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Abstract

A Study of Data-Dependent Triangulations for Terrains

Weifei Wu

When simplifying and approximating surfaces with triangulations, we must determine what is a
good triangulation. Thus, we need to define the criterion to measure the quality of a triangulation.
There exist many useful criteria in the literature, such as Max-Min angle, Min-Max angle, least
squares fit, Gaussian curvature, mean curvature criteria and so on. We introduce two further
triangulations based on a minimum area criterion. This thesis compares these different criteria for

terrain simplification for a variety of types of terrains.
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Chapter 1

Introduction

11  Background

Terrains are among the simplest kinds of surfaces. The g coordinate of every point (%, y, )
on a terrain can be denoted as ¥ = H (x, 3). Any lines perpendicular to the xy-plane cross the
surface of the terrain at most once.

Terrain data find application in many fields, such as flight simulators, ground vehicle
simulators, digital topographic map, virtual reality, computer animation, computer graphics,
landscape planning and so on.

Nowadays, tetrain models have become mote and more precise. However, too detailed
terrain models are not always helpful. For example, in real-time computer graphics
applications, it is not feasible to display a highly detailed terrain with too many polygons.
Moreovet, sometimes, some parts of a terrain are unnecessaty and they become a burden for
rendeting. 'Thus, we must simplify the terrain so as to speed up the process of rendering and
computation and reduce the amount of the storage needed. Tetrain simplification aims to
represent a surface with fewer points but still approximating the original surface well enough.

In general, there are six kinds of terrain simplification methods. They are uniform grid
methods, hierarchical subdivision methods, one-pass feature methods, multi-pass refinement
methods, multi-pass decimation methods and optimal methods [17]. Uniform grid methods
use regular grids to sample tetrain data. Hierarchical subdivision methods divide a terrain into
subdivisions recursively and use a tree structure to represent the terrain. Feature methods use a

set of significant feature points in the original data set as vertices for triangulation. Refinement



methods start with a least approximate surface and keep inserting points or edges into the
triangulation until a certain condition is met. For example, the refinement process can be
stopped when the error 1s below an error threshold or the number of points inserted is greatet
than certain number. On the other hand, decimation methods are the reversion of refinement
methods. Decimation methods start with a maximal approximation and keep deleting points
from the triangulation until cettain condition meets. The termination conditions can be when
the error is above an error threshold or the number of points deleted is greater than certain
number. Optimal methods calculate an optimal approximation for a surface using an optimal
partition, such as a triangulation, of a subset of the input points.

Most terrain simplification methods use a triangulation to approximate terrains. A
Iriangulation is a set of triangles that meet two conditions. The first condition is that any two
triangles intersect with each other only at common vertex or along a common edge. The

second is that the union of the triangles is a connected set. We denote a triangulation as A in

this thesis.

For a finite number of input points, although the number of possible triangulations is
tremendous, most of them lead to a poor approximation. Thus, we must define what kind of
triangulations are the best approximations. A criterion gives the rule that defines the quality of

a triangulation. It maps a triangulation to a real number, called the quality of the triangulation.

We denote the quality of a triangulation as Quality(Z)) in this thesis. An optimal triangulation is

such a triangulation A that Quakty(\)>=Quality(4’) for all other possible triangulations A’
of the same vertex set.

The most popular method to calculate an optimal trangulation is the Delaunay
triangulation. It is based on the Max-Min angle criterion. It defines an optimal triangulation as

2



one whose minimal angle is the maximum among all possible triangulations of the same vertex
set. In addition to the Max-Min angle, it also optimizes several mote properties at the same
time, such as minimizing the maximal circumcircle and minimizing the maximal min-
containment circle. It ts a purely two-dimensional method, because it does not use the g
coordinate of a vertex when calculating the optimal triangulation, whereas, the triangulation
that considers the g coordinate of a vertex as well is called data-dependent ttiangulation. A
Delaunay triangulation approximates terrains so well that Garland and Heckbert [17]
conjecture that data-dependent triangulation cannot work better [18]. Besides Delaunay
triangulation, many other 2-dimensional triangulation methods also yield good approximation,
such as Min-Max angle triangulation. Our experiments show that sometimes Min-Max angle
triangulation works even better than Delaunay triangulation.

Howevet, because the 3 coordinates of points on a surface also contain geometric
information of the surface, many data-dependent triangulation methods have been proposed
in recent years, such as tight triangulation, the triangulation minimizing absolute mean

curvature and L., measure and so on [3] [25]. They have been used in many applications.

These include smoothing surfaces, estimating the geometric properties of the actual surfaces
such as curvatures, areas and volumes from the triangulation, extracting, describing the shapes
of surfaces and reconstructing the surfaces. Surface smoothing helps to eliminate tiny noises
caused by measure error. Data-dependent triangulations based on smoothness critetia, such as
mean cutvature criterion, work quite well on this purpose.

Data dependent triangulations find application in many fields. Precise reconstruction is an
essential operation in image processing. There are many methods to reconstruct the images,

such as nearest neighbor interpolation, bilinear interpolation, bi-cubic interpolation and data-



dependent triangulation [27]. Among them, data-dependent triangulations generate the most
esthetically pleasing results [27]. Furthermore, data-dependent triangulation can yield lower
etror approximations than two-dimensional ttiangulations when approximating certain
surfaces [18]. Moreover, some data-dependent triangulations, such as tight triangulation,
preserve the convexity of the surface whereas Delaunay triangulation cannot.

Because data-dependent triangulations perform quite well in the various applications, we
want to apply them in terrain simplification and check whether they give a better
approximation than two-dimensional triangulations for terrains or not. In this thesis, we will
compare triangulation methods based on both the two-dimensional criteria and data-
dependent criteria and determine under different types of terrains each produces the best

results in terms of terrain simplification.

1.2  Thesis outline
The outline of this thesis is as follows:

In Chapter 2, we will give a literature review. We will review the literature in 5 aspects. Firstly,
we will discuss the algorithms for surface simplification. Secondly, we will study different
critetia for optimal triangulation. Thirdly, we will state the models used to represent terrain
data. Fourthly, we will present some popular data structures to stote the resulting triangulation.
Last, we will discuss ways to measure the accuracy of a triangulation. In Chapter 3, we will give
detailed description of all the algorithms we implement in otder to make the comparison. In
Chapter 4, we will give the simulation results. In Chapter 5, we will discuss the results we
obtain in Chapter 4. In the last chapter, we will draw some conclusions from our simulation

results.



Chapter 2

Literature review

Formulating the problems:

b)

When we simplify a surface, we must solve the following problems:

What is the goal? When we approximate a surface by a set of triangles, we must determine
what kind of triangular meshes are the best approximations. Thus, we must define the
criteria that measure the quality of a triangulation and compare different triangulations
according to these criteria. There exist many useful critetia. The most commonly used ones
are Max-Min angle, Min-Max angle, a least squares fit criterion, minimization of total
length, and so on.

How to find an optimal triangulation with respect to certain criterion? We must compute
an optimal triangulation with respect to certain criteria. For different criteria, the
algorithmic paradigms suitable to find the best triangulation are different. For example, a
local swap algorithm will find the global optimum with respect to Max-Min angle criterion
[26], whereas it will only get the local optimal triangulation with respect to Min-Max angle
criterion. However, edge insertion paradigm will calculate the global optimal triangulation
with respect to Min-Max angle criterion [26].

Input. In order to approximate a surface, we must find a model to teptesent and store the
actual surface. For terrains, we must define DTM, the digital terrain models. Three
common kinds of DTM are DLG (Digital Line Graph), DEM (Digital Elevation Model)

and TIN (Triangulation Irregular Network) [20].



d) Output. Similarly, we must find a data structure to represent and store the resulting
triangulation we create. There are two popular kinds of data structures to represent the
triangulations: Quad-Edge and DCEL [18] [7].

¢) Result analysis: When we get the optimal triangulation with respect to certain critetia, we
must compare the original surface with the approximation to find out how different they
are. The etror of the approximation is usually measured with respect to the differences of
the elevations between the points on the actual surface and those on the approximation.

The typical etror measures are L, or L errors. Besides, we can also use curvature as an

accuracy measure, because curvature is a significant feature of a surface.

We will review the literature with respect to the above five aspects.

2.1  Methods for surface simplification

We will review three kinds of methods for terrain simplification: refinement methods,
optimal methods and decimation methods. Refinement methods repeatedly insert vertices into
the triangular mesh until a certain condition is met. Optimal methods calculate an optimal
approximation for a surface using triangulations of a subset of the input points. Optimal
methods maintain the number of simplexes in the triangulation while optimizing the sutface.
Decimation algorithms repeatedly delete unimportant simplexes from the finest triangulation
to simplify the surface. Refinement algorithms can achieve higher quality triangulation with
fewer points than decimation algorithms, since they make decisions on a global base when
choosing a point to add, but they are slower than decimation methods [18].

2.1.1 Refinement methods

Refinement methods approximate a surface by repeatedly inserting vertices into the

triangulation until a certain condition is met. The termination condition can be the number of



points mnserted is greater than certain amount or the error of the triangulation is lower than a
certain threshold. A refinement method first creates an initial triangulation with minimal
approximation that usually has only one triangle or two triangles containing all the points of
the input data set in their interiors. Then it will keep inserting the most important points, as
determined by some significance criterion, into the triangulation, adding spokes from the
inserted points to their neighbors (which define the face or faces containing the newly inserted
point) and optimizing the resulting triangulation after each insertion to maintain a certain
criterion. Refinement methods differ in how to define the importance of a vertex, how many
points will be inserted each time, how often to recalculate the importance of a vertex and how
to optimize the new triangulation after a point insertion.

One-pass vs. Multi-pass: One-pass methods calculate the importance the vertices only once,
whereas multi-pass methods recalculate the importance of the vertices from phase to phase.
Multi-pass methods work better than One-pass methods because multi-pass methods always
use the updated importance to choose a point, but it costs more time.

Sequential vs. Parallel: Sequential methods add one point at a time, whereas parallel
methods insert a number of points before doing the triangulation. Sequential methods
perform better than parallel insertion [18].

Vertex importance measures: We can choose a set of points with significant features, such
as peaks, pits, valleys and ridges as the most important points. Besides, we can use some
criteria to define the importance. The criteria for vertex importance are crucial to the
refinement process because it can determine how much the approximated triangulation is
similar to the actual surface.

a) Local Error Measure

Importance (v) = |H (v)- H’ ().



Here H() is the actual elevation of point » and H’(») is the interpolated elevation of » on the
simplified surface. The vertex-insertion algorithm that inserts the point with the highest local
error each time generally produces high quality approximations. Moreover, it is simple and

runs fast.

b) Global Error Measure
Importance (o) = D | H(v,) = H'(v,)].
i=t

Here H(v ;) is the actual elevation of » ;, whereas, H’ (v , ) is the interpolated elevation of » ;if

v is inserted into the mesh. We will choose the point that leads to the lowest global error. The
insertion algorithm with this criterion is very expensive. Moreover, the approximation with
such criterion has poor quality, because it is too shott sighted. In fact, introducing a significant
feature into the approximation often requires some bad moves at first, which will increase the
error a lot temporarily, but will be soon corrected by inserting several more points [18]. Local
Etror Measures often work better than global etror measures.
c¢) Curvature Measure

Because the spots with significant features on a surface typically have high curvatures, we
can choose the curvature as an important measure. We will choose the points with the highest
curvatures to insert. The sum of the squares of the principal curvatures works better than
Laplacian curvatured® f /0x* +0°f/9dy* as an important measure [18]. However, curvature
measutes do not give high quality approximation [18].

All the above importance measutes are pure importance measures because they lack the
topographic knowledge of the surface. Not all of them do petform well, since they only make

independent and local decisions [18].



Optimizing method:

After a point is inserted, the resulting triangulation will not go on satisfying a certain
criterion. The triangulation must be adjusted to meet it again. With respect to some critetia,
such as Max-Min angle ctitetion, we only need to adjust the neighbothood of the inserted
point, because only this region does not conform the criterion. For example, in otder to
maintain Delaunay triangulation after a point » inserted, we inspect the edge ¢ not adjacent to »
of every triangle adjacent to » to check whether ¢ still meets the empty circumcircle condition.
The drcumcircle of a triangle is a circle passing through all its three vertices. If so, ¢ is unchanged.
Otherwise, it will be replaced with the other diagonal of the quadrilateral Q around e. Then two
more edges of O not incident to » become candidates for inspection. The process will
terminate when no candidates exist. The most number of edges that may have to be inspected
is a small constant number [18]. However, with respect to all other criteria, we must adjust the
whole mesh. We will use local swap algorithm to adjust it in order to meet the criterion again.

212 Optimal methods

Optimal methods calculate an optimal approximation for a surface. There are several
common approaches to finding an optimal approximation, such as dynamic programming,
edge-flipping algorithm, edge insertion paradigm and so on.

Dynamic ptogramming can directly find the optimal triangulation for simple polygons
with respect to some criteria, such as Min-Max angle criterion. Edge-flipping and edge-
insertion algorithms aim to find an optimal triangulation by locally improving the triangulation.
Research shows that the upper bound of the number of possible triangulations is 70 '** of a
set of # input points [27]. Thus, it is impossible to enumerate all possible triangulations to find
an optimum. Edge-flipping and edge-insertion algorithms were developed to limit the number

of triangulations searched but still achieve a high chance of finding a global optimum or the
9



one close to it. An edge-flipping algorithm calculates the optimal triangulation by repeating
swapping diagonals until reaching an optimum. Swap is the operation that replaces a diagonal

of a triangulated quadrilateral with the other diagonal of it.

Before swapping e After swapping e

Figure 1: Making a swap

An edge insertion algorithm improves the quality of the current tdangulation by inserting
an edge into the triangulation, deleting intersected edges and optimally re-triangulating the two
resulting polygonal holes.

2121 Dynamic Programming

Dynamic programming is a commonly used problem solving technique. It is often used
to find the best solution of a problem. It iteratively subdivides a problem into smaller sub-
problems. At last, we end up with a finite number of small enough sub-problems that can be
solved directly. Then it will solve smaller problems first and store the solution of smaller
problems to avoid recalculation of their solutions. Later it will use the solutions of smaller
problems to solve increasingly larger problems again storing their solutions. Dynamic
programming can be used to find an optimal triangulation for simple polygons [26] [8]. It
finds an optimal triangulation of a polygon with # vertices by combining the solutions of
sub-polygons with fewer vertices. It is a bottom-up method. It first calculates the quality of
all possible triangles (with 3 edges) of the polygon P. Then it calculates the quality of the

optimal triangulation of all possible sub-polygons of P with 4 edges, with 5 edges and so on

10



until we reach the polygon with # edges. Then the last one is the solution. For a sub-polygon

{p,...o;} P

we will use all the vertices » , between v ; and » jto split P . . into

ije L]

three sub-polygons {» ,...» , }, {v ,...v ; } and triangle {» ,» ,» ; }. We will calculate the
quality of the triangulation of P ; ; by combining the quality of the optimal triangulation of
{r,..o  h{r,...v;}and triangle {v v » ;}. We will choose the best one among the
qualities of P, ; resulting from all possible splits of {» ... » ; } as the quality of optimal

triangulation of P, ;. For a sub-polygon {# ;... » , } P

j we will store the quality of the

i
optimal triangulation of P, ; to avoid recalculation. We will also store the vertex » , that the
quality of the combination of {#,...0 , }, {#,...» ; } and triangle {» ,» , v ; } is optimal.

We will use this information to construct the optimal triangulation of the whole polygon P.
Y
Ly
vk

Figure 2: Dynamic programming

Dynamic programming can be used to optimize a triangulation locally. For example, it
can be used to re-triangulate the polygonal hole formed after a point is deleted in the mesh.
2.1.2.2 Edge Insertion paradigm

Edge insertion paradigm computes the optimal triangulation by improving the initial
triangulation step by step until no improvement can be done. Then the last triangulation is
the optimum. Edge insertion paradigm requires establishing an initial triangulation of the
input data set first. Then it repeats inserting a vertex pait that is not an edge into the current

mesh, deleting the edges intersecting with it and re-triangulating the two holes that are
11



divided by it. It only inserts the vertex pairs whose insertion will improve the quality of the

cutrent triangulation. It ends when no such vertex pairs are available.

