Enhancing Traditional Behavioral Testing through Program Slicing

Philippe Charland

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

September 2004

© Philippe Charland, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94736-X
Our file Notre référence
ISBN: 0-612-94736-X

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Enhancing Traditional Behavioral Testing through Program Slicing

Philippe Charland

Although there has been much research on the application of program slicing to the
problem of software testing, most of it has focussed on regression testing. The objective
of the published techniques is to reduce its cost by identifying the set of existing test
cases which are guaranteed to exercise the modified program components. In this
research, program slicing is applied to behavioral testing. Three testing approaches are
presented to ensure that modifications made to a program have not adversely affected its
correct behavior. The proposed testing techniques, as well as the underlying dynamic
program slicing algorithm, are implemented as part of the CONCEPT research project. A
case study using the JUnit testing framework is also presented to demonstrate their

applicability in detecting faults, which could escape from traditional testing techniques.

111

ACKNOWLEDGEMENTS

I would first like to thank my supervisor, Dr. Juergen Rilling, for his support, guidance,
and patience over the past two years. He was a constant source of helpful ideas,

constructive comments, and judicious advice.

I would also like to thank all the members of the CONCEPT research group, with whom I
had useful discussions while working on this research. I am particularly indebted to my

colleague Yonggang Zhang, for his work on the parser.

Finally, I would like to thank my parents and family for their support and

encouragements. In particular, I would like to express my gratitude to Michel Charland,

for having patiently proofread this thesis.

iv

TABLE OF CONTENTS

LiST OF FIGURES
LIST OF TABLES
1. INTRODUCTION

2. BACKGROUND
2.1 Software Testing
2.1.1 Functional Testing
2.1.2 Structural Testing
2.2 Regression Testing
2.3 Object-Oriented Software Testing
2.3.1 Motivation
2.3.2 Object State Testing
2.4 Program Slicing
2.4.1 Static Program Slicing
2.4.2 Program Dependence Graph
2.4.3 Dynamic Program Slicing
2.4.4 Applications of Program Slicing
2.5 Program Slicing and Software Testing
2.5.1 Data Flow Testing
2.5.2 Regression Testing
2.5.3 Partition Testing
2.5.4 Mutation Testing
2.5.5 Robustness Testing

3. ENHANCING TRADITIONAL BEHAVIORAL TESTING
3.1 Regression Testing
3.2 Execution Based Testing
3.3 Coarse-Grained Slicing Based Testing
3.4 Fine-Grained Slicing Based Testing

4, IMPLEMENTATION

4.1 CONCEPT

4.2 CONCEPT Architecture

4.3 Parsing

4.4 Database API

4.5 Extraction of Run Time Information
4.5.1 On-Line Debugging Using the Java Debug Interface
4.5.2 Automatically Instrumenting the Source Code
4.5.3 Modifications Made to instr

vii

iX

4.6 Program Slicing Algorithm
4.6.1 Removable Block
4.6.2 Dynamic Program Slicing Algorithm with Removable Blocks
4.6.3 Description of the Algorithm
4.6.4 Modifications Made to the Algorithm
4.6.5 Implementation of the Algorithm

4.7 Testing
4.7.1 Execution Based Testing
4.7.2 Coarse-Grained Slicing Based Testing
4.7.3 Fine-Grained Slicing Based Testing

* 4.8 Limitations

4.8.1 Execution Based Testing
4.8.2 Inner Classes
4.8.3 Instance Variables
4.8.4 Short-Circuit Logical Operators
4.8.5 Non-Executable Slices
4.8.6 Memory Requirements

4.9 Applicability

5. CASE STUDY
5.1 JUnit
5.2 Description of the Fault
5.3 Execution Based Testing
5.4 Coarse-Grained Slicing Based Testing
5.5 Fine-Grained Slicing Based Testing
5.6 Measurement of the Associated Overhead

6. CONCLUSIONS AND FUTURE WORK

7. REFERENCES

vi

51
51
52
53
60
63
65
65
68
70
73
73
74
75
76
77
78
78

80
80
81
86
86
87
88

89

91

LIST OF FIGURES

2.1.1.1
2.1.1.2
2.1.13
2.1.14
2.1.15
2.1.1.6
2321
2322
2421
2422
2423
2431
3.1.1

3.1.2

3.13

321

331

34.1

342

4.2.1

43.1

432

433

4521
4522
4523
4.6.1.1
4.6.3.1
4632
4633
4.6.4.1
4642
4643
4.644
4645
4.6.5.1
4.7.1.1
4.7.2.1
4722
4731
4732
4733

Black-Box Testing

Equivalence Partitioning

Equivalence Classes

Sample Program

Flow Graph of the Sample Program

Classes of Loops

State Machine of a Stack

Integer Set Class

Sample Program

PDG of the Sample Program

Static Slice for Variable sum at Statement 14

Dynamic Slice for Variable sum at Statement 14

CoinBox Class - Baseline Version

CoinBox Class - Modified Version

Test Driver for the CoinBox Class

Execution Trace of the CoinBox’s Baseline and Modified Versions
Slice of the CoinBox's Baseline and Modified Versions
Contributing Actions and Influencing Variables for the Baseline Version
Contributing Actions and Influencing Variables for the Modified Version
CONCEPT Architecture

Parser Structure

AST Example

Partial Class Diagram of the Database API

Sample Program

Excerpt of the Instrumented Sample Program

Output Generated by the Instrumented Sample Program
Removable Blocks of a Sample Program

Execution Trace and Block Traces of the Sample Program
Dynamic Program Slicing Algorithm with Removable Blocks
Dynamic Slice for Variable sum at Statement 28
Procedure Added to the Algorithm

Sample Program with a Method Call

Execution Trace of the Sample Program of Figure 4.6.4.2
Sample Program with a Constructor Call

Execution Trace of the Sample Program of Figure 4.6.4.4
Class Diagram of the Dynamic Program Slicing Algorithm
Comparison of Execution Traces in Beyond Compare
Comparison of Folders in Beyond Compare

Comparison of Slices in Beyond Compare

Algorithm to Compute Influencing Variables

Comparison of Influencing Variables in Beyond Compare
Comparison of Contributing Actions in Beyond Compare

vii

4.83.1
4.8.4.1
4.85.1
4852
521
5.2.2
523
524
525
53.1
5.4.1
5.5.1
552

Execution Trace of a Sample Program with the Contributing Actions
Example of Short-Circuit Logical AND Operator

Interface Definition and Implementation

Abstract Method Definition and Implementation

ResultPrinter Class

TestRunner Class

Test Results Generated by JUnit

TestRunner Class - Baseline Version

TestRunner Class - Modified Version

Execution Trace of JUnit’s Baseline and Modified Versions

Slice of JUnit's Baseline and Modified Versions

Contributing Actions and Influencing Variables for the Baseline Version
Contributing Actions and Influencing Variables for the Modified Version

Viii

75
760
77
77
81
82
&3
&3
84
86
87
87
88

LIST OF TABLES

4.5.1.1 Overhead of the On-Line Debugging Approach Using the JDI
4.5.2.1 Overhead of Instrumenting the Source Code Using instr
5.6.1 Overhead of the Testing Techniques

ix

48
50
88

1. INTRODUCTION

Software development consists of a series of production activities wherein numerous
opportunities for introducing faults exist. Errors may begin to occur at the very inception
of the process, when the objectives are erroneously or imperfectly specified, or in later

design and development stages [DEUS2].

Since humans are generally incapable of developing software without making errors, the
generated source code has to be tested to uncover as many of those as possible, before the
product is delivered to the client. A rich variety of testing techniques have evolved for
software. These “provide systematic guidance for designing tests that (1) exercise the
internal logic of software components, and (2) exercise the input and output domains of

the program to uncover errors in program function, behavior, and performance” [PREO1].

Every time a major change is made to a software system, including the integration of a
new component, some of the tests which have already been conducted have to be re-
executed. This is to ensure that the modifications have not propagated unintended side
effects. Program slicing, a program reduction technique, has been used in several
published techniques to identify the set of existing tests which will exercise the modified
functionalities [AGR93B, BAT93, BINK97, GUP92, and ROT94]. Once this set is identified,
the tests are run on the modified version of the software system and the actual results are

compared with the expected ones.

Relying solely on the comparison between the actual and required results may not be
sufficient to ensure that no unintended behavior or additional faults were introduced.
Faulty code can occasionally produce correct behavior. For example, if x + x is
incorrectly coded instead of x * x, when x is 2, the correct result is produced. Although
only a little more testing is required to reveal the fault in this case, simple errors can

sometimes result in very pernicious fault hiding [BINOO].

In this research, program slicing is used to facilitate behavioral testing. Three testing
techniques are proposed to ensure that the modifications made to a software system have
not changed the correct behavior inherited from the original version. These approaches

are also implemented as part of the CONCEPT research project.

The remainder of this thesis is organized as follows: Section 2 introduces some relevant
software testing and program slicing concepts. It also reviews research on the application
of program slicing to the problem of software testing. In Section 3, the different
behavioral testing techniques are presented. Their implementation is discussed in Section
4. Section 5 describes a case study performed using JUnit [BEC98] to demonstrate their

applicability. Finally, Section 6 provides the conclusions and future work.

2. BACKGROUND

2.1 SOFTWARE TESTING

Software testing is the process of operating a system or component under specified
conditions, observing or recording the results, and making an evaluation of some aspect
of it [IEE87A]. It is a critical activity of the software process, as it “represents the ultimate
review of specification, design, and code generation” [PREO1]. Software testing
consumes at least half of the labor expended to produce a working program [BEI9O,
KUN98]. Different studies indicate that between 1 and 3 errors are made per 100 lines of
source code [BEI90, VANOO]. The objectives of software testing are to prevent and

discover as many of those faults as possible, at the lowest cost.

To achieve the above objectives, test cases are designed. A test case is “a set of inputs,
execution conditions, and expected results developed for a particular objective” [BINOO].
A collection of test cases related by a testing goal or an implementation dependency is

called a test suite [BINOO].

A successful test case is one which reveals a fault, rather than shows that the program
under test works as expected. Test cases can be designed from a functional or structural

perspective.

2.1.1 Functional Testing

In functional testing, also called black-box or behavioral testing, “test cases are derived
from the specification of the software” [VANOO]. As illustrated in Figure 2.1.1.1, the
system is treated as a black box, whose behavior can only be determined by studying its

inputs and the related outputs [SOMO1]. Following are some functional testing methods.

Inputs causing
anomalous
behavior

Input Test Data

Outputs which reveal
the presence of
Output Test Results defects

Figure 2.1.1.1 Black-Box Testing

INPUT DOMAIN TESTING. Consists of extremal and midrange testing. In extremal testing,
“test data are chosen to cover the extremes of the input domain” [MOR92]. For midrange
testing, test data are selected from the interior of the domain [MOR92]. The motivation of
input domain testing is inductive: it is hoped that conclusions about the entire input

domain can be drawn from the behavior elicited by some of its representative members

[MYET79].

EQUIVALENCE PARTITIONING. Usually, the input domain of a program can be partitioned
into a number of different classes, which have common characteristics. Equivalence
partitioning “divides the input domain of a program into classes of data from which test
cases can be derived” [PREO1]. Extremal and midrange testing are then applied on the
resulting input subdomains. A fault which affects the behavior within a subdomain is a
computation fault, whereas one which affects the boundaries of a subdomain is a domain

fault [HIE02].

In Figure 2.1.1.2, each equivalence class is shown as an ellipse [SOMO1]. Equivalence
partitioning attempts to define test cases which reveal classes of faults, thereby reducing

the number of test cases which need to be designed.

D DD

Invalid Inputs Valid Inputs

© ‘@

Outputs

Figure 2.1.1.2 Equivalence Partitioning

In the case of a program which accepts 4 to 10 inputs which are five-digit integers greater

than 10,000, the equivalence partitions and possible test input values are illustrated in

Figure 2.1.1.3 [somO01].

3 11
4 7 10
Less than 4 ‘ Between 4 and 10 [More than 10

Number of input values

9999 100000
10000 50000 99999
\ Less than 10000 j Between 10000 and 99999 ‘ More than 99999]

Input vaiues

Figure 2.1.1.3 Equivalence Classes

SYNTAX CHECKING. Verifies that the program “parses its input and handles incorrectly
formatted data” [BEI90]. This is accomplished by executing the program using a broad

spectrum of test cases, some of which violate the input format rules.

SPECIAL VALUE TESTING. Selects test cases “on the basis of features of the function to be
computed” [HOW80]. Special value testing is mostly used in the case of mathematical

computations. An example would be to test a factorial function with input value 0.

OuTtPUT DOMAIN COVERAGE. As illustrated in Figure 2.1.1.2, “for each function
determined by equivalence partitioning, there is an associated output domain” [MOR92].
Output domain coverage is performed by selecting test data that will cause the extremes
of each of the output domains to be achieved [HOW80]. This guarantees that the
minimum and maximum output conditions have been verified and all categories of error

messages have been generated.

2.1.2 Structural Testing

Structural testing, sometimes called white-box or glass-box testing, “implies inspection of
the source code of the program and selection of test cases that together cover the
program, as opposed to its specifications” [PER90]. Next are some structural coverage

measurcs.

STATEMENT TESTING. Statement coverage is achieved when every statement in the
program has been executed at least once [BINOO]. It is the minimum required by the IEEE
software engineering standards [IEE87B]. If there is a fault in a statement and this
statement 1s not executed, then it is almost impossible that this fault will be uncovered.
However, statement testing is a very weak criterion and Beizer argues that “testing less

than this for new software is unconscionable and should be criminalized” [BEI90].

BRANCH TESTING. Branch coverage is achieved when every path from a predicate
statement is executed at least once by a test suite [BINOO]. It is an improvement over

statement coverage, but considers compound predicates as single statements.

CONDITIONAL TESTING. Condition coverage subsumes branch coverage. It “requires that
all true-false combinations of simple conditions be exercised at least once” [BINOO]. As a
result, for a predicate statement consisting of n simple conditions, there are 2" true-false

combinations.

PATH TESTING. The objective of path testing “is to exercise every independent execution
path through a component or program” [SOM01]. An independent path is any path
through the program that introduces at least one new predicate statement. If every

independent path is executed, then statement and branch coverage are achieved.

The number of independent paths to execute is determined by computing the cyclomatic
complexity C of the program flow graph. A flow graph consists of nodes and edges,
which respectively represent predicate statements and flow of control. Figure 2.1.1.5
shows the flow graph of the binary search procedure displayed in Figure 2.1.1.4 [sOoMO01].
C 1s computed according to the following formula: C = e - n + 2, where e is the number

of edges and #n, the number of nodes in the flow graph.

