A Genetic Algorithm Test Generator

Susan Khor

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

July, 2004

© Susan Khor, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94745-9
Our file Notre référence
ISBN: 0-612-94745-9

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

A Genetic Algorithm Test Generator

Susan Khor Lay Choo

Use of a genetic algorithm and formal concept analysis to generate test data for branch
coverage is explored in a prototype automatic test generator (ATG) called genet. genet is
unique in the sense that it requires minimal source code instrumentation and analysis, and
is programming language independent. Besides the novelty of using formal concept
analysis within a genetic algorithm, genet extends the opportunism of another
evolutionary ATG. Experiments were designed to evaluate the effectiveness of genet and
the importance of selection in the evolution of test data. The results of the experiments
indicate genet is most effective when selection plays a significant role. This is the case
when test solutions for a program are necessarily organized. When it is not necessary for
test solutions to resemble each other, adaptation appears to be the more dominant factor
and the identification of suitable genetic operators becomes more important.
Nevertheless, even in the latter situation, the presence of genet accelerated the
evolutionary process for our test programs. Notwithstanding equal adaptation

instructions, genetics mattered.

1

Acknowledgements

I am indebted to my supervisor, Dr. Grogono, for believing in my idea for a thesis and
taking me on as a student of his half way through my program. The completion of this
thesis to its current state is largely the result of his encouragement, patience, resources
and high standards.

I set out to do research on genetic algorithms with the notion that I could understand
better the question of nature versus nurture. I was and still am not aware if to an educated
mind, the one has anything to do with the other. Nevertheless, this thought sustained me.

The production of this document would be highly improbably if not for the following
mish mash of things, people, ideas and other matter:

adventure, audacity, Aristotle, Asimov, Austen, aerobics, the Bible, Bach, Beethoven,
Greg Butler, basement living, Camellia sinensis, caffeine, chick peas, Chopin, chips,
cherries, Copeland, cacao, cinnamon, citeseer, Christmas, Darwin, Diary of a Witch,
disappointment, Ecclesiastes, empiricism, mixed emotions, Flora A. DiMaio, fountain
pens, French language, Jostein Gaarder, Peter Grogono, Jean Genet, google, How?, how
to shower without stretching your arms, Ianina Orenman, International Student Office,
ignorance, suspended judgment, knitting, less than perfect, Lamarckism, Mendel, Mom,
multi vitamins, music, Halina Monkiewicz, the meditations of Marcus Aurelius, mime,
nature, Oprah, opines, expensive writing paper, colour pencils, petunias, Plato, tea pots,
quilts, Quebec, J. Rilling, B. Russell, rebel, rewrites, sushi, scones, Sartre, streets of
riches, Socrates, summer skies, seven theories of human nature, strawberry flavour, smell
of real pencils, tea sets, spice, turmeric, trains, Thoreau, unexpected effect, valerian,
why?, winter frosting, words, xerox, yawns, yahoo, zinc.

iv

Table of Contents

Table Of CONLENEScuveuiiiieririeietetetcte ettt et ste st es et e e baerasres e e e e aessesaessassaassansas v
LiSt OF FLGUIES ...everveereeieteieiereetetestes st ster et e e st e ss st esassassassessessasaessassessnssssssansessensns vi
LSt O TaDLES.....coeiiieceeecrtcc sttt ree e e e sr e st sra s besaas s e s e e s e st e besne e nnessaenns vii
Chapter 1 INtrodUCHIONccceereeiiieiciecrectrerce ettt seee s s nereseesneseeseseessesassessenes 1
Chapter 2 Genetic AIZOTItIINSco.cvveveruicieririreererrriesteeseeesesess e restesnesessessessesessessnsns 3
2.1 REPIesentation......c.ecceeeieuiruiniiieienueiiioesiesssesesaeessseseseneesessesessessensosessessensoressassasses 3
2.2 POPUIALION ...cvvirerrinrerrenienieneeriesieeseessestsssessaessessaessassessasssessessssssasssesssensessesssesnsens 4
2.3 FItNess fUNCHOMN ..cueeveririeietereeeseeeteeeeteet et et sreste s st s ste s e s sre st essessasssassnassnens 5
2.4 Selection fUNCHION......ccccurieerirririeeeieertetreeereseesesseseseesessessssesesssssessessesassessessasees 6
2.5 GENELIC OPETALOTS ...cvereeerrersreererreessressaeserssessasssessesssersessasssessessesssessasssesssssssesssessasssses 8
2.6 BASIC dESIZM ...cuveuvrirreeereeeenenreereeresrestseseesessssessessessnessessessssesessessessossssassensesesseses 10
Chapter 3 Dynamic Test Generators and Their Evaluationcccceevevevrevenenennvennennens 11
3.1 Overview of dynamic test ENErators.......c..ceeeruerrereereresesesreresenessesseesssseessesessnens 11
3.2 The first systematic dynamic test GENErator...........ccovvereereerreereereesreesrersresssessaeseesans 12
3.3 Why genetic algorithms?........cccovvvieeriieiniiniinenisresieniensseeesessesesessessessessessnesaens 17
3.4 GA-based dynamic test ZENEratorS.........ccevereereeeerreerierereriresesessesessesseereessessesseens 20
3.5 Random test Seneration.......cceeeveeereereenieenenieriseniesssesiseresssessesssessessssnsesssasssessssssessans 28
3.6 Other related WOTK........c.cvcvvveererierrirnrenrererieneesrentetessessessnesessessessessessassessssssessessasns 29
3.7 SUMIMALYvovvienirierierenieeresteeressresssesssessessesssessesassssssaessessessesstesssessasssesssessasssessses 30
Chapter 4 Formal Concept ANalYSisccovueeveeiueererienieeseeseniesisessesssseessesssesssesssesssessessnes 33
4.1 DOLINILION «...eeveieririenririreneesrisrtereeereesssesesstessessasssesssesssssesasssassassaassasssesssassasssssnsaenns 33
4.2 genet’s fitness cum selection algorithmccocevvevevneneninincncceneeneeceerene. 36
4.3 Design of the algorithim.......c.cocevieiriiiiirriieieeirtre et saessesaesaens 38
Chapter 5 A closer 100K at SENetccccureeuirecirreeireiteeeeresereseeeeteessesesessesreseesnssnesees 46
5.1 AIGOTItRMIoveeirereiiereercercie ettt e sie e e s esessese st svesaesassassessesessessansaseanes 46
5.2 AN €XAMPIE c.eonieiriiiiirieeeeietteee et erreseesre st sressaeressae s e srnesaee s e re s ae e aes s e sresaes 50
Chapter 6 EXPErIMENtS.........cccevireiiireriietenieniieiesiessesessessessesessessesseseesessessassasssessersassasssenes 56
0.1 THANGLE ...t etesrestecr et et e e st e seseessessesss s e st st e eessasansasnssssanns 56
0.2 TAX.cuueruieierereerieeeertesereesteeeeestessesaessessasssssessentessessassestsstesassessessessasssassessesaasssssnens 61
0.3 SUDALGN......eeeiieiereeeeterert sttt r e s b e s e b e s e s s be st e st e aaa s b enane 66
6.4 SUIMIMIATYcuvevvereererierereistereereestessesenssessassesssssessessessessesessesssssessessessassessasssessassasssans 70
Chapter 7 Conclusion and Suggestions for Further Workcoccovveeerveniienennenieenniennne. 71
RELEICICESovvcreriiiiereietnicetetcentete et ete et st e e e re s s se s sa s e e basasasasassnssensanes 75
Appendix Al: Design and implementation of genet..........ccccoeeuvvceecnereerinerernerererennenns 79
Appendix A2: Design and implementation of randycoceevveeeiceceniecvenceeieenieceeeeens 85
Appendix B: Test PrOgramsccceviereruererererirerercreestesesresesessessesssessessssessossesessessossones 89

List of Figures

Figure 3.1 Branch function eXample.........c.cccverrerenreenienieerireeneereesessessenisesesssesssesssenes 13
Figure 3.2 Sample control flow tree..........ccooevieirirrcnrierccececeeesereet et seeans 15
Figure 3.3 Sample program and control flow treecccveeveeecereecieceeceeciecee e 16
Figure 3.4 A hypothetical control flow tree..........ccccevvevirievinrenierinrtereneeeee et 30
Figure 4.1 The concept lattice for the concepts in Table 4.2coovevvvirvirvnriivecrennene 35
Figure 4.2 The reduced labeled concept lattice of Figure 4.1..........ccceeevvivcivvnviniienennens 35
Figure 4.3 A program and its ‘dynamic’ control flow graphc.cccecervevcerrienrienreenieenne 37
Figure 4.4 Control flow tree and its test €XeCUtions.........cceccveeievienriereinineeeniererereneeeenne 39
Figure 4.5 Control flow tree and its test €XECULIONc.eecveeeeieieceieeieeeeeiese et 40
Figure 4.6 A control flow tree and its test €XeCULIONS..........cceevveeviecuieecrieerieeneeeveeeneenens 41
Figure 4.7 A control flow tree and its test €XeCutionccceevecveerrereenienenrerereenrenrenennes 43
Figure 4.8 A deceptive control flow tree, its test population and concept table............... 45
Figure 5.1 Flow chart describing enet...........cccveeververieereieneeeerreeeeeereeeseeesseeeseesesneeens 47
Figure 5.2 Code snippets from EVOIDATG Class.......ccuveveerienerrercrereesrerenseenensueseessessesseens 48
Figure 5.3 Code snippets from FCA_Fitness Evaluator class..........cccccoeeevecenceeveccnennnnns 49
Figure 5.3 (cont’d) Code snippets from FCA_Fitness Evaluator class...........cccccecvenneen... 50
Figure 5.4 Control flow tree for Remainder program...........cccceeeecieecverceeneecienceeseeecrnennes 51
Figure 6.1 Evolutions of Triangle sub-eXperiments............c.ccevueeeereeriereeescnesieeseeesaesenns 60
Figure 6.2 Evolutions of Tax Sub-eXperiments............coccevvererrenereenieneerenrenseereenerseessesnens 64
Figure 6.3 Evolutions of Subalign sub-eXperiments..........c.cceeevererriereerenrerieereeresssesessanns 68

vi

List of Tables

Table 2.1 Gray code €XaAmMPIE........cceeveirrieriiieiieieiriestenterteetee e sereessteseesaesessessessaesaeseensas 4
Table 2.2 Roulette Wheel and Rank S€lectioncccoveevvevirceereeriieiieeiresenreeeseeeeceeeeeenees 6
Table 2.3 Illustration 0f CrOSSOVET OPETALOTS........ccveecveeereeerrerrrernrecneeeseresesrsressresssersssesssees 8
Table 3.1 Branch fUnCHIONScccecveeveerrerieeneeiniieerreseesreeeessisesesesesstessaessasssassessesssessnens 13
Table 3.2 Search moves for connected dOmMaINcccceevvereerieeriieriienirenereee e s aeeans 15
Table 3.3 Search moves for disconnected dOMaIN.........cocvervevrerrersreirenieenienrenieeeesssessaenns 19
Table 3.4 Number of tests required for full coverage.cooeverieiereecenecececeeeeeene 22
Table 3.5 DeECiSION TabLEcccveciiirieiriieieteieeetetete ettt st r s saesbesaasanesnens 23
Table 3.6 Highest coverage percentage by each method during a series of five runs 24
Table 3.7 Average number of generations to reach 100% coverage from 32 runs........... 28
Table 4.1 A 1€lation table..........coceeviiriiiiiciiiietece st eseese e sere e e e s ae s ae s aeenns 34
Table 4.2 Concepts for relation in Table 4.1ccoeeverrevieeereecieeree st cee e seeeane 34
Table 4.3 Population of tests at eneration t........ccceeveereuervrneerreenierceeseeseescneseeeeseeenee 37
Table 4.4 Concepts for the relation in Table 4.3cocooiriiieiieierereeresee e 37
Table 4.5 Concepts for relation in Figure 4.4ccooveoeeieveeieeiieeceeeeeieseeseereeseeseens 39
Table 4.6 Concepts for relation in Figure 4.5cccccovvirvenievinsrenennecseseeseereeseesnenns 40
Table 4.7 Concepts for relation in FIGUIe 4.6ccccevveercirierieneeniencrenneeseeseeeseesressanenns 41
Table 4.8 Concepts for relation in Figure 4.7covveeeeviriereeeeeeeceeeee e eee e saee s 43
Table 5.1 Initial population Of teStS.......ccccviveiiriiieriiriiieeeenee et ree et sae e ee e eenes 51
Table 5.2 Decision table after evaluating the initial populationccccceevvevecrrcennnnen... 51
Table 5.3 Concepts for the initial population...........ccceevuveeieereeceiecieece e e 52
Table 5.4 Decision table after evaluating generation 1..........ccccovveeeieeecieeeccieercieeeeeieenns 54
Table 5.5 Population of tests at Zeneration 1ccccevevvereneniinnienirenrenienesreenesssesssennes 54
Table 5.6 Concepts of population at generation 1...........cccooeveeveeceerierrieereereeiereecee e 55
Table 5.7 Population of tests at GENeration 2ccecceeveeirerenircnententneerereereseenseeeeenes 55
Table 6.1 Results for Trangle......cooeeirverinirininieireereeeriee st eees et ss s essas e snens 59
Table 6.2 ReSUIS fOI TaX .c.uivuieriirieriniccicnierieseeriee st sese e sae e srsesee e e e e e reeneessenes 64
Table 6.3 Sample Tax test datacoceevreeierieeeerreereeneereneseeeesreeressenseerteeseessessneeresenns 65
Table 6.4 Results for SUbalignccooveeviiiviienreniicrieniececree e v e e ene 67
Table 6.5 Sample Subalign test datacceevviereerieeeerierecticeceereere et e 69
Table 6.6 A comparison Of tESt PrOZIAIMIScccveereeerreeerverirerereereeeneessresereesssserssesssessssessnns 70

vii

Chapter 1 Introduction

Testing is a necessary but expensive activity in software production. Therefore it makes
economic sense to minimize the cost of software testing. Automatic test generation is
seen as key to this cost reduction (Ould 1991).

Test generation is the activity whereby program inputs are crafted to exercise a
certain feature of a program as in functional testing or a certain program entity as in
structural testing. Such program inputs are test data or tests. Tests for functional testing,
also known as black box tests, are derived from the specification of a program while tests
for structural testing, also known as white box tests, are based on the implementation of a
program. The sets of black box tests and white box tests need not be mutually exclusive.
Structural coverage metrics measure the completeness of structural testing.

This thesis explores the use of formal concept analysis and a genetic algorithm to
automate generation of white box tests for branch coverage. The system, called genet,
offers the following advantages over other genetic algorithm based dynamic test
generators:

1. A program graph is not required. Elimination of this step lowers genet’s adoption
barrier and also makes genet independent of the choice of programming language.
2. Program instrumentation is simpler.

The results of the experiments we conducted show genet to be most effective when
test solutions for a program are necessarily organized, and the program is written to
allow genet to learn this organization so that genet may exploit common information
content to expedite a search by making good selection choices. Organization is a quality

measuring the amount of information shared between organisms (Chaitin 1979). This

thesis does a variation on this definition and describes test chromosomes as being
necessarily organized when it is essential that specific genes have particular values to
execute certain program sub-paths. Tests are not necessarily organized when it is possible
for chromosomes with completely different gene values to produce the same behavior.
When there is little necessary organization amongst test solutions (the organisms in
question), we observed that problem appropriate genetic operators (adaptation) played a
more significant role than selection. Nevertheless, genet could improve upon a pure
adaptation search. Our findings with genet agree with the theoretical work by Wolpert
(1995) and Altenberg (1995).

Chapters 2, 3 and 4 cover pertinent background material on genetic algorithms, test
data generation and formal concept analysis. Chapter 5 demonstrates genet with an
example. Chapter 6 reports on the experiments and discussions leading up to our
conclusion. Details of genet’s implementation and sample code can be found in
Appendix A. Instrumented versions of programs used in the experiments are listed in

Appendix B.

Chapter 2 Genetic Algorithms

Genetic algorithms (GAs) simulate biological evolution to search for solutions to
problems. In the GA framework defined by Holland (Holland 1975), individuals evolve
by means of selection and adaptation to reach their goal. A GA has also been described as
a pseudo-random walk through a search space (Burgess 2003). The walk is pseudo-
random because a GA is directed in its search through selection pressure and non-
deterministic in its adaptation.

GA solutions have been applied to numerous optimization and machine learning
problems such as job shop scheduling, classification rule identification and protein
structure prediction. Typical components of a GA are (1) representation of a solution,
also known as a chromosome or genome, (2) a population of candidate solutions, (3) a

fitness function, (4) a selection function and (5) genetic operators to perform adaptation.

2.1 Representation

Chromosomes are typically fixed in size and encoded in binary, Gray (1953), integer or
floating point. Non-standard representations include data structures like lists,
multidimensional arrays, trees and matrices. A chromosome may be variable in size.
Representation can influence the success of a GA. Table 2.1 shows the binary and
Gray code equivalents for eight integers. In Gray code, a string N differs from its
adjacent strings N-1 and N+1 in exactly one position. To see how representation
influences a GA search, consider adapting the binary and Gray representations in Table
2.1 by changing the leftmost bit. In binary encoding, integer 3 becomes integer 7 and

integer 0 becomes integer 4. In Gray encoding, integer 3 becomes integer 4 and integer 0

becomes integer 7. Depending on the problem at hand, this adaptation may or may not
help the GA to converge to an optimal solution. Single random bit change is a common
form of mutation in GA.

Table 2.1 Gray code example

Integer | Binary | Gray
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Deciding on which representation to use depends on the problem being solved.
Radcliffe (1995) found: “If no domain-specific knowledge is used in selecting an
appropriate representation, the algorithm will have no opportunity to exceed the
performance of an enumerative search.” Mitchell (1996, page 158) refers to Lawrence
Davis, a seasoned designer of real world GA solutions, who “...strongly advocates using

whatever encoding is the most natural for [the] problem”.

2.2 Population

A GA works by evolving a set of initial guesses into an increasingly fit population of
candidate solutions. The set of initial chromosomes may be created manually, loaded
from a previous run or generated at random. Seeding the initial population with good
guesses may increase the likelihood that an optimal solution is found quickly. However
this requires knowing what constitutes a good guess.

Depending on the replacement strategy, subsequent populations may include

chromosomes from more than one generation. In Goldberg’s (1989) simple genetic

algorithm, the current generation completely replaces the previous generation. In steady-
state GA, only a portion of the chromosomes from the previous generation is replaced by
that of the current generation. A deme GA (Cantu-Paz 1997) maintains multiple sub-
populations in parallel.

Deciding on the population size is not a straightforward matter. Experiments by De
Jong (1975) suggest a population size of 50 — 100. A large population increases the
number and possibly the spread of points sampled in the search space so that the GA may
be less likely to get caught in a local optimum. Evaluating a large population can be
expensive. A small population is cheaper to evaluate but is less likely to be sufficiently
diverse. As a consequence, a GA with a small population will converge prematurely,
according to De Jong. A GA is said to converge prematurely when it no longer has the
ability to produce fitter chromosomes. Experiments by Grefenstette (1986) indicate
otherwise — that a small population performs better than a larger one. Syswerda (1991)
advices: “...the most effective population size is dependent on the problem being solved,

the representation used and the operators manipulating the representation”.

2.3 Fitness function
A fitness function measures the suitability of a chromosome to meet a GA’s objective.
For example, if the objective of a GA is the integer value “63” (or “111 111” in binary)
and binary encoding is used, then a chromosome “111 010” is fitter than another
chromosome “001 001”. Effective fitness functions are problem specific.

One of the difficulties with GA is finding a suitable fitness function that expresses
the problem well enough so that every point in the search space can be assigned a fitness

value that is informative enough for the GA to discriminate chromosomes at a useful

level of detail. For example, a fitness function that can only tell if a chromosome is fit or
unfit, is unlikely to be very useful. More useful would be a fitness function that can tell
which of the unfit chromosomes is closer to a solution. Moreover, as fitness functions are

evaluated repeatedly, they should be easy to compute.

2.4 Selection function

Chromosomes are usually selected for adaptation on the basis of their fitness values
relative to other individuals in the population and to the environment at hand. Three
classic selection strategies are Roulette-Wheel (Goldberg 1989), Rank (Goldberg 1991)
and Tournament (Grefenstette 1989). The following example illustrates these three
strategies: Let the fitness values for a population of three chromosomes i, j and £ be 3, 16
and 1, with j being the fittest individual.

Roulette-Wheel (RW) is a fitness-proportionate strategy. This means the selection
probability of a chromosome is proportional to its fitness value divided by the
population’s total fitness value. The total fitness value of the population in our example is
20 (3+16+1). Chromosome i occupies 15% of the roulette wheel (Table 2.2). When the
wheel is spun, the probability that the roulette lands on the space occupied by
chromosome i is 0.15.

