of elements around the shock position so

as to better represent the moving shock in time.

To circumvent the risk of introducing undesired mesh-dependent asymmetries in
the steady-state solution, the steady solution is first computed on the half-domain,
for y > 0, using anisotropic mesh adaptation to improve the quality of the grid, and
then the half grid is mirrored to obtain the full mesh for the unsteady problem. This
operation guarantees symmetry in the steady solution used as the initial condition for
the unsteady simulation and eliminates the possibility of introducing a small phase
error in the lift in the initial solution. In practice, these errors are small and such
a manipulation is not required. Here, however, for the purpose of validation, it was

decided to suppress this known source of error.

Figure 5.3a shows the hysteresis curve c¢; vs a for an inviscid calculation at
M = 0.796, but with a,, = 0°, with comparison to experimental data {76, 77] (with-
out wind-tunnel corrections). The solution is also in agreement with the numerical cal-
culations by Alonso and Jameson [78]. The non-dimensional time step is At = 0.081,
corresponding to 192 steps per cycle. The periodic unsteady state is observed after
about four cycles of forced oscillations, as can be observed in figure 5.3 for the evolu-
tion of ¢;, and c¢p in time. It is interesting to note the effects of the unsteadiness in
the lift diagram when compared to the theoretical result ¢; = 27« for a steady cal-

culation (which is still quite accurate for an amplitude of 1° in the transonic regime).
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That is, when the oscillating airfoil returns to zero angle of incidence, the lift value is
no longer zero, since the shock waves are no longer aligned, due to the phase differ-
ence between the instantaneous angle of attack and the lift. This asynchrony in the
position of the shocks is at the source of the presence of drag for this unsteady inviscid
flow. (There is no viscous drag; only shock-induced drag is present.) The drag coef-
ficient, cp, is plotted in figures 5.3c-d, although no experimental nor numerical data
are available for comparison. It is noted that the frequency of the drag coefficient is
twice the frequency of the lift coefficient. This observation is correct since the drag
repeats its cycle during each upward and downward pitching motion of the airfoil.
Mach contours of the solution are displayed in figure 5.4 to show the evolution of the
solution at four instants in time, once the periodic state has been achieved. Mach
number and €, profiles on the surface of the airfoil are plotted in figure 5.5, at the
same instances in time. The small oscillations in the curves are due to noise in the

solution at the lowest coefficient of artificial dissipation on the unstructured grid.

The shape (width and inclination) of the hysteresis curve (ellipse) is very sensitive
to phase errors between the motion of the airfoil and the lift response. Figure 5.6
shows the hysteresis curves for cp(t + 6t) versus «(t) for small phase changes
5t = 0, £At, £2At (the time step is At = 0.081). It can be observed that a small
phase lag in the lift response (or the position of the airfoil) changes the width of the
hysteresis curve. Phase errors can be easily introduced at the start of the unsteady
calculation from the steady-state solution. Further, such phase errors seem to persist

throughout the unsteady calculation.

Beyond the asymmetries in the grid, another source of error in the phase comes
from the initial perturbation of the airfoil at ¢ = 0. The airfoil, initially at rest at

o = 0°, is suddenly set into forced sinusoidal motion, resulting in a discontinuity in

da

the angular velocity T at t = 0. Perhaps the motion should be set in a smoother
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Figure 5.3: Oscillating NACA64A010 Airfoil: (a) Hysteresis Curve cr, vs o;
(b) Evolution of ¢z, in Time; (c¢) Hysteresis Curve cp vs a; (d) Evo-

lution of ¢p in Time.
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Figure 5.4: Mach Contours for the Oscillating NACA64A010 Airfoil at Four
Different Times During One Cycle of Oscillation.
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Figure 5.6: Effect of Phase Error on Hysteresis Curve for the Oscillating
NACAG64A010 Airfoil.

fashion. In the wind-tunnel experiment [77], the airfoil is started from rest at an
initial angle o, = —0.21°, but such a configuration should have no effect on the

evolution of the unsteady solution.

The application of the numerical time-integration scheme must not be neglected.
When a high-order multi-step scheme is used, the solution must be available over two
or three time levels. At startup time, the solution is known at only one time level, at
t = 0, and a first-order scheme is used for the first time step. Thereafter, a second-
order scheme may be used since the solution is known over at least two time levels.
To improve the accuracy of the solution, the initial time step may be halved so as
to reduce the size of the truncation error in the numerical scheme. However, for this
problem, the time step is already sufficiently small that different startup strategies

do not seem to affect the quality of the solution.
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The order of interpolation used in the calculation of the ALE derivative dE)tE (equa-

tion (2.10)) is varied to observe its effects on the solution. The primitive variables
are differentiated in time using Gear’s 2°¢ order scheme, while a 1%, a 2°¢ or a 3%

dx d
order scheme may be used to compute e The components E% (transverse to the
dz
dt
moving boundary. There is a notable difference between the 1%* order approximation

flow) and (along the flow) are plotted vs the node number for the nodes on the
and the 2°¢ and 3™ order approximations, as observed in figure 5.7. (The 3
order approximation is nearly the same as the 2°¢ order approximation and is not
plotted in the figure.) However, for the overall solution (hysteresis curves ¢y vs «a
and c¢p vs a) no differences are visible on this plotting scale. It is noted that %}f
plotted in figure 5.7 is computed a posteriori from the mesh positions over several

time levels, hence all three solutions have been computed over the same sequence of
dx
dt
equations, suggesting the minimal effect of the order of its approximation. Even if

grids since the motion is imposed. Only the term has changed in the governing
these effects are small between the 1% and the 2°¢ order approximations, these
terms must however not be neglected from the equations. In summary, a 15 order
approximation for the grid derivatives appears accurate (at least for forced motion)
and has the advantage of requiring only the storage of the moving grid at two time

levels.

The unsteady computation is repeated using the assumption of constant total
enthalpy, despite the inherent unsteadiness of the flow due to the motion of the airfoil.
This assumption may seem reasonable since the variations in the total enthalpy are
about £1% from the free stream value in the previous calculation. The response
of the airfoil, in terms of lift and drag, is shown in figure 5.8 and compared with
that obtained when solving the energy equation. The results display some small but

noticeable sensitivity to the exchanges of energy between the moving airfoil and the
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Velocity on Moving Boundary.

fluid, even when these are small, in the form of extra damping when the total enthalpy
is assumed constant. Although the option of constant total enthalpy is appealing from
the numerical point of view, since it reduces the computational costs, the effects of
this strategy must first be studied before adopting it, to prevent adverse effects on

the quality of the solution.

5.3 Oscillating Cylinder

In this test case, a circular cylinder is mounted on a spring, as shown in figure 5.9,
with the cylinder free to oscillate in the direction transverse to the flow. The goal is

to reproduce the lock-in phenomenon which occurs when the spring-mounted cylinder
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exhibits sustained flow-induced oscillations when the frequency of the shedding vor-
tices approaches the natural frequency of oscillation of the spring-cylinder system [79].

The stiffness & of the spring and the mass m of the cylinder are chosen such that the
1
natural frequency f, = o\ of the cylinder matches the numerically computed

shedding frequency f, of the vortices. In all the cases studied, there is no mechanical

damping (¢ = 0). The only damping present in the system comes from the fluid in

terms of the aerodynamic damping.

f )
Re =200
M = 0.01
y
k c
Z

Figure 5.9: Configuration of Oscillating Cylinder.

Another objective of this test case is to demonstrate the capabilities of the fluid-
structure coupling technology for viscous flows. It will be confirmed that the shear
stresses play an important role in determining the response of the cylinder, as op-
posed to computing the aerodynamic forces based solely on the pressure. In fact, the
coupling poses no difficulty other than the increase in computational time for solving
the Navier-Stokes equations. The flow studied here is laminar, but no difficulties are
foreseen for turbulent flows once these capabilities become available in the flow solver

for unsteady flows.
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The role of the time step will also be examined, with its relevance to the accuracy
of the solution. A Fourier analysis of the lift response will be performed in order to
guide the selection of a cost-effective time step without undermining the accuracy of

the solution. Finally, the impact of the level of coupling will be discussed.

The free stream Mach number is M = 0.01, which is a reasonable assump-
tion to model an incompressible flow using a compressible flow code. At ambient
air temperature T' = 288K, the fluid velocity is U, = 34.02m/s, the density is
Poo = 1.2096 kg/m3, and the fluid viscosity is fio, = 0.00017887 Pa, - s. The diameter
of the cylinder which corresponds to a Reynolds number of 200 is D = 0.008693 m.