5]

(Yoo - IR o)

class BinSearch {

public static void search(int key,
int bottom = 0;
int top = elemArray.length - 1;

int mid;
r.found = false;
f.index = -1;

while (bottom <= top) {
mid = (top + bottom) / 2;

if (elemArray[mid] == key) {
r.index = mid;
r.found = true;
return;

else {

if (elemArray{mid] < key)
bottom = mid + 1;

else
top = mid - 1;

int {] elemArray, Result r)

{

Figure 2.1.1.4 Sample Program

bottom > top while bottom <= top
2

if (elemArray [mid] == key)

if (elemArray [mid] < key)

Figure 2.1.1.5 Flow Graph of the Sample Program

The cyclomatic complexity of the binary search routine is 4. Its set of independent paths

which need to be executed are:

DATA FLOW TESTING. Data flow testing “selects test paths of a program according to the
locations of definitions and uses of variables in a program” [PREO1]. A definition of
variable v is a statement which assigns a value to that variable. A use of variable v is a
statement in which this variable is referenced. Several variations of data flow coverage
have been proposed and ranked [FRA8S, FRA93]. One level of coverage, referred as the
all-uses criterion, has been found to be effective. It requires that at least one definition-
use (DU) path be exercised for every DU pair. A DU path of variable v is a tuple (v, i, j),
where (1) 7 and j are program statements, (2) v is defined at i, (3) v is used at j, and (4)

there exists a path from i to j without an intervening definition of variable v.

Loor TESTING. Loop testing “focuses exclusively on the validity of loop constructs”
[PREO1]. Coverage requirements depend on the kind of loop defined. As illustrated in
Figure 2.1.1.6, there are four different classes of loops: simple, concatenated, nested, and
unstructured [BEI90]. A minimum test suite for a loop with variable iteration control
bypasses the loop (zero iteration) and exercises it with an iteration [MAR94]. Two
iterations are the minimum needed to detect data initialization and use faults [FRA8S].

Loop control boundary conditions, a frequent source of control faults, require more

10

extensive coverage. Time should not be wasted testing unstructured loops: they should

A

Vi Vel

be redesigned.

E _’
Simple Loops Nested Loops Concatenated Loops %

Unstructured Loops

Figure 2.1.1.6 Classes of Loops

2.2 REGRESSION TESTING

Regression testing can be defined as “any repetition of tests (usually after a software or
data change) intended to show that the software’s behavior is unchanged except insofar
as required by the change to the software or data” [BEI90]. Its goal is to provide

confidence that the modified program behaves as intended and ensure that the fault fixes

11

and new functionalities have not changed unintentionally the correct behavior inherited

from the original program [BINK98].

There are two approaches to regression testing: retest-all and selective retest. In retest-
all, every test which has been previously executed is rerun. Since this is usually too
expensive both in terms of time and effort, one can opt for a selective retest. This
technique consists of rerunning only the test cases for which the original and modified
programs might produce different results. This avoids the costly re-execution of a subset
of the test suite, since it omits all the test cases which are guaranteed to generate the same

outcomes.

2.3 OBIECT-ORIENTED SOFTWARE TESTING

2.3.1 Motivation

Object-oriented software testing deals with the new problems introduced by the features
of object-oriented languages [KUN98]. Encapsulation, inheritance, polymorphism, and
dynamic binding provide visible benefits in software design and programming, but raise
at the same time new challenging problems in the software testing and maintenance

phases [BIN94, LEJ92, and wWiL92].

Encapsulation is the mechanism which binds together inside an object the operations and

attributes it manipulates. This makes the interaction between two or more objects

12

implicit in the code and as a result, complicates their understanding as well as the

preparation of test cases to exercise such interactions [LET86].

Inheritance allows a class to inherit attributes and operations from a base class and
therefore, promotes code reuse. However, an operation which was tested to be “correct”
in the context of the base class does not guarantee that it will work “correctly” in the

context of the derived class [PER90].

Polymorphism is the mechanism which allows one operation name to be associated with
different operations. The version of the operation appropriate to the situation is selected
at run time, a process called dynamic binding. These features make testing more
difficult, because the exact implementation cannot be determined statically and therefore,

the control flow of a program is less transparent [SMI190].

Despite the problems outlined above, nearly everything learned about testing procedural
language programs also applies to object-oriented testing. It is the emphasis and
effectiveness of the various test techniques which differ for object-oriented programming

[BINOO]. One example which illustrates this is the case of object state testing.

2.3.2 Object State Testing

Object state testing focuses on testing the state dependent behaviors of objects [KUN9G].

In procedural programming, state dependent behaviors are normally found in embedded

13

systems. On the other hand, in object-oriented programming, a large number of objects
have state dependent behaviors and these objects can have an effect upon each other.

Object state testing is therefore a crucial aspect of object-oriented testing.

State dependent behavior signifies that the result of a method call on an object can
depend on its state, i.e., the combination of the values of its instance variables, or the
state of other objects. It also implies that the execution of a method can cause state

changes to more than one object.

The purpose of object state testing is to test the composite effects of method calls on
objects so as to identify any sequences of those which can lead to invalid states. Object
state testing designs test cases “by modeling the system under test as a state machine”
[BINOO]. A state machine is a system model composed of events, states, and actions. An
action i1s determined by the current and past events and the effects of previous events are

represented by states [BINOO].

Empty pop / EmtpyStackException

push(x) pop [n == 1]/ return top(x)
push(x) [n < max-1] r_>[Loaded)i pop [n > 1]/ return top(x)
push(x) [n == max-1] pop / return top(x)

push(x)/FullStackException[l Full ,

Figure 2.3.2.1 State Machine of a Stack

14

Figure 2.3.2.1 models the state machine of a stack [BINOO]. Test suites which are very
effective at finding faults can be generated from state machines. For example, adequate
object state testing would have revealed the fault in the following integer set class, which

was part of a commercial C++ library [HOF9S5].

class IntSet {
public:

// operations on single sets
IntSet () ;
~IntSet ();
IntSet& add(int) ; // Add a member
IntSet& remove (int) ; // Remove a member
IntSet& clear(); // Remove all members
int is_member(int); // Is arg a member?
int extent () ; // Number of elements
int is_empty(); // Empty or not?
// operations on pairs of sets ..

Vi

Figure 2.3.2.2 Integer Set Class

In the above class, the add (n) function throws a Duplicate exception if n is already
present in the set. To test this exception, add (1) was invoked twice. Even though the
exception was thrown correctly on the second call, a duplicate value of the element was
still added to the set. The fault escaped detection when a subsequent remove (1) was
invoked without generating an exception. The fault was later uncovered when it was
noticed that two invocations of remove (n) were necessary for is_member () to return

false, after having called add (n) twice.

15

2.4 PROGRAM SLICING

Program slicing is a program reduction technique which allows one to narrow down the
size of the source code of interest by identifying only the parts of a program that are
relevant to the computation of a particular variable [RILO1A}. Program slicing techniques

can be classified as static or dynamic.

2.4.1 Static Program Slicing

The notion of static program slicing originated in the seminal paper by Weiser [WEI82,
WEI84], who defined a slice § as a reduced, executable program obtained from a program
P by removing statements such that S replicates parts of the behavior of P. In a more
formal way, a static program slice consists of the parts of a program P that could
potentially affect the value of a variable v at a point of interest p. The static program
slicing algorithm of Weiser computes slices using information derived from the source
code. Different extensions of the original static slicing approach have been proposed,

e.g., [CHUO2, HAR97, HARO1A, HARO1B, KRI94, LAR96, and LAW94].

A static slice is defined for a slicing criterion of the form C = (x, V), where x is a
statement in program P and V is a subset of the variables in P. Given C, the program
slice consists of all the statements in P which could potentially affect variables in V" at

position x for the set of all possible inputs. Static slices are computed by finding

16

consecutive sets of indirectly relevant statements, according to the data and control

dependencies of a program dependence graph.

2.4.2 Program Dependence Graph

The concept of program dependence graph (PDG) was originally defined by Ottenstein
and Ottenstein {[0TT84] and later refined by Horwitz et al. [HOR90, REP88, and REP89]. It
is a directed graph G = (N, 4, s, e), where (1) N is a set of nodes, (2) 4, a set of arcs, is a
binary relation on N, and (3) s and e are respectively the unique entry and exit nodes
[KOR97A]. A path from the entry node s to some node &, k£ € N, is a sequence <uj, ny, ...,
ng> of nodes such that n; =s, n, =k and (n;, n;+y) € 4, forall n;, 1 < i <q [KOR97A]. A

path which has been executed for some input is referred as an execution trace.

A PDG is used to represent the control and data dependencies in a program. A node
corresponds to a program statement while an edge represents a control or data

dependency between two nodes.

A data dependence captures the situation in which one node assigns a value to an item of
data and another node uses that value [KOR97A]. It is based on the concepts of variable
definition and use. Therefore, a node j is data dependent on node i if there exists a
variable v such that (1) v is defined in node i, (2) v is used in node j, and (3) there exists a

path from i to j without an intervening definition of variable v [RIL98].

17

A control dependence is based on the concept of postdominance. Informally, this can be
thought of as one program statement determining in some way whether or not another
statement will be executed. Ferrante [FER87] defines control dependence as follows: Let
Y and Z be two nodes and (Y, X) be a branch of Y. Node Z postdominates node Y if and
only if Z is on every path from Y to the exit node e. Node Z postdominates branch (Y, X)
if and only if Z is on every path from Y to the program exit node e through branch (7, X).
Z is control dependent on Y if and only if Z postdominates one of the branches of ¥ and Z
and does not postdominate Y. The concept of post-dominance means that all execution
paths in a control flow graph from a specific node i to the program end, must pass

through another node ;j before they reach the program end point [HOR90, HOR92].

Figure 2.4.2.2 represents the PDG of the sample program displayed in Figure 2.4.2.1.

1 class Example {

2

3 public static void main(String args[l) {
4 int arrayl] = {1};

s int i = 1;

6 int sum = array[0];

7

8 while(i < array.length) {
9 sum += arrayl[il;
10 i++;

11 }
12
13 System.out.println(i) ;
14 System.out.println (sum) ;

15 }
16 }

Figure 2.4.2.1 Sample Program

18

— Control Dependence
______ + Data Dependence

Figure 2.4.2.2 PDG of the Sample Program

PDGs can be used for the computation of static slices. The static slice S of a program P,
with respect to variable v at position i, is obtained by traversing the PDG of P backwards
along its edges, starting from node i. The nodes, which were visited during the traversal,
constitute S [0TT84]. Figure 2.4.2.3 shows the static slice for variable sum of the sample

program at position 14.

1 class Example {

2

3 public static void main(String args[]) {
4 int arrayl]l = {1};

5 int i = 1;

6 int sum = array{0];

7

8 while(i < array.length)
9 sum += array([i];

10 14+;

11 }

12
14 System.out.println(sum) ;
15 }

16 }

Figure 2.4.2.3 Static Slice for Variable sum at Statement 14

19

2.4.3 Dynamic Program Slicing

Korel and Laski introduced in [KOR88] the notion of dynamic slicing. For this approach,
not only static information is used, but also dynamic information regarding the program
execution for some specific program input. A dynamic slice preserves the program
behavior for a specific input, in contrast to a static slice, which preserves the program
behavior for the set of all inputs for which the program terminates. As a result, by
considering only a particular program execution instead of all possible ones, dynamic

algorithms tend to compute significantly smaller slices than static algorithms.

A dynamic slicing criterion is a tuple C = (x, y?), where x is the program input on which a
program P was executed and)? is a variable y at execution position g. A dynamic slice
of a program P for the slicing criterion C is any syntactically correct and executable
program P’, which is obtained from P by deleting zero or more statements. Furthermore,
when executed on program input x, it produces an execution trace Ty, for which there
exists the corresponding execution position g, such that the value of 37 in 7, equals the
value of y*”in T}’ [KOR97A]. Figure 2.4.3.1 shows the dynamic slice for variable sum of

the sample program at position 14.

class Example {

1
2
3 public static void wain(String args([]) {
4 int array(] = {1}:

6 int sum = array[0];

7
14 System.out .printlin{sum) ;
15 }
16 }

Figure 2.4.3.1 Dynamic Slice for Variable sum at Statement 14

20

To perform dynamic slicing, two major approaches have evolved. Backward algorithms
[AGR94, GOPI91, KAMI3B, and ZHA98] trace backwards a recorded execution trace to
derive data and control dependencies that are then used for the computation of the
dynamic slice. In contrast, forward algorithms [KOR94] aim to overcome a major
weakness of the backward approach: the necessity of recording the execution trace during

program execution.

2.4.4 Applications of Program Slicing

When the original concept of program slicing was introduced by Weiser, its principal
application was debugging [WEIS2, WEI84]. If a program computes an incorrect value for
a variable v at position p, the fault is expected to be found in the slice with respect to v at
that point. The use of program slicing for debugging has been further explored in

[AGR93A, CHO91, FRI92, LYL87, and PAN93].

Other applications of program slicing have since been proposed. For example, an
inherent problem in software maintenance consists of determining whether or not a
change at one point in the program will affect the behavior of other parts. In [GAL91],
Gallagher and Lyle use static slicing to decompose a program into a set of components,
each of which captures part of the original program’s behavior. They present a collection
of rules for the maintainer of a component that if respected, ensures that the changes are
completely contained inside the component. Furthermore, they describe how the changes

can be merged back into the complete program in a semantically consistent way.

21

Larus and Chandra have applied program slicing to compiler tuning [LAR94]. In their
approach, dynamic slicing is used to detect potential occurrences of redundant common

subexpressions, which indicate the generation of sub-optimal code.

Program slicing has also been used to parallelize the execution of sequential programs
[WEI83], in program comprehension [KOR97B, RILOIB], reverse engineering [BEC93,
JAC94A, and JAC94B] and testing, the latter being covered in more detail in the next

section.

2.5 PROGRAM SLICING AND SOFTWARE TESTING

Since program slicing is a source code reduction technique, it has mostly been applied for
structural testing. However, it can also be used in functional testing. For example, given
a functional test case, “an executable slice that captures the functionality to be tested

should be easier and less expensive to test than the complete program [BINK98].”

2.5.1 Data Flow Testing

In data flow testing, a program satisfies a conventional coverage criterion if every DU
pair is exercised at least once by a successful test case. In [DUE92], Duesterwald et al.
propose a more rigorous testing criterion based on program slicing. Besides having to
satisfy the previous criterion, each DU pair must also be output-influencing. A DU pair

is output-influencing, i.e., has an influence on at least one output value, if it occurs in an

22

output slice, a slice with respect to an output statement. The proposed data flow testing
criterion uses three slicing approaches: static, dynamic, and hybrid, which is a

combination of the previous two.

In [KAM93A], Kamkar et al. extend the work of Duesterwald, Gupta, and Soffa to multi-
procedure programs by defining the notions of interprocedural DU pairs. The
interprocedural dynamic slicing method of Kamkar et al. [KAM92, KAM93B] is used to
determine, for a given test case, which interprocedural DU pairs have an effect on a

correct output value.

2.5.2 Regression Testing

“Testing during the maintenance phase of a program’s life is dominated by regression
testing” [BINK98]. This often involves running a large number of test cases on a program
of a considerable size. To reduce the resulting costs, in terms of both human and

machine time, several approaches utilizing program slicing have been proposed.

In [GUP92], Gupta et al. describe a data flow based regression testing method. This
technique does not use slicing operators directly. It is rather based on the program slicing
algorithms introduced by Weiser to explicitly detect the DU pairs that need to be retested
after a modification. Only the test cases which execute the DU pairs affected by the

change need to be executed again. An important benefit of this technique is that unlike

23

previous ones, the DU pairs that must be retested are identified without requiring the data

flow history nor the recomputation of data flow for the entire program.

Agrawal et al. present in [AGR93B] an algorithm which uses relevant slicing to select the
minimal subset of a test suite that must be rerun in order to test a modified program. The

definition of a relevant slice makes use of the notion of potentially dependent.

