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Abstract

Reengineering an object-oriented framework for extensible query
optimization

Qiu Wen Li

In this thesis, we describe a third-generation extensible query optimization framework
that has evolved from the OPT++ framework of Navin Kabra for relational databases.
Our framework does not change the infrastructure of the OPT++ architecture, which
consists of three components: a Search Strategy component, a Search Space
component and an Algebra component. However, we address the problems
encountered while building two query optimizers in the framework: a simple
bottom-up optimizer and an instance of the PostgreSQL query optimizer and enhance
the modularity and the collaboration of the three components of the framework at
detailed level, which in turn leads to a more flexible, easier to extend and cleaner
implementation. The framework has been validated by implementing the two query
optimizers. While both these cases were for the relational data model, we believe the

design does cover the optimization process for other data models.
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Chapter 1

Introduction

Query optimization, which is one of the critical processes in a database management
system (DBMS), has been studied for over twenty years, but building a query
optimizer to handle it in a DBMS is still a difficult and expensive task. Furthermore,
new query algebra and search techniques are continuously introduced. Different
DBMS might not support exactly the same query algebra, and also there is no one
query optimization technique that is best for all queries, i.e. different search strategies
might generate different “good” execution plans for a certain query. As a result, there
is a need to build an extensible query optimizer, which allows easily adding and
modifying query algebra and meanwhile can easily switch among different search
strategies. A lot of effort was put in attempting to make such changes easier while
building a query optimizer. Representative examples include the Starburst query
optimizer [18] [21], the Volcano optimizer generator [16], the EXODUS optimizer
generator [17] and the OPT++ framework [20].

Frameworks are an object-oriented reuse technology and have been applied to

the query optimization domain to meet the reuse demand. In this thesis, we present the



design and implementation of a third-generation query optimization framework
evolved from the OPT++ framework, which satisfies both extensibility requirements
presented above, along with the improved performance of an instance of the

PostgreSQL query optimizer [29] customized from the framework.

1.1 Related Work and the Problem

OPT++, which is proposed by Navin Kabra for his PHD thesis at the University of
Wisconsin, is an extensible query optimization framework that allows the
extensibilities of both adding new algebraic operators/algorithms and changing search
strategies. OPT++ is written in C++ and exploits the object-oriented features, such as
the reusability and dynamic binding of C++. It is mainly divided into three
components [20]: the Search Strategy component, the Search Space component and
the Algebra component. The Search Strategy component determines what strategy is
used to explore the search space (e.g., dynamic-programming, randomized, etc.); the
Search Space component determines what that search space is (e.g., space of left-deep
join trees, space of bushy join trees, efc.); and the Algebra component determines the
actual logical and physical algebra for which the optimizer is written. The modularity
of the three-component makes it possible to modify one of the three components
while having minimum impact on the other two. For example, different search
strategies can be applied on the same query algebra, and expanding the query algebra
will not affect the implementation of the search logic.

In spite of the big improvement made by OPT++ in designing an extensible



query optimization framework, OPT++ has some limitations, such as the framework
is not completely implemented, components are strongly coupled by implementation
details, and so on, as stated in Jinmiao Li’s thesis [22]. Jinmiao Li refined OPT++,
which forms the second-generation framework, and customized it to a simple
bottom-up query optimizer.

A framework is a reusable, “semi-complete” application that can be specialized
to produce custom applications [19]. The best way to tell if a framework is reusable
for a domain is to customize it. Plus, OPT++ has not been fully used besides its author
and the simple bottom-up query optimizer implemented by Jinmiao Li. Therefore,
further studies on OPT++ are necessary. Ju Wang implemented an instance of the
Postgre SQL query optimizer on top of the second-generation framework [36]. He also
extended the framework to allow sub-queries and explicit joins.

During the course of building the two applications (i.e. the simple bottom-up
query optimizer and the PostgreSQL-like query optimizer), we found substantial need
to improve the design at the detailed level though the main abstractions of OPT++ did
not change. Moreover, the second application raised many issues with the
performance of OPT++. In this thesis, we further study the query optimization
framework. Our work enhances the detailed design and implementation of the
three-component architecture and dramatically improves the performance of the

PostgreSQL-like query optimizer.



1.2 Objective and Scope of the Thesis

The objective of the thesis is to reengineer the detailed design and implementation of
the second-generation query optimization framework that originally derived from
OPT++ and to further evaluate OPT++ as an extensible query optimization framework
within a database management system. The reengineering aims to improve the
extensibility, flexibility and understandability of the framework and experience
framework-base system development. It addresses the problems encountered while
building the two optimizer applications: the simple bottom-up query optimizer and the
PostgreSQL-like query optimizer, which include the performance issues raised by the
second application.

The scope of the thesis basically includes: understanding the framework;
analyzing the problems of the framework and solving the problems; integrating the
PostgreSQL-like optimizer to the new framework and improving its performance.

® Understanding the framework
The first step of working with a framework is to understand it. And
because OPT++ is a white-box framework, adequate knowledge on the internal

implementation of the framework is a must. Moreover, query optimization is a

complex process. Understanding the query optimization framework is not a

minor work, but takes a considerable portion of time of the whole project.

® Analyzing the problems

After getting sufficient knowledge on the framework, we move to the next

step — identifying the problems, which involves the following steps:



1. Review the previous framework.

2. Analyze the two framework applications: the simple bottom-up query
optimizer and the PostgreSQL-like query optimizer.

3. Investigate the problems that cause the difficulties in the
implementation of the two applications.

® Reengineering the framework to solve the encountered problems and
improve the flexibility and extensibility of the framework.

1. Abstract a query optimizer object and localize the global variables that
limit the flexibility of the framework to the query optimizer object.

2. Decouple the three components and reassign the functionalities of
each component.

3. Abstract new objects (e.g. interface to the Search Space component) to
provide clearer interfaces for the components to interact with each
other.

® Integrating the PostgreSQL-like optimizer to the new framework. Profiling
the PostgreSQL-like optimizer to identify and fix the performance problems.
As mentioned previously, the PostgreSQL-like optimizer has raised many
performance issues. The test results presented in Ju Wang’s thesis [36]
shows a big gap of performance in terms of the time needed to optimize
queries between the PostgreSQL-like optimizer and the native PostgreSQL
optimizer. The application takes 8-10 times the time used by the native

Postgre SQL optimizer when the number of joins in a query exceeds nine.



1.3 Contribution of the Thesis

This thesis proposes a third-generation extensible object-oriented framework for
database query optimization that originally derived from OPT++. The fitness of
OPT++ framework as a query optimization sub-framework within a database
management system framework, e.g. the Know-It-All framework [3], is further
studied.

The new generation improves the reusability and extensibility of the framework
and provides cleaner and more understandable program codes. An object that
represents the query optimizer is constructed and template technology is applied. The
query optimizer object provides a simple manner to switch among different search
strategies and different sets of query algebra. The interfaces to the three components
are abstracted or refined, and the functionalities among the components are reassigned,
which clearly decouple the three components and produce more extensibility.

The difficulties and problems encountered while implementing the simple
bottom-up optimizer and the PostgreSQL-like optimizer in the framework are
addressed in this thesis. For example, heavy coupling between the Search Strategy
component and the Algebra component, incomplete implementation of Search Space
component, limitation caused by the global variables, and so on.

The PostgreSQL-like optimizer has been further studied and is integrated to the
new framework. The performance of the optimizer has been obviously improved as
shown in Table 7. For example, to optimize a query with nine joins, the time used

drops from 10 times slower than the native PostgreSQL optimizer to around 4 times.



And the time drops from 6.6 times to 1.7 times when the number of joins reaches 20,
where the genetic algorithm is used and a fixed size (1024 by default) pool of join

plans are needed to initialized.

1.4 Layout of the Thesis

The organization of the thesis is as follows. Chapter 2 gives the basic background
knowledge on frameworks, database query optimization, OPT++, and the PostgreSQL
query optimizer. Chapter 3 describes the reengineering of the framework. In this
chapter, we demonstrate the architecture and abstraction of the framework, and then
review the second-generation framework. Finally, we present the reengineering in the
design phase and give a small discussion on the solutions. In Chapter 4, we
demonstrate the implementation of the reengineering decisions presented in chapter 3
in each component and the performance testing result of the PostgreSQL-like

optimizer. Chapter 5 finally concludes the thesis.



Chapter 2

Background

Our work is to reengineer an extensible query optimization framework, and the
knowledge involved is mainly in two domains - frameworks and database query
optimization. In this chapter, we provide corresponding background knowledge on
both domains to help readers understand our work. OPT++, an extensible query
optimization framework, on which our work is based, is introduced. And a mature
optimizer, the PostgreSQL query optimizer, which was used as a case study of our

framework, is also demonstrated.

2.1 Framework and Design Pattern

Frameworks are an object-oriented reuse technology and have become very popular
for software development in both industry and academic. Many framework examples
have been successfully used in software development, e.g. MFC and DCOM of

Microsoft, etc. Then, what is a framework?



2.1.1 What is a framework

A framework is a reusable, “semi-complete” application that can be specialized to
produce custom applications [19]. Object-oriented approach has been adopted to
contribute to the reusability of frameworks. Hereafter, we mean “object-oriented
framework” when we use just “framework”.

A framework is not an application, while it is an application generator for a
particular domain. “Hot spot” is the term used to represent variable aspects of a
framework. Hot spots are places where specific requirements can be implemented. A
hotspot is embedded in a component or class of the framework using a template
method and hook methods. A template method defines an algorithm in terms of
abstract operations that subclasses override to provide concrete behavior. Within the
template method there are calls to other operations: some calls are there to provide
variable operation, these are the hook methods; while some calls are there to provide
good decomposition of a complex algorithm into simpler steps. A hook method
provides default behavior that subclasses can extend if necessary. Hook methods are
often protected methods of the base abstract class. The public method is the template
method, which is called by client classes, and the variability is provided by subclasses
that override the hook methods but not the template method [35].

In contrast to hot spots, “frozen spots” represent the stable points of a framework,
which are not supposed to be changed and actually it is very difficult to modify them
in a framework. They define the skeleton of a framework and most of the time control

the whole flow of an application built in the framework. The frozen spots of a



framework call the specific implementation of the hot spots of the framework
provided by the framework users when a particular application customized from the
framework is executed. That is why people use the famous Hollywood proverb —
“Don’t call us, we’ll call you.” — to describe frameworks.

Frameworks can be classified into white-box framework or black-box framework
according to the ways in which it is extended. To work with a white-box framework,
the user needs to have adequate knowledge on the internal architecture of the
framework. Normally, the hot spots of a white-box framework are implemented by
sub-classing the abstract classes and providing concrete implementation of behaviors
of these classes. Unlike a white-box framework, the black-box framework does not
require framework users to learn the detailed internal implementation of the
framework. It is reused by composition, instead of inheritance.

OPT++, the extensible query optimization framework, on which our work is
based, is a white-box framework. Therefore, to get a thorough understanding of

OPT++ is the first step of the thesis.

2.1.2 Developing a framework

The primary benefits [9] of frameworks stem from the modularity, reusability,

extensibility, and inversion of control they provide to developers, as described below:

* “Modularity -- Frameworks enhance modularity by encapsulating volatile
implementation details behind stable interfaces. Framework modularity helps

improve software quality by localizing the impact of design and

10



implementation changes. This localization reduces the effort required to
understand and maintain existing software.”

“Reusability -- The stable interfaces provided by frameworks enhance
reusability by defining generic components that can be reapplied to create new
applications. Framework reusability leverages the domain knowledge and
prior effort of experienced developers in order to avoid re-creating and
re-validating common solutions to recurring application requirements and
software design challenges. Reuse of framework components can yield
substantial improvements in programmer productivity, as well as enhance the
quality, performance, reliability and interoperability of software.”
“Extensibility -- A framework enhances extensibility by providing explicit
hook methods that allow applications to extend its stable interfaces. Hook
methods systematically decouple the stable interfaces and behaviors of an
application domain from the variations required by instantiations of an
application in a particular context. Framework extensibility is essential to
ensure timely customization of new application services and features.”
“Inversion of control -- The run-time architecture of a framework is
characterized by an “inversion of control”. This architecture enables canonical
application processing steps to be customized by event handler objects that are
invoked via the framework's reactive dispatching mechanism. When events
occur, the framework's dispatcher reacts by invoking hook methods on

pre-registered handler objects, which perform application-specific processing

11



on the events. Inversion of control allows the framework (rather than each
application) to determine which set of application-specific methods to invoke
in response to external events (such as window messages arriving from

end-users or packets arriving on communication ports).”

Even though a framework can provide so many advantages, it is not easy to
develop a framework. Since a framework covers applications in a certain domain and
has to consider all relevant concepts of the domain, developing a framework for a
specific domain requires expert knowledge of that domain. The framework developer
should have a strong ability to abstract generic concepts from a domain and the ability
to predict different specific requirements that might occur within a domain in the
future. Furthermore, developing a framework is not a one-time task and has to evolve
repeatedly. Because a framework itself is not a complete application, its reusability,
extensibility and correctness can be tested only after the framework is instantiated. It
has become common that at least three applications needed to be customized before
we can determine that a framework is reusable, extensible and efficient for developing
applications in a certain domain.

Framework development can be summarized into three major stages: domain
analysis, framework design, and framework instantiation [24]. Domain analysis
attempts to discover the domain's requirements and possible future requirements.
Some of the hot spots and frozen spots of the framework can be determined during
this stage. The framework design phase defines the framework's abstractions. Hot

spots and frozen spots are fully modeled, and the extensibility and flexibility proposed

12



in the domain analysis is outlined. The last stage is to validate the framework by
customizing applications from the framework. If the extensibility and flexibility
outlined in the second stage can not be satisfied, we need to go back to the first stage

and redesign the framework.

2.1.3 Design Pattern

Patterns are the software-engineering concept most often coupled with frameworks
and are discovered in most of well-designed software. In this respect, frameworks are
not exceptions: design patterns are usually applied in building the architecture of a
framework and in shaping the adaptation mechanisms in the hot spots [15]. Design
patterns are helpful in achieving flexibility in framework design. And they are also
very useful in framework documentation.

While both design pattern and frameworks abstract key aspects of a problem in a
context and contribute to improving the reusability of software development, they are
different in the following ways:

e Design patterns describe micro-architectures, while frameworks have concrete
architectures.
e Design patterns are abstract, while frameworks are semi-implemented.
e Frameworks are domain specific, while design patterns are more general.
Two design patterns are employed in this thesis: the Facade Design Pattern and

the Visitor Design Pattern.

13



2.2 Database Query Optimization

Query optimization is a very important procedure in a DBMS. It helps find an
efficient execution plan of a user-input query on a database. The optimizer is the

component that is responsible for carrying out the procedure.

2.2.1 Query Algebra

A query is written in a declarative form that specifies the results that are required, but
the query does not present a procedure or algorithm for finding those results in the
database. Structured Query Language (SQL) is a standard programming language that
is used to represent a user query for getting information from or updating a database.
A query in SQL is parsed and translated into the underlying relational data model. A
data model is represented by an algebra of operators, such as select, join, project, etc
that comprise the relational algebra. These are also called logical operators. A logical
operator together with its inputs forms a tree, called an operator tree, which represents
the particular operations on data and the order of the operations. Each logical
operation may be implemented by several algorithms, e.g. join can be implemented by
hash-join or merge-join, which are also called physical operators. Some algorithms
have prerequisites to create necessary conditions. For example, a merge join requires
the inputs to be sorted, so there is a sort physical operator; temporary tables may be
created and indexed in order to facilitate a physical operator. Analogously, a physical
operator together with it inputs forms a tree, called an algorithm tree, which

represents the execution plan of how to compute the results of the query.

14



2.2.2 Search Strategy

Query optimization requires a method of selecting an optimal, or a good, physical
query plan from the space of all physical query plans that are equivalent to the query.
Given a query, the query optimizer can use different approaches to find the optimal
execution plan. Optimization searching can basically be classified into two catalogs:
exhaustive search and non-exhaustive search. Exhaustive search considers all the
possibilities in the optimization and guarantees that a best execution plan will be
found. However, exhaustive search is only feasible when the space is small. In many
cases, the space is too large to exhaustively search, and heuristics must be applied to
prune the search space. Such a heuristic is called a search strategy [35].

e Bottom-up search strategy — the tree is built from the leaves to the root. The
initial trees all contain only one leaf, which represents a database entity within
the query. To generate bigger trees, one or two (e.g. binary operator join in
relational database) existing operator tree(s) is/are picked and expanded by
adding an operation of the query as the root of the tree or the two trees. Before
expanding the tree, the applicability of the operation on the tree has to be
checked, such as, is the operation included in the tree already, and so on. For
each new operator tree, all the corresponding execution plans are generated.
Cost-based pruning of these execution plans is done to narrow the search
space. Optimization is complete when none of the operator trees can be further
expanded. The answer of the optimization (the optimal execution plan) is the

cheapest execution plan that represents the complete input query.
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e Transformative search strategy — a complete tree is built using other search
strategies, for example, bottom-up search strategy. Then a transformation rule,
e.g. Select-push-down, which is the most common transformation rule, is
applied on the tree and produces an alternative, algebraically equivalent tree.
Before applying the transforming rule, the applicability of the rule on the tree
has to be checked. The optimization completes when none of the existing
operator trees can be further transformed, and the cheapest execution plan that

represents the complete query is returned.

2.2.3 Query Optimization

l Query
Query Parser

Parsed Query

Query Optimizer

Plan Plan Cost Catalog
Generator | | Estimator Manager

Evaluation Plgn

Query Plan Evaluator

Figure 1: Query Parsing, Optimization, and Execution [31]
Figure 1 illustrates how query optimization is processed in a database management
system. The optimizer takes the algebraic expression of a user-input query as the input.

Based on the input query, it generates alternative plans for executing the query and
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estimates the costs of the plans. The optimization stops when no more alternative
plans can be generated and returns the best one, the plan with the lowest cost.
Obviously, the query algebra the optimizer is working on and the search strategy
the optimizer will use to generate plans are two variable points in a query
optimization process. Therefore, a query optimization framework which generates
optimizers should provide flexibility and extensibility for these two points. OPT++,
introduced in the next section, is an extensible query optimization framework that

allows changes in both the query algebra and the search strategy.

2.3 OPT++: An Object-Oriented Implementation for

Extensible Database Query Optimization

OPT++ [20] is an extensible query optimization framework that aimed to allow

changes to the query algebra and the search strategy without sacrificing efficiency.

QPT++ provides

this code s
Runtime Binding
{virtual methods)
Optimizer
Implementor
writes this ]
code Derived Classes

QUERY OPTIMIZER

Figure 2: OPT++ Basic System Design [20]
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OPT++ is a white-box framework and written in C++. It benefits from the
object-oriented features of C++, such as, the inheritance and dynamic binding. Figure
2 shows the basic system design of OPT++. The search strategy is written in abstract
classes. The optimizer implementer (OI) has to subclass these abstract classes for
specific requirements. With the dynamic binding mechanism of C++, the search
strategy will call the subclasses provided by the OI during the run time.

A comparison of OPT++ with Volcano [16], a research system, is made by Kabra.
Both systems implement the same transformative optimizer, and OPT++ performs
within 5% of Volcano in terms of the time to optimize a query using random queries
with zero to twelve joins. No performance study of an OPT++ optimizer against an

optimizer in production use is made.

2.3.1 The Three-Component Architecture

Figure 3 is an abstract overview of the OPT++ architecture, which is composed of
three components: a Search Strategy component, a Search Space component and an
Algebra component. The Search Strategy component determines what strategy is used
to explore the search space (e.g., dynamic-programming, randomized, erc.), the
Search Space component determines what that search space is (e.g., space of left-deep
join trees, space of bushy join trees, etc.), and the Algebra component determines the

actual logical and physical algebra for which the optimizer is written [20].
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Figure 3: An Abstract Overview of the Three Components

The three-component decomposition conforms to the nature of query
optimization. It provides a valuable guidance for building an extensible query
optimization framework. The separation of Search Strategy component and Algebra
component gains the flexibility of different search strategies can be applied on the
same query algebra and expanding/modifying the query algebra will not affect the
search logic. The clear separation between them becomes possible by introducing the
Search Space component, which performs operations on the Algebra under the guide
of the Search Strategy. One the whole, the well-separation of the three components
makes it possible to change each of these components while having minimum impact

on the other two.
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2.3.2 Data Model
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Figure 4: An Example Operator Tree with Its Properties [20]
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Figure 5: An Example Algorithm Tree with Its Properties [20]
The Algebra component implements the data model of the query optimization.