Although the flow is essentially incompressible at such a low Mach number, the
energy equation is nonetheless solved for, since the flow is unsteady. The Navier-
Stokes equations are integrated in time using the second-order Gear scheme until
a periodic state is observed, at which time the Strouhal number is measured from
the unsteady lift distribution on the cylinder. No artificial dissipation is required in
the momentum and the energy equations since the natural viscosity is significant at
Re = 200. The second-order form of the artificial dissipation is used to stabilize the

continuity equation.

At a flow Reynolds number of 200, vortices shed in the wake of a fixed cylinder at
D
a Strouhal number St = %}—— of approximately St, = 0.20, where f is the shedding

frequency of the vortices and D is the diameter of the cylinder. More precisely, using

Roshko’s relation [56]:
12.7
St, = 0.212 (1 -5 ) , (5.6)

e

a curve-fit expression based on experimental data for the Strouhal number past a
fixed cylinder, one obtains St, = 0.1985 at Re = 200. Calculations on a fixed
cylinder give a measured Strouhal number of St, = 0.1977, which is in agreement

with experimental and other numerical data at Re = 200.
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A grid refinement study was performed until the unsteady lift and drag on the
fixed cylinder became more or less independent of the mesh. Also, different domain
sizes were used, the conclusion being that a sufficiently large domain was needed since
far-field boundary conditions are approximated by the constant free stream flow in
the code. The computational domain extends from [-5D,—10D] x [30D, 10D}, with
the cylinder centered at (0,0). Ideally, a smaller domain could be used, pending the
implementation of non-reflective boundary conditions in the flow solver. The final
grid consists of 19619 nodes in the plane and 19272 quadrilateral elements. A zoom
of the computational grid near the cylinder is shown in figure 5.10. In the region
downstream of the cylinder, the grid clustering ranges from 24 to 16 grid points per
wavelength (= 5D) of the shedding vortices. There are 160 nodes on the surface of
the cylinder. The same grid is used in all computations.
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Figure 5.10: Zoom of the Computational Grid for the Oscillating Cylinder Test
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Case (19619 nodes in the plane, 19272 elements).
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In this problem, mesh adaptation is not used since the flow is inherently unsteady
and the technology is not available for time-accurate unsteady mesh adaptation. Mesh
adaptation could be used in a static fashion every few time steps, but time-accuracy
cannot be guaranteed following the interpolation of the solution over several grids.

The fine mesh used in this case already yields accurate solutions.

The computations are carried out in two steps: first, the unsteady solution is
computed past the fixed cylinder, then this solution is used to trigger the motion
of the cylinder. The unsteadiness in the flow field is initiated by perturbing the
initial flow field in an asymmetric fashion in order to accelerate the establishment of
the vortices. A few cycles, less than 20, suffice to wash out the solution transients
resulting from the initial perturbation. The lift over the stationary cylinder is plotted
in figure 5.11 as a function of time. The inset in the figure shows the starting lift
evolution following the initial perturbation of the flow, while the full-size graph shows
that a constant amplitude periodic lift has been obtained at a much further time.
Mach number and pressure contours are plotted in figure 5.12 at four instants during

one period at t =0,t=T/4,t=T/2, and at t =3T/4.
The structural model consists of the single ordinary differential equation

Py | dy
m—g + e+ ky = F(t), (5.7)

where y is the elevation of the cylinder relative to its position at rest, m is the mass
of the cylinder, ¢ is the damping coefficient (set to zero), k is the stiffness of the

spring, and F(t) is the external aerodynamic force, being simply the lift, acting in

the upward direction. The natural angular frequency of the system is w, =/ —. At
m

215t Uy
—5

Fully-coupled aeroelastic calculations are conducted at various natural frequen-

lock-in, wy, =

cies of the cylinder, starting from the established periodic unsteady solution past



CHAPTER 5. NUMERICAL RESULTS 112

800 ! ! ! !

600

400

200

Lift (N)
o

-200

400 B f-4f

-600

-800
120 125 130 135 140
T

Figure 5.11: Unsteady Lift Distribution on a Stationary Cylinder at Re = 200.

the stationary cylinder. These calculations require the simultaneous solution of the
Navier-Stokes equations and of the spring model equation (5.7) using the coupling al-
gorithm developed in the chapter 4. A tight coupling is used with multiple (maximum
10) coupling instances per time step. However, in this case, no surface interpolation
is required since the total lift, computed from within the flow solver, is passed directly
to the structural equation. The time step is selected on the basis of 100 equal time

steps per period of shedding of the vortices past the stationary cylinder.

The parameters for the cylinder-spring system are chosen as m = 0.00001 kg with
k ranging from 140N/m to 360N/m. The authors of [80] suggest “a high value

for the mass parameter p,, = so that the forces induced by the fluid become

m
pD?’
irrelevant with respect to the mechanical forces developed by the spring.”! A value of

In 3-D, the mass parameter is written as pm = where b is the span of the cylinder in

m
pbD?’
the z—direction. Here b = 1m.
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Figure 5.12: Mach Number and Pressure Contours at Various Instants for the

Flow Past a Fixed Cylinder at Re = 200.
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pra = 1000 was used in [80], while a low value of p,, = 10.94 is used in this example.
This light mass of the cylinder causes the cylinder to respond rapidly to the flow: a
periodic motion is observed after a few cycles of oscillations only. The response time

is much longer at a larger mass parameter (stiffer spring and heavier cylinder).

The lift over the cylinder is plotted in figures 5.13 and 5.14 for increasing values
of the natural frequency of the cylinder (varying k, holding m). It is interesting to
note that the coupled lift response is the superposition of several harmonics. Near
fol fu =1, or fu/fo = 0.92 (where f, is the frequency corresponding to the measured
St, = 0.1977 for the fixed cylinder), it can be seen that the modes coalesce into
nearly one mode of constant amplitude, confirming the observation of the lock-in

phenomenon, which is not as easily observed at such a low mass parameter.

The lock-in phenomenon near the resonant frequency can be observed in fig-
ure 5.15. At lock-in, the flow vortex frequency f, approaches the natural frequency
fn of oscillation of the cylinder and f,/f, =~ 1. This occurs at about f,/f, ~ 0.92,
at a value somewhat less than the resonant frequency for the fixed cylinder. Away
from the resonant frequency, the shedding of the vortices is less and less synchronized
with the motion of the cylinder. Finally, the amplitude of the motion is about 0.55D,
see figure 5.16, which is in accordance with the other published works cited [56, 80].

5.3.1 Effect of the Viscous Shear Stresses

As a first analysis, the viscous shear stresses are neglected in the calculation of the lift.
Only the pressure forces are passed to the structural solver, although a viscous solution
is actually computed. The amplitude and the lift are plotted as functions of time in
figure 5.17 with and without the contribution of the shear stresses. It is reassuring to

observe that the inclusion of the viscous terms dampens the amplitude of the motion,
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Figure 5.13: Unsteady Lift on the Cylinder at Various Structural Frequencies
(Below the Resonant Frequency of the Fixed Cylinder).
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Figure 5.14: Unsteady Lift on the Cylinder at Various Structural Frequencies

(Above the Resonant Frequency of the Fixed Cylinder).
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Figure 5.15: Ratio f,/f, of the Flow Vortex Frequency to the Cylinder Natural
Frequency vs the Cylinder Natural Frequency Normalized by the

Resonant Frequency.

as anticipated based on physical intuition for a viscous solution (despite the fact that
the magnitude of the lift is larger when the viscous effects are considered). At such a
low Reynolds number, the viscous effects have a noticeable impact on the response of
the structure. However, it may be justified that at higher Reynolds numbers, inviscid
solutions may be rightfully used to give a safe estimate of the aeroelastic stability

limits.

5.3.2 Effects of the Time Step on the Accuracy

The accuracy of the solution of the coupled problem is closely related to the size of
the time step Atf. In general, the smaller the time step is, the easier it is to achieve
simultaneous convergence. As an illustration, a reference time step is chosen in an ad

hoc fashion such as to use 100 equally spaced time steps per period of oscillation of the
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Figure 5.16: Amplitude of Motion of the Cylinder vs the Cylinder Natural Fre-

quency Normalized by the Resonant Frequency.

vortex-shedding frequency for the fixed cylinder. The goal is to select a reasonably
large time step that guarantees accuracy, but that is not too small to unnecessarily
undermine the benefits of the implicit flow solver and increase the total simulation

time.