The use of a variable v at location / in a given execution history is potentially dependent
on an earlier occurrence p of a predicate in the execution history if (1) v is never defined
between p and / but there exists another path from p to / along which v is defined, and (2)

changing the evaluation of p may cause this untraversed path to be traversed [AGR93B].

A relevant slice extends a dynamic slice to include predicates on which statements in the
slice are potentially dependent as well as the data and potential dependences of these

predicates [BINK9S].

In the algorithm of Agrawal et al. [AGR93B], a relevant slice with respect to the program’s
output is computed for each test case in the test suite. The modified program is then run
on the test cases whose relevant slice contains a modified statement. This algorithm does

not consider, however, the generation of additional test cases to cover the new

functionalities of the modified program.

24

Bates and Horwitz introduce in [BAT93] three PDG based test-data adequacy criteria: all-
vertices, all-control-edges, and all-flow-edges. Given a previously tested and modified
versions of a program, their technique identifies for each criterion a safe approximation
of (1) the set of statements affected by a modification, and (2) the test cases of a test suite
that are guaranteed to exercise these affected statements. They were the first to make
such guarantees. The set of affected components consists of the statements which were
added to the previously tested version as well as any statement which has different slices
for the two versions of the program. To identify the test cases which can be reused for
the modified program, the statements of the two versions of the program have to be
partitioned into equivalence classes; statements are in the same class if they have the

same control slice [TIP95].

A control slice with respect to vertex v in PDG G is the traditional backward slice of
PDG G’ taken with respect to v’ where (1) G’ contains all the vertices of G plus a new
unlabeled vertex v’, and (2) G’ contains all the edges of G, plus new control edges from

the control-predecessors of v to v’ [BINK9S].

Bates and Horwitz prove that statements in the same class are exercised by the same test

cases [TIP9S].
The work of Bates and Horwitz considers only single procedure programs. Binkley

[BINK97] presents two complementary algorithms using system dependence graphs

(SDGs) and program slicing to reduce the cost of regression testing of multi-procedure

25

programs. The first algorithm reduces the size of the program on which test cases have to
be rerun. This is accomplished by determining the set of components affected by a
modification and the set of components preserved. The set of affected components is
then used to produce a smaller program which captures the modified behavior of the
original program. Only the test cases that execute the affected components must be rerun
on this smaller and more efficient program. The second algorithm reduces the number of
test cases that must be rerun for the all-vertices and all-flow-edges criteria. It is an

interprocedural extension of the previous work of Bates and Horwitz.

Two other techniques based on dependence graphs make limited use of program slicing.
First, Rothermel and Harrold present in [ROT94] intraprocedural and interprocedural
algorithms to reduce the cost of regression testing. The first one selects the test cases that
may produce different results when run on the modified version of a program. This is
accomplished by performing a side-by-side walk of the original and modified programs’
control dependence sub-graphs looking for nodes which have different texts. The second
algorithm, which makes use of forward slicing, determines the set of DU pairs affected
by a change in the modified program. In contrast to the test-case selection algorithms
presented by Bates and Horwitz and by Binkley, these ones are safe in the sense that they
select every test case which may produce a different output for the modified program.
This is due to their treatment of deleted components. If a component, which does not
affect any other, is deleted from the original program, then its tests would be selected by

Rothermel and Harrold’s technique, but not by the one of Bates and Horwitz and of

Binkley.

26

The last dependence graph based technique is the Testing with Analysis and Oracle
Support (TAOS) system [RIC94]. It was built to automate certain activities involved in
testing a program because “the typical testing process is a human intensive activity and as
such, it is usually unproductive, error prone, and often inadequately done” [Ric94]. The
TAOS system represents procedures internally as program dependence graphs and can
compute forward, backward, static and dynamic intraprocedural slices [BINK98].
However, the main focus of this technique is on the development and initial testing of a
program. Very few details are given on its use for regression testing. Future work
includes plans to develop a “proactive regression testing process that uses program
dependences to determine what must be retested, what test cases and suites are available

for reuse, and automatically initiates regression testing triggered by modification”

[RIC94].

2.5.3 Partition Testing

Conditioned slicing is a technique to compute program slices with respect to a subset of
program executions [CAN98]. It extends the notion of static slicing introduced by Weiser.
A conditioned slice is defined for a slicing criterion C = (x, V, F), where x is a statement
in program P, V is a subset of the variables in P, and F is a condition. The latter is
specified using a quantifier-free first order logic formula, which maps the set of initial
program states of interest to booleans. In [HIEO2], Hierons et al. demonstrate how
conditioned slicing can be used to assist partition testing. In particular, they explain how

conditioned slicing can determine if the uniformity hypothesis holds for a subdomain,

27

suggest the existence of computation and domain faults, as well as detect the existence of

erroneous special cases that are not contained in the program specifications.

2.5.4 Mutation Testing

In mutation testing, a program p is changed by applying to it one or more mutation
operators. Both p and the set M of mutants generated are then tested. Mutation testing is
based on the notion that any test set that is capable of distinguishing a program p from

programs syntactically similar to p is likely to be good at detecting faults in p [HIE99].

An mnput value o kills a mutant p’ if it distinguishes p from p’. A mutant p’ of a program

p can also be indistinguishable from p. In this case, p’is an equivalent mutant.

Even though mutation testing has proved to be highly effective to find software faults, a
significant drawback currently restricts its use: only non-equivalent mutants should be
used. However, even for small programs, the human effort needed to check a large
number of mutants for equivalence is almost prohibitive [FRA97]. Furthermore, there will
always remain a set of equivalent mutants which will remain undetected by any

automated system.

In [HIE99], Hierons and Harman present a technique using program slicing to reduce the
effort involved in determining whether or not mutants are equivalent. In cases where a

mutant is not equivalent, it can help in finding input which kills it.

28

2.5.5 Robustness Testing

Some of the aspects of a program’s behavior, such as its robustness, are implicit. They
are not denoted by a set of variables, therefore making slicing inapplicable. To overcome
this problem and capture the robustness of a subject program, Harman and Danicic
[HAR9S] transform it into an introspective form. Assignments to pseudo variables are
added so that the program can compute aspects of its own implicit behavior. Even
though this makes the program longer initially, a slice which captures the program’s
effect upon the pseudo variables can now be computed and used to provide an

approximate answer as to whether or not the program is robust.

29

3. ENHANCING TRADITIONAL BEHAVIORAL TESTING

3.1 REGRESSION TESTING

After a system is changed, it has to be retested in order to verify that the “modifications
have not caused unintended effects and that it still complies with its specified
requirements” [IEE87A]. This process is known as regression testing. It consists of
rerunning the suite of test cases which have passed on the previously verified version of
the system, i.e., the baseline version, and which are expected to pass when run on the

modified one.

However, the fact that the result of a test case is the same for the baseline and modified
versions does not guarantee that the underlying code is exempt of faults. Faulty code can
sometimes produce correct results for some inputs, a situation called coincidental

correctness.

To illustrate this, consider the following example adapted from [KUN96]. The Java class
coinBox of Figure 3.1.1 implements the baseline version of a simple vending machine’s

coin box. It only accepts quarters and allows vending when two quarters are inserted.

The instance variables gtrsCollected, gtrsInserted, and vendingEnabled keep track

respectively of the total number of quarters collected, the current number of quarters

inserted, and whether or not vending is enabled. The method insertQtr() inserts a

30

quarter, returnQtrs () returns the quarters inserted, vend () gives to the customer the

selected item, and printTotal () displays the amount of money that was inserted in the

coin box.
1 Class CoinBox {
2
3 private int gtrsCollected;
4 private int gtrsInserted;
5 private boolean vendingEnabled;
6
7 public CoinBox () {
8 gtrsCollected = 0;
9 gtrsInserted = 0;
10 vendingEnabled = false;
11 printTotal () ;
12 }
13
14 public void insertQtr() {
15 gtrsInserted++;
16
17 if (gtrsInserted > 1)
18 vendingEnabled = true;
19
20 printTotal () ;
21 }
22
23 public void returnQtrs() {
24 gtrsInserted = 0;
25 vendingEnabled = false;
26 printTotal () ;
27 }
28
29 public void vend() {
30 if (vendingEnabled) {
31 gtrsCollected += gtrsInserted;
32 gtrsIinserted = 0;
33 vendingEnabled = false;
34 printTotal () ;
35 }
36 }
37
38 public void printTotal() ({
39 System.out.println((float)qtrsinserted * 0.25f);
40 }
41 }

Figure 3.1.1 CoinBox Class - Baseline Version

Figure 3.1.2 displays the modified version of the coinBox class which contains an error

in its implementation. During maintenance, line 25 was inadvertently removed. As a

31

result, a consumer can insert two quarters, instruct the coin box to return them, and then

get a free item by executing the vend () method.

class CoinBox {

1

2

3 private int gtrsCollected;
4 private int gtrsInserted;
5 private boolean vendingEnabled;
6
7
8

public CoinBox() {
gtrsCollected = 0;

9 gtrsInserted = 0;

10 vendingEnabled = false;
11 printTotal();

12 }
13
14 public void insertQtr()
15 gtrsInserted++;

16
17 if (gtrsInserted > 1)
18 vendingEnabled = true;
19
20 printTotal() ;
21 }

22
23 public void returnQtrs() {
24 gtrsinsert
25 /¥ vendingEndbled = false; */
26 printTotal () ;
27 }
28
29 public void vend() {
30 if (vendingEnabled) {
31 gtrsCollected += gtrsInserted;
32 gtrsInserted = 0;
33 vendingEnabled = false;
34 printTotal() ;
35 }
36 }
37
38 public void printTotal() {
39 System.out.println((float)gtrsInserted * 0.25f);
40
41 }

Figure 3.1.2 CoinBox Class - Modified Version

Despite this fault, the baseline and modified versions produce both the required results

for the test driver of Figure 3.1.3.

32

43 class Driver

44 public static void main(String args([]) {
45 CoinBox coinBox = new CoinBox();

46 coinBox.insertQtx () ;

47 coinBox.insertQtr () ;

48 coinBox.returnQtrs () ;

49 }

50 }

Figure 3.1.3 Test Driver for the CoinBox Class

The fault in the modified version of the CoinBox class cannot be easily detected using
traditional functional and structural testing techniques for several reasons. First of all,
each method seems to implement the proper functionality. Also, the fault could hide
from a test suite achieving statement and branch coverage. Furthermore, path testing
would come to the conclusion that each independent path was correctly executed.
However, the most important reason is that the fault is caused by interactions involving

more than one method through an object state.

Three different approaches are proposed in this thesis to detect such faults and test
whether or not the critical aspects of a program’s behavior were changed unintentionally
by a modification. The first one consists of comparing and analyzing the execution trace
of the baseline and modified versions of a program for a particular test case. In the
second approach, a dynamic slice is computed for a variable of interest using the
execution traces generated by the test case. The resulting slices for the baseline and
modified versions are then compared and analyzed. The last approach, like the previous
one, consists of computing a dynamic slice for the two versions of the program.
However, instead of just pinpointing all the statements which might potentially affect the
value of the variable of interest, it identifies the contributing actions as well as the

influencing variables at each step of the program’s execution.

33

3.2 EXECUTION BASED TESTING

The problem associated with behavioral based testing, namely coincidental correctness,
motivated the selection of the first testing approach suggested in this thesis. Execution
based testing attempts to guarantee that the run time behavior of the modified version of a
program is not different from its baseline version. It consists of measuring the
differences between their execution traces, i.e., the sequence of statements which have

been executed for a particular program input.

. . Baseline Version =~ oo | " Modified Version
44" public static void main(String args..) 44 public static void main(String args..)
45° CoinBox coinBox = new CoinBox () ; 45* CoinBox coinBox = new CoinBox () ;
7° public CoinBox() 7° public CoinBox ()
8* gtrsCollected = 0; 8* gtrsCollected = 0;
9° gtrsinserted = 0; 9° gtrsInserted = 0;
10° vendingEnabled = false; 10° vendingEnabled = false;
117 printTotal(); 11’ printTotal () ;
38 public void printTotal() 38® public void printTotal ()
39° System.out.println((float)gtrsinsert.. 39° System.out.println{(float)qtrsInsert..
46 coinBox.insertQtr () ; 46'° coinBox.insertQtr () ;
14'' public void insertQtr () 14" public void insertQtr ()
15" gtrsInserted++; 15" gtrsInserted++;
17" if (gtrsInserted > 1) 172 if (gtrsInserted > 1)
20™ printTotal(); 20™ printTotal () ;
38 public void printTotal () 38" public void printTotal ()
39'® gystem.out.println((float)qgtrsInsert.. 39" gystem.out.println((float)qtrsinsert..
47" coinBox.insertQtr(); 47" coinBox.insertQtr();
14'® public void insertQtr () 14" public void insertQtr()
15*° gtrsInserted++; 15" gtrsInserted++;
17%° if (gtrsInserted > 1) 17*° if (gtrsinserted > 1)
18*' vendingEnabled = true; 18*' vendingEnabled = true;
20%* printTotal{(); 20%* printTotal();
38% public void printTotal () 38* public void printTotal ()
39%* gystem.out.println((float)gtrsInsert.. 39> Ssystem.out.println{(float)qgtrsInsert..
48%° coinBox.returnQtrs() ; 48%° coinBox.returnQtrs () ;
23% public void returnQtrs() 23%® public void returnQtrs ()
24%" gtrsInserted = 0; 24”7 gtrsinserted = 0;
25”" vendingEnabled = false;
26%° printTotal () ; 26%® printTotal () ;
3g3° public void printTotal () 38%° public void printTotal()
393! gystem.out.println((float)qgtrsIinsert.. 39°° gSystem.out.println((float)gtrsInsert..

Figure 3.2.1 Execution Trace of the CoinBox’s Baseline and Modified Versions

Figure 3.2.1 compares the execution trace of the baseline and modified versions of the

coinBox class and highlights their differences in bold. In the present case, this approach

34

would have revealed the fault in the modified version. This is because the statement
responsible for setting the instance variable vendingEnabled to false when the

returnQtrs () method is invoked was not executed.

3.3 COARSE-GRAINED SLICING BASED TESTING

The second approach presented to detect run time behavioral faults involves computing a

dynamic slice for both versions of a program. The resulting slices are then compared.

aseline Version .+ Modified Version:
1 class CoinBox { 1 class CoinBox {
2 2
3 private int gtrsCollected; 3 private int gtrsCollected;
4 private int gtrsInserted; 4 private int gtrsInserted;
5 private boolean vendingEnabled; 5 private boolean vendingEnabled;
6 6
7 public CoinBox() { 7 public CoinBox () {
9 gtrsInserted = 0;
12 } 12 }
13 13
23 publi¢ wvoid returngtrs() { 14 public void insertotr() {
25 vendingEnabled & false: 15 qtrsInserted++;
27 i 16
17 if (gtrsInserted > 1)
18 vendingEnabled = trué;
21 }
41 } 41 }
42 42
43 class Driver { 43 class Driver {
44 public static void main(..) { 44 public static void wmain(..) {
45 CoinBox coinBox = new CoinBox(); 45 CoinBox coinBox = new CoinBox();
48 coinBox retirndtrs(); 46 coinBox:insertOtri();
47 coinBox.insertQtr();
49 } 49 }
50 } 50 }

Figure 3.3.1 Slice of the CoinBox’s Baseline and Modified Versions

Figure 3.3.1 displays the dynamic slice of the baseline and modified versions of the
CoinBox class. The slicing criterion is the vendingEnabled instance variable at

execution position 31 and 30. The differences between the two slices are indicated in

35

bold. vendingEnabled was selected as the slicing criterion because it is an instance
variable essential to the class. It controls whether or not vending should be allowed.
This approach, like the previous one, would have uncovered the fault in the modified
version. The method call coinBox.returnQtrs () is not part of its slice, while it should
have been, as returnQtrs () is the method responsible for resetting vendingEnabled to

false.

