A Fault-Tree Approach for Identifying Causes of Actuator
Failure in Attitude Control Subsystem of Space Vehicles

Amitabh Barua

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science in
Electrical and Computer Engineering at
Concordia University
Montreal, Quebec, Canada

July 2004

© Amitabh Barua, 2004



3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94691-6
Our file  Notre référence
ISBN: 0-612-94691-6

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol ]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.






Abstract

A Fault-Tree Approach for Identifying Causes of Actuator
Failure in Attitude Control Subsystem of Space Vehicles

Amitabh Barua

Any space exploration program demands a guarantee ensuring smooth and reliable
operations of space vehicles. Due to unforeseen circumstances and naturally occurring
faults, it is inevitable to have an intelligent on-board fault detection, isolation and
recovery (FDIR) scheme in unmanned space vehicles. For such spacecrafts, it is desired
that an on-board fault-diagnosis system is capable of detecting, isolating, identifying or
classifying faults in the system. Unfortunately, none of the existing fault-diagnosis
methodologies alone can meet all the requirements of an ideal fault diagnosis system due
to variety of fault types and their severity, and handling mechanisms. However, it is
possible to overcome these shortcomings through the integration of different existing
fault-diagnosis methodologies. Additionally, it is important to have abilities to correctly
identify potential causes of system failure in such systems to initiate isolation and

reconfiguration process effectively.

In this thesis, we have proposed a novel approach which strengthens existing efficient
fault-detection mechanisms with an additional ability to classify different types of faults

to effectively determine potential causes of failure in a subsystem. This extra capability
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ensures a quick and efficient recovery/reconfiguration from disruptions. Our developed
diagnosis/analysis procedure exploits a widely used qualitative technique called fault-tree
analysis for failure analysis in the Attitude Control Subsystem (ACS) of a spacecraft. The
proposed fault-tree synthesis algorithm utilizes machine-learning techniques to classify
and rank primitive events in terms of their severity for a particular system failure. The
effectiveness of the fault-tree synthesis algorithm presented in this thesis has been
demonstrated under different simulated ACS failure scenarios. Constructed fault-trees
have been able to represent combinations of events leading to different failures resulting
due to artificially injected faults in a Simulink model of ACS. It is important to emphasize
that proposed technique has potentials for being integrated in an on-board spacecraft

health monitoring and diagnosis tool.
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Chapter 1

Introduction

This chapter starts with describing the problem domain of this thesis, providing an
overview of the fault detection, isolation and recovery (FDIR) scheme required for
unmanned spacecrafts and discussing the motivations behind the research works carried
out in this thesis. It also presents a short review on the existing fault diagnosis
methodologies and identifies the limitations of the existing works. After that, the
proposed approach for fault diagnosis in the attitude control subsystem (ACS) of a space
vehicle is presented. Finally, specific contributions of this thesis are discussed and the

organization of the thesis is presented.

1.1 Problem Domain

Often for unmanned space vehicles, continuous communication with ground station may
not be possible even during fault-free conditions. Further, in unforeseen environments,
ground control could be interrupted for a long time. Moreover, especially for deep-space
missions, round-trip communications delay — which may be of several hours — between

ground and the spacecraft makes the operator intervention in controlling the spacecraft to



adapt to the changes in the environment in real-time more difficult and sometimes
impossible. There is also an increased need for cost minimization in ground support
systems, especially in case of long-duration space missions. Because of all these reasons,
an on-board fault detection, isolation and recovery (FDIR) scheme is necessary for
unmanned space vehicles. The development of a technology that would allow unmanned
space vehicles to detect, diagnose and fix anomalies on-board is indeed a challenging

problem.

Traditionally, the ground system has been almost entirely responsible for spacecraft
planning and scheduling as well as spacecraft Health and Safety verifications. In the case
of on-board anomalies, the ground-based flight operations team (FOT) has been
responsible for finding out the possible cause(s) of such anomalies and developing
solution(s) to overcome the problems. For an autonomous unmanned spacecraft, all these
tasks are required to be performed on-board without any need for human interaction. In
order to achieve smooth autonomous operations, the spacecraft needs to be designed such
a way that the critical functions are executed autonomously without severe performance
degradations even in the presence of undesired events. Therefore, the craft has to be
empowered with fault-tolerance capabilities. In addition, there has to be decisional

autonomy so that high-level planning and scheduling can be performed on-board.

A system which is capable of detecting, isolating, identifying or classifying faults is
called a fault-diagnosis system. Development of such system for autonomous operations

of spacecrafts involves the utilization of methods presently available in different fields



including those in system identification, robust and adaptive control, system health-
monitoring, system modeling and analysis to name a few. The goal of an on-board FDIR
function is to detect fault(s) at early stages and to take appropriate recovery actions
before the fault(s) causes a failure. A rigorous failure analysis procedure within the
diagnostic system can be a very useful feature for identifying the source of malfunction in
order to determine a quick and correct recovery plan. While such failure analysis may not
be easily performed within many of the existing diagnostic systems alone due to their
limited capability of performing fault detection and diagnosis together, it can be achieved
by a complementary procedure that incorporates fault-tree analysis based techniques in
on-board fault diagnosis and recovery system. In this thesis, a framework for spacecraft

fault-diagnosis has been proposed.

1.2 Motivation

In unmanned space vehicles, such as satellites, disturbances and anomalies in the reaction
wheels or momentum wheels, i.e., in actuator mechanisms are often the main reasons
behind the failures in vehicle’s Attitude Control Subsystem (ACS). We have been aware
of a similar problem that has been encountered by the Canadian Space Agency (CSA),
where the pitch momentum wheel of a satellite had failed. Given this background, we had

planned to investigate the possibility of correlated faults in the ACS behind such failures.

In the above-mention CSA-satellite, some anomalies were detected during its on-orbit
operations. Consequently, the system we were interested in was not accessible.

Therefore, the problem in hand was essentially about diagnosing a system for which there



had been little experience from our side and at the séme time access to the system would
be limited. The only way to analyze such system was to study a model of the system
rather than experimenting with the actual system. For this purpose, a MATLAB-Simulink
model of a generic ACS of a satellite that maintains its required attitude using reaction
wheels was developed. Simulink was chosen as the modeling tool because of its wide
acceptance and growing demand in system modeling, analysis and design. A detailed
description of the ACS modeling is presented in Chapter 2 of this thesis. Finally, in order
to perform fault-diagnosis and failure analysis studies on the above-mentioned satellite
subsystem, a fault-tree based analysis technique, which is discussed in Chapter 3 of this

thesis, was selected.