Table 2.2 Roulette Wheel and Rank selection

Chromosome | Fitness | RW probability | Rank | R probability
i 3 0.15 2 05 | 033
j 16 0.80 1 0.9 | 0.60
k 1 0.05 3 0.1 0.07
20 1.00 1.5 | 1.00

The RW strategy favors fitter chromosomes. One consequence of this is that when

fitness variance is high, super fit chromosomes are likely to have a large number of

offspring and saturate the population with their genes. Depending on the nature of the
problem being solved, such high selection pressure may reduce a population’s diversity
to a point where a GA converges prematurely. Lowering selection pressure to slow down
the convergence process may lead to better solutions, but this effect is not guaranteed.

Rank and Tournament selection are non-fitness proportionate strategies. A Rank
strategy sorts chromosomes according to their fitness values and assigns a selection
probability based on their rank order. The rank values in our example population are 2, 1
and 3 for chromosomes i, j and k respectively (Table 2.2). If the selection probability
function is (-0.4r + 1.3) (Burgess 2003) where r is a rank value, then the selection
probability for chromosomes i, j, and & are 0.5, 0.9 and 0.1 respectively.

Ranking reduces selection pressure when the fitness variance is high. When these
probabilities are scaled to make the total probability equal to 1.0, the probability of
chromosome j being selected under a Rank strategy is 0.6 which is less than its
probability of 0.8 under RW. Conversely, the selection probability of chromosomes i and
k are higher under Rank than with RW.

The selection pressure exerted by a Tournament strategy is quite similar to Rank
(Mitchell 1996, page 171). However Tournament is considered more efficient of the two
because it does not sort ﬁtness values. Under a Tournament strategy, a group of two or
more chromosomes are first chosen randomly from the population. Then the chromosome
with the highest fitness value from this group is selected and the remaining chromosomes
in the group are returned to the population. This two step process continues until the
required number of chromosomes is selected. The risk with a strategy like Tournament is

that fitter individuals may not get selected at all, and depending on the population

strategy used, fit individuals may be lost. One way to counter this risk is to use elitism
(De Jong 1975) where a certain number of the fittest chromosomes are retained in every

generation.

2.5 Genetic operators

Two common genetic operators are recombination, also known as crossover, and
mutation. Recombination is the random exchange of genes between chromosomes.
Mutation is a random change within a chromosome. A seldom used genetic operator is
inversion. It reverses the order of genes in a section of a chromosome. For example, an
inversion of chromosome 11.001.01 at positions 2 and 5 (indicated by the dots) becomes
11 100 O1.

Table 2.3 Illustration of crossover operators

Parent One point Two point Uniform
(at 3) (at 2 and 4) (atl)

101001 101110 1001 01 111100

010110 010 001 011010 000011

Simple forms of crossover are one-point, two-point and uniform. Table 2.3
illustrates the effects of these crossover operators on a pair of one-dimensional
chromosomes. One-point crossover exchanges the segments between a randomly chosen
loci and the tail end of the chromosome pair. Two-point crossover exchanges the
segments between two randomly chosen loci of the chromosome pair. Uniform crossover
exchanges genes at alternate positions starting from either the first or second loci.
Uniform' crossover outperformed oné— and two- point crossover, and two-point crossover

outperformed one-point in the experiments done by Syswerda (1989). A GA’s crossover

! Syswerda’s definition of uniform crossover is more general than the one used in this thesis. Essentially
our mask is fixed — alternate bits are exchanged.

rate determines the size of its mating pool (Haupt 1989, page 106). For example, a GA
with a population size of 100 and a crossover rate of 0.60 will have 60 chromosomes
selected as parents. The meaning of crossover rate in genet is slightly different from this
definition. In genet, the crossover rate defines the number of times the crossover operator
is applied to the parent pool. Each crossover in genet produces two offspring.

Mutation produces a single offspring from a single parent chromosome. This is
typically accomplished by randomly changing the value of a gene in a parent. Mutation
helps to introduce new gene values into the population and is necessary to maintain
variation in the gene pool. Without mutation, the genetic material of individuals is limited
to the initial population. A GA’s mutation rate quantifies how much of a chromosome
can expect to be changed by a mutation (Haupt 1989, page 106). The effect of a mutation
rate depends on representation. In genet, the mutation rate defines the number of times
the mutation operator is applied to the parent pool. Each mutation in genet produces a
single offspring.

Mutation encourages the GA to search new regions in the search space but may
inadvertently destroy fit sections of chromosomes (good building blocks). In fact neither
crossover nor mutation guarantees that good blocks of genes will be preserved in
subsequent generations. According to Holland (1975), his simple genetic algorithm works
because fit building blocks or schema are identified and combined to make larger fitter
building blocks. A GA searches by exploring the search space for promising regions.
Once a promising region is detected, it is advantageous for the GA to stay within the
region so that it can fully exploit it. Mutation is the main operator for exploration (global

search) while recombination is the main operator for exploitation (local search) (Burgess

2003). If a GA’s mutation rate is too low or its recombination rate is too high for a
problem, the GA might be stuck in a sub-optimal region. If its mutation rate is too high or
its recombination rate too low, the GA might not stay long enough in a region to exploit
it. How then should crossover and mutation rates be set?

In general, a GA’s crossover rate tends to be much higher than its mutation rate. De
Jong (1975) suggests crossover rates should be about 0.60 and mutation rates around
0.001. Haupt (1989, page 106) concludes that a GA is sensitive to its mutation rate and
suggests a higher mutation rate, between 0.1 and 0.4. Grefenstette (1989) found that
“...very good performance can be obtained with a range of GA control parameter
settings.” Due to the problem sensitive nature of a GA’s representation, genetic operators
and parameter settings, there are GAs which adapt their parameters (Mitchell 1996,

page 177).

2.6 Basic design
The basic design of a genetic algorithm is:

1. use fitness function to evaluate chromosomes in generation t

2. if solution found or stopping criterion is reached, exit

3. use the selection function to choose parents

4. apply crossover and mutation operators on parents to make generation t+1

5. gotostep 1

Defining the stopping criterion for a GA is yet another decision a designer needs to

make. Possible criterion include stopping when a GA has met its objective, when a GA
has not improved for a number of generations and when a GA has reached a certain

number of generations.

10

Chapter 3 Dynamic Test Generators and Their Evaluation

3.1 Overview of dynamic test generators

Dynamic test data generators execute programs to produce test input. The alternative is
static test data generators (Clarke 1976) which do not execute the program under test.
Symbolic execution is the common static method used to calculate the constraints on
input variables. Dynamic test generation methods have several advantages: they can
handle loops, arrays, pointers, functions and other dynamic constructs, more easily than
static methods. However, dynamic methods can be more expensive than static methods
since they involve multiple executions of a program under test.

Typical components of a systematic dynamic test generator are: (1) an executable
program with its source instrumented per requirements of the test generator, (2) a testing
criterion, (3) a test generation method, and (4) a search mechanism to guide the test
generation. A random test generator is a dynamic test generator and has components (1),
(2) and (3). A random test generator is not a systematic dynamic test generator since it
does not have a specific search mechanism.

The testing criterion measures the progress made by a dynamic test generator.
Some examples of structural testing criteria include statement coverage (Pargas 1999),
branch coverage (Jones 1996) and condition-decision coverage (McGraw 1998).
Complete statement coverage is the situation where every statement in a program is
exercised by at least one test. If every branch in a program is triggered by at least one test
in a set of tests, then the test set provides full branch coverage. A predicate or decision
may consist of multiple conditions connected by logical operators. To achieve full

condition-decision coverage, a test set must achieve full branch coverage and each

11

condition within a predicate (decision) must evaluate to true at least once and to false at
least once. This is a stricter testing criterion than branch coverage. Tracey (1998) used a
functional testing criterion using preconditions and negated post conditions to detect
flawed functionality.

Search mechanisms which have been employed by systematic dynamic test
generators include directed search (Korel 1990), genetic algorithms (Jones 1996;
McGraw1998 and Pargas 1999), simulated annealing (Tracey 1998) and tabu search
(Tracey 1997). In simulated annealing, better candidate solutions are always accepted
while worse candidate solutions are accepted with a decreasing probability over the
simulation. In tabu search, candidate solutions are found based on the history of the
search move sequence and whether a move is considered, by some heuristic, as tabu or
forbidden. A move may be classified as tabu to prevent recycling of candidate solutions.

However, to obtain the best solution, it is also possible to forget that a move is tabu.

3.2 The first systematic dynamic test generator

The first systematic dynamic test generator was TestGen (Korel 1990). In TestGen, a
control flow graph for a program under test is constructed. Each branch in the control
flow graph is labeled with a branch predicate that describes the conditions under which
the branch will execute. For example, if a true branch from a predicate node is x > 5 than
the false branch must® be x < 5. The program is instrumented so that every branch has a
branch function. In the case of branch predicate (x > 5), the branch function would be

f(x)=5-x; and for (x <5), f(x) =x — 5. Figure 3.1 illustrates this point.

2 Assumes an if statement jumps to two different positions. The arithmetic conditional statement in early
version of Fortran jumps to three positions depending on whether the arithmetic expression is less than
zero, equal to zero or greater than zero.

12

X > 5
5 -x<0 X

| X
o1 1A
A O
o

Figure 3.1 Branch function example

Table 3.1 contains the branch functions for all relational operators. To traverse
either branch, the branch function cannot be positive. For example, the true branch in
Figure 3.1 will execute only if the branch function (5 — x) is less than 0 and this will only
happen if x > 5. Similarly, the false branch will execute only if the branch function
(x — 5) is less than or equal to 0 and this will only happen if x <5.

Table 3.1 Branch functions

Branch Predicate | Branch Function | Relational Operator
El1>E2 E2 - El >

E1>E2 E2 - El 2

El <E2 El -E2 <

El1 <E2 El1-E2 <

El =E2 Abs(El —E2) | =

El <>E2 Abs(El1 —E2) <

The first version of TestGen is a path-oriented dynamic test generator because a
path is pre-selected from the control flow graph as the target path and TestGen tries to
find test data to execute the target path. A non-trivial path in a program consists of a
sequence of branch predicates. The branch functions associated with a sequence of
branch predicates are used to guide the search for test data that will cause a target path to
execute. Each time an execution diverges from a target path, input variables are adjusted
one at a time (with other variables held constant) and the value of the branch function

where the divergence occurred (the sub-goal branch function value) is monitored to learn

13

whether the variable affects the sub-goal branch function and if so the direction in which
the adjustment should occur, i.e. should the value of the variable be increased or
decreased to reduce the sub-goal branch function value. Korel (1990) named this the
exploratory search phase.

If an increase in a variable in the exploratory search phase reduces the sub-goal
branch function value, then in the pattern search phase, the variable is increased by
successively larger steps as long as the value of the sub-goal branch function continues to
decrease. If a pattern move causes a constraint violation (the new variable value causes
the execution to diverge from the path leading to the sub-goal branch), the step size is
reduced until a successful pattern move can be made. If the sub-goal branch function
value starts to increase, another exploratory search is conducted and this process repeats
itself until the sub-goal branch function value becomes negative (or zero in some cases).
The search may also terminate if the exploratory search fails to find any variable that will
decrease the sub-goal branch function value. It is important to note that TestGen will only
accept a move if the move reduces the sub-goal branch function value without causing
any constraint violation.

To illustrate the exploratory and pattern searches in action, consider the control
flow tree in Figure 3.2. Assume an integer domain. The target path is 1 > 2 > 5. The
current value of x is -5 which causes the path 1 = 2 - 4 to execute. So, the divergence
occurs at node 2, and the branch function to minimize f(x), is x* — 4. The current value of
this branch function f(-5), is 21. An exploratory search commences with a -1 step applied

to x, giving f(-6) = 32, which is an increase. Therefore x is incremented by one, giving

14

f(-4) = 12, which is a decrease. The exploratory search has successfully identified an

influencing variable and a direction for the pattern search.

x? > 4 x% < 4
4 - x> <0 x? - 4 <0
x4 > 4
2
@ ¥ - 450

Figure 3.2 Sample control flow tree

Table 3.2 Search moves for connected domain

Step | x + step | Constraint | Sub-goal branch function | Executed path
4-x*<0 X —450

Current 0 -5 21 | T 21 F 12224
Exploratory | -1 -6 32 F

+1 -4 12 F
Pattern +2 -3 5 F

+4 -1 3 F -3 T

+3 -2 0 T 0 T 12225

In the pattern search phase, a larger positive step is taken, +2, giving f(-3) = 5
which is a further decrease to the sub-goal branch function. Next an even larger positive
step is taken, +4, giving f(-1) = -3 which satisfies our sub-goal branch function x*> — 4 <0,
but violates an earlier constraint of 4 — x> < 0. x = -1 would traverse path 1 = 3 if the
program was run. So this pattern move is not acceptable and a smaller step, +3, is taken.
Now x = -2 and f(-2) = 0 satisfies our sub-goal without violating an earlier constraint.
Therefore x = -2 is accepted as a solution to our sub-goal and this solution happens to
execute our target path 1 2 2 - 5. Table 3.2 summarizes the sequence of moves

described here.

15

One difficulty with the directed search described here is that some input variables

may not have any effect on a branch function, and when there are many input variables,

much effort could be spent needlessly exploring to find a variable that affects a branch

function. To improve efficiency, Korel (1990) suggested using data flow analysis to

identify input variables that influence the value of a branch function.

Another source of inefficiency is infeasible paths. A path is infeasible if there are

no program inputs that can satisfy its constraints, i.e. there is no test data within the

problem domain that will cause the path to execute. The program path 1 > 4 2 5 in

Figure 3.3 is infeasible. Since it is not possible, in general, to identify infeasible paths; a

lot of effort is wasted if a target path turns out to be actually infeasible. Because of these

disadvantages, TestGen later became a goal-oriented test generator,

approach (Ferguson 1996).

BEGIN
READ (x)
a = false
b = false
IF (x > 0)
a = true
(a AND x > 10)
b = true
(a AND b)
PRINT “O-ba Q”
ELSE
PRINT

IF

IF

“wp-ko”
END

..

..

with a chaining

a = true
b = true
\\O_ba QII

Figure 3.3 Sample program and control flow tree

16

A goal-oriented test generator identifies a target node but does not specify the
program path that a test should take to reach the target node. Suppose node 3 is the target
node in Figure 3.3. Then any test that exercises node 3, either by way of node 1 or node
2, is accepted by a goal-oriented test generator as a solution. In this case, any x value less
than or equal to 10 is a solution. Under a path-oriented test generator, a program path to
node 3 would have been pre-determined and the path-oriented test generator would have
had to follow this path. If the pre-determined path were 1 = 3, then only x values less
than or equal to O is a solution. Goal orientation frees TestGen from the infeasible path
problem, but not unreachable statements or branches.

Chaining (Ferguson 1996) was introduced to give some guidance to the goal-
oriented approach without pre-determining the complete execution path. It uses data
dependency analysis to identify nodes that must be executed before the target node.
Doing this significantly improves the chances of finding test data to exercise the target
node (Ferguson 1996). Suppose the test generator has so far failed to alter the execution
flow to the target node, node 6 in Figure 3.3. Chaining analyzes that the predicate
controlling node 6 uses variables a and b, and that the last definitions of these variables
occur at nodes 2 and 4. Thus, the chaining approach concludes that nodes 2 and 4 should
be executed prior to node 6 and the test generator is well advised to find tests solutions

for nodes 2 and 4 before attempting node 6.

3.3 Why genetic algorithms?
One reason frequently given for using genetic algorithms is their ability to escape from
“difficult areas” in a search space. The search space for a problem is defined as the set of

all possible candidate solutions for the problem. Consider a problem with four variables

17

and an integer value range of [1, 3] for each variable. Five points or candidate solutions
in this search space are (1, 2, 3, 2), (2, 1,3,3), (3,2,3,3),(1, 1, 1, 2) and (2, 2, 2, 2).
This search space has a size of 3*and a dimensionality of four.

Imagine a search space as a multidimensional landscape with many peaks and
valleys. Two “difficult areas” in such a landscape are local minima or local maxima and
plateau. A local minimum is a valley that is lower than its surrounding area but higher
than the lowest valley in the search space. Similarly, a local maximum is a hill that is
higher than its surrounding area but lower than the highest peak in the search space. A
plateau is a flat area in the search space with no nearby hills or valleys. A “difficult area”
is difficult from the perspective of hill climbing search algorithms. Hill climbing
performs a local search and only accepts a candidate that improves the current solution.
Hence, a hill climbing algorithm will refuse to descend from a local maximum, and might
not be able to find its way off a plateau.

GAs can escape from these “difficult areas” because they evaluate more than one
candidate solution at a time and they accept less fit chromosomes which may be produced
as a result of selection and adaptation. The directed search method used in TestGen is
similar to hill climbing and therefore is also susceptible to the local minima problem.
Korel (1990) acknowledged that local minima can prevent sub-goals from being solved.

To demonstrate how this can happen, suppose now that the domain for x in Figure
3.2 is all integers in {x | x <-2 or x > 0}. This domain is disconnected. We try to use the
same search steps as in Table 3.2, but find that we are unable to do a +4 step because -1 is
not in the domain of x. So we take a bigger step, +5. This causes a constraint violation for

an earlier predicate, and according to TestGen’s pattern search rules, the step size should

18

now be reduced until a successful pattern move can be made. But any such reduction in
step size will either land x outside its domain or increase the sub-goal branch function.
Therefore, in this situation, the search failed to find a solution for the path 1 > 2 > 5.
Table 3.3 summarizes the steps.

Table 3.3 Search moves for disconnected domain

Step | x + Step | Constraint | Sub-goal branch function | Executed path
4-x*<0 X —4<0
Current -5 21 | T 21 F 12224
Exploratory | -1 -6 32 F
+1 -4 12 F
Pattern +2 -3 5 F
+5 0 4 F -4 T

If we took a larger step, say +6, this would increase the sub-goal branch function to
-3, and TestGen would reject such a move even though continuing the search in this
direction would have lead TestGen to find a solution at x = 2. If there were more
variables involved, TestGen would start another exploratory search to find a search
direction for another variable. However, since x is the only variable, TestGen thinks no
further progress can be made and so it stops searching.

An obvious advantage GA has over hill climbing techniques for test data generation
is parallelism. The search in GA progresses from multiple search points and this is
appropriate if we consider test data generation as a constraint satisfaction problem (CSP).
A CSP seeks any solution that satisfies all of its constraint conditions. There may be more
than one point in the search space that satisfies a CSP and it does not matter which point

the GA finds. In contrast, an optimization problem seeks the best solution.
To put this into a test data generation context, the search space for a program is its

input space. A feasible program path is defined by a set of conditions that when satisfied,

19

causes the path to execute. In other words, a feasible program path is a solvable CSP and
all points in the program’s input space that is a solution to a feasible program path forms
an equivalence class®>. We call such an equivalence class of points in the input space a
sub-domain. Naturally there can be one or more sub-domains per program and some sub-
domains may have more points than others. The cardinality or size of a sub-domain refers
to the number of points in it. There may be large variations in how points of a sub-
domain are distributed, i.e. they may be widely scattered across the input space or they
may cluster at one corner of the input space. When points in a sub-domain are dispersed
over the input space, the sub-domain is said to be disconnected.

The task of a test data generator that has full structural coverage as its objective is
to generate at least one test from every sub-domain of a program’s input space. GA, with
its ability to do adaptive search in parallel is an appropriate search mechanism for this
task. The three dynamic test generators that we describe next use GA as their search

mechanism,

3.4 GA-based dynamic test generators

3.4.1 Domain testing

The objective of this goal-oriented dynamic GA test generator (Jones 1996) is to find test
data situated as close as possible to sub-domain boundaries where predicate values are
likely to switch from true to false and vice versa. Branch coverage criterion with
provisions for loops (explained below) is used and branch node targets are decided by a

breadth-first sweep of the control flow tree.

3 Programs are treated as deterministic functions. So it is not possible for there to be more than one
outcome for a test given the same set of conditions, e.g. program state.

20

To use this dynamic test generator, every branch of the program under test is
instrumented with two procedures: (1) CHECK BRANCH, to register that a node has
been visited; and (2) LOOKING BRANCH, to determine the fitness of a test, which is
set differently depending on the current target node. If a test exercises the current target
node, then the LOOKING BRANCH procedure at the current target node will calculate a
high fitness value for the test. If a test exercises the sibling node of the current target
node, then the fitness of that test is calculated using Hamming distance, which measures
the number of positions in a test chromosome where the bit value is different.

In case of loops, two other monitoring procedures are used:
CHECK _BRANCH_LOOP and LOOKING BRANCH LOOP. Loops are unrolled one,
two or more times, and the fitness of tests exercising loops “is related to the difference
between the actual and required number of iterations” (Jones 1996).

