Scenario Based Requirement Analysis Modeling and Design
Evaluation for Real-Time Reactive Systems

Shen Jian

A THESIS
IN

THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEMPTEMBER 2004
OSHEN JIAN, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94751-3
Our file Notre référence
ISBN: 0-612-94751-3

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Scenario Based Requirement Analysis Modeling and Design
Evaluation for Real-Time Reactive Systems

Jian Shen

An effective requirements engineering process can greatly improve the quality of
software development, direct an effective design solution, reduce early mistakes,
and provide a foundation for evaluating design and implementation. In this thesis
work, we explored how to integrate scenario-based requirements modeling
approach into real time reactive system development. We developed an object-
event-scenario requirement analysis modeling method, which describes system
context, behavioural characteristics and system usages. We also developed a
scenario-based design evaluation method, which applies a black-box approach
to simulate design execution, test design solutions, and evaluate design
pérformance. To promote and facilitate our scenario-based design evaluation,

some supporting tools are designed and developed.

iii

Acknowledgements

I would like to thank Dr. Olga Ormanjieva and Dr. V. S. Alagar who guided this work. I
am grateful for their valuable advice and ideas in my research work. It is a great
experience for me to have opportunity to work in TROMLAB team. I am grateful for
invaluable friendship from Dr.Olga.

I would like to thank Dr. Olga for providing me financial support during my research
study. I am grateful to Concordia computer science department for providing such good
research environment that I myself benefit a lot from research resources.

Finally, I would like to express my deepest gratitude for the constant support and love
that I received from my husband Lin.

v

To my family

Table of contents

LSt OF FIZUIESeveuiivirieniiieeenie e iecestan e sas e sase s s st e ssess e sa s s esaes s b erseta s saserensateneans viii
Chapter 1 INtrodUCHIONc.ovvveuiiiieieirieiininterre et sseae st s s s e neresens 1
LT MOtIVALION. ..ottt ettt sttt r ettt se et v st erenas 1
1.2 Research approach ... 4
1.2.1 Research goal.........ccviiiiiiiiininiciiiicicicnienienesenesse s ess s ees 4
1.2.2 RESCAICH OVEIVIEWoiviuireiiirecineiinieiccieeteresientseeseeessasasssseesseseesssrensresnssens 4

1.3 Thesis OULHNE ..ottt 5
Chapter 2 Backgroundocoeiiiiririrnninienrninriessni e neeees 7
2.1 Real-time reactive SYSTEIMc..cirrieuiniiriririennrienenenesasssetete e sereesseseseseseseneenns 7
22TROMLAB ...ttt ettt ettt et arene st oreeeeeeenae 9
221 OVETVIEW ...ttt tseres et sar st e s bt ns st se s st enat et et seene 9
2.2.2 TROM ATCRItECIUTEeuiviiereteeieteeeeiee ettt 10
2.2.3 Operational SEMANLICS.........ecevevreecriirrerrrnrssereretiresseeeeesteserese st eeneeseseeeone 14
2.2.4 TROMLAB COMPONENLS......ccovemrmrririerrerrieentereneinnisrnnssesesensersssessssenessresssones 15

2.3 Case study — Generalized Railroad Crossing............cc.ccvueveeereeverniireeniieeeneecennns 22
Chapter 3 Requirement analysis modelc.coovveieeurieirereiceneccceeceeeee e 28
3.1 Overview of our analysis modeling approachcccc.ovevvevvveeevivicrieiceeeeeeennn 28
3.1.1 Requirement analysis characteristicsceceuereerrererrernunrnnsrisnnee s 28
3.1.2 Tasks of requirement analysiS..........ccoeereererrierisiiierenireerriereeeeee e serseeeeeeeeseenen. 29
3.1.3 Features of our approach..........ocorverieiniieieiceces st 29

3.2 System Static MOAELco.eveiriiireiriicse et eene 31
3.2.1 ObJECt MOMEL......oeiieiciiiicierte ettt sttt 31
3.2.2 IAentify OBJECHS...ccovvveerierieieieirieieeire ettt 31
3.2.3 System DOUNAATIYccoviiiiieriieteeetee ettt 32
3.2.4 Design DOUNAATYoovviiieirnieieicercee ettt e e esr s 33
3.2.5 Summary Of this SECHOM.ucueiirireeeetiiiteeeee ettt 34
3.2.6 Production Cell Case StUAYcoriiirirrimeninieriniriieeiereeeisseeeeeeeseeeeesessesennns 35

3.3 System behaviour MOodel...........ccceveuriirirniii e 36
3.3.1 Event-based modeling...........cccviriiverieniinineiiereseeeeeteeesen e ceeeeee e, 36
3.3.2 ObJECt-EVENLS ...c.eiviiiiieiicciieieiieieestectecee st ete s st se et eeeses st seesreen et eneene s 37
3.3.3. Object event attribULescc.overrrrrrerrieiirnissninie e eseeees s 37
3.3.4 Object events classification...........ovvvieeriieieiiiieriie et ereeeeeeeees 38
3.3.5 Behavioural characteristics and constraints on objects...............cocoevreeveunnn... 39

3.4 System Usage MOAEL........ccoiieriruiierieiniesiiereeeeee sttt eee s e ens 41
3.4.1 USAZE SCENATIOeivieeuiririetinietenereneeneasseseete st entet st tees et steseseeeeeeseeeeesesseneass 41
3.4.2 Usage model for real-time reactive SYStemL...........ccooveveeerereereeesreereesernnn, 42
Chapter 4 Scenario based design evaluation................cooeveeueeeeceieeeieeeeseeeeeeesereeeenn 44
4.1 INTOAUCHION. ..ottt sttt ettt ettt eeseeenneees 44
4.2 Design evaluation PrOCESS........cuieeeerireririiesreieetiiesitnseresiesessseeeeeeeeeeeeeseresesessenes 46
4.3 Performance evaluation mModelcccouireiriiiieieeieeeceeeceeeeee e 49
4.3.1 Define performance MetriCs........cccvevrmuriireiririterececeeese e e esee e senen s 50
4.3.2 System Output COITECNESS........c.cueuvereueuriiurriiaeeinereistetesstereee et s eneeas 52
4.3.3 INADIHEY ..ottt ettt e r s 57
4.3.4 Average response tiMec.ceuruermrrenerennreiiitesireee et eeeeee e eeeee e, 59

vi

4.3.5 Maximum throughputccoiiiiinieniiiniiniie e sree e e e 60

4.4 Environment Data Generationccoccevrerierrieriiniienrienitesreresiaeeseeeseesssessessaneens 61
4.4.1 CanOMICAl SEL.....cuerueerrieieiiriieiieiiieriertestertretesteesesteraessaasseessesseessessasseesseensans 61
4.4.2 Guideline on systematic SEleCtioN.......c.cccecvvineeriuirreriviriieseeeie et eveenee e 62
4.4.3 Test data generation mMOdElcueecveririiiieniniiieeiirirerese e ree s 63

4.5 Case Study --- Evaluating the design of Generalized Railway Crossing................ 67
4.5.1. Correctness Validation.........ceceveeerinenienieinienianieiereseriesseeese e s eneereennens 68
4.5.2. Evaluating reSpOnSe tiMEcoceveeeereiernienneieniienenieseasiasseniaessessesseesesssseens 75
4.5.3. Inability Evaluation. ..o ctcnceeesee e st as s 76

Chapter 5 Tool support for automatic €valuation ProCessccvuvrecrrirruereereerereererrennens 77

5.1 Design evaluation SYSLEIMcoevcvererviereeriereereeereentiereessenseeessseensenseesssessessesesssens 77

5.2 BVENE ZENETALION ...verveniririiinieierererererereseiniereretssetstsnsesasesssesesesesssesesesesssessseserssssns 78
5.2.1 Generation AlZOTithmc.ccccciiiiiiiiniiiniiieee e 79
5.2.2 Generator and fAlIETcccverereniinieriinenicreienireset et 82
5.2.3 ComPONENt AESIZN ..c..eecveeuiiiirieriieieiriereerieetenttsearesresaasseeaeseesseeesseseessesrssnns 84

5.3 SIMUIALION ..eviiiieiiiiie ettt ettt et sreestesre e s e e staeestsesaeesrteeenteenbesereeenees 88

5.4 EVALUALION «..e.eoviviiiirciciniieeeteteteiee st sttt ettt se st es sttt esenaeennes 89
5.4.1 Evaluation AIZOrtRI.......cccocviviriiiiiiiiiiiiiicieceeer et 89
5.4.2 EXPIession LIDIary ...ttt 90
5.4.3 Scenario Legality evaluation.........ccccuvverueieiinieieieiinieereereeereeeeeee e 95

Chapter 6 Conclusion and future WOrkcoc.ecvcereininieieciieeie e 99
6.1 Thesis REVIEWc.ciiiiiiiiiiiiiiiniciciciertecereste et cr et et srs e r e etennnes 99
6.2 FUUIE WOTK ...oiiniiiiiiiiiiiniii ettt ettt et nesaos 99

BibLIOZIaPRY (.ciuciiiiiiiicii et s 101

APDPENAIX ittt et r et ae et b bt ntete s st erees 106
A, GeNerator SNAPSNOLSc..ccuieviriiiiriiniiirerticienterisrane st er et e tese s et eere s ersereeresreeneas 106
B. Expression lIbrary (PArt)o..co.ccoccoeeernenenoiinenenteieeesneseesseeeseerestessessssesesnennas 108

vii

List of Figures

Figure 2-1 Three TIETS ..ouviviiiiiiiiicie ettt st n st ess st ssesn e 11
Figure 2-2 S traitciviiuieiciciiiiciiiniec sttt v ettt b et eaeenenene 12
Figure 2-3 Template for TROM Class configuration specification...............ccccvveveuennne... 13
Figure 2-4 Template for Sub-system configuration specificationc.ccoceeveverene.... 14
Figure 2-5 GRC-Translator ArChiteCture.........ceieivieirierrrenrieeeecrieciecieeseeeeeeseeeereeseeesseeas 17
Figure 2-6 Interpreter ATChItECtUIe..........vvvevevieiiececeieecte e eees s 20
Figure 2-7 Architecture of simulation toolc.coceceriiinerinriinnniiese e 22
Figure 2-8 Class diagram for railroad crossing.........c...ecoeevereureencrirereseeseenenecnenann. 23
Figure 2-9 Statechart diagram for controlleroooueieiiciivicveeiccciseeeeieeeeeeee e, 24
Figure 2-10 Statechart diagram fOr Gatec..ocveviiiviiiiiniceceeeeeee e eeere s eeseens 25
Figure 2-11 Collaboration Diagram for Railroad Crossing gateccccereeveeerennn. 25
Figure 2-12 Formal specification for CONtroller..........oouvrvevrrereiriviieieeieeesenerseeseeeenees 26
Figure 2-13 Formal specification for Gate...........ccoeviunrerereveiiieceerecceeeev e 26
Figure 2-14 Formal specification for COntroller............ocieiiieinriverinieeeiceiireeeereeeeeeens 27
Figure 3-1 Static model of real-time reactive SYStemooevevvverieieeieieeeeeeeereeeeeeenans 34
Figure 4-1 Scenario-based design evaluation ProCesscuucvvveeirvereeevereeeeeeerereeesenanns 47
Figure 4-2 Simulated system and black-box design evaluation..............c.ccocveveveeerreennan.n. 49
Figure 4-3 scenario segments set of a simulated SCENATiOcovvvveveeeieeeeeeeereerrernnnnn, 54
Figure 4-4 Interaction pattern L.........cccooooininiieieiieiereecceeee e, 64
Figure 4-5 Partition and SEIeCtionccevivireeuiieiciieeeeeceeeceeceeeeeeee e, 65
Figure 4-6 Interaction pattern IL.........c.ocooieiieieiieriiiirieiecceeee et 66
Figure 4-7 Interaction pattern ITLccccoviniinioiiiciireeccececeee st esenens 67
Figure 4-8 Modified design VErSION.........c.cucuririiiisivircretenieereeeeereseesese s e e eeseeesees oo 74
Figure 5-1 Design evaluation SYStEmM.........cocveereriiiciiiieieieeeceeeieeeeeeeeeeeeeeseeeesesesessseres s 77
Figure 5-2 event sequence Generator and FAlterovivevveveveeeeeeeeeeeeeee s, 83
Figure 5-3 class diagram of Environmental stimuli simulator (ESS)c.cccoveevrvrnenn.. 84
Figure 5-4 class diagram of Generator and filter.............ccoouverrvviiiieiieeeeeeeeees e, 85
Figure 5-5 Activity diagram of Environmental stimuli simulator (ESS)........ocevvevunn...... 86
Figure 5-6 Filter and TESc.cccviiiviiiveniiniiiniineinieee st eeesees e 87
Figure 5-7 Program model desig............uvvvuiieiuiieiieeeeieeeoneeeeeeeeeesee e oo 91
Figure 5-8 Scenario legality Evaluation algorithm.............coccoveevveeoeeeeeeeeseeee 95
Figure 5-9 The Evaluation Result of Scenario A..............cc.cooooveveivvevreeeeeeeeeereee s 97

viii

“The whole of science is nothing more than a refinement of everyday thinking.”

-- Albert Einstein

iX

Chapter 1 Introduction

1.1 Motivation

1. Software engineering in real time reactive system development

More and more real-time reactive systems involve software design ‘and development. The
safety critical characteristics of real-time system require its software development to be
incorporated into its engineering process, which is a promising way to improve quality,
and to handle the increasing complexity of software.

2. Common drawbacks in a system development

Comparing to other phases of software engineering, requirement engineering (RE) is
relatively weak in tools support and in practice [1] [30]. In industry, many delivered
systems do not meet requirements due to ineffective requirement engineering. One of the
reasons might be attributed to the development that is often conducted in tight schedule
and cost budget. For saving time or cost, people may choose shortcut and rush to
implementation. Before designers fully understand requirement, they quickly jump to a
design solution by taking some implicit assumptions. And most this leads to design errors
because of wrong assumptions and misunderstanding of the requirements. Another reason
may be attributed to designer’s lack of requirement engineering practice. This results in
the fact that many designers contribute much more effort on specific design technique
rather than on understanding the requirements. This also leads to limitation of solution
space, in which some better solutions might be overlooked.

Correcting errors in implementation phases consume much more time and cost than doing
this in requirement and design stages, many delayed and failed projects have proved this

fact.

3. Roles of requirements engineering in a system development

As Zave described, requirement engineering is concerned with the real-world goals for,
functions of, and constraints on software systems [2]. It is also concerned with the
relationship of these factors to precise specifications of software behaviour, and to their
evolution over time and across software families. Precise specifications provide the basis
for analysing requirement, validating requirement, defining what designers have to build.

In real-time reactive system, software has to function in the system in which it is
embedded. Hence requirement engineering has to encompass a systems level view.

4. Desirable benefits of requirements engineering

With effective requirement engineering practice, we can pursue the following desirable
benefits:

1. Bridge the gap between user’s view and designer’s view.

User and designer have different perspectives. User’s viewpoint is at the usage of the
system services. It is about “what” problem of system. In contrast, designer’s view is
iabout “how” system services are implemented. Requirements Engineering practice
should be able to bridge these two different views and produce a clear contract that both
user and designer can understand and agree on.

2. Make design more effective.

Requirement driven development will guide design solution to pinpoint the real-world

problem, hence we can get effective design solution comparing with the one coming from
design driven development.

3. Avoid error at early design phase

By clarifying requirements in all aspects in requirement engineering, we can avoid errors
due to misunderstanding on requirement assumptions and system constraints at early
design phase. It promises correctness of the design solution.

4. Avoid missing functionality via a systematic view of requirements

With a systematic view of domain problem, it is possible to give design solution with a
completed functionality. It promises completeness of design solution.

5. Maximize solution space.

RE is independent of any design solution. RE is a comprehensive study of domain
problem and does not hinge upon any design solution. Hence it can maximize design
spaces.

6. Detect design error.

With a concise and unambiguous requirement, we can walk through design with
scenarios to detect errors.

7. Automatic validation.

By incorporating formal approach into requirement engineering, we can realize automatic
validation for design artefact.

8. Generate test cases.

Requirement is the fundamental source in the development. It can help generate test cases
to test system artefact at any development stage.

9. Evaluate performance of design artifacts

Different design solutions may have different performance that can be evaluated through

executable scenarios.

People realize from successful projects that effective RE efforts save development
time and cost at the end, and brings many benefits to the project [12]. Moreover, RE is a
key factor in determining the quality of systems that are delivered.

The term engineering in RE reminds people that RE is an important part of the
engineering process. RE plays key role in the success of a project because it anchors
development activities to a real-world problem. It analyzes appropriateness and evaluates
cost-effectiveness of the interim and final solutions. RE represents a series of engineering
decisions that lead from recognition and specification of a problem to be solved to
guiding, validating, and testing a solution to that problem.

With these benefits in mind, in this thesis work we attempt to explore scenario-

based requirement engineering in the development of real time reactive system.

1.2 Research approach

1.2.1 Research goals

This research is to explore an effective requirement engineering approach in real-time
reactive system development.

The research work is conducted in the context of TROMLAB — a development
framework for real-time reactive systems. We intend to enrich TROMLAB development
environment with a comprehensive requirement analysis and design evaluation

methodology.

1.2.2 Research overview

Bearing these goals in mind, the following works have been done in this thesis:

1. Requirement analysis modeling

We developed a scenario-based modeling method for analyzing real time reactive
systems. This method can help us describe a system and its environment, and identify our
requirement and environment assumption. We applied an object-event-scenario model in
our modeling method, with which we can easily and clearly describe a system in different
VIEWS.