1.3  Current State-of-the-art of Fault Diagnosis

In this section a short review on fault-diagnosis methodologies are presented. These
methodologies are applicable, but not limited to spacecraft fault diagnosis. Existing fault-
diagnosis methodologies may be broadly classified into two categories based on the form
of knowledge they require: (1) Process model-based methods (2) Process history-based

methods.

As the name suggests, in process model-based methods, the system is represented by a
mathematical model of the same. These methods are powerful but far more expensive
than a simple rule-based technique in terms of computing power. Process model-based

methods can be further divided into two sub-categories: qualitative and quantitative.



Qualitative methods include fault-trees and signed graphs [1]. Fault-tree analysis is a
widely used technique for finding the cause of a failure. It usually uses ‘top-down’ or
‘back-tracking’ approach until the possible root cause(s) behind the anomaly is found.
Though the manual synthesis of fault-trees is not uncommon in practice, for complex
systems, automatic generation of fault-trees is desired and feasible. The quantitative
methods include Residual-based methods and Assumption-based methods. Residual-
based method [2] works in two steps: residual generation to detect faults and decision
process to identify the cause. The residual generation technique may be based on
hardware redundancy (voting schemes), state estimation or parameter estimation
methods. Decision process involves decision functions that are calculated using the
residuals and some decision logics. In an assumption-based method [3], certain
assumptions on the normal behavior of the system are made and diagnosis is based on the

violation of these assumptions.

On the other hand, process history-based methods require large amount of process data.
As in the case of process model-based methods, process history-based methods can also
be divided further into two sub-categories: qualitative and quantitative. Qualitative
methods include Rule-based methods and Qualitative Trend Analysis. A Rule-based
method [4] utilizes an explicit mapping of known symptoms to root cause. Diagnostic
Expert Systems are based on this method. In Qualitative Trend Analysis [5, 6] sensor
values are measured for identification of trends and the identified trends are interpreted in
terms of fault scenarios. Quantitative methods include Neural Networks and Statistical

Techniques such as Multivariable Statistical Process Control (MSPC) [7] that provides a



diagnostic tool for process monitoring and malfunctions. Neural Networks-based fault
detection methods [8] have leaning and interpolation capabilities to handle unseen
situations. However, they may not be very suitable for fault case analysis because of their

‘black box’ property.

As mentioned earlier, a fault-diagnosis system has to be capable of detecting, isolating,
identifying or classifying faults. It appears from the short review of the existing diagnosis
method that a single method is inadequate to meet all requirements of an ideal diagnosis

system.

1.4 FDIR Goals and Limitations of the Existing Works

Due to the issues and shortcomings of using the ground-based controllers for unmanned
autonomous space vehicles mentioned in Section 1.1, it is necessary and desired that the
ground-based autonomy be shifted to autonomy on-board a spacecraft. The FDIR goals
and requirements for such autonomous spacecrafts are of significant technical challenges.

The main objectives of the FDIR problem at present time are:

¢ To enhance the existing on-board fault detection and diagnosis capability by
powerful methods.

® To improve the mission reliability and survival by recovering from the upsets
gracefully.

¢ To simplify the implementation of diagnosis procedures by developing software

components that can be re-used in some future applications.



It is clear from the both from the above-mentioned goals of the FDIR problem and from
the discussion presented in Section 1.3 that the on-board FDIR system should not only be
able to detect the anomalies present in the system but also be able to diagnose the system
for identifying the source(s) of malfunction(s) in order to recover from the upset(s).
However, such analysis may not be performed easily within many of the existing
diagnostic systems alone due to their limited capability of performing fault detection and
diagnosis together. Most of the existing approaches and techniques, according to the open
literature, are focused towards the detection of anomalies in the system. But an effective
recovery highly depends on the system’s knowledge on the anomaly and the reason
behind the same. The existing approaches also lack a modular method of integrating the
various types of existing techniques for building a strong on-board FDIR scheme.
Therefore, there is a need for integrating existing fault detection and diagnosis techniques

in order to develop a powerful on-board FDIR system.

1.5 Proposed Approach for Fault Diagnosis

The main objective of the approach presented here is to empower existing fault-detection
techniques with a capability for identifying the cause(s) behind the detected anomaly.
Consequently, in the proposed approach the existence of an efficient fault detection
mechanism is assumed. The fault detection mechanism may be a process model-based
method or a process history-based method (as discussed in Section 1.3). However, the
fault-diagnosis or failure analysis part of the proposed approach utilizes the process

model-based diagnosis using a qualitative technique called fault-tree analysis. Fault-trees



are be constructed by the proposed fault-tree synthesis algorithm developed in this thesis
which is presented in Chapter 3. A detailed description of the fault-tree construction is

given in Chapter 3 and 4.

The proposed diagnosis procedure does not depend on the design phase of the system
(explained in details in Section 3.3). Figure 1.1 illustrates the proposed framework for
fault diagnosis in the attitude control subsystem (ACS) of a satellite. Upon detection of
any fault or anomaly in the ACS, the diagnosis system starts monitoring the pre-defined
attributes (signals) on time-frames of X seconds with Y seconds overlap. The values of X

and Y can be selected or set depending on the diagnosis requirement.

Aftribute values
from ACS

Attnbute values
from ACS model ¢

FTS Tool

Userinterface for ACS analyst On-board Diagnosis System And/Or
at Mission Control Center Diagnosis. at Ground Station

Figure 1.1: Proposed Framework for ACS Fault Diagnosis



After acquiring data for a particular attribute over the above-mentioned time-frame, the
next step is to extract features from the data (will be discussed in Chapter 3 in detail).
Subsequently, a vector of numeric feature-values for attributes is generated in which each
feature value corresponds to an attribute over that time-frame. We call each value in this

vector as ‘current feature value’ and the vector as ‘current example’.