Figure 3: Edge insertion paradigm: ab is inserted

We can use any methods, such as dynamic programming, to re-trangulate the two
polygons as long as their re-triangulations satisfy the same ctitetion.
The natve implement of edge insertion paradigm tests all possible vertex pairs and select

one whose insertion will make an improvement to insert each time. It’s time complexity is
O *) [10].
Edge insettion paradigm can be applied to min-max, max-min critetia. Suppose measure

4 is a function mapping a triangle T to a teal value # (T). Max-min # criterion defines an
optimal triangulation as one whose minimal # (T) over all its triangles is maximum among all
possible triangulations [26]. With respect to max-min # criterion, a triangle T~ is the worst
triangle in A if 4 (T )< 1 (T) for every triangle T in /. A vertex y is called an amchor of a
triangle xyz if for any trangulation A of the actual surface with & (A) = u (gz), A will
contain xyz ot break xyg at y. A is called breaking xyz at y, if there exists an edge y#in A such

that y# () x370. The anchor of a triangle is also called the worst vertex of the trangle. With

respect to Min-Max angle criterion, the worst vertex is the one incident to the maximum angle

and the worst triangle is the one owning the maximum angle.
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Edge insertion paradigm can be improved to Oz’ ) if we only insett the vertex pair
incident to the worst vertex of the worst triangle each time and if we re-triangulate the two
resulting holes by repeating removing ears, not by dynamic programming [26]. Thus, edge-
insertion paradigm improves a triangulation by inserting an edge ¢ incident to the worst vertex
of the worst triangle into the triangulation, deleting the edges intersecting with ¢ and keeping

cutting the ears whose qualities are better than the worst triangle of the two holes.

A criterion 4 can be implemented by edge insertion paradigm, provided that for any
triangulation A and any triangle xyz of A with # (xyz)= 4 (), there exists an anchor of xyg

or for every triangulation £ and every triangle xyz, there exists an anchor"of xyz. They are

called weak anchor condition and strong anchor condition respectively, because if a criterion
meets the second condition, it will certainly meets the first condition too. But it is not true on
the contrary.

Edge insertion paradigm is more general than edge flipping algorithm, because it allows
teplacing more than one edge, whereas edge-flipping method only permits replacing a diagonal
with the other diagonal of a quadrilateral. Thus, edge insertion paradigm will have lowet
probability to get stuck in a local optimum [26]. Therefore it has more chance to find a global
optimum, but it costs more time. For example, local swap algorithm cannot find the global
optimum with respect to Min-Max angle criterion in general, whereas edge insertion paradigm
can find the global one.

A trdangulation A is global optimal if Quality(A\)>=Quality(Z\’) for all other possible
triangulations A\’ whereas a triangulation is a local optimal if it cannot be improved locally,

but there still exists a triangulation better than it. Edge mnsertion paradigm can find out the

global optimum with respect to the following criteria: Min-Max angle critetion, maximizing the
13



minimum triangle height, minimizing the maximum eccentricity and minimizing the maximum

f o 2

ad
slope. The slope of a vertex (x, y, f{x, y)) can be denoted as (a—)2 + (a— [26]. The eccentricity
x y

of a triangle T is the smallest value among all distances between the center of T’s
circumscribed circles to points inside T.
2123 Edge-flipping Algorithm

Because every triangulation with # vertices can be transformed to any other triangulations
of the same point set by swapping a finite number of edges [5], we can find the global optimal
triangulation by repeating swapping edges in an initial triangulation. Edge-flipping algorithm
keeps swapping edges in the triangulation until a certain condition is met. An initial
triangulation must have existed before the edge-flipping algorithm is applied. We often use
Delaunay triangulation to build it, because Delaunay triangulation has quite good quality in
general. There exist two common types of edge-flipping algotithm. One is local swap
algorithm that only makes a swap when it will improve the triangulation. The other is a
simulated annealing algorithm that not only makes a good swap, but also makes a bad swap
according to some probability [25]. The simulated annealing algorithm was developed to find a
globally optimal triangulation when the local swap often cannot find one.

In order to determine whether an edge should be swapped or not, we will assign a real

number for every edge, called its swap value. A swap value is the difference between the quality

of a triangulation A and the quality of a triangulation \’ after swapping an edge ¢. We denote
it as SwapValue(e)= Quality(A\’)-Quality(A)). Because A’ differs A in only the neighborhood of

¢, we need not calculate the qualities of 2 and A’ to determine whether to swap an edge or
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not. Instead, we only need to measure the difference of the quality of ¢ neighborhood before
and after swapping e.

The local swap algorithm only swaps edges with positive swap values, whereas, simulated
annealing not only swaps edges with positive swap values, but also swaps edges with negative
swap values according to some probability.
2.1.2.3.1 Local Swap Algorithm

The local swap algorithm works quite well for optimizing many criteria such as
minimizing the maximum angle. Moreover, it will find a globally optimal triangulation for
Max-Min angle criterion. However, for all other commonly used ctiteria, it only reaches local
optimum because it can get stuck in a local optimum whete the triangulation cannot be
improved by swapping any edges in the triangulation, but there still exists a better
triangulation. And sometimes, the local optimum differs greatly from the global one.
Moteover, it is almost impossible to determine whether the resulting ttiangulation is a global
optimum or just a local one. An edge ¢ is swappable if the quadrilateral Q associated with ¢ is
convex and there are no 3 points of (J lying on the same line. The local swap algorithm only
swaps swappable edges. It repeatedly selects a swappable edge whose swap can improve the
quality of the triangulation until no such edges ate available.

The strategy about how to select an edge to swap has the greatest impact on finding the
final optimum. Experience shows that selecting the edge whose swap leads to greatest
improvement each time performs very well in most cases [14]. This maximal reduction strategy
also finds a local optimum with fewest swaps. Thus, it runs fastest. In order to speed up the
process of picking up the edge with greatest improvement, usually it is helpful to sort the edges

in the mesh according to their swap values in an ordered heap Q. Then, we will repeat
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selecting the top edge from Q to swap and update the swap values of its neighborhood until
the swap value of the top edge in 0 is equal to or less than zero.

However, sometimes, the maximal reduction strategy stops in a poor local optimum,
because lots of edges become interior to non-convex quadrilaterals and thus cannot be
swapped anymore.

The local swap algorithm can be modified slightly to find an equal or better triangulation
[13]. It calculates the swap value Swaplalue(e) of each edge ¢ in the same way as befote in the

beginning. However, when Swapl/alue(e) of an edge ¢ is less than 0, it will replace its swap value
with  another  swap  value Swaplalue * (. The new swap value

SwapValne™ (¢)=SwapValue(e)+Mac{SwapValue'le ,)} whete ¢, is one of the 4 edges of the

quadrilateral around ¢, Swaplalue’le ;) is the new swap value of ¢ ; after swapping edge ¢. Then,

the updated swap values of all edges are stored into a priority queues Q. Evety time an edge

with the highest updated swap value will be selected from Q. If the SwaplValue(e)> 0, only ¢ will

be swapped. Otherwise, both ¢ and the edge making Swapl alue” (¢) maximal will be swapped.
The above procedure continues until there is no edge with a positive updated swap value in Q.
Because there are more edges with positive swap values with respect to this algorithm and it
allows swapping two edges in the same time when one swap cannot improve a triangulation, it
will have less chance to get stuck in a local optimum. Thus, it will find a better optimum.
21.2.3.2 Simulated Annealing

Simulated annealing is designed to search as many triangulations as possible in order to
find an optimal triangulation. It tries to avoid getting stuck in a local optimal triangulation by
making some swaps that will decrease the quality of the triangulation temporarily. Thus, it can

go on to find the global optimum instead of terminating too quickly. Simulated annealing still
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cannot guarantee that it will certainly find a global optimum. However, it will increase the
chance of finding a global optimum if parameters are set reasonably.

Simulated annealing is based on probabilistic method [25]. That is, it will swap a bad edge
according to some probability. In the beginning, there are more chances to make a bad swap.
As time goes by, the probability of swapping bad edges decreases gradually. If parameters are
reasonably set, in the end, there are no bad swaps made at all. Thus it will reach an optimum,

and most probably a global optimum. Then, the simulated annealing process will converge in
the end.

The process of swapping is divided into a number of stages. We try to make a finite

number of swaps at each stage. At every stage, there is a specific value # , called the
temperature that controls the probability of a bad swap. For each 7, it meets the following
condiion: /| >/ 5 >... >4 yoomine.. > 0. For every stage, the probability of making a bad swap of

an edge ¢ is equal to exp(d/t , ), where d=SwapValue(e). We will repeat choosing an edge ¢ in the
mesh randomly. When the swap of ¢ improves the quality of the triangulation, we make the

swap definitely. Otherwise, we still make the swap with the probability of exp(@/¢ , ), where

d=SwapValue(e). In general, we will choose # , =r “ ¢ ; where 0<r<1 is a constant and 7 is
called the initial temperature. For a bad swap, 4 < 0. Thus, the probability of making a bad
swap will decreases from stages to stages. Moreover, in order to decrease the chance of getting
stuck in a local optimum, we limit the number of good swaps that can be made at each stage to
avoid making too many good swaps too soon.

When the parameters are set propetly, the optimal triangulation that it calculates will be

better than that with local swap algorithm. However, a disadvantage of simulated annealing is
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that it is very sensitive to the number of stage, the initial temperature, the number of swaps at
each stage and the number of good steps allowed at each stage. If the parameters are set
impropetly, it cannot find an optimum, even a local one. This happens when there is still
possible to improve the quality of the triangulation by swapping some edges, but the algotithm
has already terminated. Thus, the parameters must be carefully selected. Because in most cases,
we cannot tell whether we have reach a global optimum or not, we should try patameters with
different values and compare the results to find the suitable ones. Schumaker [25] suggests that
a reasonable value for the initial temperature is about twice of the largest swap value of the
edges in the triangulation. The reasonable values for the number of swap at each stage and the
number of good swaps allowed at each stage are 5 to 70 times of the number of edges in the
triangulation [25]. The lower the initial temperature, the longer the algorithm runs and thus the
more chances to find a global optimum. It works best when convetging process is very slow
[25]. Simulated annealing algorithm usually runs much slower than local swap algorithm. In
otder to shorter the executing time, we can modify the algotithm a little [21]. We can add some
code to terminate the program when there are no swaps made at a temperature. Furthermore,
we can modify the calculation of the swap values of edges in the same way as we did for the
local swap algorithm above to increase the chance to find the global optimum.

2.1.3 Decimation algorithms

Because we need to store, transmit, analyze, edit and display the surface efficiently, a full
detailed model will slow down the opetations on it and add unnecessary space overhead. Thus,
we need to simplify it to a coarser model. Decimation algorithms aim to approximate the
surface by fewer triangles, but maintain the topographic feature of the surface as accurately as
possible. A good decimation method must preserve the basic shape and geometric

characteristics of the model. It must presetve sharp or pointed edges. There are three types of
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decimation algorithms: vertex-decimation algorithms, edge-decimation algorithms and triangle-
decimation algorithms. Vertex-decimation algorithms repeatedly delete a number of points
from the mesh and re-triangulate the resulting polygonal holes. Edge-decimation algorithms
and triangle-decimation algorithms iteratively contract an edge and a triangle with lowest cost
into a single vertex respectively. They both do not need to re-triangulate the holes after
deleting a simplex.

2.1.3.1 Vertex-decimation algorithms

Vertex-decimation algorithm is the reversion of vertex refinement method. It fitst creates a
finest possible approximation for the input data set first. Then it keeps selecting the least
importance points from the mesh to delete, re-triangulating the resulting holes and optimizing
the resulting triangulation to maintain a certain criterion until a certain condition is met. The
termination condition can be that the etror is above a certain thteshold or the number of
points deleted is greater than a certain number. We can speed up the deletion by sorting the
vertices by the importance.

Vertex-decimation algorithms in general produce good approximations and presetve the
topology of the actual surface [16]. We usually select an independent set of vertices, i.e. no two
of them sharing an edge, to delete. It has several advantages. Fitstly, we can delete them and
re-triangulate the resulting holes in parallel. Thus, it improves efficiency. Secondly, it can
reduce drift, because the neighbors of the deleting vertices will remain in the mesh. Driff is an
occurrence that tiny errors resulted from deleting vertices can accumulate into big etros.

Like vertex-refinement methods, vertex-decimation approaches also differ in how to
define the importance of a vertex, how many points to delete each time, how often to
recalculate the importance of vertices and how to re-triangulate the holes and optimize the

resulting triangulation after vertex decimation.
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Sequential vs. Parallel: In contrast to vertex refinement methods, vertex decimation methods
yield better approximation when deleting points in parallel, because it helps reduce drift [20].
Vertex importance measures: Like vertex-refinement methods, the measure of vertex
importance affects the quality of the approximation. In general, the importance of a vertex
should relate to how much the shape of the model will be changed after this point is deleted.
Thus, a point in a flat region should own an importance close to zero, whereas, a point at a
peak or a pit should have the highest importance in its neighbothood. Many heutistics for
vertex importance measures define the importance of vertex based on its neighborhood [20].
These kinds of vertex importance measures are called local importance measures. However,
vertex importance measures can also be based on global information. For example, we can
choose the point producing the lowest sum of etrors of all vertices if it is deleted to delete each
time. The global error measures approximate the surface mote accurately in a decimation
method than a refinement method [18].
a) Degree Method
Importance (v) = Degree (v).

The point with lowest degree will be deleted from the triangulation every time. This will
produce a large number of independent vertices. Because degree method does not consider
any characteristics of the terrain, it can be viewed as a random deletion. However, expetience

shows that it works much better than simple random methods, although it performs worse
than other common heuristics. It is based on the fact that the sum of the degree 24’ of the
new triangulation is equal to L'd+(@-6) if we delete a vertex with degree d, where L'd is the
degree of the former triangulation. Thus, deleting a vertex with high degree will create badly

shaped triangles and may change the topographic features [4].
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b) Height Difference Heuristic (HDH)

Importance (v) = | Z (Height(v) — Height(v,) )|

Here v ; i1s a neighbor of » Hesght(v) and Height (v ;) is the elevations of » and », respectively.

The point whose elevation is nearest to the average of the elevations of its neighbors will be
deleted from the triangulation {20].
c) Absolute Binary Heuristic (ABH)

ABH uses the difference between the number of neighbors with lower elevation and
the number of neighbors with higher elevation as a vertex importance measure.
d) The volume heuristic:

The volume heuristic is a look-ahead method. It uses the difference in the volume of the
neighborhood of a vertex » befote and after » is deleted as important measure [20]. The volume
of the neighborhood of a vertex » is the number of cubic units required to fill the space
enclosed by the triangles adjacent to ».

e) The Drop Heuristic

Importance (v) = Height (v) — Height’ (v)

Here Height(y) is the actual height of » and Height(») is the lineatly interpolated elevation of » if
v is deleted.

Among all the criteria for vertex selection, the Drop heuristic works the best. The Drop
heuristic is a look-ahead approach, because we estimate the importance of a point by deleting
the point and re-triangulating the hole. Usually, Delaunay triangulation is used to re-triangulate
the hole. The Drop heutistic is an exact method, because it calculates the exact error produced
after deleting a point. However, the Drop heuristic is vulnerable to drift [5]. Except the Drop

heuristic, the other methods only calculate an approximate error and thus are computed faster.
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Re-triangulation method:

After a vertex is deleted, the polygonal hole left must be re-ttiangulated. A local re-
triangulation is one that does not change the edges outside the hole. Delaunay triangulation
can be maintained by local re-triangulation [5]. Howevet, local re-triangulation may not satisfy
other critetia. If so, we first form an arbitrary re-triangulation. Later, we will use an edge-
flipping algorithm on the whole triangulation to calculate an optimal triangulation. The re-
triangulation methods to form an atbitrary triangulation include ear cutting solution and
minimum angle method [12]. Minimum radius of circumcitcle method is used to locally re-
triangulate the hole of Delaunay triangulation [5].

a) Ear cutting solution (O’ Rourke; Hinker and Hansen) [12]

This method re-triangulates the hole of # vertices by repeatedly connecting two adjacent
edges that form an angle smaller than 7 untl #-2 new triangles have been created. However,
this sometimes yields edges that intersect with others. We can avoid such occurrences by
testing whether the new triangle formed by adding a candidate edge ¢ will include any origin
points of all other edges in the polygon. If so, ¢ will not be added into the mesh.

b) Minimum angle method [12]:

Minimum angle method sorts the inner angles of the hole and always adds the edge
connecting the minimum angle. This works faster than the ear cutting solution.
¢) Minimum radius of circumcircle [5]:

This method re-triangulates the hole by repeating adding the edge incident to a potential
triangle with the smallest radius of its circumcircle.
2.1.3.2 Edge collapsing method

Edge collapsing methods preserve the geometric features of the real surface better than

vertex-deledon methods. We can generalize edge-collapsing methods by allowing the
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contraction of vertex pairs that do not share edges. Vertex-pair contraction methods have
become popular recently, but they fail to preserve the topology of the surface [22]. Edge
collapsing methods or, in more general, vertex-pair contraction methods differ in how they
select an edge to collapse. For example, Heckbert and Gatland use quadric etror metrics to
measure the importance of vertex pairs [19].
2.1.3.3 Triangle collapsing method

Triangle collapsing method can be used to construct progressive meshes that have
different levels of detail (LOD). It is simple and fast because it does not need to re-triangulate

holes and it can quickly decrease the number of simplexes in the triangulation.

