ON EFFICIENT FIXPOINT COMPUTATION OF
DEDUCTIVE DATABASES WITH UNCERTAINTY

Zhi Hong Zheng

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

June 2004

© Zhi Hong Zheng, 2004

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94763-7
Our file Notre référence
ISBN: 0-612-94763-7

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

[b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

On Efficient Fixpoint Computation of Deductive Databases with Uncertainty

Zhi Hong Zheng

Uncertainty management has been identified as an important challenge in Al and
database research. Many frameworks of logic programming have been proposed to
manage uncertain information in deductive databases and expert systems. These
proposals address fundamental issues of modeling, semantics, query processing and
optimization. However, there have been fewer reports on efficient implementation of
such frameworks. In this research, we study this issue in the context of a fragment of the
parametric framework [19] over the certainty domain of [0, 1]. It has been shown that the
standard Semi-Naive fixpoint evaluation method does not have a counterpart when
uncertainty is present [32]. We have refined a Semi-Naive method, originally proposed in
[32], and developed a Semi-Naive evaluation engine that takes into account the
multiplicity of derivations of the same atom. We also introduced a refinement of this
evaluation, called Semi-Naive with Partition, which further improves the efficiency of the
Semi-Naive method with uncertainty. Finally, we adopt “stratification” from Datalog,
which is shown to make a significance efficiency for certain input programs with
uncertainty. We have conducted numerous experiments to assess the benefits of the
collection of optimizations proposed in this research. Our experiments and benchmarks
indicate that the proposed techniques and tricks yield a useful, efficient evaluation engine

for deductive databases with uncertainty.

il

Acknowledgments

I express deep gratitude to my supervisor, Professor Nematollaah Shiri for his
extraordinary and continuous guidance, support, and valuable inside throughout my
studies at Concordia University. His support and patience were invaluable in the
preparation of this thesis. He was always gracious in giving me the time and strength

even amidst the tight schedule. I consider myself blessed to be under his supervision.

I am grateful to the staff in the Department of Computer Science, especially Halina
Monkiewicz and Veronica Jacobo-Gutierrez. They are always available for helping to

solve the problems encountered and getting things done at the right time.

I am thankful to my friends Hong Bin Zhang and Tong Zhang for helping me develop the
design and implementation of our deductive database with uncertainty system. I would
also like to thank Wei Du, Ali Kiani and Wei Shen Lin for their generous support and

encouragement.

I am deeply indebted to my wife Shu Hong in many ways. Without her I would not have
been able to go through this wonderful stage of my life. My deep love goes to our sweet
daughter Helena and little sun Patrick. Their childish smiling always makes me forget the

fatigue.

Finally, I would like to thank my parents for encouraging me to purse the good education,

from which everything else springs.

iv

Contents

List of Figures
List of Tables

1 Introduction
1.1 A Motivating EXample......ccooiiiiiiiiiiiiiiiiiiiiniiiicriiieeineeeeeean
1.2 Contribution 0f the TheSIS. c.uune i e

1.3 ThesiS OULIINE. ..ttt ettt ettt ettt re e eenans

2 Background and Related Work
2.1 Classification of Deductive Databases with Uncertainty.......................
2.2 The Parametric Framework: A Review........oociieiiiiiiiiiiiiiiiiiiiiiennan..
2.2.1 The Basic ConCepts......oeviuiiriiiiiinininiiiiiiiinniniiinenneeiaes
2.2.2 Fixpoint Evaluation of P-program..............cooviviiiiniiinin.
2.2.3 Classification of Disjunction Function.............c.cocoovieiiiiiienn.
2.3 Implementations of DDB+Uncertainty..........ocoeeeeeiniienieneineinaninnin,

2.4 Stratified Evaluation of Programs in Datalog™...........cc.ooovviiiiinne,

3 Efficient Evaluation of LP+DDB with Uncertainty
3.1 Inapplicability of Classical SN Algorithms..........ccoooviiiiiiiiii
3.2 A Multiset Based Semi-Naive Algorithm.............oooeevviiiiiit.
3.3 The Semi-Naive with Partition Algorithm....................o.ooi.

3.4 Stratification and Efficiency.........c.coooeiiiiiiiiiiiiiiiii e

viii

11
11
14
15
16

17

20

4 System Architecture 42

4.1 Data Interpreter COmMPONENT.cvvuiitiiniiiteiiiiiieereraireereeraaeanes 43
4.2 Data Manager COmMPONEIL.......vuirrernrernerrnnereneranterneeaneraeeennennnes 44
4.3 Query Optimizer COMPONEIIL. .. .uiutiriiriireieearerreaeereeeireareenseeanans 45
4.4 Query Processor COmMPONeNt........evuviveivintirinieiriaiierieenieeeaienneenne. 46
4.5 Library Manager COmponent.......c.ooevviiviniiiiieeneeniteraierineeanneneenns 48
5 System Implementation 49
5.1 Data Representation........ouvuvuveiuininininineneeietiieeeeneeenereeneannnnns 49
5.1.1 Representation of Dictionary...........ccoooeviiiiiiiiiiiiiiniiininn, 50
5.1.2 Representation of AtOmS.....o.couvueveiiiiiiniiiiiiiieeeean, 51
5.1.3 Representation of Relations and Fact Table............................ 53
5.1.4 Representation of Rules and Rule Table................................ 56
5.1.5 Representation of Indices.........ouvueeininiiiiiiiiiiii 60
5.2 Indices Creation.......coueruinuiriie ittt eeneennes 62
5.2.1 Index Plan Creation........oevvveiiiiiniininiiieiiiineieeeienee, 62
5.2.2 Reordering Body Predicates...........oocveeviiiiiiiniiiiiiiiiienn, 65
5.2.3 Index Containment and Index Creation.................ccoeieienenen.. 68
5.3 Query OptimiZation.vueuierineeeenitit ittt eraeeieeans 70
5.3.1 Rules Rewriting Technique.............c...oooooii. 71
5.3.2 Information Backtracking...................... 75
5.3.3 Run-Time DeciSions......ocvuvuiiiniiiiiiiiieiine e eieaaenene 81
5.3.4 Rule Reordering and Stratification........................oooiiienl. 84
54 Query Evaluation..........coooiiiiiiiiiiiiii 88

vi

5.4.1 Materialization and Pipelining......................
5.4.2 Dynamic Variables Binding.........................
5.4.3 Precision Controlling................c..coiiiiinl.

5.4.4 Stratified Evaluation...........cccoveveinnn....

6 Performance Analysis and Evaluation

6.1 Experiment Environment..............ccoivviieniiiinannnn..
6.2 Test Programs Selection..........ocevvvveiviiiniinieeanen.n.
6.3 Test Data Selection and Generation........................
6.4 Index Performance Evaluation..............................

6.5 Semi-Naive Technique: Performance Evaluation

7 Conclusion and Future Research

References

Appendix A

Appendix B

vii

.....................

.....................

..............................

120

123

127

130

2.1

2.2

3.1

3.2

33

4.1

4.2

4.3

44

5.1

5.2

53

54

5.5

5.6

5.7

5.8

5.9

List of Figures

A Naive algorithm for evaluating p-programs............c.ccvvveiiveineenniannnnn 15
An example of Datalog™ program and its dependency graph..................... 17
A Semi-Naive algorithm for evaluating programs with uncertainty............. 27
The Semi-Naive with Partition algorithm...................oooiiiiiiii. 32
A D-PIOZIAM P3oce et et 35
System arChiteCtUre.o.oieiit it e e e ree e e 42
Data transformation procedure...........veuvviieiiiiaeirreei e iaean 43

Index creation ProCedUIC.ouuiueintit ittt e e e 45
Program evaluation procedure.........ouvierueruineieniiiiiiieeieeiieaae 47
Internal representation of p(10,3): 0.5 50

Internal representation of program Ps j.......ccoveriiiiiiiiiiiiiiiiiiiiaiiiian, 57

Anexample of Index plan..........oo i 61

An algorithm for body predicate re-ordering.............ccooevviiiiireieeinennnenn.. 66
The procedure of locate predicate..........covvvviiiiiiierniiiiiiniiireienieeenen 68
Procedure for Semi-Naive evaluation with partition and backtracking........... 80
The procedure for evaluation of rewritten rules.................coooiiiiiiiiiiinn... 81
An example of predicate dependency graph................ool 85
The stratification algorithm ... e 87

viii

6.1 Test programs in performance eXperiment..........cooeeueerueiiieeineeneeaneenenns 98
6.2 Datasetforprogrampl and p2........ccooiiiiiiiiiiiiiii e 101
6.3 Dataset for programp3 and p4.....c.cooiiiiiiiiiiii 103
6.4 Running p/ on CT with/without indexing.............cccovviiiiiiiiiiiinininnnn.n. 107
6.5 Running p2 on M with/without indexing...............ccoeeiiiiiiiiiiiiiiiennen, 108
6.6 Running p3 on T with/without indexing...............ocooiiiiiiiiiiiiiiiiin.. 109
6.7 Running p3 on C with/without indexing............c..cooiiiiiiiiiiiiiiiiiiinnan, 111
6.8 SN and SNP performance: running p/ on M..........cooooiiiiiiiiiiiiiniinana., 113
6.9 SN and SNP performance: running p2 on CT............ooooiiiiiiiiiiiiiiiinn... 114
6.10 SN and SNP performance: running p3 on A..........oooeiiviiiiiiiiiinieininniennn, 116
6.11 SN and SNP performance: running p4 onS..........ccoiiiiiiiiiiiiiiniinennen. 117

ix

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

List of Tables

Running pI on CT, with/without indexing..............ccooeiiiiiiiiiiieiiinnnn., 106
Running p2 on M,, ,, with/without indexingccocoviiiiiiiiinininnnn.. 108
Running p3 on T, , with/without indexingc.ooooviiiiiiiiiiiiinninn 109
Running p3 on C, with/without indexingcooiiiiiiiiiiiiiiniiiienn 110
SN and SNP performance: running p/ on Mym...oooviiiiiiiiiiiiiininniin 113
SN and SNP performance: running p2 on CTy...ooveviiiiiiiiiiiniiiiininiini. 114
SN and SNP performance: running p3 on Aj....cooveiiiiiiiiiiiiniininniniann. 115
SN and SNP performance: running p4 on Sp......ooeiiiiiiiiiiiiiiininniniiniennn 117

Chapter 1

Introduction

The world is replete with uncertainty. Mortgage bankers are uncertain about the outcome
of loans that they make. Military planners are uncertain about what the enemy might do.
Airline passengers are uncertain about whether their plane will be on time or will be late.
The messages sent from a satellite are uncertain about the received signal with noise.
These and many other real-life applications réquire an ability to represent, manage, and
reason with uncertain information. Even when the information gained is certain,
answering some complex queries still requires associating certainties to the answers. For
instance, in weather forecasting, certain information of the current temperature, humidity,
wind speed, and cloud distribution are applied to answer the probabilistic query about

tomorrow’s weather.

Uncertainty is a form of imperfection in information, which arises when the truth of the
information is not established definitely. More precisely, uncertainty is the “degree” of
truth of information pieces as estimated by an individual or sensor device, which may be
represented by associating with the information, a value coming from an appropriate

domain.

Uncertainty management has been a challenging issue in Al and database systems for a
long time. Numerous researches have been carried out mainly in the last two decades,
resulting in a number of concepts being investigated, a number of problems being

identified and a number of solutions being developed [19, 3, 2, 14, 36, 11, 17, 18]. Most

of this work is concerned with developing frameworks with uncertainty by extending the
classical logic database programming with its advantages of modularity and its powerful
top-down and bottom-up query processing techniques. In [19], these frameworks are
classified into annotation based (AB), and implication based (IB). The Parametric
framework [19] is a generic IB framework that unifies and generalizes all the 1B
frameworks, which is also the basis we applied for our query optimization study in this
thesis. In this research, we study query processing and optimization in the context of a

fragment of the parametric framework, namely over the certainty domain [0, 1].

There have been some works on logic frameworks with uncertainty. However, there is
little work on handling their effective and efficient implementation. In [20], Leach and
Lu investigated an implementation approach to top-down query processing in Annotated
Logic Programs with set-based semantics. For IB frameworks, a so-called Problog
evaluation system is introduced in [31] to evaluate parametric programs on top of the
XSB system [29]. Another attempt for IB framework implementations is a version of
CORAL [27], which supports some special annotation to compute the certainty'
associated with each atom. Even though XSB and CORAL systems both support
multisets, their evaluation scheme is not useful in our context. The main problem is that
they tend to consider and combine derivations across iterations. Query processing could
be complicated when the semantics is based on multisets. This motivates our work here
to design and implement a new system under which all parametric programs can be

evaluated correctly and efficiently. This is illustrated next in the following examples.

1.1 A Motivating Example

A run-time optimization technique for bottom-up evaluation of classical logic programs
and deductive databases is the Semi-Naive fixpoint evaluation method, which is proposed
as an alternative to the Naive method. Semi-Naive method tries to avoid or minimize
repeated applications of rules at every iteration step. Obviously, it is also desired to use

the Semi-Naive method for efficient evaluation of the programs in parametric framework.

However, a “straight” extension of the standard Semi-Naive method to take into account
the presence of certainty values does not work in general, simply because the results may
not always coincide with the results obtained by the corresponding Naive method with

uncertainty. Program P;; shown in Figure 1.1 illustrates this point.

rl: B,
r2:Ce22 .
r3: A«——C;{ind * -).

rd: A<= B, A;(ind * *).
Figure 1.1: A logic program with uncertainty: P, ,
In program P;;, rules rl and r2 define the fact-certainty pairs B:0.5 and C:0.8
respectively to indicate that B’s certainty is 0.5 and C'’s certainty is 0.8. The value on «
in each rule represents the truth degree that the body of the rule implies the rule head. In

rule 73, the truth degree that C implies A4 is 1 and that of rule r4 is 0.6. The triple
S fp, f.) associated with each rule indicates the “combination functions” used to
compute with certainties. f, is a conjunction function derives the certainty of body, given

the certainties of each subgoal in the body. For instance, * in r4 indicates the certainties

of B are multiplied to yield the certainty of the body of r4. It is clear that the choice of f,

is immaterial in rule r3, any reasonable f, would return the same value. We use “—* to
indicate this situation. The propagation function f s such as * in r4, is used to combine

the certainty of the rule body with the certainty of the rule, to obtain the certainty of the
head atom. In case there is more than one derivation that infers the same atom, the

disjunction function f, is applied to combine them into one single value. In this

program, f, =ind is associated with 4, where ind(a, f)=a+p-a* .

Let us first consider the Naive fixpoint evaluation of P;;, by which every rule is
evaluated at every iteration. We use [, to denote the collection of fact-certainty pairs
obtained at iteration j. At iteration 1, we get I, ={B:0.5,C:0.8} from r/ and r2. At

iteration 2, rule r3 generates A:0.8 through f, =1*0.8, and hence

1,={A4:0.8,B:0.5,C:0.8}. At iteration 3, two derivations of 4 is produced; one from r4
with certainty 0.6*(0.5%0.8)=0.24 and another from r3 with certainty 0.8, which are then
combined through ind(0.24,0.8) =0.24+0.8-0.24*0.8 = 0.848, therefore,
I,={A4:0.848,B:0.5,C:0.8} . Since 4 s certainty is improved in /, compared to /,, the
fixpoint evaluation goes on to the mnext step in which we get
I, ={A4:0.85088,B:0.5,C:0.8}. The evaluation continues until it reaches the limit. By

adopting a recurrence relation based technique, we get the final result

I,={4:0.85106,B:0.5,C:0.8} in the limit.

Next we consider the evaluation of the same program with a “straight” extension of the
standard Semi-Naive method. The basic idea of the standard Semi-Naive method is to

apply at each iteration i, only those rules for which “something new” was obtained for the

rule body at iteration i-/. Extending this idea, we derive /, ={B:0.5,C:0.8} at iteration
1. At iteration 2, only r3 is applied since 7/ and r2 have nothing “new” in the body. Thus,
I,={A4:0.8,B:0.5,C:0.8}. Similarly, only r4 is applied at iteration 3 and which yields
A:0.24 from r4. This certainty of A is then combined with the best certainty 0.8 of 4
known previously in 7,. This gives, I, ={A4:0.848,B8:0.5,C :0.8} . At iteration 4, again,
only r4 is applied and derives A:0.2544. Through ind(0.848, 0.2544), we obtain
I, ={A:0.886688,B:0.5,C:0.8}, which is incorrect and continues to yield
accumulative wrong result in the limit. By adopting a recurrence relation based

technique, we get the final result 7, ={4:1,B:0.5,C : 0.8} at iteration @ .

Existing powerful and efficient system such as CORAL and XSB evaluate logic
programs in this manner, thus disallowing us in general to take advantage of them in our
context of evaluating programs with uncertainty. Careful extension of the standard Semi-

Naive method is thus required [31].

1.2 Contributions of the Thesis

In this section, we will highlight our main contributions in this research. We will also

indicate the chapter or section in which the contribution is discussed.

A background review of inapplicability of the standard Semi-Naive (SN) method (section
3.1) for uncertainty computation is explored. We also recall earlier results that identify
classes of programs in the parametric framework for which the standard Semi-Naive

evaluation method may be used.

A careful extension of standard SN algorithm for logic framework with uncertainty is
proposed. This extended SN method is sensitive to duplicates of the derived atom-

certainty values and thus called multiset-based Semi-Naive technique (section 3.2).

Moreover, to further increase the efficiency caused by the SN evaluation, we introduce a
refined version of multiset-based SN method, called Semi-Naive with Partition (SNP).
This is done by enabling enough derivation sources tracking during the evaluation

(section 3.3).

Stratification is a concept introduced in standard logic programs and deductive databases
with uncertainty to influence the run time environment to compute a desired model,
called perfect model [35]. While considering the efficient evaluation beyond the bottom-
up approach, we claim that, unlike the classical logic program, the stratification of a
parametric program may provide a considerable efficiency for query processing. A
desired stratification of a parametric program may maximally reduce the intermediate
certainty cémputation compared to the other stratification (section 3.4). We present a

method of finding desired stratification of a parametric program (section 5.3.4).

To show that the ideas in this thesis lend themselves to an efficient environment for
deduction with uncertainty, we have built a prototype deductive database system with
uncertainty (DDBS+Uncertainty), which implements the proposed optimizations
introduced in this research. This prototype is implemented in C++ (chapter 4 and 5). To
reduce the indexing cost, we introduce a technique, based on subgoal reordering, to
reduce the number of indices while supporting efficient evaluations of programs (section

5.2).

In order to measure the efficiency of the proposed techniques, we conduct a number of
experiments of evaluating a variety of classes of parametric programs and compare the
execution time of different techniques (chapter 6). To this end, we also developed
programs to generate different classes of suitable data of different structures, facts to be

more precise.

1.3 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we give some background
knowledge about logic frameworks with uncertainty. This includes the classification of
the logic framework with uncertainty and a brief review of the parametric framework
[19]. Some existing implementations of the logic framework with uncertainty are also
discussed in this chapter. The stratified evaluation of Datalog with negation programs is
presented in section 2.4. We assume that the reader is familiar with the concepts and
techniques of logic programming, and deductive databases. The introduction of the
preliminaries of them is ignored in this thesis. [21] is an excellent source for logic

programming. Moreover, [7] surveys what you always want to know about Datalog.

In chapter 3, we study efficient evaluation techniques for programs with uncertainty. The
multiset-based Semi-Naive method, Semi-Naive with Partition method, and stratified

evaluation are also presented in this chapter.

The architecture of our system prototype is provided in chapter 4. The components of the

system and the interactions among them are discussed in detail.

The system implementation issues are discussed in chapter 5. We highlight several

implementation decisions that allow us integrate diverse evaluation techniques and

optimization into an efficient evaluation scheme. Specially, we consider the issues of: (1)
data representation, (2) relation representation, (3) index structure, and (4) evaluation

techniques.

In chapter 6, a number of experiments are conducted to demonstrate the efficiency gained
from different query processing techniques. We report the experimental results together

with some analysis which provide insight to the evaluation scheme developed.

Finally, we give a retrospective discussion of the efficient evaluation with uncertainty

and outline some future research directions in chapter 7.

Chapter 2

Background and Related Work

Before discussing the efficiency issue of the query processing, and our system design and
implementation, we quickly review the frameworks proposed for deductive databases
with uncertainty from [19]. We especially review the basic concepts and development of
the parametric framework [19], which is a generic IB framework that allows us to
address the problem of query optimization in a “framework independent” manner.
Furthermore, some existing query optimization techniques in classical deductive
databases are also discussed in this chapter to help understand the proposals of the query

optimization techniques for deductive databases with uncertainty.

We assume the reader is familiar with the basic concepts and techniques of logic
programming and deductive databases, such as rules, EDB and IDB predicates, subgoals,

least fixpoint, etc. For more details, please refer to [9, 34].

2.1 Clasgiﬁcaﬁon of Deductive Databases with

Uncertainty

In the past 20 years, numerous frameworks have been proposed for uncertainty by
extending the standard logic database programming with its advantages of modularity
and its powerful top-down and bottom-up query processing techniques. There are a

number of basis on which these frameworks may differ. On the basis of their underlying

mathematical foundation of certainty, these frameworks may vary and include probability
theory [16, 17, 23, 24], fuzzy set theory [36], multi-valued logic [14], possibilistic logic
[11], and so on. These frameworks differ in (1) their underlying notion of uncertainty;
(2) the way in which uncertainties are manipulated; and (3) the way in which uncertainty
is associated with the facts and rules in a program. On the basis of (3), these frameworks
can be classified into two categories [19]: annotation based (AB, for short) [3, 2, 14] and
implication based (IB) [36, 11, 17, 18]. The Comprehensive comparison of these

approaches can be found in [19].

A typical rule » in an AB framework is an expression of the form:
H:f(B,..B,)<B :p,..B,: 0,
where H and B;s are facts, S, is an annotation constant or variable, and f is an n-ary

function to compute the certainty of the rule head by “combining” the certainties of the

subgoals in the rule body. This rule asserts “the certainty of H is at least (or is in)

f(B,,--s B,), whenever the certainty of atom B, is at least (or is in) B, 1<i<n.”

Alternate derivations of the same atom from the program are “combined” using a user-

defined disjunction function.

For IB framework, a rule 7 is an expression of the form:

H<+«*—B,..,B,.
where H and B;s are facts, o is a certainty value, which means that the certainty that the
rule body implies the head is & . Given a certainty valuation v of B;s, the certainty of H
is computed by taking the “conjunction” of v(B,) and then “propagating” it to the rule

head. Aside from the syntactic difference between the AB and IB approaches, there are

10

other important differences. For AB framework, the annotation functions are
unconstrained, or at least not discussed. However, the computation in IB frameworks are
constrained by some principle making sure the certainty computation makes intuitive
sense. Details of certainty computation will be discussed later. In our study, we focus on

the programs in IB frameworks.

2.2 The Parametric Framework: A Review

The parametric framework [19] is a generic IB framework, which unifies and /or
generalizes all the IB frameworks. Every query programs in an IB framework may be

converted to a parametric program by selecting different parameters.

2.2.1 The Basic Concepts

Let L be an arbitrary first order language that contains infinitely many variable symbols,

finitely many constants and predicates, but no function symbols. While L does not
contain function symbols, it contains symbols for families of propagation (F),),

conjunction (F,), and disjunction functions (F,). These functions are collectively called

as combination functions F =F, U F,UF,.

Definition 1. 4 parametric program (p-program) P is a 5-tuple (T,R,D,P,C), whose
components are defined as follows:

1) L=(T,x®,®) is a complete lattice, where T is a set of certainty values,
partially ordered by <, ® is the meet operator, and @® is the join. The least

element of the lattice is denoted by L and the greatest element by T.