2. Design performance evaluation

By extending the scenario-based modeling method, we developed a design
evaluation method for evaluating different design solutions. In this method, we apply an
executable model to simulate design execution and evaluate design performance. This
method can help us develop an effective strategy to evaluate design artefacts and realize
automatic design evaluation.

3. Tool support

To promote and facilitate our approach, we designed and developed software

tools to support automatic design evaluation.

1.3 Thesis Outline

In chapter 2, we introduce background knowledge of this thesis work, which includes an
introduction of real-time reactive systems, TROM formalism, and TROMLAB
framework.

In chapter 3, we introduce our scenario-based requirement analysis model for real-time
reactive systems. We propose our object-oriented event-based modeling to describe

system dynamic and static view at requirements level.

In chapter 4, we introduce our scenario-based performance evaluation approach, which
includes evaluation process introduction, performance metrics design, test data
generation, some common metrics, and a case study.

In Chapter 5, we present our design and implementation for some supporting tools.

In Chapter 6, we conclude with some possible future direction to further enrich our

modeling and evaluation approach.

Chapter 2 Background

2.1 Real-time reactive system

1. Definition of real-time reactive systems

Real-time reactive systems are computer systems that monitor and control their
environment via continuous interaction. “Reactive” means system react permanently to
changes of the environment. “Real-time” means reaction must be guaranteed within a
certain interval of time. Any information processing activity or system which has to
respond to externally-generated input stimuli within a finite and specified period, is a
real-time reactive system. A real-time reactive system may be a component of a larger
system in which it is embedded. Such a component is called an embedded system. [7]

2. Standard software / hardware Architecture

Normally, a real-time reactive system is connected to its environment via standard real-
time input-output devices such as sensors, actuators, etc.

3. Common general characteristics

In order to avoid possible confusion with other systems, true real-time reactive systems
can be distinguished by the fact that failure to respond to an input in some pre-specified
time is usually as bad as a wrong response. This is summarized by saying: “The right
answer late is wrong”. These pre-specified times are usually‘ called deadlines, and they
are an inherent characteristic in requirements specifications for real-time systems. When
measuring the time at which an output is produced, we normally relate an output event to

the time at which a particular input event was received by the system. For real-time

reactive systems, this input-to-output response is a clearly identified requirement of the
system.

Real-time reactive system must often operate for days or even years without
stopping in the most hostile environments. Their performance requirements are as
important as functional requirements.

A real-time reactive system is fully responsible to synchronize with the dynamic
environment. Beside this, reactive system works in non-termination mode, that the
system is monitoring its environmental objects in all the time through sensors (or other
input-output interfaces) and ready to response at any time through actuators (or other
input-output interfaces).

4. Example applications of real-time reactive systems

Applications éf real-time reactive systems, especially embedded systems are pervasive in
our life. Some examples of real-time reactive systems are:

Railway crossing control, road traffic control, air traffic control;

Medical systems such as patient monitoring, radiation therapy;

Automobile cruise control system;

Manufacturing systems with robots;

Telephone, radio, and satellite communications systems;

Military uses such as firing weapons command and control;

5. Two Important properties

Real-time reactive system must function in fime bounded mode because of real-time
behaviour of environmental objects. It should not only provide correct service functions
but should also satisfy timing constraints imposed on the functions. Timing constraints

regulate real-time system behaviours.

The distinguishable characteristics of a real-time reactive system are its stimulus-
response behaviour.

e Stimulus sychronization: always reacts to a stimulus from its environment.

e Response sychronization: the time elapsed between a stimulus and its

response is acceptable for a relative dynamic environment.

Missing any one of these two features, real-time reactive system cannot function
correctly and will definitely lead to system failure.
6. Safety critical characteristics demand different software engineering activity
In general, real-time reactive systems operate in safety-critical context that system failure
may lead to major losses and cost. Because of this safety critical nature, it is usuélly not
feasible to test and debug systems with their actual complete environments. Therefore,
developing real-time reactive system mostly relies upon simulation techniques,

comprehensive requirement analysis and design methodology. [7]

2.2 TROMLAB

This thesis work is conducted in the context of TROMLAB. In this section we introduce

TROMLAB framework and its components that are related to this thesis work.

2.2.1 Overview

TROMLAB is a development framework based on TROM formalism for object-oriented
design and development of real-time reactive system. TROM formalism provides
conciseness and rigor description of system designs.

The design approach has all the merits attributed to object-oriented design:

modularity, compositionality, and hierarchy. The design ensures that the stimulus and

response synchronization abilities of a reactive object are preserved in compositions and
hierarchical refinements.

The basic building block of a reactive system model is TROM, a Timed Reactive
Object Model. A TROM is a generic class from which several reactive objects can be

instantiated and cooperated to create a reactive subsystem. [21] [13]

2.2.2 TROM Architecture

The three- tier structure of the object oriented methodology introduced by Achuthan in
his PhD thesis [21], as shown in Figure2-1, is the basis of TROMLAB environment for
developing reactive systems. The benefits derived from the object-oriented techniques
include modularity and reuse, encapsulation, and hierarchical decomposition using
inheritance.

The system is modelled using a three-tier design language. The three tiers
independently specify the system configuration, reactive classes, and the abstract data
types included in reactive class definitions. Lower-tier specifications are imported into
upper tiers. Abstract data types are specified as LSL (Larch Shared Language) traits in
the lowest tier, and can be used by objects modelled by TROM. The middle-tier
formalism specifies TROM classes. TROM is a hierarchical finite state machine
augmented with ports, attributes, logical assertions on the attributes, and time constraints.

The upper-most tier specifies object collaboration where each object is an instance of a

TROM.

The three tiers shown in Figure 2-1 are briefly described in the following sections.

10

Animation Requirements specification in N Larch
Toal Allen’s Temporal Logic{ATL) Prover
Validation Format Verification
pommmmsmmmsmemosmemesenbeo prommhemmssems s on e
| [} 1 [}
| | i :
I 1 1 [l
I : e 1 R T |
i Subsystem - ; Systsf;*n; ggi:'it:g::l ation L Systam Thm'ry‘ ' :
! Compatations ! pectt ! Swnch. Axioms in ATE | !
i i i i
1 i { 1
1] t 1
1 i { 1
1) [} |
: { : i
] (! g i
H TROM - ' Timed Reactive ! - TROM theory: !
i Computations I Object Model ‘ Axioms in ATL i
1] 1
i i | I
1 1 1 1
: 1 i i
] 1 1 1
] 1 1 1
i i i i
| ' ! Earch Shaved i et eapelag 1
i Pata Model " e » First ordes h
; 4 ' Language (LSL) { Logic !
i i { i
1 1 ([
I 1] i
1) | }
femammmemmcemmemmam e ———————— l . . (Fpeypupeeyspapeppuspeeperamee el {
3~ Tiered Design oo]
Operational Semantics Specification Logical Semantics

Figure 2-1 Three Tiers

2.2.2.1 Data Abstraction Tier
This level specifies the abstract data types included in the class definition of the middle
tier. An abstract data type is defined as Larch Shared Language (LSL) trait. Larch
provides a two-tier approach to specification:
o First tier, called Larch Interface Language (LIL), is used to describe the semantics
of a program module.
o Second tier, called Larch Shared Language (LSL), is used to specify mathematical
abstractions which can be referred to in any LIL specification.
Presently, the implementation of TROMLAB includes only LSL traits. Figure 2-2 shows

the LSL trait for set data type.

11

Trait: Setle, §)
Includes: Integer, Boalean

Intraduces:

ot

creat @ -3 3

msert e, 8~

delete 16, 8 2 8

gz 15~ Intg

member e, 8-> Bool;

isEopty: 8 ~> Bool;
Asserts:

end

Figure 2-2 Set trait

2.2.2.2 TROM Tier

A TROM models a Generic Reactive Class (GRC). A GRC is an augmented finite state
machine with port types, attributes, hierarchical states, events triggering transitions and
future events constrained by strict time bounds. A state is an abstraction denoting a
system information during a certain interval of time.

An event denotes an instantaneous signal. The events are classified into three types:
Input, Output, and Internal. Input (Output) events occur at the ports of a TROM,
synchronising with the Output (Input) events of another TROM. The ports are abstraction
of synchronous communication between TROMs. TROM objects can only interact
through the port linking them as defined in SCS. Only compatible ports can be linked,
such that event sent at one port is acceptable as an input event at the other port at the
same time. The specification of a transition states the conditions under which an event
may occur, and the consequences of such an occurrence. The time constraints enumerate
the events triggered by a transition and the time bounds within which such events should

occur. Thus, a GRC is a class parameterised with port types, and encapsulates the

12

behaviour of all TROM objects that can be instantiated from it. A formal definition of
TROM is given in Achuthan’s thesis [21].

The occurrence of an event e at a port p at time ¢ triggers an activity which may
take a finite amount of time to complete. These events may lead the TROM(s) affected by
the event to undergo a state change and may further lead to the occurrence of new events
as specified by the timing constraints. Figure 2-3 shows the syntax for specifying a
TROM.

Class < sdenti fier = [< poritypes >]
Events:
States:
Attributes:
Traits:
Attribute-Function:
Transition-Speafications:

Time-Constrairits
&nl

Figure 2-3 Template for TROM Class configuration specification

2.2.2.3 Subsystem Specification Tier

This level is the top most tier which constitutes subsystem configuration specifications
(SCS). This specification uses objects instantiated from classes specified in the second
tier. An object is instantiated from a class by creating a finite number of ports for each
port type in the class specification, and by initializing the attributes included in the class.
Each instantiated object will carry its own set of attributes. A port link is an abstraction of
a communication medium between two objects. A port link is established between a port
of one object and a compatible port in another object. Objects communicate by

exchanging messages (external events) through the port links. These objects may have

13

different number of ports for each port type, and consequently have the ability to
communicate and interact differently with their environment. We can also include other
subsystem configurations in defining a subsystem. The syntax for subsystem
specification is shown in Figure 2-4. The Include section lists imported subsystems. A
reactive object is created in the Instantiate section, with parametric substitutions to
cardinality of ports for each port type. The Configure section defines a configuration
obtained by composing objects specified in the Instantiate section and in the subsystem

specification imported through the Include section.

Submystern < ddenty fer =
Include:
Instantiate:
Configure:

end

Figure 2-4 Template for Sub-system configuration specification

2.2.3 Operational semantics

The structure and behaviour of TROM can be described either textually or visually. The
templates for textual descriptions of TROMs and subsystems are shown in Figures 2-3
and 2-4. The visual representation of a reactive system includes the class diagrams, state
machine diagrams, and the collaboration diagrams.

Reactive objects in a system communicate through messages. A message from an
object to another object in the system is called a signal and is represented by a tuple <e, p

, t>, denoting that the event e occurs at time # at a port p;. The status of a TROM at any

14

time ¢, is the tuple < s; a; R >, where the current state s is a simple state of the TROM, a
is the assignment vector, and R is the vector of outstanding reactions. A computational
step of a TROM occurs when the object with status < s, a, R >, receives a signal <e, p, >
and there exists a transition specification that can change the status of the TROM. A
computation ¢ of a TROM object A is a sequence, possibly infinite, of alternating statuses
and signals, such that successive statuses in the sequence result due to the signal in
between them. A reactive system may not terminate; consequently, a computation is in
general an infinite sequence. The set of all computations of a TROM object A is denoted
by Comp(A). The computation of a system is an infinite sequence of system statuses and

signals that effect global status changes of the system.

2.2.4 TROMLAB Components

TROMLARB is integrated with Rational Rose that enables the construction of visual
models of a reactive system. The formal language RTUML [23] is discussed in D.
Muthiayen’s PhD thesis, a real-time extension of UML, which, together with TROM
semantics, provides the semantic grounding for modeling real-time reactive systems in
UML visual models.

An application developer can interact with TROMLAB functionalities through the
interface provided by the Rose-GRC tool and a graphical user interface GUI The visual
models are mechanically translated by the Rose-GRC translator into the formal notation
described in the previous section. GUI in TROMLAB is used by developers to interact
with the rest of the TROMLAB components that include interpreter and simulator.

In the following sections we briefly review the functionality of the Rose-GRC

Translator, Interpreter, and Simulator.

15

2.2.4.1 The Rose-GRC Translator

The translator is implemented by Popistas [14], and uses Rose script, a scripting language
supported by Rational Rose. The translator is a tool to automatically translate the
graphically designed models: class diagrams, state chart diagrams, collaboration
diagrams into TROM formal specifications. The diagrams are modeled using Rational
Rose that supports UML based system modeling. The translator takes the Rose model as
input and produces text files: TROM class formal specifications, subsystem
configuration.
The Rose-GRC translator consists of the following parts:
o Interface to Rose: It is the user interface that provides access to create visual
representations and invoke the translator.
o Translator: Translator takes the specified Rose diagrams and performs the
following tasks:
a. Checks the correctness of the Rose diagrams by performing syntactic and
semantic check to ensure that the models conform to TROM formalism.
b. Handles any error occurring during the execution by producing clear and
specific error messages.
c. Translates the Rose diagrams into an internal structure, using record data
types.
d. Produces the textual specifications according to the syntax presented in the
previous section.
Figure 2-5 Shows the architecture of the Rose-GRC translator, as proposed by
[14].

16

-
Reee Ciraphical Interlnee]

f !

Translatur Craphical
Rowe Mudel Tlsar Inferface

Transhatar

r

Formal
Bpecifications

Figure 2-5 GRC-Translator Architecture

2.2.4.2 The Interpreter

The interpreter was the first tool to be implemented in TROMLAB by Tao [15], checks
the textual specification for syntactic correctness and builds an internal representation of
the formal specification of a reactive system. The implementation, in C++, required the
textual descriptions of all the three levels to be provided as a single source file. The
advantage of the three-tiered design was not realized in this implementation. Haidar [16]
reengineered the interpreter implementation in Java. This version included incremental
and independent compilation of specifications, and enhanced error reporting. The
interpreter checks the syntactic correctness of specifications and builds an internal
representation of the well-formed formal specification of a reactive system. Figure 2-6
shows the architecture of the interpreter.
In order to build the internal representation it performs the following tasks:

o Syntactic analyzer: It makes sure that the files are syntactically correct; that is,

consistent with TROM grammar.

17

o Semantic analysis: It does simple semantic analysis such as:
a. States of a TROM have different names.
b. An LSL trait is used after being declared.
¢. Every transition has an outgoing and incoming state
d. Transition specifications are well-formed logical formulas
o Internal structure: Based on a syntactically and semantically correct text file, it
generates an Abstract Syntax Tree, an internal representation for the models, that
would be used by the simulator in TROMLAB.
The components of interpreter are as follows:
o Scanner
A single text file containing LSL traits, TROM class specifications, subsystem
specification, and an initial event list is taken as input to the scanner. The scanner
performs lexical analysis and identifies the tokens to be used by the parser.
o Parsers
This certifies the syntactic correctness of the tokens received from the scanner. The
parsers are implemented in JavaCC and JJTree. Java Compiler Compiler is a parser
generator for use with Java applications that produces Java code. JJTree is a preprocessor
for JavaCC that inerts in JavaCC source actions for parse tree building. There exists
separate parsers for LSL trait, TROM class specification, SCS, and initial simulation
event list.

o Syntax analyzer

18

Using predefined grammars for TROM and subsystem, this module evaluates the
syntactic correctness of token. Any error at this stage will be communicated to the
user and will terminate the execution of the interpreter.
o Abstract syntax tree generator
An abstract syntax tree is generated for each TROM and subsystem input to the
interpreter.
o Semantic analyzer
Semantic analysis is done in two phases: in phase 1, semantic analysis internal to a
class specification is done; and in phase 2, semantic analysis of the subsystem
configuration is done.
o Error message handler
This is part of semantic analyser functionality. Every semantic error
detected will be saved in a file until the end of semantic analysis.
2.2.4.3 Simulator
The Simulator tool was designed and implemented by Muthiayen in 1996, and redesigned
and by Haidar [16]. It works with the new interpreter and has reasoning capabilities.
Figure 2-7 shows the simulator architecture. The Simulator interfaces with the abstract
syntax tree built by the Interpreter to extract the information for simulation. It builds a
simulation event list to keep track of all outstanding events in the system. The Simulator

can work in one of two modes:

19

User Input

File

Build the AST

I Abstract Syntax Trec (AST)

Py t

,i
uses,

»

Semantic Validation

USEs %,
L]

Generate

“

._l Error messages

Semantic analyser = Cenerate

Figure 2-6 Interpreter Architecture

o Debugger mode: In this mode the developer can, at the end of every handled
event, invoke the debugger and use it to query the system. The system can be
rolled back and new events can be injected.

o Normal mode: In this mode the simulation will go on uninterrupted until the
system goes into a stable state. The result of the simulation is one scenario of
what could happen, given the initial set of events.

The Simulation tool consists of the following components:

o Simulator consists of an Event handler, a Reaction window manager and an Event
scheduler.

a. Event handler is responsible for handling the events which are due to occur and
detects the transition which the event will trigger.

b. The Reaction window manager is responsible for activating the computational

step to handle the transition causing events to be fired, disabled or enabled.

20

The Event scheduler causes an enabled event to occur at a random time within the
corresponding reaction window. It schedules output events through the least
recently used port using a round robin algorithm.

Consistency checker ensures continuous flow of interactions by detecting
deadlock configurations.