2.2 Geometric criteria for optimal triangulations

Criteria for optimal triangulations define the quality of a triangulation and define what is
an optimal triangulation. In order to measure a triangulation more exactly, a critetion often
maps a triangulation into a real number and uses it as the quality of a triangulation. We denote
the quality of a triangulation as Quality(/\). Optimal triangulation is the one that has the
highest quality among all possible triangulations. We can define the quality of a triangulation in
different ways. Firstly, because the shape of triangles is a significant feature of a triangulation,
many criteria often relate the quality of a triangulation to the angles, edge lengths, height and
area of a triangle. Secondly, thete ate also many criteria based on the curvature of the surface,
because curvature 1s another significant feature of the surface. In addition, some criteria relate

the quality of a triangulation to the elevation difference between the approximation and the

real surface. The quality of a triangulation is the maximum, minimum or sum of the above

measures of all triangles. An optimal triangulation is the one minimizing or maximizing a

certain measure Z.We can denote many of the common critetia as Max-Min (maximizing the
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minimum of certain measure), such as Max-Min angle, or Min-Max (minimizing the maximum
of certain measure), such as Min-Max angle. Max-Min, Min-Max ctiteria often have two forms,

classic form and vector form, also called lexicographical form. With respect to classic Max-Min

U crterion, such as classic Max-Min angle criterion, the optimal triangulation is the one
whose smallest # is maximal, whereas, with respect to lexicographical Max-Min # ctiterion,

we will sort the set {#},in A in increasing order {# |, #,, ... #,}. Then the optimal
triangulation is the one who has the largest vector { &, 4 ,,... # ,} in the lexicographical

order. Vector form is more discriminating than the classic form.

The criteria can also be divided into two-dimensional critetia and data-dependent criteria.
Two-dimensional criteria only use the x and _y coordinates of points, wheteas data-dependent
criteria also consider the g coordinates.

2.2.1 Two-Dimensional Criteria

Many two-dimensional criteria are related to the angles of the triangles. The most popular
two-dimenstonal criteria are Min-Max angle and Max-Min angle criteria. They prevail because
they produce good shape triangles. Study has shown that the‘angle is a good indicator to
decide what kind of triangulation produce better result. Angles that are too sharp or too flat
ate not good [9]. The error of a triangulation is related to the minimal and maximal angle of
the trmangulation [8]. Min-Max angle and Max-Min angle criteria both try to teduce the
occutrence of thin and long triangles [10]. Besides, some criteria place a limit on the range of
the angles. However, these criteria sometimes cannot be implemented successfully. For
example, it is not always feasible to use acute angles only [26]. Thus, a criterion can only limit

the occurrence of obtuse angles.
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Besides, length is also a good choice, because the length of the longest edge is inversely
proportional to the sharpness of certain error bounds [26]. The criteria with respect to the
lengths of edges of the triangle are Min-Max length criterion, Max-Min length and one
minimizing the sum of edges length.

Criteria relative to angles and edges are popular since the etror bounds can be denoted in
terms of them. Thus, some criteria are suggested which optimize both. For example, thete
exists a criterion relative to the aspect ratio, the ratio of the longest edge to the altitude from
this edge [26]. Another common criterion maximizes the minimal area of the triangles in the
triangulation.

In addition, some criteria areﬁ based on the heights of triangles in the triangulation, because
the minimal height of all triangles in the triangulation relates to how good the approximation is
[8].

Moreovet, some other two-dimensional criteria also exist. For example, there is one
criterion relevant to the degree of a vertex [26], because the degree tells the importance of this
vertex. Another one 1s Min-Max eccentricity ctitetion [26)].

Below we give more detail on the specific criteria that will be implemented for our
comparisons.

a) Min-Max angle

Min-Max angle criterion defines that the quality of a triangulation A is the maximum

angle among all the triangles in the triangulation. The optimal triangulation is the one whose

maximum angle is the smallest among all possible triangulations.

Quality(A) = Maoc , (Angle).
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Min-Max angle criterion is based on the fact that too flat angles are not preferred [9]. The

angle wused here is a two-dimensional angle. It can be denoted as

— — + —_— —
arccoos (0 =% )% — %) + (= %0)(3s = o) where (x ,, ¥ ;) is the coordinates

V0 = %) + (7 = o) (x5 = %)% + (3, = ¥o)°

of the origin of the angle, (x,, y ), (x,,y , ) are the coordinates of the two end points.

Edge insertion paradigm will find an global optimum with respect to Min-Max angle
critetion [8]. Incremental insertion algorithm and local swap algorithm can also find a quite
good optimal triangulation with respect to Min-Max angle criterion, although they cannot
always find out the global optimum.

b) Max-Min angle

Max-Min angle criterion defines that the quality of a triangulation A is the minimum

angle among all triangles in /. The optimal triangulation is the one whose minimum angle is

the largest among all possible triangulations.

Quality(A) = Min , (Angle).

The optimal triangulation with respect to max-min angle criterion is called Delaunay
triangulation. It is the most popular triangulation. This is in part due to the fact that a
Delaunay triangulation optimizes several criteria simultaneously: Max-Min angle, Min-Max
circumcircle and Min-Max min-containment circle [26]. The circumcircles of all triangles in
Delaunay triangulation enclose no vertices of other triangles. Delaunay triangulation usually
produces good shaped triangles. It decreases the occurtence of thin and long triangles, because
slivers are undesirable for applications such as Finite Element Modelling and graphical
rendering. Slivers may lead to numerical inaccuracies in the calculations of finite element

modeling and produce visual discontinuities in smoothly shaded surfaces [11].
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Delaunay triangulation can be implemented by edge swapping algorithm, dynamic
progtamming, divide-and-conquer algotithm, sweep-line algorithm, randomized incremental
algorithm and so on. Many of these algorithms can calculate a Delaunay triangulation in
O(nlogn) time [26]. Studies show that the divide-and-conquer algorithm runs fastest, the sweep-
line algorithm is the second fastest. The incremental algorithm works slower than the above
two, because it spends lots of time in locating points. Re-triangulating a convex polygon by
Delaunay triangulation can be done in O(#) time.

Local swap algorithm based on the circle test will also find the global optimum. Local
swap algorithm will find the global optimum with respect to lexicographic Max-Min angle
criterion [25], but it only finds a local optimal one if based on other ctiteria of Delaunay
triangulation [18].

Delaunay triangulation minimizes the roughness of the approximations of terrains. It
preserves the intrinsic properties of the real surface, but it does not preserve the extrinsic
properties of the surface, such as the convexity. For instance, Delaunay triangulation may
produce a concave edge when approximating a sphere [2]. Sometime, it will cause artificial
break lines that do not exist in the original sutface if swapping an edge inside a concave
quadrilateral.

2.2.2 Data-dependent Criteria

Because the g-coordinates of points contain the topographic information of a sutface,
they affect the quality of an approximation. Data dependent triangulations indicate the gradual
changes of the g coordinates of points of the surface and therefore, produce a smoother
approximation. It can lead to lower error approximations than two-dimensional triangulations
when approximating certain surfaces, such as ruled surfaces [18]. Although Delaunay

triangulation gives good approximations for lots of surfaces, the triangles of the optimal
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triangulation may not simply have edges with similar lengths. Instead, they may have long
edges in the direction of minimum curvature and short edges in the direction of maximum
curvature [26]. Long and thin triangles are necessary when approximating certain kind of
surfaces. They in turn may reduce the approximation error.

Morteover, the optimal triangulation of a surface should preserve the intrinsic and extrinsic
geometric properties of the actual surface [2]. Delaunay triangulation in general does not
preserve some extrinsic properties of the actual surfaces, such as the convexity of the actual
surface. At this aspect, tight triangulation, one of data-dependent triangulations, petforms
better than Delaunay triangulation, because it preserves convexity.

Many data-dependent criteria are based on different kinds of curvatures, because for a
smooth surface, its curvatures are an essential charactetistic. The primary kinds of curvatures

for a surface are Gaussian curvature K, mean curvature H and principal curvatures k|, k, . It is

enough to determine the shape of a surface simply with its mean curvature and Gaussian
curvature. The Gaussian curvature of a point indicates whether its neighborhood is elliptic,
hyperbolic or parabolic. Mean cutvature of a point tells whether its neighborhood is convex or
concave. If H>0, its neighborhood is convex, otherwise, concave. The signs of Gaussian
curvature and mean curvature distinguish eight basic shapes. H>0, K>0 indicates a peak
region. H=0, K=0 indicate a flat region. H<0, K>0 is a pit region. H=0, K<0 is a minimal
region. H>0, K=0 a ridge region. H>0, K<0, a saddle ridge region. H<0, K=0 a valley region.
H<0, K<0 is a saddle valley region. K and H are both defined in terms of k,and £, .

K=k, k,, H=(k, +k,)/2. If the elevation of a point (X, y) on surface is denoted as ffx;, y), K

fufy = fa = A+ f = 2Ff, fy + A [ f

and H of this poimnt are K= , H=
p (1+fx2 +fy2)2 2(1+fx2 +fy2)3/2

23]
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respectively. However, when we use a set of triangles to approximate the actual surface, the

triangle mesh have no curvature at all because all triangles are flat and the curvature is not

C? differentiable at the vertices and along edges of the mesh. Thus, the above formulae are not
suitable for polyhedral surfaces. So the analogues of curvatures for polyhedral surfaces are
required when criteria for optimal triangulations are based on these curvatures. K and H for
polyhedral can be deducted by approximating the polyhedral with a smooth surface. If we

replace every edge in the mesh with a tiny cylinder that joins the adjacent triangle tangentially

and mix the cylinders smoothly at the vertices, K and H are integrable ina C 2 way. Then K and
H can be calculated [13]. In fact, the analogue of integral Gaussian cutvatute is based on the
angles around the vertex, because the concept of Gaussian curvature is close related to that of
angle [3], whereas, the integral mean curvature is related to the angles of the normals of two
neighboring triangles. Then, K and H of a vertex » can be inferred by dividing the integral
Gaussian curvature and mean curvature by the area around the vertex respectively.

The optimal triangulations with respect to ctitetia related to certain curvatures often are
those with the minimum of sum of the curvatures. For example, tight triangulation minimizes
the sum of absolute Gaussian curvature.

In addition to criteria related to curvatures, several data-dependent criteria are based on

different kinds of error metrics, because these criteria can reduce the error of the

approximation. For example, least squares fit critetion minimizes L, etror, the sum of squares

of elevation differences over all input points. L_ - optimal triangulation minimizes L_, the
maxtmum error of the triangulation [18].

Some data-dependent criteria are based on certain functionals, such as the energy of a
bending plate [3]. The optimal triangulation minimizes the functional. These functionals often
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measure some geometrical propetties of the surface. However, these criteria can only deal with
functional data.

Besides, some other criteria also exist. These include mmimizing the total area,
minimizing the volume of the surface, Min-Max slope and so on. Slope measures the steepness
of the surface where the slope of a flat surface is 0.

Moreover, we can combine several criteria to find an optimal triangulation: Rippa [14]
combined the Max-Min angle criterion and the one minimizing the sum of angles between
normals (ABN) to determine an optimal triangulation. He compared the global error
producing by Delaunay triangulation and the data-dependent triangulation on every pass and
always used the one with lower error to update the triangle mesh. He found that this hybrid
criterion produces better approximations than pure criteria in most cases [17]. However,
hybud criteria are slower than the pure ctitetia.

The amount of data-dependent criteria is much less than that of 2-dimensional criteria. In
addition, all of them have weaknesses. Data-dependent triangulations often create more slivers.
The points inside a thin triangle are further to its vertices than points on a fat triangle. Thus,
slivers can lead to inaccurate approximation because they interpolate the points on them over a
long distance. Moreover, slivers give an artificial visual effect because of aliasing. In general, as
well, data-dependent triangulations are more expensive than two-dimensional triangulations.
The general algorithm calculating the optimal data-dependent ttiangulation is edge-flipping
algorithm. It cannot guarantee to find the global optimum in most cases [26]. Furthermore,

data dependent triangulations tend to ignore some geometric features, such as ridges and faults

[28].
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Some data-dependent triangulations perform better than Delaunay triangulations when
approximating smooth surfaces, but they produce much worse result when dealing with non-
smooth surfaces.

Next, we will give some more detail of the data-dependent triangulations that we will
implement for our comparison experiments.

a) Minimizing Absolute Gaussian Curvature

The quality of a triangulation A is defined as the sum of the absolute Gaussian curvature
of all the vertices in /. An optimal triangulation has the minimal total absolute Gaussian

Cutvatute.

Ouality (A)= Y IKW|= DIKM |+ DKM+ D IKO)].

VE convex ve saddle ve mixed

Here K (1) is the integral Gaussian curvature around vertex .

Before calculating the curvatures of vertices, let us give some definitions. [3]. A supporting
plane is a plane through a vertex » in the triangulation provided that all the neighboring vertices
of v lie on the same side of or on the plane. The star of a vertexc v is formed by all triangles
incident to 2. A proper convex verfex is such a vertex » that all triangles incident to » are supporting
planes. A proper saddle vertex: is such a vertex » that there does not exist any suppotting plane
through » at all. A mixed verfex is a vertex » provided that there exists a suppotting plane
through #, but there also exists a plane formed by two edges on same triangle that is incident to
v such that the neighboring vertices of » lie on both side of the plane. A vertex that is neither
proper convex vertex nor proper saddle vertex is a mixed vertex.

The calculation of the absolute integral Gaussian curvature |K(z)| around a vertex can be
divided into three steps:

I. Determining the type of a vertex:
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The vertices in the triangulation can be divided into three classes: proper convex vertices,
proper saddle vertices and mixed vertices. In order to find out a vertex » belongs to which kind,
we must find out whether there exists a supporting plane and whether all triangles incident to »

are supporting planes. We use the following theorem: Edges ¢ ,, ¢ ; Incidental to » form a

supporting plane, if and only if for all other edges ¢ , incidental to v (k /= { && £ I= j),

¢ ;Xe ;® ¢, >=0 [13]. If every two adjacent edges incidental to » form a supporting plane,

1
then » is a proper convex. If no two edges incidental to » form a supporting plane, then »is a

proper saddle vertex. Otherwise, » is 2 mixed vertex.

Proper Conwex Proper Saddle Mixed Convex Hull of Mixed

Figure 4: Vertex Type (based on [3])

II. Calculating the convex hull of edges incidental to v, if vis a mixed vertex:

We can calculate the convex hull in two ways. One tries to find out a plane that can
intersect with every edge around #. Then it calculates all the intersection points with the plane.
After that it will calculate the convex hull of these points. The other approach is to test every

two edges ¢ ,, ¢ jincidental to » to see if the plane formed by ¢ ,, ¢ j 1s a supporting plane or

not. If so, then ¢, and ¢ ; are on the convex hull. This algorithm tries to determine all edges

on the convex hull.
The first algorithm wortks faster than the second one, but it finds no solution when two
neighbors of » and » are on the same line, because there will be no plane intersect with all the

edges around ».
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II1. Calculating the absolute integral Gaussian curvature around a vertex:

The absolute integral Gaussian cutvature |K@)| around a convex vertex » :

d
|Kp)|=2 Z 0, ,where ¢ is an angle formed by two adjacent edges incident to #, 4 is the
i=1

d
degree of ». For a convex vertex, ZH,. < 2 7. |K{)| around a propet saddle vertex v :

i=l
d d d
|K@)|=|27-)6, | =).6,-2 7. For a proper saddle vertex, » 6, >2 7. |K(y)| around a
i=1 i=] i=1
d* d

mixed vertex v: |K(y)|= 2 m-2% Z (9;' + Z@i , where ¢ "; 1s an angle of two adjacent edges

j=1 i=1

around » of the convex hull of the star of », 4 * is the degree of the convex hull. For a mixed

d d*
vettex, d * <d, » 6, >27 and ) 6} <27. |Kf)| of a vertex v on the boundaty of the

i=1 j=1

d
mesh: |K@)|=7 -Zﬁi . No matter what type a vertex is, the flatter the neighbothood around

i=l
v1s, the smaller of |K(z)| is.