Once this ‘current example’ vector is created by feature extraction from the attributes, the
next task is fault-tree synthesis. For this purpose, the current example is added to the
‘existing’” example set. The ‘existing’ example set consists of the vectors of numeric
feature values for all attributes. This ‘existing’ example set is to be formed through the
simulation of ACS (under fault-free condition as well as in presence of fault) and/or from
the mission data after putting the spacecraft to the orbit in which it is intended to operate.
The total example set (current plus previously existing) forms the input to the fault-tree
synthesis tool, which constructs the tree using the proposed fault-tree synthesis algorithm.
If the generated tree does not match with any of the existing trees in the database, this
tree gets added to the existing library. After this, the constructed tree can be used for fault

diagnosis.

Above computations can be performed in real time or near-real time on-board as well as
at ground, if necessary. It is also possible identify and classify faults on-board by
comparing the constructed trees with those existing in the library. Moreover, on-board
generation of fault-trees provides better resolution on the required data compared to those
available through telemetry points. This is due to the fact that telemetry data are usually

sampled at lower frequencies and in most cases, sampling is done at every second, which



is not suitable if any frequency domain analysis is necessary for capturing the high
frequency components of any signal. Finally, where fault-tree analysis is to be performed
at ground, instead of downloading huge amount of data through telemetry, only relevant

information such as constructed fault-trees can be transmitted to the ground.

1.6 Contribution of the Thesis

The objective of this work is to develop a procedure for fault diagnosis that empowers the
existing fault detection techniques with the capability of identifying and classifying the
source(s) of the anomalies in the system. The specific contributions of this thesis are as

follows:

(1) A framework for a fault diagnosis in the attitude control subsystem (ACS) has
been developed.

(2) In order to perform fault diagnosis and failure analysis related studies on
unmanned spacecraft subsystems, model of a generic attitude control subsystem
(ACS), with fault-injection capabilities, has been developed.

(3) A new modified fault-tree synthesis algorithm for analyzing the cause(s) of
failure(s) of the ACS has been developed from existing machine-learning based
induction techniques for fault-tree synthesis. The proposed algorithm does not
require detailed knowledge on design and construction of the system under

consideration.
(4) Fault-tree synthesis has been demonstrated using the proposed fault-tree synthesis

algorithm under different ACS failure scenario which establishes that the

10



proposed framework has potential for automated spacecraft health monitoring and

diagnosis.

1.7 Organization of the Thesis

In Section 1.5 of this chapter the proposed approach for fault-diagnosis has been
presented. The organization of the remaining part of the thesis is as follows: modeling of
generic attitude control subsystem (ACS) of a satellite is discussed in Chapter 2. This
system model has been used to perform fault-diagnosis and failure analysis studies in this
thesis. In Chapter 3, a review of existing fault-tree synthesis methodologies is provided
and the algorithm developed in this thesis for fault-tree synthesis utilizing learning
techniques is presented. In Chapter 4, different possible ACS failure scenarios are
discussed and demonstration of fault-tree synthesis is provided under each failure
scenario. Finally, the thesis is concluded in Chapter 5 with discussions and future

research directions.
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Chapter 2

Modeling of Attitude Control Subsystem

The first part (Section 2.1) of this chapter provides a review and background information
on the Attitude Control Subsystem (ACS), which are necessary for better understanding
of the MATLAB-Simulink model of the ACS presented in the second part (Section 2.2)

of this chapter.

2.1 Introduction to Attitude Control Subsystem (ACS)

The main purpose of the Attitude Control Subsystem (ACS), which is commonly
considered as momentum management system, is to orientate the main structure of the
satellite at desired angle(s) within required accuracy. This ‘required accuracy’ is set by
the payload, communication devices, etc. mounted on the main structure. Attitude of a
spacecraft may be specified in a number of ways such as direction cosines, Euler’s angles

etc. When Euler’s angles are used to specify the attitude, the information required for

X (Roll)

Figure 2.1: Axes and Angles Used for Specifying Spacecraft’s Attitude

12



specifying the attitude includes the three angles: y (roll),  (pitch) and @ (yaw), which

are the measures of rotations about the x, y and z axes respectively.

An ACS 1s required because a body in space is subjected to small but persistent
disturbance torques from a variety of sources as shown in Table 2.1 [9]. These torques
would quickly re-orient the spacecraft unless restricted in some way. Therefore, it is
required that the spacecraft determine its attitude using sensors and control the same

using actuators. Disturbance torques may be external or internal to the spacecraft.

Table 2.1: Disturbance Torques in Space

External Torques Internal Torques
Aerodynamic, Magnetic, Gravity Mechanisms, Fuel Movement,
Gradient, Solar Radiation, Thrust Astronaut Movement, Flexible
Misalignment. Appendages, General Mass Movement

The major components of the ACS are [9]: the Attitude Control Processor (ACP) or on-
board attitude controller, control torquers or actuators, (for example, reaction wheels
(RW), momentum wheels (MW), magnetic torque bars (MTB), etc.), attitude sensors and
the spacecraft body. The attitude sensors acquire spacecraft’s attitude. The errors in
angles are computed and based on these error signals the on-board ACP generates torque
command voltages. Control actuators produce torques depending on the torque
demand/command voltage inputs to them from the ACP. In this process, the required
attitude is attained. A generic ACS block diagram with reaction wheel as the actuator for

control along a single axis is shown in Figure 2.2:

13
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Figure 2.2: ACS Block Diagram

Spacecraft’s attitude sensors can be of two categories [10]: reference sensors and inertial
sensors. Reference sensors give attitude information with respect to some external
references, which include the Sun, the Earth’s IR horizon, local magnetic field direction
and the stars [9]. Consequently, the most common reference sensors are: Sun Sensors,
Earth Sensors (Horizon Scanners), Star Trackers and Magnetometers. However, there are
normally periods of eclipse when reference sensor’s attitude information is not available.
To overcome this problem, inertial sensors (gyroscopes) are used to provide short-term
attitude information between external updates or calibrations from reference sensors.
Usually, the measurement system is formed using both reference sensors and inertial
sensors to complement each other. Moreover, each vector measurement gives only two of
the three pieces of information — as mentioned above — required for specifying

spacecraft’s attitude completely. This results in the need for using more than one type of

sensors on-board.
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Figure 2.3: Typical ACS Components [11]

As mentioned earlier, actuators may be of various types. Reaction wheels are
electromechanical actuators and often a potential source of anomaly in the ACS. In the
model that has been developed in this thesis, reaction wheel has been considered as the
actuator in order to investigate ACS failure due to anomalies in the reaction wheel.
However, in most cases, more than one type of actuators is used in satellites. Figure 2.3
shows the ACS components of NASA’s EO-1 spacecraft. It should be mentioned here
that often Solar Array Drive (SAD) and Spacecraft Antenna Mechanisms are also
considered as the parts of ACS. A detailed description of the ACS architecture shown in

Figure 2.3 is found on [11].