11

2) R is a finite set of parametric rules (p-rules), each of which is an expression of
the form: H<«*—B,,..B{f,;,f,.f.); where H B,.,B, are atomic
formulas, and a is a certainty value in T —{L1}.

3) f, €D isthe disjunction function associated with the head predicate.

4) f, € P is the propagation function associated with the rule.

5) f. eC isthe conjunction function associated with each p-rule in P.

We use 7(A4) to denote the predicate symbol of a form 4 and Disj(z(A4)) to denote the
disjunction function associated with 7(A4). We remark that not every rule will be
explicitly associated with these three functions. In case the rule represents an EDB fact,

[T

only disjunction function is needed. We use when the choice of conjunction and
propagation functions is immaterial, for example (f,,—,—). This is when the rule body
has single subgoal.

It is important to be aware that the semantics of the parametric framework is based on

multisets since some combination functions, especially some disjunction functions, might

be sensitive to duplicates. {|...|} is used to represent multisets.

In general, the following properties that different kinds of combination functions must

posses:
1) Monotonicity: f(a,a,) < f(B,,B,) Whenever a, < B,, for i € {1,2};
2) Continuity: fis continuous w.r.t. each one of its arguments.

3) Bounded-Above: f(«,.a,)<aq,,fori=12, Va, eT;

4) Bounded-Below: f(a,,a,)> «,,fori=12, Va,eT;

12

5) Commutativity: f(a,,a,) = f(a,.a,), Va,,a, €T ;

6) Associativity: f(a,, f(y.01,)) = f(f(@y.,).00,), Vet 0,0, €T ;
7 flalh)=a,VaeT;

8 flP)=L

9 f@)=T,

10) f(a,T)=0, Va eT;

The above properties help to define different kinds of combination function.

Postulate 1. Let T be the certainty domain and B(T) be a finite multiset of T. A
disjunction function in the parametric framework is a mapping from B(T) to T and

satisfies properties 1, 2, 4, 5, 6, 7, and 8 mentioned above.

Postulate 2. Letr T be the certainty domain and B(T) be a finite multiset of T. A
conjunction function in the parametric framework is a mapping from B(T) to T and

satisfies properties 1, 2, 3, 5, 6, 7, 9, and 10 mentioned above.

Postulate 3. Let T be the certainty domain. A propagation function in the parametric

framework is a mapping from TXT to T and satisfies properties 1, 2, 3, and 10 mentioned

above.

Postulate 4. Let P be a p-program, Bp be the Herbrand base of P, and T be the certainty

domain. A valuation v of P is a mapping from Bp to T, which assigns to every ground

atom in Bp, a certainty value in T.

Postulate S. Let r be a p-rule in a p-program P. A ground instance of r is a rule obtained

from r by replacing all occurrences of each variable in r with an element of the Herbrand

Universe.

13

Postulate 6. The Herbrand instantiation of a p-program P, denoted as P", is a collection

of all ground instances of all p-rules in P.

2.2.2 Fixpoint Evaluation of P-program

The fixpoint theory developed for p-programs is based on the notion of the immediate

consequence operator 7, , defined as a mapping from a set of valuation ¥, to y,, such
that for every vey, and every atom AeB,: T, ()Y A4)=f,(X), where

f,=Disj(z(4)), and X is a multiset of certainties such that

X ={ f,(@,, f.({1 (B, 0(B,) }) | (44— B,....B,:{ ;. f,» f.)) € P" |} The bottom-

up evaluation of 7 is then defined as in the standard case. It is shown that 75 is both
monotone and continuous and for any p-program P, the least fixpoint of 7p, denoted

lfp(Tp), is equivalent to the declarative semantics of P [19].

The basic bottom-up fixpoint evaluation is called Naive evaluation. For a p-program, the
Naive evaluation is similar to the Naive evaluation in the Datalog, the standard deductive
database. At every iteration, all p-rules/facts are applied and defined. The difference is
that in the Naive evaluation for a p-program we need to aggregate (or combine) the
derived certainties of a fact into one, at every iteration. The fixpoint is reached when not
only all facts are generated but also that the certainties of them can not be further

improved. The Naive algorithm for p-programs is shown in Figure 2.1.

Procedure: Naive (P, D; Ifp(T})

forall A € Bp:

1 v, (4) =1,

2 M,(4)={| & | (4:) e Dfj;

3 v, (4) = f,(M,(4)), where f, = Disj(z(A4));
end forall

14

4 New, :={4|(4:a)e D}i:=1;
while (New, # ¢)
5 =i+l
forall V(r: A<=—B,,....B,;{f;, [, [.)eP*:
M (4)=A] f(a,,f.(l v, (B v, (B} |}
O, = f,(M,(A), where £, = Disj(z(4));
end forall;
8 New, :={4| A€ B,,v,(4) = v_ (A}
end while

lﬁ’(TPuD) =05
end procedure

[{e}

Figure 2.1: A Naive algorithm for evaluating p-programs

2.2.3 Classification of Disjunction Functions

In [19], the family F, of disjunction functions is classified into three types, called types

1-3, defined as follows.

Definition 2. Let f, be a disjunction function in the parametric framework. Then we
say:

1) f, isof type I provided, f,=@ ,i.e., when f, coincides with the lattice join.

2) f, is of type 2 provided, ® (a,)< f,(a,p)<T, Va,peT-{L,T}.

3) f,; is of type 3 provided, ®(a,)< f,(a, B)<T, Va,feT {1, T}.

Intuitively, a type 1 disjunction function means that it coincides with the join @ operator
in the underlying certainty lattice 7, while type 2 functions are strictly greater than @,
whenever its arguments are different from the bottom and top elements of T. A type 3
disjunction function behaves as the join operator at some input arguments and is strictly
greater than join at other points. The difference between type 2 and 3 is that the value

returned by a type 2 function always keeps increasing when supplied with “better”

15

argument values, while a type 3 function may return T for some such values. These two
types of disjunction functions may cause a fixpoint evaluation of p-programs not to
terminate. In our context of query optimization, the distinction between type 2 and 3 is

not necessary. We consider them to be in the same category and be different to type 1.

2.3 Implementations of DDB+Uncertainty

Even though there have been numerous proposals for AB/IB frameworks, there has been
little progress in their effective and efficient implementation. In [20], Leach and Lu
discuss implementation issues in the context of an AB framework with set-based
semantics. They develop a top-down query processing in annotated logic programs that

uses constraint solving.

For IB frameworks, Shiri [31] developed Problog, a system prototype to evaluate p-
programs. It takes the top-down approach to evaluate p-programs, on top of the XSB
system [29], which is a powerful logic programming system. Even though Problog
evaluate p-programs on different certainty lattices, provided the disjunction function
associated with recursive predicates is of type 1. This is because XSB is a system
designed for classical deductive databases and is set-based, in general. Its support of

multisets is not suitable in our context, as discussed later.

Another attempt to implement the parametric framework is a version of CORAL, which
supports an annotation, called @aggsel per_iteration, which can apply the disjunction
functions. Similar to Problog, it only works on disjunction functions of type 1 unless it

uses the Naive method to evaluate p-programs having disjunction functions of type 2 or 3

16

[32]. Our objective in this research is thus to design and implement a system for

evaluation of all p-programs correctly and efficiently.

2.4 Stratified Evaluation of Programs in Datalog™

To extend the expression power of pure Datalog, negation has been introduced into the
body of rules. The result language is called Datalog™. However, allowing negation may
result a Datalog™ program to have more than one minimal Herbrand model, while one of
these minimal Herbrand models, called perfect model, is selected to define the semantics
of the program. A normal way of doing such selection under closed world assumption
(CWA) is the stratified evaluation of Datalog™ programs, which stratifies a program
based on its predicate dependency graph and evaluates it stratum-by-stratum in the order
of lower stratum first. Figure 2.2 shows an example program P, ; in Datalog™ and its

predicate dependency graph.

rl: P « Q,-R.
r2:R « S, A4.
r3:5S « R,B.
r4 :C « A,B.
r5:0 « C.

a) Program P, b) Dependency graph of P,
Figure 2.2: An example of Datalog™ program and its dependency graph

Definition 3. Let P be a logic program, the predicate dependency graph pdg(P) is a
directed graph, in which

Vertices are predicates of P and edges are defined as follows:

17

» q positive edge (p, q) if there is a rule in P in which q is the predicate of a
positive subgoal and p is the head predicate
" qa negative edge (p, q) if there is a rule in P in which q is the predicate of a

negative subgoal and p is the head predicate

Notice that not all Datalog™ programs are stratified. A Datalog™ program is stratified if no

cycle in its predicate dependency graph contains a negative edge.

~ Definition 4. 4 strongly connected component (SCC) of a directed graph is a maximal
subgraph such that for every pair of vertices u, v in the subgraph, there is a directed path

fromu to v and a directed path from v to u.

In Figure 2.2 (b), the subgraph containing vertices R and S forms SCC since R can reach
S and S can reach R. It is not hard to be convinced that, given a logic program, all
predicates in SCC are mutually recursive and each relies on others for its definition. In
the situation that a program is to be evaluated stratum-by-stratum, the predicates in a
particular SCC must be in the same stratum and therefore evaluated together. This is very

important when we try to stratify a program and evaluate it sequentially.

Definition 5. The definition of predicate H in a Datalog program P is a set of rules {ry,..,

ro} in P with H as the head predicate.

Definition 6. A4 stratification of a Datalog™ program P partitions P into a set of disjoint

rules. It is a mapping m from the set of rules in P to a set of nonnegative integers such

that:
1. if a positive edge (p, q) is in pdg(P), then m(r,) = m(ry)

2. if a negative edge (p,q) is in pdg(P), then m(r,) >m(r,),

18

where r), is the rule having predicate p as the head.

In other words, a valid stratified evaluation always defines the negative subgoal of a
predicate H before defining H. Obviously, a stratified program may have several

different stratifications. Program P,;, for example, has the following stratification:

P ={r2,r3} P, ={rl,r4,r5}, where P,, = 4 U P,. An alternative stratification of P,
is: B={rd}, P, ={r2,r3,r5}, P, ={rl}, where P, =P UP,UP,. To find a

stratification of a given program, many algorithms have been proposed [8, 34].
Stratification algorithms attempt to put the definition of an IDB predicate and its positive
subgoal in the same stratum while defining its negative subgoal in some lower stratum.
This helps to minimize the number of strata. For example, the first stratification

mentioned above for the program P ; is the one selected in this case.

19

Chapter 3
Efficient Evaluation of LP+DDB with

Uncertainty

From the discussion of the Naive evaluation with uncertainty in section 2.2, it is clear that
Naive evaluation is inefficient since a fact derived at a particular iteration continues to be
derived at every subsequent iteration, without improving its certainty. Therefore, we need
alternative efficient techniques that avoid such redundant computation. Even though there
are many efficient techniques proposed for the standard deductive databases, however, as
mentioned in chapter 1, a “straight” adaptation of them may not be suitable in our
context. We need to develop such techniques for logic programming and deductive
databases (LP+DDB) with uncertainty. In this chapter, we start by studying why the
standard Semi-Naive (SN) algorithm is not applicable to uncertainty evaluation (section
3.1). We remark that the uncertainty evaluation must be based on multisets rather than
sets. According to this, two multiset-based Semi-Naive algorithms are introduced in
sections 3.2 and 3.3. In section 3.4, we show how “stratification” may further improve

the efficiency, even though we do not consider negation in our study.

3.1 Inapplicability of Classical SN Algorithms

In chapter 1, we have demonstrated that a “straight” extension of classical SN algorithms

does not give a correct evaluation with uncertainty. The main reason for this is that the

20

evaluation in the sténdard deductive databases is actually set-based. Even though some
standard deductive database systems, such as Coral [27] and XSB [29], support multiset,
they do not compute as desired. For efficiency purposes, a standard deductive database
system generates “incomplete” multisets as long as this does not affect the final query
result [28]. This is not a problem when uncertainty is not presented. If we look at the so-
called basic Semi-Naive (BSN) algorithm presented in [1], we find that BSN actually
generates an incomplete multiset during the evaluation. However, for logic programs
with uncertainty, the “completed” multiset is required when there are disjunction

functions of type 2, or of type 3 [19].

Moreover, many classical SN algorithms may not respect the border between evaluation
iterations. Since there is no aggregation operation between two consecutive iterations, it
is not mandatory to evaluate each iteration in isolation of others. To be more precise, the
only disjunction function in the standard case is max, implicitly, which is also the lattice
join. Based on this observation, many improved SN algorithms mix (or overlap) the
evaluation of two or more iterations to achieve higher evaluation efficiency [26, 13, 1].
For instance, [26] introduces two algorithms which apply a rule to produce new facts, and
then immediately makes these facts available to the subsequent rules applications at the
same iteration. The purpose of this technique is to reduce the number of rule applications
and iterations for an evaluation. Unfortunately, this method does not apply in our context,
in general. Since disjunction functions are applied at the end of each iteration, all
derivations must be obtained and aggregated iteration by iteration to ensure the correct

evaluation. Violating this may cause an incorrect result when uncertainty is presented.

21

Even though the standard SN method is inapplicable to the evaluation with uncertainty in
general, we find that, however, the existing inference systems may be used to evaluate
the logic program with uncertainty in some particular cases. The implementation of the
Problog [31], which implements the parametric framework using a meta-programming in
XSB, is an example. Another implementation is a special version of the CORAL, which

provides an annotation to perform the disjunction function.

A question comes at this stage: In which cases are the existing efficient engines
applicable? In other words, we want to know in which cases the multiset-based
evaluation is equivalent to the set-based evaluation. Since some existing deductive
systems support multisets at each iteration but do set operation between iterations, it is
obvious that if the input program is non-recursive, only one evaluation iteration is
needed; the existing systems will perform correctly. In case the input program is
recursive, things get more complicated because many iterations are needed. In this
situation, whether existing systems are applicable depends strongly on the type of
disjunction functions used, since the requirement of the multiset-based evaluation arises
from the aggregation operation (through the disjunction functions used). If the disjunction
functions used are set-based execution, the input program can then be evaluated using
existing inference systems. For a recursive rule in a given p-program, if the associated
disjunction function is of type 1, which means f,(«a, f)=®(a, /), set-based operation
has the same effect as multiset-based operation since the number of copies of o or B does
not affect the result of f;. For example, suppose fact 4 has a multiset of certainties {| 0.1,
0.2, 0.2, 0.3 |}, generated from different derivations, and 4 has an associated disjunction

function f; = max. The result of the disjunction function is 0.3, no matter the number of

22

copies certainties is in a set or multiset. Moreover, the mixture of derivations over

different iterations will not affect the final result in this case.

As identified in [32], a correctness requirement should obeyed during the evaluation p-
program: if the disjunction functions presented in a p-program are of type 2 or 3, a
correct evaluation procedure should combine the certainties of atoms derived at the same
iteration, and not combine newly derived certainties with prior certainties of the same

atom from the same rule.

There are two factors deciding the applicability of the existing systems for computing
with uncertainty: (1) whether the input program is recursive or not, and (2) the recursive
rules in the program are associated with type 1 disjunctions f; or not. If the program is not
recursive, or the disjunction associated with every recursive predicate is of type 1, then

existing system inference systems can be used.

Proposition 1. For any p-program P in the parametric framework, the fixpoint
evaluation of P using the set-based Semi-Naive evaluation method generates the same
result as the multiset-based Naive method if the disjunction functions associated with the
recursive predicates in P is of type 1.

Proof:

It is obvious that the result returned by a disjunction function of type 1 is not changed if
there are duplicates in the input argument. That is, the input multiset argument can be

turned into a set. Hence, the set-based Semi-Naive method yields the same result as the

multiset-based Naive method.o

23

Notice that, as mentioned before, the existing systems such as CORAL and SXB are
applicable for evaluation with uncertainty in case the input program is not recursive, no
matter what kind of disjunction function it has. This does not violate Proposition 1. It is
because they support multiset within the iteration (but not inter-iterations). Therefore, for
evaluation of non-recursive program, the definition of every IDB predicate is done only
at one iteration, whereas the iteration at which different predicates are defined may be
different. In this situation, both CORAL and XSB produce the same result as the Naive

method of the evaluation with uncertainty.

3.2 A Multiset Based Semi-Naive Algorithm

From the discussion in section 3.1, it is clear that existing systems cannot be used in
general to evaluate all logic programs with uncertainty (the p-programs in our context).
We need to develop efficient, multiset-based algorithms and techniques for deductive
databases with uncertainty. We developed a bottom-up Semi-Naive method for
evaluating query programs with uncertainty and established its equivalence with the
corresponding Naive method [32]. Here, we review the proposed method, and then

introduce ways to further improve the efficiency.

The Naive evaluation method of p-programs was discussed in section 2.2, and its
procedure is shown in Figure 2.1. Similar to the Naive method for standard deductive
databases, this method is inefficient since it repeats many redundant computations. The
inefficiency is due to the redundant computation in lines 6 and 7 in Figure 2.1. An atom
A derived at iteration i, continues to be derived at every subsequent iteration, even if its

associated certainty is not changed. To improve this situation, we should identify and

24

apply only those rules that have something new (either a new fact or an old fact with a
higher certainty) in the body at the subsequent iteration. Other rules would not have
further contribution to the evaluation. Based on this observation, we suggest to bookkeep
the derivations of those rules that have no “new” subgoal and evaluate only those rules
that have something “new” in the subgoals. In this case, some computations of those

unchanged derivations are saved, and have results in increased efficiency.

To achieve this, we associate with every ground atom A in the given p-program, a pair

(M,,0,), where M, is a multiset containing all certainties derived so far from different

paths, and o; is the certainty of A4, obtained by applying to M; the computation of the

disjunction function associated with the predicate of 4. That is, o, = f,(M,), where
f, = Disj(z(A4)) . Every element in M, is of the form (r:), indicating that a derivation of

A with certainty o is obtained by rule ». This information is used to identify the
certainties of 4 derived by rule r, a subgoal of which was identified as “new” at the last
iteration. This is important when we want to replace these certainties with the better
certainties derived by the improved subgoal(s). The use of multiset for storing certainties
is also crucial in our context. It guarantees that the number of copies of the same

certainty, which may be sensitive for some disjunction function, is respected.

Figure 3.1 presents the multiset-based Semi-Naive algorithm [32]. We will use SN to
refer to this algorithm. As in the Naive algorithm, SN takes a collection D of fact-
certainty pairs, (basically, the extensional database EDB), and a collection P of p-rules,

and produces the least model of the program, when it terminates, i.e., when the fixpoint

25

of Tpr.p is reached. In the algorithm, we use symbols U and — to denote the multiset
union and difference operations, respectively.

If we compare the SN and Naive algorithms, we will see that the source of efficiency of
the SN algorithm is due to lines 8 and 9 in Figure 3.1. At iteration i, only rule », which

has at least one improved subgoal, will be evaluated. If fact 4 is derived by r through

some improved subgoal B, we remove from the multiset M,(A) all elements (r: o), for

every o associating with ». Then the derivations that derive 4 by r are done again by

applying better certainty of subgoal B. The new results (r: B) for 4 are added into M,(4)

to form M,

i+l

(A4) for the further evaluation. It is important to note that this replacing in
M, (A) makes the result at each iteration to be identical to the Naive method. It ensures
that no derivation of 4 from the same rule » is mixed with the derivations of 4 by r at
earlier iterations. When this replacement is complete, a new certainty of 4 is obtained in
line 10, using the disjunction f, = Disj(z(A)), the disjunction function, associated with

the predicate symbol of 4.

Procedure: Semi— Naive (P, D, Ifp(T,,))
forall A € Bp:
1 v, (A4) = L;
M (A ={la|(4:a)eD|};
v (4) = f,(M,(4)), where f, = Disj(r(A));

end forall
4 New, ={A|(4d:a)e D}i=1;
while (New, = ¢)
5 P=i+1];
forall A € Bp:

if _:J(r :A(a—’Bp---aBn;<fdﬂfp’~f;>)E P*

such that 3B, € New,,for some j € {l,...,n}:
then begin

26

7 M, (4)=M_,(A4);
8 forall (r: A«<*—B,,...,B,:{f,. f,. /.)€ P*

such that 3B, € New,, for some j € {l,...,n}:

9 M, (4) =M ()~{lo], (D vilo] (4)]}, where
o[(A) = f,(at,, f.({0, 1 (B0 (B

end forall;

10 v, = f,(M,(A)), where f, = Disj(n(A));
end if;
11 else v,(A4) =v,_,(4);
end forall;
12 New, ={A4| A€ B,,v,(4) > v,_,(A)};
13 end while
14 Hp(Typ) =03

end procedure

Figure 3.1: A Semi-Naive algorithm for evaluating programs with uncertainty
After applications of all possible rules at a particular iteration, we are able to re-define
New in line 12, which is a set that includes every fact whose certainty is improved at this
iteration, compared to the previous iteration. If New is empty, it means the certainty of no
fact is improved and hence the evaluation terminates and the result v; is returned (line

14). Otherwise, the evaluation continues to the next iteration.

Theorem 1 below establishes the correctness of the SN algorithm proposed above.
Theorem 1. Let P be any p-program in the parametric framework and D be a collection
of facts. A fixpoint computation of P on D using the Semi-Naive algorithm above
produces the same result as the Naive method.

Proof:

It is obvious that the application of a rule having no “new” subgoal will generate the
same derivation(s) as that of the previous iteration. Even though the SN method does not

evaluate this kind of rules, it records the result of them in M, . For those rule(s) that have

27

“new” subgoal, SN removes their previous derivation result from M, first, and
recomputed them. The new result is then inserted into M,. So, at every iteration, the

derivation result in M, is the same as the result derived by Naive method. By applying
the same disjunction function, the certainty of every fact 4 is also identical to that in
Naive method. When the set New is empty, no rule can generate the “new” fact-certainty
pair. Hence, two consecutive iterations generate the same result, and SN terminates at the
same situation as the Naive method. Therefore, the Semi-Naive method yields the same

result as the Naive method. 0o

Let us consider again the program P;; presented in chapter 1 to illustrate the SN
algorithm. Initially, every fact-certainty pair is assigned certainty 0. At iteration 1, only
two fact-certainty pairs are improved: I, ={B:0.5,C:0.8}. Rules r; and r4 do not
produce any such pair. After the evaluation of iteration 1, we find that r; and r, need not
to be evaluated again, since there is no subgoal for these two rules. At iteration 2, since 13
and r4 have some improved subgoals, both are applied. As a result, r; produces 4: 0.8 and
14 produces nothing. Hence, I, ={B:0.5,C:0.8, 4:0.8}. Since r; has only one subgoal,
C, and C will not be further improved, r; will not be evaluated at the subsequent
iterations. At iteration 3, r4 is applied, which generates fact 4 with certainty

0.6*%0.5*0.5=0.24. Now, the multiset M;(A) contains two elements: {|r, :0.8,r,:0.24}.
Using the disjunction ~ function f, associated with A4, we obtain
f, =ind(0.8,0.24) =0.848 , and hence I, ={B:0.5,C:0.8, 4:0.848}. At iteration 4, 14

is applied again since its subgoal 4 is improved at iteration 3. In this situation, element

r,:0.24 in M,(A) is removed and replaced by 7, : 0.2544, produced by rs. Applying the

28

disjunction function S, =ind(0.8,0.2544) = 0.85088,, we get

I, ={B:0.5,C:0.8, 4:0.85088}. Since the certainty of 4 improves at every iteration,

this computation will terminate only in the limit. This example demonstrates that the

evaluation result obtained by SN is identical with that obtained by the Naive method.