The main benefit of the coarse-grained slicing based testing approach is that it reduces
the amount of information provided. It preserves only the parts of the program’s
behavior related to the selected variable. This in turn narrows down the search space for
the localization of a possible run time behavioral fault. However, the limitation with this
approach lies in the fact that sometimes, in the case of a subtle error in the modified
version, the slice computed for both programs can be the same and therefore, the fault

remains undetected. To overcome such difficulties, the last approach is proposed.

3.4 FINE-GRAINED SLICING BASED TESTING

The fine-grained slicing based testing approach is a refinement of the previous one. Like
its predecessor, it consists of computing a dynamic slice for the baseline and modified
versions of a program. However, in order to further improve the understanding of the
program’s behavior, the list of contributing actions and influencing variables are
identified at each step of the program’s execution, as indicated in Figures 3.4.1 and 3.4.2.

The terms action, contributing action, and influencing variable are defined as follows:

36

ACTION. During the execution of a program, a statement can be executed several times.
An action corresponds to the particular execution of a program statement. More
formally, action ¥’ represents the program statement Y at position ¢ in the execution trace
T, [KOR97B]. In Figures 3.4.1 and 3.4.2, actions are indicated in the left part of the first

column.

CONTRIBUTING ACTION. Y is a contributing action with respect to the slicing criterion 7,
i.e., variable v at position g, if its execution has an effect on the computation of 7

[RIL98]. In Figures 3.4.1 and 3.4.2, contributing actions are highlighted in bold.

INFLUENCING VARIABLE. Z’ is an influencing variable with respect to the slicing criterion
v if (1) there exists a contributing action Y* between positions p and g (p <t < q), (2) Y’
uses the value of z, and (3) z is not modified between p and ¢ [KOR87, RIL98]. In Figures

3.4.1 and 3.4.2, influencing variables are indicated before the execution of each action.

_Contributing Actions Influencing Variables

44t public static void main(String args(l)
45% (CoinBox coinBox = new CoinBox():

7' public CoinBox () coinBox
8* gtrsCollected = 0; coinBox
9° gtrsInserted = 0; coinBox
10° vendingEnabled = false; coinBox
117 printTotal(); coinBox
38% public void printTotal() coinBox
39° gystem.out.println((float)gtrsinserted.. coinBox
46" coinBox.insertQtr(); coinBox
14! public void insertQtr () coinBox
15t2 gtrsInserted++; coinBox
17 if (gtrsInserted > 1) coinBox
20" printTotal () ; coinBox
38! public void printTotal () coinBox
39 System.out.println((float)gtrsInserted.. coinBox
47" coinBox.insertQtr () ; coinBox
14'® public void insertQtr() coinBox

Figure 3.4.1 Contributing Actions and Influencing Variables for the Baseline Version

37

E . Contributing Actions _Influencing Variables

15 gtrsInserted++; coinBox
17°° if (qgtrsInserted > 1) coinBox
18?! vendingEnabled = true; coinBox
20?* printTotal(); coinBox
38% public void printTotal () coinBox
39%* gystem.out.println((float)gtrsInserted.. coinBox
48* coinBox.returnQtrs(); coinBox
23%* public void returnQtrs() coinBox
24%" gtrsInserted = 0; coinBox
2528 vendingEnabled = false; coinBox
26%° printTotal () ;

38% public void printTotal ()

39" System.out.println((float)gtrsinserted..

Figure 3.4.1 Contributing Actions and Influencing Variables for the Baseline Version (Continued)

fluencing Variables

44' public static void main (String argsl([])
45% (CoinBox coinBox = new CoinBox () ;

7 public CoinBox () coinBox

8* gtrsCollected = 0; coinBox

9° qgtrsinserted = 0; coinBox
10° vendingEnabled = false; coinBox, gtrsInserted
11’ printTotal() ; coinBox, gtrsInserted
38% public void printTotal () coinBox, gtrsInserted

® gystem.out.println((float)gtrsInserted.. coinBox, gtrsInserted
46'° coinBox.insertQtr(); coinBox, gtrsInserted
14** public void insertQtr () coinBox, gtrsInserted
152 gtrsInserted++; coinBox, gtrsInserted
17" if (qgtrsInserted > 1) coinBox, gtrsInserted
20" printTotal(); coinBox, gtrsInserted
38" public void printTotal () coinBox, gtrsInserted
39 gSystem.out.println((float)gtrsIinserted.. coinBox, gtrsInserted
47 coinBox.insertQtr(); coinBox, gtrsInserted
14" public void insertQtr() coinBox, gtrsInserted
15%° gtrsInserted++; coinBox, gtrsInserted
17*° if (qtrsInserted > 1) coinBox, gtrsInserted
18** vendingEnabled = true; coinBox

20%? printTotal () ;

38% public void printTotal ()

39 System.out.println((float)gtrsInserted..
48%° coinBox.returnQtrs () ;

23% public void returnQtrs ()

24% gtrsInserted = 0;

2628 printTotal () ;

38”° public void printTotal ()

39%° System.out.println{(float)qgtrsInserted..

Figure 3.4.2 Contributing Actions and Influencing Variables for the Modified Version

The comparison of the influencing variables and contributing actions determines if the
run time behavior of the modified version is different from the baseline one. In the
present example, a dynamic slice was computed using the same criterion as in the

previous approach. In the modified version of the coinBox class, gtrsInserted is an

38

influencing variable while it is not the case in the baseline version. This would have led
to the early localization of the fault in the modified version. qtrsInserted cannot
influence the computation of the vendingEnabled instance variable, since method

returnQtrs () was invoked.

This approach can also be used to analyze the performance of both versions of a program,

as it highlights the parts of the execution trace which are not relevant to the computation

of the slicing criterion.

39

4. IMPLEMENTATION

4.1 CONCEPT

The three testing approaches proposed in the present research were implemented as part
of the CONCEPT (Comprehension Of Net-CEntered Programs and Techniques) research

project [RILO2].

The major goal of the CONCEPT project is to address the current and future challenges
related to the comprehension of large and distributed systems at the source code and
architectural levels. Its objective is to provide software developers with novel
comprehension approaches based on different source code analysis, visualization, reverse

engineering, and architectural recovery techniques as well as their applications.

4.2 CONCEPT ARCHITECTURE

A lightweight reverse engineering environment supporting the different approaches
presented within the context of the CONCEPT project was implemented. This was done
to demonstrate how they can assist software developers regarding particular source code

comprehension applications. Its architecture is illustrated in Figure 4.2.1.

40

Refactoring Reengineering Debugging Comprehension Applications

il

il

e Metrics Structure Behavior Features
Program Slicing Computation Recovery Recovery Extraction Analyzer

Information
Extraction
Implemented
Java Source .
Modified Code PostgreSQL:
iabose
Used -

Figure 4.2.1 CONCEPT Architecture

The CONCEPT environment was implemented using a layered system architecture, with
the PostgreSQL database acting as a repository for all shared data. The components of
the diagram which are in black were implemented as part of this thesis. The ones in dark
gray already_existed. They were modified to suit the needs of the present research. The

components in light gray are used by the implemented and modified ones.

41

The database stores information extracted by parsing and instrumenting the source code
of Java programs. This information can be accessed by the different components of the
Analysis layer using the Database APL. The results generated by the analysis of a
program of interest can then be visualized using the Visualization layer and used by the

different applications.
4.3 PARSING

A necessary first step in supporting the comprehension of a system is the extraction of a
concrete model, i.e., a representation of the implemented system. This model contains,
among other things, a set of elements (e.g., files, classes, methods, variables), a set of
relations be:[ween the elements (e.g., a file contains classes, a class contains methods, a
method defines variables), as well as a set of attributes of these elements and relations
(e.g., method A calls method B n times, variable C has type D) [KAZ99]. A model can
represent the different views of a system. A view can be classified as either static or
dynamic. A static view is obtained by observing only the artifacts of the system, while a

dynamic view is acquired by observing the system during its execution [KAZ03].

In the CONCEPT environment, the static view of a system is extracted using a parser.
There exists several parsers and parser generators for the Java programming language.
The one which was selected is javac. It was preferred over the other ones because it can

perform semantic analysis and its source code is available. In [ZHAO3], Yonggang

42

Zhang, a member of the CONCEPT project, modified it to suit the needs of the research

group. Its structure is illustrated in Figure 4.3.1.

Unsolved Solved
Tokens Symbols Symbols
| e
Lexical Syntactic Semantic Code
Analyzer Analyzer Analyzer Generator

n > S—_—
Tables d>
ostgre
AST AST Database
Generator Analyzer E %

Figure 4.3.1 Parser Structure

The modified javac behaves just like the javac compiler included in the Java 2 Standard
Developer’s Kit (SDK): it reads class and interface definitions and compiles them into
bytecode class files. After the symbol table is created, another program is invoked. This
program reads the symbol table to generate a predefined Abstract Syntax Tree (AST)
structure for each of the compiled classes. These ASTs are then partially normalized and
stored in their corresponding table in the PostgreSQL database. Figure 4.3.2 displays the

partial AST of a method.

43

B 1311105] {line:135, offset: 3769)
i1 {1 [109) (line:138, offset3769)
declaration [107] {line:136, offset:3780)
D 0 [181}] {line:0, offset.0)
©- (&1 var decl [108] (line:1 36, offset:3791)

¢ 7 aTestRunner.32919302 [185] (line:138, offset:3791)

[3 0 [181] {line:D, offset:0)
E} junit textui. TestRunner [161] (line:0, offset:10)

number [186] (line.0, offset.0)
“ Y 1 1187] (line:0, offset:0)
read [188] (line:0, offset.0)
: - D 1 [189] {line:0, offset:0)
C? write [190] (line:0, offset.0)
[0 p191] (ine:0, offset.0)
il scope [182] (line:0, offset:0)
[4 (193] (line:0, offset.0)
init [196] (line:0, offset.0)
@B new [42] (line:136, offset:3804)

D junittextui. TestRunner [161] (line:0, offset:10}
‘? right [5640] (line:0, offset.0)
| - type expr [147] (line:1 36, offset:3808)
* D junittextui TestRunner [161] (line:0, offset:10)
‘ D argument [762] (line:0, offset.0)
] rofe ffcp

Figure 4.3.2 AST Example

4.4 DATABASE API

It is very difficult to analyze a program using the semantic level ASTs generated by the
parser. A large number of recursive operations are needed to traverse an AST and search
for a particular piece of information. For this reason, each AST is further parsed into an
object-oriented model. This reduces the complexity of extracting the information from
the PostgreSQL database and acts as an API used to analyze the results generated by the

javac parser. Figure 4.3.3 shows the partial class diagram of the database API [ZHAO3].

44

SourceElement

JavaFile
\\—/
ClassDef
PackageDefI | importDef | NMemberet
[BodyElement] | LocalVariable| | Throwspef | [ExtendsDef | [implementsDef
I Statement | | Expression l

!

Figure 4.3.3 Partial Class Diagram of the Database API

As illustrated in Figure 4.3.3, each element of the Java programming language is either
represented as an object of type SourceElement or as one of its subclasses. The class
JavaFile represents a java source code file which contains a package statement
(Packagebef), an import statement (ImportDef), and a class definition (ClassDef). A
class definition can inherit another class (ExtendsDef) and implement an interface
(ImplementsDef). The class MemberDef represents an instance variable, a method, or an

inner class, in which statements and expressions can be defined.

4.5 EXTRACTION OF RUN TIME INFORMATION

In [Low01], Lowe et al. show that there are four different alternatives to obtain run time

information: Code instrumentation, annotation of run time environments, post mortem

45

analysis, and on-line debugging or profiling. The two alternatives which were considered
in the present research are the on-line debugging approach using the Java Debug
Interface and automatically instrumenting the source code using an instrumentation

toolkit.

4.5.1 On-Line Debugging Using the Java Debug Interface

The Java Debug Interface is part of the Java Platform Debugger Architecture (JPDA), a
multi-tiered debugging architecture which allows tool developers to easily create
debugger applications that run portably across platforms, virtual machine
implementations, and software development kit versions [SUNO4]. The JPDA consists of
three layers: the Java Virtual Machine Debug Interface (JVMDI), the Java Debug Wire

Protocol (JDWP), and the Java Debug Interface (JDI).

The JVMDI is the lowest layer within the JPDA. It defines the services a virtual machine
must provide for debugging, such as inspecting the state of a running Java application
and controlling its execution. The JDWP is the protocol used by a debugger and the
virtual machine it debugs to communicate. It defines the format of information and
requests transferred between them. The JDI is the highest layer of the JPDA. It is an
application programming interface that provides useful information for debuggers and
similar systems, which need access to a running virtual machine’s state as well as explicit
control over its execution. Even though implementers of debuggers can use the JDWP or

JVMDI directly, the JDI makes easier the integration of debugging capabilities into

46

development environments. Therefore, Sun Microsystems suggests its use for the

development of debugger applications.

Using the JDI, an application was developed to run a Java program and generate a trace
of its execution. One advantage of this approach is that it does not modify the source
code of the program to trace. It also provides an introspective access to a running virtual
machine’s state, classes, arrays, interfaces, primitive types, and instances of those types.
Furthermore, it allows to have explicit control over a virtual machine’s execution, such as
the possibility to suspend and resume threads, set breakpoints, watchpoints as well as

inspect a suspended thread’s state, local variables, and stack backtrace [SUN04].

However, this approach has some severe performance problems [HEUO2]. These are
caused by the fact that the program which is being debugged launches its own virtual
machine. This results into expensive interprocess communication between the debugger

and debuggee processes.

For example, starting the SwingSet2 application available on the Java 2 SDK version
1.4.2, loading all the demos it contains, and then closing it takes approximately 4.13
seconds on a 2.66 GHz Pentium 4 with 1024 MB of memory running Windows XP. In
comparison, when the tracing program with the JDI is used to run the same application
and collect information related to this particular program execution, the whole process

takes about 108.38 seconds, a 2524.21% increase.

47

 Number of Executed Statements | = Time in Seconds
SwingSet2 17 823 4.13
SwingSet2 + JDI 17 823 108.38

Table 4.5.1.1 Overhead of the On-Line Debugging Approach Using the JDI

4.5.2 Automatically Instrumenting the Source Code

Due to the performance issue outlined above, another approach was considered. It
consists of instrumenting the source code of a Java program in order to trace each source

code line as it is executed.

The instrumentation of the source code is done automatically using the instrumentation
toolkit developed by Glen McCluskey & Associates LLC [GLE04], an object-oriented
technology firm based in Colorado and specializing in the C++ and Java programming

languages.

The toolkit consists of the instr and query Java packages. instr instruments Java source
code. It can be used to count the number of times each statement of a program is
executed, do method-level instrumentation, or trace individual source code lines. instr is
built on the query package, which parses a Java source program into an internal tree

structure. instr then operates on the tree representation of the program, adding additional

information to it.