* SAD: Solar Array Drive, ECU: Electronic Control Unit (for SAD), RSN: Remote Services Node , M35:
Mongoose 5 Processor, CPU: Central Processing Unit, FSW: Flight Software, 1773: Identification for a
bus, ACE: Attitude Control Electronics , PROP: Propulsion , I/O: Input/Output, GPS: Global Positioning
System , MDE: Motor Driver Electronics
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2.1.1 ACS Modes

A spacecraft has a number of modes or sates of operation [9]. The most common modes

are as follows:

Orbit Insertion: This is the period during and after boost while spacecraft is brought to

its final orbit.

Acquisition: TInitial determination of attitude and stabilization of the spacecraft takes

place in this mode. This mode is also used while recovering from upsets or emergencies.

Normal, On-station or Pointing: Spacecraft remains in this mode for the vast majority of

its mission. Requirements of this mode are the key factors in system design.

Slew: Slew is a transitional mode for reorienting the spacecraft when required. Re-
pointing requirements may demand for larger actuators than would be required for

disturbance rejection alone.

Safe or Contingency: This mode, commonly called ‘safe-hold’ mode, is used in
emergencies if regular mode fails or is disabled. Spacecraft may sacrifice normal

operational performance requirements in this mode.

Others: There may be other operational modes depending on the additional requirement
for pointing towards special targets or for some specific time periods such as eclipses.
Consequently, most of the earth-orbiting spacecrafts or satellites have a mode ‘Eclipse’

during which the sun goes out of view of the spacecraft.
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2.1.2 ACS Performance Requirements

ACS performance requirements may vary at different modes of operation of the

spacecraft. Performance requirements are commonly specified in terms of accuracy,

Jitter, settling time, etc.

Table 2.2: ACS Performance Requirements [9]

Parameter Definition Examples/Typical Value
Attitude Determination: How well a 0.25 deg, 30, all axes; may be real-
spacecraft’s orientation with respect to an | time or post-processed on the

Accuracy absolute reference is known. ground.
Attitude Control: How well the 0.25 deg, 30, includes determination
spacecraft’s attitude can be controlled and control errors.
with respect to a commanded direction.
» Attitude Determination: Range of angular | Any attitude within 30 deg of nadir
Range motion over which accuracy must be met. | (earth).
Attitude Control: Range of angular All attitudes, within 50 deg of nadir
motion over which control performance (earth), within 20 deg of sun.
must be met.
Attitude Control: A specified angle bound | 0.1 deg over 1 min, 1 deg/sec, 1 to 20
Jitter or angular rate limit on short-term, high Hz; usually specified to keep
frequency motion. spacecraft motion from blurring
sensor data.
Attitude Control: A limit on slow, low 1 deg/ hr, 5 deg maximum. Used
Drift frequency vehicle motion usually when vehicle may drift off target
expressed as angle/time. within infrequent resets.
Settling Attitude Control: Specifies allowed time | 2 deg max. motion, decaying to < 0.1
Time to recover from maneuvers or upsets.

deg in 1 min; may be used to limit

overshoot.

* Natural limit of random data variation produced by a process [12]
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For a particular parameter, requirements for attitude determination and attitude control
are different. Table 2.2 summarizes basic information about the parameters, which are

used to specify ACS performance requirements.

2.1.3 ACS Computations

The ACS computer must perform reliably in the radiation environment in space. A
number of such radiation-hardened computers now exist; further development is
providing more power, speed and capability of being programmed in higher-level
languages [10]. The availability of powerful computer means that spacecraft will be
given greater autonomy and many of the sophisticated control techniques, which find
applications in ground-based systems may be used on spacecraft. Robustness is another
requirement for ACS and other on-board systems. For full autonomy or immediate

response to any changes, adaptive control techniques are preferable.

2.1.4 Attitude Control Methods

Spacecraft attitude control methods may be broadly classified into three categories —

passive control, spin control and three-axis control [9, 13].

Passive Control:

Gravity-gradient control utilizes the inertial properties of the spacecraft to keep it pointed
towards the Earth, which is based on the fact that elongated object in a gravity field tends
to align it’s longitudinal axis through the Earth’s centre. Sometimes, a small, constant

speed momentum wheel is added along the pitch axis. In another type of passive control,
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permanent magnets are used on-board to force alignment along the Earth’s magnetic

field. Table 2.3 summarizes different attitude control methods and their capabilities.

Table 2.3: Attitude Control Methods and Their Capabilities [9, 13]

Control Type Pointing Options Typical Lifetime Expectancy
Accuracy

Gravity-gradient | Earth local vertical +5° Typically, > 10 years

only (2 axes)
Gravity-gradient | Earth local vertical +5° Limited by life of wheel bearings
and Momentum | only (3 axes)
Bias Wheel
Passive North/south only +5° Typically, > 10 years
Magnetic (2 axes)
Pure Spin Inertially fixed any +0.1°to +1° | Limited by thruster propellant, if
Stabilization direction (2axes) applies. Typically, 5-10 years
Dual-spin Limited by +0.1°to +1° | Limited by thruster propellant, if
stabilization articulation on de- (2axes) applies and de-spin bearings

spun platform Typically, 5-10 years.
Bias Momentum | Best suited for local +0.1°to +1° Limited by thruster propellant, if
(1 Wheel) vertical pointing applies. Also by sensors and wheel

bearings
Zero Momentum | No Constraints +0.1°to +5° | Limited by thruster propellant
(Thruster only)
Zero Momentum | No Constraints +0.001° to +1° | Limited by thruster propellant, if
(3 Wheels) applies. Also by sensors and wheel
bearings (Typically, 57 years)

Zero Momentum | No Constraints +0.001° to +1° | Limited by thruster propellant, if

CMG

applies. Also by sensors and wheel
bearings

Spin Control:

In spin control is a passive control technique in which the entire spacecraft is spun. As a

result, angular momentum vector remains approximately fixed in inertial space and

gyroscopic stiffness provides stabilization about the transverse axes. The spinning

spacecrafts possess inherent resistance to external disturbance torques. The downside is

that extra fuel is required to re-orient the spacecraft because of the gyroscopic stiffness.
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Dual-spin stabilization is a variation of spin control described above. In this case, the
spacecraft has two sections spinning at different rates about the same axis. The major
portion of the spacecraft is spun while only the payload or platform section is de-spun.
By combining inertially fixed and rotating sections, dual-spinners can accommodate a

variety of payloads in a simple vehicle.