3.3 The Semi-Naive with Partition Algorithm

As mentioned in section 3.2, the SN method proposed provides an efficient evaluation by
avoiding the computations of some derivations that do not yield improved certainties.
This is done by identifying and recording, at every iteration, the results of non-improved
derivations. In case some subgoals of a fact A4 derived by rule r gain improved certainties
in the last iteration, all the derivations of 4 derived from r are removed from the records
and redone by taking better certainties of their subgoals obtained at the last iteration. This
operation is done at line 9 in Figure 3.1. However, not all redundant computations could
be avoided by the SN method. For instance, if more than one derivations of rule r
generate fact 4, there may exist a case in which only one of these derivations may have
some improved subgoal(s), while the others do not. According to the SN method, all
derivations of a rule r that generate fact 4, including those which do not have improved
subgoal(s), should be removed from the bookkeeping and redone. Therefore, some
redundant computations are repeated. Let us use the following program (P3;) to

demonstrate this situation:

rl:a(l)«2—.
r2:a(2)«22—.
r3:b() 22—,

r4d:c(2) PR A

29

r5:q(X)<t—a(X);<ind *,_ >.
76 q(X)——c(X),q(X);< ind * * > .
r7: p(X)«—b(X),q(Y);< ind * ¥ > .

At the first iteration, r/, r2, r3, and r4 generate the following fact-certainty pairs:
M, =1 ={a(1):0.5,a(2):0.8, 5(1):0.6, c(2): 0.7}
These rules will not be further applied since they have no subgoals (that may probably

increase). At iteration 2, r5 generates ¢(1):0.5, and ¢(2):0.8, while r6 and r7 generate

[T b

nothing because relation “g” is still empty. We thus have:
M,=1,={a(1):0.5,a(2):0.8,5(1):0.6,¢(2):0.7,4(1): 0.5, g(2) : 0.8}
At iteration 3, r5 will not be further evaluated since its subgoal a(X) will not be
improved. However, r6 is applied and yields ¢(2):0.56 through c¢(2) and ¢(2) with
certainties (0.7*0.8)*1=0.56, and r7 yields p(1):0.3 by joining »(1) and g(1), and yields
p(1):0.48 by joining b(1) and ¢(2). Now, M;(q(2))={|r5:0.8,76:0.56]}, and
M,(p(1))={]r7:0.3,77:0.48|} . Each of these multisets is then aggregated using the
disjunction function ind. This yields ¢(2):0.912, and p(1):0.636. The result of iteration 3
is thus:
I, ={a(1): 0.5, a(2): 0.8, b(1): 0.6, c(2): 0.7, g(1) : 0.5, ¢(2) : 0.912, p(1): 0.636}
in which, ¢(2):0.912, and p(1):0.636 are in New;. Notice that there are two derivations of
r7, which generate g(1) at iteration 3. One is p(1)«——>b(1),q(1);<ind *,*>, and the
otheris p(1) «——b(1),q(2);<ind,*,* > . Since g(2) is a subgoal of the derivations of p(1)
by 17, both of these two derivations are removed from M,(p(1)) and redone at next

iteration, even though derivation p(1)«——>b(1),q(1);<ind,*,*> has no improved

30

subgoal: M,(p(1))={|r7:0.3,r7:0.5472|}. Similarly, r6: 0.56 is also removed from
M ,(g(2)) and replaced by r6: 0.6384 at iteration 4. That 1s,
M,(q2))={r5:0.8,r6:0.6384|}.

The interpretation /, is thus:

I, ={a(1):0.5, a(2): 0.8, b(1) : 0.6, c(2): 0.7, q(1) : 0.5, g(2) : 0.92768, p(1) : 0.68304}
This computation goes on and terminates only at .

The above example suggests that the proposed SN method leaves some opportunities for
further improvement of the efficiency. This is also our motivation to further refine and
improve our SN method. Let us refer to the refined SN method as Semi-Naive with
Partition (SNP) since it actually partitions every IDB relation into two parts: improved
part and non-improved part. The improved part contains all fact-certainty pairs that are
generated or improved at the last iteration, while non-improved part contains the rest of
the fact-certainty pairs. Using SNP, the method focuses on derivations in which at least
one of their subgoals is improved at the last iteration. The technique for partitioning will

be introduced in section 5.3.1. The procedure of SNP is shown in Figure 3.2.

Procedure: Semi-Naive-with-Partition (P, D; Ifp(T}))
forall A ¢ Bp:

1 G ={{(a:9)|(4:a)e D|};
2 v,(4) = £,(C,(A)@)), where f, = Disj(m(4));
end forall
3 New, = {A |(4:ax) e D};i =1;
while (New, # ¢)
5 i=i+1;
6 forall A € Bo:
7 C,(4)=C_(A4),
forall Be New,_, A(a,S;)eC (A)ABeS;:
8 C(A)=C(DA(a,Sp) |}
end forall

31

forall (: A<——B,,.B,;< f,. f,. f. >) € P’ A3B; € New,,

where je{l,..n}

9 C,(A) = C (DA (o] (4),Sp) 1},
10 where o, (4) = f,(@,, f,({|p,(B).....v.,(B,)]})), and
11 Sy ={B,| B, € IDBA j€{l,.n}}
end forall;

2 v, = £,(C,(4)(@)), where f, = Digj(r(4));

end forall;
13 New, ={d| A€ B,,v,(4) = v,_,(4A)};

end while

14 (T p)=v;

end procedure

Figure 3.2: The Semi-Naive with Partition algorithm

There are two main problems to be solved in the SNP method. One is how to identify the
certainties whose derivations associated with of some improved subgoal(s), from the
bookkeeping and remove them before starting the next iteration. Another problem is how
to restrict the evaluation to consider only derivations that may generate something new.

To solve the first problem, we associate, with every ground fact 4, a pair<C,,o, >,
where C, is a multiset containing all certainties of 4 derived so far, and o, is 4’s
certainty obtained by applying the disjunction function f, associated with 4. That is,
o, = f,(C,(4)). If we look back at the SN method, we may see that, M,(4), which is of
the form (r : &), is very similar to C,(A4) in the SNP method. Every certainty in M,(4) is

annotated with a rule id indicating the rule which was used to derive the certainty a. This
annotation can help identify the certainties derived by a rule that has some improved
subgoal(s), and then removing them from M, (A4). Clearly, the certainties in M,(A4) are
classified by their associated rule id. Unlike the SN method, the SNP method replaces

M (4) with C,(4), which is of the form (a:S;), where « is a derived certainty, and

32

S, is a set containing all IDB subgoals in this derivation. There is no information about
which rule derives which certainty in C,;(4) while S, somehow records the information

about the “source” of a certainty derived. In other words, it helps to track the derivation

source. In case a fact B is improved at iteration i, we may check C,(4) to see whether
some element of C,(A) has S, containing B. If so, it implies that the certainty of this
element depends on the certainty of B. We then remove this element from C,(4). This is

shown in lines 7 and 8 in Figure 3.2. Notice that only IDB subgoals are included in S,.
This is based on the observation that EDB facts will never be improved after the first

iteration. So, it 1S not necessary to record the EDB subgoals in the corresponding S, (see
line 11). Furthermore, defining S, as multiset is not necessary because the number of the

duplicated subgoals has nothing to do with the decision that which elements should be

removed from C,(4).

Addressing the second problem of SNP is straightforward, once we remove related
records properly from the bookkeeping. As shown in line 9, we simply have to evaluate
the ground rules containing some improved subgoal(s) and add their results to the

bookkeeping. We then have the following result.

Theorem 2. Let P be any p-program in the parametric framework and D be a collection
of facts. A fixpoint computation of P on D using the Semi-Naive with Partition method
produces the same result as the Naive method.

Proof:

The basic idea of the proof is the argument that both SN and SNP methods produce the

same result at every iteration, though with different efficiency, in general. From Figure

33

3.1 and Figure 3.2, we can see that even though, at every iteration, SN and SNP methods
remove a different number of certainties from their bookkeepings at every evaluation
iteration, replacing them is the same in each method. Furthermore, the certainties that are
replaced in both SN and SNP methods are recomputed in the same way in each method.
The rest of the certainties removed by the SN method are inserted back without any
change. Therefore, SNP produces the same result as the SN method, which in turn
produces the same result as the Naive method (Theorem 1), at every iteration. This

establishes the equivalence of SN and SNP methods. o

Let us consider the program P;; again and apply the SNP method to demonstrate how
SNP improves the efficiency of the evaluation. Obviously, SNP performs the same
operation as the SN method does in the first 2 iterations. This is because all facts are

newly generated and not improved yet at the first 2 iterations. At iteration 3, we have

C5(9(2) ={10.8:9,0.56:{g(2)} [}, and C;(p(D))={]03:{g(D)},0.48:{q(2)}[;. The

interpretation /53 would thus be:

I, ={a(1): 0.5, a(2): 0.8, 5(1): 0.6, ¢(2): 0.7, g(1) : 0.5, ¢(2) : 0.912, p(1) : 0.636}
Since g(2)and p(l) are improved at iteration 3, 0.56:{g(2)} is removed from C;(q(2)).
However, unlike in the SN method, we only remove 0.48:{q(2)} from C,(p(1));
0.3:{g(1)} remains since the certainty of ¢(1) is not improved at the last iteration.
Hence, only two derivations, g(2)«+—c(2),q(2);< ind * * >, and
p(h<——bQ1),q(2);<ind *,*> are redone for I; At iteration 4, we get

Ci(q9(2)) =1{[(0.8:¢),(0.6384 : {g(D)}) [}, C,(p(1))={(0.3:{g(1)}),(0.5472:{g(2)}) |},

and thus

34

1, ={a(1): 0.5, a(2): 0.8, b(1) : 0.6, ¢(2) : 0.7, g(1) : 0.5, ¢(2) : 0.92768, p(1): 0.68304}

At this step, it is enough to show that the SNP method produces same result as the SN,

but with less computation.

3.4 Stratification and Efficiency

As discussed in section 2.4, stratification is a syntactic restriction to programs in Datalog
with negation. It helps to compute the “intended” model called perfect model of programs
with negation. Stratification has nothing to do with the efficiency. That is, Stratification
was introduced in Datalog™ as a way of model preference, and may or may not affect the
efficiency of evaluating such programs. However, in our context, we note that a “desired”
stratification could result in significant efficiency in evaluation of deductive databases

with uncertainty.

Let us consider P;, shown in Figure 3.3 to illustrate this point.

rl:de®—,

r2: B

r3: C 22— B;(max, min,—).
r4: D«— A;(max,*,*).
r5: D« C;(max,*,-).
r6: E<1— D, 4;(max *,*).

Figure 3.3: A p-program P;,
The p-program P, has a stratification: P, ={rl,r2,}, P, ={r3}, P, ={r4,r5}, and
P, ={r6}, where P,, = F, UP, UP, UP,. We first evaluate P3; in a regular way using

Naive method. The result of P3, at each iteration is as follows:

1, ={4:03,B:0.6,}
I, ={4:03,B:0.6,C:0.5,D:0.3}

35

1, ={4:03,B:0.6,C:0.5,D:0.4, £:0.09}

Ifp(P,,)=1,={4:03,B:0.6,C:0.5D:04, E:0.12}

It is easy to see that the certainty of E is derived based on the certainty of D. When the
certainty of D is improved, the certainty of £ improves accordingly. At iteration 3, rule r6
is evaluated using the certainty of D, which is less than D’s value in J;. Obviously, the
computation of rule 76, using the intermediate certainty of subgoal D, is redundant. If we
can delay the application of rule r6 until D is done, which happens at iteration 3 for this
example, we may in theory save one computation of 6. This efficiency can be achieved
by evaluating program P;, stratum-by-stratum. The evaluation result of each iteration
under the stratification mentioned above is shown as follows, in which we use I’ to

denote the interpretation of P restricted to rules in partition P;.

I =1"={4:03,B:0.6}
I =1 ={C:0.5}

IP =1 ={D:0.4}

I =17 ={E:0.12}

lfp(-P:;'z):IPl UIPZ U1P3 UIP4
={4:0.3,B:06,C:0.5, D:04, E:0.12}

We first evaluate P, at iteration 1 and bookkeep the result. The bookkeeping is then used
as the input for evaluation of P,. This sequence of fixpoint operations is conducted until
all four strata are evaluated. The least fixpoint of the program P; is the union of all the
interpretations of each stratum. Through this example, we can see that the stratified
evaluation may result in increased efficiency by avoiding the computation of some
intermediate certainties as well as the computations of the evaluation of lower strata,

while computing a stratum at a higher level. It is clear that if some lower strata need more

36

iterations to produce their final results, the stratified evaluation may avoid more

computations of intermediate certainties.

Our next result establishes that the stratified evaluation of parametric programs is

equivalent to the Naive evaluation.

Theorem 3. Let P be a p-program in the parametric framework and D be any collection
of facts. A fixpoint computation of P on D using the stratified evaluation produces the
same result as the Naive method.

Proof:

The difference between stratified evaluation and the Naive evaluation of a p-program P is
that the former allows only the final results defined in the lower strata in P to contribute
to the evaluation of the rules in higher strata, while the latter takes the intermediate as
well as the final values of subgoals to evaluate every rule in P. Obviously, the stratified
evaluation generates the same result as the Naive evaluation if both apply the final result
of subgoals to derive the final result of rule head for each rule in the given program. What
we need to prove is that the intermediate values of subgoals in the Naive method do not
generate the final result, or they generate the final result that is the same as what the final

values of subgoals generate.

Let r: A«*—B,,...,B,;{f;,f,,f.) be any rule in the given p-program, v(B,) is the
final valuation of B, for je{l,...,n}. The valuation of 4 derived by v(B,) is:

v(4) = £l f,(a,, f.({ o(By),....,0(B,) })) |} (D

37

For stratified evaluation, v(A4) is the final result of 4. Assume that the final result of A4,

v'(4), under the Naive method is derived by some intermediate value of B, v'(B,),

where v'(B ;) < v(B) according to property of monotonicity of the evaluation:

v'(Ad) = f, Al f,(a,, f.{V'(B),...0"(B,) }) |}
Recall that all combination functions in p-programs are assumed to be monotone (see

section 2.2.1) and v(B,)) is also evaluated under the Naive method. Therefore, we have

that f ({|v'(B,),...0'(B,) [}) = f.({|v(B,),...0(B,)|}) , since v'(B;)=<v(B)), and
hence v'(A4) < v(A4). Since we assume that some intermediate result, v'(4), is the final
result of 4, we have that v'(4) > v(A). Therefore, we can conclude that v'(4) = v(A),

which establishes the result. O

As mentioned in section 2.4, the concept of stratification is introduced for standard
programs with negation, and is applicable if the dependency graph of the program does
not have a cycle with a negative edge. Since negation is not allowed in p-programs, the
stratification is universally applicable for any p-program. However, not every
stratification may increase the efficiency of an evaluation. On the other hand, different
stratifications may provide the same efficiency for an evaluation. Clearly, stratified
evaluation does not help in case there is only one stratum in a given program. In this case,
all the rules are evaluated concurrently, exactly the same as the Naive evaluation.
Unfortunately, the existing stratification finding algorithms [8, 34] always stratify p-
programs into single stratum since they like to put the definitions of positive subgoals in
the same stratum with that of the goal. To gain the efficiency from the stratified

evaluation, a desired stratification needs to be defined and constructed.

38

Definition 7. A desired stratification of a parametric program (p-program) P is a
stratification of P that:
1) includes at least two strata in addition to the lowest stratum that contains all

the EDB tuples

2) If predicate B is used to defined predicate A in P, and B and A are not
mutually recursive, then the definition of B is in a lower stratum than the one

that includes the definition of A
If we look at the p-program P;, again, the stratification: P ={rl,r2}, P, ={r3},

P, ={rd4,r5}, and P, ={r6} is a desired stratification for the program. Notice that not

every p-programs has a desired stratification. For instance, when all the IDB predicates in
a p-program are defined only by EDB predicate(s) or all of them are mutually recursive,
the condition (1) in Definition 7 will not be satisfied, and therefore there is no desired

stratification.

On the other hand, some p-programs may have more than one desired stratification. For

instance, the following program may have three desired stratifications:

r1: Ae— {0 1,1

r2: B (f,, [, 1)
r3:C——A(f1, [, 1)
r4:D«=2—B;(f,. [, 1)
rS:E«%—C,Di{f,, [, 1.)

one of the desired stratifications is B' ={r1,r2}, P, ={r3,r4}, and P/ ={r5}. Another
one is P ={rl,r2}, P’={r3}, P’={r4}, and P}={r5}. The third desired

stratification is P’ ={r1,r2}, P, ={r4}, P ={r3}, and P} ={r5}. Even though a p-

39

program may have more then one desired stratification, these desired stratifications

provide the same efficiency in terms of reducing intermediate certainty computations.

Theorem 4. Let P be a p-program in the parametric framework that has more than one
desired stratifications. The alternative stratified evaluations of P, would result the same
efficiency in terms of reducing intermediate certainty computations.

Proof:

Assume that P has two alternative desired stratifications, S; and S, Also assume the
stratified evaluation over S, can avoid an intermediate certainty computation A: d, that
cannot be avoided in evaluation over S,. Since A: d is inevitable for the stratified
evaluation over S;, there must exist some mutually recursive predicate(s), whose
definitions involve A: d. On the other hand, since S; can avoid the computation A: d, it
means there is no mutually recursive predicate involving A: d, which is a contradiction.
Thus, no such intermediate computation A: d exists, and hence S; and S, yield the same

efficiency by avoiding identical intermediate certainty computations. 0

An important consequence of Theorem 4 is that, to evaluate a p-program, we do not need
to compare all its desired stratifications to find the best one; they all result in the same
increased efficiency. Our next result illustrates that a desired stratification results in the
maximum increased efficiency in term of reducing the intermediate certainty

computations.

Theorem 5. Ler P be a p-program in the parametric framework. The stratified evaluation
of P under any desired stratifications yields the maximal increased efficiency in terms of

reducing intermediate certainty computations, compared to other stratified evaluations.

40

Proof:

The basic requirement of the stratification of P is: always include mutually recursive
predicates in P in the same stratum to ensure the correct definition of predicates.

Assume that P has two alternative stratifications S; and S, where S; is a desired
stratification and S, is not. Also assume that the stratified evaluation of P over S, can
avoid an intermediate certainty computation A: d, which is inevitable for evaluation over
S;. Since A: d is inevitable for a desired stratification, A: d must involve some mutually
recursive predicate(s). Moreover, since S, can avoid A: d, the definition of mutually
recursive predicates are stratified into different strata in S,. Such stratification violates the

basic requirement mentioned above. Therefore, S, does not exist. O

Now, it becomes clear that to maximize the efficiency gained from stratified evaluation,
we simply need to pick any one of the desired stratifications of the given p-program and
evaluate it stratum-by-stratum in order, starting with the lowest stratum. In section 5.3.4.

we will discusses how to identify a desired stratification.

41

Chapter 4

System Architecture

Our prototype of a deductive databases with uncertainty is a single-user, in-memory
system. All data, including IDB and EDB facts, rules, functions library and queries are

organized and stored in main memory.

rules
query

» Query Optimizer

| program
query

User Interface — answer—| Data Interpreter Optimized program

Optimized program

answer

Evaluation
Processor

Data Manager

vy

facts
functions

Function Library
Updater

y

Main Memory

Figure 4.1: System architecture

Our system prototype includes five main components: data transformer, data manager,
query processor, query optimizer, and library manager. These components allow users to
input their parametric programs over the certainty domain [0, 1] and evaluate them
efficiently. In addition to some well-known combination functions supported by the

system, users can also add new functions to the functions library in a convenient way

42

provided by the library manager. All such functions are assumed to satisfy the properties
introduced in [19]. In the rest of this chapter, we will explain these components and their

interaction in more details.

4.1 Data Interpreter Component

Figure 4.2 shows the model diagram of Data Transformer (DT) component. Before
submitting a p-program to the system, the user may store it in the secondary memory as a
text file. Once it is submitted, the corresponding text file is read by the parser module in
DT. The program is then checked for its syntax. If there is no syntax error, the input is
separated into three parts: facts, rules and the query. Each of these parts is passed to the
corresponding converter which transforms the input into the internal system
representation. There is no query optimization in this process but it simply transforms the
input expression to the internal representation, which is recognized by every component
in the system and has the property of efficient manipulation in the system. The output of
DT, which includes the transformed facts, rules, and query, is then passed to the Data

Manager, Query Optimizer and Query Processor components, respectively.

Input file

I parser ‘

l

rules

%

Fact converter I ! Rule converter I IQueryConverter—[

facts

queries

Internal Representation

Figure 4.2: Data transformation procedure

43

4.2 Data Manager Component

The main task of the Data Manager (DM) in our system is to create suitable in-memory
data structures for various input data/programs to support efficient search and/or access.
DM takes the transformed facts generated by the Fact Converter module in DT and
creates the EDB table. Also, the “optimized” program generated by the Query Optimizer,
which will be described in section 4.3, is stored in the rule tables, and the user defined
combination functions are added to the system library. These tables and the library are
then stored in the main memory and accessed by DM. Moreover, DM also stores and

manages the IDB facts during the evaluation.

To avoid duplicate copies, DM is used to build and store the “vocabulary dictionary”,
which contains all predicates and terms in the input program. Each predicate in the rules

or each term in the facts has a pointer to the corresponding item in the dictionary.

Indexing is another task of DM to support efficient query evaluation. We apply indexing
in conjunction with every optimization technique we developed in our system. To define
a “reasonable” set of indices for an input program, we proposed a technique to reduce the
number of necessary indices, presented in Figure 4.3. In this technique, we scan all
predicates in the body of the rules and reorder them to match the current index plans. In
case no index plan can be matched, a new plan is created by this module. Once all the
index plans are created, index plans minimizer will take care of the plans and remove
redundant index plans. Finally, an index table will be generated according to the

minimized index plans. We will discuss details of this indexing mechanism in section 5.2.

44

Body predicates
reordering Re-ordered rute —m Index plan creator
processor I

Originalrules ~——p

Index plans

Index plans
minimizer

inimized index plans

Z

Index creator

Indices table

Figure 4.3: Index creation procedure

4.3 Query Optimizer Component

After the transformation done by DT, rules are further transformed by the Query
Optimizer (QO) using rule rewriting, predicates reordering, depending on what kind of

optimization technique is to be applied.

The query optimization applied in our system is actually a “combined” query technique,
in the sense that it considers static and dynamic optimization methods together. During
the compilation period, QO applies static optimization methods such as predicate
reordering and rule rewriting. During the evaluation, it further considers and incorporates
run-time query optimization method, e.g., the Semi-Naive with Partition (SNP) method.
The QO dynamically switches the evaluation method between SNP and SN, based on the

dynamic cost evaluation (see section 5.3.3).

Notice that even though a p-program is declarative rather than procedural, some
optimization techniques may modify it into a procedural optimized program. For
instance, stratification technique partitions a p-program into several strata and evaluates

them stratum-by-stratum in sequence of lower-stratum-first. On the other hand, SN and

45

SNP strategies require some rules in the program not to be evaluated at some iterations.
All such requirements make the evaluation procedural. To determine how the rules
should be evaluated and in what order, the QO will attach some annotations or directives

to each rule. The Query Processor will interpret these annotations at run-time.

For the bottom-up Naive evaluation, there is no optimization to be done by the query
optimizer. The rules of an input program are simply passed to the evaluation processor as

the output of the query optimizer.