Let us firstly look at some basic concepts in this component:

operator — represents a logical algebraic operator, e.g. select, join, etc.. An
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operator has a list of algorithms, which represent its physical
execution algorithms in a DBMS. For example, join can be
implemented as merge-join or hash-join. An operator can take no
input (e.g. DB relation), one input (called unary operator, e.g.
select) and two inputs (called binary operator, e.g. join).

algorithm - represents an algebraic algorithm which is one of the actual
implementations of an operator. Each algorithm associates with a
method to calculate the cost in terms of execution time of the
algorithm in a DBMS. The cost is the main criterion to judge an
optimal tree. An algorithm can have an enforcer, which represents
the prerequisites to execute the algorithm. For example, sort has to
be done in order to execute merge-join. Similar to an operator, an
algorithm can take no input, one input (unary algorithm) and two
inputs (binary algorithm).

operator tree — a tree structure in which each node is an operator being applied
to its inputs.

algorithm tree — the implementations of each algebraic operator of an operator
tree also found a tree called algorithm tree, in which each node
analogously represents an algorithm being applied to its inputs.

operator tree descriptor — a descriptor of an operator tree that stores
information about the tree, e.g. set of relations already joined in,

the index path, and any other interesting information that can
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distinguish the operator tree. The operator tree descriptor also
helps to decide if two operator trees are algebraically equivalent.

algorithm tree descriptor — a descriptor of an algorithm tree that stores
information about the tree, e.g. the sort-order of the result, the cost
of the algorithm tree and any other interesting information that can
distinguish the algorithm tree. Similar to the operator tree, the
algorithm tree descriptor can be used to check if two algorithm
trees are algebraically equivalent.

Figure 4 and Figure 5 give examples of an operator tree (with its descriptor) and
an algorithm tree (with its descriptor). In the framework, it is assumed that a query
can be logically represented as an operator tree. And an operator tree has more than
one algorithm tree because an algebraic operator can be implemented using more than

one algebraic algorithm.

2.3.3 Cost Model and Pruning Mechanism

During the course of optimizing a query, the optimizer must generate various operator
trees that represent the query (or parts of it) and their corresponding algorithm trees.
As a result, the search space will becomes bigger and bigger. Cost model defines a
criterion for search space pruning.

Each algorithm associates with a method to calculate the cost. Normally, the cost
of an execution plan is the time the database uses to execute it. The optimal plan is the

plan with the less cost among the set of algebraically equivalent execution plans.
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Cost-based pruning [20] of access plans in OPT++ is done in a manner similar to
the techniques used by the System-R optimizer [12], as illustrated in Figure 6.
Whenever a new access plan is created, the virtual methods of the Algorithm class
are used to determine the cost of that access plan, to determine whether it has any
interesting physical properties, and to local all other access plans that are equivalent to
it. From this set of equivalent access plans, only the cheapest plan and those plans that
have interesting physical properties are retained. All others are deleted. An operator

tree is deleted if all its algorithm trees are pruned.
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Figure 6: OPT++ Cost-based Pruning Mechanism

2.4 PostgreSQL Query Optimization

PostgreSQL [29] is an open source object-relational database management system.

The search strategies implemented in PostgreSQL optimizer includes transformative
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rules, constrained dynamic programming and the genetic algorithm. The latter two are
implemented in the PostgreSQL-like optimizer built in our framework. The
framework design is also extended to allow sub-queries and explicit joins which are

essential features of PostgreSQL optimizer.

2.4.1 Data Model

The PostgreSQL optimizer was written in C, thus the data structures were
implemented in C Structs. The data structure that represents a query is called Struct
Query. There is no data structure defined for an operator tree in PostgreSQL because
the PostgreSQL optimizer produces algorithm trees directly instead of generating
operator trees and then converting them into algorithm trees as done in OPT++. The

algorithm tree is represented by Struct Plan.

Query : seiect * from table1, table2 WHERE table1.a=table2.f;

im

SELECT Que

¥ tatyie 1. varchar(10)

tablet.c  floats )

| table2.d  varchar{10)

Target List
Join Tree

Cualitication \

tableZe  varchar(i0)

tabla2.t  intd

tabilet1.a 3 Table2.t ) ( table1 ; tabila2 ‘

Figure 7: A PostgreSQL Query Tree [29]
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Struct Query The information of a user input query is parsed and saved in
Struct Query. Figure 7 illustrates the Struct Query, which is composed of the
following parts [8] [35]:

e The command type that takes its value from an enum type consisting of
SELECT, INSERT, UPDATE or DELETE.

e The range table which is a list of relations that are used in the query.

¢ The result relation which is an index into the range table that identifies the
relation where the results of the query go.

¢ The target list is a list of expressions that define the result of the query. It is
expanded into a list of attribute names.

e The qualification is a Boolean expression that tells whether the command for
the result row should be executed or not.

e The join tree which shows the structure of the FROM clause. Nodes in the
tree explicitly indicate how the relations will be joined using the join directive
keywords: INNER/OUTER, NATURAL, LEFT/RIGHT/FULL.

e The other parts of the query tree representing the group clause, having
qualification, DISTINCT clause, SORT clause and set operations. There are

also some lists for the subsequent use of optimization.
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QU@I’Y: Select DISTINGT al b1 from table, table2
WHERE tablet.a2=tabie2 b2 AND table1.a3=42;

( Unique )

Sort )
Sort Columns: at, bl

Nested Loop Join

Target List: al,a2
CGualification: al=42

/\
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Target List: a1,a2

Qualification: a3=42 Target Listo1,b2

Figure 8: A PostgreSQL Physical Plan [29]

Struct Plan Struct Plan represents an algorithm tree, which is a binary tree
where each of the nodes represents an algorithm. Figure 8 illustrates the Struct Plan,
which is composed of the following parts [8] [35]:

e type — the algorithm type that takes its value from an enum type that includes
all the available algorithms, e.g. HashJoin, MergeJoin, etc.

e cost — the cost is an estimate cost up to and including the execution this node’s
algorithm.

¢ plan_rows — the number of rows the plan is expected to emit.

e plan_width - the average row width in bytes.

e tartet_list — the target list, as for a query.
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e qualications — the qualification, as in a query, but represented as a list of
Boolean conditions. The overall expression is the AND of the conditions in the
list.

o left_tree — the pointer to the left input which is also a plan tree.

e right tree - the pointer to the right input which is also a plan tree.

e Some other entries for run time information and to specify other plans which

must be executed before the current node.

2.4.2 Constrained Dynamic Programming

The constrained dynamic programming (hereafter, use dynamic programming in short)
search strategy is a kind of exhaustive search strategy that explores all the possibilities
in the join space. The PostgreSQL optimizer uses dynamic programming when the
number of joins in a query does not exceed a certain threshold (10, normally).

The items in the From-clause of a query are base relations, joins among which
will be considered by the dynamic programming strategy. Within these base relations,
an explicit join indicating a join directive or a sub-query is treated as a whole (a base
relation), of which the join order is fixed and only physical method and inner/outer
position are determined by calculation. And, the left-sided and the right-sided trees,
which is believed be able to produce the best plan, are considered first and then a
subset of bushy trees is taken into account. While joining two base relations, if there
is no join specified in the WHERE-clause between the two relations, a Cartesian

product is produced. If two trees are algebraically-equivalent, meaning both two trees
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contain the same set of relations, the one with the higher cost will be removed. The

concept level in dynamic programming indicates the number of base relations

involved in the join. We here use an example [36] to demonstrate how the dynamic
programming strategy works.

Note: In the example below, subscript (b) means bushy tree, and striking through a
tree means the tree is removed because it is algebraically-equivalent to some tree
but costs more than that tree.

Query: SELECT * FROM tl,t2,t3,t4,t5 WHERE tl.cl=t2.c2 AND

t3.c3=t4.c4 AND t2.c5=t3.c5;

FROM-clause: {tl1}, {t2}, {t3}, {t4}, {t5}

WHERE-clause: {t1,t2}, {t3,t4} and {t2,t3}

Level 1: {t1}, {t2}, {t3}, {t4}, {t5}

Level 2: {t1,t2}, {t3,t4}, {t£2,t3}, {t5,tl}, {t5,t2}, {t5,t3}, {t5,t4d)

Level 3: {{tl,t2},t3}, {{t3,t4d},t2), {{t5,tl},t2}, H4&5-£2

(.

+£11
A A

{{t5,t2},t3}, {{t5,t3},td}, &332}, 57641533

Level 4: {({{tl,t2},t3},t4}, {{{t5,tl},t2)},t3}, {{{tl,t2},t5},t4d},

{{{t5,t3},t4},t2}, HEeEFE+tE3+—¢41

Answer: {{{{tl,t2},t3},t4},t5}
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We notice that although some combinations are ignored, there is a guard
condition in each level, which is each item in the FROM-clause, must appear at least
once in each level. The guard condition guarantees that a complete tree that covers all
relation can be constructed at the top level.

It is worthwhile to point out that the inner/outer positions and physical methods
within a combination must be determined by calculations based on system statistics.
For example, for a combination {{tablel, table3}, table2}, we have to determine
which one acts as inner input, {tablel, table3} or table2. Also, we have to determine

which physical method is adopted, hash-join, nested-loop, or merge-join.

2.4.3 Genetic Algorithm

The Genetic Algorithm (GA) search strategy is adopted for queries with a large
number joins. It is a non-exhaustive search method and does not guarantee that the
optimal plan will be found. However, it reaches a fairly good solution in a fixed time.
The GA [29] is a heuristic optimization method which operates through
determined, randomized search. The set of possible solutions for the optimization
problem is considered as a population of individuals. The degree of adaption of an
individual to its environment is specified by its fitness. The coordinates of an
individual in the search space are represented by chromosomes, in essence a set of
character strings. A gene is a subsection of a chromosome which encodes the value of
a single parameter being optimized. Typical encodings for a gene could be binary or

integer. Through simulation of the evolutionary operations recombination, mutation,
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and selection new generations of search points are found that show a higher average
fitness than their ancestors.

In the PostgreSQL optimizer, each relation is associated with an integer. A query
plan is encoded as an integer string in which the integers represent the relations to join
and the order of the integers represent the join order. For example, a query plan of
integer string ~1-4-3-2' means first join relations “1' and “4', then join relation *3', and
finally join relation “2'. To reduce search time, only left-sided trees are considered, so a
sole join tree can be constructed from a chromosome [29].

The population of individuals is put into a pool, which is actually an array of
chromosomes. At the beginning, the pool size and number of the needed generations
are calculated based on the number of relations involved in a query, and then the
chromosomes in the pool are initialized randomly. In each repetition, parents are
selected from the pool based on a given linear bias. A child is generated by a crossover
of its parents. In the crossover, the heuristic of solving the Traveling Salesman
Problem (TSP) [26] is adopted. Priority is given to the “shared" edges which refer to
the edges between two cities shared by more than one route in the TSP problem. There
are many Kinds of ways to do crossover. Five variants, edge recombination crossover,
partially matched crossover, cycle crossover, position crossover, and order crossover,
are supplied in the PostgreSQL optimizer.

At the end of each repetition, the child will replace the individual with the most
expensive cost in the pool. After all generations are finished, the best chromosome in

the pool is taken to construct a join tree.
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2.4.4 The Optimization Procedure
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Figure 9: Activity Diagram for PostgreSQL Optimization [29]

Figure 9 demonstrates the overall optimization process of PostgreSQL. A Query
Struct is populated after parsing a user input query. The Query Struct is preprocessed
using the following rules before the actual optimization is carried out [29].

e or-to-union: A qualified query with or-operator in its where-clause is
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converted to union of two queries.

e constant-expression-simplification: Reduce any recognizably constant
sub-expressions of the given expression tree. Simplify Boolean expressions
containing constant sub-expressions if possible.

e expressions-normalization: Convert a qualification to the most useful
normalized form, either CNF (AND-of-ORs) or DNF (OR-of-ANDs). Push
down NOTs.

¢ select-push-down: Push selections down to their corresponding relations as
low as possible.

e sub-query-pull-up: When a query contains a simple sub-query in its
FROM-clause, the sub-query will be pulled up and merged into the upper
query. Sub-query-pull-up must be done recursively.

After the rewriting preprocess, the optimizer starts optimizing join operator,
which is the most difficult one to optimize among all the relational operators. If the
number of relations in the range table of the Query Struct does not exceed a certain
threshold, constrained dynamic programming is used to do an exhaustive search in the
join space. Otherwise, a genetic algorithm query optimization is adopted [30], because
the cost of an exhaustive search will increase exponentially with the number of joins.
Finally, the operators GROUP, AGGREGATION, ORDER, and DISTINCT are

converted into the corresponding physical nodes in a fixed way.
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Chapter 3

Reengineering the Framework

Our work is a third-generation query optimization framework that originally derived
from OPT++ proposed by Navin Kabra [20]. Jinmiao Li redesigned Kabra’s version,
which formed the second-generation query optimization framework, and she
customized the framework to a simple bottom-up optimizer [22]. Ju Wang furthered
the study on the framework by building an instance of the PostgreSQL optimizer in
the second-generation framework [36].

The overall aim of studies with OPT++ sought to determine its fitness as a query
optimization sub-framework within the database management system framework.
While the two optimizer applications have shown that the major abstractions of
OPT++ are well-conceived with a good separation between responsibilities of the
three major components and that OPT++ is easy to extend and apply, we found
substantial need to improve the design and implementation of the framework at the
detailed level.

The purpose of the reengineering is to solve the problems encountered in the

implementations of the simple bottom-up optimizer and the PostgreSQL-like
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optimizer and to enhance the reusability, extensibility and understandability of the
framework. It addresses the performance problem raised in the PostgreSQL-like
optimizer. In total, it aims to make the framework really achieve the following
flexibilities claimed by Kabra [20]. “First, it should be easy to add new operators as
well as new execution algorithms for existing operators. Second, the framework
should allow the Optimizer-Implementer (OI) to evaluate various heuristics that can
limit the search space explored by the optimizer. The OI should also be able to
explore different search strategies, and, if necessary, to mix multiple strategies in a
single optimizer. Finally, this flexibility should be achieved without sacrificing
per’formance — lLe., an optimizer built in this extensible framework should not be
much worse in its space or time requirements than an equivalent “custom-made”
optimizer.”

This chapter presents the reengineering work done in the design phase. The
implementation details will be found in Chapter 4. The initial step of the
reengineering activity is to understand the infrastructure of the framework — the
three-component architecture, which has been proven to be flexible and extensible for
building query optimizers by the previous studies with OPT++ and is not changed in
the third-generation version. We then analyze Jinmiao’s implementation and list the
existing problems. The valuable refinement of OPT++ done in Jinmiao’s
implementation is presented in her thesis [22] and will not be repeated in this thesis.
We focus on the reengineering made on top of Jinmiao’s version. Finally, we present

our solutions — the actual reengineering ~ and a small discussion on our solutions.
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3.1 System Overview

Before we can go to the actual reengineering done at the detailed level, we need to
understand the core of the system - the system architecture and the abstract of the

components of the framework.

3.1.1 The Architecture

Code provided
with OPT++

SEARCH
STRATEGY
COMPONENT

reeToPlan
Generator

SEARCH SPACE COMPONENT

\

Code written by

/ Optimizer Implementor

ALGEBRA COMPONENT

Figure 10: OPT++ Three-Component Architecture [20]

Figure 10 shows an abstract overview of the OPT++ architecture. A query optimizer
built in OPT++ framework will consist of three components — a Search Strategy

component, a Search Space component and an Algebra component. The framework
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itself consists in the Search Strategy component together with abstract classes, namely
SearchStrategy to interface the Search Strategy component, Operator and
Algorithm to interface to the Algebra component, and TreeToTreeGenerator,
TreeToPlanGenerator, and PlanToPlanGenerator to interface to the
Search Spaces component. The optimizer developer is meant to write the concrete
classes that implement the actual search strategy, e.g. Bottom-up, Transformative, etc.,
the actual operators & algorithms and the tree & plan generators. The comparatively
stable interfaces to the three components contribute to remarkable increase the

flexibilities of the framework.

3.1.2 Abstractions of the Three Components

OPT++ is written in C++ and takes the advantage of the object-oriented features, e.g.
reusability, inheritance, dynamic bounding, efc. The three components are
conceptualized into some key abstract classes which contain abstract and virtual
methods. The abstract methods define the interfaces of some “must-have” behaviors
of a class and the implementation of those methods is provided by its subclasses,
while the virtual methods implement the general behaviors of a class and do not
involve any specific detailed knowledge of the actual local query optimization. An
optimizer for a specific database management system can be written by deriving new
classes from these abstract classes. Information about the specific query algebra and
execution engine for which the optimizer is built, and the search space of execution

plans to be explored, are encoded in the virtual methods of these derived classes. The
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OI needs to implement the abstract method and override the virtual method when
creating a subclass from those abstract super classes for specific requirements [20].
Algebra Component This component maintains the fundamental data
structures of the system. It includes the data structures that represent the logical
operators and the corresponding physical execution algorithms in the query algebra. It
also maintains the tree structures formed by the operators and the associated
algorithms. The operator tree represents the whole or part of the query and the

algorithms tree represents the execution plan of the whole or part of the query.

OPERATOR

DB-RELATION SELECT

Figure 11: OPT++ Operator Class Hierarchy for a Relational Optimizer [20]

The abstract Operator class represents the concept of the operators in the
query algebra. Classes to implement specific concrete operators in the actual query
algebra, e.g. Select, Join in relational database, etc., have to inherit from this class.
The inputs of an operator can be database entities (for example, relations for a
relational database) that already exist in the database, or they can be the result of the
application of other operators [20]. An operator together with its input forms an
operator tree, in which the leaf nodes of the tree are database entities and the internal

nodes of the tree are other operators being applied to it inputs, which actually are
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operator trees too as demonstrated in Figure 4. Basically, a database entity is also
being treated as an operator tree of a dummy operator, called DBRelation, taking
no input. In total, an operator can be applied to one operator tree (unary operator, e.g.
select), two operator trees (binary operator, e.g. join) or no input (dummy operator, e.g.
DB entity) in the framework, and the result forms another operator tree.

The operator tree is described by class OperatorTree, while the detailed
information about the tree, such as, set of relations already joined in, predicated
applied, does the tree contain interesting information according to certain criteria, and
so on, is stored in class OperatorTreeProperty. Each node of an operator tree,
which actually is a sub-tree that includes the operator and the nodes rooted under it,
contains a pointer to an instance of the OperatorTreeProperty class. The
OperatorTreeProperty class includes an
IsEquivalent (OperatorTreeProperty*) method that determines
whether two OperatorTreeProperty instances are equal or not. Two
OperatorTreeProperty instances should be equivalent if the corresponding two
operator trees are algebraically equivalent [20].

The abstract Algorithm class represents the concept of algorithm that is an
access plan of an operator in the query algebra. The concrete algorithms have to be
implemented as a sub-class of the abstract Algorithm class. Similar to the operator,
the algorithm applied to its inputs also forms a tree — an algorithm tree.
Correspondingly, an algorithm can be applied to one algorithm tree (unary algorithm,

e.g. filter), two algorithm trees (binary algorithm, e.g. HashJoin) or no input (dummy
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algorithm, e.g. DB entity) in the framework, and the result forms another algorithm
tree. Besides, an Algorithm instance associated with an object of the Cost class,
which defines the methods to calculate the cost of executing the algorithm with the
specified inputs. The cost is the main criterion in judging an optimal tree. An
algorithm can have an Enforcer object, which represents the prerequisites to
execute the algorithm. For example, sort has to be done in order to execute merge-join.

Figure 5 demonstrates an algorithm tree.

ALGORITHM

—

=/
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Figure 12: OPT++ Algorithm Class Hierarchy for a Relational Optimizer [20]

Analogous to the operator tree, class AlgorithmTree represents an algorithm
tree, and class AlgorithmTreeProperty stores the detail information about the
algorithm tree, which can determine whether two AlgorithmTreeProperty
instances are equal or not through method
IsEquivalent (AlgorithmTreeProperty*). Again, if two algorithm trees
are algebraically equivalent, the corresponding two OperatorTreeProperty
instances should be equivalent.

An operator can be implemented by more than one algorithm, for example, Join
can be implemented as HashJoin, MergeJoin or NestedLoopJoin. Thus, the
Operator class also maintains a pointer to a list of Algorithm objects. And

correspondingly, the OperatorTree also includes a pointer to a list of
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AlgorithmTree objects.