Three-axis Control:

In three axis active control system, the major part of the spacecraft is de-spun. The
payload is mounted on the main body or structure and the torques about the three axes
required for attitude control come from the combinations of momentum wheels (MW),
reaction wheels (RW), control moment gyros (CMG), thrusters, magnetic torque bars/
rods (commonly known as MTB/ TR); as it was shown in Figure 2.2. Often, the same
wheel can be used as a RW or MW. RWs have zero nominal speed whereas MWs have
high nominal (typically, around 5000 — 6000 RPM). Three-axis control/ stabilization is

necessary for achieving attitude control accuracy within 0.01 degrees.

In general, these 3-axis control systems can be divided into two categories: (a)
Momentum-bias, which has a momentum wheel along the pitch axis (b) Zero-momentum
with a reaction wheel on each axis. Momentum-bias systems often have just one wheel
along the pitch axis, normal to the orbit plane. The wheel is run nearly a constant high
speed to provide gyroscopic stiffness to the spacecraft and attitude is controlled by
varying the speed of the wheel slightly (typically, around + 10% of the nominal speed)

which results in the variation in control torque.
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In a zero-momentum system, RWs respond to disturbances on the spacecraft. Based on
the attitude error(s), the ACS controller(s) generate signals which speed up the reaction
wheel(s), which are initially at zero speed, in order to generate required ‘reaction’
torque(s) on the spacecraft body in an appropriate direction. These torque(s) correct
vehicle’s attitude and leave the wheel spinning at a low speed until another pointing error
(with same sign) speeds the wheel further or slows it down (error with opposite sign)
again. While the RW may not reach its saturation speed for several orbits because of
cyclic disturbances, secular disturbances may cause the wheel to reach its saturation
speed. At this point, the wheel speed must be lowered back to zero by applying external
torques using thrusters or magnetic torquers. This process is commonly known as de-

saturation, momentum unloading or momentum dumping.

Thrusters may be used for momentum dumping and slewing at all attitudes. Control
Moment Gyro (CMG) is an advanced technology utilizing a single wheel for attitude
control along all three axes. A CMG is mounted on one or two gimbals depending on the
required degrees of freedom and run at a constant speed [13]. Their control is somewhat

complex; however, they have large torque capability with linearity at low power.
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2.1.5 Attitude Motions for Three-axis Stabilized Spacecraft utilizing
Reaction Wheels and with No Momentum Bias

The basic equations [10] related to the 3-axis stabilized zero-momentum systems utilizing

reaction wheels will be presented in this section. The angular momentum H, of a single

rigid body referred to its centre of mass C may be expressed as:

He={l]w 2.1

Where o is its angular velocity relative to an inertial (non-rotating) frame of reference

and [/ ] is the inertia matrix, based upon the centre of mass C, which can be expressed as:

i = Ly Ly Iy 2.2

Where Ly, Iy, I, are the moments of inertia and I, I, I ; are the products of inertia
broadly representing a measure of the lack of mass symimetry, leading to a cross-coupled

behavior. Using Equations 2.1 and 2.2, the angular momentum can be expressed as:
(Lxoy - Wy -Iptz)
(Iyya)y Ly (07 - xya)x)

(I.w, ‘Iyza)x - yza)y)

If principle axes are used, the products of inertia will be zero. Accordingly, H. can be

expressed as;
P H.= { Ly, Iyywy, Izzwz}T
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Angular momentum of a rigid body with spinning wheels, such as spacecraft fitted with
momentum or reaction wheels, can be expressed as the sum of the angular momentum of
the rigid body containing the wheels at their non-spinning rate, together with extra
momentum due to the angular velocities of the wheels relative to the body. The angular
momentum of a wheel will be equal to J,w,. For three wheels mounted on the three
orthogonal axes, the additional momentum components due to the wheels will be {H,,

Hy, H,} and the total angular momentum of the spacecraft body plus wheels will be:

(Ixxa)x = xywy - zxa)z) + Hx
23
Hc = (Iyya)y - yzwz _Ixya)x) + Hy

(L., 'Iyzwx - yza)y) + H,

If principal axes are used, Equation 2.3 becomes:
He = (s + Hy), (bywy +Hy), (Lo, + )}
It is also known that:

d(H)/dt =T ;where, T is all external torques

For an initially stationary spacecraft, a torque about a principal axis will produce a
response about this axis, without any cross-coupling into the other axes. The response is

an angular acceleration and for a particular axis, for example, pitch axis, it is given by:

iy, =T,/ 1L,
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2.2 Developed ACS Model in MATLAB-Simulink

In this thesis, a MATLAB-Simulink model of a generic ACS of a satellite has been
developed. Simulink was chosen as the modeling tool because of its wide acceptance and
growing demand in system modeling, analysis and design. Figure 2.4 shows the
functional diagram for the MATLAB-Simulink model of the ACS which was described in
Section 2.1 by Figure 2.1. Actual MATLAB-Simulink blocks for all the functional
diagrams presented in this section are provided in the appendix of this thesis as noted

next to the figure citations.

External Torques

Total Angular
Momentum
———»
Reaction
Torque Torgue > Sa[:elme-!;ody | .
Bito Command R ynamics Vehicle Angular
itch Error eaction Whee| :
ACPIControllerMp EDVnamias % 1 Velocity
Pitch-angle
Command )
Input RW:Speed
Pitch Angle

Sensor
Dynamics

F Y

Figure 2.4: Functional Diagram of the Simulink Model of ACS (Figure A)

A zero-momentum system with reaction wheels has been modeled, which was described
in details in Section 2.1.4 under Three-axis Control. The model has been developed for
fault-diagnosis in the ACS along a single axis, i.e., along the pitch axis. Thus, it is not
necessary to consider any cross-coupling effect. The actuator or reaction wheel block in
the control loop of the developed ACS model is primarily based on the reaction wheel

model presented in [14]. The model has been extended and modified in order to include
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fault injection capabilities which will be presented in subsequent discussion. Also, an
ideal dynamics for attitude sensors (described in Section 2.1) has been assumed, i.e.,
signals from sun sensors, horizon scanners, magnetometers, etc. have been fed back to
ACP without any error or time delay. Therefore, the gain of the Sensor Dynamics block

has been assumed to be 1.