4.4 Query Processor Component

Query Processor (QP) is the core of our system. It takes as input the annotated optimized
program, generated by QO, and the EDB facts. The annotations in the optimized program
provide the execution hints and directives to the QO to execute the program. The
processor computes the selected rules by fetching the matched facts and do so iteration by
iteration until no more “improved” fact-certainty pair is generated. When the fixpoint is
reached, the processing terminates and returns the fact-certainty pairs that satisfy the
binding patterns in the query. Figure 4.4 shows the interaction among subcomponents of

QP.

Considering the fact that the number of body predicates is unknown in advance, we

employ a recursive technique for QP.

Meanwhile, our program evaluator has well-defined “get-next-rule” and “get-next-fact”
interfaces with DM to access the rule table, EDB table, and the IDB table. These

interfaces are independent of how those tables are defined, which allows a user to choose

46

different optimization techniques to evaluate the input programs. This is useful as it

might need to change the structures of data representation in the future.

| |

rutles facts

+

> Rule Selector FactSelector

i-—Selected rule TSelecled facts———-l

Generated atoms —p

ResultGenerator

FixpointChecker —————Facttable

(Terminator ’

Figure 4.4: Program evaluation procedure

Unlike the fixpoint checker in classical deductive database system, such as CORAL [27],
our fixpoint checker not only checks whether some new facts are generated at a particular
iteration, but also checks whether the certainty associated with each fact is improved.
That is, the notion of “new” is extended in our context, compared to the standard case.
Therefore, the evaluation will continue if some certainties are improved while no new
fact is generated. Because of the continuity property of the fixpoint operator Tp of the
parametric framework, some facts may improve continuously, causing the evaluation to
terminate only at ® [19]. To terminate the evaluation properly and reasonably, we
introduced a limit, or a precision, to certainties. In this situation, we defined that an
evaluation is considered reaching the fixpoint once the improvement of all certainties are

smaller than the precision.

47

4.5 Library Manager Component

The Library Manager (LM) is a relatively independent component in our system in the
sense that it is not concerned much with program’s evaluation. It is an interface
introduced to support user’s interaction with the system to add new desired combination
functions. There are three categories of certainty combination functions in a p-program:
disjunction functions, propagation functions, and conjunction functions [19]. The most
popular functions are maximum (max), minimum (min), product (*) and the probability
independent function (ind) [36, 19]. These functions are already introduced in the
functions library. However, users may need to define and use new functions to do
certainty computations, as long as these functions satisfy certain properties required [19].
LM is specially designed for this purpose. Users may store their function(s) into a text
file and include it in the library. LM then reads this function definition and embeds it into
the library source file. Finally, the library source file is recompiled and linked to our

system.

48

Chapter §

System Implementation

We have two implementations of our system: in Windows and in Unix, both in C/C++
language. In both, we implement a fragment of the parametric framework over the
certainty domain [0, 1] and with arguments of string data type only. Extending the
implementation to support other data types and other certainty domain should be easy and

should not pose new technical challenges, we believe.

In our implementation, we split the system into several subsystems according to the
system architecture described in chapter 4, and provide a set of interfaces to each
subsystem. We will highlight several key issues in some subsystem’s implementation and

provide some technical details of the development of these subsystems.

5.1 Data Representation

The choice of suitable data structures for efficient data representation, search, and access
is crucial. We have used C++ classes or C structures to implement our deductive
databases with uncertainty. We used C++ classes for the data types that need to be
initialized with the default values, and used structures in C for others. During defining
data types, pointers are widely applied for two reasons: 1) dynamically allocate main
memory for data and, 2) save main memory usage and hence increase the efficiency. For
example, Figure 5.1 shows how a fact-certainty pair p(10,3): 0.5 is represented internally.

This fact has “p” as its name, and “10” and “3” as its first and second terms. The certainty

49

of this atom is 0.5. The detail explanation of data representation will be presented in the

following sections.

Relation list

___.> : name L - __->
f""!‘__l I_—!'---'I
e frooo :
M A beememn ' A 4
) : J 10
T .
N . . A v
: X , : term * A ,
N . S ! !
; ! J : term * ~ :
E ______ J: E. ______ E certainty 05 \ +
____________ certainty o 3
Atom hash table
Atom v
p(10, 3): 0.5 Dictionary

Figure 5.1: Internal representation of p(10,3): 0.5

5.1.1 Representation of Dictionary

The Dictionary in our system is a set of constants that may occur in the input program. It
includes constants in the program facts and rules. The member of Dictionary is in
primitive data types. In our system, they are implemented as string data type (for terms
and predicate names) and real number (for certainty). The reason for our choice of these
data types is for the ease of implementation and the parametric framework does not

consider functional terms. Furthermore, since the certainty derivation involves

50

combination functions, the certainties are represented as real number in [0, 1]. In our

system, the Dictionary is implemented as a linked list (see Figure 5.1).

The fixpoint evaluation looks at the input rules and the EDB facts, and generates IDB
facts. However, the introduction of the Dictionary in our implementation helps to avoid
copying terms and reduces memory requirement. For example, if we do not create
Dictionary for an input program, the EDB facts must be stored with all its terms. Assume
that there are two facts: study in(John, Concordia University) and study in(Mark,
Concordia University) to be stored, the system has to store the term
“Concordia_University” twice, one for each fact. If there are a thousénd persons who are
studying in Concordia, then the term “Concordia_University” is to be copied a thousand
times. This will need much time to create and more space to store. On contrast to creating
many copies of the same term, the system may create a Dictionary for the input program;
only one copy of each term is stored. In case of storing a fact, no term copy is generated

but a pointer to the corresponding element in Dictionary.

In addition to avoiding term reconstruction, the structure of the dictionary also provides
increased efficiency when we need to compare two terms during evaluation. Moreover, in
case two terms of type string are compared, it is not needed to check them character-by-
character but just to check whether they refer to the same memory location. The memory

address comparison is faster than string comparison, especially for long strings.

5.1.2 Representation of Atoms

In logic programming and deductive databases, an atom is also called a fact. It

correspondsi to “tuple” in relational databases. There are two kinds of atoms in deductive

51

databases: extensional data base (EDB) facts and intensional database (IDB) facts. EDB
facts are those atoms that are explicitly introduced by the user in the program, whereas
IDB facts are those that are derived from the input program. In our system prototype, data
structures of these two kinds of atoms are identical, and treated similarly during the

fixpoint evaluation.

In our implementation, all the atoms are defined as the objects of a C++ class fact. The
atom definition in our system can be considered as a fact-certainty pair. The structure of
the “fact” part is similar to the definition of fact in the standard case. A main difference
with the standard case is that we also record the certainty associated with the atoms. This
information is stored in “certainty” part of the pair. There are two certainty values for
each atom object: the certainty assigned at the beginning of the current iteration (called
supported certainty) and the certainty generated at the current iteration (which we call
generated certainty). The supported certainty is used by the conjunctions function for a
successful derivation, and the generated certainty records the result of applying the

disjunction functions at the current evaluation iteration.

For each atom object, there is an array listing the terms that the object holds. As
mentioned earlier, the term array contains no copies of the list of the terms but a list of
pointers to the elements of the Dictionary. Since non-ground facts are not allowed, the
terms of a fact are all constants. Therefore, every pointer will be pointing to specific
element of the Dictionary. Since the arity of each predicate is fixed, it is both convenient

to implement the list of terms as an array, which is efficient for searching the terms.

52

Note that we do not define the predicate name for each atom. This is because, as shown
in Figure 5.1, all the atoms are grouped according to their predicate name. Each category

of atoms forms a relation. The relation name is exactly as the predicate name.

S5.1.3 Representations of Relations and Fact Table

A relation corresponds to a set of atoms with the same predicate name. The predicate
name is the name of that relation. Different fixpoint evaluation techniques may require
different information to be kept for each relation. However, the basic structure is the
same for the relations. For instance, each relation has a name, definition (EDB or IDB)
and a structure containing its tuples. There are two kinds of such structures in our system:
linked list and hash table. As we were interested to measure our indexing method, we had
to support “pure” Naive evaluation, which does not use any index. In this situation,
linked list is the best structure suitable to implement the relations, i.¢., the fact tables. On
the other hand, when using indices, as in SN and SNP, we use hash tables to implement
relations. Hash table is widely described as an efficient storage structure for in main-
memory data [22, 30]. In the rest of this section, we will focus on the structure of hashed

relations and fact tables.

To construct a hash table, the first task is to determine the hash key. In our prototype, we
consider for each atom, its first argument as the default key for the corresponding
relation. We do not want to take the whole set of terms as hash-key for the purpose of
avoiding the overhead of combining those terms into a key. As mentioned before, the
data type of all terms is string. However, the output of a hash function is usually an
integer. Therefore, a conversion from string to integer must be done. Unfortunately, not

every conversion function is desirable. For instance, consider a simple conversion that

53

returns the sum of all ASCII codes of the characters in the string. This function returns
the same value for strings “abc”, “cba”, and “acb”, hence resulting in collision. Instead,
we could use a hash function that randomizes the input to reduce the collision, yet is
efficient to compute. For any input string, we use the following hash function, which uses

{8, 3, 2} as the set of factors:

For every character X in position n of the input string, let

ASCII(X)*8 if nmod3=0;
m=34 ASCII(X)*3 if nmod3=1;
ASCII(X)*2 if nmod3=2;

the hash-key is then defined as Zm .

Notice that this conversion function does not guarantee a collision-free hashing operation,
but improves the situation. For example, strings “abc”, “cba” and “acb” are converted to

1268, 1280 and 1269, respectively.

Selecting a hash function and the hash size are issues dealt with before locating data into

hash table. We simply chose a hash function: 4(key) = key mod hash _size .

For each entry of the hash table, there exists a sub-linked-list such that all atoms hashed
into this cell are linked into this sub-linked-list. The size of each sub-linked-list is
determined by the distribution of atoms and the hash-size. Since searching the terms in
each sub-linked-list is sequential, a short list and therefore a large hash-size are preferred.
However, too large hash-size might cause a waste of space in the hash table and a high
maintenance cost. So, depending on the input program, the hash-size is determined
dynamically. To simplify our implementation, we would like to let users to choose

specific hash-size. Our default value for the hash-size is 131.

54

For Naive and Semi-Naive techniques, relations are kept as integrated entities. However,
for Semi-Naive with Partition, IDB relations are partitioned into two parts: “improved”
part and “non-improved” part. Under this scheme, it is not necessary to maintain two
portioned relations for each IDB relation. We only need to create indices for each
partition while keeping one copy of the whole relation. A benefit of this organization is
that we can avoid duplicated creation and maintenance of IDB relations. The creation of

partition indices pays off by applying these indices for efficient join of relations.

To have a uniform access, all relations are clustered together. The integration of all
relations is called a fact table. It contains all the atoms (EDB and IDB) of a given
program. In our implementation, the fact table is constructed as a list of relations, except
for the stratification technique, which is a list of stratum and each stratum contains a sub-
list of relations that are in the same stratum. Figure 5.1 shows the structure of fact table
and illustrates how a relation links to another one. To search for a relation, we use
sequential search. Since the number of relations is often much less than the number of
tuples in the relation, it is not necessary to build an index for the relations list. As an
efficient insertion for linked list, all new relations are inserted simply at the head of the

relation list (or suitable stratum sub-list).

Even for input programs with a large number of relations, in most cases, we do not need
to worry about the inefficiency due to sequential search (without index). This is because
many input programs are stratifiable and their evaluation is done stratum by stratum from
lowest level to the highest level. For the evaluation of each stratum, the size of the related

relation list of a stratum is still small.

55

S.1.4 Representation of Rules and Rule Table

A rule in our DDB+Uncertainty is implemented as a list of predicates. It contains three
parts: metadata, rule head, and rule body. The metadata contains particular information
about a rule. This includes rule ID, rule certainty, and the combination functions
associated with the rule. Rule head indicates the relations to which the derived atoms
belong and the source of each term. Rule body says how relations join to generate an
atom for the head. Notice that, basically, the result of joins of relations is independent
from the sequence of joins, but our system evaluates the joins from left to right. This
sequence, on the other hand, is important for creation of indices. A particular order of
body relations should be chosen to reduce the number of indices. This issue is studied in

section 5.2.

Note that, each EDB fact is considered as a special rule with an empty body, interpreted
as being true, always, and the propagation and conjunction functions being min or *. In
our implementation, EDB facts are excluded from considering them as rules when
applying Semi-Naive methods. This is because they need not to be reevaluated once they
are inserted into the facts table at compile time; their associated certainty will never
change during the fixpoint evaluation. Hence, the rule table contains only rules that have

some EDB or IDB predicate(s) in the body.

Another important point to mention here is that different evaluation techniques require
different extra information to be included in the rule metadata to facilitate their
evaluation. In Figure 5.2, we show the internal representation of the rules in the following

input program, Ps ;:

56

p(X.Y) (———98— e(X,Y);(min, *, max).

p(X,Y) eﬂ— e(X,Z),p(Z,Y); (min, *, max).

In the rest of this section, we will discuss some features of each part of a rule

representation for different techniques.

rule head rule body
D 1 name p term X term Y __> name e term X term Z | name p term Z term Y é
con min result * I indext * l index * I i
N Ve N V i
Pro % Result table Index Index
dis max
certainty 05
I Re-written rules
D 0 name p term X term Y ,_> name e term X term Y
con m in result * i result * l
v N
Pro Result table Index
dis max
certainty 05
Re-written rules
]
metadata

Figure 5.2: Internal representation of program Ps ;

The basic components of metadata are rule ID, rule certainty, and combination functions.
These are the information we need for the Naive evaluation method. In our

implementation, the data structure of the combination functions is an array with three

57

elements, through which, we can access any one of the associated combination functions

quickly.

Besides rule ID and combination functions, SN and SNP need other information about
each rule. As mentioned in chapter 3, for SN fixpoint evaluation, only those rules having
something “new” in their bodies will be evaluated at a particular iteration. A Boolean
expression is used for each rule to indicate whether it is to be fired or not. On the other
hand, for SNP evaluation, a rule should be rewritten into a set of new rules in which the
IDB relations are partitioned into two parts: the “improved” part and the “non-improved”
part. Details of this rule rewriting will be discussed later. Consequently, the data
structure of rule metadata should indicate which set of rules is the rewriting result of

which rule. In our system, this is indicated through a pointer to the set of re-written rules.

In our implementation, the rule head links to the rule metadata. The basic components in
a rule head include predicate name and terms (variables and constants). Similar to the
data structure of terms in atoms, an array is used to store information about the head
predicate. Since different predicates may have different arities, we use dynamic arrays as

the data structure of the head predicate for the purpose of convenience and efficiency.

The main difference of the structure of the rule head in Naive and SN evaluations is that
the latter requires a particular result table for each rule, whereas this is not the case in the
former. For the Naive evaluation, all derived atoms are stored in the fact table. There is
no need to keep a record to indicate which rule generates which atoms. On the other
hand, the SN method requires bookkeeping for each rule. For instance, in case some rules

need not to be fired because they will not generate “new” thing at a particular evaluation

58

iteration, we take the bookkeeping as the result of these rules. In our system, all the tuples

generated by a particular rule are stored in a hash table.

Rule body is the last part in the rule list. It contains a list of subgoals in a particular order.
The length of the rule body for each rule depends on the number of its subgoals. Even
though the rule body can be created as a dynamic array, we implemented it as a linked list
since the main operation on rule body is scanning rather than extraction. Furthermore, the
input program is declarative, i.e., the user needs not worry about the order of rules in a
program or the order of subgoals in a rule body. On the other hand, the evaluation of
programs is procedural, and hence it is the system’s responsibility to re-order the input
program for efficiency reason. Reordering of subgoals in the body of a rule is done
through operations of deletion and insertion. These operations are expensive, in general,
on arrays, as they require shifting the entries in the array. Unlike array, linked list enjoys
a very efficient implementation for both insertion and deletion in our context. The

complexity of these operation is just O(1).

The data structure of each subgoal is the same as that of a rule head except that body
predicate maintains a pointer to applicable index while the rule head keeps a pointer to its

result table.

The data structure of the rule table is implemented simply as a linked list to facilitate rule
re-ordering. Currently, all the rules are designed to be evaluated one-by-one from head to
tail. If a stratification strategy is not applied, the specific order of rules is not required.
We may simply consider the original rule order for the fixpoint evaluation. However,
with the stratification strategy, the input rules must be reordered according to the order

determined. The order is immaterial for the rules in the same stratum. There are two

59

design options to support the stratification. One is reordering the existing rule table and
the other is to keep the rule table as is but creating a stratum table with pointers to the
rules in rule table. We do not support stratification in our current implementation and

hence the order of rules is kept as the original one.

5.1.5 Representation of Indices

Since all relations in our system are stored in Main-Memory, we use hash-based indices
on a subset of the arguments of a relation. From Figure 4.3 shown in chapter 4, we can
see that there is a supplementary internal data, the index plan, to help creation of indices.
Totally, we have defined and used four main data representation: index plan, plan table,

index, and index table.

Before creating an index, a corresponding index plan is created first. The index
preparation contains the following pieces of information: (1) constrains of the arguments,
(2) the subset of arguments for the index, and (3) a set of subgoals that the index is going
to be applied to. These three kinds of information are stored in three linked lists
respectively. Notice that the sequence of arguments on which we create an index is
important because of the key conversion function, while the sequence of the other two
lists is immaterial. The selected arguments in the sequence are converted to integers and
summed together to form the argument of the index hash function. The procedure is the

same as discussed in section 5.1.3, except that we allow multi-arguments here.

Figure 5.3 shows an example of index plan. The index plan is for p(X,Y,1,X) and this
plan is applicable for the third body predicate in rule 2, and the fifth body predicate in

rule 8. Furthermore, the list of constraints in this index plan indicates that the first and

60

fourth terms are identical and the third term is a constant with value “1.” The index plan
also shows that two arguments, the first and second terms, in sequence, are combined to
form the key of the index. This information will help the reordering procedure for the
body predicates to reorder the other rules so that as many body predicates as possible can

share the same index structure.

Name: p
Arguments* 9st 2nd
; * | RuleiD=2 | Rule ID=8
Applied to position=3 position=5

Figure 5.3: An example of Index plan

The index plan table is a partially ordered linked list. All index plans sharing the same
predicate name are clustered together, while the order inside each cluster is immaterial.
Clustering the index plans helps to facilitate the plan search. For example, while the
system tries to create an index plan for relation “p”, it first looks at the plan table to check
whether the same plan has been already created. Without plan clustering, the system

needs to scan the whole index plan table. With clustered plans, however, the system

needs only to scan the index plans of relation “p.”

The representation of indices and index table are similar to that of index plan and plan
table, respectively. The difference is that the data structure for indices maintains an extra
pointer to a hash table, which stores the corresponding index. In our current system, all
the index hash tables have the same hash-size, which simplified our implementation of

the indices, while it may waste some space and increase the cost of indexing.

61

5.2 Index Creation

Indexing is a basic optimization technique in databases and choosing a “right” index is a
challenging issue. There is a big difference for choosing an index between relational
databases and deductive databases. For relational databases, choosing extra indices on a
relation are guided by the statistics on frequencies of different queries; indexing is based
on those most frequent queries. It is usually the user’s responsibility to tell the DBMS
explicitly which index should be created. Since queries to relational database instances
are often submitted after indexing is done, some new queries may not benefit from
existing indices. Unlike in relational databases, the set of rules in a deductive database
instance can be considered as a set of queries. These rules are recognized before indices
are created and usually need to be evaluated many times. Therefore, it provides an
opportunity to DDB to create a set of indices that exactly satisfy the requirements of a
deductive database instance. To create a set of desired indices, our system creates a set of
index plans first, then reduces duplicated plans, and finally creates indices according to

the index plans.

S5.2.1 Index Plan Creation

To create an index plan, the first problem to be solved is to determine on which
arguments the indices should be built. Obviously, indices should be built on those
common arguments (or attributes) that share the same variable(s) so that they help joining
relations. We call such kind of indexing as common attribute indexing. As an example

(Ps.2), let us consider a rule:

sge(X,Y) <1— parent(X, X1),sge(X1, Y1), parent(Y, Y1), (min, min, ind>.

62

where X/ and Y/ are shared variables. The second argument of “parent” and the first
argument of “sgc” are common argument X/. Similarly, the first argument of “sgc” and
the second argument of “parent” are common argument too, Y/. So, three indices should
be created for this rule. The second argument of “parent” and each argument of “sgc” will
be taken as keys for the indices, respectively. During the evaluation (from left to right),
the index on the second argument of “parent” and the one on the first argument of “sgc”
are used for index join. The result of the join of relations “parent” and “sgc” is then
joined with the second occurrence of relation “parent”, using the indices on the second

argument of “parent.”

Creating indices on common attribute(s) are at the relation level. This means that every
fact in a relation must be assigned an index. However, in some cases, not every fact needs

to be assigned an index. Let us consider the following example (Ps 3):
0.5 .
p(X,Y)«——q(X,1,Y),s(Y,Z, Z);(min,*, max).
0.5 .
q(2,1,3)«—; (_, min, max).

q(2,2, 3)(—(—)45—; (_, min, max}.

s(3,5,5) <—9£—; <_» min, max).

$(3.5,6) 2 (_, min, max).

For common attribute indexing, only the third argument Y of “q” and the first argument
of “s” are determined as the keys of the corresponding indices. However, it is easy to see
that the fact s(3,5,6) :0.5 never participates in a successful join since its second and third
arguments are different. Hence, this kind of facts should be excluded when using indices.

Based on this observation, a so-called equality constraint needs to be considered to avoid

63

660>
S

such kind of unnecessary indexing. In this case, only a sub-set of relation “s”, in which
equality constraint holds on the second and third arguments, is considered when we

construct an index on its first argument.

There is another constraint which we refer to as constant constraint, which needs to be
considered during indexing. As shown in example Ps;, not all the “q” facts will
participate in a successful join; only those “q” facts that have value “1” at the second
argument are considered as candidates for the join. In this case, the constant constraint for

(19}

q” is that the value of its second argument must be 1. Index should be created on the

e 9

third argument of tuples ¢ in “q” such that the value of the second argument of ¢ is “1.”

If we look at the mechanism of a join deeply, we will find that, the arguments on which
an index is created are actually those with bound values. When performing a join, if a
tuple from the relation on the left is taken, then the common attribute(s) would be bound
by some value. Hence a matched tuple in the relation on the right hand side must hold the
bound value(s) in its common attribute(s). To complete a join of two relations, all tuples
in the left-hand-side relation must be scanned one-by-one [22]. Since all tuples on left
hand side relation need to be scanned, it is unnecessary to create an index for that relation
unless there is some constraint on it. Furthermore, we can recognize a variable in a
relation would be bound if this variable does appear in the relations locating on the left of
this relation in a rule (based on the particular evaluation order from left to right, in our
case). Otherwise, the variable not appearing in the relations on the left is free, i.e.,
unbound. Based on these observations, it is not hard to convince ourselves that, given a
rule in deductive databases, the maximum number of indices needed to be created is the

number of body predicates containing some common attribute(s) minus one if the first

64

predicate has no constraints. When the first predicate has some constraints, we need
exactly as many indices as the number of body predicates containing some common

attribute(s).

5.2.2 Reordering Body Predicates

While we benefit from indexing, the cost of index creation and maintenance should not
be ignored. For a more efficient evaluation, we should try to reduce the number of
indices. One straightforward method to do this is to move a non-constraint predicate as
the left most atom in the rule body. Since the first predicate does not contain any

constraint, we do not need an index for it. This reduces the number of indices by one.