A 2-dimensional manifold M is called tight if all points of M lie on the same side of each
hyper-plane that passes a point of M, but not its neighbothood [2]. A tight polyhedron has the
minimum total Gaussian curvature [2]. Thus, the triangulation minimizing absolute Gaussian
curvature is call tight triangulation. Tightness generalizes the concept of convex [2]. Thus, tight
triangulation maintained convexity automatically [3]. It is the smoothest one also [2].

It has been proved that local swap algorithm can actually find out the global optimum

with this criterion if the surface is convex [3].
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Because Gaussian criterion tries to minimize the total absolute Gaussian curvature, it will
work well for the surface whose Gaussian curvature is zero everywhere, such as cylinders,
cones, or surfaces whose points (¥, y, ) can be expressed as ¢=f{x)+ay or =fy)+ax. Since
K=k, %, , one of the two principal curvatures £,, £, will be equal to 0 if K is 0. Thus, the
optimal case for Gaussian criterion is the surfaces with zero curvature in one of the principal .
directions and nonzero one in the other principal direction.

However, tight triangulation tends to consist of marny long thin triangles [3]. Thus, some
edges around a vertex are too close to each other. Then it is easy to cause numerical errors and
inconsistency when we test whether a plane is a supporting plane or not and when we calculate
the convex hull if it exists. Moreover, tight triangulation works pootly for general surface, such
as terrains [18]. It is also a very expensive triangulation method due to its heavy calculation.

Swap value: We can use edge-flipping algorithm to calculate the optimal triangulation.

Because Quality() only differs from Quality(Z)’) in the sum of the integral absolute Gaussian

4
curvatures Z K (v,) of the four vertices » ; of the quadrilateral Q surrounding edge ¢ and the

i=1

4
new sum of the integral absolute Gaussian curvatures ZK "(v;) of the same four vertices

i=1

4 4
after swapping ¢, Swapl/alue(e)=Quality(A ) Quality(A)= Y K(v,) - K'(v,) where v, is a

i=1 e
vertex on the Q.

b) Minimizing Absolute Mean Curvature

The quality of a triangulation A is the sum of the absolute integral mean curvature |H()|

along every edge ¢ in /. The optimal triangulation minimizes Z| H(e)| [3].
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Quality(A) = Z| H(e)| = Za(e) M:Z arcco;(l__’_?%l?__ﬂd.

: AN
If ¢ is an inner edge, |H(e)|=]e¢|* a (¢), whete @ (¢)is the angle between the normals {» |,

ne
n , } of the two triangles shared ¢ and |e| is the length of e. Here @ (¢) = aruos (|—1—|——|£2—|
niein,

). If

¢ is on the boundary, H (¢)=0.

Mean cutvature measures how bent a surface is [1]. This ctiterion minimizes the
roughness of the approximation of a surface.
Other relevant criteria:

Because we use cylinders to approximate the edges when calculating the integral mean
curvature of edges and only one of the two principal cutvatures of cylinders are nonzero, the
points along edges will have only one principal curvature with nonzero value too. Moreover,

because the mean curvature of vertices and the points inside triangles are all 0, the critetion

above also minimizes the following functionals: J.Q(| k| +|k, DdS , J.Qlk1 +k,|dS ,

[amax((k, |, k, DdS , [o/k2 +k7dS [3].

There ate other criteria relative to mean curvature also. One is the jump in normal
denivatives (JND). Experiences show that the mean cutvature criterion and JND produce
almost the same results [3]. JND also minimizes the roughness of the approximation [3].

Another relevant criterion minimizes the thin plate energy functional [3]. For a spline s defined
N

on a trangulation A, the thin energy of s is Z J; (s2, +2s§y +S§y Ydxdy , where T, is a
=1

triangle of A. A spline is a mathematical function that gives an interpolation or approximation

of a finite number of input points. Because s  and s y of a smooth interpolating surface are

35



N
near zero, Z J; (s2 + 2S§y + sjy )dxdy 1s almost equal to _L(klz +k;)dS . Tt is also equal to
=1

minimizing LH 2dS [2]. We often use this functional to smooth approximating surfaces.

Experiences show that minimizing Z| H(e)| gives a similar result as minimizing LH dS . It

is hatd to tell which of them are better [13]. The optimal triangulations with these two criteria
improve the visual appearance of the initial triangle mesh significantly and enforce the sharp
edges in the mesh if the actual surfaces are sméoth [13]. The minimizations of any of them
also decrease the error of the initial triangle mesh significantly [13].

However, it is not known whether the optimal triangulations generated with respect to
mean curvature criterion maintain convexity or not [3}, although in most cases, minimizing the
two criteria above yield convex triangulations, no matter whether the initial one is convex or
not [13].
¢) Minimizing Area of the Surface

The quality of a triangulation A is the sum of the area Area(T) of every triangle T in A\.

The optimal triangulation minimizes » Area(T) .
T

Qwaliy(2) =Y Area(T).

A surface is minimal if its mean curvature is close to 0 [2]. The triangulation minimizing
area of the surface will lead to a saddle surface, because only the region with negative Gaussian
curvature will have zero mean curvature [2]. Thus, the optimal triangulation with respect to
this criterion does not preserve convexity and it sometimes results in a poor approximation,
even if the original surface is quite simple. For example, the approximation of a cylinder

becomes skewed [3].
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Other relevant criteria:

This criterion is a data-dependent one, because we not only use x, y coordinates, but also
use g coordinate when calculating the area of a triangle. However, there are also other criteria
that only use the x and y coordinates to calculate the area of a triangle. One is Max-Min area
criterion.

d) Minimizing Angle Between Normals(ABN)

For an edge ¢ in a trangulation £, let @ (¢) is the angle between the normals {# , # , } of

. nen,
the two triangles shared e. @ ()= aros (-

|n|e|n, |

)- If we arrange all such angles in A in

increasing order { @ (¢ ), (e ,), ...}, the quality of A is the corresponding vector a@ (A\) of
{a,), a(,) ...}. The optimal triangulation has the minimal vector in the lexicographical

order.
LQualiy(A) = a (A)=(afe ), a,) ...)

The larger the angle between the normals of two triangles that share an edge ¢, the more
bent the neighborhood of ¢ is. Thus, the trangulation minimizing ABN minimizes the
roughness [3]. Therefore, when approximating smooth, functions, ABN produces more
accurate approximations than Delaunay triangulation. However, the triangulation minimizing
ABN does not preserve the discontinuities of the original sutface. Discontinuities often
indicate significant characteristics of the sutface, such as ridges lines and creases.

Other relevant criteria:

Besides the criterion above, there exist several critetia relative to the angle between

normals. One is mean curvatute criterion [3]. Another one minimizes the sum of the absolute

values of the angles between normals of two trangles shared an edge. This criterion works well
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in most cases when conducting the experiences on several smooth, synthetic functions [17]. It
performs better than Delaunay triangulation on such functions. A third one minimizes the sum

of the squares of ABN.

e) Minimizing L, error (Least squares fit criterion)
Let H (x ,y, ) be the elevation of a vertex (', y , ) on the actual surface and H'jx , , 5 , )

be its interpolated approximation. The sum of the squares of elevation errors over all input

points 1s called I, measure. It can be denoted as Z H(x,,y,)-H'(x,,y, ))* . The optimal

k=1

triangulation is the one with minimal I, error. It is also called least squares fitting critetion.

Oualit(D) =3 (Hxe, y) ~ H' (50, 9,)*

k=1
The triangulation with this criterion creates very good approximation. It can lower the

error of the approximation. If the number of the points added 7 —> 29, the etror of the L, -

optimal triangulation converges as m~"' [18]. However, L, criterion sometimes produces very
long and thin angles that cannot fit the surface well [17]. The algorithm cannot eliminate those
slivers because they are too thin to contain any points and therefore add no etror to L,

measure.
Other relevant criteria:
Min-Max error criterion is also based on the elevation differences between mnput potnts

and their approximations. It minimizes the maximum of the local approximation etrots.
However, Min-Max error critetion is vulnerable to outliers and thus performs worse than L,

€rror measure.
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2.3  Terrain Modeling

There are three common ways to represent and store the terrain. They are DLG, DEM
and TIN.

a) DLG (Digital Line Graph)

DLG stores polygonal lines. Every polygonal line is a set of (x;, y) coordinates that have a
common elevation. There are many DLG files available, but DLG files are difficult to handle
[5].

b) DEM (Digital Elevation Model)

DEM stotes the elevations of points on the surface at regular intervals. The x and y
coordinates of a vertex are implicit in the grid. DEM is popular because it is ease to use. The
neighbothood of a point can be located fast. There exist lots of example DEM files. A
drawback of DEM is that it cannot adapt to the irregularity of the terrain. Thus, redundant
data will be stored when the patt of sutface of the tetrain is flat.
c¢) TIN (Triangulation Itregular Network)

TIN stores a set of triangles that approximate the surface. TIN requires mote storage for
a vertex than DEM, because it must store the three coordinates of a vertex. However, because
TIN adapts to the irregularity of the terrain, for the part of surface where topographic
information is little, the number of vettices to apptroximate it is much less than DEM.
Moteover, it can also express the features of a terrain. For instance, peaks can be reptresented
by the vertices of TIN, wheteas, ridges can be represented by the edges of TIN. However,
there exist fewer TIN files than DEM and DLG files, but many algorithms are available to

convert DEM or DLG files to TIN files.
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2.4 Data structures

There are several popular data structures to hold the information of the resulting triangulation,
such as Quad-Edge, DCEL, winged-edge data structure and so on.

a) Quad-Edge

Quad-Edge represents the subdivision of a manifold and its dual in the same time. It stores
every undirected edge in the subdivision four times, two directed edges for itself and two for
its dual. Every edge in the mesh stores a pointer to its otigin, a pointer to its dual edge and a
pointer to the counterclockwise next edge around its otigin. The dual edge of a directed edge is
the one that points from the face on it right to the one on its left. All other topological
operators are defined in terms of the above pointers. Quad-Edge is preferred because it is
elegant, it stores a graph and its dual in the same time and thete is implementation of Quad-
Edge structure available. For example, 1t will store Delaunay triangulation and its dual, ie.
Voronoti diagram simultaneously.

b) DCEL

DCEL stores a record for every face, edge and vertex of the subdivision. The vertex record of
each vertex » stores its coordinates and a pointer to a half-edge originated from ». The face
record of each face stores a pointer to a half-edge on its outer and inner boundary respectively.
The half-edge record of a half edge ¢ stores a pointer to its origin, a pointer to its twin half-
edge, a pointer to the face bounded by it, a pointer to its next and previous half-edge on the

boundary of the face respectively.

2.5 Accuracy Measures

Firstly, we can evaluate the fidelity of a triangulation by visual similarity. A good

triangulation should avoid visual artifacts and enhance the geometric features of a surface.
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Since slivers may distort the appearance of the approximation because of aliasing, a good
triangulation should limit the amount of slivers. Both Min-Max angle and Max-Min angle
criteria try to avoid long and thin triangles, whereas, most data-dependent trangulations
produce many slivers. However, visual similarity is quite subjective and vague as an accuracy
measure.

Secondly, we can use the difference in elevation between the actual surface and its
approximation as accuracy measure. Geometric error measures evaluate the accuracy of an
apptoximation more objectively and precisely. Commonly used elevation error measures

include L, error, L., RMS error, total error and average error.

Thirdly, we can use certain detrivative statistics, such as mean curvatures, as accuracy
measures. Experience shows that mean curvature as an accuracy measure gives similar results
to the elevation error measure to some extent [5].

Furthetmore, we can check whether the triangulation with respect to certain criteria
presetve the geometry of the actual surface. An optimal triangulation should express both the
intrinsic and extrinsic geometry of the real surface so that we can extract the properties of a
surface from its approximation. Intrinsic properties of a surface are those determined only by
the surface itself, whereas, extrinsic properties atre those relevant to the way the surface is
embedded in the space. Intrinsic properties include the length of a curve on the surface, angle
between two cutves on surface, area, Gaussian curvatute and Gaussian map. The extrinsic
properties include mean curvature, convexity and concavity, extrinsic curvature and so on.
Delaunay triangulation almost preserves intrinsic geometty of surfaces, but it does not preserve

extrinsic properties, such as convexity, in many cases [2]. Minimal area critetion does not
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preserve both intrinsic and extrinsic geometty [2]. As mentioned pteviously, the Gaussian

curvature criterion preserves the convexity of the surface.
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Chapter 3

Algorithms

In this section we discuss all algorithms we implement in order to compate the following
criteria: Max-Min angle criterion, Min-Max angle critetion, minimization of total Gaussian
curvature, minimization of mean curvature, minimization of sutface area, minimization of

notrmals between angles, and minimization of L, error.

We implement both the refinement and the decimation of sutfaces with respect to above
criteria. The algorithmic paradigms we implement include greedy insertion, dynamic
programming, local swap, simulated annealing and vertex decimation. We use greedy insertion
to implement Delaunay triangulation and Min-Max angle triangulation for sutface refinement.
Although greedy insertion algorithm cannot guarantee to find the global optimum with respect
to Min-Max angle criterion, it still works quite well for it. Moreover, we also discuss edge
insertion paradigm, because it can find the global optimum with respect to the Min-Max angle
criterion. We use local swap algorithm or simulated annealing to calculate the optimal

triangulation with respect to ABN criterion, L, measure critetion, Gaussian cutvature critetion

and mean curvature criterion after points are inserted or deleted. We use a modified greedy
insertion algorithm combined with dynamic programming to calculate the optimal
triangulation with respect to Min area criterion for surface refinement. Furthermore, we
mmplement a vertex-decimation algorithm for surface decimation.

In order to compare the results of different criteria, we also generate some terrains
automatically. We use the fault algorithm [15] to create random terrains and Diamond-Square

algorithm [24] to yield terrains with significant features.
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31 Triangulation Algorithms

Here we will give more detail on the triangulation algotithms that we have implemented.

3.1.1 Greedy insertion algorithm [18]

Greedy insertion algorithm:

Create an initial triangulation /\ with two triangles containing all points
for (every triangle T'in A) {

Scan T to find out the unused point » with highest local error

Insert (T, ») into an order heap Q ordered by the importance of vertices

}

while (error>error threshold and number of points inserted<certain amount) {

Pop the top pair (T, v) from Q
Labeled » as used
Insert yinto T
if (v lies on an edge ¢)

Delete ¢
Add spokes from v to the vertices of the surrounding polygon P
for (every edge ¢ of P) {

if (¢ does not conform certain criterion C) {

Swap ¢

Add two edges of the quadrilateral around ¢ not adjacent to v into P

}

for (every triangle T adjacent to #) {

Scan T to find out an unused point » with highest local etror
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if (T'1s found in Q)
Update the old pair (T, ...) with (T, ») in O
else

Insert (T, ») into Q

eyt

end

Variation: The test whether an edge ¢ conforms to the Max-Min angle critetion is based on
whether ¢ meets the empty circumcircle condition. With tespect to other criteria C, such as
Min-Max angle criterion, an edge ¢ is considered to meet C if the swap value of ¢ with respect
to C1s smaller than or equal to 0.

"The above algorithm can also be modified to calculate the optimal triangulation with respect to
Min area criterion. After a point » is inserted, we will not add spokes from » to its neighbots.
Instead, we will delete all the edges of the containing polygon of ». Then we will use dynamic
programming to find a minimum area re-triangulation of the resulting polygonal hole.
Complexity: Greedy insertion algorithm can be implemented in time O((7+#)lagn and space
O(m+n), whete m is the number of input points and 7 is the number of points in the mesh [18].

3.1.2 Edge insertion algorithm [26]
Edge insertion algorithm:

Establish an inital triangulation A of the surface
do {

A=A

last

Find an unused worst triangle Axyzin A
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Mark Axyg as used
Let y be the anchor of Axyy
for (every vertex pair (§, £ in A) {
Let A= A
Add edge yrto A’
Delete all edges in A\’ that intersect y

Retriangulate the holes by cutting ears whose qualities > Aoyz
if (the retriangulation of the two holes succeed) {
Let A=A

break

}

} while (A, 1= A and there exists an unused worst triangle in )

end

Complexity: Edge insertion paradigm can find the optimal triangulation with respect to Min-
Max angle criterion or Max-Min height critetion in time O (#” /ogn) and space O(n), with respect

to Min-Max slope criterion or Min-Max eccentricity ctiterion in time O(# ° ) and space Oz ?)