One of the programs supplied with the instr package is instr trace. It allows to

instrument a Java program such that each of its source code line is printed on the console

48

output as it is executed. instr_trace accomplishes this by performing the following steps
for each of the program files. First, it reads the source code file and parses it into a tree
structure while preserving all the comments and white spaces. The parse tree is
subsequently annotated with the necessary instrumentation. Afterwards, the annotated
tree is written back to the file. To collect the run time information, the instrumented file
then needs to be compiled and executed. The instrumentation code can later be removed

using another program called uninstr.

Figures 4.5.2.2 and 4.5.2.3, taken from the instr documentation, show respectively an
excerpt from the instrumented program of Figure 4.5.2.1 and the output it generates. The

/* 1%/ and /*1_x/ are structured comments which are used to enclose the added

instrumentation code.

System.out .println(n) ;

}

1 public class loop {

2 public static void main(String args([])
30

4 int n = 1;

5 for (int i = 1; i <= 10; 1i++)

6 n=mn* 1i;

7

8

9

——

Figure 4.5.2.1 Sample Program

public class loop {
public static void main(String args(])
{/* _I*/instr.InstrUtil.showLine("loop.java", 2) ;/*1_*/
}

Figure 4.5.2.2 Excerpt of the Instrumented Sample Program

49

This approach reduces the

3628800

[loop.java 2}
[loop.java 4]
[loop.java 5]
[loop.java 6}
[loop.java 6}
[loop.java 6]
[loop.java 6]
[Loop.java 6]
[loop.java 6]
[loop.java 6]
[loop.java 6]
[loop.java 6]
[loop.java 6]
[loop.java 7]

public static void main(String args({])
1;
for (int i

int n =

=i

{1 T | N | Y | SO N { O 1}

BBEBBBOBBDB

n

BBBBBBBEDB

n =

System.out.println(n) ;

L T A

*

i

[N O ol e

1; 1 <= 10; i1++)

Figure 4.5.2.3

Output Generated by the Instrumented Sample Program

overhead of the previous one. The time it takes to start the

instrumented SwingSet2 application is approximately 7.98s, a 92.64% improvement.

_Number of Executed Statements | Timein Seconds
SwingSet2 17 823 4.13
SwingSet2 + instr 17 823 7.98
SwingSet2 + JDI 17 823 108.38

Table 4.5.2.1 Overhead of Instrumenting the Source Code Using instr

4.5.3 Modifications Made to instr

One problem with the instr_trace program is that its output is written on the console.

Furthermore, even if it is redirected from the console output to a file, it tends to produce

files of a considerable size for large execution traces, since for each executed source code

line, the file name, line number, and source code are written. For this reason, the

instr_trace program was decompiled using the JAD decompiling engine [JAD04] to

reconstruct the original source code from the compiled binary class files. instr_trace was

then modified in order to write the execution trace directly to a file. Moreover, to reduce

50

the size of the output file, only a key uniquely identifying the file name and the line
number are written for every executed program source code line. The file key is

automatically generated when the Java program to analyze is being parsed.

Another modification made to the instr package consisted of adding a program which
reads an output file generated by instr_trace and stores it into the PostgreSQL database.
This modification also required the addition of two tables in the database to store the run

time information.

4.6 PROGRAM SLICING ALGORITHM

The program slicing algorithm used in the coarse and fine-grained slicing based testing
approaches is a modified version of the dynamic program slicing algorithm with

removable blocks proposed by Korel [KOR95, KORITA].

4.6.1 Removable Block

Korel defines the concept of removable block (or block) as “the smallest part of program
text that can be removed during slice computation without violating the syntactical
correctness of the program” [KOR97A]. Examples of blocks are assignment, input, and
output statements. The conditional expressions of control statements are not removable

and as a result, are not considered as blocks. Each block B has a regular entry and exit,

51

referred respectively as its r-entry and r-exit. In Figure 4.6.1.1, the removable blocks of a

sample program are displayed as rectangles.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

class SampleProgram ({

}

public static int max{int a, int b)

if (a >= b) B,

[retuen a] B

else

[zetarn 57] By

{

public static int min(int a, int b)

if (a <= b) By

B,

else

Bus

{

B;

BlO

public static void main(String args{])

lint array[] = (1, 2, -3};] Byg

[int max = array[0]; | By
]int min = array[0}; I By
lint sum = arrayl[0]; | By

{

for{int i = 1; i < array.length; i++) {| By
[max = max(array[i], max) ;| By
[min = min(array[i], min) ;| B,s
[sum += array[i]; | By
}
[System.out.println(max + " " +min + " " + sum);

Bas

Figure 4.6.1.1 Removable Blocks of a Sample Program

4.6.2 Dynamic Program Slicing Algorithm with Removable Blocks

The goal of the other dynamic program slicing algorithms, e.g., [AGR90, GOP91, and

KOR88], is to identify the actions in the execution trace 7, which contribute to the

computation of a slicing criterion C = (x, y?). This is achieved by deriving the data and

52

control dependencies. However, identifying the actions which do not contribute to the
computation of variable)7 is equally important. The more non-contributing actions are

identified, the smaller may be the resulting slice.

In the present algorithm, the data dependencies are used to identify the contributing
actions and the removable blocks, the non-contributing ones. Informally, a block can be
removed from a program if its removal does not disorder the flow of execution for input x
and none of the executed actions it contains contribute to the computation of y?. Let By,
B, and B3 be a sequence of three blocks. Block B, can be removed if during the
execution of the program for input x (1) the execution exits from block B; through its r-
exit, (2) enters block B, through its r-entry, (3) leaves B, through its r-exit, (4) enters
block Bj through its r-entry, and (5) none of the executed actions within B, contribute to
the computation of y? [KOR97A]. If B, is removed and the program is executed for the
same input x, then after leaving B, through its r-exit, the execution will enter B3 through
its r-entry. This removal will not affect the flow of execution nor the computation of

variable 7.

4.6.3 Description of the Algorithm

The dynamic program slicing algorithm with removable blocks is displayed in Figure

4.6.3.2 [RIL98]. The following concepts are used in the algorithm. U(Y?) is the set of

variables used at action Y*. D(Y¥?) is the set of variables defined at action ¥. The last

53

definition of variable v* in the execution trace T is the action ¥” such that (1) v e D(Y)

and (2) for all i, p <i <k and all Z such that T}, (i) = Z, v & D(Z') [KOR9TA].

N(B) designates all the program statements contained within block B. S(B, k;, k;) denotes
a block trace, which is the part of the execution trace corresponding to the execution of
block B. More formally, a block trace is a subtrace of execution trace T, where (1) & is
the position of the r-entry of block B, (2) k; is the position of the r-exit of B, and (3) the

execution does not exit from block B through its r-exit between & and &; - 1 [KOR97A].

Figure 4.6.3.1 shows the execution trace as well as the block traces of the sample

program displayed in Figure 4.6.1.1.

54

17t
182
19°
20*
21°

23°

2511
1012
1113
1414
2615
2416

317

418

25%
1021
1122
1223

2 624

2825

public static void main(String args(])

int arrayll = {1, 2, -3};
int max = array{0];
int min = array(0];

int sum = array([0]:

for(int i = 1; i < array.length; i++)

max = max(arrayl[i], max);

public static int max(int a, int b)
if (a >= b)

return a;

nin = min(array[i], min);

public static int min(int a, int b)
if (a <= Db)

return b;

sum += array[il;

max = max(arrayl[il, max);

public static int max(int a, int b)
if (a >= b)

return b;

min = min(array{il, min);

public static int min{int a, int b)
if (a <= b)

return a;

sum += arrayl[i];

_1Bus
1B
1By
1By

B,
IBs_| |

By
B | _|
_JBss

B,
1B, _|

By

1B |
jBZG

System.out.println{max + " " + min + " " + sum);:]Bzg

B,

Figure 4.6.3.1 Execution Trace and Block Traces of the Sample Program

55

Input: a slicing criterion C = (x,)
Output: a dynamic slice for C

7y

execution trace up to position g

®:a set of block traces
Rc: a set of blocks

[Ci

=0 00 ~1ON L kLN

11
12
13
14
15
16
17
18
19
20

a set of contributing actions

Execute program P on input x and record execution trace Ty up to position g
Initialize Rc to a set of all blocks in program P
Mark all actions in T as neutral and not visited (I¢ := @)
Find and mark as contributing the last definition of y7
repeat
Find contributing actions
Find non-contributing actions
Mark all neutral actions as contributing
until all actions are marked as contributing or non-contributing in 7} up to position g

Show a dynamic slice that is constructed from P by removing all blocks that belong
to Rc.

procedure Find contributing actions
while there exists a contributing and not visited action in 7, do
Select a contributing and not visited action X* in T,
Mark X* as a visited action (e =Ic U {X)
for all variables v € U(X") do
Find and mark as a contributing action the last definition of v
endfor
for all blocks B € Rc- do
if X € N(B) then R¢c :== Rc - {B}
endfor
endwhile
end Find contributing actions

Figure 4.6.3.2 Dynamic Program Slicing Algorithm with Removable Blocks

56

procedure Find non-contributing actions
21 Mark as neutral all actions that are not marked as contributing (®¢ := @)
22 p:=1

23 repeat
24 Let X* be an action at position p in T,
25 if X* is not a contributing action (X ¢ Ic) then
26 Let B be a block which has an r-entry at position p
27 if B € Rc then
28 if there exists an r-exit from block B at position p; such that
29 (1) p<p;<q
30 (2) all actions between p and p; are not marked as contributing
31 then
32 Mark all actions between p and p; as non-contributing (D¢ 1= O¢ U
{SB.p.rn})
33 —
34 p : pi
endif
35 endif
36 endif
37 p=p+1

end Find non-contributing actions

Figure 4.6.3.2 Dynamic Program Slicing Algorithm with Removable Blocks (Continued)

The first step of the algorithm consists of recording the execution trace of the program up
to execution position g. Rc is then set to contain all the blocks in the program. Each
action in the execution trace can be in one of the following states: contributing, non-
contributing, or neutral. Initially, all actions are marked as neutral and not-visited. In

step 4, the last definition of)7 is located and this action is marked as contributing.

The algorithm then iterates in the repeat loop consisting of lines 5 to 9 until all actions of
the execution trace are either marked as contributing or non-contributing. Inside this
loop, there are three steps. Step 6 identifies the actions which contribute to the
computation of y?. In step 7, using the set of contributing actions, the algorithm identifies

the non-contributing ones. The actions which are not identified as contributing or non-

57

contributing are marked as contributing in step 8. They will be visited on the next

iteration of the repeat loop.

In step 6, the contributing actions are identified. This procedure, which consists of a
while loop, is detailed in lines 11 to 20. On each iteration, a contributing and not visited
action X* is selected, marked as contributing, and added to the set I of contributing
actions. In lines 14 to 15, the last definition of each variable used at X* is identified and
marked as contributing. The next step consists of removing from R all the blocks which
contain statement X. The while loop iterates until all the contributing actions have been

visited.

In step 7, the non-contributing actions are identified. This procedure is presented in more
detail in Figure 4.6.3.2. Initially, it marks all actions as neutral if they have not already
been marked as contributing. It then searches the execution trace from the beginning
looking for actions which have been marked as neutral. If such an action X” is found, the
procedure then tries to find a block trace S(B, p, p;) where B is in Rc and all the actions
between p and p; are not marked as contributing. If such a block trace is found, then all
the actions within this block trace are marked as non-contributing, the block trace is
added to the set @, and the algorithm resumes its search at position p;. If not, then the
algorithm tries to find the next neutral position starting from position p + 1. This

procedure continues until it reaches position ¢ in the execution trace.

58

If the above algorithm is applied for variable sum at position 25 of the execution trace

displayed in Figure 4.6.3.1, the slice is computed as follows:

After the first iteration of the repeat loop:
Io = {18% 21°, 23° 26", 26*}
Rc = {B3, Bs, Bs, By, Bio, B11, Bz, Bia, Bry, Bao, Ba4, Bas}

D¢ = {5(B19,3,4), S(B20,4,5), S(B24,7,11), S(B35,11,15), 5(B24,16,20), S(B25,20,25)}

Action 17" is marked as contributing in step 8, since it does not belong to Ic nor to any of

the block traces of ®c.

After the second iteration of the repeat loop:
Ic={17',18% 21°, 23°% 26" 26*}
Rc = {B3, Bs, Bs, By, Bio, B11, B2, B1a, B19, Bao, B2a, Bs}

(DCZQ

The dynamic slice shown in Figure 4.6.3.3 is obtained by removing all the blocks which

belong to R¢.

59

1 class SampleProgram {

2

17 public static void main(String args[])
18 int array{]l = {1, 2, -3};

21 int sum = array (0] ;

22

23 for(int 1 = 1; 1 < array.length; i++) {
26 sum += array[i];

27 }

28 System.out.println{max + " " + min + " " + sum);
29

30 }

Figure 4.6.3.3 Dynamic Slice for Variable sum at Statement 28

4.6.4 Modifications Made to the Algorithm

Figure 4.6.3.2 constitutes the dynamic program slicing algorithm with removable blocks

proposed by Korel. Its correctness has been proved in [KOR95, KOR97A].

However, the problem with this algorithm is that it was designed for the procedural
version of the Pascal programming language. As a result, it had to be modified to suit the
context of this research and compute dynamic slices for object-oriented programs written

in Java.

The modifications are contained in Figure 4.6.4.1. This procedure was added so that the
algorithm can handle constructor and method calls. Even with this addition, the
algorithm still computes correctly dynamic slices. The set of removable blocks R fulfill
the four conditions a dynamic slice must satisfy as identified and proved by Korel in
[KOR97A]. Informally, these conditions are as follows: (1) each action in the execution
trace is either contributing or non-contributing, but not both, (2) the last definition of y7 is

in I, (3) for each action X* which belongs to Ic, the last definition of all the variables

60

used at X* are also included in /¢, and (4) if an action X*is in I, then statement X cannot

belong to a block which is in R¢.

procedure Mark action as contributing
38 Let X? be an action at position p in T}
39 Let S(B, p, p1) be a block trace with an r-entry at position p
40 Mark X? as a contributing action
41 for all method calls at X* do

42 if the return type of the method is void then

43 mark as contributing all the actions which belong to the body of the method
between positions p and p,

44 else

45 mark as contributing the return statement of the method located between
positions p and p,

46 endif

47 endfor

48 for all constructor calls at X* do

49 mark as contributing all the actions which belong to the body of the constructor

between positions p and p;
50 endfor

end Mark action as contributing

Figure 4.6.4.1 Procedure Added to the Algorithm

If an action is marked as contributing and this action contains a method call with a return
type other than void, then the return statement of the method body is also marked as
contributing. For example, Figure 4.6.4.3 shows the execution trace of the sample
program of Figure 4.6.4.2. If the first action in the execution trace is marked as

contributing, then the return statement associated with the method call at position 4 will

also be marked as contributing.