Validation tool consists of a Debugger, a Trace analyser, and a Query handler.
-The Debugger supports system experimentation by allowing the user to examine
the evolution of the status of the system throughout the simulation process. It also
supports interactive injection of simulation event, and simulation rollback to a
specific point in time.

-The Trace analyzer includes facilities for the analysis of the simulation scenario.
It gives feedback on the evolution of the status of the objects in the system, and
the outcome of the simulation event.

-Query handler allows examining the data in the AST for the TROM class to
which the object belongs, and supporting analysis of the static components during
simulation.

Object model support supports the specification of the TROM classes and the
evaluation of the logical assertions included in the transition specifications.
Subsystem model support creates subsystems by instantiating included subsystems
from object and port links.

Time manager maintains the simulation clock updating it regularly. It allows

setting the pace of the clock to suit the needs of analysis of simulation scenarios.

21

It also allows freezing the clock while analyzing the

SBIGEATION TOOL

Sl

computation.
GRIFCT WOOEL
SURRT
Fatyype €l bnaden]
Prfirstion &
Dedudions
SN TSI MODEL
ST
Irstardan Cont
oA el
Chisets Vot drks

Coewissony
hcker

Evart Hhander

consequences of a

Fextinwidok
Horwger

Figure 2-7 Architecture of simulation tool

2.3 Case study — Generalized Railroad Crossing

Fvert: schioddler

Tires
Marager

NALIDATION
THUEET
Irderactres | Btk
Mok

Tebrggur

Traoe salyer

Gaery tandier

We illustrate TROMLAB methodology with this case study, in which we show a design

version that model system behaviour using generic reactive classes introduced in this

Chapter. The completed design specification of this case study can also be found in [18],

[23]. This design version will be evaluated later on using evaluation methodology

introduced in Chapter 4.

Problem Description:

Generalized Railroad Crossing problem is a benchmark case study in real-time reactive

research community. We use a version of this problem, which is to develop an automatic

gate-controlling system. This system can detect trains approaching and leaving, then

make decisions to open or close gate. The system context is that, several trains, traveling

22

in different directions, traverse a crossing independently and simultaneously using
multiple non-overlapping tracks. Gate-controlling system detects the first train entering
the crossing and makes sure the gate is closed before any train is inside the crossing.
Gate-controlling system detects the last train leaving the crossing and make sure the gate
is opened. The initial position of a gate is open and the gate remains in initial position
when no train comes. When there is a train in the crossing, the gate should remain closed.
To maintain generality, we assume an arbitrary number of trains in the system, and
consider that all trains interact with the system.

Timing assumption about a gate is as follows:

The gate will take 1 time unit to change the position from open to close.

The gate will take 1 to 2 time units to change the position from close to open.

The controlling system takes 1 time unit to issue order to gate for opening or closing
action.

Timing assumption about a train is as follows:

A train is inside the crossing 3 to 5 time units after the controlling system detect its
approaching, then the train takes another 1 to 2 time units to leave the crossing and the

controlling system detects its leaving.

TTTl@Ress T <<PortType>>
Train ac
<<PartType>>cr: @C avents : Set = (Nearl,Exit!}
<<PortTy pe>> <<GR C>> <<PortTy pe>>
[c]¢e] @ Gantroller - aP
events : Set = (Lowerl,Raisel } {<<DataType>> inSel : Sel{@F ,PSet] evenis | Set = (Near? Exit?}
<<PortTy pe>> <<GRC>>
@s < Gate
events : Set = {Lower?,Raise?)

Figure 2-8 Class diagram for railroad crossing

23

Design solution with TROM formalism:

With TROM formalism, we model the behaviour of system entities using generic reactive
classes. For GRC classes, we visually model their behaviour using UML statechart
diagrams, and derive the corresponding formal specifications. Figure 2-8 shows the GRC
classes Controller, Train, and Gate, with their corresponding PortType classes. The
binary associations between the PortType classes indicate communication channels
between instances of the GRC classes. Figures 2-9,2-10 show the statechart diagrams
depicting the behaviour of instances of the GRC classes Controller, Gate. The UML
collaboration diagram in Figure 2-12 shows the configuration of a railroad crossing
system with four trains, one controller, and one gate. In this configuration, all the trains
interact with the controller. Figures 2-13,2-14,2-15 show the formal specifications
generated from the UML model of the GRCs. The formal specifications in figure 2-16
describe the configuration of the above mentioned instance of the railroad crossing

system.

Near {{member(pid,inSet)) && true |
/inSet=insert(pid,inS el)
PR

@ ;
\ /
N\ [N
N . Near/inSet=inser(pid,inSot) P Vo
‘ idte | &&TCvart=0 activate ‘
L R

Lower[true &8 true && TCWart>=0 &

A}
Raise[flrue & & true & & TCvart<=1)

TCvar2>+0 & TCvar2 <= 1]

Nearf !(m em ber(pid,inSel)) & & .
true] /inSet' = insert(pid,inSe\)/ \

J
J— b r{/\l/ ,,,,,,,,,
!(deactivate 1/ monilor
!

J ExiUmemborpid.inSet) &a !
size(inSet)= 1]/inSet' = D N -
delete(pid,inSel) && TCvar2 = 0 /]

Exitifmember(pid,inSet) &&
size(inSetl) > 1 |/inSel'=
delete(pid,inSet)

Figure 2-9 Statechart diagram for controller

24

®

,,,,,,,, N
I I Lowec/true && TCvarl=0
i opened
[E—
N
Up[true && true && TCvar2 >=1 &
MCvar2<= 2}
Down[true && true && TCyari>=0
& TCvarl <=1)
~ o

Raise /true && TCvar2=0 !

l

closed

i toOpen

e

Figure 2-10 Statechart diagram for gate

ir1 : Train | l tr2 : Train I I trd : Train | I trd : Train l

[@ri . qRr| @Rz @R [@ra @r] | B4 2]

[erL.ar] |@rz_ ar] [erz_ ar] [@p4: @p]

Figure 2-11 Collaboration Diagram for Railroad Crossing gate

25

Exents: Low
States: *idle, s
Attributes: inSet:PSet
Traits: Set L Set)
Attribute-Function;
activate —> {inSet}; deactivate —2 {inSet}:
monitor —- {inSetd:idle —- {}
Transiticon--$ -.ufmatlnlh
R1: <activate, monitors-; Lower{lrue);
true =s2 true:
R2: activateactivata>: Nearf NOT{member(pid, inSet)¥);
true == inSet’ « nseripid.inSet);
R3: «deactivateidles; Raiseitrue).
ue == true;
R ~wmaomitordeactivatess: Exil{rmmbcr{pidinSel)‘;:
size(inSety = | === inSetl” = deletedpid,inSet)
RE: «cmonitor noniters: Exitimember(pid,inS
size{inSet) > 1 w2 inSet?” = dLlLte{rsld.msely.
R&: monitormonitors; Nea 1(member{pid, inSetr
ETUe e inSe @ = insert{pi d.inSet):
R7: «idle,activate-; Near{true);
true == inSet = insert{pid,inSet);
Time-Caonstraints:
TCrarl: R7, Lower, [0, 1], §3:
TCvard: R4, Raise, {0, 1], {1

encl

Figure 2-12 Formal specification for Controller

oS, Do, Up, Raise?nS
States: *opened, toClose, toOpen, closed
Altributes:
Traits:
Attribute-Function:
opened —> {}: toClose == {}:
tnOpen —= {}:closed— {}:
Transition-Specificati ons:
RI: <openedtoCloses.; Lowar(true); trie = true;
R2: <toClose,closed=; Down{true); true = true;
R3: <taOpenopened=; Up(true); true =2 true;
R4: <elosed, toDpenz=; Raise{truel; true = true;
Time-Caonstraints:
TCvarl: R1, Down, [0, 1], {}:
TCvar2: R4, Up, [, 21 {}:

end

Figure 2-13 Formal specification for Gate

26

SCS TrainGateController

Includes:

Instantiate;
GuGatefgoS:1];
trlTrainfEaR:1];
tr2: Frain[eaR-1];
tr3sTrainfER:1]:
trd e Train{i@R:11;
CeController[@P:4, oY 1];

Configure:
CaaY L@y <= Guas @S
C. cgg}’l .di’ -»«.:*:}' tll QJRJ @R

a}?.ﬁ {@P <> I} @RI GR:
C.@PAGP < trd @RAGIR:
end

Figure 2-14 Formal specification for Train-Gate-Controller subsystem

27

Chapter 3 Requirement analysis modeling

Requirement analysis is the start of the system development and will steer the whole
system development from beginning to the end. The output of requirement analysis is the
foundation for the subsequent development activities, guiding system design, and
implementation, and providing criteria to validate design artefacts and final products. The
quality of the analysis output is the key to achieve a successful development.

Therefore, it is important to have a sound analysis modeling approach that can
help us produce consistent and completed requirement analysis result. In this chapter, we
propose a scenan'o-baséd approach to model and analyze real time reactive system

requirements.
3.1 Overview of our analysis modeling approach

3.1.1 Requirement analysis characteristics

As an important initiative process in software development, requirement analysis mainly
has the following aspects:

1) Problem oriented

Requirement analysis emphasizes an investigation of the domain problem and
requirements, rather than the possible solution [9]. The models that are developed during
analysis are fully problem-oriented. No consideration is paid to the real implementation

detail by which the system is to be realized.

28

By requirement analysis, we produce clarified requirement documents that can
eliminate misunderstanding in the design phase. In addition, focusing on problems
instead of a specific solution can also widen our view on possible solution space.

2) User-centered analysis

Requirement analysis is an investigation from user perspective rather than designer
perspective. Thus, it focuses on how the system will be used and in what context. From
user perspective, usually we see more requirement details than from designer’s

perspective. This can help us reduce chances of missing requirements.

3.1.2 Tasks of requirement analysis

A requirement analysis process should deliver outputs that cover the following:

1) A static view of the system to be designed as well as its environment;

2) A behavioural view of the system and its environment;

3) A system usage view.

In this chapter we propose an object-event-scenario modeling method aiming at

describing these three views of a system under development.

3.1.3 Features of our approach

Based on the above understanding of requirement analysis, we propose our requirement
analysis modeling approach by which we aim at the following objectives:

1) With this approach, we may produce high quality requirement analysis output that can
guide the design process to be effective;

2) The output of the requirement analysis can be used to evaluate design artefacts and

implementation.

29

In general, the modeling approach we proposed has the following characteristics:
1) Object oriented

Object-oriented analysis has many advantages in modeling system context. We
use object model to describe the static structure of a system and its environment. The
object model we applied can be easily mapped to the counterpart in design phase.
2) Event-based

Instead of using state-based model such as finite state machine that is commonly
used as design modeling tool, we adopt event model in describing behavioural view of
the system. This is very intuitive for all people involved in the development. In addition,
event-based model is the building block for constructing usage scenarjos.
3) Scenario-based

Scenarios are used to describe the usage of the system. Scenario-based approach
is a very intuitive way to describe system requirement from user’s perspective. Scenarios
describe how system components, the environment objects interact in order to provide
system level functionality. Each scenario is a story which, when combined with all other
scenarios, should conform to provide a complete system description.

At analysis stage, scenarios models are good means to involve stakeholders
- contributing their experiences and knowledge. Normally, each stakeholder has his own
viewpoint on how the system should work and how the interactions should flow among
objects. During requirement analysis, different viewpoints can be discovered and
conflicts across the different viewpoint have to be solved.

4) Formalism

30

As real-time reactive systems often operate in safety-critical situation, they
require relatively rigorous method in the system development. In our approach, we apply
a formal method on requirement specification as well as performance property
specification. This formalism is used not only for the purpose of specification but also for
automatic evaluation of the performance of design artefacts. We are going to explain
evaluation approach in details in next chapter.

In the following sections, we are going to elaborate in details on our requirement

analysis model.

3.2 System static model

3.2.1 Object model

Requrements analysis is based on information of different kinds. We may assume that
they are informally described documents or information from all sources. The first step of
requirement analysis is to elicit a static view of the system context, including the system

to be developed and its enviroment.

3.2.2 Identify objects

Object-oriented requirement analysis emphasizes on identifying and describing the
objects in the problem domain. In real-time reactive problem domain, a system to be
developed and its environment form a closed system context. In this section, our task is to
identify objects in this closed system context.

When we study a system, objects are the things that can be named by nouns and
concern us in terms of the targeting problem to be solved. An object can be a physical

component, a software component, an entity, or a data value.

31

Identified objects play certain roles in the system interactions. In early
requirements analysis phase, identified objects that concern us are usually observable
from users’ perspective. The term “observable” here means the object has observable
behaviour from the user point of view, or the object participates in some observable
interaction behaviour. For example, in railroad crossing case study introduced in section
2.3, trains and the gate have observable behaviours while the controller is not visible to

users.

3.2.3 System boundary

Identified objects can be classified into two categories: system objects and
environmental objects. By this classification, we aim at clarifying the system boundary.
The system boundary defines what objects compose the system as a whole and what
objects do not belong to the system under development, but interact with it. Clarifying the
system boundary is necessary for identifying the system and environmental events. In the
analysis of system functional requirements, system boundary clarifies the scopes of
system functions.

The reactive system to be designed is usually composed of many objects and is
considered as a composite system object in a black-box view. Any objects that belong to
the composite system object are system objects. The objects outside of system boundary
are the environmental objects.

Among all system objects, those that do not have observable behaviour from the
users’ point of view are located inside the system. We name them as internal system

objects. In requirement analysis phase, internal system objects are not of concern, unless

32

the requirements to be analyzed present some internal constraint to the development such
as adoption of available system components.

Those system objects that have observable behaviours usually have interaction
with environmental objects. We name them as system interface objects.

Besides system objects and environmental objects, there are some objects that
concern us, however, you can not say they are system objects or environment objects.
Their appearances are always combined with the occurrence of some object behaviours.
Therefore, we name them as parameter objects.

Object quantity needs to be specified in the requirement, such as number of
systems to be developed in the usage context, number of system interface objects of each
type for each system, and number of environmental objects that can concurrently interact

with the system.

3.2.4 Design boundary

It is very often the case that in real-time reactive system, some system objects are
pre-selected commercial off-the-shelf (COTS) software or hardware products that we
only know their input-output interfaces without knowledge of COTS’ internal structure.
Hence, design space for COTS will not include COTS itself but only COTS’ interface,
which is the communication mechanism of COTS interfaces that is about how to
integrate them with other system objects. COTS’ interface is inside Design boundary.
Design boundary segments the system into designable and non-designable areas within

system boundary.

33

3.2.5 Summary of this section

In this section, we have identified different kinds of objects after drawing system
boundary and we illustrated in Figure 3-1:
o Environmental objects are located outside of system boundary, which trigger
system behaviours; System objects are located within system boundary;
o System Interface objects are objects within system boundary having interaction
with environmental objects. System internal objects are objects within system

boundary that have no direct interaction with environmental objects.

L -
-
-
-

Phd Real-time reactive System
./'. Internal o
,/ object P Interface [« Environmental :
/ object object
1]
h Internal Internal
i object < object Stimuli input event
\.\ .I.
% A 4 S
~, Interface R
\\, object i

‘.. T

observable system output event e

Figure 3-1 Static model of real-time reactive system

By identifying these objects and clarifying relationship among them, we have a static
architecture topology of a system, which provide a platform for system dynamic

behaviours.

34

3.2.6 Production Cell case study

In the railroad crossing example, we can identify trains as environmental objects, and a
gate-controlling system as system object. Gate is a system interface object in gate-
controlling system. The gate can not send events to other objects, but it has observable
behaviour. (See observable event illustrated in Figure 3-1). Stimuli from trains are sent to
controlling system to trigger gate’s behaviour.
We introduce another example here. It is a version of an industrial production cell
[13]. This example will be used throughout the thesis.
The assembly floor consists of several assembly units. Each assembly unit is a
production cell that consists of users, a robot, a conveyor belt, a tray, and a vision
system. Users place two kinds of parts, cup and dish on the belt. A robot has two
arms that each arm can pick up a part from the belt, hold a part, and place a part
on a designated assembly pad. The vision system sénses a part and recognizes its
type. The belt stops whenever a part is sensed, so that the robot can pick up the
part from the belt. The belt moves again after the part on it is picked up by the
robot. An assembly is performed when the robot places a cup held in one of its
arms and the dish held in its other arm onto a tray. In the generalized version of
the problem, several assembly units cooperate to complete the assembly of a
complex component. |
In this example, we can identify environmental objects as users who introduce
parts into production cell system constantly. Production cell system is the composite
system object under designed that its main function is to assemble the parts provided by

the users. Belt is the interface object located within the system boundary that receives

35

parts from user. The tray is the interface object that has observable behaviour which is to
trash assembled parts. Vision system, belt and robotics are COTS (commercial off the
shelf products) components. Parts and assembled products are parameter objects. Parts
are the parameter for object user’s behaviour. Assembled products are the parameter for

object tray’s observable behaviour.

3.3 System behaviour model

3.3.1 Event-based modeling

After having a static view of a system context, the next immediate step is to have a
behavioural view of the system and its environment, namely, to clarify the behavioural
characteristics of each concerned object.

There are generally two types of modeling approach in describing a course of system
actions: state based and event based. These two modeling approaches are equivalent since
an event may indicate the change of an object’s state depending on how states are
defined. In requirements analysis, we choose event-based model to describe external
observable behaviours of a system and its environment. Unlike state-based modeling that
usually demands certain level of design effort, event-based modeling is an intuitive way
in describing behaviours, especially from user’s perspective. With event-based model, we
focus on interactions between objects. In addition, event model can be easily used to

construct system usage scenarios.