At a Strouhal number of approximately St ~ 0.1977, the non-dimensional period
is T =1/St =~ 5.06, giving At,.; ~ 0.0506 for the flow solver. This reference time
step is used in all the calculations in which the cylinder oscillates. The unsteady
lift on the cylinder is shown in figure 5.18 for solutions computed on the oscillating
cylinder at the natural frequency f, = 0.9844f, for factors 1/4,1/2, 1, and 2 of
the reference time step. These time steps correspond to 400, 200, 100, and 50 time
steps per period of oscillation, respectively. A large discrepancy is observed for the
lift response at 2At,.;. Even the unit reference time step appears to be slightly too

large.
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Figure 5.17: Effect of the Viscous Shear Stresses on the Oscillating Cylinder.

A Fourier decomposition is performed to identify the periodic nature of the ob-
served coupled lift response. The result of the decomposition, shown in figure 5.19,
indicates that the lift response includes strong first and third harmonic components,
of the form

L(t) = a; cos (wt + ¢1) + az cos (3wt + ¢3) . (5.8)

The presence of the third harmonic in the lift response is also observed in [56], but
is not as strong at a larger value of the mass parameter. At 50 time steps per
period of the fundamental, at 2At,.;, about 17 time steps are used to resolve the
third harmonic. This is insufficient and explains the discrepancies in the solutions at
2At,es. Ideally, 30 time steps per period of oscillation of the harmonic corresponding
to the highest frequency observed (shortest period) are required to accurately capture

the response.
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Figure 5.18: Effect of Time Step on Response of Cylinder.
5.3.3 Impact of Tightness of Coupling

It was advocated in the introduction of the thesis that frequent exchanges of the
displacements and of the aerodynamic loads, as often as at every Newton iteration
of the fluid solver, provide the most cost-effective means for obtaining time-accurate
aeroelastic solutions. The degree of tightness of the fluid-structure coupling is now
studied by varying the frequency of the solution updates, with special attention to

the quality of the solution.

Other than the cost of the flow solver, the only other significant cost in the cou-
pling is due to the mesh movement. The cost of the stress solver (integrating one
second-order ordinary differential equation) is insignificant. For an implicit finite el-
ement stress solver, which can be quite expensive computationally, guidelines can be

established as to the minimal level of coupling necessary to achieve a desired accu-
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Figure 5.19: Fourier Decomposition of an Unsteady Lift Response at 2A¢,

racy without penalizing the overall performance of the code. Thresholds are used to

monitor the convergence of the aeroelastic system.

Comparisons are made in the following cases:

a) 10 coupling instances per At (every 2 Newton iterations),
b) 1 coupling instance per At (at 1°* Newton iteration),

c) 1 coupling instance per 2At (Atgprye = 208 pruia) s

d) 1 coupling instance per SAt (Atgyrue = 5AL f1uia)-

As a starting point, the configuration with f,/f, = 0.9954 is selected, with as
reference the solution computed with one structural update per two Newton iterations

of the flow solver, case (a), for up to 20 Newton iterations of the flow solver per time-

step.
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Figure 5.20: Amplitude of Motion for Oscillating Cylinder for Different Coupling

Levels.

The solutions for the amplitude of the motion are indistinguishable for cases (a)
and (b), as seen in figure 5.20. With the loose couplings, cases {c) and (d), the

amplitude of the motion exhibits a response of lower amplitude.

The curves for the lift coefficient are perhaps more puzzling, as plotted in fig-
ure 5.21. The lift coefficient is similar for cases (a) and (b), showing that one cou-
pling instance per fluid time step is sufficient for this problem. Subsequent coupling
instances within a fluid time step do not contribute, in this case, to an improvement
in the solution. (Indeed, the correction to the displacements at the second coupling
instance of a time step is 6 orders of magnitude smaller than the initial displacement
at that time step.) On the other hand, the lift coefficient curves show “instabilities”

in the case of a loose coupling. The spikes in the curve for cases (c) and (d) occur
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at every coupling instance with the stress solver and are likely an indication of the
accumulated error in the coupled solutions over these time steps. These nonphysical
spikes in the lift slightly retard (damp) the motion of the cylinder, but the large in-
ertia of the cylinder is sufficient to maintain a smooth non-oscillatory motion. Such

noise in the flow solution is not desired, even if the motion of the structure remains

smooth.
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Figure 5.21: Lift Coefficient for Oscillating Cylinder for Different Coupling Levels.

To understand the phenomenon for the instabilities in the lift, the solution for
case (c) is compared to a solution using a fluid time step 2At, denoted case (e).
In this case, there is one coupling instance per time step, as in case (b), but the
time step has been doubled. Physically, there is still one coupling instance per time
interval 2At, but the time steps are the same for both solvers. The lift and the
amplitude of the motion of the cylinder are plotted in figure 5.22. The motion is
damped, as expected, but the lift response is smooth. It is quite interesting to realize
that taking several small time steps to integrate the flow solution over one time step

of the structure is unstable, while taking equal (larger) time steps for the fluid and
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the structure is stable. This conclusion refutes the idea that sub-cycling for the flow

solver is more accurate.
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Figure 5.22: Lift Coefficient and Amplitude for Oscillating Cylinder for Coupling
Levels With Different Time Steps.

A word of caution warrants the above conclusion. A safer conclusion would state
that the stability of the coupling primarily depends on the nature of the discretiza-
tion schemes used by the two solvers. It makes sense that consistency of the time-
integration schemes must exist across the codes and that equal time steps must be
used to achieve time-accurate solutions of the coupled problem when using implicit
formulations. Although difficult to prove, it appears that lagging the position of the
structure, in a loose coupling, causes small overshoots in the lift response, which
are countered by small undershoots in the position of the structure, in order for the
fluid and the structure to achieve a forced equilibrium position. Eventually, these
oscillations lead to instabilities. It thus appears impossible, in this context, to use a
loose coupling algorithm using implicit time-integration schemes. A minimum of one

coupling to the stress solver per fluid time step is advocated for stability, with extra
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coupling instances as necessary for accuracy based on the size of the time step and

the regime of the flow.

The importance of the coupling level is difficult to assess for other aeroelastic
configurations. Even if a loose coupling has failed for the oscillating cylinder test
case, there is no reason to believe that a loose coupling can lead to unstable and
erroneous solutions for other configurations, nor that it could be stable. The negative
effects of a loose coupling have been observed for the cylinder, but is it because the
motion of the cylinder is large? For aeroelastic analyses of a flexible structure, the
amplitude of the motion is much smaller and perhaps a loose coupling is adequate.
However, since the costs of coupling are so negligible, there is no justification not
to provide a tight coupling to ensure simultaneous time-accurate convergence of the

fluid and structure systems.

5.4 Flutter Analysis of a Swept-Back Wing

A partial flutter analysis of a swept-back wing is performed to demonstrate the ca-
pabilities of the developed aeroelastic methodology in three dimensions. In this class
of truly aeroelastic problems, the structure is assumed to be flexible and its motion
is determined by a finite element stress solver. In the present study, the structure
is assumed to be made of a linear elastic material subject to the action of external

aerodynamic loads. As for the previous class of problems, two-way feedback is active.

The test case consists of the first AGARD standard aeroelastic configuration, for
which wind-tunnel experiments were conducted at the NASA Langley Research Cen-
ter [81]. The wing, designated as the Wing 445.6, has a NACAG65A004 cross section, a
45° sweep angle along the quarter-chord line, a root chord of 55.88 cm (22 in), a wing

semispan of 76.2 cm (30 in), a taper ratio of 0.6576 (TR = tip chord/root chord),
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and a panel aspect ratio of 1.6525 (ARpane = (panel span)?/(panel area)). The cross-

sectional and planform views of the wing are shown in figure 5.23.

NACAB5A004

Figure 5.23: Cross-Sectional and Planform Views of the AGARD Wing 445.6.

In this study, an Euler calculation is performed to determine the flutter point
at M = 0.499 on the flutter curve and the results are compared to the available
experimental data (weakened model 3). For the purpose of Euler calculations, the
rounded trailing edge of the NACA65A004 airfoil section has been tapered and the
wing tip, originally square in the wind-tunnel experiment, has been rounded. Numeri-
cal results for this configuration have been published by J.T. Batina’s group at NASA
Langley Research Center for Euler calculations [8] and subsequently for Navier-Stokes

calculations [11], with excellent agreement with the experiment.