61

10 int result = abs(-1);

15 public static int abs(int a) {
16 if (a »= 0)

17 return a;
18 else
19 return -a;

20 }

Figure 4.6.4.2 Sample Program with a Method Call

_ Actions State
int result = abs(-1); contributing
15% public static int abs(int a)
16® if (a »>= 0)
19* return -a; Contributing

Figure 4.6.4.3 Execution Trace of the Sample Program of Figure 4.6.4.2

In the case of an action with a constructor or method call with a void return type, then all
actions within the body of the constructor or method are also marked as contributing. For
example, Figure 4.6.4.5 displays the execution trace of the sample program of Figure
4.6.44. If the first action of the execution trace is marked as contributing, then all

actions from position 2 to 5 will also be marked as contributing.

10 Box myBox = new Box(10, 20, 15);

15 public Box (double w, double h, double d) ({

16 width = w;
17 height = h;
18 depth = 4d;

19 }

Figure 4.6.4.4 Sample Program with a Constructor Call

62

Execution Trace . Actions State

10’ Box myBox = new Box(10, 20, 15); contributing
157 Box (double w, double h, double d) | contributing
16° width = w; contributing
17* height = h; contributing
18°% depth = d; contributing

Figure 4.6.4.5 Execution Trace of the Sample Program of Figure 4.6.4.4

4.6.5 Implementation of the Algorithm

The modified version of the dynamic program slicing algorithm with removable blocks
was implemented as part of this research using the Java programming language. The

principal classes and relationships of its implementation are displayed in Figure 4.6.5.1.

AN
'
- l Variabl% References Ief\——_—
1 Classes I SourceFiiesK |
ExecutionTrace| |lVlethodCallsl |Constructou0alls] l Blocks }—~—>I Statements E:ontrnll‘ pend [E‘ dsD denci —I
Block% _ I lRemovableancks]MethodDependenaesI]CIassDepem’jencles)éJ
DynamicSlice

Figure 4.6.5.1 Class Diagram of the Dynamic Program Slicing Algorithm

The algorithm itself is implemented in the Dynamicslice class. However, in order to

compute slices, it needs both static and dynamic information about the Java program of

63

interest. This information is contained in the remaining classes, most of which are
subclasses of BaseMap. As indicated by its name, the BaseMap class stores associations

between keys and values.

The dynamic information required by the algorithm is stored in the ExecutionTrace and
BlockTraces classes. These represent respectively a recorded execution trace, as

generated by the instr_trace program, and the corresponding set of block traces.

The remaining classes contain the static information which is generated by the parser.
The information about the defined classes is stored in the class of the same name, while
the data about the files which hold the source code of a program are stored in the
SourceFiles class. Since both classes are used by several others, a subclass of BaseMap

was defined which holds a reference for each of them.

The MethodCalls and ConstructorCalls classes contain respectively all the methods
and constructors which are invoked throughout the program. These are used to generate

the block traces as well as compute slices.

As indicated by their names, the class RemovableBlocks stores the blocks which can be
removed by the program slicing algorithm, e.g., methods, constructors, and statements.
On the other hand, the NonRemovableBlocks class stores the ones which cannot be
removed, €.g., classes, instance variables, and interfaces. In order to generate the set of

blocks of a program, control dependencies are needed. These are defined in the

64

ControlDependencies class. The MethodbDependencies subclass contains the control
dependencies inside methods, while the classDependencies subclass contains the ones
for classes. The MethodDependencies are used to generate the set of removable blocks,

and the classDependencies, the non-removable ones.

In order to compute slices, the algorithm needs the set of variables which are defined and
used at each step of the program’s execution. This information is stored in the
References class. This class contains all the variables which are declared, written, and

read at each source code line.

The ExtendsDependencies and Statements are the last two classes. The first one

contains the inheritance hierarchies. The second one stores the location of a number of

particular program statements, e.g., if, while, for, and return. These are used to generate

the set of block traces and compute slices.

4.7 TESTING

4.7.1 Execution Based Testing

As mentioned in section 4.5.3, the execution trace generated by instr trace is written into

a file and consists of a file key and line number for each of the executed source code line.

To compare and measure the differences between the execution traces of the baseline and

65

modified versions of a program, the Beyond Compare [sC004] utility version 2.2.3 is

used.

Beyond Compare, by Scooter Software, is an advanced file and folder comparison utility
for Windows. It contains a wide range of file and text operations as well as script
commands for automating tasks. Its major components are a side-by-side folder and file
viewers, which allow to visualize the differences between two files or folders in detail

and carefully reconcile them.

Once the execution traces of the baseline and modified versions of a program are
recorded, the resulting files are opened with Beyond Compare. Figure 4.7.1.1 shows a
screen capture of two execution traces that were analyzed. These are the ones of the

CoinBox class of section 3.1.

66

05 (5] 140612004 5:45:40 M.

1117 44
|§117 44

Figure 4.7.1.1 Comparison of Execution Traces in Beyond Compare

In the present example, Beyond Compare clearly highlights the difference between the
two execution traces. As mentioned previously, this difference is due to the fact that one
statement in the modified version of the coinBox class was commented out and as a

result, was not executed.

On the left edge of the display, there is a thumbnail view. It represents each line of the
comparison as a colored line of one pixel high. It allows to see at a glance the pattern of
differences throughout the comparison. The white rectangle shows the current view

displayed in the main window, while the small triangle corresponds to the line currently

67

displayed. Clicking on a line of the thumbnail will display the line at that position in the
main window. The thumbnail view is particularly useful when execution traces of a

considerable size are compared.

4.7.2 Coarse-Grained Slicing Based Testing

The output of the program slicing algorithm of section 4.6.3 consists of a set of blocks
which need to be removed from a program in order to obtain a dynamic slice. Like in the
previous approach, the Beyond Compare utility is used to analyze the resulting slices for

the baseline and modified versions of a program.

Once the non-contributing blocks have been removed from the two versions of the
program, the complete paths containing the slices are typed into the left and right edit

controls of Beyond Compare, as illustrated in Figure 4.7.2.1.

Baseline = dodified [Beyond Compare]

]C empiBaseline | g Al v
i ;; 5 = & R

g L . | Name TModfied]

494 14062004 1531126 pm e

Figure 4.7.2.1 Comparison of Folders in Beyond Compare

68

Figure 4.7.2.1 shows that the files contained in the two folders are different. Clicking on
the selected line will open another window which highlights the differences between the

two dynamic slices. This is illustrated in Figure 4.7.2.2.

CoinBox. java [File Yiewer]
S 2

h Wi

T class CoinBox { class CoinBox {

private int qtrsCollected; K private inc qrrsCollected:
private int qtrsInserted; private int qtrsinserted;
private boolean vendingEnabled; ¥ private boolean vendingEnabled:

public CoinBox() {
LY, ed =

:class Driver { 9. class Driver {
public static void main{String args[]) { ; public static void main(String argsf]) ¢
CoinBox coinBox = new CoinBox{): CoinBox coinBox = new CoinBox(}:

Figure 4.7.2.2 Comparison of Slices in Beyond Compare

Even though the two slices of Figure 4.7.2.2 consist of only one file, Beyond Compare is
also able to differentiate slices consisting of several files stored in a number of

directories.

69

4.7.3 Fine-Grained Slicing Based Testing

For the last testing approach, an algorithm was designed and implemented in Java to
compute the set of influencing variables at each step of the program execution. This

algorithm is detailed in Figure 4.7.3.1.

The algorithm takes as parameters a recorded execution trace T, on input x, a slicing
criterion C = (x, y?), and a set of contributing actions Ic. All of these parameters are the

same as the ones used in the dynamic program slicing algorithm with removable blocks

of section 4.6.3.

Input: an execution trace 7, on input x up to position ¢
a slicing criterion C = (x,)
a set of contributing actions /¢

Output: an execution trace annotated with the set of influencing variables at each point
of the program execution

Find the last definition X” of 7
fori:=qgtop+1do
add y to the set of influencing variables for action X'
endfor
for all actions X* I~ do
for all variables v € U(X") do
Find the last definition X” of v
fori:=ktop+1do
add v to the set of influencing variables for action X*
10 endfor
11 endfor
12 endfor
13 Display the annotated execution trace

OO0~ N R WD e

Figure 4.7.3.1 Algorithm to Compute Influencing Variables

70

The algorithm begins by finding the last definition X* of the slicing criterion. Once it has
found it, variable y is added to the set of influencing variables for all actions between
positions ¢ and p + 1. The reason it stops at p + 1 and not at p is because the influencing
variables at a particular position are the variables which influence the slicing criterion

before the action is executed.

In the second part of the algorithm, the last definition X” of every variable v used at each
of the contributing action X' is found. Like in the previous part, v is then added to the set

of influencing variables for all actions between positions k and p + 1.
The comparison of the influencing variables for the baseline and modified versions of a

program is also done using Beyond Compare. Figure 4.7.3.2 shows the influencing

variables for the two versions of the coinBox class.

71

nfluencing Variables txt [File Viewer)]

gx

fcoinBox] 3 {coinBox]
[coinBox] 4 [coinBox]
[coinBox}

Figure 4.7.3.2 Comparison of Influencing Variables in Beyond Compare

The fine-grained slicing based testing approach also consists of comparing the
contributing actions computed by the dynamic program slicing algorithm. However, this

comparison has to be done separately, as illustrated in Figure 4.7.3.3.

72

Figure 4.7.3.3 Comparison of Contributing Actions in Beyond Compare

4.8 LIMITATIONS

Like almost all research projects, the implementation of this one is not perfect and has

some limitations. The most important ones are discussed next.

4.8.1 Execution Based Testing

As mentioned in section 4.5.3, an execution trace consists only of a file key and a line

number for each executed source code line. Although the key is the same for both the

73

baseline and modified versions of a file, there may not be such a correlation in the case of
the line numbers. For example, if a line of source code is removed or added in the
modified version of a program, then all the line numbers coming after will be shifted up
or down with respect to the baseline version. As a result, the comparison of the two
execution traces will show several differences and will therefore complicate the analysis
of the results. Though this limitation seems to be serious enough, execution traces are
not recorded to be only compared. They are also required in order to compute dynamic

slices, contributing actions, as well as influencing variables.

4.8.2 Inner Classes

Although the program slicing algorithm is dynamic, it still has to rely on static
information generated by the parser. This is because the dynamic information provided
by the instr_trace program is minimal: for each executed source code line, the output

consists only of the file name and line number.

Presently, the parser cannot handle inner classes. As a result, the dynamic program
slicing algorithm cannot compute slices for Java programs which make use of inner and

anonymous inner classes.

74

4.8.3 Instance Variables

Another limitation of the parser which affects the program slicing algorithm involves
objects. When a method is invoked on an object, the parser cannot determine whether or
not new values are defined for its instance variables. The only information it provides is

that the object is used.

The consequence of the above issue is as follows: if the last definition X* of object 7
needs to be found, then all actions between positions p and ¢ in which y is read have to be

marked as contributing.

___ Execution Trace . Actions State
45% CoinBox coinBox = new CoinBox () ; contributing
46" coinBox.printTotal () ; contributing
47" coinBox.insertQtr() ; contributing

Figure 4.8.3.1 Execution Trace of a Sample Program with the Contributing Actions

For example, in Figure 4.8.3.1, if the last definition of object coinBox at position 17 has
to be found, then the action at position 10 is also marked as contributing, even though the

printTotal () method only reads the instance variable qtrsinserted.

This limitation of the parser results in the fact that the program slicing algorithm does not

always compute the smallest slice. Sometimes, the slice contains statements which do

not contribute to the computation of the variable of interest.

75

4.8.4 Short-Circuit Logical Operators

In Java, & and | are respectively the logical AND and OR operators. There exists also
secondary versions of these and they are known as the short-circuit logical operators: &&
and | |. If the && and || forms are used instead of the single-character versions, Java will
not evaluate the right-hand operand when the outcome of the expression can be
determined by the left operator alone. For example, in Figure 4.8.4.1, if denom is zero,
there is no risk of causing a run-time exception, since the short-circuit form of AND is

used.

if (denom != 0 && num / denom > 0)

Figure 4.8.4.1 Example of Short-Circuit Logical AND Operator

However, there is one problem with the use of the short-circuit versions of the logical
operators. The control flow of the program cannot be determined statically when there is
a method invoked by either the left or right operator. This in turn complicates the
generation of the set of block traces, since it relies to a great extent on the static
information provided by the parser. As a result, only the single-character version of both

the AND and OR operators are supported by the program slicing algorithm.

76

4.8.5 Non-Executable Slices

Another limitation of the program slicing algorithm is that the slices it computes are not
always executable. For example, in Figure 4.8.5.1, the interface callback declares the
callback() method, which is then implemented by the client class. If, during the
computation of a slice, the algorithm removes the implementation of the callback()

method, then the resulting class will not compile.

interface Callback {
void callback (int param) ;

}

class Client implements Callback {
public void callback(int p) {
System.out .println("callback called with " + p);
}
}

Figure 4.8.5.1 Interface Definition and Implementation

The same situation happens in Figure 4.8.5.2. The subclass B extends the abstract
superclass 4. If the implementation of the callme () method is removed during a slice

computation, then the resulting subclass will not compile.

abstract class A {
abstract void callme();

}

class B extends A {
void callme() {
System.out.println("B's implementation of callme.");

}
}

Figure 4.8.5.2 Abstract Method Definition and Implementation

77

4.8.6 Memory Requirements

As mentioned previously, in order to compute slices, the program slicing algorithm needs
static and dynamic information about a Java program of interest. Currently, this
information is stored in memory. As a result, the algorithm cannot compute slices for
programs which have execution traces of several million statements, since this would

require a prohibitive amount of memory.

4.9 APPLICABILITY

The three testing approaches proposed in this research help analyze the run time behavior
of programs and as a result, detect possible faults. However, they are not substitutes for
the traditional functional and structural testing techniques nor are they applicable to every
situation. This is because there is a non-negligible overhead associated with each of
them. This overhead consists of parsing the Java program of interest, collecting the run
time information using the instrumentation toolkit, as well as computing the necessary
dynamic slices, contributing actions, and influencing variables. Furthermore, once these
have been computed, they have to be compared and analyzed in order to detect possible
behavioral faults. This process can take a significant amount of time and cannot be fully

automated.

Since all of the above activities consume time and effort, the proposed behavioral testing

approaches should preferably be applied to the safety and mission critical components of

78

a system, as a complement to the already existing functional and structural testing
techniques. For example, in the coinBox class, they were successfully applied to the
vendingEnabled instance variable, as it controls whether or not vending should be
allowed. By limiting their use to the most important functions of a system, the benefits

provided by these testing techniques should outweigh their associated costs.

79

5. CASE STUDY

To demonstrate the applicability of the different testing approaches presented in this
research, a case study was performed using JUnit [BEC98]. This particular framework
was selected because its source code is available and it has reached a rather mature

development level.

5.1 JUNIT

JUnit is an open source Java testing framework originally written by Erich Gamma and
Kent Beck. It is used to write and run repeatable test cases. It is an instance of the xUnit
architecture for unit testing frameworks. JUnit consists of 100 class and interface

definitions.

Unit testing consists of testing each component of a system independently to ensure that
they all operate correctly [SoMO1]. In object-oriented programming, a unit can be a class,
several related classes, or an executable binary file [BINOO]. The purpose of unit testing is
to uncover faults in the source code before the components are integrated into a complete

system or subsystem, since the sooner faults are discovered, the easier it is to correct

them.