36

3.3.2 Object-events

In general, we use Event to describe something happening at a given place and time. In
our case, in real-time reactive problem domain, we use object events to describe object
behaviours.

An object may be capable of performing a set of behaviours of different types.
For example, the gate has two different types of behaviours, Open and Close. Behaviour
is an occurrence of a behaviour type, and we name it as object event. For instance, the
gate can have a sequence of behaviour occurrences: Open at 5 time unit, Close at 9 time
unit, Open at 13 time unit, Close at 17 time unit. In this sequence, there are two
occurrences of behaviour type Open that these two occurrences are with different time
attributes, or we say events Open(5) and Open(13). There are also two occurrences of
behaviour Close with different time attributes, they are events Close(9) and Close(17).

Each object event is owned by a single object. An object event may indicate:

o Communication between two objects.

o A change of an object’s state.

3.3.3 Object event attributes

An object event is always time stamped. In other words, it has a time value that is an
attribute of the event and indicates the instance when the event occurs. In real-time
system development, time is an important factor that concerns the behaviour. Time
concepts are introduced to support the notion of quantified time for the description of
real-time systems with a precise meaning of the sequence of events in time. Our events

are instantaneous and do not consume time. Quantitative time values represent the time

37

distance between pairs of events. The time progress (a time unit) is equal for all instances
in the model.

Besides the time attribute, some object events may come with some other
attributes, namely, parameter objects. We name this type of object event as
parameterized object event. Apparently, those events that do not have parameter object

attributes are non-parameterized object events.

3.3.4 Object events classification

If an object event belongs to a system object, we name it as a system event. If an object
event belongs to an environment object, we name it as environmental event. An
environmental event is usually a stimulus to the system in a real-time reactive system and
is assumed to happen. An observable system event belonging to a system interface object
is named as system output event (refer figure 3-1) that is usually expected to happen as
specified in the requirements. A system event belonging to a system internal object is
named as system internal event. A system event owned by a system interface object can
also be an internal event when it is not observable and not specified in the requirement.
Having the object event concept in mind, we can see that some objects that may have
a set of behaviour types and are capable of having object events while other objects have
an empty set of behaviour type and are not capable of having object events. We name
those objects that are capable of having object events as active objects, and those objects
that are not capable of having object events as passive objects. Parameter objects are
usually passive objects. System interface objects and environment objects are usually

active objects.

38

For example, a train in Railroad crossing system, an environmental object, is an
active object because it can generate stimuli events to the system. In Production Cell
case, parts introduced by the user to the production system, are passive objects since they

can’t generate any events, that they are the parameter objects conveying data information.

3.3.5 Behavioural characteristics and constraints on objects

With the understanding of above object-event modeling method, we should be able to
model the characteristics of environmental objects and system objects and the relations
between them.

Environmental characteristics include environmental objects types, quantities, and
behaviour characteristics (mainly stimuli arrival patterns).

There may be some constraints on environmental object behaviours, which lead to
the constraint on the occurrences of object events. Those behavioural constraints may be
the following types:

-Ordering constraint: some object events must occur in an ordered relation.

-Quantitative constraint: some objects may have repeatable event while some object
don’t.

-Concurrency constraint: whether some events can occur concurrently as well as
maximum concurrency event volumes arriving at a specific time range.

- Timed constraint: the time interval between two events may be limited to a range.

- Parameter constraint: event parameter objects may be defined.

39

- Interaction constraint: some object event may define interaction between two objects,
especially environmental object and system object. Object interaction style may be
specified also, such as synchronous vs. asynchronous.

We give some examples about the above constraints.

-An example about ordering constraints. In Railroad crossing case, object events
of a train always have order constraints as: near = in = exit.

-An example about concurrency constraint. As there are multiple tracks in the
crossing, multiple trains can traverse the crossing at the same time. Hence object events
of trains’ objects can occur concurrently.

-An example about timed constraint: In Railroad crossing case, for a train object,
time interval between event Near and event In, between event In and event Exit iare
within the time ranges.

-An example about parameter constraint: In production cell case, event Put owned
by a user object has a parameter attribute part.

System events are expected to occur under certain condition. The description of
those expectations is a functional requirement. Each individual atomic functional
requirement usually can be described by a pair of predicates: pre condition and post
condition. These two conditions usually have parameters such as objects, events, event
attributes including time stamp and event parameter objects. Post conditions usually
contain system events as parameter. The Example can be found in section 4.5.

The time stamp, namely the occurrence time value of an event is usually
important to real time system development. It can be used to measure the response time

of the system. Some critical event can be even defined by certain timed condition.

40

By specifying each identified pair of pre/post condition, we can construct the

whole functional requirement of the system to be developed.

3.4 System Usage model

Up to now, with modeling methods explained above, we are able to describe a
system context, environment assumptions, and system functional requirements. The
environment assumption and functional requirements acquired by the above approach can
be clear and detailed. However they might be too fragmental since the semantics of those
interactions and functions and links among them are lacking. To be more specific we
need to understand how the system as a whole interacts with environment objects and
what are the usages of the system from user perspective. System usage scenarios model

are the way to achieve this aim.

3.4.1 Usage scenario

We apply a scenario-based method to model system usage from users’ point of
view. Scenarios are a very common and intuitive way for users to describe system usage
and requirements. We can elicit system properties and implied assumptions by scenarios.
Enumerating and analyzing scenarios can easily identify requirements. In addition,
checking different scenarios usually can help detect missing requirements and
requirement conflicts.

A usage scenario is a temporal sequence of interaction events between the system
and its environment for archiving a usage goal. It is an instance of use for the system
under development from users’ perspective in requirement analysis phase. In object-

oriented event modeling, objects in domain problem are identified and object behaviours

41

are described in terms of events. Objects and events outline system behaviour traces --
scenarios. Hence, a scenario can be modeled as a temporal sequence of events and each

event in a scenario belongs to an object that owns it.

3.4.2 Usage model for real-time reactive system

For real-time reactive system, it is essential to understand its environmental
behaviour before modeling the system behaviour, because timing requirements of a real-
time system are determined and constrained by its environmental objects. Environmental
objects of real-time reactive system behave in a timed fashion, where the system is
required to give a response to the environmental events in a timed fashion. It is important
to understand environmental objects behaviéur and more important is their arrival pattern
of stimuli events to the system, because it is crucial for analysis of system timing
behaviour.

In real-time system, the first event in a scenario is always the trigger event from
an environmental object. For example in Railroad crossing case study, in a scenario of a
train traversing the crossing, the train’s event Near is a trigger event in this scenario.
Naturally, environmental stimuli must have their timing characterized. When we specify
scenarios for real-time reactive system, we inject system events into behaviour pattern of
environmental objects.

We can observe a train’s three different events that constitute a train’s traversing-
the-crossing scenario. A train’s observable events in the scenario are a train enters the
crossing (event: Near); a train crosses the gate (event: In); a train leaves the crossing
(event: Exit). These three events are of interest to gate-controlling system.

The timing features of three events are:

42

o 3to 5 time units between a train’s event Near and event In.

o 1to 3 time units between a train’s event /n and event Exir.

The gate is an interface object in the gate-controlling system. It has two observable
behaviours that are open and close. For the safety concerns, when trains are traversing the
crossing, the gate should be Close before the first train’s event In and can only Open after
last train’s event Exir. Gate behaviour of Open and close must be in time bound to satisfy
trains’ time constrains.

As we can see from the above Railroad crossing case, at requirement phase, we only
concern external observable behaviours of system, (Gate’s open and close). We do not

care how the system produces those observable results.

43

Chapter 4 Scenario based design evaluation

4.1 Introduction

In previous chapter, we have illustrated a scenario-based approach in requirement
modeling and analysis. The output of the requirement analysis is the foundation that will
guide the following development process. In this chapter, we extend the scenario-based
approach so that we can further utilize this output to evaluate design artefacts.

Certainly, requirement analysis output can also be used to validate
implementation or even to generate test cases for testing purpose. However, there are
some apparent benefits that drive this work to be focusing on design evaluation. These
benefits include:

- Cost effective

Design evaluation can expose errors of design artefact before the implementation

phase thus can greatly reduce the development cost. Correcting errors in design

phase cost much less than in implementation phase.
- Performance prediction

The Performance of the final product usually affects users’ satisfaction. Although
some factor related to the implementation affects the performance, design is
usually the main variable that determines the performance. In general, by
evaluating design the performance is usually predictable. It can predict system
behaviours for different predefined performance metrics. By predicting
performance, we can identify unsatisfactory performance of design artefacts in the
carly stages of the development process, not wait until final product is
implemented.

44

- Choice and comparison among different design choices
Under the same requirement, design may have different solutions. Different
design solutions may have strength on different performance aspects. Design
evaluation provides a way of evaluating them according to a set of predefined
criteria.

- A measurement for design optimization
Knowing a predicted performance of a specific design allow the designer to

optimize the design and measure the optimization result.

Aiming at these advantages, we proposed and developed a design evaluation
approach that has the following characteristics:
- Black box strategy
Black box strategy creates an execution model to simulate the execution of the
intended design solution, and the evaluation ‘v_vork is conducted on simulation
output. We apply the black box strategy in our evaluation approach for its
simplicity and effectiveness.
- Scenario based evaluation
By applying simulation method, we can generate simulated execution scenarios.
These simulated scenarios serve as the input to the evaluation of the performance.
- Automatic evaluation
Manual evaluation is certainly an intuitive and effective way to inspect the

simulated output. However, when large amount of testing is involved, automatic

45

evaluation can help improve the productivity dramatically. Formalism is applied

in the design evaluation that makes automatic evaluation to be realized.

4.2 Design performance evaluation process

In general, our design evaluation method simulates the execution of a design and
analyzes the simulation output in order to evaluate the performance of a design. The
diagram in figure 4-1 illustrates the data flow of the evaluation process as well as its
relationship with the requirement modeling and analysis process. As we already know,
by requirement modeling and analyﬂsis we can produce specification document including
system requirements and environment assumption and constraints. This output is the
input of the design process, in which the designer must target at it. The output is also the
input of our design evaluation process, in which we can define evaluation metrics from it.
The output of the design process, namely the design specification, is the input to our
evaluation process in which we evaluate it.

Our design evaluation process includes two steps: simulation and evaluation. In
the simulation step, we simulate the execution of the system based on the design to be
evaluated. In the evaluation step, we evaluate the output of the simulation step according

to a set of evaluation criteria.

46

Requirement
modeling &
analysis

Raw
material

Requirement
modeling

:

|
}

Requirement
specification

Design performance evaluation

Test data

Environment /
assumption /

Design

Design
artifact

generation

Stimuli

y
Execution

v

simulation

Simulated
scenatrios

y

Scenario

evaluation

Evaluation
report

Figure 4-1 Scenario-based design evaluation process

47

The execution of a system is triggered by its environment. Therefore, the
simulation step involves two functional parts: design execution simulation and
environment data generation.

A design execution simulation process receives environmental stimuli generated
from environment data generation process, computes and generates system behaviours,
which are represented as sequences of system events. The generation of system events
should strictly conform to the design specification. Simulation process is conducted in
TROMLAB simulator [15,16,17]. The execution simulation process produces system
events including system internal events and system output events. System output events
are generated by system interface objects. They should be recognizable from users’ point
of view since they are specified in the requirement. System internal events are
unrecognizable since they are not specified in the requirement.

These events come with environment stimulus events during simulation. We
combine system output events and environment events in one run of simulation to
generate an event sequence in totally timed order. We name such combined event
sequence as a simulated scenario. The environment event sequence in a simulated
scenario is an environment stimuli scenario that usually represents one scenario of system
usage. Simulated scenarios are the output data to be evaluated in the evaluation process.

Environment data generation process generates stimulus events as input to the
design execution simulation process. Simulated scenarios produced in execution
simulation process are the input data of the evaluation process by which we can evaluate

the performance of a design.

48

Up to now we have introduced the process of the design evaluation. However,
different applications can be very different in design evaluation depending on application
characteristics. Different performance attributes and different environment data
generation schemes are applied in different applications. In the following sections, we

will elaborate these issues in detail.

4.3 Performance evaluation model

As we already introduced, our design evaluation approach adopts a black box
strategy. The execution simulator integrated with the design specification forms a
simulated system, by which we can ‘run’ the system, test the system with environment
input, and evaluate the test result. Therefore, to evaluate a design for a specific
application, we need to know the following:
<1> What are the output data that need to be evaluated (section 4.2);
<2> What are the metrics in the evaluation; (section 4.3.1)

<3> What are the test data we should produce in the evaluation. (section 4.4)

System output
events

Test data:
Stimuli scenarios

——> | [pesien

spec.

Simulated system

Figure 4-2 Simulated system and black-box design evaluation

49

4.3.1 Define performance metrics

Performance evaluation targets at externally observable system performance
characteristics [24]. Performance attributes are identified from the user’s perspective.

Performance function

Defining a design performance metric usually can be regarded as
specifying a performance function m(SS), which takes in a simulated scenario set
SS as an argument.

The performance function m(SS) can be further refined as an aggregation
function g and a single scenario metric function fsuch that

m(SS)=g(f(ss), SS), where ss € §S -—(4-1)

fis a single scenario performance function based on each individual
simulated scenario and its argument ss is a simulated scenario that belongs to the
set 8§S. The aggregation function g aggregates outputs of f for all simulated
scenarios ss in the set SS.

As we know, each simulated scenario ss can be regarded as the output of a
simulation function exSim() with the input of a design artefact and an
environment stimuli scenario es (es belongs to an environment stimuli scenario
set ES). We can describe it as the following:

exSim (design_artifact, es) = ss, where ss € §S and es € ES -——-— (4-2)

exSim (design_artifact, ES) = 88 oo -—-(4-3)
We combine (4-1),(4-2) and (4-3) , we get m function as follows:
m(SS) = g(f(exSim(design_artifact, es)), exSim (design_artifact, ES)),

where es € ES - —— --(4-4)

50

Defining metrics
From the formula (4-3), we can conclude that designing a scenario-based
performance evaluation metric can be done by defining the following three

elements:

D f-

2)

This is a single scenario performance function that is computed based on a single
simulated scenario. This is the basic function that contributes to the performance
metric.

For example: computes response time value from each single simulated scenario
so that average response time can be calculated based on each single scenario
response time result.

g-

This is the aggregation function that is computed based on each output of single
scenario metric function f in terms of a set of simulated scenario SS. We need to
specify what f is used in the aggregation and how the output of each f is
aggregated.

The aggregation function may be or may not be a single computed value. For
example the aggregation function for average response time is to compute an
average value of response time for all simulated scenarios and this function
outputs a single value.

When it comes to system inability, the evaluation output of system inability is a

collection of environment event sequences with which the design cannot produce

51

satisfactory output. In this case, the output of aggregation function is not a single
value.
3) ES-

This is the simulated environment scenario set, in which each simulated

environment scenario es represents a scenario of possible usage of the system and

can be regarded as test case input. An es together with the system output events
construct the simulated scenario ss.

Defining a design performance metric usually requires us decide what system

usages should be tested. This is an important factor that contributes to the quality

of the metric to be evaluated.

Different types of applications might be suitable for different set of metrics that
construct meaningful evaluation result. For example: Maximum throughput metric is
necessary to conduct in production cell case.

In the following sections, we enumerate some commonly applied metrics in
design evaluation and analyze their patterns on defining f, g, and ES elements for each

metric.

4.3.2 System Output Correctness

Correctness is a vital and integral performance metric for all cases since it is the first
attribute we want to evaluate before any others. Evaluating the correctness of a design is
to validate and verify whether a design satisfies our requirements. Since our evaluation

approach is a black box approach, our correctness metric focuses on requirement

52

validation, in other words, validating whether system outputs are correct according to our
requirements based on a canonical set of environment stimuli scenarios as test input.

We follow the performance formulas we introduced in the last section to define
the generic correctness metric, which includes an aggregation function g, a single
scenario metric function f, and an environment stimuli scenario set ES.

1) Single scenario performance function f

The single scenario performance function f{s) in correctness metric should reflect
whether a design satisfies system requirements in terms of a single simulated scenario s.
Therefore, f{s) is a Boolean function that tells us whether the system outputs are correct
in the simulated scenario. If f{s) returns true, we say s is a legal simulated scenario or
legal scenario, or s is legal.

To design such f, our system requirements, especially functional requirement,
need to be formalized so that a computable f can be constructed. We established a
scenario legality model by which our requirement can be specified into f and the legality
of a scenario can be evaluated.

A simulated scenario is a timely ordered event sequence. We name a consecutive
sub-sequence of a simulated scenario and that doesn’t miss any event before itself as its
scenario-segment (See Figure 4-7). Since there could be some concurrent events, a
scenario-segment defined here should include all the events in its time span. For example,
eis1 and ey are two events with the same timestamp, and therefore a scenario segment
siy1 of s should contain both of them A simulated scenario s has limited scenario

segments including the initial scenario-segment that has no event and itself.

53

Simulated scenario s: € €3 v e € €l eer ee €
€it2

Scenario segment SZ t sy

{si}

Si

Sit1

L -

Figure 4-3 Scenario segments set of a simulated scenario

We can conclude that a simulated scenario s is a legal scenario if and only if all its
scenario segments { s; } are legal.