26].
3.1.3 Dynamic programming algorithm [26]
Definition: given triangulations A of simple polygons, a quality measure (Quality: A —~R)

1s decomposable, provided that:

1. There exists a function G, for an arbitrary diagonal {» ,, » ; } that splits an arbitrary
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polygon P into two simple polygons P ,, P, , Quality(A\)=G(Quality(A ) Quality(A , )v, v ;),
whete A, A, A, are arbitrary triangulations of P, P |, P, respectively.

2. G can be compute in time O (7).

3. G is monotonic in Quality (2\ ), Quality (2, ).

4. Quality () can be computed in time O (1) if A s a triangle.

The following measures are decomposable: Maximal/minimal angle, maximmal /minimal
length of an edge, maximal/minimal area of a triangle and so on. If Quality(A\)=Max(Angle
in 2A), then G (Quality (A, ), Quality (A ), v, v,) = mase { Quality (A, ), Quality (A ,)}.

Given polygon P = {v g, v\, v, ... ., }, let O (o, v, » ,) be the quality of the
triangle formed by vertices {» ;, v ,, » ; } and Q (/) be the quality of polygon {v,...0 ...
v ; }. Atray Diagonalfi, ] is used to recover the optimal triangulation of P

Dynamic programming algorithm:

for (=0 to »-7)
Initialize O, (i+1)%n)
for (size= 2 to n-7) {
for (i = 0 to n-1) {
J= i+ size) %o 1
if (v ,» ; is not a diagonal)
LQfig)=-°
else {

k=(+1) % n

47



do {
if (D) <GGQW v v ;)20 v )L2(kg) v s v ;)
LE)=GGR© v ;v ) L26kR) v v ) Qkg) v s v ;)
Diagonalfij]=k
}
k= (k+1)%n

} while (£ 1= )

}
Recover(0,x-7)
end
Function Recover() adds edges to P. We add edges to the polygon recursively:
Recover (4, ))
if ((j+n-1)%n<=2)
return
k= Dizagonallt, j]
Addedgevivk,edgevkvj
Recover(Z, £)
Recover(k, )
end
Variation: With respect to different criteria, dynamic programming differ in what value will be

assigned to Qfz (i+1)%n), ie., the quality of ditected edges in counter-clockwise order, what
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value will be assigned to - 0, ie., the negative infinity, how to compare two qualities and how

to define G( ). For example, with respect to the Min area criterion, we will assign 0 to

QO(6,(i+1)%n) and the largest value in the wotld to - <°, If the area of Ais smaller than that of
A, we will say that Quality(A)>Quality(/\’). We will define

G(A) =Y. Area(T)

TeA

=G (Onalzyy (A L) Quality (Az): Vi, v j)
= Quality (A )T Quality (. A 2)

= Y Area(T)+ Y_ Area(T).

TeA, TeA,

We use dynamic programming to re-triangulate the polygonal hole caused by deleting the
edges adjacent to the inserted point with respect to the Min area criterion. Moreover, we can
also use it to re-triangulate the polygonal hole caused by deleting a point with respect to Min-
Max angle, Max-Min angle or Min area ctiteria.

Furthermore, we can also use dynamic programming to calculate the importance of a point
with respect to the Drop heuristic. With respect to the Drop heuristic, the importance of a
point v is defined as the difference between its real elevation and its lineatly interpolated
elevation if it 1s deleted. Thus we must find out what triangle » is located after » is deleted and
the hole is retriangulated. We will use dynamic programming to retriangulate the hole. We will
not use Recover() to actually retriangulate the hole. Instead, we will replace Recover() with the
following function Locate() to locate the triangle that » is on. After that we can get the

importance of » Locate(s, 4 ;) locates the triangle T of the sub-polygon {» , ... ; | that

contain ». It will return the three vertices of T.
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Locate (v; 1, J)
&= Diagonallt, j]
if (vis not on the right of v;v, and »is not on the right of v,v,)
return (v ;v , v j)
if (v1s on the right of v,v,)
Locate(y, 7, 4)
else
Locate(y £, )
end
Complexity: A triangulation of a simple polygon that optimizes an atbitrary decomposable
function can be solved in time O(x °) [8]. The triangular mesh needs space O(n). It uses space
O(n ?) to store the quality of every possible sub-polygon. The array Diagonal[] needs space
Ofn*® ). Thus, the space complexity is Oz 2).

3.14 Local swap algorithm [14]

We will denote the current triangulation as A below.

Local swap algorithm:
Establish an initial triangulation of the input data set
for (each edge ein A) {

if (¢ is swappable) {

Let A’ = the triangulation after swapping ¢ from A

SwapValue(e) = Quality (A’ ) — Quality (£\)

50



else
SwapValue(e)= - o

Insert (e,Swapl alue(e)) into an ordered heap Q ordered by swap values

}

while (Q is not empty and the swap value of the top pair of O > 0) {
Let ¢ = the edge of the top pait of O
Swap ¢
for (every edge ¢’in the neighbors of ¢) {
if (¢’is swappable) {
Let A’ = the ttriangulation after swapping € from A
SwapValue(e’) = Quality (A’ ) — Quality (4)
}
else
SwapValue(e)= -2

Update the old pair (¢, ...) with (¢, SwapValue(e’)) in O

}

end

Variation: With respect to different critetia, local swap algorithm differs in how to calculate
the swap value of an edge and what is its neighbothood whose swap values need to be
updated. Figure 5 shows the neighborthood of edge e with respect to Gaussian curvature

criterion and mean curvature criterion.
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Gaussian Curvature Mean Curvature

Figure 5: The neighborhood of edge e

Complexity:
The local swap algorithm can be divided into several parts:
1) Establish an initial triangulation. We use the greedy vettex-insertion algorithm to build a
Delaunay triangulation of # points. This can be done in time O(n/ogn) [18].
2) Calculate the swap values of all edges in the initial trangulation. Suppose the time to
calculate the swap value of an edge is X. Because there are O() edges in the mesh, the total
time to calculate the swap values of all edges is O(#*X).
3) Sott the swap values of all edges. This can be done in O(nlogn).
4) Recalculate swap values. After swapping an edge ¢, all the swap values of its neighborhood
should be recalculated. Suppose the average number of its neighborhood is Y. Then, the time
of recalculation after a swap is O(X*Y). Since there exist O(n” ) swaps, the total time of
recalculation is O(n” ¥X*Y).

Therefore, the time complexity is Oz *X*Y).

We will determine X and Y with respect to different criteria.

With respect to Gaussian curvature ctiterion, in order to find out the time we spend in

calculating the swap value of an edge, we must first determine the time we spend in calculating

the Gaussian curvature of a vertex ». The calculation can be divided into the following steps:
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1. Find out the type of ». Supposed the degree of vis D. To find out whether every pair of
edges forms a supporting plane or not, we must test all the other D-2 edges left. There are
D¥(D-1)/ 2 pairs. Thus, it can be done in time O(D *).

2. Calculate the convex hull of edges around v if » is a mixed vertex. After finding all edges
forming the supporting planes, these edges form the convex hull. It takes time O(7).

3. Sum the angles around » and the angles on the convex hull of the edges around »if »is a
mixed vertex. They both take time O(D).

Thus, the total time to calculate the Gaussian curvature of #is O(D” ). Because the average
degree of a vertex in the triangulation is less than 6, the total time of the calculation is O(7).

For every edge ¢ in the triangulation, in order to calculate the swap value of ¢, we will
calculate the Gaussian curvature of the four vertices incident to the quadrilateral around ¢
twice, one before swapping ¢ and one after swapping e. Thus, it takes time O(7) to get the
swap value of ¢. Then Xis O(7).

The neighborhood of an edge ¢ whose swap values should be recalculated is the edges
on the triangles incident to the four vertices of the quadrilateral around e. The numbet is
8*D. Because the average of D is less than 6, the number of vertices in the neighborhood of
¢is O(7). Then Y'is O(7).

Similarly, we can find out that X and Y with respect to other criteria are all O(7) too.
Thus, the time complexity of local swap algotithm is O ). The triangular mesh needs space
O(n). The ordered heap that stores the swap values of edges needs space O(r). Thus, the space
complexity is O().

3.1.5 Simulated annealing algotithm [25]

We will denote the current triangulation as A below.
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Simulated annealing algortithm:

Establish an initial triangulation of the surface
for (=17 to NoOf3tages) {
NoOfGoodSwaps = 0
for (/=1 to NoOfSwaps) {
if (NoOfGoodSwaps > NoOfGoodSwap Allowed)

exit to the outer loop
Select a random edge ¢in A
if (swapping ¢ will improve A) {
" Swap ¢
NoOfGoodS waps= NoOfGoodSwaps+1

}

else {

Choose a random number x between 0 and 7

Let A’= the triangulation after swapping ¢ from A
Let d = Quality(A\")-Quality()

if (o <= exp(d/ )

Swap e

end
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NoOfStages is the number of stages. NoOfSwaps is the number of swaps that can be made

at each stage. NoOfGoodSwaps is the number of good swaps that can be made at each stage.
¢, controls the probability of a bad swap.

Complexity: Simulated annealing algorithm can be implemented in time
O(INoOfS tages*NoOfSwaps). If we let NoOfStages and NoOfSwaps both be O()=0O(n), the time
complexity becomes O(x” ), whete ¢ is the number of edges and # is the number of points in
the mesh. The total memory cost is O(#).

3.1.6 Vertex-decimation approach

We will delete an independent set of points each time.

Vertex-decimation approach:

Create a finest triangulation A of the mput data points
if (One-pass method) {
for (evety vertex vin A) {

Calculate the importance of »

Push »mnto an ordered heap Q ordered by the importance of vertices

}

while (error<error threshold and number of points deleted < certain amount) {
if (Multi-pass method) {
for (every vertex vin A) {

Calculate the importance of »

Push »into an ordered heap Q ordered by the importance of vertices
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}

while () is not empty and the number of points deleted < certain amount) {
Pop the top vertex » from Q

if (» has not been used and » can not be ignored) {

Delete » from the A\

Marked » as used

Marked the neighbors of » as ignored

Retriangulate the resulting polygonal hole

}

Optimize the resulting A\ to meet certain criterion again

Reset the igored points to its former status

end

3.2 Sample Terrains

In the following section, we will introduce two algorithms that we will use to generate test
terrains. The first algorithm is the fault algorithm. The second algorithm is diamond-square
algorithm.

3.2.1 Fault algorithm [15]

Fault algorithm repeats subdividing a tetrain by a random line and raising the part on one

side of the line and loweting the part on the other side.

The fault algorithm:

D = +/(width® + length®)
56



for (step=1 to NoOfS1ep) {
0 =Rand ()*2* 7, A=sin(0),B=rcos(0), C=Rand )*D-D/2
for (7=0 to widsh) {
for (=0 to length) {

Distance = A% + B¥-C

if (want to create a smooth terrain) {
if (Distance > WaveSize ot Distance < -WaveSize)

Hezght (i, j)= Height(s, j)- Displacement

else

Height (i)=Height(i,j)+Displacement*cos(Distance/ WaveSize* 1)

}

else {
if (Distance >0)
Hezgght (i, j) = Height (3, j) + Displacement
else

Height (2, j) = Height (i, j) - Displacement

}

end
Rand() creates a random fraction. The constants width and length are the width and length
of the grid, respectively. Displacement, WaveSize and NoOfStep are all constants.
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3.2.2 Diamond-Square algorithm [24]

An advantage of the terrains this algorithm generates is that the structure in a smaller scale
resembles the structure of the whole, just like natural terrains.

Let us give some concepts first. The middle of a square is a corner of a diamond that has 3
ot 4 cotners. The middle of a diamond is a cotner of a squate that has 4 corners. The whole
grid is a square.

The Diamond-Square algorithm can be divided into the following steps:

1. Create a (2 " +1)¥2 " +1) grid.

2. Assign elevations to some spots of the grid. We can merely assign random elevations to
its 4 corners. However, if we want to cteate terrains with significant features, we must seed the
grid on purpose.

3. Diamond step: For every square in the grid, assign the average of the elevations of its
corners plus a random fraction to its middle.

4. Square step: For every diamond in the grid, assign the average of the elevations of its
corners plus a random fraction to its middle.

5. If the grid is not dense enough, go to step 3.

Diamond step Square step Diamond step Square step
L i L o ti‘:;? LN ] Wy 05, )
7T it )l jEcizeniy
b aer | e | SN o R e |
gl (i EESEaTTt
> - il . (i als uar]
PR g e R N e

Figure 6: Diamond and Square step (is from [24])

Diamond-Square algorithm:

for (/ = 0to n) {

r=2""s=r/2
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for (=0,/<2"1/=/+7r)
for (k=0; £ < 2"k =k +r)
if (>=2)
H&'+r/2][/é+r/2]=(H&][k]+H&][/é+;j+H&'+7j[/é]+H&'+7j[/é+r])/4+Rand()*
roughness'
if (s >=1) {
for (/= 0, j<= 2" =+ 1)
for (k=((j+s) mod 1), k <= 2" k = k& + r)
Hj]{k]=Avexage(Hlj-r/ 2] k], Height ] [k-r/ 2], H[j+r/ 2] %],

H{j][k~+7/ 2])+Rand() *roughness'

}
end

Rand() cteates a random fraction between —7 and 7. Rowughness controls the roughness of
the resulting terrain. Average() averages the heights of 3 or 4 valid points. A point is valid if it
1s inside the grid.

When we generate a terrain with a peak or a valley, we will assign our own values to
H[jj{&] and H[j+r/2][k+r/2] in the first several passes before running Diamond-Square
algorithm. For example, when we generate a terrain with a peak, we can let HJfj//k] be the
function of j and £ so that the closer the point (;,4) is to the center of the peak, the higher its
elevation 1s. Later when we run the algorithm, we will skip the spots that have already have

values.
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Chapter 4

Simulations

We will compare the following criteria: Min-Max angle criterion, Max-Min angle ctiterion,
Gausstan curvature ctiterion that minimizes the total absolute Gaussian curvature, Mean
curvature criterion that minimizes the total absolute mean curvature, MAT criterion that

minimizes the area of the surface, ABN critetion that minimizes the angle between normals of
any two adjacent triangles and L, measure ctitetion that minimizes the sum of the square of

elevation differences of all input points. We will evaluate their performances for both terrain
refinement and decimation.

When dealing with terrain refinement, every time when we insett a point, we search all
points of the input data set and determine the point that has the highest error, ie. the
difference between its actual elevation and the interpolated elevation is highest. Then we insert
it. To calculate the optimal triangulations with respect to Min-Max angle criterion and Max-
Min angle criterion, we use an incremental insertion algorithm (from section 3.1.1). The
incremental insertion algotithm can find the global optimum with respect to Max-Min angle
criterion. It also wotks quite well for Min-Max angle ctiterion. When calculating an optimal
triangulation with respect to Min Area criterion, we choose the most important point » and
delete the edges of the triangle that contains » Then we use dynamic programming to
optimally re-triangulate the resulting hole with respect to the minimum area ctitetion. With
respect to other data-dependent criteria, we create a Delaunay triangulation first and then apply
an edge-flipping algorithm to this initial triangulation to calculate the optimal triangulation. We

use local swap algorithm to calculate the optimal triangulations. Although simulated annealing
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algorithm has more chance to find the global optimal triangulation than local swap algorithm,
in our experience, it is too slow and too sensitive to the parameters. Thus, we will not use
simulated annealing algorithm in our final comparisons of triangulation.