JUnit defines how to structure unit test cases as well as provides the tools to run them,

record their results, and report errors. Its features include: assertions for testing expected

80

results, test fixtures for sharing common test data, test suites for easily organizing and

running tests, as well as graphical and textual test runners [JUNO4].

5.2 DESCRIPTION OF THE FAULT

In JUnit, the class responsible for displaying the results generated by the text based test

runner is ResultPrinter. A partial listing of its source code is shown in Figure 5.2.1.

W~ U W

el ol el
B W HO W

15
16
17
18
19
20
21

package junit.textui;

import
import
import

import
import
import
import
import
import

public

PrintStream fWriter;
int f£Column;

public ResultPrinter (PrintStream writer) (

java.
java.

java.util.Enumeration;

junit

junit.
junit.
junit.
junit.

junit

class

fColumn
fWriter

io.PrintStream;
text .NumberFormat ;

.framework.AssertionFailedError;
framework.Test;
framework.TestFailure;
framework.TestListener;
framework.TestResult;

.runner .BaseTestRunner;

ResultPrinter implements TestListener {

= 0;
= writer;

Figure 5.2.1 ResultPrinter Class

One of the instance variables of ResultPrinter is fwriter, which is of type

PrintStream. It is through this instance variable that the TestRunner class of Figure

5.2.2 outputs the results of the test cases.

81

W30 U W

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
120
121

package junit.textui;

import java.io.PrintStream;

import junit.framework.*;
import junit.runner.*;

public class TestRunner extends BaseTestRunner {
private ResultPrinter fPrinter;

public static final int SUCCESS_EXIT;
public static final int FAILURE_EXIT;
public static final int EXCEPTION_EXIT;

static {
SUCCESS_EXIT = 0;
FATLURE_EXIT = 1;
EXCEPTION_EXIT = 2;

}

/**

* Constructs a TestRunner.

*/

public TestRunner() {
fPrinter = new ResultPrinter(System.out);

public static void main(String args(l) ({
TestRunner aTestRunner = new TestRunner();

The class TestRunner is a command line based tool used to run tests. One of its instance
variables is fPrinter of type ResultPrinter. The TestRunner constructor initializes it
by passing the standard output stream as an argument to the ResultPrinter constructor.

As aresult, the text based test runner outputs its results on the console, as illustrated in

Figure 5.2.2 TestRunner Class

Figure 5.2.3.

82

Command Prompt

EYPOPD
tdarClassloadi juni Test C i at2java.lang.Clas
tFoundl i i LR .PUnneR.
CaseClass E kupGlassis TestCaseClassloader.

; sun.ref lect.
sun.reflect.

119. Failures

iC:KF»agPam Fileshjunit3.8.1>

Figure 5.2.3 Test Results Generated by JUnit

In order to give the programmers the possibility to save the results of their test cases to a
persistent storage area, JUnit was modified. The changes are highlighted in bold in

Figure 5.2.4.

package junit.textui;

import java.io.PrintStream;

import junit.framework.*;
import junit.runner.*;

0 J0 N A WwN

25 public class TestRunner extends BaseTestRunner (
26 private ResultPrinter fPrinter;

27

28 public static final int SUCCESS EXIT;

29 public static final int FAILURE EXIT;

30 public static final int EXCEPTION EXIT;

31

32 static {

33 SUCCESS_EXIT = 0;

34 FAILURE_EXIT =1;

35 EXCEPTION_EXIT = 2;

36

37

38 /**

39 * Constructs a TestRunner.
40 */

Figure 5.2.4 TestRunner Class - Baseline Version

&3

41 public TestRunner () {)
42 String fileName = null}
43 igave ResulteiAs:
44
45
46

sadliine ()5
eam (new

47
48
49
50
51
52
53
54
55
56
57 3
58}

135 public static void main(String argsi]) ({
136 TestRunner aTestRunner = new TestRunner();

Figure 5.2.4 TestRunner Class - Baseline Version (Continued)

When the constructor of the TestRunner class is invoked, the user is prompted to enter
the name of the file to which the results should be written. The file name is then passed

as an argument to the ResultPrinter constructor.

In Figure 5.2.5, a fault was introduced in the TestRunner class. At line 46, the variable

fileName was commented out and a string literal specifying the name of the file to open

was hard-coded instead.

package junit.textui;

import java.io.PrintStream;

import junit.framework.*;
import junit.runner.¥*;

00U W N

25 public class TestRunner extends BaseTestRunner {
26 private ResultPrinter fPrinter;
27

28 public static final int SUCCESS_EXIT;

Figure 5.2.5 TestRunner Class - Modified Version

84

29 public static final int FAILURE_EXIT;
30 public static final int EXCEPTION EXIT;

31

32 static {

33 SUCCESS_EXIT = 0;

34 FAILURE_EXIT =1;

35 EXCEPTION_EXIT = 2;

36 }

37

38 VAR

39 * Constructs a TestRunner.

40 */

41 public TestRunner() {

42 String fileName = null;

43 System.out .print ("Save Results As: ");

44 try {

45 fileName = new BufferedReader (new InputStreamReader (System.in)).readLine();
46 fPrinter = new R rinter (new PrintStream(new BufferedOutputStream(new

FileOutputStrea sName*/fF: \\Resultsitxt")), true));

47 }

48

49 catch (FileNotFoundException e) {

50 System.err.println("Cannot open the file " + fileName) ;
51 System.exit (1) ;

52 }

53

54 catch (IOException e) {

55 System.err.println("Cannot read console input");

56 System.exit (1) ;

57 }

58 }
135 public static void main(String argsl[])

136 TestRunner aTestRunner = new TestRunner();

Figure 5.2.5 TestRunner Class - Modified Version (Continued)

Even though this fault was introduced on purpose, it is believed that it is one which could
casily occur in pratice: a software developer or tester hard-codes input data instead of
always having to enter them each time the program is executed and forgets to remove
them. If the program is always tested with input values which are the same as the hard-

coded ones, then this fault could escape detection.

The three testing approaches proposed in the present research were applied successively

to determine if they could help in uncovering the fault introduced in JUnit.

85

5.3 Execution Based Testing

The execution trace of the baseline and modified versions of JUnit were recorded and
compared, as illustrated in Figure 5.3.1. In the present case, since no statement was

added or removed, the execution based testing approach cannot uncover the fault because

the two execution traces are identical.

135% public static void main(String args..) 135% public static void main(String args..)
136* TestRunner aTestRunner = new TestRum. 136** TestRunner aTestRunner = new TestRun.
41% public TestRunner () 41% public TestRunner ()

42°% gtring fileName = null; 42% gtring fileName = null;

43 gystem.out.print ("Save Results As:"); 43¥ gystem.out.print ("Save Results As:");
44 try { 44”® try {

45" fileName = new BufferedReader (new .. 45°° fileName = new BufferedReader (new ..
46*° fprinter = new ResultPrinter (new .. 46*° fprinter = new ResultPrinter (new ..
18! public ResultPrinter (PrintStream .. 18" public ResultPrinter (PrintStream ..
19** fColumn= 0; 19** fColumn= 0;

20% fWriter= writer; 20* fWriter= writer;

Figure 5.3.1 Execution Trace of JUnit’s Baseline and Modified Versions

5.4 Coarse-Grained Slicing Based Testing

A dynamic slice was computed for both versions of JUnit with respect to the instance
variable fprinter of the TestRunner class at position 46. The comparison of the two
resulting slices reveals the presence of a fault in the Modified version, since lines 42 and

45 are not part of its slice while they should have been.

86

41
42
44
45
46
47
135
136
146
187 }

___Baseline Version

_Modified Version

25 public class TestRunner extends ..

public TestRunner () {
String fileName = null;

‘Hew BufferedReader (new.
= new ResultPrinter (new ..

public static void main(String args..
TestRunner aTestRunner= new TestRun..

41

44

46
47
135
136
l4e

25 public class TestRunner extends ..

-}

public TestRunner () {

try {

fPrinter = new ResultPrinter (new ..

}

public static void main(String args..
TestRunner aTestRunner= new TestRun.

}

Figure 5.4.1 Slice of JUnit’s Baseline and Modified Versions

5.5 Fine-Grained Slicing Based Testing

For the last testing approach, a dynamic slice was computed for variable aTestRunner at

position 136 in the TestRunner class. The list of contributing actions and influencing

variables were also identified at each point of the program’s execution, as illustrated in

Figures 5.5.1 and 5.5.2.

135%
136™
4135

4 539

Contributing | Influencing. -
L Actions Variables
public static void main(String args(])
TestRunner aTestRunner = new TestRunner();
public TestRunner ()
String fileName = null;
System.out.print ("Save Results As: ");
try {
fileName = new BufferedReader (new InputStreamReader (System.in)) ..
fPrinter = new .. FileOutputStream(fileName)) .. fileName
public ResultPrinter (PrintStream writer)
fColumn= 0; writer
fWriter= writer; writer

Figure 5.5.1 Contributing Actions and Influencing Variables for the Baseline Version

87

Inﬂuencmg
“Variables

135* public static void main(String args(])

136°! TestRunner aTestRunner = new TestRunner ();

41°° public TestRunner ()

42% gtring fileName = null;

43% gystem.out.print("Save Results As: ");

44 try {

45%° fileName = new BufferedReader (new ;nputStremnReader(System in)) ..

46*" fPrinter = new .. FileOutputStream|(
18*' public ResultPrinter (PrintStream w.
19*? f£Column= 0; writer
20* fWriter= writer; writer

Figure 5.5.2 Contributing Actions and Influencing Variables for the Modified Version

Like the previous approach, this one uncovers the fault in the modified version of JUnit.
It indicates that the variable fileName has no influence at position 46, even though

fprinter should use the value which was assigned to it previously, in order to open the

file specified by the user.

5.6 MEASUREMENT OF THE ASSOCIATED OVERHEAD

The time needed to parse JUnit into the database, collect its run time information, as well
as compute the slices, contributing actions, and influencing variables is indicated in the
table below. These data where obtained using a 2.66 GHz Pentium 4 with 1024 MB of

memory running Windows XP, PostgreSQL 7.3.6, and Java 2 SDK 1.4.2.

. . | Time in Seconds
Parse JUnit into the database 66.30
Collect the run time information and store it into the database 0.33 + 23,83
Compute the slice for variable fprinter in class TestRunner 10,312
Compute the contributing actions and influencing variables for 10281
variable aTestRunner in class TestRunner ’

Table 5.6.1 Overhead of the Testing Techniques

88

6. CONCLUSIONS AND FUTURE WORK

After changes have been made to a software system, regression testing has to be
performed. Its purpose is to validate the parts of the software which were modified,
while at the same time ensuring that no new faults were introduced into previously tested
code. In this research, three testing approaches were presented to provide additional
confidence that the run time behavior of a program has not been inadvertently affected by
a software modification. These approaches are execution based testing, coarse-grained

slicing based testing, and fine-grained slicing based testing.

The three testing techniques described, as well as the underlying dynamic program
slicing algorithm, were implemented as part of the CONCEPT research project using the
Java programming language. They can analyze the run time behavior of object-oriented
programs written in Java. The program slicing algorithm implemented is a modified
version of the dynamic program slicing algorithm with removable blocks presented by

Korel [KOR9S, KOR97A].
A case study was also performed using the JUnit testing framework. It provided some
insight into the types of faults that the proposed testing approaches can uncover and

which might escape from the traditional functional and structural testing techniques.

However, in spite of their advantages, these techniques are not applicable to every

situation because of their associated overhead. As a result, to be cost effective, their use

89

should be limited to the most important functions of a system and therefore, complement

the traditional functional and structural testing techniques.

In addition to addressing the limitations discussed in Section 4.8, future work will focus
on finding a metaphor to visualize the results generated by the different testing
approaches. Currently, they are displayed in a text based format, but this is inadequate
since it provides a large amount of information without any abstractions. The proposed
testing techniques should also be applied to industrial production software to validate

their performance, applicability, and usability.

90

7. REFERENCES

[AGROO]

[AGRI93A]

[AGRI3B]

[AGR94]

[BATI3]

[BEC93]

[BECIS]

[BEI9O0]

[BINO4]

[BINOO]

[BINK97]

Agrawal, H. and J.R. Horgan, “Dynamic Program Slicing,” ACM
SIGPLAN Notices, vol. 25, no. 6, June 1990, pp. 246-256.

Agrawal, H., R. DeMillo, and E. Spafford, “Debugging with Dynamic
Slicing and Backtracking,” Software - Practice and Experience, vol. 23,
no. 6, June 1993, pp. 589-616.

Agrawal, H., et al., “Incremental Regression Testing,” Proceedings of the
IEEE Conference on Software Maintenance, Montréal, Canada, September
1993, pp. 348-357.

Agrawal, H., “On Slicing Programs with Jump Statements,” Proceedings
of the ACM SIGPLAN 94 Conference on Programming Language Design
and Implementation, Orlando, Florida, June 1994, pp. 302-312.

Bates, S. and S. Horwitz, “Incremental Program Testing Using Program
Dependence Graphs,” Proceedings of the 20th ACM Symposium on
Principles of Programming Languages, Charleston, South Carolina,
January 1993, pp. 384-396.

Beck, J. and D. Eichmann, “Program and Interface Slicing for Reverse
Engineering,” Proceedings of the 15th International Conference on
Software Engineering, Baltimore, Maryland, May 1993, pp. 509-518.

Beck, K. and E. Gamma, “Test Infected: Programmers Love Writing
Tests,” Java Report, vol. 3, no. 7, July 1998, pp. 37-50.

Beizer, B., Software Testing Techniques, 2nd edition, Van Nostrand
Reinhold, 1990.

Binder, R.V., “Object-Oriented Software Testing,” Communications of the
ACM, vol. 37, no. 9, September 1994, pp. 28-29.

Binder, R.V., Testing Object-Oriented Systems: Models, Patterns, and
Tools, Addison-Wesley, 2000.

Binkley, D.W., “Semantics Guided Regression Test Cost Reduction,”

IEEE Transactions on Software Engineering, vol. 23, no. 8, August 1997,
pp. 498-516.

91

[BINKIS]

[cANIS]

[cHO91]

[cHU02]

[DEUS2]

[DUE92]

[FER87]

[FRA8S]

[FRA93]

[FRA97]

[FrRI92]

[GAL91]

Binkley, D.W., “The Application of Program Slicing to Regression
Testing,” Information and Software Technology, vol. 40, no. 11-12,
November 1998, pp. 583-594.

Canfora, G., A. Cimitile, and A. De Lucia, “Conditioned Program
Slicing,” Information and Software Technology, vol. 40, no. 11-12,
November 1998, pp. 595-607.

Choi, J.-D., et al., “Techniques for Debugging Parallel Programs with
Flowback Analysis,” ACM Transactions on Programming Languages and
Systems, vol. 13, no. 4, October 1991, pp. 491-530.

Chung, L.S., et al., “Abstract Program Slicing,” Proceedings of the 20th
IASTED International Conference on Applied Informatics (Al '02),
Innsbruck, Austria, February 2002, pp. 74-79.

Deutsch, M.S., Software Verification and Validation, Prentice Hall, 1982.

Duesterwald, E., R. Gupta, and M.L. Soffa, “Rigorous Data Flow Testing
through Output Influences,” Proceedings of the 2nd Irvine Software
Symposium (ISS ’92), Irvine, California, March 1992, pp. 131-145.