There are a number of uncertainties about the physical configuration, the primary
one being the material properties of the wing. While its shape is known, its stiffness is

not well defined. In the wind-tunnel experiment, the wing was built out of laminated
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mahogany with holes drilled and filled with plastic foam to reduce the overall stiffness,
such that flutter could be observed within the operating range of the Langley wind-
tunnel. For mahogany, Young’s modulus in the direction parallel to the grain is
E =1.04x10 N/m® and the density is about p = 520kg/m® at 12 percent moisture
content [82].

The lack of precise data about the structure of the wing makes it difficult to re-
produce the same configuration. The report [83] summarizes a finite element analysis
using MSC/NASTRAN to compute the natural frequencies of the first four natural
modes of the wing, yielding the frequencies 9.60 Hz (first bending), 38.17 Hz (first tor-
sion), 48.35 Hz (second bending), and 91.54 Hz (second torsion), in close agreement
with the measured experimental natural frequencies by Yates [81]. In the reported fi-
nite element analysis (83], the wing is modeled using a 10x 10 grid made of thin plate
elements with varying thicknesses. The material properties of the wing are calibrated
to best reproduce the experimental data: p = 410.33kg/m®, E, = 3.4497x10° N/m?,
E, =1.03425x10°N/m®, G = 0.44818x10°N/m?, and v,, = 0.31. It is noted that
the y-—axis is aligned with the elastic axis (reported at 43.15° in [81] but entered as
41.35° in the NASTRAN model [83]). See figure 5.24. The wing is fixed at the root.

A finite element analysis is performed using the thin plate element following the
orthotropic NASTRAN model listed in the NASA report [83]. From the reported
mass of the wing in the wind tunnel experiment [81], My, = 1.8623kg, and the
volume of the discretized wing, Viving = 0.0044531 m?3, the density of the wing is
obtained as puying = 418.20kg/m® (which is somehow less than the density of ma-
hogany due to the holes filled with plastic foam, but in accordance with the value
of 410.33kg/m’ used in the NASTRAN model). In order to match the first nat-
ural frequency of the weakened wing model, the other structural parameters are

set to: B, = 3.18275x10° N/m?®, E, = 0.95421x10°N/m®, G = 0.41349x10° N/m?

?
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Figure 5.24: Elastic Axis for the AGARD Wing 445.6.

and v, = 0.31. The elastic axis is taken at 43.15°. The natural frequencies obtained

are tabulated in table 5.1. The agreement with the experimental data is excellent.

In anticipation of constructing the virtual grid in view of the fluid-structure cou-
pling, a volumetric stress grid is built from quadratic hexahedral 20-node bricks. The
2-D plate elements used in the stress analysis are extracted from the 3-D grid by pro-
jecting the corner nodes of the hexahedral elements onto the plane z = 0. The grid
for the structural analysis of the wing is shown in figure 5.25, using 19x21 quadri-
lateral plates, with the thickness being specified at the nodes (linear variation of the
thickness in the element). It can be observed that the nodes have been clustered near
the leading edge of the wing. This clustering has no effect on the computed natural

frequencies, but such a clustering is necessary to have an accurate definition of the



CHAPTER 5. NUMERICAL RESULTS 129

Natural Frequency f (Hz)
Mode # Shape Yates [81] | Batina [8] | Current Work
1 first bending 9.60 9.60 9.60
2 first torsion 38.10 38.17 38.96
3 second bending 50.70 48.35 48.08
4 second torsion 98.50 91.54 94.37

Table 5.1: Natural Modes of Vibration for the AGARD Wing 445.6.

curved geometry of the wing when constructing the virtual grid for the interpolation
of the aerodynamic loads and of the displacements. A stress grid which is too coarse
will lead to large errors in the interpolation and make it impossible to guarantee con-
servation of total work done. Moreover, the construction process of the virtual grid

may fail if the grids are too different in regions of high curvature.

The modes of vibration are shown in figure 5.26, where the various bending and
torsion modes are clearly identified by plotting the contour lines for the vertical

deflection of the wing. Again, these deflections agree qualitatively well with the

results published in [8].

An unstructured tetrahedral mesh is used for the fluid domain, whose extent is
shown in figure 5.27, and a grid quality study is performed using 3-D mesh adapta-
tion [52]. A flow solution is first obtained on a coarse initial mesh, then solution-based
anisotropic mesh adaptation is applied to concentrate the mesh points in zones of high
gradients and to stretch and align the cells with the flow directions. The mesh is also
coarsened in zones of uniform flow where fewer points are needed to resolve the flow.
A few solution-adaptation cycles are necessary to achieve convergence. The final

optimal grid maximizes the accuracy of the flow solution given a desired mesh size.
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Figure 5.25: Surface Stress Grid for the AGARD Wing 445.6: 19 Elements Along
the Span, 21 Elements Along the Chord.

The impact of the adaptation is assessed by plotting the C, distribution at the
span station z = 0.4m on the different grids, as shown in figure 5.28. A gradual im-
provement in the quality of the solution can be observed, although this improvement
is mild. This is understandable since the wing is quite thin and that there are no
salient flow features at My, = 0.499 for inviscid flow (no boundary layer, no vortices,

no shocks).

Before proceeding to the unsteady calculations, the effects of artificial viscosity
on the quality of the steady solution are evaluated (0n the final adapted grid). The
C, distribution is plotted in figure 5.29 at the station z = 0.40 along the wing for
decreasing values of the coeflicient of artificial viscosity using the ¢;h formulation
(see section 2.3). It is observed that the solution approaches a limiting curve as the

€1 — 0, which hopefully converges to the correct solution.
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Mode 1: 1% bending Mode 2: 1% torsion

Figure 5.26: Vertical Deflection Contour Lines of AGARD Wing 445.6 for First
Four Natural Modes of Vibration.
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Figure 5.27: Computational Domain for Flow Around the AGARD Wing 445.6.

Based on the above results, the second adapted mesh will be used in the flutter
calculations, since it yields results as accurate as those on the third adapted, but at
a lesser cost (138620 vs 209556 nodes). A value of ¢; = 0.015 in all equations is

retained for the stabilization terms in the unsteady calculations.

A few oscillations exist at the trailing edge of the wing due to the coarseness of
the mesh in that region. It is hoped that these small oscillations will not adversely

affect the outcome of the flutter calculations.

A justification is now provided in acknowledgement of the small kink in the C,
curve near the leading edge of the wing. (No data were found in the literature
regarding the steady C, profiles on the wing.) At first thought to be a solver or a
grid related problem, further tests hint that there is indeed a genuine kink in the C,
near the leading edge. Two-dimensional incompressible results past a NACA 65A008
airfoil are computed using FENSAP (at M., = 0.01), an explicit 2-D finite volume

code, and a source panel method and they are compared to the theoretical results
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Figure 5.28: Evolution of C, for AGARD Wing 445.6 on Adapted Grids at
z = 0.4m Along the Span.

by Abbott and von Doenhoff [84] in figure 5.30. The kink is not displayed in the
results by Abbott and von Doenhoff, but it is however captured by all three solvers,
suggesting that this observed behavior must be due to the specific geometry of the
NACA 65A airfoil and its curvature near the nose. The trend observed for the wing
with the thinner NACA 65A004 airfoil section is thus likely correct.

In view of aeroelastic calculations, the virtual grid is constructed for the represen-
tation of the wing surface during the interpolation process of the displacements and
of the aerodynamic loads. On the surface of the wing, the volumetric stress grid has
819 quadrangular faces while the fluid grid has 80298 triangular faces. With the use
of a volumetric stress grid using quadratic hexahedral 20-node bricks, the segmented

geometries described by the two grids are nearly identical and the relative error in
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Figure 5.29: Effect of Artificial Dissipation on C, for the AGARD Wing 445.6
at z = 0.4m Along the Span.

the areas of the two surfaces differs by less than 107°. The two grids on the surface
do not match and the grid for the structure is projected onto the grid for the fluid,
since the latter is finer. The virtual grid contains 113134 triangular faces and 56662
nodes. A view of the virtual grid near the wing tip at the leading edge is shown in

figure 5.31.