Search Space Component  This component manages the whole search space
the optimization is carried out. During the course of query optimization, a query
optimizer must generate various operator trees that represent the input query (or parts
of it), generate various access plans corresponding to each operator tree and
compute/estimate various properties of the operator trees and access plans (for
example, cardinality of the output relation, estimated execution cost, etc.) [20]. The
best plan will be picked at the end of the optimization. In the framework, those tree
generation actions are carried out in the Search Space component. The
TreeGenerator abstract class in the Search Space component defines abstract
methods that work as interfaces to tree generation actions. The concrete class that
implements specific tree generation actions, such as, class JoinTreeExpand that
generate an operator tree by joining two operator trees, must be a sub-class of the
TreeGenerator abstract class and must implement those abstract methods.

There are three types of tree generators in the framework:

® TreeToTreeGenerator — thatincludes ExpandTreeGenerator and

TransformTreeGenerator. ExpandTreeGenerator generates a
new operator tree by applying the specified operator on an operator tree if
the operator is a unary operator (e.g., apply operator Select on an operator
tree) or two operator trees if the operator is a binary operator (e.g., join two
trees). TransformTreeGenerator generates an alternative operator

tree by applying transforming rules on the operator tree.
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® TreeToPlanGenerator — that converts an operator tree into a list of

algorithm trees correspondingly.

® PlanToPlanGenerator — that produce an alternative algorithm tree of

the input algorithm tree.

Search Strategy Component The component implements the search
heuristic that determines and controls how to carry on the optimization in
query-algebra-independent manner [20], ie. the actual operators, algorithms and
generators in the system can be modified without modifying the search strategy code.
Basically, it explores the search space to generate alternative execution plans for the
input query. It stops when no new plans can be generated or are needed to generate
and returns the best optimal plan to the optimizer. The Search Strategy contains an
abstract class SearchStrategy that defines a query-algebra-independent interface
to the concept of search strategy. Classes that implement concrete search strategies,
such as, bottom-up strategy, dynamic strategy and so on, have to derive from the
abstract SearchStrategy class, and override the virtual methods or implement the

abstract methods to meet specific requirement.

3.2 Review the Previous Optimizer Framework

In this section, we review the previous (second-generation) query optimization
framework. We present the overall structure of the framework and analyze the
components and their collaborations in the framework. And finally we discuss the

problems and limitations of the framework.
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Figure 13: System Overall Diagram of the Second-Generation Framework [22]

The three components and their main objects are shown in Figure 13. The Search
Strategy component encapsulates the QueryOptimizationFacade class which
provides the system entry and controls the optimization flow. This component also
includes the OperatorTree class and the AlgorithmTree class, which are
aggregated of class Operator or Algorithm respectively. The SearchTree
class is the core class of the framework. It is a container that maintains the operator
trees generated during the optimization and is also in charge of implementing the
search logic delegated from the SearchStrategy class. New operator trees are

generated by creating instances of the OperatorTreeVisitor class in the Search
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Space component. The OperatorTreeVisitor instance in turn creates
Generator instance to generate new OperatorTree or AlgorithmTree

objects defined in the Search Strategy component.

3.2.1 The Strategy Components

The major classes in the Search Strategy component include: the
QueryOptimizerFacade class, the SearchStrategy class, the
SearchTree class, the OperatorTree class, the OperatorTreeProperty
class, the AlgorithmTree class and the AlgorithmTreeProperty class. It
also encapsulates the Cost class that implements the cost estimation of the

algorithms in the query algebra.

| QueryOptimizerFacadeWithParser | | QueryOptimizerFacadeWithFormatedFile I
| QueryOptimizerFacade | | OperatorTree |<>—

AlgorithmTree

I )

I SearchStrategy l<>—| SearchTree | l Cost |

AN AN
I BottomupSearchStrategy |<>——| BottomupSearchTree |
|TransformativeSearchStrategy |<> ! TransformativeSearchTree l
| PostgresqlSearchStrategy |<> I PostgresqlSearchTree I

Figure 14: Search Strategy Component of the Second-Generation Framework
QueryOptimizerFacade Class that employs the Facade Design Pattern,
which provides the entry of the system. It initializes the global variables defined in

class Aglob_vars_t, i.e. query —the query to be optimized, cat — the catalog of
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the system, oopt - the optimization option, hashtable — the hash table used for
suboptimal pruning, strategy - the instance of SearchStrategy subclass that
will be used to do the optimization. It then calls strategy->DoOptimize ()
method to complete the whole job.

SearchStrategy Abstract class that defines interfaces for all search
strategy approaches that are used in query optimization. The class consists of a
SearchTree object that is used to perform the actual optimal plan searching. Three
concrete SearchStrategy classes are implemented: the
BottomupSearchStrategy class, the TransformativeSearchStrategy
class and the PostgreSQLSearchStrategy class. They differ in using different
type of SearchTree objects to perform the search process. The SearchTree
object initialized by the SearchStrategy class is also put in the global variables.

SearchTree Abstract class maintains the OperatorTree objects
generated during the course of the optimization. Corresponding to the
SearchStrategy hierarchy, there are three concrete SearchTree classes: the
BottomupSearchTree class, the TransformativeSearchTree class and
the PostgreSQLSearchTree class. Those concrete classes implement the
DoSearch () method, which implements the search algorithm of the corresponding
concrete SearchStrategy class. The Prune () method in the SearchTree
class implements the suboptimal pruning mechanism. In sum, the SearchTree class
contains both the optimization data and the optimization strategy implementation.

OperatorTree Data structure that represents an operator tree. It contains a
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pointer pointing to an Operator object that roots the tree, a pointer to an
OperatorTreeProperty object that stores the detailed information of the tree
and a list of AlgorithmTree objects that represent the physical execution plans of
the tree. These objects are initialized when the operator tree is constructed.
AlgorithmTree Data structure that represents an algorithm tree. It
contains a pointer pointing to an Algorithm object that roots the tree, a pointer to
an AlgorithmTreeProperty object that stores the detailed information of the

tree, a pointer to the operator tree with which it is associated and a Cost object.

3.2.2 The Search Space Components

The Visitor Design Pattern is applied in the framework to associate the data structure
defined in the Algebra component and the operations on the data structure (tree
generations) implemented by the Visitors in this component, which increases the
extensibility of the framework and provides a very organized separation of program
codes. The Visitors are implemented by a set of OperatorTreeVisitor classes.
The search space is organized by two sets of classes: the
OperatorTreeVisitor classes and the Generator classes. In order to get a
clearer layout, the visitors do not contain the actual implementation of the tree
generations, while they call a set of generators to actually implement the operations
respectively. In other words, the OperatorTreeVisitor classes define the
interfaces to the tree generations, and the implementations of these interfaces are

hided in the Generator classes. One method in the visitor class defines one type of
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tree generation, e.g. VisitSelect () generates a new tree by applying the Select
operator on an operator tree. Correspondingly, one generator class implements one
type of tree generation, e.g. ExpandSelect class implements the tree generation
defined by method VisitSelect (). The association between the two sets of
classes is: a method defined in an OperatorTreeVisitor class creates an
instance of the Generator class that implements the method and uses the
Generator instance to complete the tree generation.

The reason why the interface is defined as a method in an
OperatorTreeVisitor class while the implementation is defined as
Generator class is aiming for a clear code separation since the definition of an
interface only takes several lines of codes while the implementation of the interface
might need hundreds of lines of codes.

Figure 15 shows the two hierarchies — the OperatorTreeVisitor class
hierarchy and the Generator class hierarchy. The root of the visitor hierarchy is the
abstract class — OperatorTreeVisitor, which has three types of subclass: the
ExpandTreeVisitor, the TransformTreeVisitor, and the
TreeToPlanVisitor. There is no abstract root class for the generator hierarchy,
while the generators also fall in three types corresponding to the visitors: the
ExpandTreeGenerator, the TransformTreeGenerator, and the

AlgorithmTreeGenerator.
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Figure 15: The Visitor Hierarchies in the Second-Generation Framework [22]

To create a tree generator to generate an operator tree or an algorithm tree, the
user needs to initialize a tree visitor object and calls the accept () method of the
Operator object which would become the root of the operator tree for tree
expanding or which is already the root operator of the operator tree for tree
transforming or tree-to-plan converting. In the ExpandTreeGenerator class, the
visit-methods (e.g. VisitDBRelation, VisitSelect, etc.) can distinguish
which ExpandTreeGenerator subclass they should create and directly create it
according to the input Operator object, while they do not know which
TransformTreeGenerator subclass or which TreeToPlanGenerator
subclass they should create with the input Operator object. Method
VisitDBOperator is used to redirect these visit-methods to create a
corresponding TransformTreeGenerator subclass or

TreeToPlanGenerator subclass. More details on the associations between the
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visitor methods and the generator classes are given in 3.2.4.

3.2.3 The Algebra Components

The Algebra component is relatively simple. It is composed of the Operator
abstract class, the Algorithm abstract class and their subclasses that implement the
concrete logical operators and their associated physical execution algorithms
respectively in the query algebra.

Class OperatorAndAlgorithm provides an interface to the Algebra
component. It defines objects of the Operator subclasses and the Algorithm
subclasses that implement the concrete operators and algorithms.

The Visitor Design Pattern employed between the Algebra component and the
Search Space component physically separates the algebra data structure and the
algorithm implementation and allows the Search Space to be experimented with

different implementations without affecting the Algebra component.

3.2.4 Problems Encountered

The previous query optimization framework implementation raises the following
issues:

Issue 1: The PostgreSQL-like optimizer customized from the framework has

raised many performance issues. The testing figure presented in Ju Wang’s thesis [36]
shows a big gap of performance in terms of the time needed to optimize queries

between the PostgreSQL-like optimizer and the native PostgreSQL optimizer. For
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constrained dynamic programming search strategy, the application takes 9.4 times the
time used by the native PostgreSQL optimizer when the number of joins in a query
reaches nine. And for genetic algorithm search strategy, the application is 6.6 times
slower than the native to optimize a query with number of joins of 20.

Issue 2: Even though the goal of the framework is to build optimizers that
organize the three components to process the query optimization, no concept of
optimizer object is defined. Instead, the three components are bound together via
saving the optimization context as global variables as shown in Figure 16. In the
program codes, the global variables are stored in a class called Aglob_vars_t, and
they are accessed everywhere in the whole program by hard-coding an inline function
that returns a pointer to the Aglob_vars_t class, for example,
GlobalVariable () ->query refers to the query object being optimized. These

global variables include:

A Query object — represents the current query to be optimized.

An OptimizationOption object — contains the optimization options, e.g.
left_deep_ join, do_merge_join, etc.

A Catalog object — contains the catalog information of the system.

A Hashtable object —~ maintains hash codes of the operator trees generated for
suboptimimal pruning.

A SearchTree object — contains the operator trees generated during the
optimization.

A SearchStrategy object — represents the search strategy currently used.
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An OperatorAndAlgorithm object — defines a list of operators and

algorithms available in the query algebra.

Search Strategy
GlobalVariable () ->query;

L

Algebra
Globalvariable () ->query;

Search Space
Globalvariable () ->query;

Figure 16: Global Variables Tightly Bind the Three Components

The use of hard-coding accesses to the global variables limits reusability and
extensibility of the framework. First of all, the information hiding and encapsulation
are violated. Secondly, the three components are tightly bound together. Thirdly, no
more than one optimization process can exist at the same time, which makes it very
difficult to deal with situations where the whole optimization process is needed to be
divided into several sub-optimization processes with different contexts, e.g. different
search strategies, different optimization options, efc. For example, it is hard to extend
the framework to deal with queries containing sub-queries using recursive way as
done in the native PostgreSQL optimizer.

Moreover, the template Set class that implements a bitmap tightly fixed with
the Globalvariable () ->query object, which determines the size of the bitmap.

For example, the constructor of the Set class is defined as:

Aset_t{void) :Abitmap_t (SetElementType: :TotalNumber ()) {}

50



There are three types of set element defined in the framework: the Aptree_t
class, the Arel_t class and the Aattr_t class, which mainly comprise the Query data
structure. The Aptree_t class represents an operation in a query, the Arel_t class
represents a relation in a query and the Aattr_t class represents an attribute of a
relation in a query. The TotalNumber () method implemented in the Aptree_t
class, for instance, is as follows:

return GlobalVariable()->query->numoperations() ;

The same thing applies for retrieving an element in the Set, which needs to call
the SetElementType: :NthNumber (int N). And the NthNumber (int N) method in
the Aptree_t class, for instance, is implemented as follows:

return GlobalVariable ()->query->operation (N);

With this mechanism, no more than one Set that represent data in different
queries can exist at the same time since the GlobalVariable () ->query can
only point to one Query object.

Issue 3: The SearchStrategy class does not implement the search heuristics
but delegates it to the SearchTree class, which also performs as a container
holding the OperatorTree instances generated during the optimization. Thus,
different search strategies have to implement different search trees even though they
can use the same container structure. That way produces duplicate codes for generic
data structure. Furthermore, because the OperatorTree instances contained in the
SearchTree class is accessed very frequently by the tree generators defined in the

Search Space component, mixing the search logic implementation and the data
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structure basically increase the coupling between the Search Strategy component and
the Search Space component in the framework.

Issue 4: The Search Strategy component heavily couples with the Algebra
component. The operator tree composed of operators is naturally adhering with the
operators. In other words, the OperatorTree <class and the
OperatorTreeProperty defined in the Search Strategy component unavoidably
cohere with the Operator class defined in the Algebra component. The same thing
applies to the relation between the Algorithm class in the Algebra component and
the AlgorithmTree & the AlgorithmTreeProperty classes in the Search
Strategy component. Moreover, some operator tree-specific behaviors, such as
retrieving the best algorithm tree from the list of algorithm trees of an operator tree
and deleting the list of algorithm trees, are implemented in the SearchTree class in

which the implementation of the search logic is in the previous framework.

Issue §: Basically, the concept of the Search Space component is not completely
put into effect in the implementation. No clear interfaces are provided for accessing
the search space. And some tree generations, e.g. joining two trees, are not
implemented by the Generator subclasses in the Search Space component. But
they are implemented in the Search Strategy component, which causes the classes
defined in the Search Strategy component directly access detailed information defined
in the Algebra component. That way thwarts achieving one of the aims of the
framework — modifying the query algebra definitions without affecting the search

strategy implementation.
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Issue 6: The tree generations are implemented by two sets of classes, the tree
visitor classes and the tree generator classes, in the Search Space component. The tree
visitor classes provide interfaces to the tree generations while the detailed
implementation of the tree generations are hidden in the tree generator classes. Figure
17 is a layout of the two sets of classes. There are two problems: the implementation

of the visitor class hierarchy is unclear and the associations between the visitor

methods and the generator classes are inconsistent.
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There are three types of tree visitor classes defined in the framework: the
ExpandTreeVisitor class defines interfaces to expanding an operator tree; the
TreeToPlanVisitor class defines interfaces to converting an operator tree to a
list of algorithm trees; the TransformTreeVisitor class defines interfaces to
transforming an operator tree to an alternative. As shown in Figure 17, the same
methods defined in the ExpandTreeVisitor class are also defined in the
TransformTreeVisitor class and the TreeToPlanVisitor class, which yet
have different behaviors from the ExpandTreeVisitor class. For example,
method VisitSelect(Select* op) defines the behavior of applying the
Select operator on an OperatorTree object to produce a new OperatorTree
object in the ExpandTreeVisitor class, while this method means nothing in the
TransformTreeVisitor class or the TreeToPlanVisitor class.

The unclearness of the definitions of the tree visitor classes causes the
associations between the tree visitors and the tree generators inconsistent. In the
ExpandTreeVisitor class, each VisitXXX(Operator* op) method directly
associates with a tree generator class. However, in the TreeToPlanVisitor class,
these VisitXXX(Operator* op) methods, e.g. VisitSelect (Select* op),
VisitIndexCollapse (IndexCollapse* op), do nothing but just forward
the input operator to another method, marked as
VisitDBOperator (Operator*op). That method then loops over all the
associated Algorithm objects of the given Operator object, and for each of them,

calls the Algorithm object to create a corresponding Generator object to
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generate an algorithm tree, instead of creating the Generator object via the
VisitXXX(Operator* op) methods as done in the ExpandTreeVisitor class. The
situation becomes even stranger for transforming a tree. Again, all the
VisitXXX (Operator*op) methods, e.g. VisitSelect (Select* op),
VisitIndexCollapse (IndexCollapse* op), do nothing but forward to
another method, called VisitDBOperator (), and that method does not have the
Operator object passed as a parameter since it does not need that Operator
object. That method iterates all the defined transforming rules, and applies each of

them on the operator tree.

3.3 The Reengineering

This section illustrates the reengineering done on the previous framework. We first
summarize the points how we improved the framework. We then detail the

improvements for each component.

3.3.1 Reengineering Summary

The reengineering sticks to the abstractions of the three components as discussed in

the first section of this chapter. Corresponding to the issues we analyzed in the

previous section, we made the following reengineering:

1. Profile the PostgreSQL-like optimizer and improve the performance of the
framework. We analyze the PostgreSQL-like optimizer application and try a lot of

valuable rules that suggested by Scott Meyers [25]. Among all the attempts we
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tried, three of them contribute the most to the performance improvement.

Performance testing result of the new PostgreSQL-like optimizer compared to the

original version and the native version is reported in Table 7.

Change the attribute _operation that represents the algebraic expressions
of a user-input query from a linked-list of Aptree_t objects to array of
Aptree_t pointers in the Query class. According the profiling report
generated by the g++ compiler, we found the attribute _operation of the
Query class is the most accessed container. We got a big improvement of
the performance (approximately 85%) after changing this attribute to an
array of Aptree_t pointers.

Eliminate the number of AlgorithmTree objects generated while
converting an OperatorTree object to a list of AlgorithmTree
objects by calculating the cost of an algorithm tree before really creating a
new algorithm tree object. Do not create the algorithm tree if it is not
interesting and cost more than other algorithm trees in the list of
AlgorithmTree objects of the OperatorTree object.

Avoid reinitializing Set (it actually is a bitmap) objects because the
initialization of a Set object is expensive and it causes a loop over all the

elements in the set. Change the attributes of Set objects into Set pointers

where the size of the Set can not be determined in the constructor of the
class and the attributes of Set objects are needed to be reinitialized

afterwards.
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2. Abstract a class template called QueryOptimizer to coordinate the three
components to complete the query optimization process. And localize the global
variables that were referred using C++ extern inline function to be data members
of the QueryOptimizer class. That way easily solves the sub-query
optimization problem. The QueryOptimizer class also performs as an
interface to the optimizer built in the framework.

Redesign the Set class to relieve it from relying on the Query object
pointed by the GlobalVariable () method. The Set class has a pointer
pointing to the target Query object, which has to be initialized while constructing
a Set. The TotalNumber () method and the NthNumber (int N) method in
the set element classes are modified to take the Query object from a parameter of
the method. For example, in the Aptree_t class, the two methods would be:

TotalNumber (Query* q) {return g->numoperations {();}

NthNumber (int N, Query* q) {return query->operation (N);}
Here is the definition of the Set constructor:
Aset_t (Query * q) : Abitmap_t (SetElementType::TotalNumber (q))
{this->mydomain=q;}// mydomain is Query pointer

3. Reorganize the divisions of functionalitics between the SearchStrategy class
and the SearchTree class. We reassign the functionalities according to the
natural behaviors of each component. Firstly, we move the implementation of
search heuristics to the SearchStrategy class from the SearchTree class

and make the SearchTree class a generic operator tree container that provides
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GET/SET methods for accessing its elements. The separation of the logic and the
data structure makes a more understandable program and a clearer interface
between the Search Strategy component and the Search Space component since
both components operate on the elements (the operator tree) stored in the
SearchTree class.

Decouple Search Strategy Component and Algebra Component to allow
modifying the Algebra without leaving impact on the Search Strategy and the
other way around. There is a rule to follow, the search strategy always take an
operator tree as a whole. It does not tangle the detail of the operator tree structure
and its corresponding algorithm trees. Otherwise, any changes in the
OperatorTree class or other related  classes e.g. the
OperatorTreeProperty class, the Operator class, etc., might cause
change requests in the SearchStrategy class. Making operator/algorithm
information related decision directly in the SearchStrategy class results in a
higher performance but a less extensibility. So, there is a performance and
extensibility trade-off to make in this case. Our rule is to make the
not-must-in-strategy decision out of the Search Strategy component, and get the
information from the Algebra component via GET/SET method for
must-in-strategy decision and add the GET/SET methods to the super class as high
as possible.