Here s; represents one scenario segment of s, sy represents the initial scenario
segment, and { s; } represents the complete scenario segment set of s. In addition we also
use sy represents s;’s next scenario segment in s. If s, is s;’s next scenario segment in s,
that means s;,; has more events than s;, and there is no such scenario segment in s that has
more events than s; and less events than s;.(.

From the above conclusion, we can see that the legality of S can be evaluated by
evaluating the legality of each scenario segment in { s; }. We can utilize next scenario
segment relation to create an inductive method, by which we can evaluate the legality of

each scenario segment in { s; } and define the function f.

54

As we know, s as an initial empty scenario segment is always a legal scenario. If
we find a way to specify the legality function of s;;; by assuming s; is legal, then we can
compute the legality of s;, and then sy, ss,..., until the whole set is computed.

The functional requirement of a system usually describes system observable
behaviours, which are about “what a system must do and what a system should not do.
Each do/don’t can be expressed as a pair of pre/post conditions. We apply this form in
our specification and adapt it into the scenario legality model. Therefore, our requirement

can be expressed as a set of legality rules {Rj} and each rule can be defined as:

Rj(si, siv1) = P(8i) 2 Q(siv1) (4-5)

An Rj represents a legality rule. P(s;) is a predicate function of scenario segment
representing the pre-condition and Q(sis1) is a predicate function of scenario segment
representing the post-condition. P(s;) takes in a scenario segment s; as input to evaluate if
the pre-condition is satisfied and Q(s;.1) takes in s;’s next scenario segment s;,; as input to
evaluate.

If s; is a legal scenario and Rj is computed to be true, then we can say s;,, satisfies
the legality rule Rj. If all the rules in {Rj} are satisfied, namely R;(s;, sis1) A Ra(S;, Sit1). ..
A Rn(S;, siy1) = true, we can conclude that s;,; is legal.

The semantics of the rules set {Rj} in this context can be explained as: given a
legal scenario segment, {Rj} defines what next event(s) is allowed to happen and not
allowed to happen. By this way, we can compute the legality of sy, sy, ... , and finally s.

Hence, the single scenario metric function f can be defined as:

fis)=Vsio siels;} o(Vrerc{Rj}e (s sit)) ——nmmmmmmmmemen (4-6)

55

where { s; } is the complete scenario segments set of s, s;,71s §;’S next scenario
segment, and {Rj} is the legality rule set.

This formula establishes a generic computable evaluation model for the legality of
simulated scenarios. We can follow and extend it in different applications by
transforming functional requirements into a legality rule set. With such model we can
easily realize automatic requirement validation.

2) Aggregation function g
Given a set of environment stimuli scenarios, we need to evaluate all scenarios in the set
in order to compute the correctness metric. Apparently, the output is a Boolean value and

can be expressed as:

g{f})=Vse s&{SS] & f(s)-—mrmmmmmne- (4-7)

Besides this output, however, if g is evaluated as false, the simulated scenarios
that are not legal should be included in the output set, since we usually need to know
those illegal scenarios by which design faults may be identified.

3) Environment stimuli scenario set ES
Certainly if possible and not too costly we should use full set of possible environment
stimuli scenario to test design artefacts. However, there are quite a few of cases where we
have to reduce the set to a size so that we can afford. And reducing evaluation effort on
repeating similar test cases is a wise way to minimize cost. Therefore, in this case, ES
should be a representative subset of the full set.

Selecting a representative subset could have different ways depending on
characteristics of applications. In correctness metric, the coverage of ES is very important

since the selection of ES directly affects the adequacy of the evaluation of the design

56

artefact and hence affects the evaluation quality. There are some ways on checking the
coverage of ES.
1) Usage coverage
The canonical set should have enough coverage on the possible usage of the
system.
2) Important factor coverage
An application usually has some important factors in requirements that affect the
system behaviour and system usage a lot. For example, time is an important factor
in real time systems. By checking coverage on each factor, we can identify some
missing usage.
Besides correctness metric, there are some others we want to evaluate. In the

following we analyze other three common criteria.

4.3.3 Inability

By the name, it seems inability metric is just correctness metric with different name. The
difference between the two metrics is that even though a system design is proved to be
correct, we still want to know to what extent a design can function well (i.e. in which
environmental assumptions make the design functioning well) and which interaction
patterns can make a design fail. Knowing this performance will give users more
knowledge and confidence on environment context (environmental assumption) for the
design. Inability metric is designed for this purpose.
Single scenario performance function f

In inability metric, the evaluation of a single simulated scenario is the same as the

counterpart in correctness metric. The function f is the same as formula (4-6).

57

Aggregation function g

Instead of giving a collection of identified illegal simulated scenarios, an inability
evaluation should produce more meaningful result. We can enumerate a set of factors and
the evaluation should produce the capability range based on each factor. Therefore, g is a
collection of capability ranges: { g ({(f(s), s)}) }, where s&€SS and SS is simulated
scenario set. Each element g ; ({(f(s), s)}) is a function that computes the capability range
of a concerned factor with the input of {(f(s), s)}.

Example 1: Production cell case study

The number of parts of the same type that user can continuously put on the belt
depends on the system’s volume to tolerate the same type of parts. When user put the
same type of parts that exceed the system’s tolerated volume, the production cell has to
stop functioning. We should have a g ; ({(f(s), s)}) to reflect that range.

Example 2, Railroad Crossing case study

A train’s speed is a concerned factor and we want to know what range of train
speed is suitable for a system design. In this case, we need to have a g ({(f(s), s)}) that
gives the train speed range.
Environment stimuli scenario set ES

ES in inability criteria is different from that in correctness criteria. Some
scenarios that exceed the constraints specified in environment assumption usually need to

be included. In addition, the selection of canonical scenarios should be based on each

factor range function accordingly.

58

4.3.4 Average response time

System response time is an important metric to evaluate a design performance, especially
in real time reactive systems.
Single scenario performance function f

Response time of a design in a single simulated scenario can be measured by the
time interval of two events: the stimuli event and the system output event.
Therefore, f can be defined as:
f (s) = output(s).time-stimuli(s).time

In this formula, stimuli(s) and output(s) are two functions that need to be defined
in order to identify two important events. stimuli(s) identifies and returns the stimuli
event in the input scenario s and output(s) identifies and returns the system response
event in 8.
Aggregation function g
Average response time computes the average value of response time computed from each
simulated scenario.
g = average({(f(s), s)}), where s€ SS and SS is simulated scenario set.
Environment stimuli scenario set ES
The selection of ES may be similar to that in correctness metric. We can also specify

selection criteria based our concerned factors.

59

4.3.5 Maximum throughput

Maximum throughput is a useful metric to reflect the throughput capability of a design.
This is especially suitable for applications like production cell case. However it is not
suitable for Railroad crossing case.

Single scenario performance function f

f(s) is to compute the throughput of a single scenario. We can define it as the following:
f(s) = output(s) / time_span(s)

where output(s) and time_span(s) are two functions that need to be defined.

output(s) computes the total output in the scenario s. This function is usually computed
based on the parameters of system output events.

time_span(s) computes the time span in s. It can be further defined as:

time_span(s) = last_event(s).time — first_event(s).time

Aggregation function g

g is to identify the maximum value of throughputs computed by f for each scenario in SS.
We can define g as:

g = maximum({(f{(s), s)}), where s€ SS and SS is simulated scenario set.

Environment stimuli scenario set ES

Normally, system throughput has a linear relation with system input stimuli in some
range and the throughput stop increasing when it reaches its capacity. The selection of ES

should follow this rule so that maximum throughput can present in the evaluation.

60

4.4 Environment Data Generation

4.4.1 Canonical set

When we look at the three elements in a performance function, we notice that the
aggregation function g and the single scenario performance function f in a performance
function m are easy to define. However, deciding on the environment stimuli scenario set
ES is quite difficult comparing to the formal two elements, since usually the size of the
full set of environment stimuli scenarios in some applications might be quite large and
some may be unbounded.

The purpose of the environment data generation process is to produce the
environment stimuli scenario set ES for each design evaluation metric. The outputs are
collections of test cases that are used to test a specific design.

It’s costly to evaluate a design with an unbounded sized possible environment
scenario set. Therefore, we choose a subset as ES in the evaluation. There are generally
two ways to define ES.

1) Scenario enumeration
In this method we enumerate all concerned scenarios based on our understanding of the
usage requirement and some experience. This is very natural and effective, especially
when the user wants to do a partial evaluation or trace detailed system behaviour.
However, when the size of possible scenarios become large, it is not easy to enumerate
manually and guarantee enough coverage of the enumeration set.

2) Systematic selection

61

In this method we select a subset based on some rules and criteria, which are called
canonical scenario ser [31]. This way is suitable when you want to have a systematic
evaluation and it can contribute an automatic evaluation with some tool support.

Scenario enumeration is easy and direct. In the following we will discuss the

details of the systematic selection.

4.4.2 Guideline on systematic selection

To do systematic selection on ES, the following steps are required:
1) Analyze the application characteristics and identify key factors (e.g. stimuli
events etc.) that affect system behaviours.
2) Design a method to partition the all possible scenarios set based on the
combination of identified concerned factors, and decide test range for all factors.
3) Design canonical selection rule and select canonical scenarios from each partition
to construct a canonical set ES.
In addition, designing and applying a selection method for a canonical scenario set
usually requires us to consider the following issues:
1) Environment assumption
An environment stimuli scenario cannot be arbitrary. It should follow the
environment assumption and conforms to its constraint. For example, in railroad

crossing case, a train’s event sequence must in the order of “near=>in—>exit”, any

other orders should not present.
2) Usage coverage and partition granularity of possible usage scenario set
The coverage of the canonical set is important since usually we wish to test the

design as fully as possible. However, the larger the canonical set we use, the more

62

the process costs. The partition method and the granularity of partition area are
two important factors that affect the coverage and the size of the canonical set.
3) Application characteristics
Application characteristics affect a lot in canonical set selection. For example, for
timed critical application, timing is an important factor to be considered in the
selection method. For production system, such as production cell case study, the
ordering of the input is an important factor.
4) Characteristics of the metric to be defined
Different metrics require different subset of scenarios to be tested. For example,
maximum throughput in production cell example introduced in section 3.2.6, requires
higher rate of input environment stimuli scenarios. System inability metric requires larger

set of environment stimuli scenario set than correctness metric does.

4.4.3 Test data generation models

In general, interaction scenarios between a system and its environment can be numerous
and complicated. Since the application domain that we are studying is real time reactive
system type, we can assume that in most applications interactions between the system and
its environment are reactive type. This makes our modeling easier since complicated
interactions are out of the scope of our present work.

A generic real time reactive system and its environment can be described as

follows:

- The system as a whole is an object that has a limited set of event types. Each

object event type may have some parameters.

63

- The environment consists of a set of active objects, each of which has a limited
set of event types. Each event type may have some parameters.

If we compute all possible scenarios by considering all possible number of
objects, all possible event types, all possible parameter values, all possible time
schedules, resulting set can be unbounded. Hence, a universal approach is not possible.
However, a real application may not have such complexity on all dimensions. We can
identify some interaction patterns and design proper event generation solution for each
pattern. We introduce three typical interaction patterns and discuss about the relevant
canonical set selection.

Pattern |

Figure 4-4 Interaction pattern I

In this interaction pattern, there is a large number of environment stimulus events
dynamically generated. All interactions follow a simple request and response model.
Typical exampleé of this pattern are: web service system, monitor system, radar system,
etc.

In this pattern, event ordering and event parameters are usually out of the concern.

What really concerns us is dynamic number of concurrent arrival stimulus events. The

64

environment data generation should reflect the dynamic number of concurrently
generated events in each time unit.

Therefore, the selection of ES can be based on number of concurrent stimulus
events at a given time. Time and concurrent event volume are the two factors by which
we can partition the whole possible test data set (Figure 4-4).

The partition granularity, namely length of time partition unit and size of
concurrent volume partition unit, and the test range, namely the time range and the
concurrent volume range, should be decided based on individual application
characteristics.

The next step is to decide selection criteria. This decision should consider issues
that we already mentioned, such as environment assumption, usage coverage, etc. For
example, the dynamic volume change usually is not arbitrary, we may follow some
dynamic range assumption to reduce some unreasonable scenarios.

In addition, we may introduce composite factors based on existing factors, such as

high volume sustaining time, to assist our data selection.

3500

3000

: —) C — .
E «)< ‘;JMW 3

% 2500 ,/.‘; . -

2 2000 // O e

; / / % N/ .

= 1500 1 pan - \\ $2atn o el JeR
s / 4 B 75 iy -
T SR sl S
o ‘ _ A2 //M e O
Q . . ‘ﬁﬁ/

T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time unit

Figure 4-5 Partition and selection

65

Pattern II
In this interaction pattern, the interaction between a system and its environment

does not involve concurrency and it receives different types of events or same type of

Figure 4-6 Interaction pattern I1

events with different parameters, and outputs simple events of same type. Its output
usually can be affected by the ordering of input events. A typical example of this pattern
is production line case introduced in section 3.2.6.

In this type of systems, event ordering and input event occurring speed are our
concerned factors. Event ordering affects correctness measurement data and inability
measurement data, while input event speed affects maximum throughput measurement
data. Event ordering is a generic factor. When it comes to a real application, some
composite factor may be more effective to apply. For example, in Production line
example, consecutive number of the same input part is an effective factor, that can be
applied in partitioning scenarios and selecting canonical scenarios.

Pattern III

In this interaction pattern, each environment object must produce a chain of
events conforming to predefined order, and event chains occur concurrently. Typical

examples of this pattern are railroad-crossing system, order processing system, etc.

66

In this interaction pattern, both time and event ordering are concerned factors.
However, these two factors are overlapped and in such case we can’t choose both as
partition factor at the same time. The most intuitive way is: we can use event ordering as

partition factor, and then we can use time factor to select canonical scenarios.

Figure 4-7 Interaction pattern III

4.5 Case Study --- Evaluating the design of Generalized Railway
Crossing

We introduced the Railroad-Crossing problem and showed a design solution of this
problem in chapter 2. We will apply our evaluation theory explained in this chapter to
evaluate this design solution.

As we said before, different type of application might be suitable for different set
of performance metrics that can construct meaningful evaluation result. Hence the first
thing in the evaluation activity is to identify performance metrics. In this case we include
<correctness, response time, inability> in our performance evaluation since these
attributes are applicable for railroad-crossing case. We follow the performance formulas

that we introduced in the section 4.3 to illustrate these performance metrics, which each

67

metrics should include a single scenario metric function f, an aggregation function g, and

an environment stimuli scenario set ES respectively.

4.5.1. System Output Correctness
This is to check whether the design can produce output that complies with the

requirement. For doing this, the following tasks need to be done in the evaluation
process.

o Taskl: Elicit rules in scenario legality check
We have explained our legality model for correctness validation in section 4.3.2, in which
selected simulated scenarios must pass all legality rules in order to become legal
scenarios. We show legality rules in this case that can evaluate simulated scenarios. By
analyzing stimuli-response functionality of the Railroad crossing system, we conclude
with the following three legality rules:
<Rule 1>: The gate must be closed before any train arrives in the crossing.
<Rule 2>: Gate can’t open when there is a train in the crossing area.
<Rule 3>: The gate must open when all trains exit.
In our legality rule model, these rules can be defined as Rj(s;, siv1) = P(s;) 2 O(Sis1)
according to the formula (4) we introduced in section 4.3.2, refer formula (4) about
definition of s;, si;1 . We get the following rules representations based on formula (4) for
this case.
<Rule 1>:
P: When scenario-segment is not empty AND has no event “closed”.
Q: It should not have event “In” at the next non-empty time unit.

<Rule 2>:

68

P: When scenario-segment is not empty AND numbers of event “Near”, “In”, “Exit” are
not equal.

Q: The events at the next non-empty time unit are not supposed to be “opened”.

<Rule 3>:

P: When scenario segment is not empty AND number of event Near, In, Exit are equal
with the last event of the scenario segment as Exit,

Q: The events at the next non-empty time unit are supposed to be opened.

So far, we got rules for checking a scenario. Correctness metrics is to check whether
system outputs are correct according to our requirements based on a canonical set of
environment stimuli scenarios as test input. Next we need to get canonical environmental
scenario set for archiving this goal.

o Task 2: Select canonical environmental scenario set

We use this case as an example to show how to select canonical environmental
scenario set based on system characteristics.

In this case, several trains may traverse the crossing concurrently, therefore the
scenarios may contain different numbers of environmental objects. We start with a single
train traversing since this is the basic information to get scenarios with multiple
environmental objects. [31]

When a single train traverses the crossing, there are following possible scenarios

according to environmental assumption mentioned in chapter 2 case study:

1. Near (0), In (3), Exit (4),
2. Near (0), In (3), Exit (5),
3. Near (0), In (4), Exit (5),
4. Near (0), In (3), Exit (6),
5. Near (0), In (4), Exit (6),
6. Near (0), In (5), Exit (6),

69

7. Near (0), In (4), Exit (7),

8. Near (0), In (5), Exit (7),

9. Near (0), In (5), Exit (8),

The events in every scenario will only involve events that need to be observed for
the evaluation. Hence, for the Train object the events are Near, In, and Exit. Trains may
come at different times that Near event can be any time value. However our evaluation is
independent of Near event time, it is sufficient to consider valid sequence with Near (0).
[31]

As we can see, in the situation of single environmental objects, environmental
scenarios have the same sequence pattern (Near, In, Exif) namely the same event
ordering, but with different event time attributes that indicates trains traversing in
different speeds.