Some general information about the ACP block in Figure 2.4 was provided in Séction
2.1.3. The ACS control loop has been stabilized by utilizing a simple PID (Proportional,
Integral and Derivative) control law. The PID controller inside the ACP block has been
given the pitch error signal (e.) as the input. Controller parameters (K, K; and K;) have
been tuned by trial and error in order to achieve best possible system response in terms of
control accuracy (as described in Section 2.1.2 and Table 2.3), overshoots and settling
time. The study has been performed assuming that the ACS is in its Normal or Pointing
mode (as described in Section 2.1.1). The maximum allowable pitch error in this mode
has been assumed to be +0.03 degrees. The output (Torque Command Voltage, v.) of the

controller is governed by the PID law:
ve=K,.0.+K Jo.dt +K,.é,

The External Disturbance Torque block in Figure 2.4 has been implemented using the
MATLAB-Simulink basic ‘source’ blocks to incorporate the possible external disturbance

torques described in Table 2.1.
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Subsequent discussion describes Satellite Body Dynamics and RW Dynamics (Reaction

Wheel Dynamics) blocks of Figure 2.4 in details.

2.2.1 Satellite Body Dynamics
Figure 2.5 shows the functional diagram for the MATLAB-Simulink model of the

satellite body or vehicle dynamics.

[ Fe »
Reaction Wheel Total Anguiar

Angular Momenturn Momentum
o iy 1 o
External s Vehiele Angular
Tarque Integrator Velocity
.
7 Pitch Angle
P Ay oo = ————
Reaclion 5
Torque Jv: Moment of Inertia. of the Vehicle integtator

Figure 2.5: Satellite Body Dynamics (Figure B)

The equation of motion for the satellite body is:

w =5 +J, (dw,/dt)
where, 74 is the external disturbance torque, 7. is the reaction torque from the wheel , J,
is the moment of inertia of the vehicle or satellite and @, is the angular velocity of the
satellite. From this point onwards, moment of inertia will be denoted by J instead of 7 in

order to avoid any confusion with current which is commonly denoted by ‘I’. The above

expression can be written in the form:

dadt = (1/J) - (1/J) 5 2.4
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From Equation-2.4, angular velocity o, of the satellite can be obtained by integration
over time. Pitch angle can be obtained by integrating @, over time. Angular momentum
of the satellite is:
H=J,. @,
Total angular momentum will be equal to the angular momentum of the reaction wheel
plus the angular momentum of the satellite body, i.e.,
H,=H,+H,
Where, H, = J,, . o, ; J, is the moment of inertia of the reaction wheel and o, is the

wheel speed. The Moment of inertia J, of the satellite has been assumed to be 175 N-m-s

2.2.2 Reaction Wheel Dynamics
Functional diagram for the MATLAB-Simulink model of the reaction wheel is shown in
Figure 2.6. As shown in Figure 2.6, the net torque 7, is equal to the motor torque 7, minus
and/or plus all the torques due to friction, torque noise and motor disturbances. Reaction
torque 7, is equal and opposite to net torque 7, Angular momentum stored in the reaction
wheel can be expressed as:
H,=J,. o,
where, J,, is the moment of inertia of the reaction wheel and @, is the wheel speed. From
the above relationships, we obtain:
5 =—1, = — (dH/dt) = —d(Jyw,)/dt = —J d(o,)/dt
Therefore, @, = (1/J,) A T, dt

Table 2.4 shows the various parameters for the lthaco Type-A reaction wheel.
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Table 2.4: Ithaco Type-A Reaction Wheel Constants [14]

Variable Nomenclature Unit Value
Ty Torque Bias Discontinuity N-m Zero
Gy Motor Driver Gain A/V 0.19
k; Motor Torque Constant N-m/A 0.029
k. Motor Back-EMF Constant V/rad/sec 0.029
kg Over-speed Circuit Gain V/rad/sec 95
Wy Over-speed Circuit Threshold rad/sec 690

RPM 6600
T Coulomb Friction N-m 0.002
Jy Flywheel Inertia N-m-s” 0.0077
N Number of Motor Poles - 36
C Cogging Torque Amplitude N-m Zero
B Motor Torque Ripple Coefficient - 0.22
Riv Input Resistance Q 2.0
P, Quiescent Power W 3.0
Rp .Bridge Resistance Q 2.0
- Torque Command Range \% +5
- Torque Command Scale Factor N-m/V 0.0055
ks Voltage Feedback Gain VIV 0.5
64 Torque Noise Angle Deviation rad 0.05
degrees 3
Wy Torque Noise High Pass Filter Frequency rad/sec 0.2
U, Static Imbalance N-s* 5x10°
Uy Dynamic Imbalance N-m-s* 1x10°

Descriptions of the other blocks in Figure 2.6 are given below.
Motor Torque Control

Figure 2.7 shows the functional diagram for the Motor Torque Control block in Figure

2.6 in details.

.
Motor
Current

Motor Motor Current Motor T
) otor Tarque »
Inl t. Driver Gain Constant
pu Mator
Tarque
Sign Current-Fault

Figure 2.7: Motor Torque Control (Figure D)
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It represents a voltage controlled current source with gain G, and a motor with torque
constant K (as given in Table 2.4). The function of this block is to generate motor current
proportional to torque command voltage and to convert this current into torque by the
motor torque constant K, A block has been added to incorporate fault injection into the
motor current. This block takes the polarity of the motor current as input and injects error
in the motor current using standard MATLAB-Simulink ‘source’ blocks such as Random

Source and Impulse Generator.

Speed Limiter
Figure 2.8 shows the functional diagram for the Speed Limiter block in Figure 2.6 in

details.