Provide a clear interface between Search Strategy and Search Space. Abstract an

interface for the Search Space component. This interface provides a unified
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manner for the search strategy to access the search space. Therefore, the
modifications made in the implementations of tree generation will not affect

anything in the Search Strategy component.
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Figure 18: The Improved Visitor & Generator Structure
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6. Restructure the visitor and generator hierarchies and refine implementation of the
associations between them in the Search Space component. Abstract a new
Treevisitor subclass called JoinTreeVisitor that replaces the
VisitJoin() method to deal with the special features of joining two trees
while expanding the tree. The JoinTreevVisitor calls the JoinExpand
generator class, a subclass of BinaryOperatorExpand, to produce a new tree
by joining two trees.

Figure 18 demonstrates the new visitor and generator structure. The
PlanToPlanVisitor that is not abstracted in the previous version defines
interfaces for plan to plan generations, which mainly happen when the operation
represented an Enforcer is needed to be performed on an algorithm tree before
certain algorithm can be applied to that algorithm tree, for example, two algorithm
trees have to accomplish Enforcer Sort before they can do a merge-join. The
methods defined in the PlanToPlanVisitor class create corresponding
PlanToPlanGenerator objects, which is not detailed in Figure 18 for space

limitation .
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3.3.2 The New Framework
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Figure 19: System Overall Diagram of the New Framework
the

framework, to  optimize a  query,

In the third-generation
QueryOptimizerFacade takes the algebraic expression of a user query as the
input. It will create an QueryOptimizer object and calls the method Optimize ()
of the object to complete the optimization, which will return an optimal physical

execution plan. Figure 19 demonstrates the overalls of an optimizer system built in
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our framework, which is able to easily experiment different search strategy and easily
extend the search space, e.g. adding new algebraic operators and its associate
algebraic algorithm or transformation rules.

The QueryOptimizer class offers a straightforward manner to utilize the
flexibility and extensibility of the three-component architecture. It initializes concrete
objects of the interfaces to the three components and then calls the DoOptimize ()
method of the Search Strategy object to complete the query optimization. The class

definition is as follows. Detailed description of the class is given in 4.1.2.

template <class SearchStrategyType, class SearchSpaceType,
class AlgebraType >
class QueryOptimizer

{...}

As showed in Figure 19, the query optimization of an optimizer system built in
the new framework involves the following steps:

-> The Query Optimization Fagade receives a Query object that normally comes from
a query parser. It constructs the System Catalog object (often by calling a catalog
reader) and Optimization Options object that defines the optimization flags, e.g.
left_deep_only, do_exhaustive_selects etc. It then initializes a Query Optimizer
and passes the above three objects to it.

-> The Query Optimizer takes a Query to be optimized, the System Catalog and the
Optimization Options as input. It then initializes interfaces to the three
components. It calls the Search Strategy to complete the optimization, and returns

the complete optimal tree to Query Optimization Facade.
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=> The Search Strategy picks one tree (if a unary operator is applied to expand the tree,
e.g. order by, or transforming rule is used to transform a tree) or two trees (if an
binary operator is applied to join two trees, e.g. join) from Search Tree in the
Search Space. Tt picks an algebraic operator if it wants to expand the tree(s)
picked from the DB Algebra. It then registers a corresponding Tree Visitor, e.g.
TreeToTreeVisitor etc., for the tree(s) picked along with the algebra if picked.

> The Tree Visitor in the Search Space calls corresponding Tree Generator to
generate a new tree, which will be put in the Search Tree.

—> The above two steps are repeated until the Search Strategy stops.

> The Search Strategy retrieves the best optimal tree from the Search Tree and
returns it to the Query Optimizer, which in turn is returned to the Query
Optimization Facade.

In the new framework, more than one search strategy can be applied in a single
optimizer, and they can access the same search space or different search spaces.
Furthermore, a search strategy can be a simple search strategy or a compound search
strategy, which has sub search strategies. For example, to optimize a compound query:

select foo.name from Cities as ¢, (select name from Employees

e, Persons p where p.name=e.name order by name) as foo where

foo.name=c.name, which can be decomposed into two simple queries: queryl -

select foo.name from Cities as ¢, foo where foo.name=c.name

and query2 - select name from Employees e,Persons p where

p.name=e.name order by name. We can apply bottom-up strategy for queryl
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and dynamic programming for the query?2.

The Search Space Component in the new framework manages the whole search
space the optimization is carried out. Specifically, the Search Space Component is
responsible for holding the operator trees generated during the optimization and
offering tree generators to generate new trees. The new abstracted SearchTree
class is moved to here from the Search Strategy component that holds the operator
trees generated during the optimization. It provides GET/SET methods for accessing
the operator trees held. And the SearchSpace class provides an interface for
accessing the SearchTree object and creating instances of TreeVisitor class. It
also implements methods for pruning suboptimal algorithm trees generated to narrow
the search space explored by the search strategy.

The Algebra component in the new framework mainly maintains the static data
structure of the system, which is a relatively stable component. The OperatorTree
class, OperatorTreeProperty class, AlgorithmTree class and the
AlgorithmTreeProperty class which naturally adhere to the Operator class
and the Algorithm class are moved to the Algebra component from the Search
Strategy component, while the Clone () method defined in the Operator class
that is used by the TreeGenerator object to fetch the information related to the
Operator object from a user-input query during the tree generation, is moved to the
corresponding TreeGenerator class. And the Cost class whose behaviors (the
implementation of calculations) tightly associate with the Algorithm objects is also

shifted to the Algebra component from the Search Strategy component.
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3.3.3 Discussion

We can see the following flexibilities among the three main components in the above
implementation.

By designing the optimizer as a class template of the three types of classes,
which offer interfaces to access the functions of the three components of the
framework respectively, it becomes very easy to instantiate an optimizer for different
search strategy, search space and DB algebra. We can evaluate different search
strategies on the same query in certain search space to retrieve the best physical plan
by simply creating optimizers with different types of search strategies.

Search Strategy and Algebra are independent of each other. Search Strategy only
needs to know what algebraic operators and algorithms are available to use for the
optimization in the system. It does not need to tangle the detailed data structure of the
operator/algorithm tree. Therefore, different Search Strategy can easily use the same
Algebra and the other way around. Actually, the interaction between the search logic
and the data structure has been transferred to the Search Space.

Furthermore, the Search Space offers a very clear interface for the Search
Strategy, which allows that different Search Strategies can easily adapt the same
Search Space, and modification made in the Search Space will not affect the Search
Strategy. The SearchTree class that resides in the Search Space performs as a
collection holding the initial operator trees and the operator trees generated in the
course of the optimization. It offers GET/SET methods for accessing its elements (the

operator trees). Search Space offers methods which create corresponding
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TreeVisitor objects to response the requests a search strategy would ask, e.g. to
expand a tree with some operator, to transform a tree with some transforming rule, or
to convert a logical tree to a physical plan, ezc.

Also, the collaborations of TreeVisitor classes and TreeGenerator
classes inside the Search Space are clear and straightforward. Visitor Design Pattern is
used between the tree structures and the tree generators, which gains the extensibility
of adding new operator/algorithm in the Algebra and its corresponding

implementation in the Search Space.
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Chapter 4

Implementation

In this chapter, we describe the implementation of the third-generation query
optimization framework. We only emphasize on the new aspects of this generation
and do not detail previous implementations. The PostgreSQL-like optimizer
application is integrated to the new framework, and a performance testing on it is
performed. We report the performance testing result of the PostgreSQL-like optimizer

application in this chapter.

4.1 The Search Strategy Component

The Search Strategy component implements the search logics, e.g. bottom-up,
dynamic, efc. that guide the query optimization. The entry to a query optimizer built
in the framework is enclosed in this component. As shown in Figure 20, this
component mainly maintains three classes: the QueryOptimizationFacade
class, the QueryOptimizer class and the SearchStrategy class. Detailed

descriptions of these classes are given as follows.
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Figure 20: Search Strategy Component in the New Framework
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Figure 21: Sequence Diagram of Query Optimization Initialization
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The QueryOptimizationFacade class employs Facade Design Pattern and
performs as an interface to the query optimization process in an optimizer built in the
framework. The Optimize () method of this class controls the whole optimization
flow and does the whole work.

As shown in Figure 21, the user initializes a QueryOptimizationFacade
object and sets the query, system catalog and optimization options to the facade object.
Instead of bindirig the whole system with a set of global variables, e.g. the query to
optimize, the optimization options and the hash table for pruning, etc., and initializing
an instance of the SearchStrategy class to process the query optimization as
done in the previous version, the facade object creates an instance of the
QueryOptimizer class and assigns these global variables as the data members of
the QueryOptimizer instance. The QueryOptimizer instance introduced in
next paragraph will create and initialize instances of the SearchStrategy class,
the SearchSpace class, and the Algebra class and call the SearchStrategy
instance to complete the query optimization. Finally, the
QueryOptimizationFacade passes the optimal execution plan of the query
from the QueryOptimizer instance to the outsider, e.g. query execution
component. This design allows multi-optimization. In other words, the system can
maintain more than one query optimization at the same time, and it leads to an elegant

implementation for sub-query case, which will be demonstrated 4.7.3.
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4.1.2 The QueryOptimizer Class

As introduced in Chapter 3, we abstract an interface for the optimizers built in
framework. The interface called QueryOptimizer is a class template of types of a
SearchStrategyType <c¢lass, a SearchSpaceType class and an

AlgebraType class. The class template is declared as follows:

template <class SearchStrategyType, c¢lass SearchSpaceType,
class AlgebraType >

class QueryOptimizer

{...}

SearchStrategyTybe — the class that implements the optimization logic, which
would be a subclass of the SearchStrategy abstract class.

SearchSpaceType — the class that performs an interface for the search strategy to
access to the optimization space. In our framework, it is the
SearchSpace class.

AlgebraType - the class that defines objects of the data structures, i.e. a list of
algebra operators and the associated algebra algorithms, on which
the query optimization is carried on.

To create a query optimizer, the user just needs to decide the types of the search
strategy, the search space and the query algebra. For example, the following statement

creates an optimizer with the strategy of type of PostgreSQLSearchStrategy.

QueryOptimizer<PostgreSQLSearchStrategy, SearchSpace,
OperatorAndAlgorithm >*
optimizer = new QueryOptimizer<PostgreSQLSearchStrategy,

SearchSpace, OperatorAndAlgorithm >;
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Attribute Description

An instance of the specified SearchStrategyType class that
strategy implements the search strategy used in the optimizer. Initialized
by the optimizer.

An instance of the specified SearchSpaceType class that
space maintains the search space of the optimization. Initialized by the
optimizer.

An instance of the specified AlgebraType class that interfaces
opalgo to the operator objects and the algorithm objects on which the
optimization is carried on. Initialized by the optimizer.

An instance of the Catalog class that represents the catalog
cat information of the underlying database. Passed from the
QueryQOptimizationFacade.

An instance of the OptimizationOption class that defines
oopt the values of the optimization options. Passed from the
QueryOptimizationFacade.

An instance of the Query class that represents the user input
query query to be optimized. Passed from the
QueryOptimizationFacade.

Table 1: Attributes of the QueryOptimizer Class

As shown in Table 1, the QueryOptimizer class has six attributes. The
QueryOptimizer initializes attribute strategy, attribute space and attribute
algebra itself by creating instances of the SearchStrategyType, the
SearchSpaceType and the AlgebraType, while the other three attributes — the
query, the options and the catalog — are either passed as parameters of the
QueryOptimizer constructor or assigned via Set methods from outside, e.g.
the QueryOptimizationFacade. The optimizer notifies the
SearchStrategyType instance the interfaces to the Search Space component and
the Algebra component by passing it the instances of the SearchSpaceType and
the AlgebraType. The optimizer then calls the DoOptimize () method of the

SearchStrategyType instance to complete the query optimization.
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4.1.3 The SearchStrategy Class

The SearchStrategy class is an abstract class. It defines abstract method
DoOptimize () to perform the optimization search. Specific search strategies, e.g.
bottom-up search strategy, dynamic search strategy, efc., must subclass the
SearchStrategy class and implement the DoOptimize () method. While the
detailed search logic of different search strategies varies a lot, the collaborations of
the three components are basically constant, as illustrated in Figure 22. The
SearchStrategy picks one operator tree (if a unary operator is applied to expand
the tree, e.g. order by, or transformation rule is used to transform a tree) or two
operator trees (if a binary operator is applied to join two trees, e.g. join) from the
SearchSpace and picks an algebraic operator if it wants to expand the tree(s) from
the Algebra. It then registers a corresponding TreeVisitor, such as

TreeToTreeVisitor, via the SearchSpace interface to generate a new tree.

Search Strategy SearchSpace

[ SearchTree

I RegisterTreeVisitor

Algebra
OperatorAndAlgorithm

Figure 22: Basic Collaborations of the Three Components

DoSearch() ::
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As introduced before, the abstraction of the QueryOptimizer class template
which localizes the global variables makes it easy to deal with sub-query. Figure 23
shows optimization of query that contains another query in the PostgreSQL-like

optimizer. For example, select foo.name fromCities as ¢, (select name from

Employees e, Persons p where p.name=e.name order by name) as foo where

foo.name=c.name;

( - ) __ _ _~, | Initialize SearchStrategy,
Create an Optimizer > SearchSpace and Algebra ﬁ

do

Gtrategy->DOOptimize(D— — — —pselect-push-down
and index-collapse

[if tree is a query] (7 jsi<yoin_ tree> list=query->get_list_of_from_clause_items@

2\ [if list.eof()] complete

/ optimization
[else]

U

@peratorTrec *tree=FindCorrespondingTree(list.Element()->get_rel()D

&

[else]

Figure 23: Activity Diagram of Sub-query Optimization

4.2 The Search Space Component

The Search Space component manages the search space the search strategy explores.

Major classes in this component include: the SearchSpace class, the
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SearchTree class, the TreeVisitor class and the TreeGenerator class as

shown in Figure 24.

Search Space

Create, Uses .
SearchSpace TreeVisitor

Creates, Initializes Creates, Uses

Insert tree J/

SearchTree | TreeGenerator

Figure 24: Package Diagram of the Search Space Component

4.2.1 The Search Space Class

The SearchSpace class is the interface for the SearchStrategy class to the
Search Space component. It implements the Prune() method delegated by the
SearchStrategy class, which is used to narrow the search space to improve the
optimization performance. The hash table used by .the pruning that was a global
variable is now a local data member of the SearchSpace class and is initialized by
the class itself. The class also maintains the SearchTree object which holds the
OperatorTree instances generated during the course of the optimization. Table 2

lists the attributes of the class and how they are initialized.
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Attribute Description
h An instance of the SearchTree class that contains the operator trees
searc
generated during the optimization. Initialized by the search space.
An instance of the HashTable class that is used to prune the algorithm
hashtable o ) . .
trees associating with the operator trees contained by the search attribute.
An instance of the spécified AlgebraType class that interfaces to the
opalgo operator objects and the algorithm objects on which the optimization is
carried on. Passed from the QueryOptimizer.
cat An instance of the Catalog class that represents the catalog information
of the underlying database. Passed from the QueryOptimizer.
oopt An instance of the OptimizationOption class that defines the values
of the optimization options. Passed from the QueryOptimizer.
quer An instance of the Query class that represents the user input query to be
Y . .
optimized. Passed from the QueryOptimizer.
Table 2: Attributes of the SearchSpace Class
Method Description
RegisterExpandTreeVisitor Method to create an ExpandTreeVisitor instance
(OperatorTree* tree) to expand the specified operator tree.

RegisterJoinTreeVisitor
(OperatorTree* treel,
OperatorTree* treel)

Method to create a JoinTreeVisitor instance to
join the two specified operator trees.

Method to create a TransformTreeVisitor

RegisterTransformTreeVisitor instance to transform the specified operator tree
(OperatorTree* tree) to another algebraically-equivalent operator
tree.

RegisterTreeToPlanVisitor
(OperatorTree* tree)

Method to create a TreeToPlanVisitor instance
to convert the specified operator tree to a list of

algorithm trees.

RegisterPlanToPlanVisitor
(AlgorithmTree* tree)

Method to create a PlanToPlanVisitor instance
to transform the specified algorithm tree to

another algebraically-equivalent algorithm tree.

Table 3: Tree Register — Methods in the SearchSpace Class
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The optimization search space is accessed via calling tree visitor registering
methods defined in the SearchSpace class to register TreeVisitor instances,
which call corresponding TreeGenerators to complete the request — tree
generation. Table 3 lists the tree visitor registering methods defined in the

SearchSpace class.

4.2.2 The SearchTree Class

The SearchTree class is an OperatorTree instance container. It maintains the
operator trees generated during the course of the optimization. Table 4 lists the data
members of the SearchTree class. The main data structure is an array of lists -
listofunexpandednodes. Each list contains operator trees of which the number
of nodes equals to the index of the list in the array. There is also a list that maintains
the database entities involving in the query called listofrootnodes, which
compose the leaf nodes of the operator trees built in the optimization. Data member
level is an index into the ListofUnexpandedNodes. The optimumnode is
the place to put the optimization result. The GET/SET methods are defined to
encapsulate these data members.

Table 5 shows a simple search tree example in the PostgreSQL optimizer for

optimizing query Select * from A, B, C where A.a=B.b and B.c = C.c. Assume the

best plan is {{A,B},C}.

76



Attribute/Method Description
, A list of operator trees that represent the entities involved in
listofrootnodes )
the query. They fill the leaves of other operator trees.
An array of lists of operator trees that generated during the
listofunexpandednodes optimization. The operator trees in each list contain the same
number of nodes.
An integer as an index into the
level .
listofunexpandednodes.
optimumnode Place to save the optimization result.

Table 4: Attributes of the SearchTree Class

Join
A
optimumnode join C
N
A B
Join Join Join
A\ N A
join C join A join B level=2
N N N
A B B C A C
listofunexpandednodes Join Join Join
N N N level=1
A B B C A C
A B C level=0
listofrootnodes A B C

Table 5: A Simple Search Tree Example in the PostgreSQL-like Optimizer
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4.2.3 Visitors and Generators

Table 6 lists the types of TreeVisitor classes implemented in the framework. The

tree visitors implement the algorithms on the data structure residing in the Algebra

component. To achieve a cleaner layout, the implementation of the visitors is

delegated to a set of TreeGenerator classes. Figure 18 shows the TreeVisitor

and TreeGenerator hierarchies and their collaborations.

Visitor

Behavior

ExpandTreeVisitor

Subclass of TreeToTreeVisitor with one
OperatorTree attribute that creates
ExpandTreeGenerator object to expand an
operator tree via the Operator object, which will
be added to the operator tree as the root.

JoinTreeVisitor

Subclass of TreeToTreeVisitor with one more
OperatorTree attribute than its super class. It
deals with the specific characteristics of the Join
operator. It creates BinaryOperatorExpand
generator to join two operator trees.

TransformTreeVisitor

Subclass of TreeToTreeVisitor with one
OperatorTree attribute that creates
TransformTreeGenerator object to transform
an operator tree to an alternative.

TreeToPlanVisitor

Class defines interfaces for converting an operator
tree to an algorithm tree via the selected algorithm
that associates with the operator that roots the
operator tree. It initializes the corresponding
TreeToPlanGenerator object to do the job.

PlanToPlanVisitor

Class defines interfaces for plan to plan generations,
which mainly happen when the operation represented
by an Enforcer is needed to be performed on an
algorithm tree before certain algorithm can be
applied to that algorithm tree in the framework.

Table 6: Definitions of Tree Visitors
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4.3 The Algebra Component

The Algebra component maintains the query algebra — Operator classes and their
associated Algorithm classes. It also contains the main data structure of the
framework — the OperatorTree, the AlgorithmTree and their property classes
— the OperatorTreeProperty, and the AlgorithmTreeProperty. The
Cost class that calculates the times consumed while executing the Algorithm

objects is also implemented in this component. Figure 25 details the component.

Algebra

OperatorAndAlgorithm

Cost

Operator Algorithm

0/
l l Q\ Enforcer

OperatorTree  £&>————  AlgorithmTree

T T

OperatorTreeProperty AlgorithmTreeProperty

Figure 25: Package Diagram of the Algebra Component

4.3.1 Operator and Algorithm
The Operator class defines a general interface of an operator in the query
algebra, and the Algorithm class defines a general interface of an algorithm that

represents the implementation of an operator on data in the underlying database. In

the new framework, the Clone () method defined in the Operator class that
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fetches run-time information from the user input query associated with the operator
are delegated to the corresponding TreeGenerator class.

The OperatorAndAlgorithm class is the interface for the Search Strategy
component to access the query algebra defined in the Algebra component. It creates
concrete objects of the Operator and Algorithm classes that will be used by the
SearchStrategy object.