Note that, except the first predicate, for every other predicate containing some common
attributes, we need exactly one index to facilitate the joins. To further reduce the number
of indices on a rule, some indices must be applied more than once. This means that body
predicates should be reordered according to some particular sequence so that some
predicates could share the same index. Let us consider example Ps; again. Keeping the
original order, we need to create two indices: one on the first argument of “sgc” and
another on the second argument of “parent”(the second occurrence). If the body

predicates are re-ordered, we get the following rule:

sge(X,Y) (—Oi—— sge(X 1, Y1), parent(X, X1), parent(Y,Y1); <min, *, max).

we only need one index on this rule: on the second argument of “parent.” It shows that a
suitable order of body predicates may reduce the number of necessary indices. We call
this technique as the body predicate reordering. The basic idea here is to share indices by

predicate reordering.

65

It is of cause possible to extend this technique to programs with multiple rules, as long as
they have some predicates that appear more than once as body predicates. These ideas are
formally expressed as an algorithm for body predicate reordering, shown in Figure 5.4.
The input of this algorithm is a set R of rules. The output includes (1) a set R’ of
reordered rules, obtained from R, and (2) a plan, defined as a set of index plans. An index
plan has the form (p, v, ¢), where p is a predicate name, v is a subset of its arguments, and
¢ is a set of constraints. If p(Xj,...,X,) is an atom in a rule, then we use p(p) to denote the
predicate of p, where p = { Xj,...,X; }.

procedure: predicate re-ordering (R; R’, Plan)

forall r: h(v)«Z-by(v1),... bu(va); <fs, £, f>€ R
Wait := {b(v)| be{ bi__ by} A3(b, v’, ¢)ePlan };

New := {b(v)|be{ b bn} A V(b,V’, c)gPlan};
Bound := J;

L= W N =

Tnew := h(V) 49—-;<fd, fp, £
loop
forall b(v)e Wait
if (3(b, v’, ¢)ePlan A v’ = v N Bound) A ¢ = constraints in b(v)
5 locate predicate(ryew, b(v), New, Wait, Bound);
end if
end forall
if New = &
pick any p(1) eNew;
Plan := Plan U (p, 1 N Bound, ¢); where c is constraints of p(u)
7 locate predicate(ryew, p(1), New, Wait, Bound);
end if
else
pick any b(p) e Wait;
8 Plan := Plan U (b, p m Bound, ¢); where c is constraints of b()
9 locate predicate(rpew, b(pt), New, Wait, Bound);
end else
until Wait = & A New=
10 append_rule(R’, rpew);
end forall
end procedure

)

Figure 5.4: An algorithm for body predicate re-ordering

66

Our re-ordering technique partitions the body predicates of a rule into two disjoint
categories: Wait predicates and New predicates (lines 1, 2). The Wait predicates are those
that have some index plans but none is applicable in the current situation, while New
predicates are those that are not indexed yet. Obviously, only Wait predicates have the
opportunity to share some existing indices through reordering. All New predicates need
new index plans. Once an index plan for a New predicate is determined, the status of
some New predicates may change. Some New predicates may move from New predicates
to Wait predicates if they have an index plan. An update is required for both New and
Wait predicates (see procedure locate predicate in Figure 5.5). Another significance of
creating an index plan is that it changes the status of some free variables to bound.
Therefore, some Wait predicates may get a chance to share existing indices and thus
added to the tail of the current reordered rule rpew (line 5). In case no Wait predicate can
share the existing indices, a New predicate is picked up and appended to rpew (lines 6, 7).
If no New predicate remains, unfortunately, one of Wait predicates would be chosen to
change the situation of the index plan and the status of the remaining unbound variables
(lines 8, 9). Hopefully, the remaining Wait predicates may benefit from these changes.
Reordering of the predicates in a rule body is completed when all Wait and New
predicates are considered. This reordering of predicates is done for all rules in the given

program, one by one.

Notice that our re-ordering technique does not guarantee that the reordered program
generates the minimum number of indices. This is because our technique ignores the

order of rules and the selection order of New predicate when a new index plan is to be

67

created. However, considering these two issues in our algorithm would perhaps make it

very expensive and hence not be pursued.

procedure: locate _predicate(ryew, p(1t), New, Wait, Bound)

if p(p)e Wait

Wait := Wait — { p(p) };
end if
else

Wait := Wait U {b(v)| b=p A b(v) € New};
New := New- Wait;
end else

append_body(tnew, P(W);
Bound = Bound U {var | varep};
end procedure

Figure 5.5: The procedure of locate predicate

5.2.3 Index Containment and Index Creation

When creating index plans, a category of index plans attracted our attention. Some index
plans are on the same predicate with identical set of arguments as index keys but different
constraints. In this situation, it’s possible that one uniform set of constraints may help to
integrate these index plans into a single index plan such that all the facts that satisfy any
of these index plans also satisfy this single index plan. We called this single index plan
contains other index plans. To be precise, index plan A contains index plan B if and only
if 1) A and B are on the same predicate and same arguments, and 2) the facts satisfy the
constraints in B also satisfy the constraints in A. In our system, if index plan 4 contains
index plan B, index plan B will be replaced by 4 and plan B can be ignored. The creation

of index B is saved.

Let us conduct partially ordered sets, called index constraints, as follows:

< Plan(p,v), <>, where Plan(p,v) is a set of index plans created for the same subset

68

of arguments v of the same relation p. For A4, B e Plan(p,v), we say B < A4 iff plan 4
contains plan B. Obviously, the upper bound of a partially ordered set contains all the
index plans in this set. A desired index plan for a partially ordered set of index plans is its
least upper bound (lub). So, looking for a uniform set of constraints to create a single

index plan is actually looking for the least upper bound of constraints.

There are two cases for finding the lub(Plan(p,v)) of an index plan set Plan(p,v). One
is that lub(Plan(p,v)) is one of the existing plans. In this case, we simply take this index
plan as our desired index plan for Plan(p,v). For example, consider Plan(p,v)

contains three index plans:

A: (p, <1%,27>), 4" = 5" 314 =1
B: (p’ <15t7 2nd >), 4th = Sth
C: (p, <1%,2">), 47 = 50 310 =5

All these index plans are about predicate p and on the 1% and 2™ arguments. All plans
require the 4™ argument to be equal to the 5™. Plan A further requires that the 3™
argument has value 1 and plan C requires the 3™ argument to be identical to the 5™ It is
not hard to see that every fact that satisfies 4 and C also satisfies B. The constraints of

plan B is the lub(Plan(p,v)) in this case. Hence plan B is kept. Plans 4 and C are

ignored in our system.

Another case of finding the least upper bound is a bit complicated. There is no index plan

in the partially ordered set Plan(p,v) that can be considered as the least upper bound. In
this situation, the least upper bound of Plan(p,v) is constructed and added to
Plan(p,v) . For example, consider the following three index plans:

E: (p,<1%,2">), 4" =5" 39=1’

69

F: (p’ <15t9 2nd >)9 4th = Sth, 3rd :727
G: (p, <1%, 2 >), 4" = 5" 3rd g

Plans E and G are the same as 4 and C in the previous example. Compared to B, plan F
has one extra constraint: the 3™ argument should have value 2. Now, unlike B, plan F is

not the least upper bound because £ £#F and G A F. Actually, none of these plan

contains others. Therefore, A new index plan, New plan, should be built as their least
upper bound. That is:

New plan: (p, <1%,2™>), 4" =35" 314 =1y 3=y 39=35"
This new plan that contains E, F, and G is then inserted into the plan table and plans E, F
and G are ignored. Notice that, even though the new plan may have a large size (of the
number of the satisfied facts) in a relation, compared to plans E, F, and G, its size is not
larger than the sum of these three plans. Therefore, in this case, selecting the least upper

bound still pays oft.

Using the notion of index containment, our system can further reduce the number of
indices, which in turn reduces the cost of indexing. Once the final index plans are
determined, the index creation becomes simple. All the facts in the fact table are scanned
and their addresses are stored in suitable positions in the hashed index table, for each

applicable index.

3.3 Query Optimization

During the last two decades, a number of query optimization strategies have been
introduced and implemented developed for the standard deductive databases [10, 5, 13,

26, 12, 15, 9, 28]. These strategies can be classified into top-down and bottom-up

70

optimization. However, neither of these techniques is directly applicable to deductive
databases with uncertainty. The main reason is that they are set-based, while we need
multiset-based techniques, in general, for DDB+Uncertainty. In our system
implementation, we consider various techniques, including multiset-based Semi-Naive
and Semi-Naive with Partition methods to increase the efficiency of programs’
evaluation. The stratification method is almost done; we need to complete the interface
between query processing and optimization modules, which we are currently working on.
In chapter 3, we described the algorithms for Semi-Naive (SN), Semi-Naive with
Partition (SNP) and the desired stratification. We will discuss implementation details of

these techniques in following sections.

5.3.1 Rule Rewriting Technique

As discussed in chapter 3, the SNP method tries to avoid repeated derivation by focusing
on inferring improved fact-certainty pairs. By improved, we mean a new fact or old fact
with better certainty. We point out that derivations of improved fact-certainty pairs can
originate from the joins of atoms in which at least one atom is improved at the last
iteration. Based on this point, we use similar ideas of rule rewriting introduced for

Datalog [3, 2, 8] in our context. Let us consider the following p-program:
tl: p(X, Y) —— e(X, Y): < fus 0o fu >
121 qX, Y) ¢——e(X, Y); < fur) S >
B3 pX, Y) e p(X, V,Z)< fis fs fo >

39w 66 090

where “e* is EDB predicate and “p” and “q” are IDB predicates.

71

Clearly, the definition of “e” does not change during the evaluation, while the definitions

[6627

of “p” and “q” may change. So rules rl and r2 yield new fact-certainty pairs for “p” and
“q” only at iteration 1. For other iterations, no new fact-certainty pairs will be inferred by
these two rules since there are no new fact-certainty pairs for “e.” For r3, only the joins of

66 %% (3P}

improved fact-certainty pairs of “p” or “q” may yield new fact-certainty pairs. If we

[3We)]

partition “p” and “q” into two parts: A and A, where A contains all the improved fact-
certainty pairs in a relation and A holds the rest of the fact-certainty pairs in that relation,
r3 can be rewritten to as follows:

315 p(X, V) — ApX, Y),9(Z Y); < fis /s />

13_2: p(X,Y) ¢ Ap(X, Y),AQZ,Y); < fon £, o >

13_3: p(X, V) ¢—— Ap(X, Y), AQZ, Y)Y < fi, £, />

at every iteration i, the result of r3 is equivalent to that of rewritten rules. If we look at the
re-written rules carefully, we find that the evaluation of rule r3 3 is redundant since it
involves joins of non-improved fact-certainty pairs in “p” and “q” and is done at some

previous iterations. So we can bookkeep the result of r3_3 and avoid its evaluation.

We now present our rewriting technique based on the aforementioned idea, for the
general case. Let P be a p-program over EDB predicates B’s and IDB predicates T’s.

Consider the following rule in P.

S() € Z—B, (0)srs By 0). Ty (7))o T (T ;< fs S s [>

This rule can be rewritten as the following set of rules:

0 S(U) By (0 By 0 ATy (7)), Ty (2 Yoo Ty (£)< fos f s fo >

72

o
It () B, (1) B, 0,) AT, (7)), AT, (7,,),
AT (7)) Ty (T Dseees T (T)i < Sas fn fo >

Lot S() B0)oers By (0)s AT ())y ooy ATy () T (0 i< S f s o >

Lot S B, (0))srres B, (0 AT (5))soos ATy (20)5 < fas for £ >
This kind of rule rewriting has been shown to be equivalent to the original rule for
classical Datalog rules. However, recall that the evaluation of classical deductive
database programs is set-based rather than multi-set-based. We next prove the correctness

of this rewriting in our context before applying this technique.

Theorem 6 The rewritten rules generated by the rewriting technique above produce the
same multiset-based result as the original rules.

Proof:

First of all, note that the rewriting technique is not concerned with combination functions
in the rule. These functions are used when evaluating the rules. Therefore, if all the
inferences of the originéll rule are kept by corresponding rewritten rules, the theorem is

proved.

The result of the evaluation of a rule can be considered as the multiset-based extension of
the head predicate. This multiset-contains all the result of joins of body predicates. For a
general rule above, the body can be considered as a sequence of joins (for convenience,

we ignore the argument list of the predicates):

BiX B, X.. X B, X T, X T, X.. X T, (1)

73

If the IDB predicate T is partitioned into A and A, as shown earlier, expression (1) can be

re-expressed as:
BiX ... XB,X(AT; UAT) X T,... X T, 2)
This expression can be further transformed into:

B ... X B,)AT, X ... X T, (3.1
UBMNX ...)XIB,XAT, X ... X Tny 3 2)

This expression shows that the original rule is equivalent to the union of two rules (3_1
and 3 2). Notice that this union is the multiset union, which retains duplicates. Now,
consider sub-expression in formula 3 2. If we further partition T, into the “proved” and
“non-improved” parts, this sub-expression can be further transformed into:
BX ... X B,AT, X AT,... X T, 321
U BIX ... X B, XAT, X AT,... X Ty, (3.2.2)
If we continue this transformation until all the IDB predicates are partitioned, expression

(1) would be rewritten as the following multiset union of sub expressions:

BX ... XB, AT, X T, ... X T,
w BN ... XB,MAT;XAT,X Ts... X T,

u BX ... XB,XAT, X AT,X AT;... X T,

v BX ... XB,XAT, X AT,X ... XAT,,

74

This set of multiset unions contains m+/ sub-expressions, which can be considered as a
set of rules with the same head. Each sub-expression forms a body of a rewritten rule.

The rewritten rules are the same as described above, and hence not reproduced here.

The correctness of our transformation above based on multiset concept follows, upon

noting that the transformation respects the multiset-based operation of union and join. 0

If we look at the rewritten rule r,,+;, we may note that no joins in this rule involve any
new facts. That is, the evaluation of this re-written rule is completely redundant. If we
have a proper bookkeeping of the result of this rewritten rule, its evaluation can be
ignored and the redundancy can be avoided. This is actually the essence of our rule

rewriting.

5.3.2 Information Backtracking

Instead of evaluating an original rule, we evaluate all but the last rewritten rules. At the
completion of each iteration, and before starting a new iteration, the evaluation result is
recorded. This recording allows skipping evaluation of the last rewritten rule. The IDB

predicates are repartitioned at the end of the current iteration to prepare for the next.

The reason for repartitioning is because of the non-monotonicity of non-improved
partitions. Some facts in the non-improved partition might be improved and hence
removed from non-improved partition and added to the improved partition.
Consequently, the related results in the bookkeeping need to be moved out too. This

brings out the problem of bookkeeping maintenance.

The solution for maintaining the bookkeeping strongly depends on the information

associated with the results. It is very easy to update the bookkeeping if they include the

75

information of how they were derived, which means the system not only records the
result (fact-certainty pairs) but also the instance of the tuples involved in the joins, i.c.,
the ground body. In this case, we simply look up the associated ground body of each
record in the bookkeeping and check whether they involve some improved facts. If yes,
this result is removed from the bookkeeping. The following example (Ps,) shows how

the bookkeeping is updated when “enough” information is recorded.

rl: p(X,Y)(l—e(X, Y); < ind, min, min >.
r2: p(X,Y)(—l——p(X,Z),e(Z, Y); < ind, min, min >.
Suppose there are four EDB fact-certainty pairs: (€(1,2): 0.5), (e(2,3): 0.5), (e(1,3):

0.5) and (e(3.4): 0.5). Using our rewriting technique, r2 can be rewritten as:

2 1: p(X, Y)(l—Ap(X ,2),e(Z,Y); < ind, min, min > .

2 2: p(X, Y)(——}———Ap(X ,Z),e(Z,Y); < ind, min, min > .
As mentioned before, r2-2 can be ignored and we only evaluate r2-1. At iteration 1, rl
and r2-1 are evaluated as usual. Since Ap is empty, only rl generates new facts, shown

below, which are book kept for the next iteration.

Bookkeeping = { (p(1,2): 0.5) € (e(1,2): 0.5);
(p(2,3): 0.5) € (e(2,3):0.5);
(p(1,3):0.5) € (e(1,3):0.5);
(p(3,4):0.5) € (e(3,4):0.5)}

We remark that actually, we record only ground rules in this case. Applying the
associated disjunction function, the result is converted from a multi-set to a set, which is

$6_. 20

the extension of “p” at this iteration. All the facts in “p” are new and hence p = Ap.

76

At iteration 2, rl is no longer applied; and we only apply r2-1 at subsequent iterations.
This generates some new facts, shown below:

{ (p(1,3):0.5) € (p(1,2): 0.5),(e(2,3): 0.5);
(p(2,4):0.5) € (p(2,3): 0.5):(e(3,4): 0.5);
(p(1,4):0.5) € (p(1,3):0.5),(e(3,4): 0.5 }

With multiset-based union operation, this result is integrated with the bookkeeping,
generated at the last iteration and forms the new bookkeeping.

Bookkeeping = {(p(1,2): 0.5) € (e(1,2): 0.5);

(p(2,3): 0.5) € (e(2,3): 0.5);

(p(1,3): 0.5) < (e(1,3):0.5);

(p(3,4):0.5) € (e(3,4): 0.5);

(p(1,3): 0.5) < (p(1,2): 0.5),(e(2,3): 0.5);

(p(2,4): 0.5) € (p(2,3): 0.5),(e(3,4): 0.5);

(p(1,4): 0.5) € (p(1,3): 0.5),(e(3,4):0.5) }
Before repartitioning, relation “p” is redefined by combining the results in the
bookkeeping into a set of fact-certainty pairs through the associated disjunction function.
During this redefinition of “p”, fact p(1,3) is identified as being improved, from certainty
0.5 to 0.75. Furthermore, two new facts, p(2,4) and p(1,4), are generated. These three
facts are then added into the improved partition (Ap):

Ap = {(p(1,3): 0.75), (p(2,4): 0.5), (p(1,4): 0.5)}
Since the certainty of p(1,3) is improved, all the related derivations in the bookkeeping
are replaced with the new one. In this example, (p(1,4): 0.5) is inferred using p(1,3) and

hence, we remove the instance (p(1,4): 0.5) € (p(1,3): 0.5), (e(3,4): 0.5) from the

bookkeeping.

At iteration 3, the only derivation we obtain is:

77

(p(1,4):0.5) € (p(1,3): 0.75),(e(3,4): 0.5).
This is added into the bookkeeping and “p” is redefined again. While re-partitioning “p”,

we find that no fact is included in Ap. In this case, no new fact-certainty pair will be

derived in subsequent iterations, and hence the evaluation terminates.

According to this procedure, it is very easy to find and remove the derivations from the
bookkeeping. We simply look at the body of a ground rule to check whether there is any
fact whose certainty is improved. If there is at least one of such facts, remove the record

from bookkeeping while repartitioning.

However, there is a disadvantage here. Supporting such bookkeeping needs a very large
space. All the ground rules (at least the ground IDB instances) need to be recorded.
Suppose a fact-certainty pair needs » bytes of memory to store. Also suppose there are m
IDB body predicates in a rule on average. To bookkeep a derivation, n*(m+1) bytes are
needed, in which » bytes for a result and n*m bytes for ground body, which is large when
m is large. Furthermore, large space usually means expensive search. To avoid this, in our
implementation, we avoid instantiating all rules and bookkeeping them. Only the results

(the instances of rule head) are recorded.

A problem we may face in such an implementation is that, when we need to remove some
records from the bookkeeping, because of some improved facts, we do not know which
fact-certainty pairs are derived from those facts. To determine which pairs are to be
removed, we introduce a backtracking method to update the bookkeeping during the

evaluation. Let us have a look at the previous example Ps_, again.

The bookkeeping for iteration 1 is

Bookkeeping ={(p(1,2): 0.5), (p(2,3): 0.5), (p(1,3): 0.5), (p(3,4): 0.5)}

78

The definitions of “p” and “Ap” are the same, as described above. The only difference is
that there is no ground body associated with each result in the bookkeeping. At the end of

iteration 2, we get

Bookkeeping ={(p(1,2): 0.5),(p(2,3): 0.5), (p(1,3): 0.5),(p(3,4): 0.5),
(p(1,3): 0.5)(p(2,4): 0.5),(p(1,4): 0.5)}

After combining the same facts using their associated disjunction functions, p(1,3) is
derived with an improved certainty: from 0.5 to 0.75. To remove derivations related to
(p(1,3): 0.5) from the bookkeeping, we apply the fact (p(1,3): 0.5) to each rule and
derive again the related facts. Through this re-derivation, we identify (p(1,4):0.5) and
then remove it from the bookkeeping. This re-derivation is done at each iteration to
update the bookkeeping until the fixpoint is reached. Figure 5.6 shows the procedure we

developed that implements the Semi-Naive with Partition method and backtracking.

procedure : Semi-Naive Partition_backtracking(P,D; lfp(PUD))
1 set P’ to be the rules in P with no IDB predicate in the body ;
T° =&, BK =&, for IDB predicate T defined in P;
MA'; := P’(IX(T), for all IDB predicate T;
BK'r:=BK’1 U MA's;
T' = fa(BK'y) ; Al = fy(MA'Y), for all IDB predicate T;
2 i=1;
repeat
forall IDB predicate T, where Ty,...., T, are the IDB predicates used in
the definition of T:
MA™ = Eval'(P(T), T, T T T Al Al);
BK™' 1 :=BK't UMA™'y;
T = fy(BK"'1);
Change'r == {(T(1),C)] (T(W),Ci1) €T A(T(W),C))eT' ACir> Ci }
T"! == T'- Change'r ;

NN v R W

79

8 Remove*'r := Eval'i([, T;,... T, TiL,... Tol, DAL, ...DA'L,)

9 BK"!'; ;= BK*'; - Remove''7 ;
10 T .=T- ChangeiT;
11 Al = T i
end forall;
12 i=i+l;

until A't = & for each IDB predicate T.
Ifp(PUD) := {T'| T is an IDB predicate in P}

end procedure
Figure 5.6: Procedure for Semi-Naive evaluation with partition and backtracking
This procedure classifies rules in the input p-program into two partitions: rules with no
IDB predicate in the body, and rules with some IDB predicates in the body. We first
evaluate the former type of rules. This requires a single iteration, and no backtracking.
The result of this iteration is used to initialize the bookkeeping and partitions (lines 1-2).
For every iteration onward, new results of the evaluation are added (line 4) to the
bookkeeping (see procedure Eval'y in Figure 5.7). If the certainty of some facts is
improved, the system backtrack the results derived by these facts (line 6) and removes
them from the bookkeeping (lines 7-9). These operations are done iteratively, until every

partition At is empty.

It is clear that backtracking is a kind of redundancy in the evaluation processing.
However, it is necessary when having no details of a derivation. This redundancy is a

tradeoff for saving space.

procedure : Eval'(P(T), T,\"},.... T, T/,...... T Ay, Al T)
Forall r: S(W< Bi(v1),..., Ba(va), Ti(1), T Tw)s (e, fp, fa). in P, where
S =T,T,..., Ty are IDB predicates, By,...,By are EDB predicates.

80

1 rewrite r with rewriting technique.

2 evaluate all rewritten rules with the input value.

end forall;
T={(o) | (Ec)e S},
end procedure

Figure 5.7: The procedure for evaluation of rewritten rules

5.3.3 Run-Time Decisions

The essence of query optimization techniques is having an efficient evaluation of the
query. Since an evaluation has to deal with any input program, a particular optimization
technique may be efficient for some programs and be poor for others [28]. Focusing on a
set of optimization techniques, we expect that our system can automatically (at least
partially) choose the suitable ones in order to obtain better performance across a wide
range of programs. Since such selection is usually decided during the evaluation of a

program, we call it run-time decision.