The chromosome for this test generator is a concatenation of all input variables into
a single bit string. The initial population is randomly formed. Its size is usually equal the
length of the chromosome bit string. This GA was “trained” on a quadratic equation
solver to find the most suitable type of and probability for crossover and mutation. Jones
(1996) found that uniform crossover with a crossover probability around 0.5, and
mutation with a probability that is reciprocal of the bit string length and “a weighted
mutation of the five least significant bits” were most suitable. These parameter values are
used in other experiments on this GA. Population diversity is maintained with random
parent selection and with a hybrid of elite survival and random selection chromosome

replacement strategy. A limit of 100 to 2000 generations is set.

21

The number of tests required to achieve full coverage by this dynamic GA test
generator and by random testing were compared. The results are summarized in Table 3.4
and it shows GA testing requires fewer tests than random testing to achieve the testing
criterion. The GA test generator was run on linear and binary searches, and generic
quick-sort to demonstrate that test could be complex data structures, but no empirical data
were reported.

Table 3.4 Number of tests required for full coverage.

GA | Random
Quadratic equation solver | 1200 7400
Triangle classifier 18000 | 163000
Remainder calculation 900 63000

From their experiments, Jones (1996) concludes that genetic algorithms really
prove their worth on non-linear predicates and are powerful for locating test from
disconnected sub-domains with very small cardinalities. Non-linearity refers to a system,
model or equation where the outcome does not change proportionally to changes in the
values of its input variables. Sthamer (1995) reached a similar conclusion about the
efficacy of GA for test data generation. In his dissertation, Sthamer says that GA testing
requires fewer tests than random testing when the density of solutions is quite low. Low

solution density has a direct relationship with small disconnected sub-domains.

3.4.2 GADGET (Genetic Algorithm Data GEneration Tool)

The testing criterion for GADGET (McGraw 1998) is condition-decision coverage.
GADGET is a goal-oriented dynamic GA test generator and uses a genetic algorithm to
do function minimization of branch functions (Korel 1990). A decision table (Chang

1996) is used to help GADGET select target branches. GADGET targets one branch at a

22

time. Serendipitous branch coverage is allowed, i.e. fortuitous coverage of non-target
branches.

Table 3.5 is a decision table where decisions 3 and 4 are partially covered and
decision 5 is completely uncovered. The strategy is to choose uncovered branches of
partially covered decisions over branches of completely uncovered decisions. The logic
here is that GADGET has already learnt how to reach the covered branches of partially
covered decisions and therefore the uncovered branches of partially covered decisions
have a better chance of being covered than those branches of completely uncovered
decisions which GADGET does not know how to reach yet. To illustrate this, GADGET
will choose either the false branch of decision 3 or the true branch of decision 4 as the

next target branch, over the branches of decision 5.

Table 3.5 Decision Table
Decision | True branch | False branch
1 X X
2 X X
3 X
4 X
5

McGraw and his colleagues experimented with two genetic algorithms: a standard
GA and a differential GA. We focus on the standard GA version; the differential GA is
more suited for numerical minimization problems. A test solution is represented to the
GA as a bit string. One point crossover at a random bit position is used. Mutation is
applied, with a low mutation rate. Parents are selected using a roulette-wheel selection
scheme and an individual can be chosen only once. Of the four individuals (two parents
and their two offspring), two most fit are kept in the next generation, unless they happen

to be identical in which case an individual is created at random and added to the next

23

generation. Adaptation of a previous generation continues until the new generation is the
same size as the previous one. The population size 1s kept steady from generation to
generation. The evaluation-selection-adaptation cycle is repeated until either a target is
covered or a termination condition is reached.

The performance of GADGET against random testing on a number of small
programs was reported and is reproduced in Table 3.6. In every case, at least one of the
GA performed better than or as well as random testing. The Triangle classification
program shows the largest performance difference.

Table 3.6 Highest coverage percentage by each method during a series of five runs

Program random | GA | Differential-GA
Binary search 80 70 100
Bubble sort 1 100 100 100
Bubble sort 2 100 100 100
Number of days between two dates 87.5 100 100
Euclidean greatest common denominator | 100 100 100
Insertion sort 100 92.3 100
Computing the median 100 100 100
Quadratic formula 75 75 75
Warshall’s algorithm 91.7 100 100
Triangle classification 48.6 | 94.29 84.3

However it is not clear if this performance difference is due to the efforts of the GA
or the weakness of random testing. Random testing is sensitive to the interval from which
tests are chosen from (DeMillo 1978). The sample tests given in (McGraw 1998) have
Triangle input integers ranging from -1,802,686,561 to 1,961,702,355. Note that any
integer combination with at least one negative value immediately invalidates the
combination as any kind of triangle. This constraint dramatically reduces the probability
that a random combination from the test interval is a triangle, and creates an input space
that is difficult for random testing; but conducive for GA testing. Recall from the

previous section that GA testing performs well when the density of solutions is low.

24

Having half of all points in the input space invalid certainly helps to decrease the solution
density.

When GADGET was tested on a medium-sized program, part of a 5737 autopilot
system which has 69 decision points; GADGET achieved more than 93% condition-
decision coverage while random managed 55% coverage. This result follows the trend
McGraw (1998) recognized when reviewing previous experimental results on test
generation (Chang 1996 and Ferguson 1996). This trend is that random test generation
can be at least as effective as heuristic based test generation on small, simple programs
and with less demanding test coverage criteria. Simple branch coverage is considered one
such less demanding criterion. The test programs in Table 3.6 have an average of 30 lines
of code and simple decisions.

One of the reasons McGraw (1998) gave for worse performance by random
testing on larger and more complicated programs is the lack of a mechanism to set the
stage for “coincidental discovery of test inputs”, which is a phenomenon that occurs
more commonly on larger programs. GADGET is more successful at “coincidental
discovery” on large programs because its GA acts as such a mechanism.

Further experiments by McGraw (1998) indicate GADGET performed better
compared to random test generation the more complex programs got with respect to
nesting factor and conditional factor. The nesting factor describes how deeply predicates
are nested and the conditional factor relates to the number of Boolean conditions in each
decision.

Most of the decisions that GADGET failed to cover contained Boolean variables

or enumerated types. “IF (PGBLK)” is an example of a decision with a Boolean variable.

25

GADGET’s minimization function at this branch can evaluate to two values only, one
signifying true and the other false. From such a two valued fitness function, any GA
would be unable to tell if one test candidate is “less false” than another. This is one
limitation of GADGET. There were also decisions without Boolean variables but with
multiple conditions, that GADGET had difficulty covering. McGraw (1998) explains that
the variables in these decisions may be complicated functions of test data. Therefore the

actual complexity of a decision may not be obvious from its syntax.

3.4.3 TGen

TGen (Pargas 1999) uses a control dependence graph to evaluate the fitness of a test
solution. A control dependence graph (CDG) is composed of nodes representing
statements and directed edges denoting control dependency of the sink node on the
source node. A node Z is control dependent on another node X if there is a path (X, Y, ...,
Y., Z) in the control flow graph such that Z post-dominates all nodes in the sub-path (Y7,
.., Yy and Z does not post-dominate X. Node B post-dominates node A if all directed
paths on the control flow graph from 4 to the exit node must pass through B.

An acyclic path from the root to a target node of a CDG is called a control-
dependence predicate path (Pargas 1999). During its initialization, TGen generates the
control-dependence predicate paths from the CDG of the program under test and the list
of target nodes provided to it. A control-dependence predicate path contains a set of
predicates that when satisfied by a test solution causes the statements associated with the
target node to execute. TGen runs the program under test with every new test candidate
and records the predicates which get executed by every test. The fitness of a test

candidate for the current target node depends on the number of predicates it managed to

26

cover on the control-dependence predicate path for the current target node. More
predicate matches mean higher fitness.

A chromosome in TGen is a concatenation of actual values of the program inputs.
One point crossover is used with a probability of 0.9 and mutation at 0.1. Roulette-wheel
parent selection is practiced, and a chromosome may be selected multiple times. The
number of parent chromosomes equals the size of the new generation and the existing
generation is completely replaced by its offspring.

Experiments comparing TGen and random testing were performed on 6 C
programs. The testing criterion for all programs was statement coverage; but branch
coverage was also required for the Tritype program. The population size for the
experiments is 100. Table 3.7 summarizes the results of the experiments. In the case of
Bub, Find and Mid, Pargas (1999) reported that both TGen and Random achieved full
statement coverage almost immediately, i.e. in the initial population. For the other three
programs, Bisect, Fourballs and Tritype, TGen required fewer generations, on average,
than Random to reach full statement coverage.

Table 3.7 is interesting for two reasons. First, if we take the lines of code and
cyclomatic complexity* metrics as measures of program size and complexity, and if we
follow the line of reasoning from the previous section that it is harder to cover programs
of greater size and complexity (therefore a GA search is needed); then the following
comparisons are surprising: (1) that Bisect is more difficult to cover than Bub and (2) that
Find is just as easy to cover as Mid. Second, if we follow the line of reasoning from the

previous section that it is harder to satisfy more demanding test criterion for programs of

* Cyclomatic complexity measures the number of linearly independent program paths. It was introduced by
Thomas McCabe in 1976 and is one of the more widely accepted static software metric.

27

similar size and complexity, then the data for Tritype is surprising because both TGen
and Random took fewer generations, on average, to satisfy branch coverage than to
satisfy a less demanding criterion, statement coverage.

Table 3.7 Average number of generations to reach 100% coverage from 32 runs

Program Lines of | Cyclomatic | TGen | Random

Code Complexity | Mean | Mean
Bub.c 32 4 1 1
Find.c 66 5 1 1
Mid.c 21 4 1 1
Bisect.c 36 3 29 40
Fourballs.c 82 7 95 159
Tritype.c 61 7 145 1259
Tritype.c 132 1100
(branch)

Pargas (1999) concludes that TGen performs better than Random when the
program code contains nested conditionals or nested loops with difficult to satisfy

predicates.

3.5 Random test generation

Random testing selects points at random from a program’s input space. This method is
considered to be the cheapest and easiest. Hence systematic test generators should at least
outperform random testing to justify their additional cost (Ince 1987). However, the
volume of tests that random test is likely to generate to meet a test criterion is a major
disadvantage of this method since checking test results, which involves knowing what the
expected test results are, is another costly and time consuming process.

Random testing does not use any kind of mechanism to guide its test generation.
Nor does it adapt previously generated test to produce new tests. In its basic form, every
point in an input space has an equal chance under random testing of being selected as the

next test point, and selection of a test point is independent of previous selections. Because

28

of this arbitrariness, random testing is perceived as an ineffective testing method. Further,
DeMillo (1978) reports that “the adequacy of random test data is very dependent on the
interval from which the data is drawn (i.e., problem-specific information is needed to
obtain good results)”.

However, when compared with simple partition testing, Duran (1981) found
random testing can be more cost effective at finding faults. Partition testing is a testing
approach that divides the input space of a program into subsets and selects at least one

test from each subset of the partition. Path testing is a kind of partition testing.

3.6 Other related work

Harman (2002) found the performance of the DaimlerChrysler Evolutionary Testing
System could be improved by using program transformations to remove Boolean or flag
variables. This evolutionary testing system, like GADGET, uses a numeric fitness
function. A program transformation is a function applied to a program to produce a
semantically equivalent, but syntactically different program. Harman (2002) describes the
effect of removing flag variables from a program as changing the search space character
for a meta-heuristic search method like GA, from “a coarse fitness landscape with a
single super-fit plateau and a single super-unfit plateau (corresponding to the two
possible values of the flag variable)” to “a smoother fitness landscape” capable of
providing more fitness information to the search method.

Non-arithmetic fitness function like the one used in TGen avoids the flag variable
problem to a certain extent because it is at least able to distinguish between test
candidates that come close to the target node and those that do not. Take a hypothetical

control flow tree in Figure 3.4 as an example. The target is node 5. A non-arithmetic

29

fitness function based on proximity will assign a higher fitness value to T1 than T2
because T1 executes more of the nodes that a test for node 5 must cover. An arithmetic
fitness function will assign the same fitness value to T1 and T2. However, the non-
arithmetic fitness function based on proximity does rnot distinguish between the fitness

values of T1 and T3.

T2 T1,73
IF (flag)
T1,7T3

Figure 3.4 A hypothetical control flow tree

3.7 Summary
The main points to note from this chapter are:

1. Test data generation for an arbitrary program may be viewed as a non-linear
constraint satisfaction problem. Given the nature of this problem, the use of
genetic algorithms to generate test data is justified, and we demonstrated this with
an example (Figure 3.2).

2. Test data generation using genetic algorithms (evolutionary testing) has been
proven on “real world” programs.

3. Several limitations of previous approaches are:

a. Complicated instrumentation of predicates

30

b. Reliance on availability of a program graph

c. In some cases, inability to handle Boolean variables and non-arithmetic
conditions

4. All test generators surveyed compared themselves with random testing.

5. Results of these experiments reveal certain qualitative factors which make GA
testing more efficient at structural coverage than random testing. These factors
are:

a. Large program size.

b. Non-linear predicates.

c. High structural complexity. Structural complexity includes the number of
decisions points in the program under test, the lengths of program paths,
the number of conditions in a decision, and the nesting level of a decision.

d. Demanding testing criterion.

e. Small, disconnected sub-domains.

f. Low solution density. One of the weaknesses of random testing is that it is
sensitive to the feasibility of the input space. If the input space is defined
in such a way that it is highly feasible to find test solutions, i.e. the
solution density is high; then random testing has a better chance of
stumbling upon test solutions.

g. Sufficient feedback for the GA. This is related to the difficulty with
Boolean variables and non-arithmetic predicates.

6. We find these factors to be related in some sense. It is reasonable to expect

(though not always the case) that a large program would have non-linear

31

predicates, high structural complexity, long program paths, and complicated data
flows. High structural complexity and strict testing criterion increase the number
of constraints that a test input must satisfy. Since one might expect to find fewer
highly specialized test solutions in an input space, factors ¢ and d contribute to
factor e, small disconnect sub-domains. Having some idea about the size of the
solution space is only one side of the story. The other is, knowing the size of the
search space. This is where factor f, solution density, comes into the picture.
Finally, GA search can deteriorate to a random search if it is not receiving the
right kind and amount of feedback.

. The complex nature of programs makes it difficult to identify and quantify exactly
what conditions make GA testing outperform random testing consistently. As a
result, we have seen that empirical results sometimes contradict each other. This
inconsistency could also be due to incomplete analysis, i.e. not considering all
factors or focusing on only one factor; and may be even due to the GA approach

itself.

32

Chapter 4 Formal Concept Analysis

Formal Concept Analysis (FCA) is a data analysis technique based on formation of
concepts on a relation (Ganter 1999). A concept is a maximal grouping of objects with
common attributes. The concepts are partially ordered and form a lattice. (FCAHome)
reports that FCA has been employed in many fields, such as “medicine and psychology,
musicology, linguistic databases, library and information science, software re-
engineering, civil engineering and ecology”. We use FCA to organize tests according to
execution branch commonality, as in (Ball 1999). Tests in the concept showing the most
promise in the environment at hand have a chance at being selected as parents. To our

knowledge, application of FCA as a GA fitness cum selection function is novel.

4.1 Definition
For a given binary relationship R € O x A where O is the object set and 4 is the attribute
set, a concept is a pair (O, A) with O ¢ O and A < 4 if and only if A is the maximal set
of attributes that apply to all objects in O and O is the maximal set of objects that have all
attributes in A. Intuitively, FCA is the theory of maximal rectangles, modulo row and
column permutations.

Table 4.1 is a relation with 4 objects and 6 attributes. An ‘X’ indicates presence of
a relation. FCA defines 8 concepts for this relation (Table 4.2) which are arranged in a
lattice in Figure 4.1. The pair ({04}, {a6}) in Table 4.1, is not a concept because {a6} is
not the maximal set of attributes that 04 has. The maximal set of attributes for 04 is {a2,
a5, a6}. The pair ({ol, 02, 04}, {a5}) is a concept because only objects ol, 02 and 04

have attribute a5 in common, i.e., no other object has attribute a5.

33

Formally, let o (O) denote the set of common attributes for any set of objects O <
Osuchthat (O)={ae 4|V (0 € O)(o,a) € R} and let T (A) define the set of
common objects for any set of attributes A < 4 such that t (A)={o0 € O|V (a € A) (o,
a) € R } then a pair (O, A) is a concept if and only if A = ¢ (O) A O = 7 (A). For a

concept ¢ = (O, A), extent(c) = O and intent(c) = A.

Table 4.1 A relation table
Attributes
Objects [al a2 [a3 | a4 [a5]| a6
ol X X
02 X X X
03 X XX
o4 X X | X

Table 4.2 Concepts for relation in Table 4.1

Concept | Extent Intent Direct Super Concept

Co - al, a2, a3, a4,a5,a6 1,2, 4

C1 03 al, a3, a4 3

C2 {02 al, a3, a5 3,6

C3 02,03 al, a3 7

C4 o4 a2, a5,a6 5

C5 |ol,o4 a2, a5 6

C6 |ol,02,04 a5 7

C7 |o0l,02,03,04 |- -

The set of concepts form a partial order. Concept ¢; = (O;, A;) is a sub-concept of
¢ = (02, Aj) or ¢, is the super-concept of ¢ if O3 < O or A € A;. In Table 4.2, Cl is a
sub-concept of C3 because extent (C1) < extent (C3). Alternatively, C3 is a super-

concept of C1 because intent (C3) < intent (C1). The subsume relationship between
concepts forms a concept lattice. The join of two concepts is the intersection of their
extents (O1, Aj) A (02, Az) = (011 Oy, 6 (O N Oy)) and the meet of two concepts is the

intersection of their intents (O, A1) v (02, Ay) = (1 (A N Az), A1 N Ap).

34

C7
{01,02,03,04} {}

C6
{01,02,04}
{a5}

C3 C5
{02,03} {o1,04}
{a1,a3} {a2.a5}

A
C1 C2 C4
{03} {02} {o4)
{a1,a3,a4} {a1,a3.a5} {a2,a5.a6}
y
Co
{} {a1, a2,a3,
a4,ab,ab}

Figure 4.1 The concept lattice for the concepts in Table 4.2

C5
{01{a2}
y
C1 C2 C4
{03Ka4} {02} {04}{a6}
\ A
Co
¢

Figure 4.2 The reduced labeled concept lattice of Figure 4.1

35

To improve readability, attribute labels are pushed up so that the most general
concept having attribute a in its intent is marked with a, while object labels are pushed
down so that the most specific concept having object o in its extent is marked with o.
Thus the (unique) lattice element labeled with a is: 1 (@) = v {c € L(C) | a € intent(c)}.
Similarly, the (unique) lattice element labeled with o is: ¥ (0) = A {c € L(C) | 0 €
extent(c)}. Figure 4.2 is the reduced labeled version of Figure 4.1. The extent and intent
of a concept is reconstructed by having a concept “inherit” all the objects of its direct and
indirect sub-concepts and all the attributes of its direct and indirect super-concepts.

There are a number of algorithms and tools available to compute concepts and draw
concept lattices (FCAHome). Our implementation (genet) uses TKConcept by Lindig

(1999).

4.2 genet’s fithess cum selection algorithm

In our application of FCA, the object set O is a set of test 7"and the attribute set 4 is a set
of true-false branches B. A pair (T, B), with T < T'and B < B, is a concept if every test in
T exercises every branch in B and branches common to every test in T are all in B, i.e.,
there are no branches not in B that are exercised by every test in T. The idea is to
organize tests according to execution branch commonality. This information is then used
to evaluate the fitness of sets of test. The fitness value (rank) is used to select the set of
tests with the most potential to produce fit offspring. A “fit” offspring is a test that
exercises one or more branches that have not been covered. genet’s objective is to
exercise branches efficiently. To meet this objective, we select tests from a concept with
the highest rank. Alternative decisions include selecting tests from the lowest non-zero

ranking concept, and considering the size of a concept’s extent together with its rank.

36

These alternative designs could produce different search qualities. The following

example illustrates genet’s fitness and selection function.