There are three types of Set object in terms of the elements of the Set in the
framework: a Set holding attributes of the Query, a Set holding relations of the
Query and a Set holding operations of the Query. The sizes of a Set object has to
be determined when it is initialized, which is obtained from the Query object that
represent the query to be optimized. In the previous version, the Set attributes of the
concrete objects of the Operator and Algorithm classes are initialized by getting
the Query object from hard coding GlobalvVariable()->query, which
obviously is very limited. In the new framework, a new method
InitDBAlgebraSets (Query * query) is added to class
OperatorAndAlgorithm to enhance the flexibility of initializing the Set

attributes of the concrete objects of the Operator and Algorithm classes.

4.3.2 OperatorTree and AlgorithmTree

The OperatorTree class (with the OperatorTreeProperty class) aggregated
of the Operator class describe a logic plan and the AlgorithmTree class (with

the AlgorithmTreeProperty class) aggregated of the Algorithm class that
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describe a physical plan are moved to this component from the Search Strategy
component in the new framework.

A list of AlgorithmTree of the OperatorTree object is generated during
the construction of the OperatorTree object by calling the corresponding
TreeToPlanGenerators. With the old visitors and generators structure, the
implementation of this process is very complicated, as shown in Figure 26. With the
new visitors and generators structure, the algorithm tree generation process is

simplified and shown in Figure 27.

OperatorTree Operator:Join Algorithm:Join
= ;
<< Create >>

TreeToPlanVisitor

Accept(visitor)

VisitJoin()

L~~~

VisitDBOperator

GetListOfAlgorithms

> MakePhyNodes()

<< Create >>

J

{

return AlgorithmTree

N U
—————— e

e

Figure 26: Implementation of Tree to Plan Conversion in the Old Framework
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Figure 27: Implementation of Tree to Plan Conversion in the New Framework

4.3.3 The Cost Model

The Cost class associated with the Algorithm class implements the cost
mechanism of the framework and is moved to this component from the Search
Strategy component. The Algorithm class has a Cost object as its data member,
which is in charge of computing the cost in terms of times used to execute the
algorithm. This process is performed while a new algorithm tree is created.

During our study of the performance issue of the PostgreSQL-like optimizer, we
found out that constructing a new tree is very expensive. Furthermore, a lot of
algorithm trees will be constructed during the optimization. In the previous version,

the TreeToPlanGenerator class constructs an algorithm tree when its cost is
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calculated and then performs the cost-based pruning. The newly created algorithm

tree might happen be the target of the pruning. If this is the case, the construction of

the algorithm tree is actually a waste.

In the new framework, we enhance the Cost class and modify the

TreeToPlanGenerator classes to perform the cost calculation of an algorithm

tree that is intended to create before really create one, which provides around ten

percent better performance on average.

4.4 Performance Test of the PostgreSQL-like Optimizer

# Native PostgreSQL | Original PostgreSQL-like | Improved PostgreSQL-like
Joins Optimizer * Optimizer * Optimizer *
1 300 341 241
2 553 915 617
3 873 2944 1527
4 1880 6506 3462
5 2917 13528 6764
6 4279 24425 11016
7 6025 42138 18093
8 8232 68185 27947
9 11051 103955 41284
10 647101 2957896 1242340
11 722162 3509801 1366913
12 799932 4064398 1499023
13 881062 4613137 1630084
14 966972 5298748 1790419
15 1050195 6043457 1909302
16 1139038 6861692 2082104
17 1227845 7734251 2233596
18 1322223 8541668 2396811
19 1417649 9472771 2549617
20 . 1496809 9962640 2628904

*: the numbers are in Microsecond.

Table 7: Performance Testing Result of the PostgreSQL-like Optimizer
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Table 7 reports the performance comparison among the native PostgreSQL optimizer,
the original PostgreSQL-like optimizer and the improved PostgreSQL-like optimizer
in terms of the optimization times in microseconds per query. The testing is performed
on the “haida” server at Concordia University. The operating system is linux2.4.20.
The C++ compiler is GNU g++ 3.2.2. And the native PostgreSQL version is 7.2.1.

As listed in Table 7, the new PostgreSQL-like optimizer gains an obvious
improvement in performance. For instance, the time used to optimize a query with
nine joins drops from ten times slower than the native PostgreSQL optimizer to
around four times. When there are more than 10 joins in a query, the genetic algorithm
is used (in both systems). The optimizer needs to initialize a fixed size (1024 by
default) pool of chromosomes, so more trees are needed to create and the time
increases drastically. For this case, the new PostgreSQL optimizer gets around five
times improvement when the number of joins reaches 20.

The following factors contribute to the remaining performance difference (about
two times) between the native PostgreSQL optimizer and the PostgreSQL-like
optimizer built in our framework.

e The native PostgreSQL optimizer does not generate logical operator trees,
while the PostgreSQL-like optimizer in our framework does. Since the
operator tree and the algorithm tree have similar data structures as shown in
Figure 4 and Figure 5, initializing an operator tree needs the same effort of

initializing an algorithm tree.
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e The generic framework design does result in minor degradation of
performance. The native PostgreSQL optimizer written in C is a
“custom-made” optimizer, while the PostgreSQL-like optimizer is written in
C++ and built from an extensible framework that aims to be flexible and

extensible.
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Chapter 5

Conclusion

Query optimization has been studied over twenty years. However, it is still an active
research subject due to the expansion of database management system. New algebra
and new search techniques are continuously introduced. Therefore, there is a need to
build an extensible query optimizer, which allows easily adding and modifying query
algebra and meanwhile can easily switch among different search strategies.

In this thesis, we describe a third-generation extensible query optimization
framework, which addresses the issues arising from building a simple bottom-up
query optimizer and an instance of PostgreSQL query optimizer in the previous
generation. The third-generation framework also improves the reusability, the
extensibility and the performance of the framework.

Frameworks are reuse technology that have attracted the attention in building
query optimizer. OPT++, on which our work is based, is a well-designed extensible
query optimization framework. On the whole, the three-component decomposition of
OPT++ conforms to the nature of query optimization. There is a good separation
between responsibilities of the three major components and the relationships among

the classes are well defined. However, previous studies show limitations of OPT++
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and substantial needs to improve it in the detailed design and implementation.

Understanding a framework is a key problem in framework-based development.
In this thesis, we gained experience in understanding and reengineering a query
optimization framework. We benefited from the valuable guidance provided by
Jinmiao Li’s documentation and cook books for studying the query optimization
framework. We also confirmed that once learned a framework significantly increases
the productivity of application developers.

The reengineering improves the reusability, the extensibility and
understandability of the query optimization framework. An interface to the optimizer
built in the framework has been abstracted, which offers a straightforward way to
experience the flexibility of the system (switch between different search strategies and
different sets of query algebra). Global variables that tightly bind the three
components have been localized to the optimizer object, which makes it possible to
have more than one optimization process with different optimization context (e.g.
different search strategy, different optimization options, efc.) in the system. That in
turn leads to an elegant implementation of sub-query processes. The interfaces to the
three components are abstracted or refined, and the functionalities among the
components are reassigned, which clearly decouple the three components and produce
more extensibility.

The reengineering also addresses the performance issue of the framework. The
performance of the PostgreSQL-like optimizer has been improved obviously. For

example, to optimize a query with nine joins, the time used drops from 10 times
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slower than the native PostgreSQL optimizer to around 4 times. And the time drops
from 6.6 times to 1.7 times when the number of joins reaching 20, where the genetic
algorithm is used and a fixed size (1024 by default) pool of join plans are needed to
be initialized.

While the two applications, the simple bottom-up optimizer and the
PostgreSQL-like optimizer are both for relational databases, we believe the
framework also works for object-oriented databases. In the future, we need to build an
object-oriented query optimizer in the framework to further prove the fitness of the
query optimization framework as a sub-framework in a database management system

framework.
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Appendix

A. Search Strategy Component

A.1 QueryOptimizerFacade.h

#ifndef QUERYOPTIMIZERFACADE_H

#tidefine QUERYOPTIMIZERFACADE_H

#include <optdef.h>
#include <QueryOptimizer.h>
#include <Aquery.h>

#include <Aphynode.h>

/‘ *
*A thread waiting for query from the parser. It packs the query received
* into a queue and triggers method Optimize(), which will initialize an
* optimizer to optimize the queries in the queue. The result of the
* optimization will be pack into another queue for further use.

%‘/

clags QueryOptimizerFacade
{
public:
QueryOptimizerFacade () ;
virtual ~QueryOptimizerFacade();
virtual void Optimize();
void SetQuery(Query* query) {this->thequery = query;}
Query* GetQuery(void) {return thig->thequery;}

AlgorithmTree* GetResult (void) {return this->theresult;)

protected:
virtual void PreprocessQuery() = 0;

virtual AlgorithmTree* DoOptimize(Aquery_t* query);

private:

virtual void InitializeVariables();
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virtual void CleanUpVariables();

virtual void ReadSystemCatalog();

public:
Query* thequery:; //the query passed from the parser

//should change to a queue in the future

AlgorithmTree* theresult; //the result of optimizing the query
//should change to a gueue in the future

};

class QueryOptimizerFacadeWithParser: public QueryOptimizerFacade
{
protected:

virtual void PreprocessQuery();

}i

class QueryOptimizerFacadeWithFormatedFile: public QueryOptimizerFacade
{
protected:
virtual void PreprocessQuery();
}:
ftfendif /* QUERYOPTIMIZERFACADE_H */

A.2 QueryOptimizer.h

#ifndef QUERYOPTIMIZER_H
#define QUERYOPTIMIZER_H

#include <optdef.h>
#include <SearchStrategy.h>
#include <SearchSpace.h>
#include <Acopdefs.h>
#include <SearchTree.h>
#include <Acost.h>
ftinclude <Aquery.h>
#include <Acat.h>
#include <Ahash.h>
#include <Aoptions.h>
#include <Alognode.h>
#include <Aphynode.h>
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template <class SearchStrategyType, class DBAlgebraType, class SearchSpaceType>
class QueryOptimizer
{
private:
SearchStrategyType* strategy;
DBAlgebraType* opalgo:;
SearchSpaceType* space;
Catalog* cat; //DB-gpecific
OptimizerOptions* oopt;//user-specific

Query* query; //user-specific

public:
QueryOptimizer () {}
QueryOptimizer (OptimizerOptions* oopt, Catalog* cat)
{
this->oopt = oopt;
this->cat = cat;
}
~QueryOptimizer ()
{
if (strategy) delete strategy;
if (space) delete space;
if (opalgo) delete opalgo;
if (oopt) delete oopt;
if (query) delete query;
}
SearchStrategyType* GetSearchStrategy(void) {return strategy;}
SearchSpaceType* GetSearchSpace(void) {returm space;}

DBAlgebraType* GetDBAlgebra (void) {return opalgo;}

void SetOption(OptimizerOptions* ocopt) {this->ocopt = ocopt;}
void SetCatalog(Catalog* cat){this->cat = cat;}

void SetQuery(Query* query) {this->query = query;}

virtual void Initialize();

virtual OperatorTree* Optimize (Query* query);

}i

#lendif /* QUERYOPTIMIZER H */

A.3 SearchStrategy.h

#ifndef SEARCHSTRATEGY_H
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#define S

#include
#include
#include
#include
#include
#include
#tinclude
#include
#include
#include

#include

class Sea

{

public:
Searchs

virtual

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

{this->

EARCHSTRATEGY_H

<optdef.h>
<SearchTree.h>
<SearchSpace.h>
<Aquery.h>
<Acat.h>
<Alognode.h>
<Aphynode.h>
<Ahash.h>
<stack.h>
<Gego.h>

<Acost.h>

rchStrategy

trategy () {}
~SearchStrategy () {}

SearchSpace* GetSearchSpace() {return this->space;}

void SetSearchSpace (SearchSpace* space) {this->space

Query* GetQuery() {return this->query;}

voild SetQuery (Query* query) {this->query

Catalog* GetCatalog()

{return this->cat;

void SetCatalog(Catalog* cat) {this->cat

query;}

cat;}

space; )

OperatoraAndAlgorithm* GetDBAlgebra() {return this->opalgo;}

void SetDBAlgebra (OperatorAndAlgorithm* opalgo)

opalgo = opalgo;}

virtual OptimizerOptions* GetOption(void) {return this->oopt;}

virtual void SetOption(OptimizerOptions* oopt)

virtual OperatorTree* DoOptimize()=0;

virtual OperatorTree* DoSearch()=0;

protected
Operato
Optimiz

Catalog

rAndAlgorithm* opalgo;
erOptions* oopt;

* cat;

SearchSpace* space;

Query™*
}i

query;

class BottomupSearchStrategy: public SearchStrategy

{
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public:
BottomupSearchStrategy () : SearchStrategy () {}

~BottomupSearchStrategy () {}

virtual OperatorTree* DoOptimize();
virtual OperatorTree* DoSearch();

virtual void ExpandNode (OperatorTree* node);

}:

class TransformativeSearchStrategy: public SearchStrategy
{
public:

TransformativeSearchStrategy () :SearchStrategy () {}

~TransformativeSearchStrategy () {}

virtual OperatorTree* DoOptimize();

virtual OperatorTree* DoSearch();

void ConstructInitialTree (void);

virtual void ExpandNode (OperatorTree* node);

};

class PostgresglSearchStrategy: public SearchStrategy

{
protected:
stack<SearchSpace*> space_garbage_bin;//clean up at the end of optimizaiton.
//cannot delete gpace which will delete SearchTree

//during subgquery optimization. Must walt to the end.
stack<HashTable*> hash_stack;//used by Genetic Algorithm

public:
PostgresqglSearchStrategy () :SearchStrategy() {}
~PostgresglSearchStrategy ()
{
while (!space_garbage_bin.empty())
{
SearchSpace* tempSpace = space_garbage_bin.top();
space_garbage_bin.pop();

delete tempSpace;

virtual OperatorTree* DoOptimize();

virtual OperatorTree* DoSearch();
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Alognode_t* GimmeTree(Gene *tour, int num_gene, int rel_count, Alognode_t*
old_tree);
int GimmePoolSize(int nr_rel);

Cost GeneticEvaluate(Gene *tour, int num_gene);

protected:
virtual void PreprocessExpression(void);
virtual void SetInitPlans (OperatorTree* optimal_tree);

void TraverseAnOperation (Aptree_t* ptree);

private:
// just for convenience. in geqgo, it is more convenient to use an array
//to genete a tree than to use a list.

Alognode_t **root_rel_array;

private:
//wi: rels in from-clause have been expanded by select and indexcollapse
//operators, so i have to find which tree contains the rel I want.

Alognode_t * FindCorrespondingTree( Arel_ t * rel);

/7 wii in a from-clause, there may be explicite join ().
//This is function 1s to convert such a join into a log node.
//NOTE: Each of inputs of a join could be a join or a rel.

Alognode_t * MakeOneExplicitJoin(Join_tree * join_tree);

void DynamicProgramming (int level);
int IsLeftJoinTree(Alognode_t *log_node) ;
int IsRightJoinTree(Alognode_t *log_node);
int IsIntersect(Alognode_t* lower_log _node,Alognode_t* upper_log_node) ;
void GeneticOptimize(void);
void DeleteGeneticTree(Alognode_t* logtree,int num_gene);
}i
#iendif /* SEARCHSTRATECY_H */

B. Search Space Component

B.1 SearchSpace.h

#ifndef SEARCHSPACE_H
#idefine SEARCHSPACE_H
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#include <optdef.h>

#include <Alist.h>

#include <Aoptions.h>

#include <Ahash.h>

#include <Acat.h>

#include <Aquery.h>

#include <Aopalgos.h>

#include <Alognode.h>

#include <SearchTree.h>

#include <TreeVisitor.h>

class SearchSpace

{

public:
OperatorAndAlgorithm* opalgo; /7 operators and algorithms
OptimizerOptions* oopt; // option controlling the optimizer
Catalog* cat; // the catalog object
Query* query; // the query being optimized

SearchTree* search;
HashTable* hashtable; // APG internal hashtable
double lowestCost; //for performance, used by Alcgnode_t::MakePhyNodes
// and BinaryAlgorithmTreeGenerator::MakePhyNodes to
// precompute the cost kefore really generate a new algorithm tree
int firstTry; //for performance used by Alognode_t::MakePhvNodes
// and BinaryAlgorithmTreeGenerator: :MakePhyNodes to

// precompute the cost before really generate a new algorithm tree

public:

SearchSpace()
{
this->search = new SearchTree;
this->hashtable = new HashTable(1021);
}
SearchSpace (OperatorAndAlgorithm* opalgo = 0, OptimizerOptions* oopt = 0,

Catalog* cat = 0, Query* query = 0)

{
this->opalgo = opalgo;
this->oopt = oopt;
this->cat = cat;
this->query = query;
thig->search = new SearchTree;
this->hashtable = new HashTable(1021);
}
SearchSpace (OperatorAndAlgorithm* opalgo, OptimizerOptions* oopt,

Catalog* cat, Query* query,
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SearchTree* search, HashTable* hashtable)

this->opalgo = opalgo;
this->oopt = oopt;
this->cat = cat;
this->query = query;

this->search = search;

thisg->hashtable =

}

virtual ~SearchSpace()

{

hashtable;

if (this->search) delete this->search;

if (this->hashtable)
{
this->hashtable->EmptyHashTable() ;
delete this->hashtable;
}
}
void SetDBAlgebra(Aopalgo_t* opalgo) {this->opalgo = opalgo;}
void SetOption(Aoptimizeroptions_t* oopt) {this->oopt = oopt;}
void SetCatalog(Catalog* cat) {this->cat = cat;}
void SetQuery(Query* query) {this->query = query;}
void SetSearchTree(SearchTree* search) {this->search = search;}
void SetHashtable(Ahashtable_t* hashtable) {this->hashtable = hashtable;}

virtual void MakeInitialTree(void)

{

search->SetOptimumNode (0} ;

OperatorTree* tree = 0;

RegisterExpandTreeVisitor (tree) .VisitDBRelation (this->opalgo->get);

}

List<DBOperator> &GetListOfOperatorsToApply (OperatorTree *node)

{

return static_cast<List<DBOperator>&> (opalgo->all_operators);

virtual ExpandTreeVisitor RegisterExpandTreeVisitor (OperatorTree* tree)

{

ExpandTreeVisitor visitor (tree,

return visitor;

}

this) ;

virtual JoinTreeVisitor RegisterJoinTreeVisitor (OperatorTree* tree,

OperatorTree* otherTree)

{
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JoinTreeVisitor visitor(tree, otherTree, this);

return visitor;

}
virtual TransformTreeVisitor RegisterTransformTreeVisitor (OperatorTree*
tree)
{
TransformTreeVisitor visitor (tree, this);
return visitor;
}

virtual TreeToPlanVisitor RegisterTreeToPlanVisitor (OperatorTree* tree)
{
TreeToPlanVisitor visitor(tree, this);
return visitor;
}
virtual void Prune (AlgorithmTree *phynode);
}i

//Called by Prune
inline int mcond (int condition, int anti)
{

return anti ? !condition : condition;

}
#endif /* SEARCHSPACE_H */

B.2 SearchTree.h

#ifndef SEARCHSTREE_H
#define SEARCHSTREE_H

#include <optdef.h>
#include <Alognode.h>
#include <Aquery.h>
#include <Alist.h>

/define ADEBUG
const int MaximumOperations = 100;
class SearchTree {
protected:

List<OperatorTree> listofrootnodes;

/7 should be renamed

// listofatomicnodes someday.