As mentioned in section 5.3.2, to avoid some repeated computations, SNP method may
introduce some overhead for re-derivations when backtracking is applied, it is then
possible that for some input programs, SNP may not perform as expected. To illustrate

this input, let us consider the following rule:

S(u)=— B}, P(2), Q) < fu- [, £ >
where B is an EDB predicate, and P, Q are IDB predicates. Let P' and Q' be the
definitions of predicates P and Q at iteration i. At iteration i+/, the unchanged partition
of P and Q, i.e., AP"! and AQ™" are not necessarily the same as P' and Q' respectively.

This is because the certainty of tuples in P' and/or Q' may have improved and hence are

81

moved to the corresponding A partitions. Let us define AP =P' - AP and AQ™' = ('
- AQ™, where A’P"".L1 and A Q"' contain facts with improved certainties. By our back
tracking method, the derivations that involve a fact in AP™! or AQ™! need to be redone
and removed from the bookkeeping. The number of possible joins in these re-derivations
is
Cost=B| * |AP"|* | Q| +|B| * | AP™| *|A Q™
where |X| represents the number of tuples in relation X. On the other hand, the number of
redundant joins that SNP tries to avoid in this case would be:
Saving = [B| * [AP™!| * | AQ™|

This is the number of joins of tuples done by evaluation of the last re-written rule. It is
clear that SNP is useful in case Cost is smaller than Saving. However, this may not be

always the case, as shown in the following example:

Let: |B|=100;
IAP™ = 30; | AP™ | = 50;
Q™| = 40; | AQ™ | =110;

The number of possible re-computing joins is
Cost = B * |AP™!| * | Q'|+ |B| * | AP"'| *|A'Q"]
100*30*(110+40) + 100*50*40

= 650000

The number of possible joins of tuples that can be avoided is
Saving = [B| * [AP™| * | AQ™|
=100*50*110
= 550000
To avoid 550,000 joins, SNP needs to re-compute 650,000 joins. Obviously, SNP

is not beneficial in this example.[]

In general, for a rule in form:

82

S(1) =B, (0B,). Ty(T)oeos T (T,)i < fis fon S >
where B; is EDB predicate, for je {1,...,n} and 7} is IDB predicate, for ke {1,...,m}, the
cost of SNP, at iteration 7, would be
Cost= |AT; ™% | T | %% | T | +...+
LAT % F A Ty ™Y %% | T+
AT 5% AT ™ % AT
where A'T; ¥ contains all T; facts with improved certainties at iteration k, and AT; *

contains all T; facts whose certainties are not improved at this iteration.

The saving by SNP would be
Saving = |AT, """ | *...* AT, |;

For each iteration, if Cost < Saving, then SNP method is used. Otherwise, we use the SN
method. Since the size of each partition of all IDB relations may change during different
iterations, a desired evaluation would use the preferred method, SN or SNP, at each
iteration, depending on the values of Cost and Saving defined above. Another situation to
be considered is that different rules may require different techniques at a particular
iteration. For the above two reasons, we have introduced this run-time decision capability

and implemented it in our system.

Besides selecting a desired evaluation method dynamically, the query optimizer also
decides whether a rule needs to be evaluated at a particular iteration at run-time. We can
view a rule in a Datalog program to indicating a “method” to infer the tuples of the head
predicate, through a series of join, selection, and projection operations. There is,

however, no guarantee that a rule will always infer tuples for its head predicate. This is

83

the case when the rule has a predicate in the body with no tuple. In this situation, we
consider not to evaluate this rule and avoid unnecessary computations. This decision at
run-time is important for a query optimizer. Since a rule is normally evaluated from left
to right, the two left most body predicates join first. The result then joins with the third
body predicate, and so on (details of program evaluation will be discussed in section 5.4).
In case there is an empty body predicate, all these joins will actually be a waste. To avoid
this waste, rules having an empty body predicate should be identified and excluded from
the evaluation. A simple check for identifying rules with empty predicate body could be

done before starting each iteration.

Another important run-time decision is on indexing decision. When the size of a relation
is small, creating and/or using an index may cause an overhead and is discouraged. For
example, if an IDB predicate has 10 facts, the overhead of creating a hash table and
searching it could be much more costly than forgetting all about it and using sequential
search. Similarly, when indexing is needed, the size of hash tables should be determined
at run-time. Currently, the consideration of the size of a relation and of a hash table is
excluded from our indexing for simplifying the implementation. However, it is an

important issue for our further research.

5.3.4 Rule Re-ordering and Stratification

In section 3.4, we argued that the stratified evaluation is an efficient technique for p-
programs since it avoids intermediate derivations by delaying the evaluation of higher
strata until the final evaluation results of those lower strata are obtained. Since we store

the input rules, in our implementation, as a list and evaluate them from head to tail, rules

84

must be partitioned into different strata and reordered, and evaluated according to their

strata.

We consider two main steps to stratify the input rules. First, we create the predicate
dependency graph (PDG) of the input p-program. This PDG is then used to determine the
strata as well as the rules each stratum includes. Given a p-program P, the predicate

dependency graph of P, denoted as PDG(P), is a directed graph whose nodes are the

predicates in P and for every rule H «*— B,,...B, in P, there is an edge in PDG(P) from

n(B;) to n(H), for 0 <i < n. Recall that n(B;) denotes the predicate of atom B;. Figure 5.8

shows an example dependency graph.

Figure 5.8: An example of predicate dependency graph

Stratification is actually based on the notion of Strongly Connected Components (SCC)
construction, which identifies all cycles containing maximum number of predicates in a
dependency graph. There are numbers of efficient algorithms for finding SCC in a
directed graph [33, 12, 25, 6]. These algorithms basically consider two interleaved
traversals of a graph. First, a depth-first search traverses all the edges and constructs a
depth-first spanning forest. Second, once a so-called root of an SCC is found, all its
descendants that are not elements of previously found components are marked as

elements of this component. In our implementation, we use Tarjan’s algorithm [33],

85

which we modified slightly as follows. We first find, for each IDB predicate p, the cycles
in which p is involved, using depth-first search method. Two stacks are used to record the
cycle path and to support backtracking. Once all cycles are identified, cycles sharing

some common elements are then merged to form a bigger cycle.

For a simple illustration, consider the PDG shown in Figure 5.8. There are two cycles in
the graph: C;:{B,C,D,E} and C,:{E,F,G}. Since C, and C, share node E, every node in
C, has at least a path to reach the elements in C,. For example, node B in C; can reach
node £ in C, through path B>C 2D 2E G 2F and node G in C; can connect node D in
C; through path G2F 2E 2B -2C-?D. Therefore, all the elements in C; and C, should
belong to the same SCC. These two cycles are thus merged to form an SCC. An SCC is
formed until all cycles in which any two of them share some common elements are

merged. In Figure 5.8, element B, C, D, E, F and G construct an SCC.

Unlike in the conventional SCC, we also consider SCCs of a single node as well. In

Figure 5.8, node 4 and H form two separate SCCs.

The final step of our stratification method is to stratify SCCs. The principle of
stratification is to include all the dependants of a predicate p in some strata below the one
which includes p. Obviously, all EDB predicates should be included in the lowest
stratum. The algorithm for stratifying SCCs is shown in Figure 5.9, which inputs are a set
of rules R in a p-program and a set of SCCs (Sscc) in R, and its output is a set of stratified

SCCs. For an SCC X and atom h, we use A€ X in the algorithm to mean 7z(h) e X .

Procedure: stratify SCC(R, Sscc; Ssce)

A X:tag=1

XeSgee

1:=1

86

loop
forall X € Sgcc A X iitag =1
let xe {y|yeYAYe SsccAY ::tag=1i}
ifxe {bijr:h€&b bybpe RaheX, forie{l,...,n}}
X ::tag ++;
end forall

i++;

until {Y| Ye Sscc AY :itag=1} =¢

end procedure
Figure 5.9: The stratification algorithm

The basic idea of this algorithm is that, initially, it puts all the SCCs in the lowest
stratum. If an element X of an SCC is dependant on element Y of another SCC, it then
moves the SCC containing Y to a higher stratum. This process is repeated until no SCC
needs to be relocated. For the example in Figure 5.8, the SCCs {B, C, D, E, F, G}, {4},
and {H} are initialized as stratum 1. Since 4 depends on F and B, which are elements of
{B, C, D, E, F, G}, {4} 1s relocated to stratum 2. Similarly, {B, C, D, E, F, G} is also
relocated to stratum 2 because G depends on H, which is an element of another SCC.
Since H depends on nothing, {H} remains in stratum 1. Furthermore, {4} is relocated to
stratum 3 since A depends on F and B. Eventually, no SCC needs to be relocated and the

desired stratification is done as follows:

stratum 1 {H}
stratum 2 {B,C,D,E, F, G}
stratum 3 {A}

Note that predicate stratification entails rule stratification. That is, every rule defining H

is in stratum 1, every rule defining A4 is in stratum 3, and the rest of the rules are

87

collectively in the middle stratum, in this example.

5.4 Query Evaluation

In this section, we discuss query processing strategies. For this, we will discuss a number
of related concepts and techniques, which include materialization, pipelining, and
dynamic variable binding. A precision control mechanism is also introduced in this

section. We provide a brief description of these, before we discuss them in detail.

There are two main categories of query evaluation strategies: bottom-up and top-down. In
our system, we focus on the bottom-up fixpoint evaluation, which attempts to infer all
possible fact-certainty pairs and returns the ones subsumed by the user query. As
mentioned before, evaluation of a rule actually performing a series of joins of tuples
defined by the body predicates. There are two possible ways to perform these joins:
materialization and pipelining. We will discuss these two options in details in section
5.4.1. During the joins, a variable table is created and updated to provide a match pattern
to fetch the facts. Dynamic updating of the variable table will be discussed in section
5.4.2. Recall that evaluation of some p-program may reach the fixpoint at o, i.e., it will
not stop in finite time. This allows a fixpoint evaluation to continue until a desired level
of precision is obtained. A user should thus interact with the system to provide this
precision. This issue is further discussed in section 5.4.3. When stratification is
incorporated into our system, an input p-program may be divided into several modules. In
this case, the system must coordinate the evaluations of different modules. Section 5.4.4

will provide some suggestions to achieve this.

88

5.4.1 Materialization and Pipelining

The materialization approach to query evaluation considers a sequence of joins of body
predicates as sequential tasks. The join between two body predicates is independent of
and completed before starting the next join. The result of a join is stored in memory as an
intermediate relation, which is then joined with the next predicate, the result of which is
another intermediate relation. This process is repeated until all the body predicates are
joined. There are some concerns with materialization. First of all, the system must reserve
some space for intermediate relations. In case the intermediate relations are large, the
space required will be large as well. In addition to creation of these intermediate
relations, we also need to maintain and search them. These clearly will introduce an
overhead, which could be too expensive to bear. Another problem with materialization
originates from the repetition of making match patterns. For each instance of join, the
system must fetch a fact from the intermediate relation and bind values to shared
variables. These bound, shared variables then form a pattern to restrict the fact fetching in

subsequent relations.

Unlike materialization, which can be viewed as a “piece-meal” computation, the
pipelining approach considers a sequence of joins of body predicates as an “integrated”
task, so that it is not needed to construct intermediate relations. Once a tuple is obtained
from a join operation, it is “piped” to the next join operation, and so on, until all
instantiated body predicates are evaluated. Only the final tuples of head predicate are
materialized into memory. No other instantiated rules are evaluated until the current
instantiated rule is completed. Pipeline approach solves the problems of materialization

explained above. There is no space requirement for intermediate relations and hence no

89

overhead of intermediate relation creation and maintenance. After an instance of join is
done, only the variables bound by the last fetched fact are freed for the next join, and

hence the system does not need to re-initialize shared variables.

Clearly, both materialization and pipelining have advantages and disadvantages.
However, the advantages of materialization are mainly due to the disk I/O cost. If all the
data for an evaluation are stored on disks, materialization is often preferred over
pipelining for its less number of disk I/O, depending on the main memory available.
However, since our system is an in main-memory system, we are not concerned much
with disk and disk I/O. Furthermore, there is no conventional aggregation during the
evaluation of a rule body in our context—Iess reason to adopt the materialization method.
On the basis of the above discussion and observation, we have implemented pipelining in

the evaluation approach in our system.

An advantage of materialization is reusability. In case the result of a join is going to be
reused, materialization can be used to avoid re-computing the same joins. However, it
seems less likely that such opportunities exist for p-programs to include repeated joins.

We ignore this advantage in our consideration for the evaluation approach.

5.4.2 Dynamic Variables Binding

Before performing the joins of body predicates, a variable table is created, for each rule r,
recording the status of each variable occurring in the body predicates of r. Initially, we
associate an un-restricted match pattern & with ». When a fact of the current body
predicate is obtained, the variables occurring in this predicate become bound. This in turn
makes the common variables, which form a match pattern, direct the selection of facts

from the rest body predicates in r, to the right. During a sequence of joins of the body

90

predicates, more and more variables become bound, causing the variable table and match
pattern to be updated accordingly. In the pipelining approach, all the variables become
bound when an instance of a sequence of joins is completed. These bound variables
actually form an anonymous ground tuple containing all the bound variables as its
attributes. A projection is then applied on this anonymous ground tuple to produce a fact
for the head predicate when all terms of the head predicate are variables. When a fact is
generated, it is not necessary to re-initialize all variables in the variable table. There may
be other facts that belong to the predicates to the right, which satisfy the current match
pattern. In this case, all the variables bound by the fact from the right most body predicate
must change from bound to free. These free variables become bound later when another
matching tuple is found. In some situation, we not only need to unbind variables, but also
need to undo match pattern. Undoing match pattern is caused by the “freeing” of shared
variables. In case there is no more suitable fact for the current match pattern, another fact
of the left-hand-side predicate is fetched. Therefore, the variables, including common
variables, bound by the previous fact from the body predicate on the left, become
unbound. Accordingly, we undo the match pattern. After that, variables are re-bound and
match pattern is re-built according to the newly fetched fact. This new match pattern is

then applied to find matched facts in the next predicate, to the right.

Let us consider example Ps, from in section 5.2.1 and use it to demonstrate how

variables are dynamically bound and unbound:

r:sge(X,Y) (1— parent(X,Z) ,sgc(Z, W), parent(Y, W); (min, min, ind}.

initially, the following variable table is constructed for rule ; in which all variables are

marked as unbound:

91

X V4 w Y
unbound unbound unbound unbound

Suppose we have the following fact-certainty pairs in relations “parent” and “sgc™:

parent sge

(John, Mike): 0.5 (Mike, Marry): 0.5
(Eric, Peter): 0.5 (Mike, Paulo): 0.5
(Jim, Paulo): 0.5 (Rudy, Nichol): 0.5

When evaluating r, we first fetch (John, Mike): 0.5 from “parent.” This causes variables
X and Z in “parent” to bind to “John” and “Mike”, respectively. The variable table is then
updated accordingly. Since Z is a common variable of “sgc” and the first occurrence of
“parent”, the current match pattern is {Z = “Mike”}. Using to this match pattern, the
system fetches from predicate “sgc”, the first fact matched, i.e., (Mike, Marry): 0.5. Once
a matched fact is fetched, the variable table is updated again. Now, W is bound by
“Marry.” The match pattern is in turn updated to {Z = “Mike”, W="Marry”}, since
variable W is a shared variable with the second “parent” predicate. However, there is no
fact in “parent” that matches the current match pattern. An “undo” operation is thus
performed on variable table and the match pattern. All variables bound by tuple (Mike,
Marry): 0.5, W, in this case, in relation “sgc” are changed to free. Then the next suitable
fact of “sgc” is fetched, (Mike, Paulo):0.5, in this case. Variable W is then bound by
“Paulo” and a new match pattern {Z = “Mike”, W="Paulo”} is constructed. According to
this pattern, tuple (Jim, Paulo): 0.5 in “parent” is fetched and variable Y is bound by
“Jim.” Now, all variables in the variable table are bound, resulting a successful derivation
of an atom, sgc(John, Jim):0.5, by projecting on variables X, Y in the head.

The variable table now looks as follows:

92

X Z W Y
John Mike Paulo Jim

" To find the next possible fact in “parent”, variable Y is changed to free. However,
scanning the whole relation “parent” reveals that no more fact exists that matches the
pattern {Z = “Mike”, W="Paulo”}. Therefore, ¥ becomes free and the match pattern is

undone to {Z="Mike”}. The current variable table is as follows:

X Z W Y
John Mike unbound unbound

Again, no more fact in “sgc” matches the pattern, and hence, variables X and Z become
free and the match pattern is undone to its initial state, &. The second tuple (Eric,
Peter):0.5 in “parent” is fetched and variables X and Z are bound again. This process
continues until all facts corresponding to the first occurrence of predicate “parent” are

considered.

5.4.3 Precision Controlling

As introduced in chapter 2, evaluations of some p-programs may terminate only at the
limit, i.e., iteration step ®. This may occur when (1) the input program is recursive, and
(2) the data is cyclic, and (3) the disjunction function associated with recursive pedicate
is type 2 or 3. Recall that the result of such a disjunction function is often “better” than its
input arguments [19]. Since the disjunction function produces “better” certainty for a fact,
this fact can then contribute to a new derivation of itself, causing its certainty to improve
even further. Since the underlying fixpoint operator is monotone and continuous [19],

such recursive derivation goes on and terminates only at ®. Even though this is not a

93

desired situation in practice, it indicates an opportunity for approximation to the program
model, should take advantage of this, be desired. To avoid an infinite evaluation, while
approximating to the least model, we introduce a “precision check” technique. This
technique essentially takes advantage of the continuity property of the fixpoint operator
to “approach” the fixpoint. A certainty precision, denoted as A to our system, is provided
by the user. For instance, A=10". At the end of each iteration, the system checks whether
the certainty of each fact has grown more than A, compared to the previous iteration. If
for any fact, the answer is negative, then the evaluation continues to the next iteration.
Otherwise, it terminates, since it has “approached” the fixpoint, even though it is not

there yet.

5.4.4 Stratified Evaluation

As in Datalog, a p-program contains two kinds of predicates: EDB predicates and IDB
predicates. Different kinds of predicates have different operations when they are indexed
(see section 5.2) and partitioned (see section 5.3). Especially when SNP is applied, only
IDB predicates are partitioned. Since there is a cost for partitioning and maintenance of
the partitions, we should try to reduce this cost as much as possible. Stratified evaluation

may help to reduce this cost.

Stratification divides an input p-program into several strata and the system evaluates it
stratum by stratum in the order, starting with the lowest stratum. During the evaluation,
each stratum can be considered as an independent sub-program. Therefore, the definition
of an IDB predicate in a lower stratum can be considered as an EDB predicate for some
higher strata since the definitions of such IDB predicates will not changed in the rest of

the evaluation.

94

In conclusion, the idea of stratified evaluation introduced helps to reduce the overhead of
evaluation as much as possible by considering all the IDB predicates in lower-level strata

as EDB predicates in the higher-level strata.

We have not completed the stratified evaluation in our current implementation due to
time constraint, and it is left as a future work. We hope the reader is convinced, by the
arguments provided, that stratified evaluation could be an important evaluation scheme,
in conjunction with a wealth of techniques and tricks introduced in this research and by

others.

95

Chapter 6

Performance Analysis and Evaluation

To evaluate the performance of query optimization techniques implemented in our
system, we conducted a number of experiments under different p-programs. The
evaluation time of experiments has been considered as the main parameter of
performance. In our experiments, the following techniques (or combined techniques) are

evaluated:

Naive: the basic fixpoint evaluation technique (discussed in chapter 2), through

which bottom-up fixpoint evaluation is conceptually defined.

- Naive with Indexing: a set of indices is generated, by analyzing the input program,
for shared attributes of each body predicate (discussed in section 5.2). To keep the
number of indices “reasonable”, we applied subgoal reordering strategy on each

rule.

- Semi-Naive: a basic multiset-based Semi-Naive evaluation technique proposed in
[32], which extends the standard Semi-Naive technique for uncertainty. Same as

in the Naive technique, we use indices in conjunction with this evaluation method.

- Semi-Naive with Partition: the basic multiset based Semi-Naive technique is
further improved by partitioning IDB predicates into “improved” and “non-
improved” parts to avoid repeated computation (discussed in section 3.3 and 5.3).

Indices are also used with this method.

96

This chapter is divided into 5 sections. Section 6.1 will describe the experimental
environment. In section 6.2, we will introduce the kinds of p-program we used in our
performance evaluation. The selection and generation of test data for each set of
experiments will be discussed in section 6.3. Our experimental results and analysis are
provided in section 6.4 and 6.5. More specifically, Section 6.4 will focus on the indexing
and section 6.5 will focus on Semi-Naive (SN) and Semi-Naive with Partition (SNP)
evaluations. In these experiments, we record the evaluation time and use it to compare the
various evaluation schemes. We remark that there were no benchmark program and test
data to be used in our context. However, the test data and programs we created are

representative of a wide range of size and complexity.

6.1 Experiment Environment

Our experiments were carried out on an IBM desktop computer with a Pentium 4 CPU of
2.4GHz, 512MB main memory, 80GB hard disk, and run under Windows 2000

professional operating system. The block size of main memory remained default.

6.2 Test Programs Selection

Recursion is an attractive feature of deductive databases, standard or otherwise [35, 9, 28,
7]. There are two kinds of recursive programs: linear and non-linear programs. For linear
program, only one mutually recursive predicate exists in the body of a recursive rule. In
case the body of a recursive rule contains more than one mutually recursive predicate, the
program is called a non-linear program. In our experiments, we considered four test
programs, pl to p4. These test programs are defined in Figure 6.1. Program p/ and p2

compute the transitive closure of a binary predicate, edge, where p/ is linear and p2 is

97

non-linear. Program p3 and p4 compute the so-called same-generation relationship,
where p3 is the regular one, and p4 is the same program extended with supplement magic
predicates and rules. All these four programs use 1 as certainty of rules with some
certainty combination functions, as defined in [19]. In the rest of this section, each test
program will be described briefly.

PO Y) e e(X, Y 5 (£ B, fu. PO Y) (X, Y): (£ o).
1, : p(X,Y) P (X, 2),p(Z, Y); (£, i, fu). 1, : pX,Y) P p(X,Z),p(Z, Y); (£, £, fa).

(a) Test program p1 (b) Test program p2

1, sg(X, Y)e—l——ﬂat(X,Y);<fc, fo, fd>.

I, : sg(X,Y)(—l—up(X,Zl),sg(Zl,Z2),ﬂat(Z2,Z3),sg(Z3,Z4),down(Z4,Y);<fc, fp, fd:

(c) Test program p3

L msg(l)(l— ; (fc, fo, fd>.

r, : supm2(X, Y)(l— msg(X),up(X,Y); <fc, fp, fd>.

1, : supm3(X, Y)(l— supm2(X,Z),sg(Z,Y); <fc, fp, fd>.

r, : supm4(X,Y) P supm3(X, Z), flat(Z, Y); (£, fy, fa).

1, : sg(X,Y) — msg(X), flat(X, Y); (£, fy, fa).

1, : sg(X,Y) R supm4(X, Z),sg(Z, W),down(W, Y); (£, £, fa).
T, msg(X)(—l— supm2(Z, X); (fe, f, fa).

Iy msg(X)(—l——— supm4(Z,X);(fc, fo, fd>.

(d) Test program p4

Figure 6.1: Test programs in performance experiment

98

Figure 6.1 (a) shows the details of program p/. pI finds pairs of nodes (X,Y) in the input
directed graph such that node “Y” is reachable from node “X.” The certainty associated
with each pair in the result represents the probability of this connection. In this linear
transitive closure program, the size of one joined relation increases until the fixpoint of
the evaluation, while the size of another joined relation remains unchanged during the

whole evaluation.