INPUT (X, Y, Z)

BEGIN
IF (predicate1) {
PRINT “1T” R4
IF (predicate2) ’
PRINT “2T" ¥
ELSE ,

PRINT “2F" %

} /
ELSE { O ‘
PRINT “1F”
IF (predicate3)
PRINT “3T"
ELSE {
PRINT “3F” ,
IF (predicate6) 4
PRINT “6T” @

ELSE
PRINT “6F” ---» False ’

RETURN } é
}

IF (predicate4) —> True
PRINT “4T”
IF (predicate5)
PRINT “5T"
ELSE
PRINT “5F”
ELSE
PRINT “4F”
END

Figure 4.3 A program and its ‘dynamic’ control flow graph

Table 4.3 Population of tests at generation t

Branches
Tests | 1IT|{1F | 2T |2F [3T [3F | 4T | 4F | 5T | SF
T1 X X X X
T2 X X X X
T3 X X X X

Table 4.4 Concepts for the relation in Table 4.3

Concept Extent r.l. Intent Direct Super | Rank
Concept
co |- - ,2,4 0
C1 T3 2T 3 0
C2 T2 2F 3 0
C3 T2, T3 1T 5 0
C4 [T1 IF, 3T 5 1
C5 [T1,T2,T3 |4T,SF - 2

37

At generation t, there are three tests in the population for the program in Figure 4.3
with branch executions as shown in Table 4.3. An ‘x’ denotes execution. Branches 3F, 4F
and 5T have not been exercised yet. C1 in Table 4.4 says that branch 2T is exercised by
tests T3 only. C4 says only test T1 have branches 1T and 3T in common. That 4T and 5F
are attributes of the top concept lattice element, CS5, tells us that all tests exercise
branches 4T and SF. From the situation at generation t, we deduce that branches 4T and
SF have a high affinity with each other; as do 1F and 3T.

We assume that a test which executes one branch of a predicate is more likely, with
adaptation, to execute the other branch of the predicate, than a test which does not visit
the predicate at all. For example, it is more likely for an adaptation of T1 to cover 3F than
it is for an adaptation of T2 or T3 since neither T2 nor T3 visit or come close to predicate
3 in their execution paths. On the basis of this assumption, C4 is given a rank of 1,
denoting that the tests in C4 have potential to cover one uncovered branch (3F). C5 has a
rank of 2 because its tests have potential to cover 4F and 5T. In other words, because T1,
T2 and T3 already visit predicates 4 and 5 in their execution, we assume that these tests
contain suitable base elements for creating tests that will cover 4F and 5T. genet selects
tests from CS5 to be parents of generation t + 1. CS5 is the winning concept and the actual

targets are 4F and 5T.

4.3 Design of the algorithm

We consider several interesting situations for genet’s fitness cum selection algorithm.
Specifically, we want to understand why FCA is different from ranking each test
individually and we want to know if branches with low affinity with each other can

appear in a concept. We also describe three unavoidable “problematic™ situations.

38

4.3.1 Opposite edges

Consider the control flow graph and the test executions in Figure 4.4. The uncovered
branches, 2T and 3F, lie on extreme opposite edges of the graph. They have very low
affinity. There is a tie between the ranks of C1 and C2 (Table 4.5). We break this tie by

choosing the concept with the smallest number, i.e. C1. Section 4.3.4 explains this design

decision.

~--» False

— True

s

Figure 4.4 Control flow tree and its test executions

A
A}
A

Branches
Test | 1T | 1F | 2T | 2F | 3T | 3F
X X
X X
X X

Table 4.5 Concepts for relation in Figure 4.4

Concept | Extent Intent Direct Super | Rank
{unique) | Concept
Co - - 1,2 0
Cl T2 1F, 3T 3 1
C2 T1, T3 1T, 2F 3 1
C3 T1,T2, T3 |- - 0

Suppose there is a winning concept (Ci) with attributes 2F and 3T. By definition of
a concept, there must be a test (Tj) that exercises both 2F and 3T. But to reach 2F and 3T,
Tj must be able to exercise both 1T and 1F. This is a contradiction. By our assumption
about the behavior of a program under test (Section 3.3), Tj can only make predicate 1
evaluate to either true or false, not both. A test can exercise both 2F and 3T if Figure 4.5
is the control flow graph. In this case, genet chooses C2 as the winning concept (Table

4.6) and targets to cover 2T.

39

-~-=» False

Branches
— True Test | 1T | 1F | 2T | 2F | 3T | 3F
T1 X X | X
T2 X X
T3 X X

Figure 4.5 Control flow tree and its test execution

Table 4.6 Concepts for relation in Figure 4.5

Concept | Extent Intent Direct Super | Rank
(unique) | Concept
Co - - 1,2 0
C1 T2, T3 1F 3 0
C2 T1 1T, 2F 3 1
C3 T1,T2, T3 | 3T - 1

4.3.2 FCA and unique (reduced labeled) intents

We compare genet’s evaluation of the test population in Figure 4.4 with a non-FCA
method. The non-FCA method ranks tests individually, sorts the tests according to their
rank values and selects tests with suitably high rank values. With the non-FCA method,
T1, T2 and T3 have the same rank value of 1. The non-FCA method suggests that any
combination of T1, T2 and T3 is a suitable selection of parents to create fit test offspring.
For the situation in Figure 4.4, it is clear that a fit test offspring can cover only one of the
two target branches at a time, not both. So it is not sensible to mix the genes of T1 and T2
or of T2 and T3 since T1 and T3 traverse an identical execution path which is the exact
opposite of the path for T2. We know about this similarities and differences of execution
paths of the tests from the information generated by FCA (Table 4.5).

Without unique intents, the highest ranking concepts (excluding the bottom element
whose attributes consists of all covered branches) will include those describing complete

execution paths so that selection of parents is likely to be confined to tests that execute

40

the same path. However this may not always be the best course of action, as illustrated by

the example in Figure 4.6.
---» False 1} x>0
- Branches
— True ; Test | 1T | 1F | 2T | 2F | 3T | 3F
T1 X X
T2 X X X
T3 X | x X
21y >0

é 31 x+y < z

e

Figure 4.6 A control flow tree and its test executions

Table 4.7 Concepts for relation in Figure 4.6

Concept | Extent Intent Rankl | Intent Rank2 | Direct Super
(non-unique) (unique) Concept

Co - IF, 1T, 2F, 2T, 3F - - - 1,2,4

C1 T3 1F, 2T, 3F 1 - 0 3,5

C2 T2 1T, 2T, 3F 1 1T 0 3

C3 T2, T3 2T, 3F 1 2T, 3F 1 6

C4 T1 1F, 2F 0 2F 0 5

Cs T1,T3 1F 0 IF 0 6

Cé T1,T2, T3 | - 0 - 0 -

In Table 4.7, the bottom element is CO and concepts whose (non-unique) intent
describes complete execution paths are C1, C2 and C4. Rank1 values are evaluated based
on non-unique intents and Rank2 values are evaluated based on unique intents. When
Rankl values are used, C1, C2 and C3 are the highest ranked concepts. When Rank2
values are used, C3 is the highest ranked concept.

Selecting T2 and T3 as parents to create a test for 3T is a more suitable choice than

selecting either T2 or T3 alone because mixing the genes of T2 and T3 give more

41

combinations that satisfy condition 3, (x + y < z), than the genes of either T2 or T3 alone.
In T2, both the x and y genes are positive. In T3, the x gene is negative and the y gene is
positive. So for a domain of -5 to 5 for each of the input variables, having both T2 and T3
in the parent pool increases the chance of obtaining a combination of x, y and z genes that
satisfy the constraint for 3T, i.e. (X + y) <z.

Note that the presence of concepts that do not describe complete execution paths,
1.e. C3 and C5, are only possible if there are at least two tests in the population with

similar but non-identical execution paths.

4.3.3 Non unique extents.

The most promising or winning concepts in the examples so far have either been a top
lattice element or a direct sub-concept of the top element. The extent of a top element
always includes all objects in the relation, so we ignored the second part of the selection
algorithm in previous examples.

The second part of the selection algorithm is gathering and scoring tests from the
ancestors of the winning concept. The ancestors of a concept are all its direct and indirect
super concepts. The reason for including this additional step is to handle the situation
when the size of the winning concept’s extent is smaller than the .size of the parent
population. Tests from ancestor concepts will have more similarities with tests in the
winning concept than test selected or generated at random. Scoring tests is counting the
frequency that each test appears along the lattice path from the winning concept to the top
element. To enable scoring, the extent obviously cannot be unique. Scoring increases the
selection likelihood of tests from the winning concept and from concepts closer to the

winning concept than from concepts farther away from the winning concept.

42

---» False

— True

O

@/@@

Figure 4.7 A control flow tree and its test execution

/@

Branches
Test | 1T | 1F { 2T | 2F | 3T | 3F | 4T | 4F
T1 X
T2 X X X X
T3 X X X

Table 4.8 Concepts for relation in Figure 4.7

Concept | Extent Intent Intent Rank | Direct Super
(non-unique) (unique) Concept
Co - 1F, 1T, 2T, 3F, 3T, 4F | - - 1,2,4
C1 T3 1T, 2T, 3F 3F 0 3
C2 T2 1T, 2T, 3T, 4F 3T, 4F 1 3
C3 T2, T3 1T, 2T 1T, 2T 1 5
C4 T1 IF 1F 0 5
C5 T1,T2,T3 |- - 0 -

In the example of Figure 4.7 and Table 4.8, the winning concept is C2 and its

ancestors are C3 and C5. Scoring tests gives 1, 3 and 2 for T1, T2 and T3 respectively.

T2 gets the highest score because it appears in the extents of the winning concept and its

direct super concept. The score for T3 is higher than T1 because T3 appears in the

winning concept’s direct super concept and T1 does not. So the scores for tests in the

winning concept or in concepts closer to the winning concept are higher. These test

scores are sorted and selection preference is given to tests with the highest scores.

43

4.3.4 Smaller concept number.

When two or more concepts have the same highest rank, we break the tie by choosing the
concept with the smallest number. One alternative is to choose the largest number.
However concepts nearer to the bottom of a concept lattice tend to have larger (non-
unique) intents. The concept at the bottom of the lattice has the largest intent. Therefore,
to maximize branch coverage, it makes sense to break a tie by choosing the concept with
the smallest number. In Table 4.8, the two concepts with the highest score are C2 and C3,

and C2 is a sub concept of C3. genet chooses C2 as the winning concept.

4.3.5 Unknown predicates.

In all the examples so far, either one or both of the branches of a predicate is covered so
that genet is more or less aware of how all predicates hang together. However this may
not always be the case. genet is not fed complete knowledge of the structure of the
program so it does not know how the predicates relate to each other until it has found a
test that makes a connection between predicates.

In Figure 4.3, 3F actually leads to predicate 6 so that in trying to cover 3F, genet
would actually be trying to cover three branches, 3F, 6T and 6F. Instead, because genet
does not yet know where 6T and 6F fit into the structure of the program, it decides to

target 4F and 5T by selecting C5 as the winning concept.

4.3.6 Deception.

genet makes selection based on dynamic control flows. It has no knowledge of the

semantics of the predicates. Following is a situation where genet can be “deceived”.

44

Suppose all branches for the control flow graph in Figure 4.8 are covered except for
2T. Then genet will select C1 as the winning concept. But tests from C1 are strings of all

1’s while genet is trying to compose a string of all 0’s to cover 2T.

---» False 1| if (all bits are the same)

— True . \

1s and Os O 2| if (first bit is 0)

111...11 O \C) 000....00

Branches Concept | Extent | Intent Direct Super | Rank
Test | 1T | 1F | 2T | 2F (unique) | Concept
T1 X 0 - - 1,2 -
2 | x X 1(Cl) T2 1T, 2F 3 1
2 Tl 1F 3 0
3 T1,T2 |- - -

Figure 4.8 A deceptive control flow tree, its test population and concept table

4.3.7 Unreachable branches.
genet assumes that all program branches and predicates are reachable. When this is not

the case, the unreachable branch or predicate could misdirect genet’s efforts.

45

Chapter 5 A closer look at genet

This chapter gives an overview of genet’s design and implementation, and shows how

genet is to be used with an actual program.

5.1 Algorithm

Inputs (see Appendix A for examples):

1.
2.

Outputs:
1.

2.
3.

an executable program under test, instrumented to record triggered branches,

a TestGenome class which defines the test chromosome, command to run the
program with a test, crossover operator and mutation operator, and

an EvolTestDriver class which specifies the number of predicates to cover
(predSz), size of the initial population (initpopSz), size of the parent pool
(parentSz), crossover rate (Xr), mutation rate (Mr), life span of a chromosome
(Clf), maximum number of generations (Gmax) and number of generations
genet tolerates an unchanged target before introducing random chromosomes
into the next generation (Tmax). Tmax = 0 turns this feature off, i.e. genet will
not introduce random chromosomes into generations post initial population.
Create initial tests. This is optional. genet accepts an empty test input file and
produces enough random test chromosomes to form an initial population of

initpopSz size.

test data,
branch coverage and

concepts relating tests and branches

The flow chart in Figure 5.1 tells the story of how genet works. Figures 5.2 and 5.3

display the corresponding code snippets. Appendix B treats the implementation of genet

(and randy, our random test generator) more fully.

When genet runs a test program with a test, trace data is produced to indicate which

branches in the test program have been triggered by the test. genet uses this trace data

46

information to update its decision table. After running every test in a generation, genet
does a calculation on its decision table to find out what if any, are the remaining
uncovered branches. If there are still a few uncovered branches, genet submits all tests
with a positive lifespan to formal concept analysis (FCA). genet’s genetic algorithm
(GA) component uses the information produced by FCA to create the next generation.
Every time a test is selected by genet to be a parent, its lifespan deceases by one.
Essentially, genet’s GA takes care of the fitness and selection functions (which were
described in Chapter 4) but relies on the crossover and mutation operators defined in the
TestGenome class. This process is repeated until either all branches are covered or the
maximum number of generations is reached. gemet may terminate prematurely if it

cannot find any suitable parents.

Initial 1 | Runprogram 2 | Tracedata |
population under test

> Y
6 10 3
v 4
Concept 11 Next Update Decision
Analysis | generation Table
7 9 4
y y
Concepts .| Genetic Decision
3 Algorithm 5 Table
N &

Figure 5.1 Flow chart describing genet.

47

// public
template <class TestGenome, class FitnessEvaluator>
void EvolDATG<TestGenome, FitnessEvaluator>::run() {
initialize population();
for (int i = 0; 1 < new tests.size(); i++) {
if (new_tests[i].evaluate(fitness evaluator))
min tests.push back(new tests[i]); // test covers a new branch
all tests.push back(new tests[i]);
}

int times

I

0; // number of times score did not change

int score = fitness evaluator.score();

fitness evaluator.print();

while ((current_ iteration d < max iterations d) &&
(! fitness evaluator.done())) {

fitness_evaluator.evaluate(all tests);
evolve next generation();
for (int 1 = 0; i < new tests.size(); i++) {
if (new_tests[i].evaluate(fitness evaluator))
min_tests.push back(new tests[i]};
all tests.push back(new tests[i]);
}
if (fitness evaluator.score() == score) {
times++;
if (times > max_tries) {
times = 0; introduce new_individuals = true;
}
t

else {

times = 0; introduce new individuals = false;
}
score = fitness evaluator.score();

fitness evaluator.print();
++current iteration d;

}

// private
template <class TestGenome, class FitnessEvaluator>
void EvolDATG<TestGenome, FitnessEvaluator>::evolve next generation()
new_tests.clear(};
parents.clear();
fitness_evaluator.getNfittest (ntests per iteration d, parents);
if (parents.size() > 0) {
for (int i = 0; i < parents.size(); i++)
all tests[parents({i]].age();
recombine () ;
mutate() ;
}
if (introduce new individuals)
introduce () ;

Figure 5.2 Code snippets from EvolDATG class

48

// public
// evaluate tests that can reproduce, i.e. life > 0
template <int NPREDICATES, class TestGenome>
void FCA FitnessEvaluator<NPREDICATES,
TestGenome>: :evaluate (vector<TestGenome>& all tests) {
relation.clear();
for (int i = 0; i < all tests.size(); i++)
if (all tests[i].life() > 0)
relation.insert (pair<int, const char*>(i,
all tests[i].behavior())):
if (relation.size() > 0) {
concept analyzer.analyze(relation);
load_concepts(};
rank concepts(};
score_tests(});

}

// public

template <int NPREDICATES, class TestGenome>

void FCA FitnessEvaluator<NPREDICATES, TestGenome>::getNfittest (int n,
vector<int>& selection) {

int k = 0;
multimap<int, int>::reverse iterator hist rit = histogram.rbegin{();
while ((hist rit != histogram.rend()) && (k < n)) {

selection.push back(hist rit->second);
hist rit++; k++;
}
}

// private
template <int NPREDICATES, class TestGenome>
void FCA FitnessEvaluator<NPREDICATES, TestGenome>::rank concepts() {
bitset<NPREDICATES> target predicates = branch coverage.target();
for (int i = 0; 1 < concepts.size(); i++) {
bitset<NPREDICATES> res = concepts[i].attributes bitset();
res &= target predicates;
int r = res.count();
concepts{il.rank(r);
if ((r > highest rank d) || (highest rank d == -1)) {
winning concept d = concepts[i].conceptid();
highest rank d = r;
}

Figure 5.3 Code snippets from FCA_Fitness Evaluator class

49

// private

template <int NPREDICATES, class TestGenome>

void FCA FitnessEvaluator<NPREDICATES, TestGenome>::score_tests() {
map<int, int> m;
// <test id(asc), 1>

vector<int> vl = concepts[winning concept d].objects();
for {(int 1 = 0; i < vl.size(}); i++)
m[vli[il] += 1;

// <test id(asc), freqg>

vector<int> v2 = concepts[winning concept d].uppers();

for (int j = 0; J < v2.size(); J++) {
vector<int> v3 = concepts[v2[j]].objects():
for (int kX = 0; k < v3.size(); k++) {

m[v3[k]l] += 1;

}

}

// fill histogram with <freqg(asc), test id>

histogram.clear();

map<int, int>::iterator mit = m.begin{();

while (mit != m.end()) {

// cout << " " << mit->first << " " << mit->second << endl;
histogram.insert (pair<int,int>(mit->second , mit->first));
mit++;

}
}

Figure 5.3 (cont’d) Code snippets from FCA_Fitness Evaluator class

5.2 An example

The Remainder program (Sthamer 1995) (see Appendix B for the code) accepts two
integer inputs, divides the first by the second and outputs the remainder, if any. A
remainder value is -1 when a divisor is 0 or a dividend is smaller than its divisor. Figure
5.4 is Remainder’s loop-free control flow graph. A node’s label identifies the predicate it
represents. A true branch from a node with label i is denoted iT. Loops may be handled in
genet by unrolling them as is done in (Jones 1996). The initial population consists of
three tests (Table 5.1). The test interval is [-10, 10]. Table 5.2 is the decision table after
evaluating the initial population of tests for Remainder. Table 5.3 is the concepts and

their rank for the initial population. Gmax = 10 and CIf= 1 for Remainder.

50

— True

--=% False v

Figure 5.4 Control flow tree for Remainder program

Table 5.1 Initial population of tests

Test | Dividend | Divisor | Result | Remainder | Trace Clf
TO 9 -2 -4 1 OF 1F 2T 3F 1
T1 1 3 0 -1 OF 1IF2T3T |1
T2 -5 0 0 -1 OF 1T 1
T3 4 -7 0 -1 OF 1F 2T 3F 1
T4 8 6 1 2 OF 1IF2T3T |1
TS5 6 4 1 2 OF 1F2T3T |1

Table 5.2 Decision table after evaluating the initial population

Predicate True False Target
0 1 0 1
1 0 0 0
2 0 1 1
3 0 0 0
4 1 1 1

The number of rows in genet’s decision table is determined by predSz. ‘0’ indicates
coverage. A predicate is partially covered if either its true or false branch is covered.
Table 5.2 says that branches OT, 2F, 4T and 4F are uncovered while the rest of the
branches are covered. It also tells us that predicates 0 and 2 are partially covered,
predicates 1 and 3 are fully covered and predicate 4 is completely uncovered. genet uses
three bit vectors to implement its decision table. The rightmost bit of a vector

corresponds to predicate 0 and a clear bit in a decision table bit vector denotes coverage

51

of the branch or predicate. So the true and false columns of Table 5.2 are represented in
genet as 10001 and 10100. The target bit vector is calculated by OR-ing the true and
false bit vectors. It serves as a mask to rank the concepts.

Table 5.3 Concepts for the initial population

Concept | Extent r.l. Intent | Intent as bit | Direct Super | Rank
vector Concepts
C0 - - 00000 C1,C2,C3 0
Cl1 T2 1T 00010 C5 0
C2 TO 3F 01000 C4 0
C3 T1, T3, T4, TS 3T 01000 C4 0
C4 T0,T1, T3, T4, TS 1F, 2T 00110 C5 1
C5 TO, T1, T2, T3, T4, TS5 OF 00001 - 1

The rational behind concept ranking was explained in Chapter 4 and is
implemented as the FCA_FitnessEvaluator::rank_concepts method (Figure 5.3) in genet.
To enable concept rank calculation, the reduced labeled (r.l.) concept intents are
converted into attribute bit vectors (Table 5.3). A clear bit in an attribute bit vector means
the branch represented by the bit is not covered by the set of tests in the corresponding
extent. Concept rank is calculated by taking the intersection of (AND-ing) the attribute
bit vectors with the current target bit vector. The current target bit vector is 10101.
Therefore concepts C4 and C5 get a rank of 1 while the other concepts get a rank of 0.
When there is more than one concept with the highest rank, the concept with the lower
number wins (per explanation in Chapter 4). This makes C4 the winning concept and
parent selection will begin with tests in this concept. For programs with multiple exits, it
is possible for no concept to have a positive rank, in which case either the predicate(s) in
question is actually unreachable or genet is unable to find suitable test data for it (them).