=0 for [WW] < Ws
H=4for [Wi >= Wi

Sign (W)

W Reaction Wheel Speed

w_t_ Over Speed Ws::Over-Speed Threshold

Cireuit Gain

il — abs |

w

Figure 2.8: Speed Limiter (Figure E)

The function of the speed limiter block is to prevent the reaction wheel from rotating
above maximum allowable speed. The actual wheel speed is compared with specified
maximum allowable speed and an appropriate negative feedback is generated to lower the

speed whenever the wheel speed exceeds the maximum allowable value.
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EMF Torque Limiting

The purpose of this block is to model the limitation of the motor driver when the wheel
runs at high speed at low bus voltage condition. At low bus voltage condition, if the
wheel runs at high speed, motor torque may be limited because of the increasing back-
EMF. From a disturbance point of view, the available motor torque at that point will be
directly coupled with the bus voltage and any fluctuation in the bus voltage will be
appearing as torque disturbance. Figure 2.9 shows the functional diagram for the EMF

Torque Limiting block in Figure 2.6 in details.

- )
6Y
Bus Voltage
Qutput Voltage Moator
d——- Hf [l Feedbad e abs |——— Bacd-EMF |4 ®
Gain Constant
Hf =0 farvV >0 vd e Wheel Speed
Hf =1 forv =<0 o
Hb =1 forlbus>0
Hb =0 for lbus=<0
Vd: Reverse Polarity
i i -l
FProtection Diode Drop Input Hb | ibus WL’IIJIS!
Resistance migf— ¢
Bus Current
Calculation Motor Current

Figure 2.9: EMF Torque Limiting (Figure G)
Bus current I, which is a function of bus voltage Vj,,, motor current I, and wheel speed
w, is given by [14]:

Dous = {1/ (Vous- 1) }. {In"Rp + 0.04 || Vi + Py + I ko 0} 25

The constants in this equation are given in Table 2.4. Equation-2.5 has been implemented
inside the Iy, Calculation block in Figure 2.9. The block H, has been included inside this
block to eliminate the voltage drop when the power is not drawn from the bus. Detail of

the EMF Torque Limiting block is found in [14].

31



Bus Voltage

Normal range for bus voltage was assumed to be 21 — 28 volts D.C. [15]. A block has
been added to incorporate fault injection into the bus voltage. The function of the Vi,
Fault block is to lower the amplitude of the bus voltage below the normal range slowly

using a standard MATLAB-Simulink ‘source’ block: Impulse Generator.

Friction Model

Torque due to friction in the reaction wheel has two components: torque due to viscous
friction 7, and torque due to coulomb friction 7, 7, is a function of wheel speed and
temperature while 7 is constant with polarity dependence on the direction of rotation of
the wheel. MATLAB-Simulink friction block has been used to model these torques. Slope
for the 7, curve has been taken from Figure 4 of [14]. Figure 2.10 shows the functional

diagram for the Friction Model block in Figure 2.6 in details.

B & o Friction-F ault |ug>3"
Coulomb and Raaction Wheal
Viscous Friction Coulomb & Speed
. Viscous lf————

Friction Model

Figure 2.10: Friction Model (Figure F)
A block has been added to incorporate fault injection into the wheel bearing friction. This
block takes the direction of the friction torque as input and makes the amplitude of this
torque for some pre-defined time period (will be discussed in Chapter 4) using standard

MATLAB-Simulink ‘source’ blocks such as Impulse Generator.
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Torque Noise

Torque noise is a very low frequency torque variation from the bearings due to lubricant
dynamics [14]. It is a function of lubricant behavior and it has the most significant effect
on satellite pointing. It can be specified as a deviation from the ideal location of the rotor
at any constant speed. Equation-2.6 [14] has been implemented inside the Torque Noise
block in Figure 2.6.

7, = Jw 6y a)az sinow,t 2.6

The constants of the Equation-2.6 are specified in Table 2.4. Detail information on the

Torque Noise block is available in [14]

Motor Disturbances

Motor disturbance has two parts: torque due to ripple in the motor torque and cogging
torque. Torque ripple is amount of variation in the motor torque due to commutation
method and shape of the back-EMF [14]. Cogging is always present in conventional
brush-less DC motors because of the change in reluctance of the iron stator due to the
rotation of the magnets inside them. However, it is possible to eliminate cogging
disturbances completely by using ironless armature. Ithaco Type-A reaction wheel motor
eliminate cogging disturbances completely. Equations 2.7 and 2.8 [14] have been
implemented inside the Motor Disturbance block in Figure 2.6. The constants of the

Equations 2.7 and 2.8 are specified in Table 2.4

Ripple Torque: Trip = B sin 3Nyt 27

Cogging Torque: Teog = C sin (N/2) wyt 2.8
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Imbalance Disturbances

The imbalance of the flywheel causes imbalance disturbance in satellites. It is often
considered as the most significant source of disturbance from the reaction wheel or
momentum wheel. Static Imbalance U; (specified in Table 2.4) is the offset of the center
of gravity of the flywheel from the rotation axis and Dynamic Imbalance U, (specified in
Table 2.4) is the cross product of inertia of the flywheel, caused by angular misalignment
of the principal inertia with the spin axis. Detail information on static and dynamic

imbalance is available in [14]. Equations 2.9 and 2.10 have been implemented inside the

‘Imbalance Disturbances’ block in Figure 2.6.

Static Imbalance Force: Fyy= Uw,’ Sinw,t 2.9

Dynamic Imbalance Torque: Tey = U’ sincoyt 2.10

Torque Bias Discontinuity

If the polarity of the commanded motor torque is reversed, or the wheel speed goes
through zero, significant torque discontinuities and/or temporary torque drop-outs may
result if there is any timing present in the quadrant detection schemes in the motor driver
during quadrant changes. Ithaco Type-A reaction wheel motor drivers are designed to
eliminate any need for quadrant detection. As a result, they provide seamless torque
command polarity changes and smooth transitions through zero speed. Therefore, the

gain of the Torque Bias Discontinuity block in Figure 2.6 has been set to zero.
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2.3 Summary

In this chapter, a review on the Attitude Control Subsystem (ACS) of a satellite has been
presented along with the description of the MATLAB-Simulink model of the ACS that
has been developed in this thesis. In the next chapter, a review on fault-tree synthesis and
analysis will we presented along with the proposed algorithm for fault-tree synthesis.
Afterwards, in Chapter 4, different ACS failure scenarios will be presented and fault-trees
will be constructed under each failure scenario using the proposed fault-tree synthesis

algorithm.
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Chapter 3

Fault-Tree Synthesis and Analysis:
An Overview and Proposed Approach

The first part (Section 3.1) of this chapter gives a brief introduction to fault-trees and
provides a review on fault-tree synthesis and analysis methodologies. The next part
(Section 3.2) discusses an approach for fault-tree synthesis called ‘IFT’ along with a
method for induction of decision trees known as ‘ID3’. Finally, in Section 3.3, the fault-
tree synthesis algorithm, which has been developed in this thesis based on IFT and ID3

concepts, is presented.