Ferrante, J., K.J. Ottenstein, and J.D. Warren, “The Program Dependence
Graph and its Use in Optimization,” ACM Transactions on Programming
Languages and Systems, vol. 9, no. 3, July 1987, pp. 319-349.

Frankl, P.G. and E.J. Weyuker, “An Applicable Family of Data Flow
Testing Criteria,” IEEE Transactions on Software Engineering, vol. 14,
no. 10, October 1988, pp. 1483-1498.

Frankl, P.G. and E.J. Weyuker, “A Formal Analysis of the Fault-Detecting
Ability of Testing Methods,” IEEE Transactions on Software Engineering,
vol. 19, no. 3, March 1993, pp. 202-213.

Frankl, P.G., S.N. Weiss, and C. Hu, “All-Uses vs. Mutation Testing: An
Experimental Comparison of Effectiveness,” Journal of Systems and
Software, vol. 38, no. 3, September 1997, pp. 235-253.

Fritzson, P., “Generalized Algorithmic Debugging and Testing,” ACM

Letters on Programming Languages and Systems, vol. 1, no. 4, December

1992, pp. 303-322.

Gallagher, K.B. and J.R. Lyle, “Using Program Slicing in Software
Maintenance,” [EEE Transactions on Software Engineering, vol. 17, no. 8,
August 1991, pp.751-761.

92

[GLEO4]

[GoPI1]

[Gur92]

[HAROS]

[HARI7]

[HARO1A]

[HARO1B]

[HEU02]

[HIE99]

[AIE02]

[HOF95]

Glen McCluskey & Associates LLC, “Java Test Coverage and
Instrumentation Toolkits,” http://www.glenmccl.com/instr/, 2004.

Gopal, R., “Dynamic Program Slicing Based on Dependence Relations,”
Proceedings of the Conference on Software Maintenance, Sorrento, Italy,
1991, pp. 191-200.

Gupta R., M.J. Harrold, and M.L. Soffa, “An Approach to Regression
Testing Using Slicing,” Proceedings of the Conference on Software
Maintenance (CSM °92), Orlando, Florida, November 1992, pp. 299-308.

Harman, M. and S. Danicic, “Using Program Slicing to Simplify Testing,”
Journal of Software Testing, Verification and Reliability, vol. 5, no. 3,
September 1995, pp. 143-162.

Harman, M. and S. Danicic, “Amorphous Program Slicing,” Proceedings
of the 5th International Workshop on Program Comprehension (IWPC
'97), Dearborn, Michigan, May 1997, pp. 70-79.

Harman, M., et al., “Node Coarsening Calculi for Program Slicing,” 8tk
IEEE Working Conference on Reverse Engineering (WCRE ’01), Stuttgart,
Germany, October 2001, pp. 25-34.

Harman, M., et al., “Pre/Post Conditioned Slicing,” Proceedings of the
IEEE International Conference on Software Maintenance (ICSM '01),
Florence, Italy, November 2001, pp. 138-147.

Heuzeroth, D., T. Holl, and W. Léwe, “Combining Static and Dynamic
Analyses to Detect Interaction Patterns,” Proceedings of the 6th World
Conference on Integrated Design and Process Technology (IDPT '02),
Pasadena, California, June 2002.

Hierons, R.M., M. Harman, and S. Danicic, “Using Program Slicing to
Assist in the Detection of Equivalent Mutants,” Journal of Software
Testing, Verification, and Reliability, vol. 9, no. 4, December 1999, pp.
233-262.

Hierons, R.M., et al., “Conditioned Slicing Supports Partition Testing,”
Journal of Software Testing, Verification and Reliability, vol. 12, no. 1,
March 2002, pp. 23-28.

Hoffman, D. and P. Strooper, “The Testgraph Methodology: Automated

Testing of Collection Classes,” Journal of Object-Oriented Programming,
vol. 8, no. 7, November-December 1995, pp. 35-41.

93

[HOR90]

[HOWSO]

[IEE87A]

[IEE87B]

[TAC94A]

[JAC94B]

[JAD04]
[TUNO4]

[KAM92]

[KAM93A]

[KAMI3B]

[kAZ99]

Horwitz, S., T. Reps, and D.W. Binkley, “Interprocedural Slicing Using
Dependence Graphs,” ACM Transactions on Programming Languages
and Systems, vol. 12, no. 1, January 1990, pp. 26-60.

Howden, W.E., “Functional Program Testing,” IEEE Transactions on
Software Engineering, vol. 6, no. 1, January 1980, pp. 162-169.

ANSVIEEE Standard 610.12-1990: Glossary of Software Engineering
Terminology, The Institute of Electrical and Electronic Engineers, 1987.

ANSVIEEE Standard 1008-1987: IEEE Standard for Software Unit
Testing, The Institute of Electrical and Electronic Engineers, 1987.

Jackson, D. and E.J. Rollins, “Abstraction Mechanisms for Pictorial
Slicing,” Proceedings of the IEEE Workshop on Program Comprehension,
Washington, D.C., November 1994, pp. 82-88.

Jackson, D. and E.J. Rollins, “A New Model of Program Dependences for
Reverse Engineering,” Proceedings of the 2nd ACM Symposium on
Foundations of Software Engineering, New Orleans, Louisiana, December
1994, pp. 2-10.

JAD, “JAD Home Page,” http://kpdus.tripod.com/jad.html, 2004.
JUnit, “JUnit FAQ,” http://junit.sourceforge.net/doc/fag/faq.htm, 2004.

Kamkar, M., N. Shahmebhri, and P. Fritzson, “Interprocedural Dynamic
Slicing and its Application to Generalized Algorithmic Debugging,”
Proceedings of the International Conference on Programming Language
Implementation and Logic Programming (PLILP ’92), Leuven, Belgium,
August 1992.

Kamkar, M., P. Fritzson, and N. Shahmehri, “Interprocedural Dynamic
Slicing Applied to Interprocedural Data How Testing,” Proceedings of the

IEEE Conference on Software Maintenance, Montréal, Canada, September
1993, pp. 386-395.

Kamkar, M., P. Fritzson, and N. Shahmehri, “Three Approaches to
Interprocedural Dynamic Slicing,” EUROMICRO Journal of

Microprocessing and Microprogramming, vol. 38, no. 1-5, September

1993, pp. 625-636.
Kazman, R. and S.J. Carri¢re, “Playing Detective: Reconstructing

Software Architecture from Available Evidence,” Journal of Automated
Software Engineering, vol. 6, no. 2, April 1999, pp. 107-138.

94

[KAZ03]

[KOR88]

[KOR94]

[KOR95]

[KOR97A]

[KORI7B]

[KR194]

[KUN96]

[KUN9S]

[LARY4]

[LAR9G]

Kazman, R., L. O’Brien, and C. Verhoef, “Architecture Reconstruction
Guidelines, Third Edition,” Technical Report CMU/SEI-2002-TR-0341,
Carnegie Mellon University, Pittsburgh, Pennsylvania, November 2003.

Korel, B. and J. Laski, “Dynamic Program Slicing,” Information
Processing Letters, vol. 29, no. 3, October 1988, pp. 155-163.

Korel, B. and S. Yalamanchili, “Forward Derivation of Dynamic Slices,”
Proceedings of the ACM International Symposium on Software Testing
and Analysis (ISSTA °94), Seattle, Washington, August 1994, pp. 66-79.

Korel, B., “Computation of Dynamic Slices for Programs with Arbitrary
Control-Flow,” Proceedings of the 2nd International Workshop on
Automated and Algorithmic Debugging (AADEBUG ‘95), Saint-Malo,
France, May 1995, pp. 71-86.

Korel, B., “Computation of Dynamic Program Slices for Unstructured
Programs,” IEEE Transactions on Software Engineering, vol. 23, no. 1,
January 1997, pp. 17-34.

Korel, B. and J. Rilling, “Dynamic Program Slicing in Understanding of
Program Execution,” Proceedings of the 5th International Workshop on
Program Comprehension (IWPC °97), Dearborn, Michigan, May 1997,
pp. 80-89.

Krishnaswamy A., “Program Slicing: An Application of Object-Oriented
Program Dependency Graphs,” Technical Report TR94-108, Clemson
University, Clemson, South Carolina, July 1994.

Kung, D., et al,, “Object State Testing and Fault Analysis for Reliable
Software Systems,” Proceedings of the 7th International Symposium on
Software Reliability Engineering, White Plains, New York, October 1996,
pp. 76-85.

Kung, D.C., P. Hsia, and J. Gao, Testing Object-Oriented Software, IEEE
Computer Society Press, 1998.

Larus, J.R. and S. Chandra, “Using Tracing and Dynamic Slicing to Tune
Compilers,” Technical Report UW-CS 1174, University of Wisconsin-
Madison, Madison, Wisconsin, August 1994.

Larsen, L.D. and M.J. Harrold, “Slicing Object-Oriented Software,”

Proceedings of the 18th International Conference on Software
Engineering, Berlin, Germany, March 1996, pp. 495-505.

95

[LAW94]

[LEJ92]

[LET86]

[Low01]

[LYL87]

[MAR94]

[MOR92]

[MYE79]

[0TT84]

[PANO3]

[PER90]

[PREO1]

Law, C.H.R., “Object-Oriented Program Slicing,” Ph.D. Thesis,
University of Regina, Regina, Canada, 1994.

Lejter, M., S. Meyers, and S.P. Reiss, “Support for Maintaining Object-
Oriented Programs,” IEEE Transactions on Software Engineering, vol. 18,
no. 12, December 1992, pp. 1045-1052.

Letovski, S. and E. Soloway, “Delocalized Plans and Program
Comprehension,” IEEE Software, vol. 3, no. 3, May 1986, pp. 41-49.

Lowe, W., A. Ludwig, and A. Schwind, “Understanding Software - Static
and Dynamic Aspects,” [17th International Conference on Advanced
Science and Technology (ICAST °01), Chicago, Illinois, October 2001, pp.
83-88.

Lyle, JR. and M.D. Weiser, “Automatic Program Bug Location by
Program Slicing,” Proceedings of the 2nd International Conference on
Computers and Applications, Peking, China, June, 1987, pp. 877-883.

Marick, B., The Craft of Software Testing: Subsystems Testing Including
Object-Based and Object-Oriented Testing, Prentice Hall, 1994,

Morell, L.J. and L.E. Deimel, “Unit Analysis and Testing,” Technical
Report SEI-CM-9-2.0, Carnegie Mellon University, Pittsburgh,
Pennsylvania, June 1992.

Myers, G.J., The Art of Sofiware Testing, John Wiley & Sons, 1979.

Ottenstein, K.J. and L.M. Ottenstein, “The Program Dependence Graph in
a Software Development Environment,” Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, Pittsburgh, Pennsylvania, April
1984, pp. 177-184.

Pan, H., “Software Debugging with Dynamic Instrumentation and Test-
Based Knowledge,” Ph.D. Thesis, Purdue University, West Lafayette,
Indiana, 1993.

Perry, D.E. and G.E. Kaiser, “Adequate Testing and Object-Oriented
Programming,” Journal of Object-Oriented Programming, vol. 2, no. 5,
January 1990, pp. 13-19.

Pressman, R.S., Software Engineering: A Practitioner’s Approach, 5th
edition, McGraw-Hill, 2001.

96

[REPSS]

[REPSI]

[RICO4]

[RILIS]

[RILO1A]

[RILO1B]

[RILO2]

[ROT94]

[sco04]

[sm190]

Reps, T. and S. Horwitz, “Semantics-Based Program Integration,”

Proceedings of the 2nd European Symposium on Programming (ESOP
‘88), Nancy, France, March 1988, pp. 133-145.

Reps, T. and T. Bricker, “Semantics-Based Program Integration
Mlustrating Interference in Interfering Versions of Programs,” Proceedings
of the 2nd International Workshop on Software Configuration
Management, Princeton, New Jersey, October 1989, pp. 46-55.

Richardson, D.J., “TAOS: Testing with Analysis and Oracle Support,”
Proceedings of the ACM International Symposium on Software Testing
and Analysis (ISSTA '94), Seattle, Washington, August 1994, pp. 138-153.

Rilling, J., “Investigation of Program Slicing and its Applications in
Program Comprehension of Large Software Systems,” Ph.D. Thesis,
Illinois Institute of Technology, Chicago, Illinois, 1998.

Rilling, J., “Maximizing Functional Cohesion of Comprehension
Environments by Integrating User and Task Knowledge,” 8th IEEE
Working Conference on Reverse Engineering (WCRE ’01), Stuttgart,
Germany, October 2001, pp. 157-165.

Rilling, J. and A. Seffah, “MOOSE - A Task-Driven Program
Comprehension Environment,” Proceedings of the 25th Annual

International Computer Software and Applications Conference
(COMPSAC 01), Chicago, Illinois, October 2001, pp.77-86.

Rilling, J., A. Seffah, and C. Bouthlier, “The CONCEPT Project -
Applying Source Code Analysis to Reduce Information Complexity of
Static and Dynamic Visualization Techniques,” Proceedings of the Ist
International Workshop on Visualizing Software for Understanding and
Analysis, Paris, France, June 2002, pp. 90-99.

Rothermel, G. and M.J. Harrold, “Selecting Tests and Identifying Test
Coverage Requirements for Modified Software,” Proceedings of the ACM
International Symposium on Software Testing and Analysis (ISSTA ‘94),
Seattle, Washington, August 1994, pp. 169-184.

Scooter Software, “Beyond Compare,” http://www.scootersoftware.com/,
2004.

Smith, M.D. and D.J. Robson, “Object-Oriented Programming: The
Problems of Validation,” Proceedings of the IEEE Conference on
Software Maintenance, San Diego, California, November 1990, pp. 272-
281.

97

[som01]

[suN04]

[TIP95]

[VANOO]

[WEIS2]

[WEI83]

[WEI84]

[wiL92]

[ZHAO8]

[zHAO3]

Sommerville, 1., Software Engineering, 6th edition, Addison-Wesley,
2001.

Sun Microsystems, “Java Platform Debugger Architecture,”
http://java.sun.com/products/jpda/, 2004.

Tip, F., “A Survey of Program Slicing Techniques,” Journal of
Programming Languages, vol. 3, no. 3, September 1995, pp.121-189.

Van Vliet, H., Software Engineering: Principles and Practice, 2nd edition,
John Wiley & Sons, 2000.

Weiser, M.D., “Programmers Use Slices when Debugging,”
Communications of the ACM, vol. 25, no. 7, July 1982, pp. 446-452.

Weiser, M.D., “Reconstructing Sequential Behaviour from Parallel
Behaviour Projections,” Information Processing Letters, vol. 17, no. 10,
1983, pp. 129-135.

Weiser, M.D., “Program Slicing,” IEEE Transactions on Software
Engineering, vol. 10, no. 4, July 1984, pp. 352-357.

Wilde, N. and R. Huitt, “Maintenance Support for Object-Oriented
Programs,” IEEE Transactions on Software Engineering, vol. 18, no. 12,
December 1992, pp. 1038-1044.

Zhao, J., “Dynamic Slicing of Object-Oriented Programs,” Technical
Report SE-98-119, Information Processing Society of Japan (IPSJ),
Tokyo, Japan, May 1998, pp. 11-23.

Zhang, Y., “Automatic Design Pattern Recovery,”
Concordia University, Montréal, Canada, 2003.

Master’s Thesis,

98