Having found the highest ranked concept, tests are scored (as explained in Chapter

4). This entails bagging the tests from C4 and its super concepts (C5), and then tabulating

52

the frequency of each test that appears in this bag. The
FCA_FitnessEvaluator::score_tests method (Figure 5.3) accomplishes the test scoring
task in genet. The bag of tests for Remainder’s next generation contains TO, T1, T3, T4
and T5 (from C4) and TO, T1, T2, T3, T4 and T5 (from C5). So the score for TO, T1, T3
and T4 is 2 each and T2 gets a score of 1. Scoring imposes an order on the tests selected.
The tests are ordered by their frequency and this histogram is used to select the parents
for the next generation of tests. The parent pool is formed by selecting parentSz tests
starting from the fittest end of the histogram. For Remainder, parentSz = 3. So the parent
pool for the next generation consists of TO, T1 and T3. The lifespan of TO, T1 and T3 is
reduced by 1.

The next generation of tests is created by randomly selecting pairs of tests from the
parent pool to recombine and randomly selecting individual tests from the parent pool to

mutate. Recombination takes place (Xr x parentSz) times and mutation occurs

(Mr x parentSz) times. Recombination only occurs between parents with non-identical
genes. A recombination produces two offspring, one of which is discarded if the two
offspring have identical genes. So it is possible for the size of the next generation to be
slightly smaller than (Xr x parentSz x 2 + Mr x parentSz). For the Remainder program,
Xr = 0.8 and Mr = 0.4. Thus, evolution is by doing crossover twice and mutation once;
and the number of tests produced for the next generation is at most five 0.8 x 3 x 2 + 0.4
x3]=5.

RemainderTestGenome uses real value representation, “shuffle” crossover and
uniform mutation. A test is a two-integer chromosome. The index of the left gene is 0.

genet randomly pairs up TO with T3 and T1 with T3 for recombination. The “shuffle”

53

crossover exchanges a randomly selected gene from a chromosome for another randomly
selected gene from its partner chromosome. The crossover between TO (9, -2) and T3 (4,
-7) produces T6 (-7, -2) and T7 (4, 9). The crossover between T1 (1, 3) and T3 (4, -7)
produces T8 (1, 4) and T9 (3, -7). genet randomly selects TO for mutation and TO (9, -2)
mutates to T10 (3, -2). T6, T7, T8, T9 and T10 makes generation 1. The initial population
is generation 0.

genet runs Remainder with each of the test in generation 1 and if the decision table
is not completely covered at the end of the run, individuals of generation 1 are inserted
into the population. Table 5.4 is the decision table after evaluating generation 1. Table 5.5
shows the population at generation 1. genet excludes TO, T1 and T3 from participating in
concept analysis and subsequent selection process because their Clf values are less than 1.
Table 5.6 shows the concepts of population at generation 1.

Table 5.4 Decision table after evaluating generation 1

Predicate True False Target
0 1 0 1
1 0 0 0
2 0 0 0
3 0 0 0
4 1 0 1

Table 5.5 Population of tests at generation 1

Test | Dividend | Divisor | Result | Remainder | Trace Cif
TO 9 2 -4 1 OF1F2T3F |0
T1 1 3 0 -1 OF 1IF2T3T (0
T2 -5 0 0 -1 OF 1T 1
T3 4 -7 0 -1 OF1F2T3F ([0
T4 8 6 1 2 OF 1F 2T 3T 1
TS5 6 4 1 2 OF IF2T3T |1
T6 -7 2 3 1 OF 1F 2F 4F 1
T7 4 9 0 -1 OF1F2T3T |1
T8 1 4 0 -1 OF 1F 2T 3T 1
T9 3 -7 0 -1 OF1F2T3F |1
T10 3 2 -1 1 OF1F2T3F |1

54

Table 5.6 Concepts of population at generation 1

Concept | Extent rl. Intent |Intentas |Direct Super |Rank
bit vector | Concepts
co |- - 00000 C1, C2, C3,(0
C4
C1 T2 1T 00010 C7 0
C2 |Té 2F, 4F 10100 C6 1
C3 |T9,T10 3F 01000 C5 0
C4 |T4,T5,T7,T8 3T 01000 C5 0
C5 T4, T5,T7, T8, T9, T10 2T 00100 Cé 0
C6 |T4,Ts,Te,T7, T8, T9, T10 IF 00010 C7 0
C7 |T2,T4,T5,T6, T7, T8, T9, T10 | OF 00001 - 1

C2 is the winning concept. Scores for tests are T6 =3, T4=2,T5=2,T7=2,T8 =

Table 5.7 Population of tests at generation 2

2, T9 =2 and T10 = 1. Tests T6, T4, TS are selected as parents. The evolution process
described previously creates generation 2: T11 (-7, 8), T12 (-2, 6), T13 (6, 6), T14 (8, 4)
and T15 (0, 4). After running generation 2, genet finds its decision table is completely

covered and terminates its execution. Table 5.7 is the final population for Remainder.

Test | Dividend | Divisor | Result | Remainder | Trace Clf
TO 9 -2 -4 1 OF1IF2T3F |0
T1 1 3 0 -1 OF 1IF2T3T |0
T2 -5 0 0 -1 OF 1T 1
T3 4 -7 0 -1 OF1F2T3F |0
T4 8 6 1 2 OF1F2T3T |0
T5 6 4 1 2 OF 1IF2T3T |0
T6 -7 -2 3 1 OF1F2F4F |0
T7 4 9 0 -1 OF1F2T3T |1
T8 1 4 0 -1 OF1F2T3T |1
T9 3 -7 0 -1 OF 1IF2T3F |1
T10 3 -2 -1 1 OF 1IF2T3F |1
T11 -7 8 0 -1 OF 1IF2F4T |1
Ti2 -2 6 0 -1 OF1F2F4T |1
T13 6 6 1 0 OF 1F2T3T |1
T14 8 4 2 0 OF 1IF2T 3T |1
T15 0 4 0 -1 0T 1

55

Chapter 6 Experiments

The experiments are intended to explore genet’s suitability to types of programs by
comparing its performances with randy’s. A Mersenne random number generator (Agner
2004) is used which produces a uniform distribution and the same sequence of numbers
each time. Experiments are repeated five times to obtain a more robust result. Solution
density of a search space is defined as number of feasible combinations divided by
number of possible combinations. What constitutes a feasible combination depends on

the problem at hand.

6.1 Triangle

Triangle is ubiquitous in testing literature. It is the problem of determining if a
combination of three integers, each representing a length measurement, makes a triangle,
and if it does; what type of triangle. We use the implementation of Triangle found in
(McGraw 1998) which has 10 predicates (or 20 branches), and four possible outcomes:
not a triangle, scalene, isosceles and equilateral.

Real value representation is used: a Triangle chromosome is an array of three
integers. The test interval for each gene is all integers within [-1, 998]. Non-positive
integer values are necessary to trigger error situations, e.g. length cannot be zero or
negative. Total number of combinations in this test interval is 1000> which is a fairly
large search space. A feasible combination is a combination that makes a triangle. The
solution density is moderate (around 50%). This test interval creates a more favorable
environment for randy than say a test interval of [-499, 500] and gives genet quite a

challenge (since genet needs to outperform randy to justify its additional complexity).

56

The parameter values used in this experiment are: initpopSz = 100, parentSz = 10,
Gmax = 50, Xr = 0.6, Mr = 0.8, CIf = 2 and Tmax = 0. Maximum number of tests is
1100. Four experiments were made on Triangle:

a. randy,
b. genet with uniform crossover and uniform mutation,

genet with shuffle crossover and uniform mutation, and

o

&

random parent selection (without genet) with shuffle crossover and uniform
mutation.
The rationale behind these sub-experiments follows. Since genet’s fitness function
is non-arithmetic, Triangle becomes a combinatorial problem. That is, instead of
calculating the difference between a length and the desired length needed to make some
triangle combination, genet groups chromosomes that satisfy similar constraints (through
FCA) and expects similarly grouped chromosomes to produce other kinds of useful
chromosomes (test solutions) through the adaptation process. For a constraint like (a + b
> c) in Triangle to be true, an arithmetic fitness function is able to rate chromosome (4,
4, 9) to be more fit than (4, 4, 11); but genet cannot make such distinction and groups the
two chromosomes in a concept. This means isosceles chromosomes that traverse the
same path through Triangle, such as (4, 4, 5), (4, 4, 7) and (3, 3, 5), will be in the same
concept and are likely to appear in the same parent pool. The task of the
TriangleTestGenome designer then is to construct genetic operators which can transform
such a pool of isosceles combinations into other test solutions.
The No Free Lunch (NFL) theorem (Wolpert 1995) makes it unreasonable to expect

any genetic operator to produce useful adaptations and genet to outperform randy at the

57

same time. For a search (or optimization) algorithm a to be effective for a problem (or
cost function) £; the biases in @ must match with the particulars of f. If no knowledge of
the problem is incorporated into a search algorithm, then the NFL theorem demonstrates
that there is no reason to believe the search algorithm will be effective. A consequence of
the NFL theorem is that it is impossible to say that one algorithm performs better than
another algorithm, on average over all cost functions (Wolpert 1995). Thus, for genet to
operate as an effective general purpose automatic test generator, it is necessary for its
genetic operators to be determined by its TestGenome designer base on domain
knowledge of the program under test.

To construct genetic operators for Triangle, we consider the least probable
combination to find by chance, an equilateral combination which we expect’ will evolve
from an isosceles combination. The TriangleTestGenome genetic operators should be
able to adapt an isosceles into an equilateral. In the example of the three chromosomes (in
the previous paragraph), if (4, 4, 5) and (4, 4, 7) are partnered for a crossover; then it is a
matter of placing a 4 in the rightmost position of one of the chromosomes without
disrupting its other genes. Uniform crossover and mutation is unlikely to achieve this
adaptation. “Shuffle” crossover (also used by RemainderTestGenome in Chapter 5) is a
more suitable operator. A successful “shuffle” might exchange the lefimost gene of the

first chromosome with the rightmost gene of the second chromosome, producing (7, 4, 5)

and an equilateral combination (4, 4, 4). “Shuftle” is only meaningful if all inputs share

the same domain.

3 Since of all other combinations, an isosceles most closely resembles an equilateral combination. The role
of resemblance is discussed later on in this chapter.

38

To summarize, the objective of sub-experiments b and ¢ are to see the effect of
different genetic operators on genet’s performance. Sub-experiment d is a control
experiment to see whether genet (selection pressure) can make a difference to the search
performance when suitable genetic operators are used. Table 6.1 reports on the result of
this experiment.

Table 6.1 Results for Triangle

Number of branches & tests
Seed a b c d
11 15 8 20 | 298 18
13 13 17 20 352 19
17 17 8 20 | 280 19
19 16 11 20 676 15
23 17 12 20 | 280 16
Average | 15.6 | 11.2 | 20 [3772|174

In the five runs that we did, sub-experiment ¢ had the best performance. Sub-
experiment ¢ was the only one to cover Triangle completely and did so quite efficiently,
using 378 tests on average. Sub-experiments a, b and d ran to Gmax without reaching full
branch coverage. Sub-experiment b did worse than randy. Its poor performance is
attributed to inappropriate genetic operators. This is supported by sub-experiment c.
When uniform crossover was substituted with shuffle, genet’s performance improved
remarkably. Sub-experiment d did better than randy and sub-experiment b, but not as
well as sub-experiment c¢. This result suggests to us that adaptation plays a more
significant role for the Triangle problem than selection; but selection is still useful as an
accelerant to the evolution process.

Figure 6.1 summarizes the search progress of the sub-experiments. Altenberg
(1995) offers the opinion that one way to evaluate the quality of search of a GA “...is to

compare the ability of a GA to generate new, highly fit individuals with the rate at which

59

they are generated by random search.” He introduced the notion of evolvability which
means “the ability to produce individuals fitter than any existing”, as a measure of GA
performance. By this performance measure, sub-experiment ¢ has the best evolvability
since the rate at which it finds fitter individuals (tests which increase total branch
coverage) is greater than random search and than other sub-experiments. The graph for

sub-experiment ¢ has the steepest ascent.

Branch Coverage

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49

Generation

Figure 6.1 Evolutions of Triangle sub-experiments

Sub-experiment b has the least evolvability although it uses genet to select useful
building blocks or schemas. The traditional theory of GAs revolves around the Schema
Theorem (Holland 1975) and the Building Block Hypothesis (Goldberg 1989). It
supposes that the power of GAs lie in their ability to discover, emphasize and recombine
good building blocks of solutions (Mitchell 1996, page 27). However, there are opposing
views which argue that the appearance of more fit schema is not indicative of the search
quality of a GA (Altenberg 1995). Instead, Altenberg (1995) illustrates that evolvability

depends on the transmission function having knowledge of what the GA is trying to

60

achieve. Transmission function T (x € y, z) is defined as “the probability that offspring
genotype x is produced by parental genotypes y and z as a result of the action of genetic
operators on the representation” (Altenberg 1995).

The results of sub-experiments b and c agree with the theories of Altenberg (1995)
and Wolpert (1995). genet has the best search performance when its genetic operators are
biased to find an equilateral combination (sub-experiment c). When genet does not use
any domain knowledge (or when f does not match @) as in sub-experiment b, its
performance is even inferior to a random search.

The graph of sub-experiment d begins to ascend rapidly after an initial plateau. The
reason for this is the shuffle crossovers in the first 13 generations have helped the
population to converge somewhat. Hence after generation 13, it is more likely to find
pairs of chromosomes with similar gene values and to produce combinations with two or

more genes with the same value at random.

6.2 Tax

Tax is a program written from a flowchart in (Montalbano 1974, page 48). It makes tax
filling decisions with four possible outcomes: “Obtain publication 519, “File a tax
return”, “File for a tax refund” or “Do not file”. Tax has 17 predicates and 12 input
parameters, 8 of which are Boolean types and the rest are integer types.

The test intervals for the integer type input parameters Age, SpouseAge and
SelfEmployedIncome are so specified that they have two sub-domains each. For example,
the test interval for Age is [45, 85] and all conditions that use Age checks to see if Age <
65; so Age’s test interval is effectively divided into two equally sized portions.

GrossIncome (GI) is a more complicated integer type input parameter. Its test interval is

61

[0, 4100], roughly divided into six portions. GI is involved in two decisions: GI < 600
and GI > minTaxableGl. minTaxableGI depends on a taxpayer’s marital status, age and
spouse’s age, and takes one of the following values: 1700, 2300, 2900 and 3500. The
total number of effective combinations for Tax is 12,288 (2'! x 6). The solution density
of this search space is high, all combinations are feasible.

Real representation is used: a Tax chromosome is an array of 12 integers. The
parameter values used in this experiment are: initpopSz = 50, parentSz = 10, Gmax = 50,
Xr = 0.6, Mr = 0.8, CIf = 2 and Tmax = 0. Maximum number of tests is 1050. Three
experiments were made on Tax:

e. randy,

f. genet with uniform crossover and uniform mutation, and

g. random parent selection (without genet) with uniform crossover and uniform
mutation.

Tax is a different type of problem from Triangle. Its search space is much smaller
and more feasible than Triangle’s. Tax makes many Boolean valued comparisons, which
would be difficult to handle with an arithmetic fitness function. Moreover, its inputs do
not share the same domain, its most difficult combination is not readily identifiable since
complexity of a predicate is not always obvious, its genes have very low number of
alleles — effectively only two each for all but G, and its chromosome is longer — 12 loci.

Test solution resemblance is one important way in which Tax differs from Triangle.
Test solutions for Tax are necessarily more similar than those for Triangle. In the case of
Triangle, low diversity in the parent gene pool helps genet to converge as illustrated in

sub-experiments ¢ and d; but resemblance between parent and offspring is not necessary.

62

Any {a, b, ¢c) combination where a = b = ¢ makes an equilateral, so it does not matter, in
the combinations that have two same value genes, what values these genes take. This
flexibility is not the case in Tax.

A test that wants to reach any of Tax’s deeply nested predicates (14, 15 and 16)
must first traverse the sub-path (T4, T5, F8, T9, F12, F13). This means the following
parameters must have their values as: d = 1, ¢ > 600, f =1, g =0 and h = 0. The
parameter values of d, e, f, g and h form a building block which is necessary for the
formation of tests to cover predicates 14, 15 and 16. That there is a necessary parent-
offspring resemblance in Tax suggests the application of traditional GA theory and
selection to be more dominant than adaptation.

It is preferable that genetic operators refrain from breaking up fit building blocks so
that fit schemas may be reused in subsequent generations. However it is not always easy
to identify fit schemas and the fitness of a schema depends on the current target.
TaxTestGenome uses uniform crossover and uniform mutation. Since tests in a parent
pool have some branches in common, a vertical exchange of genes at alternate positions
allows genet to explore the search space without causing too much disruption to fit
blocks. Mutation is applied uniformly across the Tax chromosome because the number of
alleles for each parameter is near uniform.

The results from five runs reported in Table 6.2 supports our hypothesis. Sub-
experiment f outperforms sub-experiments e and g quite significantly even when run with
seed number 17 is excluded from the average. Sub-experiment f uses fewer tests and
achieves full branch coverage on Tax. randy (sub-experiment e) does much better than

sub-experiment g. Sub-experiment g could not cover Tax within Gmax. We attribute

63

randy’s relatively good performance to the search space which is [defined to be] quite
small and highly feasible; two conditions favorable to random search. Wider test intervals
would prove more difficult for randy. That there is a considerable performance difference
between sub-experiments f and g suggests the significant role selection pressure (genet)

plays in covering the Tax program. Selection helps useful schema survive to the next

generation.
Table 6.2 Results for Tax
Number of branches & tests

Seed e f g

11 34 590 34 302 33

13 34 790 34 518 31

17 33 1050 | 34 194 33

19 34 210 34 212 33

23 34 250 34 446 28

Average 33.8 578 34 13344 | 316

Excl. #17 34 460 34 |369.5 | 31.25

40
o - B ,
o
g
2 s G i —¢©
8 20 , ' , : | — f
S5 i | g
Q : .
& 10
1 4 7 101316 1922 25 28 31 34 37 40 43 46 49
Generation

Figure 6.2 Evolutions of Tax sub-experiments

Figure 6.2 shows the coverage achieved as the search progresses through the
generations. The steep ascent of the graph for sub-experiment f shows high evolvability.

The search without selection pressure (sub-experiment g) performs even worse than

64

random search. Another reason for this poor result is the uniform crossover operator
prevents chromosomes from changing too much, so the search is hindered from exploring
the input space as aggressively as sub-experiment e.

Table 6.3 shows the tests from three runs in the order in which they were found by
genet to cover predicates 14, 15 and 16. We analyzed these tests and found all but two,
were produced by mutation which means selection and crossover helped to set the stage
for useful mutation to occur. Mutation alone (sub-experiment e) was not as efficient as
selection, crossover and mutation (sub-experiment f).

Table 6.3 Sample Tax test data

Seed Test data Trace Origin
13 |1]11768212221100049511|FOF2F3T4T5F8T9F12F13F14 I

13 |2 1161471996100147401 {FOT2T4T5F8T9F12F13T14T15 M g0
13 |3 1180471996100130901 |FOF2T3T4T5F8T9F12F13T14F15T16|(M g20
13 |14 1180481996100130900 [FOF2T3T4T5F8T9F12F13 T14F15F16|M g25
17 |5 11845012711100031010|{FOF2T3T4T5F8T9F12F13F14 I

17 |16 |[059681762100134901 |TOT1T4T5F8TOF12F13 TI14F15T16 I

17 (7 1059681762100147601 |TOT1T4T5F8T9F12F13T14T15 M g0
17 |8 [1847313433100131000|FOF2F3T4T5F8T9F12F13T14F15F16 |Xg7
19 |9 |0776311367100047101|TOF1 T4T5F8T9F12F13F14 |

19 [10|10656511023100147101|TOF1 T4T5F8 T9F12F13T14T15 X g0
19 |1110656511023100133501|TOF1 T4T5F8T9F12F13T14F15T16 Mgl
19 112|10656511023100133500|TOF1 T4 T5F8T9F12F13T14 F15F16 M g4

I=initial population, X=crossover, M=mutation, gN=generation N
The similarity of gene value between test data 2 and 3 after a span of 20
generations illustrates schema survival. Notice the high resemblance between the
following pairs of test data: 3 and 4, 6 and 7, and 11 and 12. The two crossovers occurred
as follows:
before recombine 1 84 7913400100031000 | 1797313433000137601
after recombine 1797913400000037601 | 1847313433100131000

before recombine 0 58 6511023000143600 | 0656511409110047111

after recombine 0586511409010043610 | 0656511023100147101

65

6.3 Subalign

Subalign is a sequence alignment program written in C which is freely available (RDP
2001). The original (not instrumented) program is 2211 lines long®. Subalign takes 4
input strings: Organism filename, GeneBank filename, Output filename and Options; and
we instrumented 44 of its predicates. These predicates deal with validating command line
arguments.