For the purpose of the demonstration, an aeroelastic calculation is performed
at My = 0.499 for the weakened 3 model configuration. The starting flow con-
ditions are determined based on the flutter data from the experimental results by
Yates [81]. Given Uy = 172.46m/s at M, = 0.499, the free stream temperature at
flutter is Too = 297.23 K (using v =14 and R = 287.05J/(kg - K)). From the given
air density at flutter po, = pur = 0.4277 kg/mg, the pressure at flutter is obtained
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Figure 5.30: Comparison of C, for the NACA 65A008 Airfoil for an Incompress-
ible Inviscid Fluid.

as Poo = 36485.07 Pa using the ideal gas law. (The variables My, T, and py, are
specified in the FENSAP input parameter file to define the flow.)

The choice of the time step is guided by the natural frequencies of the wing. A
reference time step of At = 0.001 s is selected, corresponding to 103 time steps for the
first bending mode and to 21 time steps for the third mode (second bending). Smaller
time steps were investigated, yielding similarly accurate results, but at an increased
cost. A tight coupling is performed with two coupling instances per time step, with
up to 3 Newton iterations of the flow solver per time step (or less if convergence is

achieved sooner).

Various responses of the wing are obtained by varying the pressure py, holding

T., thus altering the density of air ps (and the wing-to-air mass ratio). These
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Figure 5.31: Construction of the Virtual Grid for the AGARD Wing 445.6.

responses are shown in figure 5.32 for the first two modes of oscillations: 1% bending
(Mode 1) and 1% torsion (Mode 2). Near flutter, the modes coalesce and approach
the flutter frequency. The pressure at which flutter is observed is at about 114%
of the measured pressure at flutter. The convergence of the flow solver and of the
coupling driver is shown is figure 5.33 for the first 40 time steps of the aeroelastic
calculation at 110% of the flutter pressure. Other runs exhibit the same convergence

pattern.
Us

, where:
buwa /1

In the analysis of the results, the flutter speed index is defined as

U; = free stream flow speed at flutter = 172.46 m/s
b = root semi-chord = 0.2794 m

w, = natural (angular) frequency of the first torsion mode = 244.77 Hz
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Figure 5.32: Aeroelastic Response of the AGARD Wing 445.6 at Different Pres-
sures: Mode 1 (1% bending); Mode 2 (1 torsion).
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Figure 5.33: Convergence History for the AGARD Wing 445.6: (a) Residual of
the Flow Solver; (b) AW for the Coupling Driver.

g = mass ratio = PyingViping/ Pair Veone = 29.262
Pwing = density of wing = 418.20 kg/m?
pair = density of air = 0.4875, kg/m® (at p., = 41592.98 Pa)
Viging = volume of wing = 0.0044531 m?

Veone = volume of a truncated right cone enclosing wing

h
- % (oot + CrootCiip + Ciip) = 0.13054

Croot = wing chord at the root = 0.5588 m

¢ip = wing chord at the tip = 0.3688 m

h = wing semispan = 0.762 m.

The flutter speed index is thus calculated as 0.466. This value over-predicts the
experimental value for this configuration, though for inviscid subsonic flow the value

should have been under-predicted (in the subsonic range) [8]. See table 5.2. Turbulent
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subsonic solutions will yield slightly higher values for the flutter index than the ones
predicted for inviscid solutions [11]. Moreover, structural damping has been neglected,
where in fact the presence of mechanical damping in the system should have led to

an even higher predicted value of the flutter index.

Flutter Speed Index Ys

T
Mach # | Yates [81] | Batina [8] | This work
0.499 0.4459 0.439 0.466

0.678 0.4174 0.417 —
0.901 0.3700 0.352 —
0.954 0.3059 — —
0.957 0.3095 — —
0.960 0.3076 0.275 —

0.990 — 0.310 —
1.072 0.3201 0.466 —
1.141 0.4031 0.660 —

Table 5.2: Flutter Speed Index for AGARD Wing 445.6: Experimental Data;
Computed, Inviscid Flow; Current Work.

The main reason for the difference between the computed and the experimental
values is believed to be the somehow “softer” structural parameters used in the stress
analysis of the wing (B, = 3.18275 x 10° N/m?, vs E, = 3.4497 x 10° N/m?). The
way the wing is clamped possibly plays a role in the outcome of the simulation. In
this work, the wing is fully clamped at the root, whereas it is only partially clamped
in the middle of the chord in the wind-tunnel experiment. Other uncertainties exist

with regard to the accuracy of the flow solution. Although a grid analysis study was
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performed using mesh adaptation and the effect of artificial dissipation on C, was
examined for the steady-state solution, see figure 5.29, the unsteady solutions could
still be too dissipative. The impact of artificial dissipation on the amplitude of the
aeroelastic response is clearly demonstrated in figure 5.34: increasing the coefficient
of artificial viscosity severely dampens the amplitude of the coupled response and
displays the same behavior as added mechanical damping. If the variations in C,
appeared small as the artificial viscosity coefficient was varied, as seen in figure 5.29,
the impact on the aeroelastic response is more significant. As a consequence, increas-
ing the coefficient of artificial viscosity delays the onset of flutter and increases the
value of the dynamic pressure (or velocity) at which flutter can be observed, giving a

much over-estimated value of the flutter index.

The validity of the time step is verified by integrating the system at time steps of
At/2 = 0.0005s and 2At = 0.0025 for the case at 110% of the experimental flutter
pressure. It can be observed, see figure 5.35, that the reference time step is indeed
sufficiently small to yield accurate results. Reducing the time step does not have a
significant impact on the quality of the solution for this test case, but, at the same

time, the time step should not be increased.

The level of tightness of the fluid-structure coupling is investigated for the case at
110% of the experimental flutter pressure (which here yields a damped response). The
solution is let to evolve for a given time using different coupling strategies with one,
two, and three coupling instances per time step. A maximum of 6 Newton iterations
may be performed per time step. For example, at three coupling instances per time
step, each coupling is effected after 2 Newton iterations of the flow solver. Although all
three strategies are stable, as advocated, the quality of the solution deteriorates when
only one coupling instance per time step is performed, as illustrated in figure 5.36.

In fact, the predicted aeroelastic response is undamped, whereas a tighter coupling
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Figure 5.34: Effect of Artificial Dissipation on Aeroelastic Response of AGARD
Wing 445.6: Mode 1 (1% bending); Mode 2 (1% torsion).
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clearly demonstrates that it must be damped. It is thus important to closely monitor
the convergence history of AW for the coupled problem (recall figure 5.33). The
great sensitivity of the response of the wing due to incomplete convergence is amazing.

There is no marked difference between two and three coupling instances per time step.

Based on this observation, a loose coupling featuring one coupling instance every
few time steps is not advised. However, as seen in figure 5.37, the loss in accuracy
due to one coupling instance per time step can be alleviated if a much smaller time
step is taken. This suggests that accurate solutions can possibly be obtained with
one coupling instance per time step, if the time step is drastically reduced, as it is the
case for explicit methods. This approach is, of course, not cost-efficient for an implicit
flow solver since it negates the main advantage of being able to use a large time step,
in comparison to explicit methods. Overall, it is significantly more cost-effective (and
accurate) to perform two coupling instances per time step than to halve the time step

with one coupling instance per time step.

In summary, the mechanisms of the aeroelastic code have been verified for a three-
dimensional configuration. The flutter points at the other Mach numbers were not
computed due to the lengthy calculations required. However, from the numerical
point of view, these are the most challenging points to compute, since the presence

of shock waves introduces stronger nonlinearities in the physical system.
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Chapter 6

Conclusions

The accomplishments and the contributions achieved in this thesis are summarized.
Recommendations for future research paths are presented, based on the various ex-

periences learned from this work.

6.1 Developments and Contributions

A 3-D, parallel, CFD Euler/Navier-Stokes finite element implicit code has been ex-
tended using the Arbitrary Lagrangian-Eulerian (ALE) formulation to compute flow
fields over moving and deforming structures, with focus on aeroelastic calculations in

the time domain.

A two-zone node movement scheme based on Laplacian smoothing, embedded in
the CFD code, offers smooth node movement and enhanced robustness at large am-
plitudes of motion for geometries of arbitrary shape, without the need for global mesh
regeneration. The smoothing, applied to the displacements, is such that its action

does not destroy concentrations of grid points nor the stretching of cells resulting from
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anisotropic mesh adaptation. The current implicit finite element discretization of the
flow solver allows for the straightforward application of high-order time-integration
schemes, without restrictions on the way the mesh is moved (no GCL-like conditions).
Indeed, numerical tests confirm, as it should be, that the solution is independent of
the way the mesh is moved in the interior of the domain, demonstrating the correct-
ness of the numerical treatment of the ALE derivative in the governing equations.
More specifically, the node movement is truly arbitrary and the ALE derivative in

the flow equations adjusts the solution to whatever prescribed motion of the mesh.