101



List<OperatorTree> listofunexpandednodes[MaximumOperations];
// array of lists.
// each list contains a list of unexpanded
// nodes with that many operations.
int level; /7 index into above arrvray.
// keeps track of which list is being expanded currently

OperatorTree *optimumnode;//to put the final result

public:
#ifdef ADEBUG
NodeCounter lognode_ctr; // some performance statistics
NodeCounter phynode_ctr;
NodeCounter subopt_lognode_ctr;
NodeCounter subopt_phynode_ctr;
ftendif

SearchTree (void);

virtual ~SearchTree (void);

void Initialize (void); // call bhefore esach query

void CleanUp (void); // call after each query

int GetLevel(void) {return this->level;}
void SetLevel (int 1) {this->level = 1;}
OperatorTree* GetOptimumNode (void) {return optimumnode;}

void SetOptimumNode (OperatorTree* node) {this->optimumnode = node;}

int GetLengthOfRootNodes (void) {return listofrootnodes.Length();}
List<OperatorTree> &GetListOfRootNodes (void);
void DeleteListOfRootNodes (void);
void SetListOfRootNodes (Alist_t<Alognode_t>& nodes) ;
int GetLengthOfNodes (void) {return listofunexpandednodes->Length();}
int GetLengthOfNodesByLevel (int level)
{return listofunexpandednodes|[level].Length();}
List<OperatorTree> &GetListOfNodesCurrent (void);
List<OperatorTree> &GetListOfNodesByLevel (int level);
void DeleteListOfNodesByLevel (int level);

void SetListOfNodesByLevel (int level, List<OperatorTree>& nodes);
void AddNodeToTree (OperatorTree *node);
virtual void NewNode (OperatorTree *node);

virtual wvoid DeleteLogNode (OperatorTree *lognode); // remove from tree.

int IsExisting(Alognode_t*right log_node,Alognode_t*left_log_node);
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// in Dynamic Programming, if i don't test this, unnecessary

// repeations will occur, because the emelents of

/7 listofunexpandednodes[l]

// are actually joined with the elements of the same list.
Alognode_t* GetBestLogTree (void);
void print(void) ;

}i

class NodeCounter

{
private:

int tot_nodes; /7 total number of nodeg created

int cur_nodes; // number of nodes in btree currently

int max_nodes; // maximum nodes coexisting at a given time
public:

NodeCounter (veoid) {reset ();}

~NodeCounter (void) {}

void reset (void) {tot_nodes = cur_nodes = max_nodes = 0;}
void add_node (void) {
tot_nodes++; cur_nodes++;1if (cur_nodes>max_nodes) max_nodes=cur_nodes;
}
void delete_node (void) {cur_nodes--;}
void write (ostream &os) const {

08 << "Total: " << tot_nodes << "\tMax: " << max_nodes;

int tot (void) comst {return tot_nodes;}
int max (void) const {return max_nodes;}

}i

//called by node counter
inline int is_real_lognode (OperatorTree *node)
{
return node->GetOp ()->GetNumber () != Aidx_collapse;
}
inline ostream &operator<< (ostream &os, const NodeCounter &n)
{
n.write (os); return os;
}
#endif /*SEARCHSTREE_H*/
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B.3 Ahash.h

#ifndef AHASH H
fidefine AHASH_H

#include <Alist.h>
class Aphynode_t;
class Alogprop_t;
class Aphyprop_t;

/k**“k***‘*************v\"*k**’k*‘k'ﬂr*** R I R R I i i I e i I I T S O R R S
BEWARE! 1!
do not make any changes to this file unless you are very

very sure of what vou are doing.

KAAXKXA AR A AN XA AT AARRA AN A AR XA AR AN &4 *'k‘ft‘*k‘)(k’)\'V'C'k'k‘k‘k'X!\"k'k*‘k‘k‘k**'k‘k)\"k'ﬁ’*‘k'k*',\"k'ﬂ‘)\‘*‘k**'k//
P R e R R B e P Y
PRUNING.
whenever a new physical node is created

there is potential for 1i_cost based pruning.

remember that each physical node stands for an access plan
(for whatever partial operator tree it is supposed to be

implementing) .

so 1f there exists a physical node in our search tree which

produces the the same output as the new node (i.e. all the

logical properties are same AND the physical properties are also

the same) then we keep only the the less expensive one around

to be considered for further optimization. the more expensive

one is pruned out. we call this an EXACT MATCH.

in this case, if the new node is less expensive then it

REPLACEs the older one in the search tree or if it is more

expensive then (since it is not useful to anyone) it commits SUICIDE

by deleting itself.

if no exact match is found we continue with pruning.

1f there is a physical node whose loglical properties are Lhe
same as the new node and itg physical properties are not

but its physical properties are NOT INTERESTING

and it is more expensive than the new node then that node

can be pruned out (because the new node can provide evervthing

that the old one provided (and more) at a lesser ii_cost).
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the desicion of whether the physical properties of a node are
INTERESTING or nol is left to the DBI (databasge implementor)

through the use of the Aphynode_t::IsInteresting member funtion.

in such a situation we call the new node a REPLACER (because

it is going to remove/KILL the older node from the search tree) and

the new node a REPLACEE.

the situation is reversed if the physical properties if the new
node are NOT INTERESTING. in that case if there is any already
existing node which has the same logical properties (obviously

it has INTERESTING physical properties) and is less expensive than
the new node, then the new node need not be kept around for the

later phase of optimization. hence the new node cormits SUICIDE.

R R R A s L T

class Ahashnode_t {
friend class Ahashtable_t;
friend class Ahashid_t;
private:
Aphynode_t *node;
Alogprop_t *logprops;
Aphyprop_t *phyprops;

Alist_t<ahashnode_t> *listofreplacers; // nodes which can replace this node.

private: // this is a private class
Ahashnode_t (Aphynode_t *);
Ahashnode_t (Alogprop_t *);
~Ahashnode_t (void);
void NewPhyNode (Aphynode_t *):;
}i

/’k**‘d\“***‘;\'**v’s‘****‘k*»‘:“k**v‘:"******%"k**‘k**'k)\‘*‘k‘k**v’r**%'&*)& LR R R R R R e

A note on hashing.

since the hashing is required to locate nodes with equivalent
logical properties and physical properties and since these
classes are supplied by the DBI, the hash function has to

be implemented by the DBI.

to do this, we require the DBI to provide us with two functions

1) the Alogprop_t.Hazh ()} function.
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the DBI is expected Lo guarantee that whenever two
instances of the Alogprop_t class are deemed to be
equivalent by the Alogprop_t.IsEgualiTo function then
their Alogprop_t.Hash () values must be egual.
further, the DBI should attempi o write this function such that
different logprops objects return different values.
2) the Aphyprop_t.Hash (Alogprop_t *) function.
here two {logprops,phyprops) should give
the same hash values 1f they are equivalent according to the
Alogprop_t.IsEqualTo and the Aphvprop_t.IsEqualTo

functions.

these hashed numbers are rehashed by cur hashtable to produce an integern
from 0 to (arraysize - 1). in case of nodes which are not INTERESTING,

the Alogprop.t.Hash value is used for rehashing (because the

physical properties are not interesting). for other nodes the
Aphyprop_t.Hash value is used for rehashing since the physical
properties are alsc important in this case.
'k7\'*'k'i\'*k‘k‘)\'**'k*a&"}r'k';\'**ﬁ'**‘k*****ﬂr******'kv'«‘*k*'k*\'v\"k'k‘*v‘:'k'?i'vk")r‘k‘**'ﬁ*'*'kv\‘*‘k'k“k:k'*)\)\"}:'A'**k‘k**'k'k"k/
clasgs Ahashid_t {
private:
Aphynode_t *node;
Ahashnode_t *exactmatch;
Alist_t<aAhashnode_t> *replacers;

Ahashnode_t *replacee;

int logicalhashnumber; // value generated by Alognode_t.Hash

int physicalhashnumber; // value returned by the aphynode_t.Hash

void FindReplacee (void);

public:
Ahashid_t (Aphynode_t *newnode);

static void InitializeHashTable (void);
static void EmptyHashTable (Ahashtable_t* hashtable) ;
Aphynode_t *GetExactMatch (Ahashtable_t* hashtable);

// there'll be only cone exact match
Aphynode_t *GetNextReplacer (Ahashtable_t* hashtable);

// there will be a list of replacers
Aphynode_t *GetReplacee (Ahashtable_t* hashtable);

// there can be only one replacee

106



void Replace (void);

void KillReplacee (void);

void Suicide (void);

void Insert (Ahashtable_t* hashtable);

}i

class Ahashtable_t ({
private:
int arraysize; // number of buckets in the hashtable
Alist_t<Ahashnode_t> *hasharray; // this is an array of lists
// each element is a list of Ahashnode_ts
static int abs (int x) {return x < 0 ? -x : x;}
int Rehash (int logicalorphysicalnumber) {

return abs (logicalorphysicalnumber) % arraysize;

public:
int end_of_replacers;
public:
Ahashtable_t (int thearraysize = 67);
~Ahashtable_t () { if (hasharray) delete [] hasharray; }
Ahashnode_t *FindMatch (Aphynode_t *, int hashnumber);
// dn this, for INTERESTING nodes the hashnumber
// should be the value returned by the Aphyprop_t.Hash function

// for the non-INTERESTING nodes the Alogprop_t.Hash value should be used.

void Insert (Ahashnode_t *, int hashnumber) ;
Ahashnode_t *FindReplacee (aAphynode_t *, int hashnumber);
void EmptyHashTable (void); // call between queries.

}i

ffendif /* AHASH H */

B.4 TreeVisitor.h

#ifndef TREEVISITOR_H

#define TREEVISITOR_H
#include <optdef.h>
#include <vector>

#include <Aquery.h>

class TransformTreeGenerator;
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clags SearchSpace:;

i/
/7

This class just forms a complete hierarchy and provides get/set methods

to common attributes.

class TreeToTreeVisitor {

public:

TreeToTreeVisitor (OperatorTree* tree = 0, SearchSpace* space = 0);

virtual ~TreeToTreeVisitor();

OperatorTree* GetCurrentTree() {
return this->currentTree;
}
void SetCurrentTree(OperatorTree* tree) {

this->currentTree = tree;

SearchSpace* GetSearchSpace() {
return this->currentSpace;
}
void SetSearchSpace (SearchSpace* space) {

this->currentSpace = currentSpace;

protected:

}i

OperatorTree* currentTree;

SearchSpace* currentSpace;

class ExpandTreeVisitor: public TreeToTreeVisitor {

public:

ExpandTreeVisitor (OperatorTree* tree=0, SearchSpace* space=0);
virtual ~ExpandTreeVisitor();

virtual void VisitDBRelation(DBRelation* op);

virtual void VisitMaterialization(Materialization* op);
virtual void VisitMaterializationCollapse(MaterializationCollapse* op);
virtual void VisitSelect (Select* op);

virtual void VisitSelectCollapse(SelectCollapse* op) ;

virtual void VisitIndexCollapse (IndexCollapse* op);

virtual void VisitJoin(Join* op);

virtual void VisitUnnest (Unnest* op);

virtual void VisitOutput (Qutput* op);

virtual void VisitOrder (Aorder_t* op); //added by wi:

virtual void VisitSubquery (Asubquery_t* op);
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class JoinTreeVisitor: public TreeToTreeVisgitor {
public:

JoinTreeVisitor (OperatorTree* tree=0, OperatorTree* otherTree=0,
SearchSpace* space = 0);

virtual ~JoinTreeVisitor();

virtual Alist_t<Abinop_t> Clonedoin(Join* op);

virtual Join* CloneJoin(Join* op, Join_tree *join_tree);

protected:
OperatorTree* otherTree;

};

class TransformTreeVisitor: public TreeToTreeVisitor {
public:
TransformTreeVisitor (OperatorTree* tree=0, SearchSpace* space=0);

virtual ~TransformTreeVisitor();

// Loop for all rules and apply each of them
void VisitRules();

// volid VisitSelectPushDown(SelectPushDown* rule);

private:
vector <TransformTreeGenerator*> rules;

}:

class TreeToPlanVisitor {
public:
TreeToPlanVisitor (OperatorTree* tree = 0, SearchSpace* space = 0);

virtual ~TreeToPlanVisitor();

OperatorTree* GetCurrentTree() {
return this->currentTree;

}

void SetCurrentTree(OperatorTree* tree) ({
this->currentTree = tree;

}

SearchSpace* GetSearchSpace() {
return this->currentSpace;

}

void SetSearchSpace(SearchSpace* space) {

this->currentSpace = currentSpace;

virtual void VisitUnaryAlgorithm(Aunaryalgo_t* algorithm);
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virtual void VisitBinaryAlgorithm(Abinalgo_t* algorithm);
virtual void VisitFileScan(Afilescan_ t* algorithm);
virtual void VvisitFilter(Afilter_t* algorithm);

virtual void VisitIndexScan (Aindexscan_t* algorithm);

virtual void VisitSort(Asort_t* algorithm);

protected:
OperatorTree* currentTree;
SearchSpace* currentSpace;

}i

class PlanToPlanVisitor {
public:
PlanToPlanVisitor (AlgorithmTree* tree = 0, SearchSpace* space = 0);

virtual ~PlanToPlanVisitor();

AlgorithmTree* GetCurrentTree() {
return this->currentTree;
}
void SetCurrentTree(AlgorithmTree* tree) {

this->currentTree = tree;

SearchSpace* GetSearchSpace() {
return this->currentSpace;

}

void SetSearchSpace(SearchSpace* space) {
this->currentSpace = currentSpace;

}

virtual wvoid VisitConstrain();
protected:

AlgorithmTree* currentTree;

SearchSpace* currentSpace;

i
#endif

B.5 TreeGenerator.h

#ifndef TREEGENERATOR_H
#define TREEGENERATOR_H

#include <optdef.h>
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#include <SearchSpace.h>

class Generator
{
protected:
SearchSpace* space;
public:
Generator (SearchSpace* space = 0) {this->space = space;}
void SetSearchSpace (SearchSpace* space) {this->space = space;}
SearchSpace* GetSearchSpace() {return this->space;}

}i

s
// class ExpandTreeGenerator Hieravchy
/7
class ExpandTreeGenerator: public Generator {
public:

ExpandTreeGenerator (SearchSpace* space = 0):Generator (space) {}

virtual ~ExpandTreeGenerator () {}

// know type of operator in advance

virtual void Apply(DBOperator* op, OperatorTree *input);

/7 de not know type of operator in advance

virtual void Apply(DBOperator* op, OperatorTree *input, OperatorTree*
&output) ;

virtual Alist_t<Aop_t> Clones(DBOperator* op, OperatorTree **input=0);

Y

class UnaryOperatorExpand: public ExpandTreeGenerator {
public:
UnaryOperatorExpand (SearchSpace* space = 0):ExpandTreeGenerator (space) {}
virtual ~UnaryOperatorExpand() {}
// know type of operator in advance
virtual void Apply (DBUnaryOperator* op, OperatorTree *input);
/7 do not know Lype of operator in advance
virtual void Apply(DBOperator* op, OperatorTree *input, OperatorTree*
&output) ;
virtual Alist_t<Aunaryop_t> Clones (DBUnaryOperator* op, Alognode_t *input) ;

}i

class BinaryOperatorExpand: public ExpandTreeGenerator {
public:
BinaryOperatorExpand (SearchSpace* space = 0):ExpandTreeGenerator (space) {}

virtual ~BinaryOperatorExpand(){}
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// know type of operator in advance

virtual void Apply(DBBinaryOperator* op, OperatorTree *input);

// do not know type of operator in advance

virtual void Apply(DBBinaryOperator* op, OperatorTree *input, OperatorTree*
&output) ;
protected:

virtual void DfsNode (DBBinaryOperator* op, OperatorTree *input, OperatorTree
*othernode) ;

virtual void DfsNode (DBBinaryOperator* op, OperatorTree *input, OperatorTree
*othernode,

OperatorTree* &output);

virtual Alist_t<Abinop_t> Clones (DBBinaryOperator* op, Alognode_t
*leftinput, Alognode_t *rightinput);
}i

class DBRelationExpand: public ExpandTreeGenerator {
public:
DBRelationExpand (SearchSpace* space = 0):ExpandTreeGenerator (space) {}

virtual ~DBRelationExpand() {}

virtual void Apply(DBRelation* op, OperatorTree* input);

virtual void Apply(DBRelation* op, OperatorTree* input, OperatorTree*
&output) ;

virtual void compute_operations (DBRelation* op);

virtual Alist_t<Aop_t> Clones (DBRelation* op, Alognode t **inputs = 0);

}:

class MaterializationExpand: public UnaryOperatorExpand {
public:
MaterializationExpand(SearchSpace* space = 0) :UnaryOperatorExpand (space) { }
virtual ~MaterializationExpand() {}
//virtual veid Apply(Amat_t* op, OperatorTree* inpul):
//virtual void Apply (Amat_t* op, OperatorTree* input, OperatorTree* &output);
virtual void compute_operations (Amat_t* op);

virtual Alist_t<Aunaryop_t> Clones (Amat_t* op, Alognode_t *inputs);
Y

class MaterializationCollapseExpand: public UnaryOperatorExpand {
public:
MaterializationCollapseExpand(SearchSpace* space =
0) :UnaryOperatorExpand (space) {}
virtual ~MaterializationCollapseExpand() {}

virtual void Apply(MaterializationCollapse* op, OperatorTree* input);
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virtual void Apply(MaterializationCollapse* op, OperatorTree* input,
OperatorTree* &output);

}i

class SelectExpand: public UnaryOperatorExpand {
public:

SelectExpand(SearchSpace* space = 0):UnaryOperatorExpand (space) {}

virtual ~SelectExpand(){}

//virtual void Apply (Aselect _t* op, OperatorTree *inputb);

//virtual void Apply (Aselect_t* op, OperatorTree *input, OperatorTree*
s&output) ;

virtual Alist_t<Aunaryop_t> Clones (DBUnaryOperator* op, Alognode_t *input);

}i

class SelectCollapseExpand: public UnaryOperatorExpand {
public:
SelectCollapseExpand (SearchSpace* space = 0):UnaryOperatorExpand (space) {}
virtual ~SelectCollapseExpand() {}
virtual void Apply (SelectCollapse* op, OperatorTree *input);
virtual void Apply (SelectCollapse* op, OperatorTree *input, OperatorTree*
&output);
Yi

class IndexCollapseExpand: public ExpandTreeGenerator {
public:
IndexCollapseExpand (SearchSpace* space = 0):ExpandTreeGenerator (space) {}
virtual ~IndexCollapseExpand() {}
virtual void Apply (IndexCollapse* op, OperatorTree *input);
virtual void Apply (IndexCollapse* op, OperatorTree *input, OperatorTree*
&output) ;
}:

class JoinExpand: public BinaryOperatorExpand {
public:

JoinExpand (SearchSpace* space = 0):BinaryOperatorExpand (space) {}

virtual ~JoinExpand() {}

virtual void Apply (Join* op, OperatorTree *input);

virtual void Apply (Join* op, OperatorTree *input, OperatorTree* &output);

virtual Alist_t<Abinop_t> Clones (Join* op, Alognode_t *leftinput, Alognode_t
*rightinput) ;

virtual Ajoin_t * Clones(Join* op, Join_tree *join_tree,

Alognode_t *leftinput, Alognode_t *rightinput);

private:

void DfsNode (Join* op, OperatorTree *input, OperatorTree *othernode);
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void DfsNode (Join* op, OperatorTree *input, OperatorTree *othernode,
OperatorTree* &output) ;

}i

class UnnestExpand: public UnaryOperatorExpand {
public:
UnnestExpand (SearchSpace* space = 0):UnaryOperatorExpand(space) {}

};

class OutputExpand: public UnaryOperatorExpand {
public:

OutputExpand (SearchSpace* space = 0):UnaryOperatorExpand (space) {}
}:

class SortExpand: public UnaryOperatorExpand {
// Do something here. 1f the input aleardy sorted in a required atlr,
//just take the exiting physical plan as my physical plan.
/7 Otherwise, we have to do an explicit order.
public:
SortExpand (SearchSpace* space = 0):UnaryOperatorExpand(space){}
virtual void Apply (Aorder_t* op, OperatorTree *input);
virtual Alist_t<Aunaryop_t> Clones (Aorder_t* op, Alognode_t *input);
}:

class SubqueryExpand: public UnaryOperatorExpand {
// Do something here. 1f the input aleardy sorted in a reguired attr,
//just take the exiting physical plan as my physical plan.
// Otherwise, we have to do an explicit order.
public:
SubqueryExpand (SearchSpace* space = 0):UnaryOperatorExpand (space) {}
virtual Alist_t<Aunaryop_t> Clones (Asubquery_t* op, Alognode_t *input);
static Alist_t<Aunaryop_t> FindAlias (Asubquery_t* op, Aquery_t* query, char
*rel_var) ;

};

//
// class AlgorithmTreeGenerator Hierarchy
//
class AlgorithmTreeGenerator : public Generator({
public:
AlgorithmTreeGenerator (SearchSpace* space = 0):Generator (space) {}
virtual int CanBeApplied (OperatorTree *, AlgorithmTree **inputs = 0);

/7 returng true If this algo can be applied to these inputs.
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virtual void Apply (DBAlgorithm* algo, OperatorTree *lognode, AlgorithmTree

**inputs) ;

// this function should construct all the physical nodes

/

// of the given logical node which can result from the
// application of this algorithm to the given physical nodes.
// the DBI will usually NOT need to redefine this function
virtual void MakePhyNodes (DBAlgorithm* algo, OperatorTree *) = 0;

}i

class UnaryAlgorithmTreeGenerator: public AlgorithmTreeGenerator {
public:
UnaryAlgorithmTreeGenerator (SearchSpace* space =

0) :AlgorithmTreeGenerator (space) {}

virtual int CanBeApplied (OperatorTree *, AlgorithmTree *input);