Indirect real value representation is used: a Subalign chromosome is an array of 4
integers; each integer is an index into an array of real values. We created representative
data for each input domain. The number of choices for Organism, Genebank, Output and
Options are six, six, three and 30 respectively — these are minimal number of choices.
This makes a total of 3,240 combinations. The number of choices for the input parameter
Option is disproportionately higher than the rest. This suggests a higher mutation rate for
the gene representing Option is appropriate.

Subalign is slightly different from Tax. It also deals with non-arithmetic predicates
and its inputs do not share the same domain; but its chromosome is much shorter and the
number of alleles per gene is higher. Like Tax, it is not evident what adaptation pattern is
suitable to cover Subalign. Moreover unlike Triangle, biasing the genetic operators
towards one test solution does not make it any easier to find other test solutions. Test
solutions for Subalign are also necessarily similar, perhaps more so than Tax. This is
because processing of the Option parameter depends on the first three parameters having

no errors. Table 6.5 shows a few tests found by genet with random seed number 17.

¢ While experimenting with Subalign, we found an error in the program and corrected it. The variable ecoli
on line 1987 should be initialized to NULL.

66

SubalignTestGenome makes use of uniform crossover and non-uniform mutation.
The Option gene is seven times more likely to mutate than the other genes. The parameter
values used in this experiment are: initpopSz = 50, parentSz = 10, Gmax = 50, Xr = 0.6,
Mr = 0.8, CIf = 2 and Tmax = 0. Maximum number of tests is 1050. Three experiments
were performed on Subalign:

h. randy,

i. genet with uniform crossover and non-uniform mutation, and

j. random parent selection (without genet), with uniform crossover and non-uniform
mutation.

Table 6.4 reports the results of these sub-experiments. Sub-experiment i does much
better than sub-experiments h and j. Sub-experiment i achieved full branch coverage for
Subalign with an average of 587 tests. This result is encouraging for genet because the
search space we defined for Subalign is small and feasible. Yet sub-experiment i which
uses genet’s fitness cum selection capability, outperforms randy. That sub-experiment 1 is
performed significantly better than sub-experiment j illustrates the important of fitness
based selection to the problem of covering the 44 predicates of Subalign.

Table 6.4 Results for Subalign

Number of branches & tests
Seed h i j
11 85 88 860 78
13 84 88 554 86
17 86 88 356 87
19 83 88 842 81
23 36 38 320 33
Average | 84.8 88 586.4 83

67

Figure 6.3 depicts that search progress of the Subalign experiments. The graph for
sub-experiment i ascends more rapidly than the other two graphs; attesting to its superior

quality of search.

100
90 A
80 -
70 1
60 -
50 A
40
30 |
20
10

0 LIS L I O I O A I G A A A O 4

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49

Generation

Branch Coverage

Figure 6.3 Evolutions of Subalign sub-experiments

68

69

ST0CTO[ST0OEE ouQqmodar Iaye
STOE0|ST 0T ¢ ouquooar a10jaq
18 ur X Aq poonpord ¢1 0 € €

IEL| ObLYELTLS 0L9=d- bes'[ndimo
€z0c€ ommumoyge| 8€L LEA 0€d 6T 874 LTLTTA 1TL 614 814 614 81| P003'q3j01d NSS HOog s3iog
S10¢ ¢ arenumorogeq | L1 9T 9T 9€d S€A SEL 9EL S€A SEL 9€L SEI SEL pIs-Tjoogou s31og

S| TIAO0TIE€ITI 101 6L 8T LA0A 8L LA0ALL 0 €T0€EE

1€L 6€L ‘0=d- bes' 1ndino

L10€7 ovnusoge| 8€J L€ 0€d 624 8T LTLTTA 1TA 614 8TL 614 81d| Poodq8oid NSS 10og sdiog

S10€z ummaiojeq | LTHITA 9TA9EL SEA SEL 9€L €4 SEL 9€d S€4 SEL pIs'ijoog s310g

BN| IO €42 T 0L 6L 84 LJ 04 8L LI 04 LL 0d LIOET

v€d $EL €€ €7 TP €4 1 Ovd 6€d OPLYEL:TL9999=d

8€A LEA THd O 6€4 8€A LEA 0€A 6T 8TA LTI TTA - oseuue[dOj=1- bos [indino

C10€zl€1010 omquooersoye| TEI TEL LTI TTA OCL 6TL 8TA LI 91A 9T 9€L S€A| PooS gS3oId 1SS 10og sSiog

€10T12|ST0¢€0 smquosaraiogeq

SELOEL SEA SEL 9€d SEA SELCTI0TA €A TA TA 0L

pIsTjoog sSIlog

18X| 946AYL €424 1401 61 84 LA 04 81 L 0 LL 03 S10€T
0°‘0z=uwnjoo- bas ndino

€€1 924 ST Td €24 TTL| poosqdoid NSS Hoogou sdiog

1ZL 614 814 LTA 9L 9T 9EL S€A SEL 9€4 S€ SEL pisjoog s8107

1| TIJ0Td€4TA 14016184 LA 04 8L LI 04 LL 0 £101¢
bas 1indino

p€d YEL €64 1TL 61d| POOSq8YoId (1SS M0oF s3i0¢

ST 614 814 LT 9TA 9T 9€4 S€ SEL 9€1 $€4 SEL PIS'TOOgoU 3107

1| 9ELSEISELTIIO0II 6L 84 L 04 8L L4 04 L1 0 10€¢€
v€A EL €64 €vA Thd T€d Tvd OFd 6€4 OvLYEL:TLY999=d

8€d L€ Tvd Ovd 6€d 8€d LEA 0€d 6Td 8TA LTL T2 - oseuue[dN=I- bes' [Jndino

7€4 €L LTATTA 124 0T 61L 8TIL LI 9T 9EL §€4| POOS'q30Id (1SS HOoF S310¢
SE19€d S $€L 9€ $€4 SEL TIA 0T €424 1A 0L pIs'oog 3101

1| 94SAvL€ATA 1401 6L 84 LA 04 8L LJ 0 LL 01 S10€0
Litisle} 20BI1], ejep 18],

e)ep 1593 uBneqng sdwes '9 JqeL

6.4 Summary
1. The objective of the experiments was to ascertain the type of program that would
benefit from using genet.
2. genet’s performances on three test programs: Triangle, Tax and Subalign were
compared with that of randy’s, a comparable random test generator.
3. Table 6.6 compares the three test programs in five ways.

Table 6.6 A comparison of test programs

Test program Triangle Tax Subalign
(Branches) (20) 34 (88)
Solution density Moderate High High
Decision type Arithmetic | Non-arithmetic | Non-arithmetic
Chromosome length 3 12 4
Alleles per gene High Low Low
Organization Not necessary Necessary Necessary

4. The results of the experiments show that genet is more efficient than randy when
it is necessary for tests to have information in common. This necessary
organization of test solutions occurs in Tax and Subalign. As demonstrated by the
with-and-without-genet sub-experiments, selection played a significant part in
helping genet to outperform randy in Tax and Subalign.

5. Selection is less of a factor in Triangle because it is not necessary for its tests to
be organized. Even without genet (but with appropriate adaptation operators), it
was possible to outperform randy. However, the best performance was achieved
with genet and with appropriate adaptation operators. An adaptation operator is

considered appropriate if its use with genet outperforms randy.

70

Chapter 7 Conclusion and Suggestions for Further Work

The objective of this thesis was to find a simple way to automatically generate tests to
cover the structure of a program. By simple, we mean to give minimal information to the
automatic test generator (ATG). Consequently, the ATG is left with the burden of
“learning” about the structure of a program and we suggest that this can be done quite
effectively with the aid of formal concept analysis on trace data. This thesis proposes that
a genetic algorithm and formal concept analysis is a simple and yet effective way to
generate test for branch coverage automatically. genet is our implementation of this idea.

Ideally, one would like a systematic ATG such as genet, to at least outperform
random search on any given test program. In reality, this is not possible according to the
No Free Lunch theorem (Wolpert 1995). Therefore, we decided to make genet be
composed of two parts: its fixed fitness cum selection core, untouchable to its users
except through the parameters in the driver program and its variable adaptation
mechanism, constructed by its users. Using this division, we could examine the
interesting observation made in (Altenberg 1995) about the true source of power of
genetic algorithms and the myth that schema abundance signals high search quality, a.k.a.
evolvability, and find out whether genet’s fitness cum selection core makes a difference
in the search for test solutions. An alternative to our approach, and possibly more
challenging, is to fix both the selection and adaptation mechanisms, and then search for
types of programs where each configuration suits best.

The results of our experiments support the proposal of this thesis and they agree
with present day theories (Wolpert 1995 and Altenberg 1995). Specifically, we found

genet exerted more influence for Tax and Subalign than Triangle, and we conclude that

71

Tax and Subalign are representative of the types of programs well suited to genet. These
two programs share the following characteristics: non-arithmetic decisions with a high
degree of necessary organization amongst test solutions. Necessary organization means
test solutions need to share information (Chaitin 1979) and so using selection pressure
which is the force genet is essentially exerting to create fitter offspring makes sense as
there is natural parent-offspring resemblance. After all, a genetic algorithm only works if
there are patterns to be found (Mitchell 1996, page 118). Adaptation played a more
significant role when the resemblance factor is less necessary.

One possible limitation with our evaluation of genet is that it does not compare
genet with other ATGs in a direct way. This comparison could be useful to estimate the
price, if any, of genet’s “simplicity”. A direct comparison may have been achieved for
example by using the test programs experimented with by other ATGs or experimenting
with other ATGs on our test programs. Triangle is one exception because its source code
was listed in (McGraw 1998). We did however make some oblique comparisons. Their
results illustrate genet exhibiting characteristics consistent with observations made of
other ATGs (Khor 2004). A further criticism of our evaluation is the small number of test
programs and their relatively small size. In software engineering where large presumably
complex programs are deemed more interesting and carry more legitimacy, size does
matter.

In addition to those already mentioned, there are a number of areas where genet
could be improved or extended.

1. Although automatic test generation has been treated as a single optimum

optimization problem previously (Korel 1990), we approached it as a

72

multimodal function or multiple constraint satisfaction problem and we are
interested to find each optima rather than dwell on besting a solution. There is
work relating to evolving dissimilar sub-populations or niches in a search
space (Johnson 2001 provides some references) which may be interesting to
explore to either enhance or replace genet’s rather simplistic GA component.
We did not go down this track in the present work to keep genet simple and
relatively easy to analyze.

genet automatically associates tests it generates with the branches they
exercise. We have suggested that this information could be useful for a
number of software engineering tasks such as test selection, test minimization
and understanding of dynamic program behavior (Khor 2004).

An incremental approach to concept formation (Godin 1995) could improve
genet’s execution time. We did not notice any significant difference between
the execution times of genet and randy in our experiments.

Chapter 4 hinted at the misdirection problem which occurs when parent
selection is continuously influenced by a particularly difficult (if not
unreachable) branch and this may cause genet to under perform. genet tries to
alleviate this problem with the Tmax parameter which is set by the user and
counts the number of times a current target may not change before Tmax
random individuals are introduced into a generation. This is a rather crude
method. We did not use Tmax in our experiments (7max=0). But we did run

genet with 7max and got good results.

73

genet stops when it does not find any suitable parents. This situation and
others having to do with unexpected errors could be handled more gracefully.

A more rigorous approach to the perennial problem of configuring GA
parameters would be nice. We confined our experiments to an initial
population size of 50 — 100 and used the same set of values for genet’s other

parameters.

74

References

Agner Fog (2004). http://www.agner.org/random/randomec.htm

Altenberg, L. (1995) The Schema theorem and Price’s theorem. In Foundations of
Genetic Algorithms 3, ed. D. Whitley and M. Vose. Morgan Kauffman, San Francisco,
pages 23-49.

Ball, T. (1999). The concept of dynamic analysis. ESEC/SIGSOFT FSE, pages 216-
234, 1999.

Burgess, C. J. (2003). Evolutionary Computing. University of Bristol Computer
Science Lecture Notes.

Cantu-Paz, E. (1997) A survey of parallel genetic algorithms. Illigal Report No.
97003, May, 1997.

Chaitin, G. J. (1979). Toward a mathematical definition of “life”. In R. D. Levine and
M. Tribus, The Maximum Entropy Formalism, MIT Press, 1979, pages 477-498.

Chang, K., Cross, J., Carlisle, W. and S. Liao. (1996). A performance evaluation of
heuristics-based test case generation methods for software branch coverage.
International Journal of Software Engineering and Knowledge Engineering, vol. 6, no.
4, pages 585-608, 1996.

Clarke, L. (1976). A system to generate test data and symbolically execute programs.
IEEE Trans. Software Eng., vol. SE-2, no.3, pages 215-222, Sept. 1976.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive
systems. Ph.D. thesis, University of Michigan, Ann Arbor. In (Mitchell, 1996 page
175).

DeMillo, R.A., Lipton, R.J. and F.G. Sayward. (1978) Hints on test data selection:
Help for the practicing programmer. IEEE Transactions on Computer, vol. 11, part 4,
pages 34-31, April 1978.

Duran, J. W. and S. Ntafos. (1981). 4 report on random testing. In Proceedings of the
5th International Conference on Software Engineering, San Diego, California, pages
179 — 183, 1981.

(FCAHome) Formal Concept Analysis Homepage
http://www upriss.org.uk/fca/fca. html

Ferguson, R. and B. Korel. (1996). The chaining approach for software test data
generation. ACM Transactions on Software Engineering Methodology, vol. 5, no. 1,

75

pages 63-86, 1996.

Ganter, B. and R. Wille. (1999). Formal concept analysis: mathematical foundations.
Springer, 1999.

Godin, R., Missaoui, R. and H. Alaoui. (1995). Incremental concept formation
algorithms based on Galois (concept) lattices. Computation Intelligence, vol. 11, no.2,
pages 246-267, 1995.

Goldberg, D.E. (1989). Genetic algorithms in search, optimization and machine
learning. Reading, MA: Addison-Wesley, 1989.

Goldberg, D. E. and K. Deb. (1991). 4 comparative analysis of selection schemes used
in genetic algorithms. In Foundations of Genetic Algorithms, San Mateo, California,
USA. Morgan Kauffman Publishers, pages 69-93, 1991.

Gray, F. (1953). Pulse code communication. United States Patent Number 2,632,058.
March 17, 1953.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms.
IEEE Transactions on Systems, Man and Cybernetics 16, no. 1, pages 122-128. In
(Mitchell, 1996 page 176).

Grefenstette, J. J. and J. E. Baker (1989). How genetic algorithms work: A critical
look at implicit parallelism. In Proceedings of the 3™ International Conference on
Genetic Algorithms. Morgan Kauffman, June 1989.

Harman, M., Hierons, L., Baresel, A. and H. Sthamer. (2002) Improving evolutionary
testing by flag removal. In Genetic and Evolutionary Computation Conference
(GECCO), 2002.

Haupt, R. L. and S. E. Haupt. (1998). Practical genetic algorithms. Wiley-
Interscience, 1998.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor:
University of Michigan Press. 1975.

Ince, D.C. (1987). The automatic generation of test data. The Computer Journal, vol.
30, no. 1, pages 63-69, 1987.

Johnson C. G. (2001). Understanding complex systems through examples: a
Sframework for qualitative example finding. University of Kent at Canterbury. April
2001, pages 26 and 27.

Jones, B.F., Sthamer, H.-H. and D.E. Eyres. (1996) Automatic structural testing using
genetic algorithms. Software Engineering Journal, pages: 299-306, September, 1996.

76

Khor, S. and P. Grogono. (2004). Using a genetic algorithms and formal concept
analysis to generate branch coverage test data automatically. Accepted by The 19th
IEEE International Conference on Automated Software Engineering (ASE 2004).

Korel, B. (1990). Automated software test data generation. IEEE Transactions on
Software Engineering, vol. 16, no. 8, August 1990.

Linding, C. (1999). 4 concept analysis framework.
http://sensel.ieec.uned.es/manuales/tkconcept/welcome.html

McGraw, G., Michael, C., and M. Schatz. (1998) Generating software test data by
evolution. Technical Report RSTR-018-97-01, February 1998.

Mitchell, M (1996). An introduction to genetic algorithms. MIT Press, 1996.
Montalbano, M. (1974). Decision tables. Chicago: Science Research Associates, 1974.

Ould, M. A. (1991). Testing — a challenge to method and tool developers. Software
Engineering Journal, 1991 6(2) pages 59-64.

Pargas, R.P., Harrold, M.J. and R.R. Peck. (1999) Test-data generation using genetic
algorithms. Journal of Software Testing, Verification and Reliability, 1999.

Radcliffe, N.J. and P.D. Surry. (1995). Fundamental limitations on search algorithms:
evolutionary computing in perspective. In Computer Science Today, pages 275-291,
1995.

(RDP 2001) http://rdp.cme.msu.edu/download/programs/Subalign/

Sthamer, H.-H. (1995). The automatic generation of software test data using genetic
algorithms. Ph.D. Thesis, University of Glamorgan. November 1995.

Syswerda, G. (1991). Schedule optimization using genetic algorithms. In L. Davis
(Ed.), Handbook of Genetic Algorithms, New York: Van Nostrand Reinhold, page
347. In (Haupt 1998, page 92).

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In J.D. Schaffer (Ed.),
Proc. Of the Third International Conference on Genetic Algorithms, Los Altos, CA:
Morgan Kaufmann, pages 2-9. In (Haupt 1998, page 106).

Tracey, N.J. (1997). Test-case data generation using optimization techniques. — first
year dphil report. Department of Computer Science, University of York, 1997. In
(Tracey 1998)

Tracey, N., Clark, J. and K. Mander. (1998). Automated program flaw finding using
simulated annealing. ACM SIGSOFT Proceedings of the 1998 International

77

Symposium on Software Testing and Analysis.

Wolpert, D. H. and W.G. Macready (1995). No free lunch theorems for search. Tech.
Rep. SFI-TR-95-02-010, Santa Fe Institute, 6. February, 1995.

78

Appendix A1: Design and implementation of genet

/* TriangleTestGenome.h */

#ifndef TRIANGLE TEST GENOME H
#define TRIANGLE TEST GENOME_H

#include <vector>

#include <stdio.h>

#include "../../lib/ TestGenome.h"
#include "../../lib/randomc/randomc.h"

using
const
const

const

class

namespace std;

int DATA SZ = 100;
int TRACE SZ = 100;
int CMD 87 = 120;

TriangleTestGenome : public TestGenome {

public:
TriangleTestGenome (int) ;
TriangleTestGenome (const char*, int);
virtual ~TriangleTestGenome () {}
bool evaluate(_ScoreBoardé&);
void recombine(TestGenome&) {}
void recombine (TriangleTestGenome&) ;
void mutate();
void age() { --life d; }

void die() { life d = 0; }
int life() { return life d; }
void refresh data():;
const char* genes() { return data d; }
const char* behavior() { return trace d; }
void print{();
private:
inline int gene(int loci) { return genotypel[locil; }
inline void gene(int loci, int wval) { genotypel[loci] = val;

static TRandomMersenne rmg;
static int RandomInt {(int min, int max)

{ return rmg.IRandom{min, max); 1}

static int RandomGene() { return RandomInt (-1, 998); }
void run program();

bool register trace(_ScoreBoard&):;

char data d[DATA Sz + 1];

char trace d[TRACE SZ + 1];

int life d;

vector<int> genotype;

}i

TRandomMersenne TriangleTestGenome: :rmg(23);

TriangleTestGenome: :TriangleTestGenome (int 1life) {
life d = life;

genotype.push back (RandomGene ())
genotype.push back(RandomGene ()) ;
genotype.push_back(RandomGene (})

!