Now we have a completed scenario set for a single object interacting with the
system. These are basic configurations about potential trains traversing the crossing,
which we can use these configurations to construct multiple environmental object
scenarios.

For instance, in the situation of two trains traversing the crossing, two trains can
be any two of the nine configurations, and they may approach the crossing in different
time. We can get all sequence patterns of two trains situation by combining the
configurations of two trains. An example of a sequence pattern for two trains is as follow:

trainl.Near,train2.Near,trainl.In,train2.In,trainl. Exit train2. Exit
And an example of a scenario for two trains is as follows:

trainl .Near(0),train2.Near(1),trainl . In(2),train2.In(3),trainl . Exit(4), train2. Exit(5)

70

By this way, we can get the sequence patterns and environment scenarios for any
number of trains. We need to consider how to select canonical set of scenarios among
them since it is not wise to evaluate all of them. Coverage issue is important in this case
since the system must be able to handle all environment situations for safety concerns.
Therefore all of sequence pattern should be preserved for coverage consideration [30]
[31].

The whole scenario set is partitioned by sequence patterns so that scenarios in
each partition have the same sequence pattern, in other words the same event ordering,
but with different event time attributes. To get a canonical scenario set is to select
canonical scenarios in each partition based on some criteria, which selected scenarios
from each partition constitute a canonical environment scenario set. Defining proper
criteria is the key in selection jobs in which criteria is related to functional requirement.
We can elicit and define criteria according to function points and the coverage issue is
about function coverage, in other words the criteria must consider and cover all function
points.

In this case, we will give criteria that elicited from function points of this case.
There are two timing function points in this case that are opening and closing gate.
System output events Open and Close will be injected into each environment scenario to
construct simulated scenarios. So when we select canonical scenarios from each partition
set, selected scenarios should be representative in terms of these two timing function

points. Here are two rules for selecting canonical scenarios from each partition.

71

Selection Rule 1) Consider time distance between first Near event and first In
event of each environment scenarios in a partition, and select three scenarios thay have
minimum, maximum, middle value of time distance between these two events.

Selection Rule 2) Consider time distance between last Exit event and first Near
event of each environment scenarios in a partition, and select three scenarios that have 0,
1, 2 time units time distance between these two events.

Certainly it has coverage advantage when selecting more scenarios, however we have
to be aware that evaluation cost will be increased accordingly. So, it is an empirical
decision about how many scenarios should be chosen from each partition. In this case, we
decide to select three scenarios.

Let’s look at a scenario partition of this case. Assume we have following environment
scenarios in a partition set. Based on the above selection rules, we will choose three

representative scenarios for each rule.

I.--trainl.Near(0),trainl.In(3),trainl.Exit(4), train2.Near(4), train2.In(7)
Jgrain2 Exit(8)

2.--trainl .Near(0),trainl .In(3),trainl . Exit(4), train2.Near(5), train2.In(8)
Jgrain2. Exit(9)

3.--trainl .Near(0),trainl.In(3),trainl . Exit(4), train2.Near(6), train2.In(9)
Jtrain2. Exit(10)

4.--trainl.Near(0),trainl .In(3),trainl . Exit(4), train2.Near(7), train2.In(10)
jtrain2. Exit(11)

5--trainl.Near(0),trainl.In(3),trainl .Exit(4), train2.Near(8), train2.In(11)
Jrain2. Exit(12)

Select scenarios according to rule 1:
As each scenario has the same time distance between first Near and first In event, it is the
same to choose any three scenarios. Let’s say we choose first three.

Select scenarios according to rule 2:

72

The first three scenarios satisfy the rule 2 since they hold 0,1,2 time distance between last
Exir event and first Near event.

Now we get two sets of selected scenarios for two rules individually. We found two
sets are exactly the same. Therefore it is enough to have one set as a canonical scenario
set for this partition.

In chapter 5, we have implemented a tool to generate and select a canonical
environment data. By interacting with the tool, we will get a whole set of environment
data with different number of environmental objects generated from the tool.

o Task 3: Get simulated scenarios
Canonical scenarios will go through simulation execution and evaluation process. We got
three canonical scenarios in last example. These three scenarios and a version of design
artifacts are input to simulation execution to construct three simulated scenarios. The
expected result is as follows:

1-- trainl.Near(0),gate.Close(l1),trainl.In(2),trainl.Exit(4), train2.Near(4),

train2.In(7) ,train2.Exit(8),gate.Open(10,11)

2-- trainl.Near(0), gate.Close(l),trainl.In(2),trainl.Exit(4), train2.Near(5),

train2.In(8) ,train2.Exit(9), gate.Open(11,12)

3-- trainl.Near(0), gate.Close(1),trainl.In(2),trainl .Exit(4), train2.Near(6),
train2.In(9) ,train2.Exit(10), gate.Open(12,13)

-- gate.Open(10,11) means there are two possible time attribute of this event that are
10, or 11.

However, when we use chapter 2 design version in simulation execution, we got
simulated scenarios of No 2, 3 as follows:

2'-- trainl.Near(0), gate.Close(1),trainl.In(2),trainl.Exit(4), train2.Near(5),

gate.Open(7),train2.In(8) ,train2.Exit(9)

3'-- trainl Near(0), gate.Close(l),trainl.In(2),trainl.Exit(4), train2.Near(6),
gate.Open(7), train2.In(9) ,train2.Exit(10)

73

o Task 4: Evaluating simulated scenarios against rules

Now we evaluate three simulated scenarios with evaluation rules defined in Task 1.

For each simulated scenario, we have single scenario metric function f{s) as follows:

fis)=Vsie siels;} o(ri(si Sict) Arasi, Sivt) AT3(si, Siv1))

For correctness metric, each f{s) result has to be true, so the aggregation function is as

follows:

gl{f})=Vse se{SS) o f(s) where SS is the set of simulated scenarios

generated from environment canonical set.

We have used our tools to generate and select canonical scenario set and used our
evaluation tool to check scenario with our rules. The evaluation result shows scenario No

2’, 3’ violate evaluation rules No 2 and No. 4. We located where in the design may cause

the violation by following the indication of legality rules.

Figure 4-8 showed a modified design solution in which a transition is added. We

redo the evaluation process with the modified design version, the violation problem is

disappeared in this version.

\

Lower/ true && TCvarl =0 [

toClose

N
{ opened |
)

7N

Up{ true && true && TCvar2 >=1 &
FCvar2<= 2]

‘//

Lower/true&& T/an’r’f:O

Raise / true && TCvar2=0

|
_

Down[true && true && TCvari>=0
& TCvarl <=1

/

el

Figure 4-8 Modified design version

74

4.5.2. Evaluating response time

For a given scenario, response time metric is to evaluate time distance between two
specific events. In this case, we may want to evaluate response time — time distance
between gate.open event and train.exit event that trigger the gate opening.
We give a function that can get time of last-train-exit:

LastTrainExitTime(s)= getEventTime (getEvent(lastExitEvent, s), s);
We give a function that can get time of gate-open:

GateOpenTime(s)=getEventTime(getEvent(gateOpen, s), s);
Therefore, the function to calculate time distance is as below:

Function f(s) = LastTrainExitTime(s)~ GateOpenTime(s);
We give a scenario example below to calculate its time distance between gate.open event
and train.exit event.
Example scenario sl:
trainl.Near(0),gate.Close(l),trainl.In(2),trainl .Exit(4), train2.Near(4), train2.In(7)
Jtrain2. Exit(8),gate.Open(10)
Calculation:
LastTrainExitTime(s1)= getEventTime (getEvent(lastExitEvent, sl), sI)=8
GateOpenTime(sl)=getEventTime(getEvent(gateOpen, s1), s1)=10

fls1) = GateOpenTime(sl) - LastTrainExitTime(s1)=2

75

By evaluating all simulated scenarios in the set SS, we can get aggregation information
such as shortest gate opening time, longest gate opening time, or average gate opening
time.
g= maximum ({(f(s),s)}); where s SS and SS is simulated scenario set.
g=minimum ({(£(s),s)});

g=average ({(f(s),8)});

4.5.3. Inability Evaluation

Certain environment stimuli patterns are out of system ability to handle, in this situation
the system can’t give satisfied response. Evaluating inability is to find out the range of
these stimuli that the system can’t handle.

In this case, the system needs at least two time units to close the gate after
receiving first Near event. When gate is opened, and a train sends event In in less than
two time units after sending event Near, the system can’t response correctly in this
situation (to close gate). For example in below situation, the system can’t close the gate
in time:

trainl .Near(0),trainl.In(1) gate.Close(2), trainl.Exit(2),gate. Exii(3)

Hence, the range of stimulus data that the system can’t handle is the trains that

have time distance less than two time units between event Near and In.

76

Chapter 5 Tool support for automatic evaluation process

Up to now, we have introduced our approaches on object-event-scenario requirement
modeling and scenario based design evaluation. In this chapter, we are going to elaborate

our idea on the tool support for automatic evaluation process.

5.1 Design evaluation system

Tool support is very important in software engineering process since effective tool
support can reduce developers” work, improve developers’ productivity, and realize some
automation process. In our case, we planed to develop a set of software tools to assist our
scenario-based requirement engineering process including system context modeling and
automatic design evaluation. In the current stage, our tool support focuses on processes of

automatic design evaluation.

Event
generation

Environment
configuration >

I

Environment
stimuli

Design Simula.ted
spec. Simulation scenarios

Evaluation
report

Metric

. Evaluation
Functions

Figure 5-1 Design evaluation system

77

The diagram in figure 5-1 illustrates three main processes in Design Evaluation
System. The objectives of these three processes in a design evaluation system are as
follows:

Event Generation process can generate environment stimulus events i.e. it can
simulate the characteristics of system environment to produce stimuli events according to
the predefined configuration. The generated stimulus events are the input for Simulation
process.

Simulation process can simulate the execution of a design i.e. it can take inputs of
environment stimulus events generated in Event Generation Process, and produce system
events according to the design specification. The simulated scenarios are the input of
Evaluation Process.

Evaluation process can evaluate a design performance based on the simulated
scenarios. By specifying a set of metric functions, it can evaluate each scenario,
aggregate the evaluation result for all simulated scenarios, and finally produce the

performance evaluation report to the user.

5.2 Event generation

The objective of tool support in event generation is about how to generate test data
automatically, i.e. environment stimuli sequence set ES, which are used in design
simulation and performance metrics evaluation. ES should be produced based on some

predefined generation rules.

78

5.2.1 Generation Algorithm

Event generation generally follows the model we introduced in section 4.4. The current version of
the implementation mainly support interaction pattern III. In this section, we are going to
illustrate the algorithm what we have used in our generation tool implementation, which is to
generate a canonical set of environment stimuli sequences.

In interaction pattern III, potentially there could be 1 to N objects in the
environment to interact with a system concurrently, which constitute many different event
sequence pattern. Event sequence pattern is the ordering of events without considering
the timing of events. For the same sequence pattern, there are many possible timed event
sequence TES, namely sequences with the same sequence pattern but different event time
attributes. Event sequence pattern is important in pattern IIT for the test coverage
consideration, hence we will generate and preserve all possible event sequence patterns in
our generation process.

When event number increase, time configuration of individual object will increase
exponentially. When number of objects increase, event sequence pattern will increase
exponentially. We can see that it will take longer time to get result when object numbers
increase.

Events in an environment scenario are in a timed order sending to the system. In
our algorithm, we take assumption as follows:

o All environmental objects interacting with the system are in an identical
behaviour pattern, namely the same sequence pattern;

o The first stimulus in an event sequence is not constrained.

79

5.2.1.1 Single object TES set

First we will consider generating a set of timed event sequence (TES) for a single
object interacting with the system. This will be the basic information for generating
sequences with multiple objects.

From environment assumptions in the requirement, we know time constraints of
all events for an environment object. We specified below:

eventl, event2(ry;,raa], event3[rspriz], eventd[ry;, ru]..., (Relative time ry<ryy,
r31<r32, rqg<re...)
(or eventl(t), event2(tl, tl’)event3(12, 12’)eventd(t3, t3’).., (Absolute time

I<tI<tl’< 12<12’<t3<t3’..)

In the following formula, we get time range of each event, except first event that
is unconstrained: Range(e)= ry,- r; +1, where ry is up-bound of an event time constraint, r
is lower-bound of an event time constraint.

Now we can calculate total number of timed-event-sequences (TES) for a single
object. Here is the formula to do that.

Total number= Rang(Event2) x Rang(Event3) x ... xRang(Event,) , v is the
number of events for an environment object.

Total number= (ry-ry+1) x (r3-r3;+1) x (ryg-ryg+1).. . x(ry-ry+1)

As it is sufficient to take first event ty to be 0, we calculate absolute time value for
each event by assigning first event t,=0.

t(absolute time) = t, j(absolute time) + t,(relative time)

80

Now we generate timed event sequences set (S) for single object. For single
objects, all timed event sequences are in the same event sequence pattern but with

different timing features.

5.2.1.2 Multiple objects TES set

Based on single object TES set, we can generate TES set for multiple environmental
objects.

As environmental objects may start interacting with the system at the different time, it
will produce more event sequence patterns than the situation that all objects starting at the
same time. In this situation, we need to consider non-overlapping distance, which is the
time lapse between first event of an object and last event of its preceding object, or to
consider shift-distance-value, which is time lapse between first event of an object and
first event of its preceding object. Non-overlapping distance is equivalent to shift-
distance-value that either one can be used in generation algorithm. In our implementation
of the generator, we use non-overlapping distance. In our generator implementation, user
can give any expected value to Non-overlapping distance, which is a selectable non-
overlapping shifting parameter.

For generating TES set for multiple objects, we follow the below steps.

Step 1: Generating sequences with first event of each object starting at the same time.

We product single-object-sequences n-1 times. S & S ...® S. product n-1 times,
where n is the number of objects, and S is TES set for a single object.

Step 2: Generate sequences with first events of each object starting at the different

time.

81

We do it by shifting 2m-3m - N™ timed event sequences. N is the number of objects.
Each shift will produce a set of timed event sequences. We shift until reaching the
expected non-overlapping distance.

Step 3: Filtering process

So far, we get a quite large amount of timed event sequences, in this step we will
select a canonical set of sequences.

Step 3.1 Partition timed event sequences by event sequence pattern.

We need to get event sequence pattern from timed event sequences TES and preserve all
event sequence pattern. It is important to preserve all different event sequence pattern
(scenario). Timed event sequences are then grouped by event sequence pattern. TES in
each group have the same event sequence ordering pattern.

Step 3.2 Select TES that have representative timing feature.

For each event sequence pattern, select representative timing feature and output as
canonical set. We will select representative timing feature in each event sequence group
to further narrow down canonical set.

Different applications have different criteria to select TES, which are domain
oriented. We give an example about selection criteria in railroad crossing case, referring

section 4.6.

5.2.2 Generator and filter

Based on the generation method described in previous section, we developed a
software component implementing the generation process. The component includes two

parts that we named them as generator and filter.

82

As illustrated in figure 5-2, the input of generation component is environment
assumptions that include events name, events time constraints, events ordering. Based on
object event configuration, generator will process the input to generate single object
timed event sequences. By scheduling single object timed event sequences and merge
them, generator produces timed event sequences for multiple objects. Generator will
output timed event sequences to filtering process in which the event sequence (ES) is
retrieved first from its relevant timed event sequences. There are certain filter rules for
each event sequence. Filter is created for each ES with different rules. In each event
sequence group, some of TES will be selected based on filter rules. All TES from each

event sequence group constitute a canonical set.

Event assumption for an environment object,
eventl, event2[r,;,ry], event3[rs;,rs;], eventd[ryy, re]...,

e
e
i Y i
! '
: Generate Slngle Generator :
! Obiect Event ; '
1
i Y |
1
: Production Scheduling Merge E
! 1
: :
! :
1

Get ES
Input filter rules U T
T~
Get rules of this ES
Filter +

Create a filter for this ES

{ Canonical set of Timed Event sequence }

__

Figure 5-2 event sequence Generator and Filter

83

5.2.3 Component design

Based on the generation and filtering algorithms described in previous sections,
we have implemented a component named “Environmental Stimuli simulator” (ESS).
Figure 5-3 is the class diagram that shows the basic architecture of the environmental

stimuli simulator.

SingleObjectEventSequence EnvironmentStimuli
Generator e < Simulator

| 7

S

EventSeqFilter

|
|
Generator \l/ _

MultipleObjectEventSequence; //57 ?
TimedEventSequence AbstractRule

(from Filter)

7

ConcreteRule

Figure 5-3 class diagram of Environmental stimuli simulator (ESS)

Component ESS contains single-object event sequence generator and multiple-
object event sequence generator, which produce timed event sequences of one or multiple
objects. ESS has the aggregation relationships with class
SingleObjectEventSequenceGenerator and class MultipleObjectEventSequenceGenerator
. Simulator contain event sequence filter as you see in the class diagram that ESS has an
aggregation relationship with class EventSegFilter. In this case, the timed event
sequences generated in the generator will be filtered in the Event Sequence Filter. A filter

need filtering rules to decide whether keep or filter out a timed event sequence. Hence,

84

class EventSeqFilter has an aggregation relationship with class Abstract rule. And filter is
also a container to store timed event sequence that has satisfied the rules, so class
EventSeqFilter has an aggregation relationship with class TimedEventSequence. We have
applied a policy design pattern in our framework design. This policy design pattern will
allow user to integrate different rules. Figure 5-4 is a detailed class diagram of

component design for Environmental stimuli simulator.