Comparison between Local Swap and Simulated Annealing:

We try to use simulated annealing algorithm to find an optimal triangulation for many
input data sets, but unfortunately, we found that in our experience, simulated annealing
algorithm does not work better than local swap algorithm in most cases, and it is much slower
than local swap algorithm, especially when the input data set is large. Simulated annealing
algorithm is too sensitive to the parameters. Figure 7 demonstrates the sensitivity of the

simulated annealing algorithm. The error measure we use in the plot is the average absolute

1 n
etrot, le. —ZI H(x,,y,)—H'(x,,y,)|, whete H (x ,, y , ) be the elevation of a vertex

k=1
(> ¢, ) on the actual surface, and H’(x .,y , ) be its interpolated approximation. When we
generate this error plot, we set the parameters as L.L. Schumaker[25] recommended: the initial
temperature=2*(the highest swap value of edges in A), NoOfSwaps = 5 * (no of edges),
NoOfGoodSwaps =5 * (no of edges), r = 0.95. We set NoOfStages=100. From the plot, we can
see that the approximation errors of the optimal triangulation generated by simulated
annealing are higher than those by local swap algorithm and the error curve resulting from the
simulated annealing algorithm fluctuates dramatically. The non-monotonic slopes of the error

curves indicate that the parameters are not set propetly in general, because the error becomes

even higher than before when more points are inserted.
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Figure 7: Simulated anneal vs. Local swap algorithm

The only case we found that simulated annealing is better than local swap algotithm is
when we test on the function: f (x,y)=exp(-81.0/4.0%((-0.5)%(5-0.5)+(y-0.5)%(3-0.5))). We test this
function on a 20*30 gnd. Simulated annealing algorithm still does not work better than local
swap algorithm when we set the parameters as L.L. Schumaker [25] recommended. Then, we
change the parameters to the following values: the initial temperature = 0.07,
NoOfSwaps=15*(no of edges), NoOfGoodSwaps =15*%(no of edges), r =0.95, NoOfStages =500.
With these values, we can see that the simulated annealing sometimes works better than local
swap algorithm for this function. Figure 8 indicates that. The error measure we use in the plot
is the average absolute errot. Because this data set is very small, it is not difficult for us to

adjust the parameters to reach reasonable values. However, when the data set is large, it is very

expensive for us to adjust the parameters to reach reasonable values. Thus, we will not use the

simulated annealing to calculate the optimal triangulation in our expetience.
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Figure 8: Simulated annealing vs. Local swap algorithm

When dealing with terrain decimation, we use Delaunay Greedy Insertion algorithm [18] to
create a full-detailed approximation of the actual surface first. The full-detailed approximation
we generate is the one whose etror is zero, although it may not contain all input points. Then
we repeatedly delete the least important points from the initial triangulation and re-
triangulating the polygonal resulting holes by ear cutting solution [12] (from section 2.1.3.1)
until the number of points deleted reaches a certain amount or the error is beyond a certain
threshold. We choose an independent set of points to delete each time. We will use HDH
(The Height Difference heutistic) ctitetion or the Drop heuristic to determine the importance
of a point. As introduced earlier in section 2.1.3.1, the HDH sums the signed differences
between the elevation of a vertex » and that of each of its neighboring vertex and uses the
absolute value of the result as the importance of ». The Drop heuristic uses the elevation
difference between a point and its approximation as the importance of the point. HDH is
much faster than the Drop heuristic, but the Drop heuristic yields better results [20]. When
generating the plots of all terrains and the tables of the crater terrain data set, we use HDH to

calculate the impottance of points, whereas, when generating the tables of other terrains, we
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use the Drop heuristic to compute the importance of points. After that, we use the edge-
flipping algorithm to calculate the optimal ttiangulation with respect to certain criterion.

After a point is deleted, we will re-triangulate the tresulting polygonal hole. We will only
allow convex triangulation, because if not so, it will conflict with some assumptions we make
in the programs and cause errors. For example, when we try to locate a point » in the
triangulation, the program will return an edge that shares a same tdangle T with ». In our
program, we assume that » is an endpoint of T. Non-convex triangulation will conflict with this
assumption we make. Moreover, non-convex triangulation will cause artificial break line in the
triangulation.

Because some criteria, such as Gaussian curvatute criterion and L, measure criterion,
often generate many very thin triangles, sometimes, it is extremely difficult to find a convex
triangulation of the resulting hole after a point is deleted. Thus, we will not allow deleting a
point if we cannot find a convex re-triangulation of the resulting hole after it is deleted, even if
it has a very high importance.

We use DEM files to store the original surfaces and the Quad-Edge data structure to store

the optimal triangulations we generate.

4.1 Error measures

We use the popular evaluation methods that compute the differences in elevations
between the actual surface and its approximation to evaluate the quality of an approximation

with respect to certain criterion. The commonly used error measures include L error, L,
etror, RMS etror, average absolute error and total absolute etror. Let H (x ,, y , ) be the
elevation of a vertex (x ., y , ) on the actual sutface, and H’ (x ,, y , ) be its interpolated

approximation. Then these error measures can be defined as follows:
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Although the order of the error curves with respect to different criteria is quite consistent
over all these error measures, they have different focuses. L, etror determines the global error
bound over the approximation. It makes sure that the difference between the approximation
and the real surface will not go beyond the bound. However, L error is too sensitive to those
points that have uncommon high individual errors. L, etror is mote robust to outliers than
the L., error. It gives fairly good evaluation for the overall fitting quality of the approximation.
Average absolute error is more robust than L, error against outliers because it treats the
elevation differences of all points equally, whereas L, error inclines to large errors that occur
infrequently. Thus, in order to have a comprehensive knowledge of the qualities of different
criteria, we will choose the following error measures: L, error, average absolute error and total
absolute error. Because L error is vulnetable to the outlier, we will not use it. Figure 15

demonstrates the vulnerability of L, error.
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4.2 Input

Our experience is based on six classes: crater terrain, random terrains, terrains with a single
significant feature, functions, natural terrains and hybrid terrains that combine two or more
different significant features. The Crater Lake contains 754,224 points on a regular grid and is
widely used as an input data set for many experiments on terrain simplification [18]. Random
terrains ate those generated by the fault algorithm (introduced in section 3.2.1) randomly. We
will create both rough and smooth random terrains. The random terrains we generate have
many small valleys and peaks. We will use Diamond-Square algotithm and the tool Gforge to
create the terrains with significant features, such as peaks and valleys. A peak is a spot that has
greatest elevation locally, whereas a valley is a spot that has lowest elevation locally. The tool
Gforge is a height field generator and was developed by J. Beale [6]. We will test on terrains
with a single feature and with two or more features. We will call the later ones hybrid terrains.
With these programs, we can easily create the artificial terrains with certain features we want
and we can adjust the parameters of the programs to create slightly different terrains and
compare the qualities of the approximations with respect to different criteria for these slightly
different terrains. For example, we can adjust the parameter Displacement in the fault algorithm
to create more curved or more flat surfaces. Then we can test on these slightly different
terramns to find out whether a criterion is suitable for all these terrains with little difference.
Although programs provide the flexibility to create terrains, the terrains they generate may be
different from those in nature. Thus, we also test on the real natural terrains. Moreover, we
also make a comparison of criteria on some functions that the corresponding surfaces
generated are not common in the real world. These surfaces we test include spheres and

cylinders, because they are quite common geometrical objects.
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Figure 9 shows examples of some terrains we are going to test the triangulation algorithms

Of11.

Natural terrain 1

Tetrain

Hybrid

Rough Random
Terrain

Smoot}{ Péak

Roug;h Pc'ak

Figure 9: Surfaces are used for testing algorithm
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4.3 Results

When comparing different criteria, we use tables to describe the results after certain
percentage of points are inserted or deleted. Moreover, we also give plots to describe the error
curves for the refinement process and the decimation process. In the refinement process, we
insett a point one at a time, whereas in the decimation process, we delete an independent set of
points each time. Thus, the etror cutves of refinement are continuous, whereas the error
curves of decimation are piecewise continuous.

In the plots, the 1st, 2nd and 3rd columns in the ledge in the uppet, right-hand cotner of

the plots show the criterion of the triangulation, the optimizing algorithm and refinement/

b {1

decimation method respectively. “Error”, “mean” and “gauss” denote L, measure critetion,

mean curvature criterion and Gaussian curvature criterion respectively. “Inctemental” means
that the optimal triangulation is generated by incremental insertion algorithm. “Local” means
that the optimal triangulation is produced by local swap algotithm, whereas, “anneal” means
that the optimal triangulation is calculated by simulated annealing algorithm. The third column
with “I” means the simplification process is a refinement one that inserts points one by one,
whereas, “DD” denotes a decimation process that deletes an independent set of points at each
step.

We will list the approximation errors for six kinds of tetrains with respect to different
criteria in sequence. For every kind of tetrains, we will list the approximation errors for
refinement process first and the approximation etrors for decimation process later. Although
for every kind of terrains, we only list the errors of one sample of it, we have tested on many

other terrains of the same kind. Some terrains of a same kind share some common features.

4.3.1 Crater:
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We will list the approximation errors with respect to all thtee ettor measures we use: L,
error, average absolute error and total absolute error in order to get a full knowledge of the
qualities of the approximations with respect to different ctiteria.

Refinement:
Figure 10 and Figure 11 show the approximations with respect to different criteria that use
500 points of the Crater terrain data set. As we can see, the approximation has alteady

demonstrated its major features.
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Figure 11: Insertion of 500 points of Crater
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Figure 12, Figure 13, Figure 14 and Figure 15 show the error curves of the Crater with

respect to average absolute error, total absolute error, 1., error and L respectively. From
Figure 15, we can see that the error plot of L. error is too chaotic. Thus, we will not use 1t

afterward. As we can see from the plots, the rank of the criteria with respect to their
approximation errors is quite similar over all these four kinds of error measures. Thus, we will
display only one kind of error measure afterwards in order to save space. The rest of the error

plots can be found in Appendix A.
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Figure 12: Average errors after inserting up to 500 points of Crater
terrain data set sequentially
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Figure 13: Total errors after inserting up to 500 points of Crater
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Figure 14: L2 errors after inserting up to 500 points of Crater terrain
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Since after 75% points ate inserted, the error is zero, we will not give the errors beyond
this point fotr compatrison. Also, we will only give the errors of the optimal triangulation after
at least 1% points are inserted, since the approximation with 7% of the input points already

looks quite similar to the original crater.
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Figure 15: Max errors after inserting up to 500 points of Crater
terrain data set sequentially

%

Points

Delaunay

Min-Max

Min

Mean

Gaussian

ABN

L 2
inserted angle Arca
measure
1 1542 526211 5.24758 7.52188 6.49782 6.86634 6.80974 4.24232
10 15422 0.809917 0.804217 1.46247 1.06522 1.08695 1.10184 0.671814
25 38556 0.315733 0.319663 0.580354 | 0.415044 | 0.418539 | 0.422042 0.262467
50 77112 0.0864432 0.0892028 0.198774 | 0.128764 | 0.126879 | 0.115222 0.0570321
Table 1: Average errors after inserting various percentages of points
of the Crater terrain
Decimation:

As we can see from Figure 16, Figure 17 and Figure 18, the rank of the criteria with
respect to their approximation errors in the decimation algotithm is also quite similar over all

these three kinds of error measures. Thus, we will display only one kind of error measure
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afterwards for the decimation algorithm too. The rest kinds of the error plots can be found in
Appendix A.

Although crater has 754,224 input points, the error of the Delaunay triangulation of it has
alteady reached zero after 700,807 points are inserted. Thus, we will generate the Delaunay
triangulation of it with 700,000 points inserted before doing the decimation. Because the errots
of the initial full-detailed triangulation with respect to different criteria are the same, we will
not give etrors of the initial triangulation. Instead, we will start the error curves from the
triangulation after an independent set of points is deleted from the initial triangulation. At that

time, the number of points in the mesh 1s about 73,000.
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Figure 16: Average errors when deleting an independent sct of
points of the Crater terrain data set each time
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total erro
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Figure 17: Total errors when deleting an independent set of points
of the Crater terrain each time
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Figure 18: 1.2 errors when deleting an independent set of points of
the Crater terrain each time

Yo

Points Delaunay

Min-Max

Min

Mean

Gaussian

ABN

I. 5
deleted angle Arca
measurc
10 | 10000 0.0749882 0.101097 0.135328 | 0.0933276 0.0924291 | 0.079581 0.0346918
25 | 25000 0.192211 0.21639 0.253581 | 0.188033 0.184535 0.184385 0.0881985
50 | 50000 0.461684 0.484298 0.586801 | 0.452728 0.409 0.453085 0.257116
75 | 75000 0.886049 0.908521 1.17482 0.922817 0.828301 0.943499 | 0.57783
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Table 2: Average errors when deleting a certain percent of points of
the Crater terrain data set

4.3.2 Random terrain;

In our experience, we have adjusted the parameters, such as Displacement and WaveSize, of the
fault algorithm to produce different random terrains. Some are more curved and some are
more flat. Some ate more smooth and some are more rough. From our experience, the error
plots of the smooth random terrains often share some common features. So do that of rough
random terrains. Moteovet, because many critetia, such as ABN and mean curvature criteria,
which we examine are smooth ctitetia, we will test whether they work well for rough terrains
also, if they can work well for smooth terrains. We will distinguish between rough and smooth
terrains.
4.3.2.1 Smooth Random Terrain:

The sample smooth random terrain we create is on a grid that has 80*80 points. When
we generate this tetrain by fault algorithm, the parameters Displacement and WaveSize are set to
20 and 5 respectively.

Refinement:
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Figure 19: Average errors when inserting up to 200 points of a
smooth random terrain sequentially
%o Points Delaunay Min-Max | Min Mean Gaussian | ABN I
‘ 2
inserted angle Area Curvaturc | Curvature
measurc
10 640 22.6548 22,7061 38.1835 | 33.5984 37.4308 33.2951 19.7869
25 1600 9.24025 9.08353 19.3872 | 12.0889 13.0941 12.9404 | 7.80284
50 3200 3.0535 2.94488 9.57973 | 4.53152 3.94519 4.59853 | 246956
75 4800 0.739063 0.706604 | 3.6522 1.43362 1.09366 131572 | 0.6406
‘T'able 3: L2 errors when inserting a certain percent of points of
smooth random terrain
Decimation:

The full-detailed approximation of it has 6,332 points. After an independent set of points

is deleted from the initial triangulation, the number of points in the mesh 1s about 4,500.
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L2 error
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Figure 20: 1.2 errors when deleting an independent set of points of a
smooth random terrain each time
% | Points Delaunay Min-Max | Min Area | Mean Gaussian | ABN L s
deleted angle
measure
10 | 633 1.02836 1.03242 0.862422 | 0383227 | 0486411 | 0.815086 | 0.18851

25 | 1583 3.27299 3.27581 3.2251 1.94238 1.91569 2.69302 1.35753

50 | 3166 6.34618 6.44216 7.81874 5.21429 5.18284 6.62613 3.79036

75 | 4749 14.6489 14.7836 18.3006 13.9677 12.5528 16.6008 10.0862

Table 4: Average errors when deleting a certain percent of points of
a smooth random terrain

4.3.2.2 Rough Random Terrain:
The sample rough random tetrain we create is on a grid that has 700%¥700 points. When
we generate this terrain by fault algorithm, the parameters Displacement s set to 100.

Refinement:
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Figure 21: Average errors when inserting up to 200 points of a
rough random terrain sequentially
Decimation:

The full-detailed approximation of it has 8,688 points. After an independent set of points is

deleted from the initial triangulation, the number of points in the mesh is about 6,300.

total erro
Delaunay local D _

8388608 Tlocal D
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Figure 22: T'otal errors when deleting an independent set of points
of a rough random terrain each time

43.3 Peak:

4.3.3.1 Smooth Peak:
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We use the tool Gforge to create a smooth hill to compare different criteria. This input data

set has 728%128 points in total. It has two very sharp peaks.

Refinement:
L2 error
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2.95e+006; MAT local I
2.62e+006, MinMaxAngle mcremlente}lII
mean local I __|
2296+006. gans looat §
1.96e+006!] o1 ror local T
164e+006__ z&%.);.‘/, BN
1.31e+006]
982134.00] ¥\
654756.00,
327378.00] e 7
000 I Svr e iy "‘*”*?—_:«? ""‘_T '- ERTET I
0 50 100 150 200 250 300 350 400 450
Number Of Points in Triangulation
Figure 23: L2 errors when inserting up to 500 points of a smooth
peak sequentially
Decimation:

The full-detailed approximation of it has 76,344 points. After an independent set of points 1s

deleted from the initial triangulation, the number of points in the mesh is about 77,500.

81



average error
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Figure 24: Average errors when deleting an independent set of
points of a smooth peak each time

43.3.2 Rough Peak

The sample tetrain with a peak we generate has 7129%129, ie. 16,641 points totally. We use
the Diamond-Square algotithm to generate it. It looks like a small mountain. Each small part
of it has similar structure as the whole mountain. The parameter roughness of the algorithm is
0.7. It controls the roughness of the generated terrain.