.
2

79

}

refresh dataf();
}

void TriangleTestGenome::refresh data() {
sprintf(data d, "%d %d %d", genotype[0], genotype[l], genotypel[2]);
}

TriangleTestGenome: :TriangleTestGenome (const char* input s, int life)
life d = life;
snprintf(data d, DATA Sz+1, "%s", input_ s);
vectorize (input s, genotype);

}

bool TriangleTestGenome::evaluate(ScoreBoards& fe) {
run_program(); // writes to trace.out
ifstream trfin("trace.out");
assert (trfin); // file opened ok
trfin.getline(trace d, TRACE SZ);
assert (trfin); // line read ok
trfin.close();
return (register trace(fe));

}

void TriangleTestGenome: :print () {
cout << "data " << data d << endl;
cout << "trace " << trace d << endl;
cout << "life " << life d << endl;

}

// writes to trace.out

void TriangleTestGenome::run program{) {
char cmd[CMD SZ + 1];
snprintf(cmd, CMD SZ, "%s %s", "java Triangle ", data d);
system(cmd) ;

}

bool TriangleTestGenome::register trace(ScoreBoards& fe) |
char *ts = new char[strlen(trace d) + 1];
assert(ts != 0);
strcpy(ts, trace_d);
char *p = strtok(ts, " ");
int pos = 0;
bool changed = false;
while (p != NULL) {
assert ((p[0] == 'T") (|| (p[0] == "F"));
if (p[0] == 'T') {
pos = atoi(p+l):
if (fe.test(pos, true)) {
fe.clear (pos, true);
changed = true;
}
}
else { // (pl[0] == "F")
pos = atol(pt+l);
if (fe.test{pos, false)) {
fe.clear (pos, false):
changed = true;

80

}
p = strtok(NULL, " ");

}
delete [] ts;
return changed;

}

void TriangleTestGenome: :recombine (TriangleTestGenomes& tg)
// shuffle crossover

int xlocil = RandomInt (0,2); int xloci2 = RandomInt (0, 2);

int tmp = 0;

tmp = genotype[xlocill];
genotype[xlocil] = tg.gene(xloci2);
tg.gene({xloci2, tmp):;

// uniform crossover
/* int xloci = RandomInt(0,1):;
int tmp = 0;
for (int i = xloci; i < genotype.size(); i+=2) {
tmp = genotypelil:;
genotype[i] = tg.gene(i);
tg.gene(i, tmp):;
}
*/
refresh data();
tg.refresh data();

}

// uniform mutation

void TriangleTestGenome: :mutate() {
int mloci = RandomInt (0, genotype.size()-1);
genotype[mloci] = RandomGene();

refresh dataf();

}

#endif

81

{

/* TriangleEvolTestDriver.C */

#include "../../1ib/EVol1DATG.h"
#include "../../1lib/FCA FitnessEvaluator.h"
#include "TriangleTestGenome.h"

int main(int argc, char *argv[]) {
// srand(time (NULL)); // for experiments without genet
int num parents iter = 10;
// int num predicates = 10;
int num iters = 50;
char inputfile[] = "Triangle.testdata”;
int input line size = 20;
double pcrossover = 0.6;
double pmutation = 0.8;
int glife = 2;
int num chances = 0;
int init popsize = 100;
EvolDATG<TriangleTestGenomnme,
FCA FitnessEvaluator<1l0,TriangleTestGenome> >
edatg(num parents iter, num iters, inputfile, input line size,
pcrossover, pmutation, glife, num chances, init popsize};
long begin = time (NULL);
edatg.run();
long end = time (NULL);
edatg.print ()
printf ("\n%s
exit(0);

$1d\n", "Execution time: ", (end - begin));

82

€8

{

{ (youeaq ‘ejeoTpead)isal-ebrIsscd youelq uInisIr }
(en1] = yYyouraq Tooq ‘eoj3edIpexd 3juTr)isel Tooq

{ ¢(youeaq ‘s3eorpoad)IesTd 0HRISAOCD UDURI]
(enxq = youeaq Tooq ‘sjeotpsaid 3JUT)IBSTD PIOCA

{ ¢()ouop-sbrIsA0d youeriq uInilsx } ()suocp 1o0q

{ ¢()ox008'2bhRIDAOD UYDURIQ UINIDI } ()eI00S JUT
£()3utad proa

1 (%<3UT>I03094a ‘3UT)I3S933TINISD pTOA

{ (3<BWOUSHISII>IOIDOA) 93ENTRAD PIOA

{} ()ZoaenTeAESSeUITI VDA~

TeniaTa
}

TeniITa
TeNIATA
TenlITA
Ten3aTa
TenalaTa
TeniiTa
TenlaTA

{ (3uT) Z01eNTRASSOUIT YOI

] <PWOUSHISDL>I0IRNTRARSSBUITT
Io3enTeAdSSaUlTH WOd SSBID

oTTand :

rotTand

<BUIOUSDHISDI, SSBTO ‘SHIVOIUHAYIN JUT> @3erdwsl

‘A

/x juex s$3T pue 3deoucd ® SPTOY SSBID
2INJONIYS ©IBD © x/ } WSTHIAODUOD SSBID
<SAIYDIAEMAN 3UT> o3eTdwel

V

! (3<2InqTI33Y ‘309 lqo>dew) @zATRPUR PTOA TENIITA
{} ()xozATeruyadeouoD~ TENIITA
{ } ()aszATeuyadsouo)
oTTand
} aszATeuyadsouo) sseTd
<93ngTI3IY¥ sseld ‘3oslqQ sseTo> o3erdwel

Vi

1

‘0

‘peburyoun 318HIR] SOWTAU UT
/S00URUD XPBW JUT
{19670 JULSIIND <SEIVIIAHIIN>ISSIT]
tpe3josjoad
{()autad pTOA TENIIATA
?()39bael <SHIVOIQIYIN>ISSITY TBNIATA
{} ()paeogezoog yourigd~ TENIITA
! (seoURYDU JUT) PIROGOIODS UOURIGH
:otTOand
} <SEIVDOIQTIIN>PIROgeIODS youeid
oTTand : PIROEOIODS Youeigy SSRTD
<SHLYOIAA¥AN 3JuT>ejerdws)y

/x
{0=(enI3=ydueIq TOOJ ‘3UT)31SS] TOOg TeENIITA
0= (®NI3=YdurI(TOOC ‘IJUT)ILSTD PTIOA TENIITA
{0=()suop TOOQ TeNn3iTta
{0=()®x100s 3JUT TeENIITA
{0=()3uTtad pTOA TENIATA

x/
0=(3<3UT>I0309 ‘3UT) 3§933TINISH PTOA Teniita
= (3<OWOUSHISIL>I0FODA) 93ENTRAS PTOA TBNIITA
{} ()zoaenTeadssoulTd ~ TENIITA

:o1Tand

} preogexoog oITand : I03PNTRAESSD2URTI SSBID
<dwousnisel sseTo>oleTdwal

pIeogaIoos

{0=()3utad pIocAa TeNn3aTa

{0=() I0TARYS] xJBPYD 3JSUOD TBNIATA
{0=()sousb xIPYD JSUOD TENIITA
{0=()®ITT IUT TeN3IaTaA

{0=()obe pTOoa TENIITA

{0=()93e3NW PTOA T[BNIATA

0= (¥2WOUSH]SB],) SUTQUODST PTIOA [RNIITA
0= (3pIROgeIODS)DIRNTRAD PTOA TRNIITA
{} ()swousHissl ~ TeNIATA

10=(9JTT 3JUT ‘sousbh ,IeYD 3ISUOD)SWOUSHISSL //
{0=(9JTT IUT)ouWQUsHISDL //
cotTand

}swousHiyssl Sserd

¥8

!gjusaed <3UT>I03D8A

{I03enTeAs SSSUlTI JIOJENTRAHSSOULTH

£878973 UTW <SWOUSHISSIL>I0IDDA

/$3593 MU <OUWOUSHISSL>I0I0BA

{3597 TR <BWOUSHISSL>IO0IDdA
{STENPTATPUT MBU 8ONPOIJUT TOOg

{zs Queb JuT fs8TI3 XePW JUT (P ©ITT IUT
{uotiejnud oTgnop !{asaossoxod sTgnop

{zg anduT IUT {S8TTIIS9] »IBYD

/P UOT3IBISIT JUSIIND JUT

suoTjeasush xew // !p SUOT1RISIT XPW JUT
ozTs uotaerndod s/ {p uoTiexslT xod s3S93U JUT
! ()o0onpoxjuT pToA

! ()suTquoosI pPTOA

{()®3e3NW pPTOA

! ()Yausazed joaTes JuUT

{()uoTieasush IxXoU SATOAS PTOA

{(YuoTaerndod 8zZITBI3ITUT PTCA

tps3josjo
{ {()ox0DS°I03BNTRAD SSOU3TI uUINIaI } ()dIODS 3JUT
{ {p uoT3eIelT IJUSIIND UINISI } ()UOTIBRISIT JUSIIND JUT

{()3utad pIoa
{()yunx pToa

{ ‘=oTT33se1 [] °3879p } ()OILVATOATE~ TENIITA
{{(quT ‘3uUuT ‘3UT ‘eTgnop ‘eTgnop ‘JuT ‘,IUD 3SUOD ‘3UT ‘JUT)HIYATOAT
OTTC

} 9ivdIoad s
<JIOJ}BNTRAMSSOUITI SSBID ‘SUOUSH]SD] SSeTO>S3eT

xd

nd
seTo
dwen

— IDATIJ
I03BeNTeAdSSSUlTd ¥Od |€E———m—) O ——

}swouenisal otrand :

o
uotiejusweTduT S,3USITO //
SUIOUSHASDLISPUTRWSY SSBTO

sulousnlsay,

Appendix A2: Design and implementation of randy

/* TriangleRandomTest.h*/

#ifndef TRIANGLE RANDOM TEST
#define TRIANGLE RANDOM TEST

#include <iostream>

#include <fstream>

#include <stdio.h>

#include <assert.h>

#include <stdlib.h>

#include "../../1lib/ RandomTest.h"
#include "../../lib/randomc/randomc.h”
using namespace std;

const int DATA SZ = 100;
const int TRACE_SZ = 100;
const int CMD SZ = 120;

class TriangleRandomTest : public RandomTest {

public:
TriangleRandomTest () ;
virtual ~TriangleRandomTest ()} {}
virtual void evaluate(ScoreBoard&);
virtual void print();

private:
void run program();
void report score(ScoreBoardé&);
char data[DATA SZ2 + 1];
char trace[TRACE SZ + 1];

static TRandomMersenne rmg;
static int RandomInt (int min, int max)
{ return rmg.IRandom{min, max); }

}i

TRandomMersenne TriangleRandomTest::rmg(23);

TriangleRandomTest::TriangleRandomTest () {
int a = RandomInt (-1, 998);
int b = RandomInt (-1, 998);
int ¢ = RandomInt (-1, 998);

sprintf (data, "%$d %d %d", a, b, c);
}

void TriangleRandomTest::evaluate(ScoreBoard& sb)

run program(); // writes to trace.out
ifstream trfin("trace.out");
assert (trfin); // file opened ok

trfin.getline(trace, TRACE SZ);
assert (trfin); // line read ok
trfin.close();

report score(sb);

85

vold TriangleRandomTest::print{) {
cout << "data " << data << endl;
cout << "trace " << trace << endl;
}

// writes to trace.out

void TriangleRandomTest::run program() {
char cmd[CMD SZ + 1];
sprintf(cmd, "%$s %s", "java Triangle", data):;
system{(cmd) ;

}

// read from trace.out
// trace example: "TO F1 F500"
void TriangleRandomTest::report score(ScoreBoardé& sb) {
char *ts = new char[strlen(trace) + 1];
assert(ts != 0);
strcpy(ts, trace);
char *p = strtok(ts, " ");
while (p != NULL) {

if (p[0] == "'T")
sb.clear (atoi(p+l), true);
else if (p[0] == 'F")
sb.clear (atoi(pt+l), false);
else

cerr << "Something is wrong with " << trace << endl;
p = strtok(NULL, " ");
}
delete [] ts;
}

#endif

86

/* TriangleRandomTestDriver.C */

#include "../../lib/RandomDATG.h"
#include "../../lib/Branch ScoreBoard.h"
#include "TriangleRandomTest.h"

int main(int argc, char* argv[]) {
int num tests iter = 20;
int num iters = 50;
int init popsz = 100;
int max tests = 1100;

RandomDATG<TriangleRandomTest, Branch ScoreBoard<10> >
rdatg(num_tests_iter, num iters, init popsz, max_tests);

long begin = time (NULL);

rdatg.run();

long end = time (NULL) ;

rdatg.print ();

printf("\n%s %$1d\n", "Execution time: ", (end - begin));

exit (0);

87

19
!seyouriq 9sTeI <SIIVIIAAYAN>ISSITY
!seyouriq NI} <SHILVIIATYAN>I®SIT]
:po310930ad
! ()autad pToa TENIITA
{(enI3 = yduexq TOOJ ‘3JUT)3ISS] TOO(TeN3ITL
! (enx3 = yodueIq TOOJ “‘3UT)ILSTO PTOA TENIITA
{()®100s 3JUT TENIITIA
{()suop ToOog TeniiTa
{} ()paeogsioogyouriIg~ TENIITA
! (Ypaeogsaoosyourig
:oTTand
} preogszoog oTTgnd : pIrogsIodgyouerig SSeTO
<SHLYDIAAMAN 3ut>o3erdws)

4
.

‘0

{p=()3utad pTOA TEBNIITA

88

!pIROQ 9I00S PIROGDIOOS
{81897 MBU <31S9I>T07108A
{51897 TT® <3S9I>I07108A
{¢18873U JUT {S3S83U XPW JUT {zs Quab jut
{p UOT3RISIT JUSIIND JUT
{p SUOTIRIS]T XPW JUT
p uotaexeltT xod sissiu quT
{()ejerousb pTOA TENAITA
tpeinsjoxd
{()9x008 2UT
f£(yuoTieIDIT IUSIAND JUT
! (y3utad proa TEN1ITA
f{(yunx pTOoA TeniiTa
{} ()9Ilyquopuey~ TeniiTa
‘3UT ‘3UT ‘3UT)HIYquOpuURY
oTTand
} olvquopuey sserd
‘3se] sseTo> o3eTdwe)

£ (quT

<pPIROESIODS SSBTD

IoAL(]

{
uoTiejusweTAWT §,3USTID //
}aseLwopuey

o1Tand : 3ssTwopuey SSBTD

{0=()3uTad pToAa TENIITA

0= (eNI]=YdUrIq TOOJ ‘3UT)3$81 TOOJ TENIITA
=(9NIJ=yYourIq TOOQ ‘JUT)ILSTO PTIOA TeniliiTa
10=()=2x008 3UT TENIIATA
{0=()suocp TOOQ TENJ}ITA <
{} ()paeogexodg ~ TBNIITA
:oTTand

} parogezong SSeTD

(
{0=(3pIEOgaIODS)9jenTess PIOA TBN3ITA
{} ()3serwopuey ~ Ten3lITA
:oTTand
} 1ssluopuey sSsSeTD

Appendix B: Test programs

/* Remainder.java */

import java.io.*;

public class Remainder {
private static FileWriter fout;

private static void remainder(int A, int B) throws IOException {
int R = -1;
int Cy = 0, Ny = 0;
if (A == 0) {
fout.write("TO ");

}

else {
fout.write("FO ");
if (B == 0) {

fout.write("T1 ");
}
else {
fout.write("F1 ");
if (A > 0) {
fout.write("T2 ");
if (B > 0) {
fout.write ("T3 ");
while ((A - Ny) >= B) {
Ny = Ny + B;
R =A - Ny;
Cy = Cy + 1;
}
}
else |
fout.write("F3 ");
while ((A + Ny) >= java.lang.Math.abs(B)) {
Ny = Ny + B;
R =A + Ny;
Cy = Cy - 1;
}
}
}
else {
fout.write("F2 ");
if (B > 0) {
fout.write("T4 ");
while (java.lang.Math.abs(A + Ny) >= B) {
Ny = Ny + B;
R = A + Ny;
Cy =Cy - 1;
}
}
else {
fout.write("F4 ");
while ((A - Ny) <= B) {
Ny = Ny + B;

&9

R = java.lang.Math.abs(A - Ny);
Cy = Cy + 1;

System.out.println(A + "/" + B+ " =" 4+ Cy + " " + R);
}

public static void main(String[] args) throws IOException {
fout = new FileWriter("trace.out"):;
int n = Integer.parselnt(args[0]);
int d = Integer.parselnt(args[l]);
remainder (n, d);
fout.close():;

90

/* Triangle.java */

import java.io.*;
import java.lang.*;

public class Triangle {
private static String[] TRIANGLE TYPES = {" ", "scalene",
"isosceles", "equilateral", "not a triangle"}:;
private static FileWriter fout;

public static void main(String[] args) throws IOException ({
fout = new FileWriter(new File("trace.out"));
int a Integer.parselnt(args[0]);
int b Integer.parselnt (args[1l]);
int ¢ = Integer.parselnt(args([2]);
int d = triang(a, b, c}):
System.out.println(Integer.toString(a) + " " + Integer.toString(b)
+ " " + Integer.toString(c) + " " + TRIANGLE TYPES[d]);
fout.close();

}

private static int triang(int a, int b, int c¢) throws IOException ({
if ({a <=20) Il (b <=0) || (c<=0)) {
fout.write("TO ");
return 4;

}

else
fout.write("FO ");

int tri = 0;

if (a == b) {
fout.write("T1 ");
tri += 1;

}

else
fout.write("F1 ");

i1f (a == ¢) {
fout.write("T2 ");
tri += 2;

}

else

fout.write("F2 ");

if (b == c¢) {
fout.write("T3 ");
tri += 3;

}

else
fout.write("F3 ");

if (tri == 0) {
fout.write("T4 ");
if ((a + b <= ¢) |

| (b +c<=a) {l (a+ c<=Dhb)) {
fout.write("T5 ");

91

tri = 4;
}
else {
fout.write("F5 ");
tri = 1;
}
return tri;
}
else
fout.write("F4 ");

if (tri > 3) {
fout.write("T6 ");
tri = 3;
}
else {
fout.write("F6 ");
if ((tri == 1) && (a + b > ¢)) {
fout.write ("T7 ");
tri = 2;
}
else {
fout.write("F7 ");
if ((tri == 2) && (a + ¢ > b)) {
fout.write("T8 ");
tri = 2;
}
else {
fout.write("F8 ");
if ((tri == 3) && (b + ¢ > a)) {
fout.write("T9 ");
tri = 2;
}
else {
fout.write("F9 ");
tri = 4;

}
}

return tri;

92

/* Tax java */

import java.io.*;
import java.lang.*;

public class Tax {
private static String[] TaxStatus = {"Obtain publication 519.",
"File a tax return.", "Do not file a tax return.",
"File for a refund."};
private static FileWriter fout;

public static void main(String[] args) throws IOException {
fout = new FileWriter (new File("trace.out")):;
// marital status; O=single, l=married

int a = Integer.parselnt(args[0]);
// age; 45 - 85
int b = Integer.parselnt (args[l]);

// spouse age; 45 - 85

int ¢ = Integer.parselnt(args([2]);

// O=not citizen or resident, l=citizen or resident
int d = Integer.parselnt(args[3]);

// gross income; 400 - 800

int e = Integer.parselnt(args[4]);

// married at end of year; 0=no, l=yes

int f = Integer.parselnt (args[5]);

// other person claiming; O=no, l=yes

int g = Integer.parselnt(axrgs([6]):

// filing separate returns; O=no, l=yes

int h = Integer.parselnt(args([7]1);

// living together at end of last year; O=no, l=yes
int 1 = Integer.parselnt(args[8]);

// self-employed income; 300 - 500

int j = Integer.parselnt(args[9]);

// tips; O=no, l=yes

int k = Integer.parselnt(args[10]);

// witheld tax; 0O=no, l=yes

int 1 = Integer.parselnt({args[1l1l]);

int ts = tax return(a, b, ¢, 4, e, £, g, h, 1, j, k, 1);
for(int n = 0; n < args.length; n++)

System.out.print (args[n] + " ");
System.out.println(TaxStatus[ts]);
fout.close():;

}

private static int tax return(int a, int b, int ¢, int d, int e,
int f, int g, int h, int i, int j, int k, int 1)
throws IOException {

int mtgi = 0O; // minimum taxable income
if (a == 0) { // single

fout.write("T0O ");

if (b < 65) { // age

fout.write("T1 ");
mtgi = 1700;
}
else { // age >= 65

93

fout.write("F1 ");
mtgi = 2300;
}
}
else { // {a == 1) married
fout.write ("FO ");
if (b < 65 && ¢ < 65) {
fout.write("T2 ");
mtgi = 2300;
}
else {
fout.write("F2 ");
if (b < 65 || ¢ < 65) {
fout.write("T3 ");
mtgi = 2900;
}
else { // (b >= 65 && c>= 65)
fout.write("F3 ");
mtgi = 3500;
}
}
}

int ts = 0; // tax status

if (d == 0) { // not citizen or resident
fout.write("F4 ");
ts = 0;

}

else { // citizen or resident

fout.write("T4 ");
if (e <= 600) { // gross income
fout.write ("F5 ");

1f ({3 > 400) |} (k == 1)) { // self employed income or tips
fout.write("T6 ");
ts = 1;
}
else {
fout.write("Fé6 ");
if (1 == 1) { // witheld tax
fout.write("T7 ");
ts = 2;
}
else {
fout.write("F7 ");
ts = 3;
}
}
}
else { // gross income > 600
fout.write("T5 ");

if (e > mtgi) {
fout.write("T8 ");

ts = 2;
}
else {
fout.write("F8 ");
if (£ == 0) { // not married at end of last year

fout.write("F9 ");

94

if ((k==1) |l (3 > 400)) {
fout.write ("T10 ");
ts = 1;
}
else {
fout.write ("F10 ");
if (1 == 1) {
fout.write ("T11 ") ;
ts = 2;
}
else {
fout.write("F11 ");
ts = 3;

}
}
else {
fout.write("T9 ");
if (g ==1) {
fout.write ("T12 ");
ts = 1;
}
else {
fout.write("F12 ");
if (h == 1) {
fout.write("T13 ");
ts = 1;
}
else {
fout.write("F13 ");
if (i == 0) {
fout.write("F14 ");
ts = 1;
}
else {
fout.write("T14 ");
if ((k == 1) || (3 > 400)) {
fout.write("T15 ");
ts = 1;
}
else {
fout.write("F15 ");
if (L == 1) {
fout.write("T1l6 ") ;
ts = 2;
}
else {
fout.write("F1l6 ");
ts = 3;
}
}
}
Py b}
}

return ts;

95

/* Subalign.c: only instrumented portion of program is listed. */

/*

Copyright (c) 1991-1992, University of Illinois board of trustees. All

rights reserved. Written by Michael Maciukenas at the Ribosomal
Database Project. Design and implementation guidance by Niels Larsen,
Gary Olsen, Carl Woese.