Program p2 is presented in Figure 6.1 (b). It has the same function as program p/ except
that it uses different method to find the reachable nodes. It is a non-linear transitive
closure program. As can be seen, there are two occurrences of the recursive predicate “p”

in the body of rule r,. Here, unlike p1, the size of more than one body predicate increases

during the evaluation.

Program p3 defines pairs of individuals that are at the same level in a family tree (see
Figure 6.1 (c)). This is slightly different version of the so-called same-generation
program. Notice that program p3 cannot find out all same generation pairs unless a
specific path, indicated by the second rule r,, is satisfied. This program was chosen in
our performance evaluation since r; has a long chain of EDB and IDB predicates in the

body. In p3, “up”, “flat” and “down” are EDB predicates and the rest are IDB predicates.

Program p4 is a rewritten version of same-generation program p3, using the
supplementary magic set technique [5]. It is exhibited in Figure 6.1 (d). Program p4
contains a number of rules and many its predicates are IDB predicates. This program was
chosen in our experiment since the original same-generation program has been widely
used for evaluating optimization techniques in classical deductive databases [26, 10, 4,

15]. We need to mention that the modified program is not equivalent to the original

99

program with uncertainty even though it does not affect our choice as a test program. An
interesting feature of this program in our context of performance evaluation is that it

includes many simple rules and most of which define small relations.

For all test programs, we have used ind as the disjunction function associated with all
rules. This function can be viewed as a representative of disjunction type 2 and 3
(described in chapter 2), which are very important to our experiments. The conjunction
and propagation functions are either min or product. In some cases, product is undesired
because it often generates a smaller value than its arguments. This causes problem for the
precision of the uncertainty values computed for derived facts. Too small certainty value
may make the derived fact have least certainty and therefore terminate the further

derivation quickly.

6.3 Test Data Selection and Generation

In the context of standard Datalog programs, there have been a number of data sets
widely used to measure the efficiency of query processing and optimization techniques
[26, 10, 4, 15]. We adopt these data sets in our context and developed program moduler
that generates suitable large data sets with uncertainty. In total, 9 categories of input data
have been chosen in our performance experiment. Figure 6.2 and 6.3 exhibits these data
graphically. For programs p/ and p2, we consider two different collections of EDB facts
with different numbers of tuples. The collection CT, of data set includes cyclic data of
the form: e(0,1), e(1,2),..., e(n,0), for n = 10K, where 1< K < 15. Figure 6.2 (a) shows an

example of CT,,.

100

(a) CT, Data (b) M, Data
Figure 6.2: Data set for program pl and p2

Incorporating with type 2 or type 3 disjunction functions, such as ind, both p/ and p2
improve the certainty associated with each IDB facts at every subsequent iteration. For
pl, there is unique path between every pair of nodes connected. For example, a
connection from node i to node j is only derived by e(i,i+1) joins p(it1, j). There is no
other join deriving this connection. Unlike p/, there are many paths in p2 defining the
pairs of cohnected nodes. To be more precise, p2 has n+1 different joins to define each
such pairs, namely, the joins of p(i, k) joins p(k, j), where ke {0,...,n}. Compared to p],
there are more derivations at each iteration of evaluating p2. Under the same data set, this
causes the evaluation of p2 to terminate in less number of iterations than p/ ‘s evaluation.

However, the amount of computations of evaluating p2 at each iteration is more.

The second data set we used for evaluating p/ and p2 is M, m, shown in Figure 6.2 (b). It
includes n nodes and circle connections for each interval of m nodes. This data set
constructs multi-circles instead of the single circle in CT,. The number of paths between

two nodes is relatively large and the workload at every evaluation step is also more.

Besides CT, and M, n, we constructed several other data sets for p3 and p4. These data

sets are described as follows:

Ay, Figure 6.3 (a) shows the structure of A,,. It looks like a triangle shape made by layers
of nodes. As the number of layers increases, the size (in terms of the number of nodes) of

the bottom layer increases. There is at most one matched path from a node to its same

101

generation node. It means that if there is an inference for an answer, this inference must
be unique. To find a same generation node in level i, the derivation must go to the top-
level layer first and then down to the layer i. The more layers there are, the more
workload is involved in the derivations. This data set is used to measure the speed of

various evaluation methods under the environment that least derivation is achieved.

B,: The data set B, contains » layers of nodes. Each layer has 8 nodes, which form a
double linked list. There are four arcs connecting a lower layer and its immediate higher
layer. Two are upward and the other two are downward. Figure 6.3 (b) shows the
structure of B,. When we look at this data set carefully, we note that there are exactly 3
answers to query ?sg(1,X) for p4 whenever the number of layers » is larger than 2. When
n increases, there is no more answer generated from p4 but the certainties of these
answers may be improved since more paths contribute to the answers. Unlike p4,

program p3 has more answers when the number of layers increases.

Cp: The data set C, is very similar to B,. Each layer in C, includes a single linked list of 8
nodes. Each node has an arc connecting to the corresponding node in the higher layer. All
arcs connecting a higher layer to its immediate lower layer are bi-directional. Figure 6.3
(c) shows the structure of C,. There are exactly 4 answers for query ?sg(1,X) from p4
whenever the number of layers » is larger than 2. As in B,, when » increases, there is no
more answer generated from p4 but the certainties of these answers may be improved
since more paths contribute to the answers. Even though all nodes have an arc connecting
the corresponding node in higher layers, the number of derivations of p3 under C, may
not be more, compared to using B,. This is because the flat arcs are changed to single

direction and hence no derivation exists from a right node to the left.

102

flat

A, OO
AnJ An-l
A, ';O; o flat o ﬂ
upI ldown downl [up down
o O
8*n
(a) A, Data (b) B, Data

n~ flat

down
1 n
(d) F, Data
flat ~O=__up,down

no o oy ~-»(f~ 5 ol i .

? ¢ 4 4 ; “ e, 2N

J L H }, J)&J

O O o o & & S D « é yara { L
. £ " VA, SN QNG
o0 ¢ 9 % >0 R —
o 6 6 &8 & & down }‘“"“““ ”|

I 2 n n+l 2n m

(e) Sy Data (®) Tym Data

up,down

(g) Upm Data

Figure 6.3: Data set for program p3 and p4

103

F,: F, is a variant of C,. Unlike in C,, the length of each layer and the number of layers
in F, are flexible. This structure makes C, graph to a square shape (see Figure 6.3 (d)).
The number of layers is same as the length of each layer. Each node in thc lowest layer
has an extra arc to the corresponding node of each higher layer. All these extra arcs are
upward (named “up”). Since the length of each layer is flexible, the number of query
answers (both p3 and p4) increases when n increases. However, the increase for p4 is

faster than that for p3.

S»: Sy includes 2r linked lists, each having # nodes. The first n lists have upward links,
while the second 7 lists have inverted links. There is only one link between two nearest
linked lists. The graphical description of S, is shown in Figure 6.3 (e). It is easy to see
that there is only one path for node 1 to its satisfied same generation node 2n and the
derivation should be done recursively from top to bottom. Compared to the size of data

set, the number of derivations is small for S,.

T,

y

m° Tnm data set represents an m-ary tree, where n indicates the height of the tree and m
indicates the number of children a node has. Figure 6.3 (f) shows T, 3, as an example of
this data structure. T, provides many paths between any two same generation nodes.
When the height n increases by 1, the total number of arcs in the tree increases by 3m™".

That is, the increase of the size of data set is exponential.

Unme This data set is another variant of C,. It makes the number of layers » and the
length of each layer m flexible. Each layer is renovated to be a cycle-linked list.
Moreover, the connections between two nearest layers become more frequent. From
Figure 6.3 (g), we can see that each node has two bi-directed arcs to nodes at its

immediate upper layer. These arcs cause U, p, to provide a large number of paths between

104

two same generation nodes. Hence, the number of derivations in a given program

becomes large.

All above different types of data sets are used in our experiments, as they represent
different types of derivations in terms of the number of derived facts as well as the
structure of the facts. In our experiments, A, and S,, used for p3 and p4, result in fewer
derivations. There is only one output for A, and S, as the input of p3. Compared to A,,
the number of iteration to reach fixpoint is less when using S,. On the other hand, B, and
C, take moderate number of different paths to obtain the output. Both B, and C, take
about the same number of iterations to reach the fixpoint, while C, has more failed joins
than B,. Data sets Fy, Tym, and U, take large number of different paths to obtain the
output but with fewer number of iterations. We expect that these data sets to be rich
enough representations to support a fair and through evaluation of the proposed execution

scheme.

The data sets data sets A, and B, are adopted from [15], C,, Fy and S, from [26], and Ty, 1,
and U, , are adopted from [4]. Unless specified otherwise, the certainty associated with
every fact in these data sets is 0.5. We developed in C++ the program module for these
data generators, which take as input parameters the number of layers and the length of

each layer, and produce the desired test data.

6.4 Index Performance Evaluation

For the obvious reason, we used indexing for efficient query processing in our context.
For this, we used basic heuristic to determine a reasonable number of indices. To measure

the gain of indices considered, we run p/, p2, p3 and p4 on all data sets introduced in

105

section 6.3. We used the elapsed time as the performance parameter. The elapsed time is
defined as the period from submitting the program to listing the last answer to query. It
includes compilation time (such as data transformation, indexing and so on), and
execution time. We will provide some of these evaluation results in this section.
Appendix A presents all theses results. Column “Data Set Class” in each result tables
indicates the kind of data set used. Column “Output Tuples” shows the number of
answers to the query. Column “Number of Iterations” gives the number of iterations
required to reach the fixpoint. Columns “Indexed” and “Non-Indexed” correspond to the
evaluation elapsed time (in seconds) when using or not using indices, respectively. The
ratios non-indexed/indexed of elapsed time indicate the speedup, shown as the last

columns in each result table.

Data Set | Output Number Non- Speed-Up

Class Tuples of . Indexed Indexed (Non_Indexed/Indexed)
Iterations

CTyo 100 71 0.19 0.07 2.71

CTs 900 122 7.882 1.462 5.39

CTso 2500 151 53.397 6.499 8.22

CTy 4900 167 260.355 16.584 15.70

CTy 8100 181 797.817 32.897 24.25

CTio 12100 188 1756.59 52.705 33.33

CTis0 16900 187 3033.74 72.104 42.07

CTiso 22500 188 47332 97.701 48.45

Table 6.1: Running p! on CT, with/without indexing

106

5000 -
4500 -
4000 -
3500
3000 -

2500 -

Time

—&— Non-Indexed

2000 1 i Indexed

1500 -
1000 -
500 -

. , _— e e e
10 30 50 70 90 110 130 150
Input tuples

Figure 6.4: Running pl on CT with/without indexing

Table 6.1 and Figure 6.4 show the experiment result of running p/ on different size of
data set CT,. The certainty assigned to each EDB facts is 0.9. Disjunction function is ind,
and both propagation and conjunction functions are * (the product). As expected,
indexing improves the performance significantly. The results indicate a wide range of
speed up from 2.71 (CTg) to 48.45 (CTs0). Table 6.1 also shows that as the size of the
input data set CT, increases, the number of derived facts as well as the number of

evaluation iterations increase.

Table 6.2 and Figure 6.5 show the measurement of evaluating p2 on M, .. The certainty
of each EDB fact is 0.5 and the combination functions are same as in pl. The speed up
obtained as can be seen from the table ranges from 5.15 for My 4 to 28.17 for Mjg04. By
running p2 on the data set M, ,, a smaller number of input facts (compared with output)

may derive a large number of IDB facts within a small number of iterations.

107

Data Set/Output I:f}l mber Non- Indexed Speed-Up
Class Tuples . Indexed (Non_Indexed/Indexed)
Iterations
M20.4 400 8 1.292 0.251 5.15
M5 4 1225 8 9.554 1.432 6.67
M4 2500 8 36.793 4.146 8.87
Mgs 4 4225 9 214238 (15232 14.06
Mgo.4 6400 9 588.026 30.134 19.51
Migo.4 10000 9 1538.08 |54.608 28.17
Table 6.2: Running p2 on M, ,, with/without indexing
1800 -
1600 -
1400 -
1200 -
o 1000 -
E
800 - —a&— Non-indexed
600 - - Indexed
400 J
200 ~
O % i aﬁ = 1
22 39 56 73 89 112
Input tuples

The indexing scheme developed improves the speed up when running p3 on data set
Thm, as shown by table 6.3 and Figure 6.6. The speed-up gained ranges from 1 for
T4 to 11.47 for Tg4. Results also indicate that indexing may be more beneficial

when the number of derivations is large. In other words, when the number of

Figure 6.5: Running p2 on M with/without indexing

derived facts is not large, the cost of creating indices may not pay off.

108

Time

Data Set | Output Nug}fber Non- Indexed Speed-Up
Class Tuples . Indexed (Non_Indexed/Indexed)
Iterations

T24 6 10 0.01 0.01 1.00

Tz, 22 19 0.1 0.1 1.00

Tsa 86 25 1.683 0.661 2.55

Ts4 342 30 53.667 8.332 6.44

To4 1366 34 3114.6 271.48 11.47

Table 6.3: Running p3 on T, with/without indexing
3500 -
3000 +
2500 -
2000 -+
1500 -
—&—Non-Indexed

1000 + - Indexed

500 A

0 S PN 9% ot .
60 252 1020 4092 16380
Input tuples

Figure 6.6: Running p3 on T with/without indexing

Looking at the tables in Appendix A, we may find that all the test cases of p/, p2 and p4
provide a consistent result for indexing technique. These results show that indexing
outperforms non-indexing very much. The conducted speed-up increases when the input
size increases. The property of scalability is held by our indexing technique. Furthermore,
we observe that the larger number of iterations the evaluation takes, the more time it
saves. The large number of iteration means the created indices are to be used for a large
number of times. The high-frequent indices application brings out the large benefits of

indexing. Even though the evaluation takes less iteration, the total number of derivations

109

remains large if a large number of IDB facts (comparing with EDB facts) are derived at
each iteration. Since fact derivation may take the advantage of indexing search of facts, a
large number of derivations accumulate more benefits of indexing and make the cost of
indexing pay-off. In this situation, indexing may still improve the performance over non-
indexing (see Table 6.2).

However, our indexing technique being simple does not always bring benefits to the
evaluation. Indexing may perform worse in case the cost of its creation and maintenance
is larger than what it saves (in terms of search time). The experiment result of p3 running
on some data sets (A,, By, C, and S, for example) demonstrated this kind of situation. As
an example, Table 6.4 and Figure 6.7 show the result of p3 running on C,. We can see
that, compared with non-indexing, evaluation with indices took more time. For evaluation
of Cjy3, indexing took 223.942 seconds to complete, while non-indexing took 83.971

seconds only, about one third.

Data Set Input Output Number Non-indexed Indexed

Class Tuples Tuples of Number Time Number Time
Iterations | of Joins of Joins

Cy 76 51 5 434 0.08 8314 0.23

Cis 352 268 5 2,606 1.031 69,072 1.533

Csy 720 499 5 5,502 5.428 281,712 7.831

Ces 1456 1011 5 11,294 21.17 1,137,072 | 42.741

Cins 2928 2035 5 22,878 83.971 4,568,112 | 223.942

Table 6.4: Running p3 on C, with/without indexing

110

250 -

=
200 1 /
150 -
&

® /
E /
- /

100 A / ~&—Non-Indexed

/ - Indexed
50 -
0 L f @"7 T 1
76 352 720 1456 2928
Input tuples

Figure 6.7: Running p3 on C with/without Indexing

The reason why our indexing technique did not result in better performance is due to our
subgoal reordering scheme being primitive. Let us look at p3 again. According to our re-

ordering technique, the second rule r, in p3 is reordered as follow:

sg(X,Y) P flat(Z2,23),up(X, Z1) ,sg(Z1,Z2),sg(Z3,Z4),down(Z4, Y); (£, £, fa).
Predicate “flat” was moved as the left most sub-goal in the body because of its size being
the largest. Notice that the second predicate “up” has no common attributes with the first
predicate. This results in performing Cartesian product at the run time, hence performing
useless large joins. Since the original rule maintains some attribute(s) of each predicate
bound, the number of joins is less than that of re-ordered rules and therefore evaluation
without indexing would be more efficient. The experiment result in Table 6.4 confirms
this analysis. If we compare the results of columns “Number of Joins” under “Indexed”

and “Non-indexed”, we find that the number of joins using indices is always more than

111

that without index. For the data set Cj.s, the total number of joins for indexing is
4,568,112, while it is only 22,878 for non-indexing.

To avoid this undesired situation, our reordering technique could be improved by
guaranteeing that all body predicates in a reordered rule must have at least one bound
attribute, when evaluating the subgoals from left-to-right for side-way information

passing.

6.5 Semi-Naive Technique : Performance Evaluation

A main objective of our work in this research is the performance evaluation of our
implementation of SN [32] and SNP methods for DDB+uncertainty. We designed and
implemented the basic SN evaluation and SNP evaluation in our system and conducted
extensive experiments of running p/ to p4 on the various data sets introduced earlier and
report the results as follows. As a retrospect, Naive technique was also evaluated by the
same test cases. Same as indexing evaluation, we measure the elapsed time as the
performance parameter. Some of these results are presented here. The complete set of
tables can be found in Appendix B. The tables are of the same format as discussed in

section 6.4.

Table 6.5 and Figure 6.8 show the experimented result of running p/ on different size of
data set M, i,. The certainty assigned to each EDB facts is 0.5. The disjunction function is
ind, and both propagation and conjunction functions are min. The result shows that SNP
performs better than SN, which in turn performs better than Naive method. By running p/
on M, n, SN performs about 8% better than Naive because SN does not save very much
of the repeated computation. If we compare 5™ and 6™ columns in Table 6.5, we can see

that SNP outperforms SN by about 1.87 times for M3s4 to 5.41 times for Mg 4.

112

Number . .
Data Set | Output of Naive | Semi-Naive Semn-Na_nye Spged-Up Speed-Up
Class Tuples I . with partition {(Naive/SN)| (SN/SNP)
terations
Moo.4 400 22 0.12 0.12 0.04 1.00 3.00
M54 1225 37 0.791 0.711 0.381 1.11 1.87
Mso.4 2500 52 2.364 2.153 0.831 1.10 2.59
Mes 4 4225 67 5.858 5.358 1.592 1.09 3.37
Mgo,4 6400 82 11.307 10.565 2.544 1.07 4.15
M00.4 1000 102 24.235 23.043 4.256 1.05 5.41
Table 6.5: SN and SNP performance: running p/ on M, ,,
30 -
25 -
20 -
@
E 15 4
= —— Naive
1 0 B '*"’"W“““ SN
e SNP
5 -
0 ,
22 39 56 73 89 112
Input tuples

Figure 6.8: SN and SNP performance: running pl on M

Running p2 on CT, gave a similar result as running p/ on M, n,. This result is shown in

Table 6.6 and Figure 6.9. The certainty of each EDB fact is 0.5 and the certainty

combination functions of conjunction, propagation, and disjunction are * * and max

respectively. The experimental result indicated that SNP is about 1.5 times faster than

SN, which in turn is 5% better than Naive. Table 6.6 also shows that the size of output, in

terms of number of facts, is always square of the input size. If we compare the number of

113

iterations listed in Table 6.1, we find that under the same data set, p/ requires more

iterations to reach the fixpoint than p2, while the output size are same. This means that

the workload for evaluating p2, in terms of number of joins, at each iteration is more than

that of p1.
(Number o
Data Set|Output of Naive Semi-Naive Semi-Naive [Speed-Up [Speed-Up
Class Tuples I . with partition [(Naive/SN) |(SN/SNP)
terations
CTo 100 6 0.03 0.02 0.02 1.50 1.00
CTso 2500 8 4.236 4.056 2.744 1.04 1.48
CT 100 10000 9 42.641 40.238 25.466 1.06 1.58
CT1s0 22500 10 207.488 201.519 96.428 1.03 2.09
Table 6.6: SN and SNP performance: running p2 on CT,
250 -
200 A
150 ~
)
E ,
= —— Naive
100 - —i— SN
50 -
0 4 i

10

50

100

Input tuples

150

Figure 6.9: SN and SNP performance: running p2 on CT

The experimental result of running p3 on data set A, is shown in table 6.7 and Figure

6.10. The elapsed time of SN is about half time by Naive method. For Ay, the evaluation

time used by Naive method is 560.716 seconds, while it is only 260.57 seconds for SN

114

method. As discussed in chapter 3, in some cases, SN cannot avoid some repeated
derivations. SNP attempts to improve the situation and succeeds significantly. The
speeded-up achieved by SNP over SN ranges from1.25 for A4 to 203 for Ay. The results
in Table 6.7 indicate that running p3 on A,, there are fewer facts generated, on average,
by the recursive rule at each iteration and the size of the recursive predicate is relatively
large. In this situation, the repeated derivations caused by non-recursive rule are avoided
by SN and hence SN has greater speeded-up over the Naive method. However, not all
repeated derivations could be avoided. These repeated derivations are then defected and
removed by our SNP method. Since the derivations by the recursive rule involves in
many joins and hence more workload per iteration step, the speed-up of SNP over SN is

higher than that of SN over Naive.

Data Set | Output |Number of| .. Semi- Sem},mawe Speed-Up | Speed-Up
Class Tuples | Iterations Naive " (Naive/SN)| (SN/SNP)
partition
Ay 44 5 0.06 0.05 0.04 1.20 1.25
Ag 188 7 2.594 1.112 0.05 2.33 22.24
LY 380 8 15.563 6.529 0.18 2.38 36.27
Ag 764 9 96.619 41.82 0.52 2.31 80.42
Ao 1532 10 560.716 [260.575 [1.282 2.15 203.26

Table 6.7: SN and SNP performance: running p3 on A,

115

600 -

500 -
400
£
= 300 1 Naive
ol SN
200 4 . - SNP
100 -
0 ¥ : ; T : ; &
58 250 506 1018 2042
Input tuples

Figure 6.10: SN and SNP performance: running p3 on A

Running p4 on S, reveals another speed-up category. Unlike the case of running p3 on
A,, the speedup of SN over Naive outperforms that of SNP over SN (see Table 6.8 and
Figure 6.11). The higher speedup of SN over Naive is due to the feature of the input
program. If we look at p4 carefully, we see that there are always some rules in p4 not to
be evaluated at a particular iteration in SN method. This is because not every rule has a
new fact for its body at every iteration. The saving of not applying such rules decreased
the evaluation time. From Table 6.8, we can see that the speed-up of SN over Naive is
about 29 times on data S¢¢. On the other hand, sometimes the speed-up of SNP over SN is
lower than that of SN over Naive, for instance on data set S,. Since less nufnber of related
facts could be derived during the evaluation, the amount of repeated derivations SNP
could avoid is small and hence the time saved by SNP is little. However, even in such

situation, SNP is at least two times faster than SN on data Seg.

116

Data Set|Output [Number of Naive |Semi-Naive \\:sliethmu-Nanve Speed-Up |Speed-Up
Class Tuples |{Iterations - (Naive/SN) [(SN/SNP)
partition
S4 1 6 0 0 0.01 IN/A 0.00
Sie 1 30 0.21 0.06 0.13 3.50 0.46
S3; 1 62 2.874 0.952 1.112 3.02 0.86
Se4 1 126 114.545 [13.199 9.083 8.68 1.45
Sos 1 190 1873.464 164.092 30.484 29.23 2.10
Table 6.8: SN and SNP performance: running p4 on Sn
2000 -
1800 -
1600 -
1400 -
1200 -
[
£ 1000 -
= Naive
800 - SN
600 - '~ SNP
400 -
200 +
0 : . m : D e
31 511 2047 8191 18431
Input tuples

Our experiment results show that most of the SN yields faster evaluation than Naive. At

Figure 6.11: SN and SNP performance: running p4 on S

least, SN in no case performed worse than Naive. Furthermore, SNP resulted in greater

efficiency compared to both Naive and SN for most of test cases. Again, SNP did not

perform worse than SN in any case. On the basis of our rather through experiments, we

may conclude that, SNP outperforms both SN Naive methods. This conclusion also

confirms to our analysis described in chapter 3.