Refinement:

averaggerror
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Figure 25: Average errors when inserting up to 500 points of a
rough peak sequentially

82



% | Points Delaunay Min-Max | Min Mean Gaussian | ABN I )
inserted angle Area
measurce
10 | 1664 32.7462 32.5898 41.038 41.112 452291 39.5796 29.5456
25 | 4160 20.9325 20.8371 26.0177 | 26.0477 28.1473 25.5939 17.3786
50 | 8321 9.18912 9.24922 125166 | 12.3359 13.4154 11.8933 6.92758
75 12481 23925 2.37517 4.51597 4.09812 4.54727 3.75773 1.89635

Table 5: Average errors when inserting a certain percent of points of
the rough peak

Decimation:
The full-detailed triangulation has 76,593 points. After an independent set of points is

deleted from the initial triangulation, the number of points in the mesh is about 77,500.

total error
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Figure 26: Total errors when deleting an independent set of points
of rough peak each time

% Points Delaunay Min-Max | Min Area | Mean Gaussian ABN

deleted angle Curvature | Curvature
measure

10 | 1659 2.09155 2.08789 0.896491 | 1.48896 2.09939 212119 0.418043

25 | 4148 6.54348 6.53855 4.3825 5.52314 6.53479 6.64843 2.66287

50 | 8297 13.8705 13.8632 13.0209 13.4327 14.4392 14.7925 8.11607
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75 | 12445 25.1438 25.0054 25.1563 25.3353 27.6831 27.6408 18.3685

Table 6: Average errors when deleting a certain percent of points of
rough peak

4.3.4 Valley:
The sample terrain with a valley we generate has 65%65, i.e. 4,225 points totally. We use
Diamond-Square algorithm to generate it. Each small part of it has similar structure as the

whole mountain. The parameter roughness of the algorithm is 0.7. It is a rough terrain.

Refinement:
L2 error
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15810'11"" . MX%T_incremental I
14053.44, % MinMaxAngle incremental I
: mean local I __|
12296.761 % lecal 1L
10540.08, !
8783.40 |
7026.72 |
5270.04 |
351336 |
1756.68 |
0.00 ; y : : { y ; ; :
0 S0 100 150 200 250 300 350 400 430
Number Of Foints in Triangulation
Figure 27: L2 errors when inserting up to 500 points of rough valley
sequentially
% | Points Delaunay Min-Max | Min Mean Gaussian | ABN 1
‘ 2
inserted angle Area Curvature | Curvature
measure
10 | 423 49.1922 48.1616 57.9258 [ 59.7968 64.327 59.0904 43.6821
25 | 1056 31.0728 31.4214 36.5262 | 37.3346 41.039 36.1181 25.5069
50 | 2113 13.5587 13.5165 18.0822 | 17.8452 19.5526 17.4554 10.3904
75 | 3169 3.51991 3.45761 6.43411 5.84483 6.64793 5.48321 2.70297

Table 7: Average errors when inserting a certain percent of points of
rough valley
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Decimation:
The full-detailed triangulation has 4,277 points. After an independent set of points 1s

deleted from the initial triangulation, the number of points in the mesh is about 3,000.

L2 error
Delaunay local D _ |
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Figure 28: L2 errors when deleting an independent set of points of
rough valley each time

% | Points Delaunay Min-Max | Min Mean Gaussian | ABN L X
deleted angle Area Curvature | Curvature
measure
10 | 421 3.09183 3.09183 1.43182 | 2.04361 3.20698 3.0183 0.595858
25 | 1054 9.2768 9.2768 636071 | 7.72152 9.6609 9.24178 3.84987

50 | 2109 20.6864 20.602 19.6713 | 19.0794 21.0774 213711 12.2889

75 | 3163 36.9557 37.3866 37.5351 | 37.1062 39.3103 39.4173 27.1727

Table 8: Average errors when deleting a certain percent of points of
rough valley

4.3.5 Functions:

4.3.51 Sphere:
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We will create a sphere with: fix, j) = 20*\/1—()6/20—1)2 ~(y/20=1)% if (x-20) * +

(7-20) > <=400, else 0. Tts radius is 20. Tts center is (20, 20). We will create a sphete with x in
[0,40] and y in [0,40].

Why we select a sphere to test is that a sphere has both constant Gaussian curvature
1/r ? and mean curvatute 7/r, where ris its radius and Gaussian curvature criterion and mean
curvature criterion try to minimize the sum of mean curvature and Gaussian curvature
respectively. Moteover, because a sphere is convex, the local swap algorithm can find the

global optimum with respect to Gaussian curvature criterion.

Refinement:
L2 error
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Figure 29: L2 errors when inserting up to 50 points of sphere
sequentially
% Points Delaunay Min-Max | Min Mean Gausstan ABN ]
. 2
Inserted angle Areca Curvature Curvature
measure
1 8 4489.16 448916 | 5026.46 | 4483.72 4483.72 5677.04 | 4483.72
5 40 182252 185153 | 170853 | 1721.62 1768.22 203029 | 1708.08
10 80 643.681 728.638 | 591.827 | 588.431 656.341 742811 | 582,554
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25 400 133.58 145.848 130.507 | 126.171 155.432 117.969 94.3926

Table 9: Total errors when inserting a certain percent of points of
sphere

Decimation:
The full-detailed triangulation has 724 points. After an independent set of points is deleted

from the initial triangulation, the number of points in the mesh is about 540.

L2 error
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Figure 30: L2 errors when deleting an independent set of points of
sphere each time
% | Points Delaunay Min-Max | Min Mean Gaussian | ABN 1
) 2
Deleted angle Area Curvature | Curvature
measure
10 | 72 7.57402 14.2959 3.21023 | 1.64992 5.55681 2.10819 1.10554
25 | 181 13.2452 17.9686 6.65552 | 6.18797 7.94799 5.66405 3.70103
50 | 362 20.2144 22.5932 12.446 9.95207 11.4595 9.15769 6.37404
75 | 543 26.8888 37.126 25.331 34.4812 23.4464 24.5936 18.361

Table 10: 1.2 errors when deleting a certain percent of points of

sphere

4352  Cylinder:
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We will create a cylinder with: f{x,))=60 if ((x-20)*(x-20)+(3-20)*(y-20)<=400) else 0. Its
radius and height are 20, 60 respectively. Its center is (20,20). We will create a cylinder with x in
[0,40] and y in [0,40]. A cylinder is also a cliff. It has zero Gaussian curvature. So Gaussian
curvature should work well for it. We want to check whether this 1s true or not. Moreover, we
also want to check whether data-dependent triangulations perform better than two-

dimensional triangulation when approximating a cliff.

Refinement:
average er; 91‘
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Figure 31: Average errors when inserting up to 80 points of cylinder
sequentially
% Points Delaunay Min-Max | Min Mean Gaussian | ABN ]
‘ 2
Inserted angle Area Curvature | Curvature
mcasure
0.5 8 397559 39755.9 27716.6 | 27716.6 27716.6 27716.6 | 27716.6
1 16 27783.1 30511.8 12459.1 | 12459.1 12459.1 12459.1 12459.1
25 40 5838.21 9373.2 6583.04 | 6490.39 7094.8 6578.04 | 6650.39
Table 11: Total errors when inserting a certain percent of points of
cylinder
Decimation:
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The full-detailed triangulation has 77 points. After an independent set of points is deleted

from the initial triangulation, the number of points in the mesh is about 60.

total error
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Figure 32: Total errors when deleting an independent set of points
of cylinder each time

% Points Delaunay Min-Max | Min Mean Gaussian | ABN L X
Deleted angle Area Curvature | Curvature
measure
10 8 709.091 16749.9 381.818 | 637.5 709.091 381.818 | 381.818
25 19 3133.09 24592.2 2031.82 | 2417.5 2389.48 2190.39 2031.82
50 39 6531.59 30401 3959.24 | 5714.37 4950.71 5355.33 5312.86
75 58 10375.7 33851.5 10961.2 | 21553.3 10134.6 11077.6 | 9580.57

Table 12: Total errors when deleting a certain percent of points of
cylinder

4.3.6 Natural Terrain:

The sample natural terrain has 287*795 points in total. It is 2 small part of a real terrain.
The elevation of the highest point in this data set is 255. The elevations of the points in this
terrain do not differ much from others.

Refinement:
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Figure 33: L2 errors when inserting up to 2000 points of a natural
terrain sequentially

Decimation:
The full-detailed ttiangulation has 45,377 points. After an independent set of points is

deleted from the initial triangulation, the number of points in the mesh is about 30,000.

total error
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Figure 34: Total errors when deleting an independent set of points
of a natural terrain

43.7 Hybrid:
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'The sample hybrid terrain has a sharp peak and a valley. It has 728%728 points. We use Gforge

to create it.

Refinement:

total error

Delaunay incremental I _ |

1.68¢+008 MAT local I
1.49e+008] MinMaxAngle incremental I
1.31e+008) Jmean local I —
1.12¢+008 | 1
9.34e+0074 | ‘
7.47¢+007,1 .
5.60e+007] 4
3.74e+007]
1.87e+007, :
000 3 + t ;) 1 s + iw‘“hw t T

0 50 100 150 200 250 300 350 400 450

Number Of Points in Triangulation
Figure 35: Total errors when inserting up to 500 points of a hybrid
terrain sequentially
Decimation:

The full-detailed triangulation has 76,368 points. After an independent set of points is

deleted from the initial triangulation, the number of points in the mesh is about 77,500.

e
i
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Figure 36: Total errors when deleting an independent set of points
of a hybrid terrain each time

44 Time Complexity

0 1150 2300 3450 4600 5750 6900 8050 9200 10350

We have tested the speed of simplification algorithm with respect to different criteria on Dell

Inspiron 2500 laptop with an Intel Celeron 900 Processor and 792MB of main memory. The

data set we use to test the refinement algorithm is the Crater, whereas, the data set we use to

test the decimation algorithm is the natural terrain. Table 13 shows the running time (seconds)

of the refinement algorithm with respect to different criteria after 700,000 points are inserted.

Figute 37 shows the running time (seconds) of the decimation algorithm with respect to

different critetia. We will calculate the lasting time whenever an independent set of points is

deleted and the resulting holes are re-triangulated.

Points Delaunay Min-Max | Min Mean Gaussian | ABN I
‘ 2
Inserted angle Area Curvature | Curvature
measure
100000 9 16 14 38 1211 33 26

Table 13: Run time of refinement algorithm for different criteria on
Crater terrain data set (Seconds)
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Figure 37: Run times of decimation algorithm for different criteria
on a natural terrain data set (Seconds)
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Chapter 5

Discussion

We will compare the performances of the refinement and decimation algorithm with
respect to different criteria in the following aspects: speed, visual similarity to the original

sutface, slivers and analytical comparison based on error metrics.

51 Speed
Table 13 shows the time the refinement algorithm takes to insett 700,000 points of Crater

into the triangle mesh with respect to different ctiteria. From section 3.1.2, we know that the
time complexity of the greedy insertion algorithm that we use to find the optimal triangulation
with respect to Delaunay triangulation and Min-Max angle criterion is O((m+n)logn, whete 7 is
the number of input points and # is the number of points in the mesh These two critetia have
the same time complexity. Because when dealing with the data-dependent triangulations, we

yield a Delaunay trangulation first and then apply the edge-flipping algorithm, which costs

Oz ), on this initial triangulation, the data-dependent triangulations should run longer than
Delaunay triangulation. Thus, in usual, the speed of the refinement algorithm with respect to
Delaunay triangulation and Min-Max angle criterion is greater than all the other critetia,
because the triangle mesh only needs to adjust locally after a point is inserted with respect to
these two two-dimensional triangulations. However, sometimes some data-dependent
triangulations may run faster than Min-Max angle triangulation if the number of swaps need to

take is quite lower. Table 13 shows that Min Area criterion runs faster than Min-Max angle

triangulation. It cannot tell which one runs faster among Min Area criterion, L, Measure
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crterion, Mean curvature criterion and ABN critetion. It depends on how many swaps are

needed to reach an optimal solution. The Gaussian curvature criterion is the slowest one
among all criteria, although it has the same time complexity as L, Measure criterion, Mean

curvature criterion and ABN criterion, because it takes much higher time to calculate the swap
value of an edge.

Figure 37 shows the time of the decimation algorithm takes to delete an independent set
of points from the full-detailed triangulation of the natural terrain data set step by step with
respect to different criteria. Usually, Delaunay triangulation is faster than other criteria, because
after a point is deleted from Delaunay triangulation, the resulting hole only needs to be
retriangulated locally. Gaussian curvature ctiterion is the slowest one, because of the heavy
calculation of the swap value of edges. It cannot tell which one runs faster among Min Area

criterion, L., Measure criterion, Mean curvature criterion and ABN critetion. It depends on

how many swaps will take to reach an optimal solution.

5.2  Visual Similarity

From Figure 10, we can see that the triangulations with respect to Min-Max angle

criterion and Max-Min angle criterion look quite attractive and they enhance the significant
features of Crater, whereas, the triangulations with respect to L, Measure criterion, ABN

criterion and Gaussian curvature critetion look a little mess. They create visual artifact break
line on the wall of the Crater Lake. Min Area criterion enhances the wall of the Crater Lake,
but it arranges the wrinkle line on the wall in the horizontal direction, whereas, it should be in
the vertical direction. Among them, Min-Max angle critetion looks best, because it displays

more feature line of the Crater than other criteria.
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5.3 Slivers

From Figure 10, we can see that Gaussian curvature criterion, L, measure criterion and

ABN criterion seem to yield much more many slivers than other criteria. Thus, the
triangulations with respect to them produce visual artifacts. Because Gaussian curvature
criterion produces many slivers, it sometimes causes calculation ertor when defining the type
and calculating the integral Gaussian curvatute of a vertex. Delaunay ttiangulation and Min-
Max angle criterion yield triangles with good shape. Because the data-dependent triangulations
create many very thin slivers, sometimes it is extremely difficult to find a convex triangulation

of the resulting hole when a point is deleted.

5.4  Analytical comparison

Because visual similarity is subjective and vague, we will compate the ctitetia based on
different error measutes that are more objective. We test the ctitetia based on Cratet, random
terrains, terrains with significant features, some other natural terrains and functions. We try
different parameters when using fault algorithm to produce a random tetrain. Some of the
random terrains are more curved and some ate mote flat. Some are smooth and some are
rough. Because we want to avoid the possibility that the sutfaces we create by the fault
algorithm have the same geometric features, we also use a tool, called Gforge, to generate
other kinds of surfaces. Moreover, we note that the surfaces we generate by these programs
are likely different from natural terrains in the world. We also use the natural terrains to test
different critetia.

54.1 Refinement

For the refinement algorithm with respect to different critetia, we can see that L,

measure criterion, Min-Max angle criterion and Delaunay triangulation work better than the
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other four criteria in most cases. L, measure criterion usually produces the lowest error
among all, because L, measure criterion and the error measures ate based on the same

criterion. The etror curves of Min-Max angle criterion and Delaunay triangulation often mix
together. Sometimes, Min-Max angle criterion works better than Delaunay trangulation.
Sometimes, it is otherwise. Min-Max angle criterion and Delaunay triangulation often produce
the second lowest error, no matter the original terrains are smooth or rough, curved or flat.
With many terrains, there even exists an obvious gap between the group of {L, measure
ctiterion, Delaunay triangulation, Min-Max angle criterion} and the group of {Min Area
criterion, Mean curvature ctiterion, Gaussian curvature criterion, ABN criterion}. We can see
such gap in Figure 19, Figure 21, Figure 25 and Figure 27. There is a gap in the refinement of
Crater in Figure 12, Figure 13, Figure 14, Figure 23, Figure 33 and Figure 35 also, but it is less
obvious. We try to use different parameters to create different random terrains by programs.
We found that there always exists a gap. If the terrain we create is rougher, the gap is bigger. If
the terrain we generate is smoother, the gap is smaller. We believe that the reason is probably
due to the fact that ABN, mean curvature and Gaussian curvature ctitetia ate all smooth
ctiteria. Indeed, mean curvature criterion is often used to smooth surfaces. Thus, they ate not
suitable for approximating rough surfaces.

Mean curvature criterion works better than Gaussian curvature criterion in general,
especially the approximated surfaces are rough and the number of points inserted are small.
We can see this in Figure 12, Figure 19, Figure 21, Table 5, Figure 27, Table 7, Figure 33 and
Figure 35.

Table 5 and Table 7 indicate that when the sutface is rough in small-scale, Gaussian

curvature criterion often performs worst in refinement algorithm. When the sutface is smooth
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in small-scale, Gaussian curvature criterion works pootly in the beginning. However, as more
and more points inserted, Gaussian curvature criterion may become better than other data-
dependent criteria, such as Mean curvature critetion sometimes. Table 1 and Table 3
demonstrate that when the number of points inserted is over 50%, Gaussian curvature
crterion has lower etror than Mean curvature criterion. Gaussian curvature criterion
approximates the sutfaces that have zero curvature in one direction and non-zero curvature in
the other direction well, because in such case, Gaussian cutvature is zero. For example, Figure
31 and Table 11 show that Gaussian curvature criterion has the lower error than two-
dimensional triangulation when approximating a cylinder.