Interpolation of the structural displacements and strictly conservative transfer
of the integrated aerodynamic loads across the CFD and CSD grids are achieved
using the concept of the virtual grid. The virtual grid is constructed automatically
from the CFD and CSD surface grids and is applicable to arbitrary complex three-
dimensional geometries, including non-matching grids at the fluid-structure interface.
Extensive searches are eliminated during the interpolation of the displacements and
the integration of the loads can account for both the pressures and the viscous shear
stresses for a complete representation of the aerodynamic forces. At each time step,
the work done by the fluid on the structure is conserved, both at the face-by-face level
and globally. The usage of this interpolation procedure is particularly advantageous
in conjunction with mesh adaptation for which great disparities in the distribution of

grid points can result at the fluid-structure interface.

The fluid-structure coupling algorithm has been designed and implemented with
the philosophy that the flow and the stress solvers exist as separate entities. This
modular approach favors the substitution of the solvers, viewed as independent black
boxes, by improved models when they become available. The use of implicit solvers
allows to seamlessly update the position of the structure and the ensuing response of

the fluid several instances per time step such that, at convergence, the structure and
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the fluid are in perfect equilibrium. Of utmost importance in simplifying the devel-
opment effort, equal time steps can be used in the implementation. In this context,
no staggered time-integration scheme is necessary for numerical stability. Implemen-
tation details on the use of stream sockets are given to eliminate the overhead restart
costs incurred at every coupling instance between the two solvers while providing the

tightest level of fluid-structure coupling without any loss in efficiency.

The mechanisms of the aeroelastic code have been verified and the developed
technology has been applied to 2-D and 3-D aeroelastic configurations for validation

purposes.

The level of tightness of the coupling was investigated from a tight coupling to
a loose coupling at every few time steps, with a degradation in the quality and the
stability of the solution when using a loose coupling. It was concluded that a minimum
of one coupling instance per time step was necessary for the stability of the implicit
time-integration schemes used in this work, with extra coupling instances required
for accuracy depending on the size of the time step and the nature of the aeroelastic

configuration.

While the current work provides the framework to perform aeroelastic analyses in
the time domain, the lesson to learn from the current results is that the aeroelastic
response is sensitive to the modeling choices and to the accuracy of the predicted
solutions. Based on the analysis of the results obtained for the AGARD 445.6 wing,
it is noted that the artificial viscosity in the flow solver plays the role of an added
natural viscosity in the discretized equations (see section 2.3), giving weight to the
argument that inviscid solutions predict a lower flutter index than viscous solutions
do. Inviscid solutions should thus provide a safe envelope for the flutter boundary,
which is not the case for this wing configuration using the current numerical models.

It is believed that with accurate modeling of the aerodynamic forces, and a revision
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of the structural model, more representative results would be obtained. Nonetheless,
regardless of the solvers used, the aerodynamicist must be critically aware of the
pitfalls and limitations of the individual solvers in order to assert the quality of the
overall solutions. In particular, an unnecessary large value of the artificial viscosity
coefficient, needed for the stabilization of the FEM flow solver FENSAP, was shown

to damp the structure and to lead to over-predicted values of the flutter boundary.

In retrospect, the aim of this research was to develop a tool to guide the engineer
in the analysis process of a design, to use in an industrial context with applications to
turbomachinery. The current technology (ALE formulation of the equations and node
movement scheme for smoothing the displacements) has been transferred to Pratt &
Whitney Canada’s in-house flow solver tailored for rotary components. Aeroelas-
tic calculations of fan blades have been performed at P&WC using the developed
methodologies [86, 87], adding an industrial perspective to the work of this thesis.

These results, involving proprietary geometries, are not presented in the thesis.

The foundations have thus been established to solve three-dimensional complex
aeroelastic configurations in the time domain using a Navier-Stokes turbulent solver
(upon availability). It may not be surprising, given the costs of these calculations, that
cheaper and simpler models (e.g. potential flow) are still preferred today, sometimes
since no better technology is available, sometimes by limitations in the computing
resources available. Even if the more sophisticated models advocated in this thesis
appear perhaps to lie beyond the turnaround analysis time constraint acceptable to
the industry, they can still be used for the calibration of the simplistic models, or at

least to better understand the limitations of such simpler models.
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6.2 Future Work

Several aspects of the implementation of the fluid-structure capabilities developed in
this work could be improved and extended, based on the experiences gained during
the validation of the benchmarks. Among the observed difficulties, the main issues
pertain to the robustness, accuracy, and cost of the flow solver, as well as to the

robustness of the node movement scheme.

It would be interesting to measure, as mentioned in chapter 2, the impact of
the newly developed grid stiffness damping function applied to the entire domain,
as opposed to using the two-zone approach, whose implementation is quite tedious.
The return to a one-zone mesh movement approach would facilitate the developments
for the support of hybrid meshes (tetrahedral elements with layers of prisms on the
wall), preferable for viscous calculations with the implementation of the turbulence
model using specialized wall-functions. The extension of the flow solver to model the
effects of turbulence, which have been overlooked in this work, constitutes the most
substantial development to pursue. However, no difficulties are foreseen from the
fluid-structure coupling point of view with regard to the conservative transfer of the
aerodynamic loads for viscous flows. In fact, no changes to the coupling procedure

and to the stress solver should be required.

The flow solver must also be accelerated in order to reduce the overall costs of
aeroelastic calculations. The development of a time-linearized flow solver, based on
the Euler or Navier-Stokes equations, would greatly reduce the prohibitive computa-
tional costs of direct aeroelastic calculations in the time domain, while likely retain

the essential physics of the unsteady phenomena present in the flow.

In the validation test cases presented in chapter 5, it was observed that the cou-

pling with the stress solver did not adversely affect the convergence rate of the Newton
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process in the flow solver. One can, however, question if the convergence rate of the
coupled problem could be accelerated by considering the gradients in the solutions,
using a nonlinear GMRES loop, for example [85]. In view of the inherent nonlinear
nature of the flow equations, it appears that regardless of any acceleration scheme
for the coupled fluid-structure problem, the nonlinear fluid problem still needs to be
iterated. The.update of the displacements at every Newton iteration does not seem
to stiffen the nonlinear fluid problem and additional iterations are not required to
converge the fluid problem. It is thus unlikely that any acceleration scheme would
have much of an effect on the coupled problem. However, the idea might be worth

exploring when the solid-to-air mass ratio is small (vascular flows, for example).

As stated préviously, the long term goal is to compute the aeroelastic response of
blades in turbomachines. Applications to turbomachinery bring new challenges from
both the modeling point of view and the industrial perspective. The presence of shock
waves and of viscous flow phenomena, in particular, passage viscous blockage, vortical
flows, and separated and stalled flows, characterize the inherently three-dimensional
transonic and turbulent flow regime present in the first stage of an axial compressor.
It is also common to make use of cyclic symmetry when studying isolated blades
in order to reduce the size of the problem. However, rotor-stator interactions and
multistage effects are at the source of the pressure disturbances which initiate flow-
induced vibrations of the blades and the assumption of cyclic symmetry breaks down
when stators and rotors have different numbers of blades per row. The requisite to
model all blades over several stages further amplifies the already intensive computing
needs, but efficient numerical methods have been recently developed to reduce these
computational requirements [29]. Finally, beyond the complexity of the aeroelastic
phenomena occurring in the axial compressor or the fan, the impact of the thermal

effects on the blades can be analyzed in the turbine, where hot gases exhausting from
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the combustion chamber require the cooling of the blades. Many of these problems
have yet to be solved given their high computational costs and the modeling difficulties

associated with developing the state-of-the-art numerical codes.

Throughout the course of this work, the use of the moving-grid technology has
been envisaged for ice accretion problems as a tool to locally modify the grid without
remeshing [88]. As the ice front grows in time, the ice shape being viewed as a
deformable surface, the mesh points on the surface of the structure are pushed to
conform to the growing ice shape, as shown in figure 6.1 for a representative ice shape
on an airfoil. At least, over several time steps of ice accretion, the mesh movement
scheme alone suffices to move the grid to follow the growth of the ice, thus avoiding
the inconveniences of remeshing the domain. For more significant ice accretion, global
remeshing of the domain and mesh adaptation may be unavoidable. As for studying
the aeroelastic effects of ice-contaminated wings, such configurations are not likely to
attract much interest in the field since ice accretion conditions occur at low altitude,
at speeds well below the flutter limits. Any loss of control of an aircraft due to the

presence of ice is not due to flutter.