SingleOb jectEven tGenerator C\
%ﬁeventSquen() TimedSequenceFilterGenerator
N \\ 7
! A - T icreateFilter()
! Environment |
‘ Simulator !
' i O i
' / TGCSequenceFilterGenerator
' yd \\ (fom Application)
/ \
d } 4
MultiSequenceScheduleGenerator \\ %;%Creatﬁlter(es :EventSequence) : EventSeqFilter
' \ A O
\ ’ (_
| P .
A
| \
; \
Exception ‘ ‘ EventSeqFilter \
. \
N . etRules() \
Lo 1 etTESList() :
\ iltering()
\,
. j]] AbstractApplication |'
N ¢ N| Ruk
OutOfBoun dExce ption ‘ / N
/
/ \
/ ‘ A\
% / i
A W v
TimedEventSequence \\ ;
\\ E
\ |
1 N
,/4\ \\ i
ProductionCounter ’ -
Concrete A ppRule
ext()
getCurrentValue() }
EventSequence

Figure 5-4 class diagram of Generator and filter

85

In the filter component, there are two dynamic factors to be considered in this
framework design. One is the set of filter rule that are application related, different event
sequence pattern need different filter rules. A sequence pattern may need some of rules
(not all of them) because a pattern may not satisfy preconditions of all rules. Hence a
filter must be created for each individual event sequence pattern by embedding relevant
rule combinations.

Users should provide filter rules based on system timing features, this can be done
by implementing interface TimedSequenceFilterGenerator. We give an example with
Railroad crossing case, as you see in the class diagram, TGCSequenceFilterGenerator
implement method createFilter(EventSequence) to create a filter for each sequence
pattern by embedded relevant rules in the filter.

Figure 5-5 shows the working activities on the architecture of figure 5-4.

|
N
{/Z‘»enearateSingleO | Poducton N\ | ./ Shift \
\ bjectEventSeqs /,Y L__ﬁ_/ _ (scheduling) /
v
S T
l_....f._//
b
Y
(Output TES }r_ o Get Bvent Seq
\ / - B [
NS B A 5\ Fileresist?
PG
z \
gotonext TES /‘m}é_"_w N CreateFilter

\ J R -

Figure 5-5 Activity diagram of Environmental stimuli simulator (ESS)

86

A filter may have more than one rule. Each rule in a filter has a container that is to
keep a predefined number of timed event sequences (TES) that satisfy the rule, and the
container has a predefined size. When a new TES arrives, filter will go through each rule
with this new TES. In each rule, filter will compare new TES with those TES already in
the container. If this new TES can compete an existed TES in the container in terms of
rule criteria, the filter will update the container with this new TES by filtering out the old
TES. Each container may have repetitive TES as illustrated in Figure 5-6. In the final

filtering result, only one copy is kept for repetitive TESs.

l TESx

Filter (ES)

Container (Ruie 1) Container (Rule 2)

TESa, TESD,
TESd, TESe

TESc, TESD,
TESH,

l TESa, TESb, TESc, TESd, TESe, TESf,

Figure 5-6 Filter and TES

We have attached Generator GUI snapshots in the appendix.

87

5.3 Simulation

The objective of Simulation component in our Design Evaluation System is to simulate
the execution of a specific design.

In TROM framework, there already exists a simulation software, which is mainly
used for debugging a design. We apply the same simulation model of that software in our
design evaluation. However, since the simulation functionality in TROM simulator is
highly integrated with its usage application, i.e. debugging a design, and it is hard coded,
the TROM simulator can not be directly be integrated into our Design Evaluation System.
Therefore, in order to utilize TROM simulator, some refactory work should be done on
TROM simulator:

Componentization

In this refactory work, we need to separate the implementation of the simulation model
from its usage so that the simulation functionality becomes an independent component. In
addition, a set of API should be provided to make the component customizable and
controllable.

Enrichment

Based on the componentized simulator, we need to let some runtime parameter open to
the user so that the simulation can serve better for design evaluation.

Some performance simulation feature, such as resource consumption, should be added to

the simulator.

88

5.4 Evaluation

Evaluation process is to compute evaluation result from simulated scenarios based
on preconfigured metric functions. The objective of tool support in evaluation process is

to realize automatic mechanism in the evaluation.

5.4.1 Evaluation Algorithm

As introduced in 4.3, performance functions include single scenario metric function f and
an aggregation function g. For each metric, there are two types of evaluation rules that
are applied to { and g during the evaluation process:
¢ Evaluation Rules related to f are used for evaluating a single scenario.
e Evaluation Rules related to g are used for aggregating single-scenario-evaluation
results, they are aggregation rules.

The evaluation algorithm can be illustrated by the following pseudo code:

Given a set of simulated scenarios SS, and an aggregation
evaluation rule Rg, and a single-scenario-evaluation rulesg Rs:

1=0;

done := false;

While (done<>true)
singleSResult=SingleScenarioEvaluation(SSi,Rs) ;
SaveResult (singleSResult, ResultArray);

if(i++ = = size(SS)) done = true;
End While
EvaluationResult=Aggregate (ResultArray,Rg);

Note:
-SingleScenarioEvaluation(SSi, Rs) is a function that computes
evaluation rule Rs with each 88i to get single-scenario-

evaluation result.

-SaveResult (singleSResult,ResultArray) is a function that can
save each single-scenario-evaluation result into “ResultArray”
for later aggregate each single scenario result.

-Aggregate (ResultArray, Rg) is a function that can computes
aggregation evaluation rules with a set of single-scenario-
evaluation result to get final performance result.

89

For instance: Evaluating average response time. Evaluation rule of single scenario Rs is
about how to get response time from each simulated scenario in simulated scenarios set
(SS has N scenarios), which is to get time distance of two specified events of a scenario.
After retrieving response time of each scenario in the scenario set (RespT;, RespT,,
RespTs...RespTy), Aggregation Evaluation rule Rg is about how to calculate average
response time:

AverageRespT = (RespTi+RespTr+RespTs+...+RespTn)/ N

5.4.2 Expression library

Evaluation rules related to g and f are represented as well-formed formula (wff). Any wif
has a natural syntax expression tree that clearly displays the hierarchy of rule operations
of this wff. All of these operations in a rule can be represented as nodes in the expression
tree.

We have designed a program model based on evaluation rules structure explained
above. The model will allow users to easily construct any evaluation rules and compute

the result. We illustrate the program model in the following class diagram, Figure 5-11.

Evaluation rule is the dynamic part that varies in different system evaluation.
Dynamic rule construction and automatic rule value computation are the key
requirements in the design. We apply the composite design pattern with some
modification (Figure 5-7). An operand can be an operation or it can be a leaf node, the

operand of an operation.

90

! Operand

Operation

Scenatrio

JgetValue()

wsetVariableValue()

YA

ScenarioOperation

Abstract class operation has two important methods: getValue() can compute a

value for a concrete operation according to operation type; setVariableValue() allow user

]
ComparisonOperation LogicOperation
getValue() i ¥getValue()
setVariableValue() ¥setVariableValue()
ArithmaticOperation QuantifierOperation
: getValue) JgetValue()
etVariableValue() JsetVariableValue()

to set value to a variable in the operation.

Each operation has a few operands. From the class diagram we can see class
operation and class operand has an aggregation relationship with cardinalities one to
many. Operations that are unary or binary one have one or two operands respectively. For

example logical NOT operation is a unary operation that has only one operand. Logical

Figure 5-7 Program model design

AND / OR operation are binary operations that have two operands.

An operand has three possible types that it can be a constant, an operation, or a

variable. Hence, class operand has an attribute operand_type to indicate these three

91

possibilities. From the class diagram we can see class operand class operation has an
association relationship with cardinality one to one (when the operand is an operation
type) or one to none (when the operand is not operation type).

The operands of each operation can be different data type, for example Integer,
Boolean, or String etc. The attribute value_type in class operand indicates the data type
of an operand. Class operand has two methods getValue(), setVariableValue() that have
the same signature as class operation. These two methods are involved in recursive
functional call by traversing the tree to calculate the operation value or to set a value to a
variable in the tree.

As each variable has a different name, a variable can be found by its name, and
the value is passed through recursive function call.

To help users easily build rules within this model, we have implemented an
expression library. This library includes many basic operations for users to invoke. There
are many different types of fundamental operations, so we can group operations in
different way. For example, the operations can be grouped by the number of operands. In
this case, we can have unary operations set and binary operations set etc. The operations
can also be grouped by their functions. In this case, we can have logic operations,
arithmetic operations etc. In our implementation of expression library we chose the latter
solution. Our library include operations as follows:

* quantifiers operations (existential, universal),
* logic operations (disjunction, conjunction, negation, etc...),

* arithmetic operations (addition, subtraction, etc...),

92

* scenario operations. There are many scenario operations in the library that can

retrieve different information from a simulated scenario.

We illustrate how to use this library with case study explained in section 4.5. To realize
automation in the evaluation process, rules elicited in this example (refer 4.5) have to be
computable. We show some functions in the following that have been implemented in our
tool:

SizeOf(S;) : Calculate the number of events in the scenario under evaluated.
getLastSysEvent(S;) : Get last system event.

getTLastSysEvent(S;) . which time slot that last system event is located.

getLastEvent(S;) : Get last event in this scenario.

getEnvNum(S; e) : Get number of environmental event e in this scenario.

Logic operations such as OR, AND, etc.

Comparison operations such as EQUAL(a, b) , etc.

Note: S is the scenario under evaluated; S; is a scenario-segment of S; S;,; is the next
scenario-segment of S;

When working with our evaluation tool, legality rules have to be built using the functions
that our tool has provided. In the following, we show the legality rules for this case that

are represented using the functions in the library:

<Rule 1>
SizeOf(S;)>0 A NOT(IsLastSysEvent (“closed”, Si))

= NOT (Jeeee Sub(Si; Si)le= “In”)

93

< Rule 2>
SizeOf(S;)>0 A
(IsLastEvent(Exit”, Si) A NOT
(getEnvNum(“Near”, 0, getLastEnvEvent(“Exit”)) =
getEnvNum(“In”, 0, getLastEnvEvent(“Exit”))
A getEnvNum(“Near”, 0, getLastEnvEvent(“Exit”)) =
getEnvNum(“Exit”, 0, getLastEnvEvent(“Exit”)))
v IsLastEvent(Env, “In”,Si))
= NOT (Jesee Sub(Si.:, Si)l e= “opened”)
<Rule 3>
SizeOf(S))>0 A IsLastEvent(“Exit”, Si) A (

(getEnvNum(“Near”, 0, getLastEnvEvent(“Exit”)) =

getEnvNum(“In”, 0, getLastEnvEvent(“Exit”))

A getEnvNum(“Near”, 0, getLastEnvEvent(“Exit”)) =

getEnvNum(“Exit”, 0, getLastEnvEvent(“Exit”))))
- Jdeece Sub(Siy;, Si) | ((e="opened “ A v e="“Near”) A

e.time<= getLastEnvEvent(“Exit”)+3)

These are three rules that can check each scenario segment in a simulated scenario.

All scenario segments must satisfy these rules for the simulated scenario to become a

legal scenario.

94

5.4.3 Scenario Legality evaluation

In this section, we show an implementation of scenario legality evaluation by
applying our program model introduced in previous section. Scenario legality evaluation
is about correctness metrics that has been explained in 4.5.1.

Correctness metrics is the most sophisticated one to evaluate among other metrics,
we give detailed correctness evaluation algorithm in the following. Usually system
requirements are specified as a set of legality rules Rs instead of one single rule.
Therefore, the evaluation involves checking that an execution scenario ES is legal for all
scenario legality rule Ri in the rule set Rs.

With the understanding of these, the algorithm of correctness evaluation can be
illustrated by the following pseudo code:

Given a simulated scenario S and a set of rules {Rj};

Si = ¢ ;
Sinext := next (S, Si);
done := false;

While (done<>true)
For all Rj in set {Rj}
if Rj(Si, Sinext) <> true
report failure(Rj,Si,Sinext);
return;
end if
end for
if Sinext = ¢ and Si = S
report “S is legal”

done := true
else
Si := Si U Sinext;
Sinext := next(S, Si),
End if

end while

Figure 5-8 Scenario legality Evaluation algorithm

next(S, Si) 1s a scenario operation function that returns Si’s next sub-scenario in S.

95

Each simulated scenario will go through evaluation process to be checked by
evaluation rules. As for the case of correctness metrics, each scenario has to be checked
against legality rules. In Railroad Crossing case study showed in section 4.6, three
legality rules have been elicited from functional requirement hence each scenario has to
pass these three rules to become legal scenario (section 4.5 (1)).

Each legality rule can be represented in a tree structure. By using basic operations
provided in the library, we can develop rules with the program model. Refer 5.4.2 to see
three expression rules for Railroad Crossing case study.

Below we show our testing result about evaluating simulated scenarios (scenario
A, B, C, D) with these three legality rules (Rule 1, 2,3). In the following figures we
illustrate simulated scenarios and its evaluation result interpretation. For scenario A, we
attached the copy of evaluation result in Figure 5-9. Note: for example, train0.near(0)

means frain0 sends “near”’ event at time 0.

Scenario A: Result Interpretation:
trainO.near(0),
trainl.near(1), Scenario A is a legal
sys.closed(2), scenario.
trainl.in(4), Scenario A satisfies
train0.in(5), legality rulel, rule 2,
trainl.exit(5), and rule 3.
train0.exit(6),
sys.opened(8),
train2.near(9),
sys.closed(11),
train2.in(12),
train2.exit(13),
svs.ovened(16).

96

Scenario A

Scenario segment index: -1,0

Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Scenario segment index: 0,1

Logic IMPLICATION result:P(true),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Scenario segment index: 1,2

Logic IMPLICATION result:P(true),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Scenario segment index: 2,3

Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Scenario segment index: 3,5

Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Logic IMPLICATION result:P(true),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Scenario segment index: 5,6

Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Logic IMPLICATION result:P(true),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Scenario segment index: 6,7

Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Logic IMPLICATION result:P(true),Q(true)->Impl(true)
Scenario segment index: 7,8

Logic IMPLICATION result:P(true),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Scenario segment index: 8,9

Logic IMPLICATION result:P(true),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Scenario segment index: 9,10

Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Logic IMPLICATION result:P(false),Q(true)->Impi(true)
Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Scenario segment index: 10,11

Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Logic IMPLICATION result:P(true),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Scenario segment index: 11,12

Logic IMPLICATION result:P(false),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(false)->Impi(true)
Logic IMPLICATION result:P(true),Q(true)->Impl(true)
Scenario segment index: 12,13

Logic IMPLICATION result:P(true),Q(true)->Impl(true)
Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Logic IMPLICATION result:P(false),Q(false)->Impl(true)
Evaluation result= true

Figure 5-9 The Evaluation Result of Scenario A

97

Scenario B:
trainQ.near(0),
trainl.near(1),
sys.closed(2),
trainl.in(4),
train0.in(5),
trainl.exit(5),
train0.exit(6),
sys.opened(8),
train2.near(9),
sys.closed(11),
train2.in(12),
train2.exit(13),

Result interpretation:
Scenario B is not a legal
scenario.

Scenario B violates rule
3. Rule 3 says “The gate
must open after all train
exit”

Scenario C:
trainQ.near(0),
trainl.near(1),
trainl.in(4),
train0.in(5),
trainl.exit(5),
train0.exit(6),
sys.opened(8),
train2.near(9),
sys.closed(11),
train2.in(12),
train.exit(13),

sys.opened(16).

Result interpretation:
Scenario C is not a legal
scenario.

Scenario C violates rule
1 that rule 1 says “The
gate must close when
there is a train
approaching the
crossing”

Scenario D:
train0.near(0),
trainl.near(1),
sys.closed(2),
trainl.in(4),
train0.in(5),
trainl.exit(5),
sys.opened(8),
trainQ.exit(9),
train2.near(9),
sys.closed(11),
train2.in(12),
train2.exit(13),

sys.opened(16).

Result interpretation:
Scenario D is not a legal
scenario.

Scenario D violates rule
2 that rule 2 says “The
gate can’t open when
there is at least a train
remaining in the
crossing”

98

Chapter 6 Conclusion and future work

6.1 Thesis Review

In this work, we have explored a requirement engineering approach for modeling real
time reactive systems and evaluating various design solutions.

We developed an object-event-scenario modeling method to describe system
context and behavioural characteristics and various usages of a system. This method is
intuitive, user-centered, and easy to apply.

Based on our object-event-scenario model, we further developed a scenario-based
design performance evaluation method for evaluating various design solutions. This
method applies a black-box strategy, by which we can simulate a design execution, test a
simulated system, and finally evaluate a design. This approach provides a theoretical
foundation for automating design evaluation process. In addition, we provided a sound
guidance on how to design performance metrics, and how to design a canonical stimuli
scenario set as test data in a systematic design performance evaluation. We gave patterns
on some common metrics such as correctness, response time, throughput etc.

Besides theoretical proposal, we also presented supporting tools for automatic

design evaluation process, such as Evaluator, Event generator.

6.2 Future work

Our work provides a strategy for requirement engineering in developing real time
reactive systems. It also provides a direction for some further research and development

on this direction as follows.

99

Some possible future works are:

- Variant interaction patterns require further studied and their relevant canonical set
selection methods can be studied and developed.

- Applied application domains should be further studied and our methodology should be
adapted so that it can be more effective.

- Simulation strategy and tool support can be enriched with additional features to support
more effective performance evaluation.