Min area criterion usually does not work well, compared with other ctitetia, but it works
quite well when approximating cylinders. Figure 31 and Table 11 show that Min Atrea ctiterion
almost always has the lowest erroz.

5.4.2 Decimation

For decimation algorithms, L, measure criterion also produces the lowest etrots among

all criteria, as we see in the refinement algorithm, because L, measure criterion and error
measures are based on the same criterion. We also find that there is a gap between the etror
curve of L, measure criterion and the error curves of all other criteria, whereas, we in general
do not find such gap in the refinement algorithm. In many of the cases, the gap in the
decimation algorithm is quite big. We can see this big gap in Figure 16, Figure 22, Figure 26,
Figure 28, Figure 30 and Figure 34.

When approximating the rough surface, the Gaussian curvature criterion often produces
higher error than other criteria. For example, we generate a smooth terrain and a rough terrain

by the fault algorithm. Gaussian curvature criterion works the second best when
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approximating the smooth one, but it works the wotst when approximating the rough one.
Figure 22, Figure 26, Table 6, Figure 28 and Table 8 show that Gaussian cutvature criterion
often has the highest error when approximating rough peak, valley and random tetrain. So we
tried changing the parameters, such as Displacernent in the fault algorithm, to create other rough
terrains. We found that Gaussian curvature criterion still often works the worst when

approximating such rough terrains. When testing on the smooth random tetrains, we found
that Gaussian curvature criterion always works the second best to the L, measure ctitetion no
matter the surface is more curved or more flat. Figure 16, Figure 20 and Figute 24 show that it
often 1s the second best to L., measure criterion among all.

Unlike we see in the refinement algorithm, the two dimensional trdangulations Min-Max
angle trangulation and Delaunay trangulation are not better than data-dependent
triangulations for the decimation algorithm in general. The etror curves of Min-Max angle and
Delaunay triangulation are often twisted together in decimation algotithm too, but Min-Max
angle criterion is not as stable as Delaunay triangulation. Sometimes, it produces an abnormally
high error. We can see this in Figure 30 and Figure 32. Maybe one of the reasons is that we
cannot find the global optimum with respect to Min-Max angle criterion by local swap
algorithm.

Actually, there exist some cases that Delaunay triangulation, Min-Max angle critetion,
mean cutvature criterion or Gaussian criterion works the second best to the L., measure
criterion. Figure 36 gives the case when Delaunay trangulation wotks the second best. Figure
34 gives the case when mean curvatute criterion works the second best. Although mean
curvature criterion is a smooth critetion, it sometimes works well when the surface is a little

rough. So do Delaunay triangulation and Min-Max angle criterion, because they can eliminate
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the little noise on the surface. Figure 34 shows that mean curvature criterion produces very
low error when approximating a slightly rough surface.
Min area criterion works worst in many cases. We can see this in Figure 16, Figure 20 and

Figure 24. But it sometimes also works quite well. For example, when the number of points
deleted 1s small, Min area criterion works much better than other criteria except L, measure

criterion. We can see this in Table 6 and Table 8.

The reason that the two-dimensional triangulations do not wotk well for the decimation
algorithm is probably because the decimation algorithm deletes an independent set of points
each time, whereas, the refinement algotithm insetts one point at a time. The refinement
algorithm will insert the most importance point into the triangle mesh each time. Although
Delaunay triangulation does not contain the elevation infotmation of a point, the latest
inserted point contains such information. Thus, Delaunay triangulation can adjust the mesh in
the neighborhood of the inserted point to produce an optimal triangulation. Howevet, in the
decimation algorithm, we delete an independent set of points. Thus, the triangle mesh changes
a lot after a deletion. So the elevation information that data-dependent triangulation has can
help find a better triangulation. Thus, data-dependent triangulations wotk better for
decimation algorithm than two-dimensional triangulations.

When we approximate the surface of a cylinder, the four data-dependent trangulations
work better than Delaunay triangulation and Min-Max angle ctiterion for both tefinement and
decimation algorithm. Actually, cylinders are cliff surfaces whose one side of the brim has large
different height from the other side of the brim. Our experiences show that data-dependent
triangulations perform better than two-dimensional triangulations when approximating cliffs.

Figure 32 and Table 12 demonstrate this.
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Chapter 6

Conclusions

Garland [18] asserted that data-dependent triangulations except the L , measure

triangulation did not approximate terrains better than two-dimensional triangulations in 7995.
However, after that, more data-dependent triangulations are proposed. For example, L. Alboul
[3] suggested that the mean curvature critetion and Gaussian triangulations wete the best
triangulations in 7999 after conducting experiments on a few smooth function. In this thesis,
we want to find out whether data-dependent triangulations petform better than two-
dimensional triangulations on tetrains ot not and which critetia are best. We test for both

refinement and decimation algorithms.
From the comparison we conduct in this thesis, we can conclude that L, measure

criterion, Delaunay triangulation, Min-Max angle ctiteria perform better than the four data-
dependent triangulations, Gaussian cutvature criterion, mean curvature critetion, ABN
criterion, Min Area ctiterion in refinement algorithm. L., measure produces the lowest error in
most cases, but it usually generates many thin and long angles. Delaunay triangulation and
Min-Max angle triangulation wotk the second best among all the criteria on terrains in
refinement algorithm. Our conclusion on tefinement algorithm is consistent to the assertion
Garland [18] made. Gatland suspected that data-dependent triangulations in general do not
work well on tetrains in refinement algorithm, probably because of the isotropy of cutvatures
in the natural terrains [18] and data-dependent triangulation wotks better than Delaunay

triangulation and Min-Max angle criterion in the refinement algorithm only on some specific
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surfaces, such as ruled surfaces [18], which are rare in the world. Our experiments on cylinders,
one kind of ruled surfaces, also confirm that.

However, in our experiments, we found that data-dependent triangulations perform better
than two-dimensional triangulations for decimation algorithms on certain tetrains. For

decimation algorithms, L., measure criterion also produces lowest error. Gaussian curvature

criterion often works the second best when approximating smooth terrains, but it in general
performs worst when approximating rough surfaces. Min area criterion performs very poor in
many cases. However, there are some cases when Mean curvature criterion, Min area criterion,

Delaunay triangulation or Min-Max angle criterion works the second best to 1., measure

criterion.

Delaunay triangulation has similar performance as Min-Max angle triangulation in both
refinement algorithm and decimation algotithm. Sometimes Delaunay triangulation creates
better results than Min-Max angle trangulation. Sometimes Min-Max angle is better, but
Delaunay triangulation is more stable than Min-Max angle triangulation.

The shapes of approximations with Delavany trangulation and Min-Max angle ctiterion
are the best. They seldom generate thin and long triangles, whereas, Gaussian curvature

criterion, ABN criterion and L, measure criterion often generate many thin and long triangles.

In the refinement algorithm, Min-Max angle criterion and Delaunay triangulation run
faster than all data-dependent trangulations. In the decimation algorithm, Delaunay
trangulation runs faster than all other criteria. Gaussian curvature criterion is the slowest one
both in refinement algorithm and decimation algorithm.

Moreover, in this thesis, we propose a new method to calculate the optimal triangulation

with respect to Min Area critetion. Instead of using local swap algorithm to find an optimal
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triangulation, we combine the greedy insertion algorithm and dynamic programming algorithm
to find the optimal solution. When calculating an optimal triangulation with respect to Min
Area criterion, we choose the most important point » and delete the edges of the triangle that
contains ». Then we use dynamic programming to optimally re-triangulate the resulting hole

with respect to the minimum area criterion
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Appendix A

Below we will list the average error, total etror and L2 error plots of all ctiteria among Max-
Min angle craterion, Min-Max angle criterion, Min area critetion, mean cutvature criterion,
Gaussian curvature criterion, ABN criterion and L2 measure criterion for the following
terrains: the Crater, a smooth random tetrain, a rough random terrain, a smooth peak, a tough
peak, a valley, a sphere, a cylinder, a natural terrain and a hybrid terrain. We will display the
error plots for both refinement and decimation process. We will demonstrate the error plots

according to each kind of terrains in sequence.
1 Crater:

Refinement:

average grror

Delaunay incremental I _ |

126.49 Tlocal I. .
1124314 ¢ MaxMinAngle incremental T ..
9838 LIl mean local I __|
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Figure A. 1: Average errors after inserting up to 500 points of Crater
terrain data set sequentially

107



total error

Delaunay incremental [  _ |
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Figure A. 2: Total errors after inserting up to 500 points of Crater
terrain data set sequentially
L2 error -
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Figure A. 3: L2 errors after inserting up to 500 points of Crater
terrain data set sequentially
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Figure A. 4: Max errors after inserting up to 500 points of Crater
terrain data set sequentially
Decimation:

average error
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Figure A. 5: Average errors when deleting an independent set of
points of the Crater terrain data set each time
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total error
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Figure A. 6: Total errors when deleting an independent set of points
of the Crater terrain data set each time

L2 error
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Figure A. 7: L2 errors when deleting an independent set of points of
the Crater terrain data set each time

2. Smooth Random Terrain:

Refinement:
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Figure A. 8: Average errors after inserting up to 200 points of
smooth random terrain sequentially
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Figure A. 9: Total errors after inserting up to 200 points of smooth
random terrain sequentially
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Figure A. 10: L2 errors after inserting up to 200 points of smooth
random terrain sequentially
Decimation:
average error
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Figare A. 11: Average errors when deleting an independent set of
points of the smooth random terrain each time
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total err
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Figure A. 12: Total errors when deleting an independent set of
points of the smooth random terrain each time

1.2 error
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Figure A. 13: L2 errors when deleting an independent set of points
of the smooth random terrain each time

3. Rough Random Terrain:

Refinement:
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Figure A. 14: Average errors after inserting up to 500 points of
rough random terrain sequentially
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Figure A. 15: Total errors after inserting up to 500 points of rough
random terrain sequentially
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Figure A. 16: L2 errors after inserting up to 500 points of rough
random terrain sequentially
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Figure A. 17: Average errors when deleting an independent set of
points of the rough random terrain each time
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Figure A. 18: Total errors when deleting an independent set of
points of the rough random terrain each time
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Refinement:
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Figure A. 19: 1.2 errors when deleting an independent set of points
of the rough random terrain each time

116



average crror

Delaunay incremental I _ _|

19870.74, MAT local I

17662 .88, MinMaxangle mu(,mlumc}lll
L mean local I __|

15455.02, gauss local I _

13247.16) error local I~ _ |

11039.30 ABN local I ...

8831.44 _:

6623.58 |

441572 | W

220786 |

0.00 S

0 50 100 150 200 250 300 330 400 W50
I\? umber Of gomt% in Triangulation

Figure A. 20: Average errors after inserting up to 500 points of
smooth peak sequentially
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Figure A. 21: Total errors after inserting up to 500 points of smooth
peak sequentially
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Figure A. 22: L2 errors after inserting up to 500 points of smooth

peak sequentially

Decimation:
average error
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Figure A. 23: Average errors when deleting an independent set of
points of the smooth peak each time
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Figure A. 24: Total errors when deleting an independent set of
points of the smooth peak each time
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Figure A. 25: L2 errors when deleting an independent set of points
of the smooth peak each time

5. Rough Peak:

Refinement:
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Figure A. 26: Average errors after inserting up to 500 points of
rough peak sequentially
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Figure A. 27: Total errors after inserting up to 500 points of rough
peak sequentially
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Figure A. 28: L2 errors after inserting up to 500 points of rough

peak sequentially
Decimation:
average error
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Figure A. 29: Average errors when deleting an independent set of
points of the rough peak each time
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Figure A. 30: Total errors when deleting an independent set of
points of the rough peak each time
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Figure A. 31: L2 errors when deleting an independent set of points
of the rough peak each time
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Figure A. 32: Average errors after inserting up to 500 points of
rough valley sequentially
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Figure A. 33: Total errors after inserting up to 500 points of rough
valley sequentially
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Figure A. 34: L2 errors after inserting up to 500 points of rough
valley sequentially
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Figure A. 35: Average errors when deleting an independent set of
points of the rough valley each time
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Figure A. 36: total errors when deleting an independent set of points
of the rough valley each time
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Figure A. 37: L2 errors when deleting an independent set of points
of the rough valley each time

7. Sphere

Refinement:
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Figure A. 38: Average errors after inserting up to 50 points of a
sphere sequentially
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Figure A. 39: Total errors after inserting up to 50 points of a sphere
sequentially
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Figure A. 40: 1.2 errors after inserting up to 50 points of sphere
sequentially
Decimation:
average error
Delaunay local D _ |
8 ~ MATlocalD..
4 MinMaxAngle local D__.
mean local D __
2 1k gauss local D __
N errorlocal D _ |
L ABN lacal D...
0.50] )
0.25]
0.13]
0.06, N
0.03 , . , ‘ , , ' ' . o~
0 50 100 1%0 20Q 250 300 350, 400 450 300

Number Of Points in Trangulation

Figure A. 41: Average errors when deleting an independent set of
points of a sphere each time
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Figure A. 42: Total errors when deleting an independent set of
points of a sphere each time
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Figure A. 43: L2 errors when deleting an independent set of points
of a sphere each time

8. Cylinder

Refinement:
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Figure A. 44: Average errors after inserting up to 80 points of a

cylinder sequentially
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Figure A. 45: Total etrors after inserting up to 80 points of a
cylinder sequentially
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Figure A. 46: L2 errors after inserting up to 80 points of a cylinder
sequentially
Decimation:
average error
) Delaunay local D _ |
37 MAT local ..
o\ MinMaxAngle local D
% mean local D __|
14 J\\ ~gauss local D __
W e e ~errorlocal D _ |
3 : i ABN local D
4]
l t t + } - }
Q0 5 10 25 30 35 40 45 30

1S 20
Numbel Of Pomts in Triangulation

Figure A. 47: Average errors when deleting an independent set of
points of a cylinder each time
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Figure A. 48: Total errors when deleting an independent set of
points of a cylinder each time
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Figure A. 49: L2 errors when deleting an independent set of points
of a cylinder each time
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Figure A. 50: Average errors after inserting up to 2000 points of a
natural terrain sequentially
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Figure A. 51: Total errors after inserting up to 2000 points of a
natural terrain sequentially
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Figure A. 52: L2 errors after inserting up to 2000 points of a natural
terrain sequentially
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Figure A. 53: Average errors when deleting an independent set of
points of a natural terrain each time
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Figure A. 54: Total ecrors when deleting an independent set of
points of a natural terrain each time
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Figure A. 55: L2 errors when deleting an independent set of points
of a natural terrain each time
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Figure A. 56: Average errors after inserting up to 500 points of a
hybrid terrain sequentially
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Figure A. 57: Total errors after inserting up to 500 points of a hybrd
terrain sequentially
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Figure A. 58: L2 errors after inserting up to 500 points of a hybrid
terrain sequentially
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Figure A. 59: Average errors when deleting an independent set of
points of a hybrid terrain each time
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Figure A. 60: Total errors when deleting an independent set of
points of a hybrid terrain each time
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Figure A. 61: L2 errors when deleting an independent set of points

of a hybrid terrain each time
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Glossary

Aliasing. Jagged lines shown on cutves or diagonal lines in the digital representation of an
image.

Circumcircle. The circumcircle of a triangle is a circle passing through all its three vertices.

Drift. An occurrence that tiny errors resulted from deleting vertices can accumulate into big
errors.

Eccentricity. The eccentricity of a triangle T is the smallest value among all distances between
the center of T’s circumscribed circles to points inside T.

Gaussian map. Suppose that a surface S has a unit normal vector field. Let 5 be the unit
sphere whose center is at point 0 in three-dimensional space. Then the Gaussian map g of S is

the mapping g §—=J 2 that maps every point p of § to the end point of the unit vector
through 0 that has the same direction as the normal vector of S at p.

Spline. A mathematical function that gives an interpolation or approximation of a finite
number of input points.

Swap. The operation that replaces a diagonal of a triangulated quadrilateral with the othet
diagonal of it.

Swap value. The difference between the quality of a triangulation A and the quality of a
triangulation £\’ after swapping an edge .

Swappable. An edge ¢ is swappable if the quadrilateral O associated with e is convex and there
are no 3 points of Q lying on the same line.

Terrain. A simplest kind of surfaces that the g coordinate of every point (x, 3, ) on it can be
denoted as g = H (x; y).

Triangulation. A set of triangles that meet two conditions. The first condition is that any two
triangles intersect with each other only at common vertex or along a common edge. The

second is that the union of the triangles is a connected set.

Volume. The wiume of the neighborhood of a vertex »is the number of cubic units required
to fill the space enclosed by the triangles adjacent to ».
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