Based on the results obtained for the pitching airfoil and the AGARD 445.6 wing,
it was previously stated that the outcome of such aeroelastic calculations strongly
depends on the modeling decisions made and by the ability of the numerical mod-
els to predict accurate solutions. Although not a remedy by itself, it is believed that
unsteady mesh adaptation can be a valuable tool in preventing mesh-related uncertain-
ties and in certifying the accuracy of aeroelastic calculations. Its purpose is two-fold:
grid enhancement, to prevent the break-down of the flow solver due to excessive mesh
distortion following large motions, and solution enhancement at a minimal number

of grid points for maximum efficiency and accuracy.

First, mesh adaptation can prevent any grid degeneracies that may arise from the
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T

Figure 6.1: Typical Ice Growth on a NACA0012 Airfoil.

movement of the structure, when such movement is large relative to the local grid
size. Although the mesh movement methodology developed has proven adequate for
small displacements, it does lack the robustness to treat motions of large amplitudes.
In this case, mesh adaptation using node movement and edge refinement, coarsening,
and swapping [52] can prevent grid degeneracies before they occur by avoiding high
aspect ratio elements that may become inverted due to a subsequent large motion of

the structure.

Second, mesh adaptation enhances the quality of the solution by clustering nodes
in zones of high gradients such as shock waves and boundary layers. Recalling that
the primary difficulty in aeroelastic calculations is to determine the transonic dip of
the flutter boundary curve, it is thus essential to capture the shock waves accurately
since the position and the strength of the shocks are critical in computing the stability
limits of the structure. The benefits of static mesh adaptation were observed for the
AGARD aeroelastic CT 6 (see section 5.2), but could not be fully exploited for the

oscillating airfoil with the moving shock. The use of unsteady mesh adaptation is
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inevitable when trying to follow unsteady shock waves. The development of unsteady
mesh adaptation will thus improve the quality of the calculations for a given number
of grid points and make direct aeroelastic calculations of complex configurations in

the time domain more robust, accurate, and reliable.



Appendix A

Flow Solver Coupling Files

This first appendix, adapted from the FENSAP guide [49] written by the author,
describes the internal format of the files related to the flow solver that are necessary
for the coupling with the stress solver. While the description of the files is utterly
technical, it illustrates well the attention to details required to perform the external

coupling.

As inputs, the flow solver requires the displacements on the surface of the deform-
ing structure. The nodes interior to the structure are filtered out by the coupling
driver to reduce the amount of data transferred to the flow solver. The internal

format of the file containing the displacements is described in section A.1.

As outputs, the flow solver saves the aerodynamic loads over each face of the grid
on the surface of the structure. For convenience, the loads are calculated inside the
flow solver, since the calculation of the shear stresses 7;; requires the gradients of
the velocity field to be evaluated from the interior of the domain. The evaluation
of the shear stresses in a post-processing step, outside from the flow solver, would

require that the entire flow solution be manipulated, a step which is much too costly
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in input /output operations. The format of the output file containing the aerodynamic

loads is described in section A.2.

Also as an output, the flow solver saves the new grid coordinates such that the
calculations may be restarted at a later time. The format of this file is given in

section A.3.

These three coupling files may be written and read in binary or ASCII mode by
the flow solver FENSAP. Data transfers by files are much faster in binary format

(unformatted).

There are numerous other input and output files associated with the flow solver,
for example the grid file, the solution file, and the input parameter file. A thorough
description of these files is not essential to the understanding of the fluid-structure
coupling mechanisms, hence the reader is referred to the FENSAP guide [49] for the
details.

A.1 The Time Control File timebc.dat

In this file, flow variables can be imposed at Dirichlet nodes and nodal displacements
due to the movement of the grid can be imposed at nodes on walls. The flow variables
can be specified as initial conditions (at ¢ = 0) and/or as transient conditions at given
time levels t1, t2,.... Nodal displacements may only be specified in time. For static
initial displacements, see the section A.3 on the Nodal Displacement File disp.dat.

The format of the timebc.dat file is given below.

ntsteps  kcoupl  ktmode
t1 numbcl nalebcl
nodel varl valil
node2  var2 val2
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t2 numbc2 nalebc2

nodel varil vall
node?2 var?2 val2
The variable ntsteps gives the number of time levels t1, t2,... listed in the

file. If the file timebc.dat does not exist, ntsteps is set to zero in the code, as-
suming that no transient Dirichlet boundary conditions will be read. If t1=0.0, the
conditions are understood to be imposed as initial conditions at the start of the pro-
gram. This is useful, say, to impose a parabolic velocity profile at the inlet of a duct.
This file is read after the solution restart file and hence overrides it. The variable
kcoupl indicates the first iteration of a fluid-structure coupling step (kcoupl=0) or a
subsequent iteration of a fluid-structure coupling step (kcoupl>1). This allows for a
tight fluid-structure coupling at the level of the fluid Newton iterations. Thus, this
variable indicates the start or the continuation of a fluid Newton iteration. A different
initialization is required for both actions. In the case kcoupl>1, val is the incremen-
tal change in the nodal displacement, being the correction to the displacement at the
previous sub-iteration. For kcoupl=0, val is the change in the nodal displacement

from one time step to the next.

The variable ktmode selects the integration mode. When ktmode=0, the integra-
tion in time is from TO to Tend, as inputed in the parameter file fensap.in. When
ktmode=1, the integration in time is advanced to the next time level specified in the
timebc.dat file and then the program is halted. This allows to obtain the response of

the structure during a fluid-structure coupling and subsequently to restart FENSAP.
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The time-dependent boundary conditions on the flow variables are imposed at
each time level (numbc, if any), followed by the nodal displacements at that time level
(nalebc, if any). It is important that the conditions on the flow variables come before
the nodal displacements as these conditions are treated differently in the code. The

table below gives the admissible values of var for the various fields.

var | Flow variable [units] | Nodal displacement [units]

pressure [Pa] z or r displacement [m]
u-velocity [1] y or 6 displacement [m (rad)]
v-velocity [1] z displacement [m)]

w-velocity [1]

static temperature [K]

heat flux [W/m?|

ol fwlol~

All variables are imposed at a node, except for the heat flux which is specified over
a face. So, the global face number must be entered instead of the node number (as

assigned in the grid file).

Although the time-step is governed by dtmax entered in the input parameter file,
the time step will be locally adjusted such that the time levels t1, t2,... are hit
exactly. In the case where several time steps are required between each time level
specified in the file timebc.dat, a loose coupling, linear interpolation is used to find
the values of the time-dependent Dirichlet nodes at the intermediate steps. For the
displacements, the order of the interpolant is the same as that of the time-integration

scheme.
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A.2 The Surface Loads File surface.dat

This file is used for fluid-structure coupling (aeroelasticity and conjugate heat trans-
fer) and it lists the faces on the walls of solid bodies, followed by the aerodynamic
forces and moments and the heat fluxes acting on these faces. The format of this file
is:

nfacebl nfaceb2 nfaceb3

ndperlb nl n2 n3  [n4]

ndperlb ni n2 n3  [n4]
ndperlb ni n2 n3  [n4]

al fx1  fyl £zl mxl myl mzl
a2 fx2  fy2 fz2 mx2 my2 mz2
a3 fx3 fy3 fz3 mx3 my3 mz3

fci hfl ghfl xci ycl zcl bl
fc2 hf2 ghf2 xc2 yc2 zc2 b2
fc3 hf3 ghf3 xc3 yc3 zc3 b3

thf20

thf21

thf29

ScaleT charlen
FX FY FZ
MX MY MZ

On the first line, nfaceb is the number of wall faces printed in each of the three

sections described below: connectivity, forces, and heat fluxes. A section may be
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omitted from being printed if not needed by setting nfaceb=0. In the connectivity
section (nfacebl), each face is defined by its ndperlb nodes ni, n2, n3,.... Inthe
forces section (nfaceb?2), for each face are listed its area a and the components fx,
fy, fz and mx, my, mz of the forces and moments acting on the face. Finally, in the
heat fluxes section (nfaceb3), for each face fcl, fc2,... (global face numbering)
are listed the heat fluxes hfi, hf2,... (calculated from the definition) and ghfi,
ghf2, ... (calculated from Gresho’s formulation), followed by the centroids of each
face (xcl,ycl,zcl), (xc2,yc2,zc2),... of typesbl, b2,.... The next ten lines
give the sum of the heat fluxes (standard definition) over each class of wall types
(walls of type 2 are lumped together with walls of type 20). ScaleT is the ratio
lo/Us used for non-dimensionalization of the time t; charlen is the characteristic
length of the grid. Finally, FX, FY, FZ and MX, MY, MZ are the total forces and

moments acting on the body.