// returns true if this algo can be applied to these inputs.
virtual void Apply (DBAlgorithm* algo,OperatorTree *, AlgorithmTree *input);
// DBI will usualiy NOT need to redefine this function

virtual void MakePhyNodes (DBAlgorithm* algo, OperatorTree *);

// DBI will usually NOT need to redefine this function

Y

class BinaryAlgorithmTreeGenerator: public AlgorithmTreeGenerator {
public:
BinaryAlgorithmTreeGenerator (SearchSpace* space =
0) :AlgorithmTreeGenerator (space) { }
virtual int CanBeApplied (OperatorTree *, AlgorithmTree *leftinput,
AlgorithmTree *rightinput);
// returns true if this algo can be applied to these inputs.
virtual void Apply (DBAlgorithm* algo, OperatorTree *,
AlgorithmTree *leftinput,
AlgorithmTree *rightinput);
// DBI will usually NOT need to redefine this function
virtual void MakePhyNodes (DBAlgorithm* algo, OperatorTree *);

// DBL will usually NOT need to redefine this Ffunction

}i

class FileScanPlan: public AlgorithmTreeGenerator {

public:
FileScanPlan(SearchSpace* space = 0) :AlgorithmTreeGenerator (space) {}

virtual void MakePhyNodes (DBAlgorithm* algo, OperatorTree *node);

}i

class EnforcerPlan: public UnaryAlgorithmTreeGenerator {

115



public:
EnforcerPlan (SearchSpace* space = 0):UnaryAlgorithmTreeGenerator (space) {}

};

class AssemblyPlan: public EnforcerPlan {
public:
AssemblyPlan (SearchSpace* space = 0):EnforcerPlan(space) {}
Alist_t<Aphynode_t> Enforce (Aphynode_t *node, Aphyprop_t *reqgd props);
Yi

class FilterPlan: public UnaryAlgorithmTreeGenerator {
public:
FilterPlan(SearchSpace* space = 0):UnaryAlgorithmTreeGenerator (space) {}
int CanBeApplied (OperatorTree *node, AlgorithmTree *input);
void MakePhyNodes (DBAlgorithm* algo,OperatorTree *lognode);
void Apply (DBAlgorithm* algo, OperatorTree *lognode, AlgorithmTree *input);
}i

class IndexScanPlan: public AlgorithmTreeGenerator {
public:
IndexScanPlan{SearchSpace* space = 0):AlgorithmTreeGenerator (space) {}
virtual void MakePhyNodes (DBAlgorithm* algo, OperatorTree *node);
}i

class HybridHashJoinPlan: public BinaryAlgorithmTreeGenerator {
public:
HybridHashJdoinPlan (SearchSpace* space =
0) :BinaryAlgorithmTreeGenerator (space) { }
int CanBeApplied (OperatorTree *node, AlgorithmTree *leftinput,
AlgorithmTree *rightinput);
}:

class PointerHashJoinPlan: public BinaryAlgorithmTreeGenerator {
public:
PointerHashJoinPlan(SearchSpace* space =
0) :BinaryAlgorithmTreeGenerator (space) { }
int CanBeApplied (OperatorTree *node, AlgorithmTree *leftinput,
AlgorithmTree *rightinput);
}:

class UnnestAlgorithmPlan: public UnaryAlgorithmTreeGenerator {
public:
UnnestAlgorithmPlan(SearchSpace* space =

0) :UnaryAlgorithmTreeGenerator (space) { }
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int CanBeApplied (OperatorTree *node, AlgorithmTree *input);
};

class OutputAlgorithmPlan: public UnaryAlgorithmTreeGenerator {
public:
OutputAlgorithmPlan (SearchSpace* space =
0) :UnaryAlgorithmTreeGenerator (space) {}
int CanBeApplied (OperatorTree *node, AlgorithmTree *input);
}:

class SortPlan: public UnaryAlgorithmTreeGenerator {
public:
SortPlan(SearchSpace* space = 0):UnaryAlgorithmTreeGenerator (space) {}
virtual void MakePhyNodes (Asort_t* algo, OperatorTree *node);

}i

//
// class TransformTreeGenerator Hierarchy
/7

clags TransformTreeVisitor;

class TransformTreeGenerator : public Generator{

public:
TransformTreeGenerator (SearchSpace* space = 0):Generator (space) {}
virtual bool CanBeApplied(OperatorTree* tree);
virtual void Apply(TransformTreeVisitor& visitor);

};

class SelectPushDown: public TransformTreeGenerator {

public:
SelectPushDown (SearchSpace* space = 0):TransformTreeGenerator (space) {}
virtual bool CanBeApplied(OperatorTree* tree);
virtual void Apply(TransformTreeVisitor& visitor);

}:

#endif

C. Algebra Component

C.1 Alognode.h

#ifndef ALOGNODE_H
fidefine ALOGNODE_H
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#include <Alist.h>

#include <2op.h>

class Aphynode_t; // forward reference
class Alogprop_t;

class ExpandTreeVisitor;

class TreeToPlanVisitor;

class SearchSpace;

extern void printTree(Alognode_t*node);

AR R R e R e I R i R R R R L R R R R R ]

LOGICAL NODES.

a search tree is made up of logical nodes and physical nodes.

A logical node represents a part of an operabtor tree which can be
used in the evaluation of the given query.
the logical node has a pointer the operator which is being applied,

and the lognodes which serve as inputs to it.

There is also a pointer to Alegprop_t of the output
of the partial operator tree assocciated with the logical node.

the Alogprop_t class i1s supplied by the DBI.

a logical node also has pointers to all the physical nodes
associated with this logical node. i.e. each physical node
represents a different possible physical implementation which
can ke used to evaluate the partial operator tree associated

with this logical node.

Also there is a list of children of this logical node.

Children are those logical nodes which result from the application

of some Operator::Apply to this logical node.
>("k1\’7\'*******‘k'»\'“A'**d\-)\'*'k’!\'*‘k'it':\'*'k*:\"k*‘k'k'k*y‘(-k'k*k'k'k".l\'*-k')\'\,&"k')c*'*-ki"A"k-k")\'*‘k‘i«'*‘):'ﬁ"}l-*-k*v\'-}:'k****:{'*/’
clagsg Alognode_t {
private:

Aop__t *op;

Alogprop_t *logprops;

Alognode_t **inputs; // array of input Alognode_ts

Alist_t<Aphynode_t> phynodes; // list of physical nodes

Alist_t<Alognode_t> children; // logical nodes generated from this one

Alist_t<Aphynode_t> suboptimal_phynodes;

/7 see comment in Aphynode.h
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Alist_t<Aphynode_t> enforcednodes;
/7 list of nodes created by enforcers
/7 being applied to phynodes of this node
Alist_t<Alognode_t> dependent_nodes;
/7 list of log nodes that MUST be deleted
// when this node 1s deleted. i.e. nodes
/7 that use this node as an input and
/7 will have to be forcefully deleted if
// this node is suboptimal.
// Note: in general, if this node is suboptimal
// nodes that use this node as an input
// will get automatically deleted. but this is
/7 not true 1f they are interesting. in this
// case we have to delete them forcefully...
int done; // a flag indicating whether this logical node is in
// the process of being created or it is completed.
// this is used to decide whether a logical node is to be
// deleted or not when the number of physical nodes becomes 0.
// Alognode_t * parent; // the lognode that takes me as an input.
/7 wi: in course of adding an enforcer, we need to konw the

// phy node(to be enforced)'s parent's parent.

SearchSpace* space; //the searchsapce where the tree is bullt.

public:

int expanded; // true if this node has already been expanded.
int my_postion; // for print only
int num_of_printed_children;// for print only

int print_all;// for print only

public:
int IsDone (void) const {return done;}
~Alognode_t (wvoid);
//To get rid of global variables, we need to know in which search space
//a new node is constructed. Also the property class needs to know
//the number of operations of the current query in the search space
//to initialize the Aset_t attributes.
Alognode_t (Aop_t *, SearchSpace* space);
Alognode_t (Aunaryop_t *, Alognode_t *input, SearchSpace* space);
Alognode_t (Abinop_t *, Alognode_t *leftinput,

Alognode_t *rightinput, SearchSpace* space);
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Aop_t *GetOp (void) comst {return op;}

Alogprop_t *GetLogProps (void) const {return logprops;}
void SetLogProps (Alogprop_t *1) {logprops = 1;}
SearchSpace* GetSearchSpace() {return this->space;}

void SetSearchSpace(SearchSpace* space) {this->space = space;}

int CanRemoveFromSearch (void);
// TRUE if this lognode can be removed
// from the search tree. 1l.e. it is
/7 suboptimal

int CanDelete (void); // TRUE if this lognode can be deleted safely Children()

Alist_t<Alognode_t> &Children (void) {return children;}

void AddChild (Alognode_t *newchild) {children.Insert (newchild);}
void DeleteChild (Alognode_t *child) {children.FindandDelete (child);}
void AddDependent (Alognode_t *node) {dependent_nodes.Insert (node);}

void DeleteDependent (Alognode_t *n) {dependent_nodes.FindAndDelete (n);}

Alist_t<Aphynode_t> &GetPhyNodes (void) {return phynodes;}
int NumPhyNodes (void) {return phynodes.Length ():)

void AddPhyNode (Aphynode_t *node) {phynodes.Insert (node);}
void DeletePhyNode (Aphynode_t *node);

void DeleteSubOptimalPhyNode (Aphynode t *node);

void AddEnforcedNode (Aphynode_t *node) {enforcednodes.Insert (node);}

Alognode_t *Input (int N = 0) comnst {return inputs([N};} // get the Nth input
Alognode_t *LeftInput (void) const {return inputs[0];} // special cases
Alognode_t *RightInput (void) const {returm inputs[1l];} // of the above
Alist_t<Aphynode_t> &MakePhyNodes (void);
int Contain(Alognode_t *other_log_nocde); /7 added by wi.

//Mo judge 1if a tree contain another tree.

//Called in Dynamic Programming to prevent a tree

//to make Cartesian product with a node contained by itsefl.

//Rleognode Ut * GeltParet (void) {relburn parent;}

//methods moved from SearchTree.c

void ADeleteTree (void);

void DeleteAllSubOptimalPhyPlan(veoid) ;

double GetCheapestCostOfLognode (void) ;

// added by wj: for test

void print (void) {reset_print_info () ;printTree(this);}// for print only
void print_phy_tree(void);

void print_node(void);// for print only
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int nargs(void) {return op->Arity();}// for print only

Alognode_t* arg(int n) {return Input(n);}// Tor print only

void reset_print_info (void)

{

my_postion=0; //

num_of_printed_children=0;

print_all=0;

for (int i=0;i<nargs();i++)
{
arg(i)->reset_print_info();
}
}
}i
ftendif /* ALOGNODE_H */

C.2 Alogprop.h

#ifndef LOGPROP_H

f#idefine LOGPROP_H

#include
#include
#include
#include
ftinclude

#include

<Aset.h>
<Arel.h>
<Aattr.h>
<Aptree.h>
<Apred.h>
<Aopdefs.h>

class Alognode_t;

class SearchSpace;

class Alogprop_t {

friend class Aphyprop_ t; //wj: 1 need to set _is_interesting
private:
Aset_t<Aptree_t>* _operations; // operations applied so far

Aset_t<Aptree_t>* _undone_tuplerefs;
// keeps track of any pointer join
// predicates which should have been
// applied but haven'l vet been...
Aset_t<Aptree_t>* _need_unnesting;
// keeps track of which attributes

// are set valued and havent vyvet been unnested.

double _numtuples; /7 number of tuples
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int outputop_applied; // btrue 1f output operator has been applied.
// these two variables are used in the

// IsBqualTo function. they are very impoertant

char *_index_path; /7 if this tree ls part of a

/7 get- (mat) *-select combination which can

// be used for an indexscan then this variable
/7 holds the pathname materialized zo far...

int _is_interesting; // ig this an interesting lognode?

Alogprop_t (void) {
_operations = _undone_ tuplerefs = _need_unnesting = 0;
}

SearchSpace* space; //just for convenlience, actually can get from the lognode.

public:

~Alogprop_t (wvoid) {if(_index_path) delete _index_path;}
Alogprop_t (Aget_t *, Alognode_t *);

Alogprop_t (Amat_t *, Alognode_t *);

Alogprop_t (Amat_collapse_t *, Alognode_t *);
Alogprop_t (Aselect_t *, Alognode_t *);

Alogprop_t (Aselect_collapse_t *, Alognode_t *);
Alogprop_t (Aidx_collapse_t *, Alognode_t *);
Alogprop_t (Ajoin_t *, Alognode_t *);

Alogprop_t {(Aunnestop_t *, Alognode_t *);
Alogprop_t {Aoutputop_t *, Alognode_t *);
Alogprop_t (Aorder_t *, Alognode_t *); // by wj
Alogprop_t (Asubquery_t *, Alognode_t *); // by wi

Alogprop_t *Duplicate (void) const;

Aset_t<Aptree_t> &operations (void) const {return *_ operations;}
const Aset_t<Aptree_t> &undone_tuplerefs (void) const;

const Aset_t<Aptree_t> &need_unnesting (void) const;

double numtuples (void) const {return _numtuples;}

const char *index path (void) comnst {return _index_path;}

int IsEqualTo (const Alogprop_t *other) comst;
int IsInteresting (void) const;

int NumOperations (wvoid) const;

int IsCompleteQuery (void);

int Hash (void) const;
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inline functions

*.l’**\k*ﬁ'**‘k‘k**‘ﬁr**}kﬁk*)k-‘,l:**‘r\”k***A'**ﬁ‘**)\‘w\'**"}r:’r*w\"k**:1:4(*:\”}(**‘»‘:‘k**‘k*‘kw**"kvk**"):***w**:‘:**»\‘:\'I/

#include <Aoptions.h>

inline const Aset_t<Aptree_t> &Alogprop_t::undone_tuplerefs (void) const
{

return *_undone_tuplerefs;
}

inline const Aset_t<Aptree_ t> &Alogprop_t::need_unnesting (void) const

{

return *_need_unnesting;

}
inline int Alogprop_t::IsCompleteQuery (void)

{

raturn _operations->IsFull () && _need_unnesting->IsEmpty ();
}
inline int Alogprop_t::NumOperations (void) const {
return space->oopt->dont_split_lists ? 0 : _operations->Cardinality ();
}
#tendif /* LOGPROP_H */

C.3 Aphynode.h

#ifndef APHYNODE_H
#define APHYNODE_H

#include <Alist.h>
#include <Aalgo.h>
##include <Alognode.h>

#include <Aopalgos.h>

class Aphyprop_t; // forward reference

void printTree (Aphynode_t*node) ;

/‘k'k**‘k7\‘******k'**‘k”k***')\—**'k***‘s\'**‘*******‘k**‘kw\‘**'k***k***k*****‘k:\’*****&**‘% * ok ok ok ok ok ok

PHYNODE
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there can be a number of phynodes associated with each logical
node in a search tree. each Aphynode_t is a representation of a
different way of physically computing the same operation (operator tree)

described in the given ALogNode. these differences arise due to

different algorithms existing for computing the operators.

SUBOPTIMAL NODES

consider a node (nl) which has been used as an lnput node by

another node (n2). now, if a third node (n3) is created and it
happens to be equivalent to node nl and also happens to be cheaper
than nl, then we would delete ni. but 1f, in thig situation, it so
happens that miraculously n2 turnz out Lo be part of the ulltimate
optimal plan (unlikely, but possible in the current scheme) then we
are in trouble. because n2 will try to access nl, but nl has already

been deleted.

currently 1 see no easy way out of this problem. so this is what i

do: each node has a usedflag variable which will be zero if and only
if a particular node is not used as an input by any other node. and
when we are trying to delete a node we check if usedflag is 0. if it
is not we dont delete it. we just remove it from the hashtable and the

search tree.

**‘i\“)\'*‘k"k**‘,‘:'k*W:\'*)\*:‘."ﬁe*‘k‘k*v\‘i‘.‘**3\‘1‘:*»l“*i."k*‘k",\—**:‘:Vk*9:’)(**7:***:kic*:‘.‘**v:‘k*‘k"}:**:\‘:k**‘.‘:**‘k')r*»\-'k**/

class Aphynode_t {
private:
Aalgo_t *algorithm;
Aphynode_t **inputs; // array of pointers to input Aphynode_ts
Aphyprop_t *phyprops;
Alognode_t *parent;
int usedflayg; // this flag is true if this node has been used by
// some other node as an input. in this case we should
// not delete this node. we just mark it as suboptimal.
int suboptimal; // this marks nodes which are suboptimal but cannot be
// deleted because they are used as inputs to other nodes.
// these nodes should not considered as inputs for other
/7 nodes
int enforcednode; // true if this node is the result of the application
// of an enforcer to another. such nodes have to be
// handled differently in some cases.
Alist_t<Aphynode_t> init_plan_list; // wij: a list of pointers to the subplansg

//generated by subgueries in where-clauses; these plans have to
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// be executed first before the current plan is executed!

public:
int my_postion; // for print only
int num_of_printed_children;// for print only

int print_all;// for print only

~Aphynode_t (wvoid);
static void DeletePhyNode (Aphynode_t *node) ;
Aphynode_t (Alognode_t *parent, Aunaryalgo_t *, Aphynode_t *input);
Aphynode_t (Alognode_t *parent, Abinalgo_t *,
Aphynode_t *leftinput, Aphynode_t *rightinput);
Aphynode_t (Alognode_t *parent, Aalgo_t *, Aphynode_t **inputs = 0);

Aphynode_t (Alognode_t *parent, Aenforcer_t *, Aphynode_t *input);

Aalgo_t *GetAlgo (void) const {return algorithm;}
int GetNumInputs (void) comst {return algorithm->Arity ();}

void SetPhyProps (Aphyprop_t *p) {phyprops = p;}

Aphynode_t *Input (imt N = 0) comst ({return inputs[N];} // get the Nth input
Aphynode_t *LeftInput (void) comst {return inputs[0];} // special cases

Aphynode_t *RightInput (veid) const {return inputs[l];} // for binary nodes

Aphyprop_t *GetPhyProps (void) const {return phyprops;}
Alogprop_t *GetLogProps (void) const {return parent->GetLogProps ();}

Alognode_t *GetParent (void) const {return parent;}

int IsInteresting (void) const; // is this physical node interesting.
int SubOptimal (void) const {return suboptimal;}
// true if this is a suboptimal node.
int IsUsed (void) comst {return usedflag;}
// not for general use.
/7 used only by Ralgo_t::apply
int IsEnforcedNode (void) const {return enforcednode;}
void InsertIninPlan(Aphynode_t* node) {init_plan_list.Insert (node);}// wj

Alist_t<Aphynode_t> GetInitPlan(void){ returm init_plan_list;}

void print(void) {reset_print_info(); printTree(this);}

void print_node (void)

{
cout<<algorithm->GetName () ;
cout<<" (COST="<<thig->GetPhyProps ()->GetCost () .GetCost ()<<")";
Aop_t *op=this->GetParent ()->GetOp();
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if (op->GetNumber () ==Aget)

{

Aget_t *get=(Aget_t *)op;

cout<<" {"<<get->rel()->name()<<"}";
}
cout<<endl;

}Y// for print only
int nargs(void) {return algorithm->Arity();}// for print only
Aphynode_t* arg(int n){returm Input(n);}// for print only

void reset_print_info (void)

{
my_postion=0; //
num_of_printed_children=0;
print_all=0;
for (int i=0;i<nargs();i++)
{

arg(i)->reset_print_info();

}

}

}i

#endif /* APHYNODE_H */

C.4 Aphyprop.h

#ifndef APHYPROP_H
fidefine APHYPROP_H

#include <Aopdefs.h>
#include <Aattr.h>
#include <Acost.h>

#include <Aptree.h>

class Alogprop_t;
class Aphynode_t;

class Aphyprop_t {
private:
Acost_t _cost;
Aset_t<Aptree_t>* _ops_not_in_memory;
// operations which the Alogprops thinks
/7 are completed bult which are not in

// memory {due to idx_collapse)
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// these will have to be brought in by
// the assenbly enforcer.
long int _inmem_ass_obj_size; // size of assembled obj in memory
char* _required_sort_path;
int _is_interesting; // added by wi. 1if a phy node is interesting,
//its log node must be interesting. However, its brother phy nodes are
//not necessarily interesting, and could be deleted. Therefore,
//% have to mark if a phynode is interesting!
Alist_t<char> _sort_order;

/

/7 wi: 1 have to record the sort-order as results of this phynode!

public:
~Aphyprop_t (void) {
if(_required_sort_path)
delete [] _required_sort_path;
}
Aphyprop_t (Aphyprop_t *other) {*this = *other;_required_sort_path=0;}

Aphyprop_t (Afilescan_t *, Aphynode_t *);
Aphyprop_t (Aindexscan_t *, Aphynode_t *);
Aphyprop_t (RAassembly_ t *, Aphynode_t *);
Aphyprop_t (Afilter_t *, Aphynode_t *);
Aphyprop_t (Ahh_join_t *, Aphynode_t *);
Aphyprop_t (Ahhptr_join_t *, Aphynode_t *);
Aphyprop_t (Aunnestalgo_t *, Aphynode_t *);
Aphyprop_t (Aoutputalgo_t *, Aphynode_t *);
Aphyprop_t (Asort_t *, Aphynode_t *); /7o
Aphyprop_t (Amerge_ join_t *, Aphynode_t *); // wij
Aphyprop_t (Anested_loop_t *, Aphynode_t *); // wi

Aphyprop_t (Asubplan_t *, Aphynode_t *); //

Aset_t<Aptree_t> &ops_not_in_memory (void) const {return
*_ops_not_in_memory;}

long int inmem_ass_obj_size (void) const {return _inmem_ass_obj_size;}

void need_inmem (Aset_t<Aptree_t> &need_inmem);

Acost_t GetCost () const {return _cost;}

int IsEqualTo (const Aphyprop_t *other) const;

int Hash (const Alogprop_t *logprop) const;

int IsInteresting (const Alogprop_t *logprop) const;

void SetRequiredSortOrder (const char *rel_name, comst char *attr_name) {
_required_sort_path=new char [strlen(rel_name) +strlen(attr_name)+2];
strcpy (_required_sort_path,rel_name);
strcat (_required_sort_path,".");

strcat (_required_sort_path, attr_name);
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char * GetRequiredSortOrder (void) {return _required_sort_path;}

Alist_t<char> GetSortOrderlList (void) {return _sort_order;}
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inline void Aphyprop_t::need_inmem (Aset_t<Aptree_t> &need_inmem)
{

_ops_not_in_memory->Minus (need_inmem) ;

}
#endif /* APHYPROP H */

C.5 Aop.h

#ifndef AOP_H
#idefine AOP_H

#include <Aopdefs.h> // supplied by DRI
#include <stdlib.h>

#include <Alist.h>

class Alogprop_t; // to take care of
classg Aalgo_t; // the forward
class Alognode_t; // references.

class ExpandTreeVisitor;

R R R R R R N T T I I I T T ™

THE OPERATOR BASE CLASS

from this base class will be derived classes for all the operators
in the algebra.
we have derived classes Aunaryop_t and Abinop_ U

to factor out common code for these classes of operators.

assoclated with each operator we have a listofalgorithms which

can inplenent this operator.

everytime a new algorithm is defined it is expected to call

the Addalgorithm function and add itself to the list of algorithms
which implement that operator.