*/

#include <stdio.h>
#include <ctype.h>
#include <string.h>

FILE *trace;
char tracefile[] = "trace.out";

getentries(orgs, gen, log)
/* store the entries from gen (genbank) in the orgs list */
/* write log info to log */
list orgs;
FILE *gen, *log;
{
char *1;
list lines; /* lines for the current genbank entry */
int requested entry; /* =1 if it's still possible that this
entry was requested */
organism taxa; /* organism that the entry matches */
char *sequence; /* temporary space for reading in sequence */
char name [MAXLEN];
int len;
int i;
int ch;
int data_line;
int dummy;
int more;

while ((l=getlin(gen, &ch)) !=NULL)
{
/* have first line in entry */
lines=newlist ();
requested entry=1;
taxa=NULL;
sequence=NULL;
more=1;

while {more)
{
if (1==NULL)

{
fprintf (stderr,
"ERROR~~Unexpected EOF in genbank file\n");

fclose(trace);
exit (0);

96

else if (compare(l, ENDENTRY))
more=0;
else if(requested entry)
{
if(!addnode(lines, 1))
{
/* not enough memory to create add line to entry */
fprintf (stderr,
"ERROR--Not enough memory to read genbank file\n");
fclose(trace);
exit (0);
}
if (compare(l, LOCUSLINE))
{
/* find if name is in orgs */
i=sscanf(l, "LOCUS %s BP", name);
if(i==0 || i==EQF)
{
fprintf(trace, "%s", "T35 ");
/* badly formatted LOCUS line */
/* so we will ignore this entry */
requested _entry=0;
}
else
{

/*Susan: T35 ‘cos couldn’t figure out how to make a bad LOCUS line */
fprintf (trace, "%s", "T35 F35 ");
if((taxa=find org(orgs, name)) !=NULL)

{
fprintf (trace, "%s", "T36 ");
/* organism was requested */
/* now taxa=the organism for this entry */
}
else
{
fprintf(trace, "%s", "F36 "):;
/* organism was not requested */
requested entry=0;
}
}
/* get line after locus line */
l=getlin(gen, &ch);
}
else if(compare(l, ORIGINLINE))
{
if (sequence==NULL)
{
/* read the sequence after the origin line */
data_line=1;
sequence=getsequence (gen, log, &len, &1, &data_line);

/* 1f 1 is returned, it's the line in gen, so no need to getlin() */
if (1==NULL)

l=getlin(gen, &ch);
/* store length */
taxa->len=len;

97

else
{
/* more than one sequence per this entry, so ignore */
char *tmp=getsequence(gen, log, &len, &l, &dummy);
if (tmp!=NULL)

free(tmp);
/* if 1 is returned, it's the line in gen, so no need to getlin{() */
if (1==NULL)

l1=getlin(gen, &ch):;

}
else
/* get next line */
l=getlin(gen, &ch);
}
else
/* get next line if not requested entry */
l=getlin(gen, &ch);
}
if (requested entry && taxa!=NULL)
{
/* setup taxa */
taxa->genbank lines=lines;
taxa->sequence=sequence;
taxa->data line=data line;
1
else
{
/* throw away lines that were read in */
free line list(lines);
/* throw away the sequence if it was read */
if (sequence!=NULL)
free (sequence);
}
}

/* now we've read in all the entries */
/* so we can return */

int read pair list(s, starts, ends, astart, aend, errorstring)
char *s;

list starts, ends;

int astart, aend;

char *errorstring;

{

int i, j, ss, ee, os, oe, num, error;

startlist (starts);
startlist (ends);

os= -1;
oe= -1;
num=1;

98

for(;*s!="\0";)
{
if (num!=1)
s++;
error=read pair(s, &ss, &ee, astart, aend);
if(error)
{
fprintf (trace, "$%$s", "T37 ");
fprintf (stderr, "ERROR--%s: Error reading Range %d\n",
errorstring, num);
return(1l);
}
fprintf(trace, "%s", "F37 ");
if (ee<ss)
{
fprintf (trace, "%s", "T38 ");
fprintf (stderr,
"ERROR--%s: End before Start in Range %d\n",
errorstring, num);
return(1l);

else

fprintf (trace, "%s", "F38 ");
if (ss<=0)
{
fprintf (trace, "%s", "T39 ");
fprintf (stderr,
"ERROR--%s: Range %d starts at less than 1\n",
errorstring, num);
return(l):;

else

fprintf (trace, "%s", "F39 ");
if (ss<os)
{
fprintf(trace, "%s", "T40 ");
fprintf (stderr,
"ERROR--%s: Range %d covers other ranges\n”,
errorstring, num);
return (1) ;

else

fprintf (trace, "%s", "F40 ");
if (ss<=oe)
{
fprintf (trace, "%s", "T41 ");
fprintf (stderr,
"ERROR--%s: Ranges %d and %d overlap\n",
errorstring, num-1, num);
return(l);

else

fprintf (trace, "%s", "F41l ");

99

addnode {starts, ss);
addnode (ends, ee);

}
0s8=8s;
oe=ee;
num++;
while(*s!=":"'" && *s!="\0")
S++;
}

return(0);

int calc_seq _cols(seq_starts, seq_ends, seq col starts, seq col ends,
reference)
/* updates seq col starts,ends */
/* returns 0 if error found in sequence positions */
list seq starts, seg ends, seq col starts, seqg col ends;
organism reference;
{
char *s;
list start, end;
int ss, ee;
int curbase, curcol;
int first;
int need end;
int range num;

curbase=0;
curcol= -1;
start=firstnode (seq_starts);
end=firstnode (seq_ends);
startlist(seq col starts);
startlist(seq col ends);
need end=0;
range num=1l;
1f (start!=NULL && end!=NULL)
{
for (s=reference->sequence; *s!="\0";s++)
{
curcol++;
if (base(*s))
curbaset+;
if(start{=NULL && curbase==thisint(start))
{
addnoede (seq_col starts, curcol);
need end=1;
start=nextnode (start);
}
if (end!=NULL && curbase==thisint (end))
{

addnode (seq_col ends, curcol);

100

need end=0;
end=nextnode (end) ;

range_num++ ;

}
}
if (need end)

{

fprintf(trace,

fprintf (stderr,
"ERROR--Range %d extends past end of reference
sequence\n”, range num);

return(0);

mo

S", "T42 ");

else
{
fprintf (trace, "%s", "F42 ");
if (start!=NULL)
{
fprintf (trace, "%s", "T43 ");

fprintf (stderr,
"ERROR--Range %d starts past end of reference
sequence\n", range num);

return(0);

}

else

fprintf (trace, "%s", "F43 ");

return(1l);

main(argc, argv)
int argc;
char **argv;

{

FILE *in, *out, *log,
char *1;

list orgs;

organism taxa;
organism reference;
int reference length;
int alignment length;
int new_length;

char *mask;

int i;

genbank; / files to be used */

/*
/*
/*

list previous organism;

int ch;
int packing;

int innum, genbanknum,

char *reference name;

int more;

list seq starts, seq_ends;

/* list of organisms */
/* temporary organism pointer */
/* reference organism */

length of each alignment sequence */
length of each alignment sequence */
for storing which columns to use */

outnum, toomany;
int column_specified, sequence specified, reference specified;
int column error, sequence error, reference error;

101

int col start, col end;
list seq col starts, seq col ends;
int error;

seq starts=newlist();
seq_ends=newlist ()
seq_col starts=newlist();
seq col ends=newlist{();

trace=fopen(tracefile, "w");

packing=1;
reference specified=0;
reference error=0;
innum=outnum=genbanknum=toomany=0;
more=1;
error=0;
for(i=1l;i<argc && more;i++)
{
if(argv[i] [0]=="-")
{

fprintf (trace, "%s", "TO0 ");
if (compare(argv[i], "-help"))
{
fprintf (trace, "%s", "T1 ");

printhelp(l, argvi{0]);
fclose(trace);
exit (0);

else

fprintf (trace, "%s", "F1 ");
if (compare(argv[i], "-pack"))
{
fprintf (trace, "%s", "T2 ");
packing=1;
}
else
{
fprintf(trace, "%s", "F2 ");
if (compare (argv[i], "-nopack"))
{
fprintf (trace, "%s", "T3 ");
packing=0;
}
else
{
fprintf(trace, "%s", "F3 ");
if(argv[i][l]l=="c")
{
/* columns */
/* deal with later */
}
else if(argv[i}[l]l=="p")
{
/*position*/
/* deal with later */

102

}
else if(argv[i][1l]=="x")
{

fprintf(trace, "%s", "T4 ");

/*reference*/

static int len, j;
static int error;

len=strlen(argv(i]);

for(3=0;j<len;j++)
if(argvii] [j]=="=")
break;
if{j==len)
{
fprintf(trace, "%s", "T5 ");
fprintf (stderr,

"ERROR--No name specified on -r option\n");
printhelp (0, argv[0]);
fclose(trace);
exit (1);

}
else
{
fprintf(trace, "%s", "F5 ");
if(argv[i] [j+1]1=="\0")
{
fprintf (trace, "%s", "T6 ");
fprintf (stderr,
"ERROR--Reference name on -r option is empty\n"):;
printhelp (0, argv([0]);
fclose(trace):;
exit(l);
}
else
{
fprintf (trace, "%s", "F6 ");
reference name=dupstring(&argv([i] [j+1]);
reference specified=1;

}

else

fprintf (trace, "%s", "F4 ");
fprintf (stderzx,

"ERROR--Invalid option: %s\n", argv[il);
printhelp (0, argvi{0]);
fclose(trace);
exit (1) ;

else

103

fprintf (trace, "%s", "FO ");
if (innum==0)
{
fprintf (trace, "%s", "T7 ");
innum=i;
}
else
{
fprintf (trace, "%s", "F7 ");
if (genbanknum==0)
{
fprintf(trace, "%s", "T8 ");
genbanknum=i;
}
else
{
fprintf(trace, "%s", "F8 ");
if (outnum==0)
{
fprintf (trace, "%s", "T9 ");
outnum=i;

fprintf (trace, "%s", "F9 ");
toomany=1;

}

1
} // end of for loop

if (toomany || outnum==0)
{
fprintf (trace, "%s", "T10 ");
if (toomany) {
fprintf (trace, "%s", "T1ll1 ");
fprintf (stderr, "ERROR--Too Many file names\n");
}
else {
fprintf (trace, "%s", "F11l ");
fprintf (stderr, "ERROR--Not enough file names\n");
}
printhelp (0, argv[0]);
fclose(trace):;
exit (1) ;
}
fprintf (trace, "%s", "F10 ");

in=fopen{argv[innum], "r");

genbank=fopen (argv|[genbanknum], "x"):

out=fopen (argv{outnum], "w");

log=stderr;

1f (in==NULL || out==NULL || log==NULL || genbank==NULL)
{

fprintf (trace, "%s", "T12 ");

104

fprintf (stderr,
"ERROR--Could not open files:");
if (in!=NULL)
{
fprintf(trace, "%s", "T13 ");
fclose (in);

fprintf(trace, "%s", "F13 ")
fprintf (stderr, "\n\tinput (

- e

$s')", argv[innum]);
}
if (out !=NULL)
{
fprintf (trace, "%s", "T14 ");
fclose(out) ;

fprintf(trace, "%s", "Fl4 ");
fprintf (stderr, "\n\toutput ('%s')", argv[outnum]);
}
if (log!=NULL)
{
if(log!=stderr)
fclose(log):;
}
else
fprintf (stderr, "\n\tlog ('%s')");
if (genbank!=NULL)
{
fprintf (trace, "%s", "T15 ");
fclose (genbank) ;

else

fprintf(trace, "%s", "F15 ");
fprintf (stderr, "\n\talignment ('%s')",
argv[genbanknum]) ;
}
fprintf (stderr, ".\n");
fclose(trace);
exit (1)
t
fprintf{trace, "%s", "Fl1l2 ");

/* in file ok, genbank file ok, so start reading names */
orgs=getnames (in, log):

/* names read, so start reading their sequence entries */
getentries(orgs, genbank, log);

/* print error messages for names not found in genbank */
startlist (orgs);

taxa=listnext (orgs);

while (taxa!=NULL)

if (taxa->genbank lines==NULL)

105

fprintf(trace, "%s", "Tleé ");
/* name not in alignment, so remove it */
if (taxa==reference)
reference=NULL;
fprintf(log,NAME NOT IN GENBANK, taxa->name);
free (taxa->name) ;
if(listlastp(orgs})
{
rmcurr (orgs) ;
taxa=NULL;
}
else
{
rmcurr (orgs) ;
taxa=listcurr(orgs);

else

fprintf (trace, "%s", "Fl6 ");
taxa=1listnext (orgs);

}

startlist (orgs);
if(listlastp(orgs))
{
fprintf(trace, "%s", "T17 ");
/* no names found in alignment */
fprintf(log,NO NAMES IN GENBANK);
fclose(in);
fclose(out);
if (log!=stderr)
fclose(log):;
fclose (genbank) ;
fclose(trace);
exit (0);
}
fprintf (trace, "$s", "F17 ");

/* get reference organism with the range on it */
{
list t;
organism ecoli=NULL; /*Susan : = added NULL*/
organism first=NULL;
char *s;

reference=NULL;

lfor (orgs, t)
{
if (first==NULL)
first=thisoxg(t);
if (strcmp (thisorg(t)->name, "E.coli")==0) {
fprintf(trace, "%s", "T18 ");
ecoli=thisorg(t);

106

else
fprintf (trace, "%s", "F18 "):;
if(reference specified)
{
fprintf (trace, "%s", "T19 ");
if(strcmp(thisorg(t)->name, reference name)==0)
{
fprintf (trace, "%s", "T20 ");
reference=thisorg(t});
break:;
}
else
fprintf (trace, "%s", "F20 ");
}
else
fprintf (trace, "%s", "F19 ");
}

if (reference==NULL)
if (ecoli==NULL) {
fprintf(trace, "%s", "T21 ");
reference=first;
}
else {
fprintf (trace, "%s", "F21 ");
reference=ecoli;
}
reference length=0;
for (s=reference->sequence;*s!="\0";s++)
if(base(*s))
reference length++;

}

/* get alignment length */
alignment length=get maximum length(orgs):;

/* read column, sequence specification */
sequence specified=column specified=0;
sequence error=column_error=0;
more=1;
for(i=1l;i<argc && more;it+)
{
if(argv[i] [0]=="-")
{
if (compare(argv[i}l, "-help"”))
/* dealt with before */;
else if(compare(argv[i], "-pack"))
/* dealt with before */;
else if(compare(argv{i], "-nopack”))
/* dealt with before */;
else if(argv[i][1l]=="c")
{
fprintf(trace, "%s", "T22 ");
/* columns */

static int len, j:
static int error;

107

else

if (column specified)
{
fprintf(trace, "%s", "T23 ");
fprintf (stderr,
"ERROR--Columns specifed twice\n");
printhelp (0, argv([0]);
fclose(trace);
exit (1);
}
fprintf (trace, "%s", "F23 ");
len=strlen(argv([i]);
for (j=0;j<len; j++)
if(argv(i] [j]=="=")
break;
if (j==len)
{
fprintf(trace, "%s", "T24 "});
fprintf (stderr,
"ERROR--No columns specified on -c¢ option\n");
printhelp (0, argv[O0]);
fclose(trace);
exit (1);
}
fprintf (trace, "%s", "F24 ");
if(argv[i] [j+1]=="\0")
{
fprintf(trace, "%s", "T25 ");
fprintf (stderr,
"ERROR--No columns specified on -~c¢ option\n");
printhelp (0, argv([0]);
fclose(trace);
exit (1);
}
fprintf (trace, "%s", "F25 ");
error=read pair(&argv[i] [j+1], &col start, &col_end,
1, alignment length);
if (error)
{
fprintf (trace, "%s", "T26 ");
fprintf (stderr,
"ERROR--Error reading column specification\n");
printhelp (0, argv[O0]);
fclose(trace);
exit (1);
}
fprintf (trace, "%s", "F26 ");
column specified=1;

fprintf (trace, "%s", "F22 ");
if(argv[i] [1]=="p")

{
fprintf (trace, "%s", "T27 ");
/*position*/

108

static int len, 3J;
static int error;

if (sequence specified)
{
fprintf(trace, "%s", "T28 ");
fprintf (stderr,
"ERROR--Sequence positions specifed twice\n");
printhelp (0, argv([0]);
fclose(trace);
exit (1);
}
fprintf(trace, "%s", "F28 ");

len=strlen(argv[i]);
for (j=0;j<len; Jj++)
if(argv[i} {j]l=="=")
break;
if (j==1len)
{
fprintf (trace, "%s", "T29 ");
fprintf (stderr,
"ERROR--No list specified on -p option\n");
printhelp (0, argv[0]):;
fclose(trace);
exit (1);
}
fprintf (trace, "%s", "F29 "});

if(argv([i] [§+1]1=="\0") {
fprintf(trace, "%s", "T30 ");
fprintf (stderr,
"ERROR--No list specified on -p option\n");
printhelp (0, argv([0]);
fclose (trace);
exit (1);
}
fprintf(trace, "%s", "F30 ");

error=read pair list(gsargv([i] [J+1], seq_starts, seq_ends,
1, reference length, "Sequence Position list");
if (error) {
fprintf (trace, "%s", "T31 ");
printhelp (0, argv[0]);
fclose(trace);
exit (1) ;
}
fprintf(trace, "%s", "F31 ");
sequence_specified=1;
}
else
{
fprintf (trace, "%s", "F27 ");
if(argv[i]{l]l=="r")
{
fprintf (trace, "%s", "T32 ");
/*reference*/

109

/* dealt with before */

else

{ /* Susan: reachable?, dealt with before */
fprintf (trace, "%s", "F32 ");
fprintf (stderr,
"ERROR--Invalid option: %s\n", argv[i]):;
printhelp (0, argv[0]);
fclose(trace);
exit (1);

}

fprintf (trace, "%s", "F32 ");

/* files: dealt with before */

if(!reconfigure alignment (seqg starts, seq_ends,
seq col starts, seg col ends,
col start, col_end,
sequence specified, column specified,
orgs, reference, &alignment length, &mask))

fprintf (trace, "%s", "T33 ");
fclose(in);
fclose(out) ;
if(log!=stderr)
fclose(loqg);
fclose (genbank) ;
fclose(trace);
exit(0);
}
fprintf (trace, "%s", "F33 "):;

if (packing)

{
fprintf (trace, "%s", "T34 ");
list start, end;

/* remove common gaps, by filling mask with zeros */

for (start=firstnode(seq col starts),end=firstnode(seq_col_ends);
start!=NULL;
start=nextnode (start), end=nextnode (end))}
removegaps (orgs, mask,
thisint (start), thisint (end),
alignment length};
}

fprintf (trace, "%s", "F34 ");

calc_num base pairs(orgs, mask, alignment length);

startlist (orgs);

110

while ({taxa=listnext (orgs)) !=NULL)
printentry(taxa, mask, alignment length, out);

/* all done, so close files and quit */
fclose(in);

fclose (out);

if(log!=stderr)

fclose(log);

fclose (genbank) ;

fclose(trace);

exit (0);

111