- Design Evaluation System should be further developed to be more integral. Tool

support for modeling phase should be designed and developed.

100

Bibliography

[1]

(2]

(3]

(4]

(5]

(6]

(7]

Axel van Lamsweerde, “Requirements Engineering in the Year0O: A Research
Perspective”, Proceedings of the 22nd International Conference on Software
Engineering, June 4-11, 2000, Limerick Ireland. ACM, 2000

Pamela Zave, “Classification of Research Efforts in requirements engineering”,
second IEEE International Symposium on Requirements Engineering, March 27 -
29, 1995, York, England. IEEE Computer Society 1995.

Object Managemenf Group, “UML profile for Schedulability, Performance, and
Time Specification”, Version 1.0, September 2003

Bjorn Regnell, Requirements Engineering with Use Cases—a Basis for Software
Development, Ph.D. thesis, ISRN LUTEDX/TETS--1040--SE+225P, Department
of Communication Systems, Lund Institute of Technology, Lund University,
Lund, Sweden,1999

Simonetta Balsamo, Moreno Marzolla, “A Simulation-Based Approach to
Software Performance Modeling”, Proceedings of the 11th ACM SIGSOFT
Symposium on Foundations of Software Engineering 2003 held jointly with 9th
European Software Engineering Conference, ESEC/FSE 2003, Helsinki, Finland,
September 1-5, 2003. ACM, 2003

Bruce Powel Douglass, “ Doing Hard Time—Developing Real-time systems with
UML, objects, frameworks, and patterns” Addison-Wesley, 1995, ISBN:
0201498375.

Alan C. Shaw, “Real-Time Systems and Software”, John Wiley & Sons, 2001,

ISBN 0-471-35490-2.

101

[9]

[10]

(11]

[12]

[13]

[14]

(15]

Weidenhaupt, K. Pohl, K., Jarke, M., Haumer, P., “Scenario Usage in System
Development : A Report on Current Practice”, 3rd International Conference on
Requirements Engineering (ICRE '98), Putting Requirements Engineering to
Practice, April 6-10, 1998, Colorado Springs, CO, USA, Proceedings. IEEE
Computer Society 1998, ISBN 0-8186-8356-2 .

Craig Larman, “Applying UML and Patterns, second edition”, Prentice Hall,
2002, ISBN 0-13-092569-1

Ian Sommerville. ‘Software Engineering’ fifth edition, ISBN 0-201-42765-6,1996
Hermann Kopetz, ‘Software Engineering for Real-Time: A Roadmap’, ICSE
2000, 22nd International Conference on on Software Engineering, Future of
Software Engineering Track, June 4-11, 2000, Limerick Ireland. ACM, 2000

Ivar Jacoba, Magnus Christerson, Patrik Jonsson, Gunnar Overgaard, “Object-
Oriented Software Engineering--Use Case Driven Approach”, Addison-Wesley
Professional; 1* edition,1992, ISBN 0201544350

V.S.Alagar, R. Achutham, D.Muthiayen “TROMLAB: An Object-oriented
framework for real-time reactive system development”. Technical report,
Department of Computer Science, Concordia University, Montreal, Canada, 2001
O. Popistas, “Rose-GRC translator: mapping UML visual models onto formal
specifications”, M.S. Thesis, Department of Computer Science, Concordia
University, Montreal, Canada,1999.

H. Tao, “Static Analyzer: A Design Tool for TROM”. M.S. Thesis, Department of

Computer Science, Concordia University, Montreal, Canada, 1996.

102

[17]

(18]

[19]

[20]

[21]

(22]

Ghayath Haidar, “Reasoning system for real-time reactive systems”, Master
Thesis, Department of Computer Science, Concordia University, Montreal,
Canada, October 2000.

V. Srinivasan, “Graphical User Interface for TROMLAB Environment”. M.S
Thesis Department of Computer Science, Concordia University, Montreal,
Canada, 1999

M. Haydar, “Parameterized events for designing Real-time reactive systems”
M.S. Thesis , Department of Computer Science, Concordia University, Montreal,
Canada , 2001

Olga Ormandjieva, “Deriving New Measurements For Real-Time Reactive
Systems”, PhD Thesis, Department of Computer Science, Concordia University,
Montreal, Canada, October 2002.

Mao Zheng, “Automated test case generation from formal specifications of real-
time reactive systems”, PhD Thesis, Department of Computer Science, Concordia
University, Montreal, Canada, 2002.

R. Achuthan. A Formal Model for Object-Oriented Development of Real-Time
Reactive Systems. Ph.D. Thesis, Department of Computer Science, Concordia
University, Montreal, Canada, October 1995.

L. Zhang. Implementing Real-Time Reactive System from Object-Oriented

Design Specifications Master Thesis, Department of Computer Science,

Concordia University, Montreal, Canada, October 2000.

103

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

D. Muthiayen Real-Time Reactive System Development — A Formal Approach
based on UML and PVS. Ph.D Thesis, Department of Computer Science,
Concordia University, Montreal, Canada, October 2000.

Fenton, N and Pleeger, S. Software metrics: A Rigorous & Practical Approach.
PWS Publishing, 2" edition, revised printing, 1998, ISBN 0-534-95425-1
Simonetta Balsamo, et al “Model-Based Performance Prediction in Software
Development: A Survey”, IEEE Transactions On Software Engineering, Vol 30,
No.5, May 2004.

Daniel Galin, Software Quality Assurance—f{rom theory to implementation,
Pearson Education Limited 2004. ISBN 0201709457

Rhapsody, www.ilogix.com. (Rhapsody Model driven development environment)

www.telelogic.com (TAU suite)

Axel van lamsweerde, “Goal-Oriented Requirement engineering: A Guided
Tour”, 5th IEEE International Symposium on Requirements Engineering (RE
2001), 27-31 August 2001, Toronto, Canada. IEEE Computer Society 2001, ISBN
0-7695-1125-2

Bashar Nuseibeh, Steve Easterbrook “Requirement Engineering: A Roadmap”
Proceedings of International Conference on Software Engineering (ICSE-2000),
4-11 June 2000, Limerick, Ireland

V. S. Alagar, O. Ormandjieva, S.H.Liu “Scenario-Based Performance Modelling
and Validation in Real-Time Reactive Systems”, Proceedings of Software

Measurement European Forum, Italy, 28-30 January 2004

104

[32] V. S. Alagar , O.Ormandjieva, S.H.Liu. Jian Shen “Performance Assessment in
Real-time Reactive System”, 7% JASTED International Conference on Software

Engineering and Applications, Marina del Rey, CA, USA November 3-5 2003

105

Appendix

A. Generator snapshots
Below are some snapshots from generator and filter implementation. Figure A-1 shows

input event name and time constraints in object configuration window. Figure A-2 is the
generation result for the single object. Figure A-3 is the generation result of two objects.

Figure A-4 is the filtering result from the generated data set as seen in Figure A-3.

Exit

Figure A-2 single object generation
106

£5 output window

40bjecc Type Name; Train
bj0.Near(0),0bjl.Near(0),0b30.In{3),0bjl.In(3),0bj0.Exit(4),0bjl.Exit(4)
bj0.Near(0) ,objl.Near(l),0bj0.In(3},0bj0.Exit(4},0bjl.In(4),0bjl.EXit (5]
obj0.Neax (0} ,objl.Near(2),0bj0.In(3),0b30.Exit(4),0bil.In(5),0bjl.Exit(6}
b30.Near(0),0bj0.In(3),objl.Near(3),0b3j0.Exit{4),0bjl.In{6),0bjl.Exit(?)
bj0.Near {0) ,0bj0.In{3),0b30.Exit(4),0bjl.Near{4),0bjl.In(?},0bjl.Exit{8)
obj0.Near (0} ,0bj0.In(3),0b3iG.Exit(4),0bjl.Near{5) ,0b3jl.In(8),0bj1.Exit(9)
bj0.Near{0) ,0b3j0.In(3},0bj0.Exit(4},0bjl.Near(6),0bjl.In(9),0bjl.Exit(10)
bj0.Near {0} ,o0bjl.Near{0),o0bj0.In{3},0bjl.In(3},0bjO0.Exic(4),0bjl.Exit(5§)
b3j0.Near(0) ,ob3l.Near(l),ob30.In(3},0bj0.Exit{4},0bjl.In(4) ,0bjl.Exit(6)
bhj0.Near{0},objl.Near(2),0bj0.In(3),0bj0.Exit(4},0bjl.In(5),0bjLl.Exit(7)
lobj0.Near {0} ,0bj0.In(3},0bjl.Near(3),0bj0.Exit(4),0bjl.In(6) ,0bjl.Exit(8)
b30.Near {0) ,0bj0.In(3),0bj0.Exit{4) ,0bjl.Near(4),0b3l.In(7),0bjl.Exit(9)
| bj0.Near (0) ,0bj0.In(3) ,0bj0.Exit{4) ,0bjl.Near(5),0bjl.In(8),0bjl.Exic{10}
ob30.Near (0) ,0b30.1In(3) ,0bj0.Exit(4),0bjl.Near (6),0bjl.In(9) ,0bjl.Exit(ll)
obj0.Neax (0) ,objl.Near (0) ,0b30.In(3),0bj0.Exit(4),0bjl.In{4),0bjl.Exit(5)
obj0.Near (0) ,objl.Near(l),obj0.In(3),0b30.Exit(4),0b3l.In(5),0bjl.Exitc(6)
b30.Near (0) ,objl.Near(2),0bj0.In(3),0bj0.Exit{4),0bil.In(6),0bjl.Exit(7)
bj0.Near(0),0bj0.In{3),0bjl.Near(3),0bj0.Exit{4},0objl.In(7),0bjl.Exit(8)
b3j0.Near{0) ,0bj0.In(3),0bj0.Exit{4),objl.Near(4),0bjl.In(8),0bil.Exit(9)}
jobj0.Near{0),0bj0.In({3),0bj0.Exit(4},0bjl.Near(5),objl.In(9) ,0b3jl.Exit (10}
| bi0.Near(0) ,obj0.In(3),obj0.Exit{4} ,objl.Near (6),0bjl.In(10)} ,0bjl.Exit{1ll}

=2 Dutput window

Object Type Name: Train

Event Sequence Pattern l:
0bjl.Near {0}, Obj2.Near(l), Obj2.In{4}, Objl.In(5}, Obj2.Exit{S), Objl.Exit(s}

Event Sequence Pattern 2:
Objl.Near (0), Obj2.Near(2), Objl.In(5), Obj2.In(5), Objl.Exit(6}, Obj2.Exic(6)
Objl.Near(0), Obj2.Near(l), Objl.In(4), 0bj2.In(4), Objl.Exit(5}), Obj2.Exit(5}

Event Sequence Pattern 3:
Objl.Near(0), Obj2.Neax{0) Objl.In({4), Ob3j2.In(S), Obll.Exit(6), Obj2.Exit(?)
Objl.Near(0), Obj2.Near(0), 0b3jl.In(3), ObjZ.In(4), Objl.Exit(5), Obj2.Exit(6)

Ewvent Secquence Pattern 4:
Objl.Near(0), Obj2.Near(0), Obj2.In{4), Ob3jl.In(S5), Obj2.Exic(6), Obil.Exit(?)
Objl.Near(0), Obj2.Near (0}, Ob32.In(3), Obil.In(4), Obi2.Exit(5), Objl.Exit(6)

. Event Sequence Pattern §:

Objl.Near{0), Obj2.Near(3), Obji.In(4), Ob3jl.Exit{5), Obj2.In(6), Obj2.Exit(7}
0bjl.Near (0}, Obj2.Near(4), Gbjl.In(S5), Objl.Exit(6), 0bj2.In{(7}, Obj2.Exit(8)
Objl.Near(0), Obj2.Near{2), Objl.In{3), Objl.Exit(4}, 0bj2.In(5), Ob3j2.Exit{6}

Figure 5-11 Filtering result

107

B. Expression library (part)

public abstract class Operation

{
public static final int OBJECT = 900;
public static final int BOOLEAN = 901;
public static final int INTEGER = 902;
public static final int DOUBLE = 903;
public static final int FLOAT = 904;
public static final int STRING = 905;
public static final int SCENARIO=909;

protected int value_type; //vaule type of an operation result such as Boolean, Integer etc.
protected int operation_type; // type of operations such as Logic AND, OR etc.
protected Operand[] operands;

public void setValueType(int v_type)

{ value_type=v_type;

}

public int getValueType(){ return value_type; }

/**

* Set a value to a variable in an operation

* @param variableName String

* @param data Object

*/
public void setVariableValue(String variableName,Object data)
{

for(int i=0; i<operands.length;i++)

operands[i].setVariableValue(variableName, data);

}
JE*

* Calculate an operation result

* @return Object

*/
public abstract Object getValue() throws Exception;

}

public class Operand

{ public static final int CONSTANT=1,
public static final int OPERATION=2;
public static final int VARIABLE=3;

int operand_type;
int value_type;

Object data;
String variable_name;

public Operand (int operand_type, Object d, int dtype) throws Exception
{ value_type=dtype;
switch (operand_type)

108

{ case CONSTANT:
this.operand_type=operand_type;

this.data = d;
break;
case OPERATION:

1f(d instanceof Operation)
{ if(((Operation)d).getValueType() !=dtype)
throw new Exception("operation value type doesn't match operands!"};
this.operand_type=operand_type;
this.data = d;
}
else throw new Exception("Operand data doesn't match the specified type.");
break;
case VARIABLE:
throw new Exception("invalid constructor call.");
default:
throw new Exception("invalid operand type.");

}
}

public Operand(String v_name,int dtype) throws Exception

{

if(v_name==null||v_name.length()==0) throw new Exception("invalid variable name.");
this.variable_name=v_name;
operand_type = VARIABLE;
value_type=dtype;
}

/**
* This function is to assign a value to a variable. The Variable is recognized by its name.
* @param v_name String
* @param value Object
*/
public void setVariableValue(String v_name,Object value)
{ switch(operand_type)
{
case VARIABLE:
if (v_name != null && this.variable_name.equals(v_name))
this.data = value;
break;
case OPERATION:
((Operation)this.data).setVariable Value(v_name,value);
break;
}
}

public int getDataType()
{ return value_type;

}

/**

* return value of the operand

* @throws Exception

* @return Object

*/

public Object getValue() throws Exception

{
if(operand_type==OPERATION)

109

return ((Operation)data).getValue();
clse
return data;
}
public Object getData()
{ return data;
}
public String getVariableName()
{return variable_name;

}
}

public class LogicOperation extends Operation
{

public final static int AND = 101;

public final static int OR = 102;

public final static int NOT = 103;

public final static int IMPLICATION=104;

public LogicOperation(int op_type,Operand{] opds) throws Exception
{ value_type=Operation.BOOLEAN;
if (opds ==null) throw new Exception("Oprand argument can not be empty.");
switch(op_type)
{ case AND:
case OR:
case IMPLICATION:
if(opds.length==2 && opds[0]!=null && opds{1]!=null)
{ if (opds[0].getDataType()==Operation. BOOLEAN& &
opds[1].getDataType()==Operation. BOOLEAN)
{ operation_type = op_type;
operands = opds;
}
else
{ throw new Exception("Logical operand is not boolean type.");
}
}

else throw new Exception("Invalid number of arguments”);
break;

case NOT:
if(opds.length==1 && opds[0]!=null)

if (opds[0].getDataType()==Operation.BOOLEAN)
{
operation_type = op_type;
operands = opds;
}else
{
throw new Exception("Logical operand is not boolean type.");
}
}
else throw new Exception("Invalid number of arguments”);
}
}
public Object getValue()throws Exception

110

{ boolean result;
switch(operation_type)
{
case AND:
Boolean and_left = (Boolean)operands[0].getValue();
if(and_left.booleanValue()==false) result=false;
else
{ Boolean and_right = (Boolean)operands[1].getValue();
result = and_left.booleanValue() && and_right.booleanValue();

}
System.out.println("Logic AND result:"+ result);
return new Boolean(result);

case OR:
Boolean or_left = (Boolean)operands|0].getValue();
if(or_left.booleanValue()==true) result=true;
else
{ Boolean or_right = (Boolean)operands[1].getValue();
result = or_left.booleanValue() || or_right.booleanValue();
}
System.out.printin("Logic OR result:"+ result);
return new Boolean(result);

case NOT:
Boolean not_opd = (Boolean)operands[0].getValue();
result="'not_opd.booleanValue();
System.out.println("Logic NOT result:"+ result);
return new Boolean(result);
case IMPLICATION:
Boolean imp_left = (Boolean)operands[0].getValue();
Boolean imp_right = (Boolean)operands[1].getValue();
if(imp_left.booleanValue()==true && imp_right.booleanValue()==true)
{ System.out.println("Logic IMPLICATION result:P(true),Q(true)->Impl(true)");
System.out.println();
return new Boolean(true);

}
if(imp_left.booleanValue()==true && imp_right.booleanValue()==false)
{ System.out.println("Logic IMPLICATION result:P(true),Q(false)->Impl(false)");
System.out.println();
return new Boolean(false);
}
if(imp_left.booleanValue()==false && imp_right.booleanValue()==true)
{ System.out.println("Logic IMPLICATION result:P(false),Q(true)->Impl(true)");
System.out.println();
return new Boolean(true);

}
if(imp_left.booleanValue()==false && imp_right.booleanValue()==false)
{ System.out.printin("Logic IMPLICATION result:P(false),Q(false)->Impl(true)");
System.out.println();
return new Boolean(true);
}
}
return null;
}
}

111