KHEAN KA ARLFAKKE AN A AN K AR XA EN R A RNk dhhox AN HRKATKANTRAAX AR AREAXKEAXRRLAAXNKEARR LA N A& * ok dkd v n 7
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class Aop_t {
private:
char *name; // name of the operator. DBI-supplied.
AopNumber number; // a unigue number associated with this operator.
// we believe that this function will be useful
// for writing code where the DBI wants to do
// a switch based on operator "Lypae®"
protected:
Alist_t<Aalgo_t> listofalgorithms; // this is a list of instances
/7 of the algorithms which can
// be used to implement this operator.
public:
virtual ~Aop_t (void) {}
Aop_t (char *newname, AopNumber n, Alist_t<Adalgo_t> 1) ({
name = newname; number = n; listofalgorithms = 1;
}
virtual void Accept (ExpandTreeVisitor& visitor) = 0;
virtual Aop_t *Duplicate (void) const = 0;
// this virtual function should return a newly
/7 allocated object which ig an exact veplica of this one.
// read comment in file ./README to find out why it is
// reguired. the DBI has to provide this function
char *GetName (void) {return name;}
int GetNumber (void) {return number;}
virtual Alist_t<Aalgo_t> GetListOfAlgorithms (void) const

{return listofalgorithms;}

virtual int Arity (wvoid) const = 0;

/7 e.g. 1 for unary and 2 for binary ops.

virtual Alogprop_t *MakeLogProps (Alognode_t *) = 0;

// make the logical prope:x =g Tor the glven logical node
// this just involves a call to the alogprop_t
/7 with the right parameters.

¥

class Aunaryop_t : public BAop_ t {
private:
public:
virtual ~Aunaryop_t (void) {}
Aunaryop_t (char *name, AopNumber n, Alist_t<Aalgo_t> a)

Aop_t (name, n, a) {}

int Arity (void) comst (return 1;} // because its a unary operator
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}i

class Abinop_t : public Aop_t {
public:
virtual ~Abinop_t (wvoid) {}
Abinop_t (char *name, AopNumber n, Alist_t<Aalgo_t> a)

Aop_t (name, n, a) {)

int Arity (void) const {return 2;} // because it a dyadic operator.

}i

#endif /* AQP_H */

C.6 Aalgo.h

#ifndef AALGO_H
#define AALGO_H

#include <Aopdefs.h> // provided by user

#include <Alist.h>
#include <string.h>
#include <Aop.h>
#include <iostream.h>

#finclude <stdlib.h>

class TreeToPlanVisitor;

class Aenforcer_t;

class Aphyprop_t;

class Aphynode_t;

class Bexec_info_t; // forward reference

class Alognode_t;

P R R S R I I I T

ALGORITHMS

algorithms are different ways to physically implement a given
operator. thus, for esach logical node, we can have different
physical implementations (depending on different algorithms)
giving rise to the same output. This gives rise to to multiple

Aphynode_ts assocciated with the same logical node.

each algorithm has a MakePhyNodes function which supposed to
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generate all the Aphynode_ts that can pogsibly arise from
implementing the operator of a given Alognode_t using that

algorithm.

this MakePhyNodes function makes use of an overloaded

MakePhyNode function to do the fjob.

:k‘*l\‘**’)r***‘k**‘.‘.‘**‘k5{**‘,‘.‘**5\'**'}c‘k***)c**)\*‘k**‘,‘:**‘A‘z‘f**W'}«f*‘){‘.\'**:‘:**‘kz\‘**zi."k*:\“k**A':‘:***,L‘*k*)\“!:***}:'k/’

class Aalgo_t {
private:
char *name; // name of the algorithm. supplied by DBI.

AalgoNumber number; // a unigque number supplied by DBI.

protected:

Alist_t<Aenforcer_t> *enforcers; // array of list of enforcers.

// one list for each input.

int interesting; //for performance,
//used by BinaryAlgorithmTreeGenerator::MakePhyNodes
//check if interesting when precomputing the cost
//before really generate a new algorithm tree

public:
Aalgo_t (char *newname, AalgoNumber n,
Alist_t<Aenforcer_t> *e = 0) {

name = newname; number = n; enforcers = e;

virtual ~Aalgo_t (void) {}
0;

virtual Aalgo_t *Duplicate (void) const

/7 this virtual function should return a newly allocated object

// which is an exact replica of this one.

// read comment in file ./README to find cut why it is required.

/7 the DBI has Lo provide this function
char *GetName (void) {return name;}

AalgoNumber GetNumber (void) {return number;}

int IsInteresting(void) {return interesting;}

virtual int Arity (void) const = 0;

//virtual void MakePhyNodes (Alognode_t *) = 0;
virtual void Accept (TreeToPlanVisitor& visitor) = 0;

virtual Aphyprop_t *Constraint (Alognode_t *,Aphynode_t *,int inputnumber =
0} { wreturn 0; }
// default == 0. unless DBI gpecifies otherwise

// this function shoule return the physical properties
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// required of the given physical node if it needs to be

// used as the Nth input of this algorithm. should

// rveturn 0 if the given node already satisfies

// the constraints or if the node cannot be used as
// an input to this algorithm at all.

/7 DBI will usually redefine this function.

virtual Alist_t<Aalgo_t> Clones (Alognode_t *, Aphynode_t **inputs = 0);
/7 this is supposed to glve a list of algorithm objects
/7 which represent different ways of applying this algorithm

// to these inputs, but with different parameters
£ b

n

// DBI is supposed to redefine this function if s/he

// doesnt like the defaull behaviour

virtual Alist_t<Aphynode_t>
EnforceNthConstraint (Alognode_t *,
Aphynode_t *input, int N = 0);

// apply the proper enforcer({s) to the Nth input and
// return a list of resulting phynode(s)
// (which will satisfy the input constraints).
// under normal circumstances the DBI should NOT have to
// redefine this function.

// the DBI will usually NOT need to redefine this function

virtual Aphyprop_t *MakePhyProps (Aphynode_t *)=0;
// make the physical properties for the given physical node.
/7 assume that the rest of the members of the physical node
/7 have already been filled in...

// the DBI will have to provide this function

virtual void Execute (Bexec_info_t &exec_info) = 0;
// to be used by the DBI for execution of an access
// plan generated by APG. Bexec_info_t is a DBI supplied
/7 class

}i

class Aunaryalgo_t : public Aalgo_t {
private:
public:
Aunaryalgo_t (char *name, AalgoNumber n, Alist_t<Aenforcer_t> *e = 0)
Aalgo_t (name, n, e) {}
virtual ~Aunaryalgo_t (void) {}

int Arity (void) const {returm 1;)
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virtual void Accept (TreeToPlanVisitor& visitor);
virtual Alist_t<Aunaryalgo_t> Clones (Alognode_t *, Aphynode_t *input);
// this is supposed to give a list of algorithm objects
// which represent different ways of applying this algorithm
// to this inpult, but with different parameters
// DBI is supposed to redefine this function if g/he
// doesnt like the default behaviour

}i

class Aenforcer_t : public Aunaryalgo_t {
private:
public:
Aenforcer_t (char *name, AalgoNumber n, Alist_t<Aenforcer_t> *e = 0)
Aunaryalgo_t (name, n, e) {}

virtual ~Aenforcer_t (void) {}

virtual Alist_t<Aphynode_t> Enforce (Aphynode_t *,
Aphyprop_t *) = 0;
// apply this enforcer to the given phynode so that it
// finally has the given physical properties.

// the DBI will have to provide this function

/4 virtual void Apply {(Alognode_t *, Aphynode_t *input);
/7 an Enforcer does not need an Apply function

// this is different from Aunarvalgce_t::Apply because

/7 the resultant nodes should not be Pruned in case of

// enforcers DBI will usually NOT need to redefine this
// function.

Y

class Abinalgo_t : public RAalgo_t {
private:
public:
Abinalgo_t (char *name, AalgoNumber n,
Alist_t<aAenforcer_t> *e = 0)
Aalgo_t (name, n, e) {}

virtual ~Abinalgo_t (void) {}

int Arity (void) const {returmn 2;)}

virtual void Accept (TreeToPlanVisitors visitor);

virtual Alist_t<Abinalgo_t> Clones (Alognode_t *,
Aphynode_t *leftinput,
Aphynode_t *rightinput);

// this is supposed to give a list of algorithm objects
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// which represent different wayvs of applying this algorithm
// to this input, but with different parameters
// DBI is supposed to redefine this function if s/he

// doesnt like the default behaviour

virtual double precompute (Aphynode_t *left, Aphynode_t *right) {}

}:
ftendif

/% ABLGO._H */

C.7 Acost.h

#ifndef ACOST_H

fidefine ACOST H

#include <Aopdefs.h>

#include <iostream.h>

class Aphynode_t;

clags Acost_t {

private:

double _cost;

public:

Acost_t (void) {_cost = -1;}

~Acost_t (wvoid) {}

int operator< (const Acost_t &other) {return _cost < other._ cost;}

int operator<= (comst Acost_t &other) {return _cost <= other._cost;}

int operator> (const Acost_t &other) {return _cost > other._cost;}

int operator>= (const Acost_t &other) {return _cost >= other._cost;}

int operator== (const Acost_t &other) {return _cost == other._cost;}
int operator!= (const Acost_t &other) {return _cost != other._cost;}
void compute (Afilescan_t *algo, Aphynode_t *node);

void
void
void
void
void
void
void
void
void

void

compute (Aindexscan_t *algo, Aphynode_t *node);
compute (Afilter_t *algo, Aphynode_t *node);
compute (Aassembly_t *algo, Aphynode_t *node);
compute (Ahh_join_t *algo, Aphynode_t *node);
compute (Ahhptr_join_t *algo, Aphynode_t *node);
compute (Aunnestalgo_t *algo, Aphynode_t *node);
compute (Aoutputalgo_t *algo, Aphynode_t *node);
compute (Asort_t *algo, Aphynode_t *node);
compute (Amerge_join_t *algo, Aphynode_t *node);
compute (Anested_loop_t *algo, Aphynode_t *node):

134



//Alternatives to computer a joln, but computer the cosl

//before create a new algorithm tree for better performance.

double Acost_t::precompute (Ahh join_t *algo, Aphynode_t *left, Aphynode_t
*right);

double Acost_t::precompute (Amerge_join_t *algo, Aphynode_t *left, Aphynode_t
*right);

double Acost_t::precompute (Anested_loop_t *algo, Aphynode_t *left,
Aphynode_t *right);

double GetCost(void) {return _cost;}// added by wj for test
void write (ostream &os) const;

};

inline ostream &operator<< (ostream &os, const Acost_t &cost)
{
cost.write (os); return os;
}
#endif /* ACOST H */

C.8 Aopdefs.h

#ifndef AOPDEFS_H
#define AOPDEFS_H

#include <Aquery.h>

class Aop_t;
clags Aalgo_t;

class Aenforcer_t;

enum AopNumber ({
Aget,
Amat, // materialize operator
Amat_collapse,
Aselect,

Aselect_collapse,

Aidx_collapse, /7 collapse to index scan

Ajoin,

Aunnestop,

Aaggrop, // aggregate operator

Aoutputop, // output the result of the query
Aorder,
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Asubguery

};

class
class
class
class
class
class
class
class
class
class
class

class

Aget_t;

Amat_t;

Amat_collapse_t;

Aselect_t;

Aselect_collapse_t;

Aldx_collapse_t;

Ajoin_t;
Aunnestop_t;
Aaggrop_t;
Aoutputop_t;
Aorder_t;

Asubquery_t;

enum AalgoNumber {

Afilescan,

Aindexscan,

Afilter,

Aassembly,

Ahh_join,

Ahhptr_join,
Aunnestalgo,
Aoutputalgo,
Asort,

Amerge_join,

Anested_loop,

Asubplan

}i

class
class
class
class
class
class
class
class
class
class
class

class

Afilescan_t;
Aindexscan_t;
Aassembly_t;
Afilter_t;
Ahh_join_t;
Ahhptr_join_t;
Aunnestalgo_t;
Aoutputalgo_t;
Asort_¢t;

Amerge_join_t;

Anested_loop_t;

Asubplan_t;

i/

/7

/7

hybrid hash join

hybrid hash pointer join

cutput the result of the query

merge join for join
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#include <Alist.h>

// this class stores the association between the

// operators and the various algorithms used tc implemsnt them.

class Aopalgo_t {
public:

// lists of algorithms associated with various operators

Alist_t<Aalgo_t>
Alist_t<adalgo_t>
Alist_t<Aalgo_t>
Alist_t<Aalgo_t>
Alist_t<Aalgo_t>
Alist_t<aalgo_t>
Alist_t<Aalgo_t>
Alist_t<Aalgo_t>
Alist_t<Aalgo_t>
Alist_t<Aalgo_t>
Alist_t<Aalgo_t>

get_algos;

mat_algos;
mat_collapse_algos;
select_algos;
select_collapse_algos;
idx_collapse_algos;
join_algos;
unnest_algos;
output_algos;
order_algos; //wi:

subquery_algos; //wj:

// array of lists of enforcers associated with various

Alist_t<Aenforcer_t> *enforcer_array;

Alist_t<Aenforcer_t> *enforcer_arrayl;

// operators and algorithms.
Aget_t *get;

Amat_t *mat;

Amat_collapse_t *mat_collapse;

Aselect_t *select;

Aselect_collapse_t *select_collapse;

Aidx_collapse_t *idx_collapse;
Ajoin_t *join;

Aunnestop_t *unnestop;
Aoutputop_t *outputop;
Acorder_t *order; //wj:

Asubquery_t *subquery;

Afilescan_t *filescan;
Aassembly_t *assembly;
Afilter_t *filter;
Aindexscan_t *indexscan;
Ahh_join_t *hh_join;

//  Ahhptr_join_t *hhptr_join;

order-by operator
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Aunnestalgo_t *unnestalgo;

Aoutputalgo_t *outputalgo;

Asort_t *sort; //wis sort algorithm for order-by opérator
Amerge_join_t *merge_join; //merge join algorithm
Anested_loop_t *nested_loop;

Asubplan_t* subplan;
Alist_t<Aop_t> all_operators;

public:
//Acopalgo_t (void);
Aopalgo_t (Aoptimizeroptions_t* oopt);
Aopalgo_t (Roptimizeroptions_t* oopt, Aquery_t* query);
~Aopalgo_t (void);
void CreateDBAlgebra (Aoptimizeroptions_t* oopt);
void InitDBAlgebraSets (Aquery_t* query);
}i
#fendif /* AOPDEFS_H */

D. Others

D.1 optdef.h

#ifndef OPTDEF_H
fidefine OPTDEF_H
#include <stack.h>

//re~definitions for some c¢lass names in OPT++

7

class Aop_t;

class Aunaryop_t;

class Abinop_t;

class Aget_t;

class Amat_t;

class Amat_collapse_t;
class Aselect_t;

class Aselect_collapse_t;
class Aidx_collapse_t;
class Ajoin_t;

class Aunnestop_t;
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class Aoutputop_t;
class Aorder_t;

class Asubquery_t;

class RAalgo_t;

class Aunaryalgo_t;
class Abinalgo_t;
class Afilescan_t;
class Aassembly_t;
class Afilter_t;
class Aindexscan_t;
class Ahh_join_t;
clasg Ahhptr_join_t;
class Aunnestalgo_t;
class Aoutputalgo_t;
class Anested_loop_t;
class Amerge_join_t;
class Asort_t;

class Asubplan_t;

class Alognode_t;

class Aphynode_t;

class Aglob_vars_t;

class Acat_t;

class Ahashtable_t;

class Ahashid_t;

class Bparser_state_t;

class Aquery_t;

class Aopalgo_t;

class Aoptimizeroptions_t;

class Arusage_t;

class Afunc_t;

class Aptree_t;

template <class ListElementType> class Alist_t;
template <class SetElementType> class Aset_t;
class Bquery_stmt_op_t;

class Brgg_t;

typedef Aglob_vars_t Globalvariables;
typedef Brqgg_t QueryGenerator;
typedef Bquery_stmt_op_t QueryStatement;
typedef Aop_t DBOperator;

typedef Aunaryop_t DBUnaryOperator;
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typedef Abinop_t

typedef Aget_t

typedef Amat_t

typedef Amat_collapse_t
typedef Aselect_t

typedef Aselect_collapse_t
typedef Aidx_collapse_t
typedef Ajoin_t

typedef Aunnestop_t
typedef Aoutputop_t

typedef Aalgo_t
typedef Aunarvyalgo_t
typedef Abinalgo_t
typedef Afilescan_t
typedef Aassembly t
typedef Afilter_t
typedef Aindexscan_t
typedef Ahh_join_t
typedef Ahhptr_ join_t
typedef Aunnestalgo_t
typedef Aoutputalgo_t

typedef Alognode_t
typedef Aphynode_t
typedef Alogprop_t
typedef Aphyprop_t

typedef Acat_t

typedef Ahashtable_t
typedef Ahashid t

typedef Bparser_state_t
typedef Aquery_ t

typedef Aopalgo_t

typedef Aoptimizeroptions_t

typedef Arusage_t
typedef Afunc_t
typedef Aptree_t
f#tendif

DBBinaryOperator;
DBRelation;

Materialization;

MaterializationCollapse;

Select;
SelectCollapse;
IndexCollapse;
Join;

Unnest;

Output;

DBAlgorithm;
DBUnaryAlgorithm;
DBBinaryAlgorithm;
FileScan;
Assembly;

Filter;
IndexScan;
HybridHashJoin;
PointerHashJoin;
UnnestAlgorithm;
OutputAlgorithm;

OperatorTree;
AlgorithmTree;
OperatorTreeProperty;

AlgorithmTreeProperty;

Catalog;

HashTable;

HashId;

ParserStates;

Query;
OperatorAndAlgorithm;

OptimizerOptions;
ResourceUsage;

Expression;

PredicateTree;

140