117

From these experiment results, we find that the speed-ups of SN over Naive and SNP
over SN may vary under different evaluation test cases. SN provided outstanding
performance by running program p3, while SNP provided greater efficiency over SN by

running program pl, p2 and p4.

If we look at table 6.7 again, we may find that the speed-ups of SN over Naive and SNP
over SN are 1.2 and 1.25 respectively, when the input data has only 4 layers. However,
these speed-ups achieved range from 2.15 to 203.26, respectively, when the number of
layers increases to 9. This is true for almost all test cases. As the input size of a test case
increases, the speedup (both SN over Naive and SNP over SN) achieved also increases.
This indicates that the larger the input data set, the higher efficiency SN and SNP

provide. In other words, the proposed SN and SNP evaluation schemes are scalable.

A natural question which may arise is: “how the speedup achieved by the various
evaluation schemes we proposed in our research compares with the efficiency of existing
engines that could support fixpoint computation with uncertainty?” Even though our
research was motivated by the fact that the Semi-Naive evaluation does not have a
counterpart when uncertainty is presented, the comparison makes sense if we consider p-
programs in which the certainty associated with each rule/fact is 1. This is because in this
case the certainty associated with every derived atom will be 1. To answer the above
question, we considered such p-programs and evaluated them in CORAL, using two
features it supports, namely multisets and aggregate-per-iteration annotations. The latter
instructs the run-time environment to apply, at every iteration, a desired aggregation
function, the disjunction function in our case, to each group of identical atoms. In some

cases, it took too much time that we had to terminate the execution! For p1, we evaluated

118

it on the data set CT of different sizes. The result indicated that our SNP system

outperformed CORAL by a factor of 16 to 24, in all sizes.

Recall that we could not use CORAL to evaluate p-programs with certainties different
than 1, since the result produced would be different to our SN (or SNP) method, a
CORAL performs some short-cuts and low-level optimization that make quite sense in
the standard case. In fact, this was a reason in the first place explaining why we need to
build a new evaluation engine for deductive databases with uncertainty, resulting in the
development and our prototype in this research. Another way we tried to answer the
question was to consider evaluating, in CORAL, standard Datalog programs (without
uncertainty values and combination functions) and compare the time it takes with our
system, which was used to evaluate the same program but with certainties 1 and any
“suitable” aggregation functions added. This resulted in CORAL to outperform our
system by a factor of 1.5 to 6. The superiority of CORAL in this case was mainly due to
the facts that (1) unlike our system, CORAL does not have to deal with certainty
values/functions, and (2) CORAL ignores all duplicate derivations, whereas ours has to

respect them in general and dealt with them in the fixpoint evaluation.

Our observation is less than conclusive, but these experiments convinced that our
implementation, which does not really use sophisticated indexing and data structures is
reasonably efficient, which could be further improved by adding more useful bells and

whistles.

119

Chapter 7

Conclusion and Future Research

Our goal in this thesis was to primarily develop an efficient environment for declarative
manipulation of uncertain knowledge. In this thesis, we studied evaluations of logic
programs and deductive databases in the context of the parametric framework over the
complete lattice [0, 1]. We assumed that arithmetic computations over real number could

be carried out with arbitrary precision.

To reach our goal, we first study the applicability of classical Semi-Naive evaluation over
the uncertainty computation and illustrated that the classical Semi-Naive evaluation
method does not have a counterpart in logic programs with uncertainty. Our motivation in
this work was then to build a bridge on this gap and proposed a desired evaluation
method, which is equivalent to the Naive method. This method is called multiset-based

Semi-Naive method.

For the purpose of further enhancing the evaluation efficiency, we refined multiset-based
SN method by applying derivation source tracking to avoid the repeated computation
during the evaluation. This SN refinement, called Semi-Naive with Partition technique
actually partitions an IDB predicate into two disjoint parts: “improved” partition and
“non-improved” partition. Only derivations where at least one fact-certainty pair of

improved partition participates may generate “something new” and therefore should be

120

considered for the further evaluation. Moreover, the equivalence between SNP method

and Naive method is also established.

Our efficient evaluation study is not restricted on bottom-up approach. We developed an
efficient evaluation technique, called stratified evaluation, through recognizing that the
intermediate certainties of non-mutually recursive subgoals do not contribute to form the
final certainty of the rule head. A desired stratification is defined for the stratified
evaluation. The evaluation over which may generate the maximal efficiency, in terms of

avoiding intermediate certainty computations, compared to the other stratifications.

To explore the practicability of proposed query optimization techniques, a deductive
database with uncertainty system has been designed and implemented. A hash-based
index structure has been adopted as the base of the constructions of those query
optimization techniques. We introduced a primitive indexing plan technique to reduce the

number of necessary indices and hence to degrade the cost of indexing.

A bunch of experiments were conducted to verify the benefit of the proposed techniques.
Our experimental results show that most of the SN yields faster evaluation than Naive. At
least, SN in no case performed worse than Naive. Furthermore, SNP resulted in greater
efficiency compared to both Naive and SN for most test cases. Again, SNP did not
perform worse than SN in any case. The property of scalability of SN and SNP is also
verified by our experimental results. The experimental results also show that the speed-
ups of SN over Naive and SNP over SN strongly depend on the feature of the input

program and the structure of the input data.

Until now, the study of efficient uncertainty evaluation focuses on avoiding redundant

derivations during the evaluation. There is less attention paid to the cost of disk 1/0O. For

121

the classical deductive databases, many techniques have been proposed to try to minimize
the amount of disk 1/0O by mixing up the computations from different iterations. Through
these methods, the result of derivations at a particular iteration can be immediately
applied for the further derivations at the same iteration. Therefore the evaluation becomes
more set-oriented w.r.t. disk I/O. Unfortunately, for the evaluation of deductive database
with uncertainty, it is strictly forbidden to mix up the computations from different
iterations (see section 3.1). Hence, solving the problem “how to make the uncertainty
evaluation more set-oriented w.r.t. the disk I/O” should be a research direction for the

next step.

Another research direction about the query optimization originates from the non goal-
oriented feature of the bottom-up approach. The bottom-up approach, in general, does the
selection after all possible derivations, query related or unrelated, are done. To avoid the
irrelevant derivation, a so-called magic set technique has been introduced by [5] to push
the selection down. However, this technique cannot be borrowed in a “straight” way to
the evaluation of deductive databases with uncertainty. Research is needed for “how to

push the selection down while doing query processing.”

122

References

[1] S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases. Addison-Wesley
Publishing Company, 1995.

[2] 1. Balnbin and K. Ramamohanarao. A Generation of the Differential Approach to
Recursive Query Evaluation. Journal of Logic Programming, 4(3), 1987.

[3] F. Bancilhon. A Note on the Performance of Rule Based Systems. Technical Report
DB-022-85, MCC, 1985.

[4] F. Bancilhon and R. Ramakrishnan. An Amateur's Introduction to Recursive Query
Processing Strategies. In Proc. ACM SIGMOD Conference on Management of
Data, 16-52, May 1986.

[5] Catriel Beeri, R. Ramakrishnan. On the Power of Magic. Journal of Logic
Programming, 10:255-299, 1991.

[6] Roderick Bloem, Harold N. Gabow, and Fabio Somenzi. An Algorithm for Strongly
Connected Component Analysis in nlogn Symbolic Steps. FMCAD, 143-160, 2000.

[7] Stefano Ceri, Georg Gottlob, Letizia Tanca. What you Always Wanted to Know
About Datalog (And Never Dared to Ask). IEEE Transactions on Knowledge and
Data Engineering 1:146-166, 1989.

[8] S. Ceri, G. Gottlob, L. Tanca. Logic Programming and Databases. Springer-Verlag,
Berlin, 1990.

[9] Subrata Kumar Das. Deductive Databases and Logic Programming. Addison-Wesley
Publishing Company, 1992.

[10] Marcia A. Derr, Shinichi Morishita, Geoffrey Phipps. Design and Implementation
of the Glue-Nail Database System. SIGMOD Conference, 147-156, 1993.

[11] Didier Dubois, Jérome Lang, Henri Prade. Towards Possibilistic Logic

Programming. International Conference on Logic Programming, 581-595, 1991.

123

[12] P. Havlak. Nesting of Reducible and Irreducible Loops. ACM Transactions on

[13]

[14]

[20]

[21]

[22]

Database Systems, 19(4):557-567, 1997.

Ki-Hyung Hong, Yoon-Joon Lee, Kyu-Young Whang. Dynamically Ordered Semi-
Naive Evaluation of Recursive Queries. Information Sciences, 96(384):237-269,
1997.

Michael Kifer, V. S. Subrahmanian. Theory of Generalized Annotated Logic

Programming and its Applications. Journal of Logic Programming, 12(3&4):335-
367, 1992.

J. Kuittinen, O. Nurmi, S. Sippu, and E. S. Soininen. Efficient Implementation of
Loops in Bottom-up Evaluations of Logic Queries. In Proc. International

Conference on Very Large Data Bases Conference, 372-379, 1990.

Laks V. S. Lakshmanan. An Epistemic Foundation for Logic Programming with
Uncertainty. Foundations of Software Technology and Theoretical Computer
Science, 89-100, 1994.

Laks V. S. Lakshmanan, Fereidoon Sadri. Probabilistic Deductive Databases.
Symposium on Logic Programming, 254-268, 1994.

Laks V. S. Lakshmanan, Fereidoon Sadri. Modeling Uncertainty in Deductive
Databases. Database and Expert Systems Applications, 724-733, 1994.

Laks V.S. Lakshmanan and Nematollaah Shiri. A Parametric Approach to
Deductive Databases with Uncertainty. IEEE Transactions on Knowledge and Data

Engineering (TKDE), 13:554-574, July-August 2001.

Sonia M. Leach, James J. Lu. Query Processing in Annotated Logic Programming:

Theory and Implementation. J. Intell. Inf. Syst. 6(1):33-58, 1996.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition,
1987.

Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom. Database Systems : The
Complete Book. Prentice Hall, 2002.

124

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Raymond T. Ng, V. S. Subrahmanian. Probabilistic Logic Programming.
Information and Computation, 101(2): 150-201, 1992.

Raymond T. Ng, V. S. Subrahmanian. A Semantical Framework for Supporting
Subjective and Conditional Probabilities in Deductive Databases. J. Autom.

Reasoning, 10(2):191-235, 1993.

Esko Nuutila, Eljas Soisalon-Soininen. On Finding the Strongly Connected
Components in a Directed Graph. Information Processing Letters, 49(1):9-14,
1994.

R. Ramakrishnan, Divesh Srivastava, S. Sudarshan. Rule Ordering in Bottom-Up
Fixpoint Evaluation of Logic Programs. IEEE Transactions on Knowledge and

Data Engineering, 6(4):501-517, 1994.

R. Ramakrishnan, Divesh Srivastava, S. Sudarshan, Praveen Seshadri. The CORAL
Deductive System. VLDB Journal 3(2):161-210, 1994.

R. Ramakrishnan and J. D. Ullman. A Survey of Deductive Database Systems.
Journal of Logic Programming, vol. 23, no. 2, 125-149, May 1995.

Konstantinos F. Sagonas, Terrance Swift, David Scott Warren. XSB as an Efficient

Deductive Database Engine. SIGMOD Conference, 442-453, 1994.

Clifford A. Shaffer. A Practical Introduction to Data Structures and Algorithm
Analysis, Second Edition. Prentice Hall, 2001.

Nematollaah Shiri. Towards a Generalized Theory of Deductive Databases with
Uncertainty. PhD thesis, Department of Computer Science, Concordia University,
Montreal, Canada, August 1997.

Nematollaah Shiri, Zhi Hong Zheng. Challenges in Fixpoint Computation with

Multisets. International Symposium on Foundations of Information and Knowledge
Systems, 273-290, 2004.

R. E. Tarjan. Depth-first Search and Linear Graph Algorithms. SIAM Journal on
Computing, 1:146-160, 1972.

125

[34] J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1.

Computer Science Press, 1988.

[35] J. D. Ullman. Principles of Database and Knowledge-Base Systems volume II.
Computer Science Press, 1988.

[36] M. H. Van Emden. Quantitative deduction and its fixpoint theory. Journal of Logic
Programming, 4:37-53, 1986.

126

Appendix A — Results of Indexing Performance Testing

1. Indexing Performance Testing under program p1:

Data Set Output Iterations Non-Indexing * Indexing*
CTy 100 71 0.19 0.07
CT, 400 101 1.913 0.471
CTso 900 122 7.882 1.462
CTyo 1600 146 23.384 3.535
CTso 2500 151 53.397 6.499
CTeo 3600 167 130.127 11.487
CT7o 4900 167 260.355 16.584
CTso 6400 165 439.702 22.392
CToo 8100 181 797.817 32.897
CT 100 10000 188 1250.57 43.623
CTi10 12100 188 1756.59 52.705
CT 120 14400 188 2362.05 62.13
CT o 16900 187 3033.74 72.104
CTuo 19600 188 3876.99 84.982
CT1s0 22500 188 47332 97.701
Mag 4 400 22 0.381 0.12
Mas 4 1225 37 3.174 0.791
Mo 4 2500 52 14.37 2364
Mes 4 4225 67 58.444 5.858
M4 6400 82 183.293 11.307
M 004 1000 102 598.5 24.235

2. Indexing Performance Testing under program p2: ,

Data Set Output Iterations Non-Indexing* Indexing*
CTyo 100 9 0.191 0.05
CTyq 400 9 1.642 0.311
CT3 900 10 9.143 1.342
CTy 1600 10 25.016 3.305
CTs, 2500 10 62.87 7.19
CTe 3600 10 161.091 13.73
CTyo 4900 10 354.139 21.661
CTg 6400 10 658.837 32.417
CToy 8100 10 1100.2 45.976
CT10 10000 i1 2525.49 90.34
CTo 12100 11 3994.07 120.363
CT120 14400 11 6153.18 158.598
CTi30 16900 11 9296.8 199.918
CTy0 19600 11 12364 252.748
CTys0 22500 11 16376.6 305.93
M4 400 8 1.292 0.251
Mjs.g 1225 8 9.554 1.432
Mo, 2500 8 36.793 4.146
Mgs .4 4225 9 214.238 15.232
Mgo.s 6400 9 588.026 30.134
Mi0.4 10000 9 1538.08 54.608

127

3. Indexing Performance Testing under program p3:
Data Set Output Iterations Non-Indexing* Indexing*

Ay 44 5 0.05 0.06
Ag 188 7 1.002 2.594
A, 380 8 4.586 15.563
As 764 9 19.638 96.619
Ag 1532 10 77.001 560.716
B, 64 5 0.06 0.04
B 268 5 1.021 1.412
Bs, 540 5 4216 8.191
By 1084 5 15312 53.947
B2s 2172 5 60.407 286.412
Cy 51 5 0.08 0.23
Cis 268 5 1.031 1.533
Ca, 499 5 5.428 7.831
Ces 1011 5 21.17 42.741
Cios 2035 5 83.971 223.942
F, 17 3 0.01 0.01
Fg 165 5 0.681 0.39
Fis 1557 6 41.379 14.581
o4 5637 7 600.684 223.392
F3, 13909 7 3284.13 1417.768
Sy 8 3 0 0.01
Sis 32 3 0.08 0.41
Sz 64 3 0.601 3.625
Ses 128 3 7.241 35.541
Sos 192 3 50.983 158.698
T4 36 3 0.01 0.12
Ts4 356 4 0.681 3.375
Taa 4132 5 44.094 339.228
Ts4 53220 6 6672.71 94669.628
Us 10 350 5 6.759 1.422
U010 850 5 40.098 6.319
Ui2,10 1050 5 60.257 9.193
Uis,10 1350 5 97.46 13.73
Uz0,10 1850 5 185.347 26.619

128

4. Indexing Performance Testing under program p4:

Data Set Output Iterations Non-Indexing* Indexing*
Ay 1 52 0.1 0.06
Ag 1 220 5.488 1.301
LY 1 444 43.723 6.069
Ag 1 892 350.765 32.517
Ag 1 1788 2815.7 169.093
B, 3 31 0.09 0.07
B 3 53 2.874 0.641
B, 3 85 18.877 2.423
By 3 149 137.448 11.226
Bg 3 277 1069.28 55.55
C, 4 24 0.04 0.04
Cis 4 48 2.804 0.571
Cs, 4 80 20.6 2.323
Cea 4 144 156.495 11.487
Cios 4 272 1241.47 59.396
F, 4 11 0.01 0.01
Fg 20 20 0.361 0.12
Fie 96 38 24.214 1.823
Fay 232 56 358.625 14.151
F3, 432 74 2558.87 63.881
Sa 1 6 0 0
Sis 1 30 0.15 0.21
Ss2 1 62 3.135 2.874
Ses 1 126 135.525 114.545
Sos 1 190 1917.03 1873.464
T24 6 10 0.01 0.01
T34 22 19 0.1 0.1
Ts4 86 25 1.683 0.661
Ts5.4 342 30 53.667 8.332
Us 10 10 30 3.861 0.761
U10.10 10 30 31.576 3.155
Ui2.10 10 34 69.76 5.788
U510 10 40 164.446 10.455
U010 10 50 457.708 21.781

*Timing in seconds

129

1. SNs Performance Testing under program pl:

Appendix B — Results of SNs Performance Testing

Data Set Output Iterations | Naive * | Semi-Naive* Semi-Naive with Partition*
CTyo 100 71 0.07 0.01 0.03
CTyo 400 101 0.471 0.44 0.16
CT;o 900 122 1.462 1.351 0.501
CTyo 1600 146 3.535 3.345 0.951
CTsg 2500 151 6.499 6.089 1.533
CTeo 3600 167 11.487 10.856 2.373
CTy 4900 167 16.584 16.714 3.285
CTso 6400 165 22.392 21.411 4.176
CTog 8100 181 32.897 31.345 5.428
CTi00 10000 188 43.623 41.97 6.77
CT50 12100 188 52.705 50.382 8.128
CTis0 14400 188 62.13 59.736 9.684
CThs 16900 187 72.104 68.979 11.336
CTiso 19600 188 84.982 82.358 13.389
CTiso 22500 188 97.701 94.836 14.761
Mao 4 400 22 0.12 0.12 0.04
M35 4 1225 37 0.791 0.711 0.381
M4 2500 52 2.364 2.153 0.831
Mes 4 4225 67 5.858 5.358 1.592
Mso.4 6400 82 11.307 10.565 2.544
Mioo4 1000 102 24.235 23.043 4.256

2. SNs Performance Testing under program p2:

Data Set Output Iterations Naive * | Semi-Naive* | Semi-Naive with Partition*
CTyo 100 9 0.05 0.05 0.06
CTy 400 9 0.311 0.301 0.3
CT;o 900 10 1.342 1.231 1.312
CTyp 1600 10 3.305 3.074 2.915
CTs 2500 10 7.19 6.719 6.019
CTeo 3600 10 13.73 12.298 11.917
CToo 4900 10 21.661 20.149 19.598
CTgo 6400 10 32.417 30.164 29.151
CTyy 8100 10 45.976 43.643 41.229
CT o0 10000 11 90.34 84.472 63.772
CTiyo 12100 i1 120.363 113.974 103.268
CTi2 14400 i1 158.598 150.426 154.342
CTis0 16900 11 199.918 196.112 186.939
CT 40 19600 11 252.748 241.396 230.201
CTis0 22500 il 305.93 296.626 284.419
Mioa 400 8 0.251 0.25 0.21
Mis 4 1225 8 1.432 1.322 1.272
Mso.4 2500 8 4.146 3.966 3.946
Mss.a 4225 9 15232 13.439 9.684
Mgos 6400 9 30.134 27.179 19.999
Mioo.s 1000 9 54.608 51 44.444

130

3. SNs Performance Testing under program p3:

Data Set | Output | Iterations | Naive* | Semi-Naive* | Semi-Naive with Partition*
A, 44 5 0.06 0.05 0.04
Ag 188 7 2.594 1112 0.05
Ay 380 8 15.563 6.529 0.18
Ag 764 9 96.619 41.82 0.52
Ay 1532 10 560.716 260.575 1.282
B, 64 5 0.04 0.02 0.02
By 268 5 1.412 0.10 0.1
Bs; 540 5 8.191 0.36 0.341
Bea 1084 5 53.947 0.88 0.851
B 2172 5 286.412 2.02 2.042
Cs 51 5 0.271 0.05 0.12
Cis 268 5 4.407 0.12 0.091
Cs2 499 5 24.645 0.36 0.331
Ceq 1011 5 147.562 0.931 0.822
Ciog 2035 5 850.693 2.253 1.863
F, 17 3 0.01 0.01 0
Fs 165 5 0.39 0.08 0.06
Fis 1557 6 14.581 1.923 1.522
Faq 5637 7 223.392 15.373 11.336
Fsz 13909 7 1417.768 51.213 43.843

S4 8 3 0.01 0 0
Sie 32 3 0.461 0.01 0
Ssz 64 3 3916 0.05 0.02
Ses 128 3 37.263 0.711 0.06
So6 192 3 164.046 5.488 0.18
Taa 36 3 0.12 0.01 0.01
T34 356 4 3.375 0.12 0.05
Tsa 4132 5 339.228 2.814 2.443
Tsa 53220 6 94669.628| 113.644 82.008
Us 1o 350 5 1.422 0.992 0.962
Uio,10 850 5 6.319 3.715 3.766
Uiz10 1050 5 9.193 4.707 4.767
Uis.zo 1350 5 13.73 6.199 6.159
Uao,10 1850 5 26.619 9.043 8.573

131

4. SNs Performance Testing under program p4:

Data Set Output Iterations Naive* Semi-Naive* Semi-Naive with Partition*
A, 1 52 0.06 0.02 0.05
A 1 220 1.301 0.441 0.381
A; 1 444 6.069 1.982 1.332
Ag 1 892 32.517 9.103 5.107
Ay 1 1788 169.093 42.371 20.609
B, 3 31 0.07 0.06 0.03
By 3 53 0.641 0.551 0.471
B, 3 85 2423 2.083 1.803
Bea 3 149 11.226 9.273 7.31

B2 3 2717 55.55 42.191 29.934
C, 4 24 0.04 0.081 0.03
Cis 4 48 0.571 0.511 0.471
Cs 4 80 2.323 2.113 1.892
Cu 4 144 11.487 9.784 7.981
Cizs 4 272 59.396 47.068 33.388
F, 4 11 0.01 0.03 0.01
Fs 20 20 0.12 0.12 0.08
Fi6 96 38 1.823 1.672 0.932
Fo4 232 56 14.151 13.169 4.747
F3; 432 74 63.881 57.613 13.95
S, 1 6 0 0 0.01
Sis 1 30 0.21 0.06 0.13
S32 1 62 2.874 0.952 1.112
Ses 1 126 114.545 13.199 9.083
Sog 1 190 1873.464 64.092 30.484
Tya 6 10 0.01 0.05 0.01
Tsa 22 19 0.1 0.081 0.06
Taa 86 25 0.661 0.41 0.431
Ts4 342 30 8.332 4.105 3415

Us 0 10 30 0.761 0.711 0.49

Uio,10 10 30 3.155 2.964 2.364

Uiz.10 10 34 5.788 5.458 3.525

Uisio 10 40 10.455 10.435 5.187

Uzo.10 10 50 21.781 21.731 8.432

*Timing in seconds

132