All data in this file are dimensional (in SI units).

A.3 Nodal Displacement File disp.dat

This file contains the new positions of the moving nodes in the ALE formulation. The

format of the file is:

nnode ntlevl

tl

t2

t3

t4

ni x1 yi zl
n2 x2 y2 z2
n3 x3 y3 z3
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x1 yl z1
x2 y2 z2
x3 y3 z3

where nnode is the number of moving nodes n1, n2, n3,... at the last four times
of integration t1 > t2 > t3 > t4, followed by the new coordinates (x,y,z). For the
other ntlevl-1 time levels, only the grid coordinates are saved (without the global
node numbers). The new coordinates are saved only if the grid has been moved.
Saving the grid coordinates over four time levels allows the use of high-order schemes

dx )
to compute 7 following a restart.

The file disp.dat is internal to FENSAP and thus the coordinates are saved in
non-dimensional form. When used in a restart, the disp.dat file is read by FENSAP
and the new position of the grid is thus recovered. This approach allows to keep
the original grid and, further, storing only the moved nodes is more economical than

saving the entire new grids at all the necessary time levels.



Appendix B

Stress Solver Coupling Files

The following appendix describes the internal format of the files belonging to the
stress solver for the purpose of the coupling with the flow solver. These formats are

specific to the solvers used in this work.

On input, the stress solver requires the aerodynamic loads on the surface of the de-
forming structure. These loads are read as consistent node-based loads pre-integrated
by the coupling driver according to equations (3.7) and (4.10). The format of this file

is described in section B.1.

On output, the stress solver writes the nodal displacements over the whole grid.
The nodes inside the structure are filtered out by the coupling driver and only the
displacements on the boundary of the structure are later passed to the flow solver
to minimize the amount of data transferred. The format of this file is described in

section B.2.

As for the flow solver, the stress solver can read and write its coupling files in

binary or ASCII mode. The binary mode is selected for efficiency.
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B.1 The External Loads File exloads.dat

In this file, the external time-dependent aerodynamic loads on the surface of the
structure are stored in the format:

ntsteps  kcoupl ktmode

t1 nnodeb

nodel  txl tyl tzi
node2  tx2 ty2 tz2

fx‘ fy 'fz

mx my mz
The variable ntsteps gives the number of time levels t1, t2, ... listed in
the file. If the file exloads.dat does not exist, ntsteps is set to zero in the code,
concluding that no external loads act on the structure. The variables kcoupl and
ktmode carry the same meaning as the ones defined for the flow solver in the file
timebc.dat (refer to section A.1). During a tight fluid-structure coupling (when the
time steps for the flow and the stress solvers are identical), ktmode=1 and there is

usually only one time level specified in the file. The current version of the stress code

is in fact limited to this case (ntsteps=1).

The nodal stress values tx, ty, and tz at a given time are listed for the nnodeb
boundary nodes on the surface of the structure, each node being identified by its
global node number in the structure grid. The global loads fx, fy, and fz and the

moments mx, my, and mz are listed after the nodal stresses.

All data in this file are dimensional (in SI units).
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B.2 The Displacements File displace.dat

This file contains the structural displacements for the whole structure at the latest
time of integration. The format of the file is:

nnode

ul vl wl

u2 v2 w2
u3 v3 w3

where nnode is the number of nodes in the CSD grid, followed by the nodal dis-
placements u, v, w,.... This file is read by the coupling driver which extracts the
displacements on the surface of the structure before feeding them to the flow solver

(see section A.3).



Appendix C

Fluid-Structure Coupling Files

The input files for the fluid-structure coupling driver are described in this appendix.
' The parameter file, which controls the execution of the coupling driver, is described
in section C.1. The format of the grid mapping files and of the virtual grid are listed
in sections C.2 and C.3, respectively. Finally, a few words are stated in section C.4

about the restart facilities provided by the coupling driver.

There are supplementary output files which are used to monitor the execution of

the program. These files are self-explanatory and are not described here.

C.1 The Parameter File

The format of the input parameter file, named fscouple, is:

timestart dt timefinal tol ncoupl mode
nprint
nodel
node2
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The integration is performed from time timestart to time timefinal using a con-
stant time step dt. All times are in seconds. The integration proceeds to the next
time step if the change in the work done on the structure is less than tol, up to a
maximum of ncoupl coupling instances per time step. The variable mode indicates
if the flow solver is invoked before the stress solver (mode=1) or vice-versa (mode=2).
Finally, the coordinates of a number nprint of nodes nodel, node2,... of the virtual

grid can be printed at each time.

C.2 The Mapping File

There is one mapping file for the fluid grid and one for the structure grid. Each defines
the nodes and the faces that are on the surface of the structure and states the corre-
spondence between these surface nodes to the master grid covering the whole domain
(fluid or structure). By defaults, these files are named fluid.map and struc.map.

Both files share the same format, given below.

nfaceb nnodeb ndperlb
nodel x1 y1 =zi
node2 x2 y2 @ z2

ni_1 n2_1 n3_1 [n4_1]

ni_ 2 n2.2 n3_2 [n4 2]
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The variable nfaceb gives the number of faces on the structure (fluid or structure).
Each face is composed of ndperlb nodes (3 or 4) and there are a total of nnodeb
nodes on the surface. The coordinates are listed first, followed by the connectivity
of the faces, using a local numbering system. The fields nodel, node2,... give the
global node number of the nodes on the surface in terms of the original grid (fluid or

structure).

C.3 The Virtual Grid

The virtual grid defines the surface of the structure and provides correspondence
tables to the fluid and the structure grids via the intermediary of the mapping files.
The format of the virtual grid file, named vgrid.map, is as follows.

nfaceb nnodeb ndperlb

index_sl1 index_f1 x1 y1 z1
index_s2 index_f2 x2 y2 z2

nli_1 n2_1 n3_1 face_si face_f1 scale_sl1 scale_f1
nl_ 2 n2_2 n3_2 face_s2 face_f2 scale_s2 scale_f2

The variables nfaceb, nnodeb, and ndperlb have the same meaning as for the map-
ping file. In this case, the virtual grid is always made of triangular faces, hence
ndperlb=3. The fields index_s and index.f indicate the relation of a node of the
virtual grid to the structure and the fluid grids (relative to the mapping files). For
example, index_f1 indicates to which node in the fluid mapping file that the first

node of the virtual grid corresponds to, if the index is positive, or to which face in the
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fluid mapping file it lies in, if the index is negative. The variable index_s1 carries an

analogous meaning,.

The pointers face_s and face_f indicate in which face of the structure and the
fluid grids, respectively, a virtual face is contained. For example, the first face of the
virtual grid, with nodes n1.1, n2_1, and n3_1, is contained within face face_si of
the structure grid and within face face f1 of the fluid grid. The fields scale_s and
scale_f are scaling factors for the areas of the faces. In the construction process of
the virtual grid, each fluid (structure) face is made up of a number of whole triangular
faces. For the structure, scale_s1 is the ratio of the area of the virtual faces making
up the structure face face.si to the area of the original structure face face_s1. This
ratio is close to unity and any differences are due to the change in the area of a
structure face when projected onto a fluid face. By construction, the virtual grid is
projected onto the fluid surface, so scale_f=1 for all virtual faces. This scaling factor
is used in the transfer of the aerodynamic loads to allow to conserve the work done

on a face-by-face basis when the discretized geometries are not identical.

C.4 The Restart Files

The fluid-structure driver creates two restart files: one for the flow solver and one
for the stress solver. By default, these files are named fluid.sav and struc.sav.
They contain the position of the virtual grid on the fluid and the structure surfaces
at the time of the interruption. To use in a restart, the extension .sav is changed to
.rst. The format of these internal files is not described since no user intervention is

required.
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