3.1 Introduction to Fault-trees

The concept of fault-tree evolved primarily within the U.S. aerospace and nuclear
industries. Fault-trees have been extensively used in system safety and reliability
analysis, as well as in system fault diagnosis, for more than 40 years [16]. The purpose of
fault-trees is to translate the failure behavior of a physical system into a visual diagram in
which a very simple set of rules, logics and symbols provides a mechanism for analyzing

very complex systems.

The fault-tree for any failure analysis has a basic structure as shown in Figure 3.1. The
top event in a fault-tree is the failure, which is to be analyzed. The basic events are the

occurrences beyond which there is no further interest for analysis. The basic events (often
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called leaves) are connected to the top events through some intermediate events (often
called nodes) which can show how fault(s) propagated into the system and led to a
failure. The top event in the fault-tree has to be foreseen by the analyst. The event(s) in
one level of a fault-tree are connected to the event(s) at the next level of the tree through

some logic gates (AND, OR etc.), as shown in Figure 3.1.

TE

TE: Top Bvent
1E: Intermediate Eventa
BE: Basic Bvents

Figure 3.1: Basic Fault-Tree Structure

Fault-trees, that use the traditional logic gates mentioned above, are not capable of
representing the temporal relationships among the events and dynamic behavior of the
system under consideration. Where the sequences of the occurrences of events are
necessary for analysis, dynamic fault-trees can be constructed. Usually, the kind of
dynamic system behaviors that make it necessary to use the dynamic fault-trees for

computer based systems include: sequence dependencies, shared pool of resources,
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‘warm’ and ‘cold’ spares, etc. [17]. Dynamic fault-trees are essentially an extension of

traditional or static fault-trees with special-purpose gates to capture the system dynamics.

The whole problem of fault-tree” can be divided into two parts — fault tree synthesis
(FTS) or construction and fault tree analysis (FTA). As mentioned above, FTS and FTA
find their application in System Reliability Analysis, System Safety Analysis and System
Fault-diagnosis. In this thesis, fault-trees have been used as a diagnostic aid for fault

diagnosis and health monitoring in the Attitude Control Subsystem (ACS) of a satellite.

It is important to point that fault-tree is not a complete representation of all possible faults
and failures in a system. It is usually capable of representing the combinations of events
for a failure, which have been foreseen by the analyst. It should also be noted here that
FTA is primarily a means for analyzing the cause of a failure. Therefore, the top event in
a fault tree should be detected by other mechanism. Hence, the existence of an efficient

fault detection mechanism has been assumed here.

Fault-tree generation or synthesis is considered to be a relatively difficult problem. This
is mainly due to the fact that a very good understanding of the system is often required
for FTS. Though manual synthesis of fault tree is still common in today’s industries, for
large and complex systems, manual synthesis is often not feasible. For complex systems,
manual construction of fault-trees can be extremely time-consuming and expensive and is

likely to lead to human errors. This is due to the fact that if two persons analyze a system,

" In the remaining part of this thesis, the word ‘fault-trees’ will be used to mean static fault-trees
unless otherwise specified.
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the results are never the same. One may overlook some analysis the other has performed.
Moreover, the forms of the resulting fault-trees may be different; and the terminology
used to describe the failure may also be different. Therefore, the automation of fault-tree
synthesis is necessary from the point of cost reduction, result standardization and also for
understanding the construction process. In order to automate the fault-tree synthesis, it is
necessary to build a consistent methodology which can be implemented in computer
programs. Existing methodologies for automatic fault-tree construction is presented in the

next section.

3.1.1 Automated Fault-Tree Synthesis (FTS) Methodologies

The process of automating the fault-tree synthesis task was initiated in 1970’s by J.
Fussell [16]. Since then, numerous attempts have been made by many researchers to
create computer programs for automatic fault-tree construction using the different tree-
synthesis approaches they had developed. In this section, a short review of the existing

dominant fault-tree synthesis methodologies will be presented.

The author in [18] presented a formal methodology for automatic synthesis of fault-trees,
commonly known as the synthetic tree model, for electrical systems. This method uses a
set component-failure transfer functions as models for the components and their various
failure modes to construct the final fault-tree in a ‘top-down’ fashion. The authors in [19]

addressed the issues related to the formal synthesis methods for fault-trees.
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The Fault-tree Handbook [20] provides basic concepts of fault-trees. It contains
information on fault-tree construction fundamentals, including basic rules for tree-
synthesis, fault-tree evaluation techniques and the application of probability and statistics

theory as well as Boolean algebra for fault-tree analysis.

In order to synthesize fault-trees automatically, authors in [1] represented the system
under consideration using digraphs (directed graphs). A digraph is a set of nodes
connected by edges. In fault-tree synthesis, nodes of digraphs represent process variable
and certain type of failures. If a deviation in one variable causes a deviation in another
variable, then a directed edge is drawn from the node representing the first variable to the
node representing the second one. Also, a number is assigned to the edge depending on
the direction and magnitude of the second deviation relative to the first. Finally, fault-tree
synthesis is formulated using a state-space representation. The initial state in the fault-
tree synthesis is a definition of the top event along with a description of the process (in
the form of a digraph). The ‘goal state’ is a fault-tree connecting the top event to the
events (basic events or primal events), which are not developed further. Transformation

from one state to another is accomplished by using appropriate operators.

Another classical paper on automatic synthesis of fault-tree is [21], where the author
introduced the concept of mini fault-tree models for system components. One big
advantage of this approach is that the mini fault-tree models can be used repeatedly in
different failure analysis studies. In this approach, a component functional and failure
model consists of a set of mini fault-trees. Each mini fault-tree consists of an input event,

a set of component conditions, and a set of output and state-change events. The algorithm
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starts by taking a localized hazard event within a particular component selected by the
user. This event is considered as the top event in the tree. Component mini fault-trees
with this event as output are searched in the library and added to the fault-tree (or failure-
tree, as called by the author) as inputs to an OR gate. Then each of these mini fault-trees
is selected in turn. The process continues by adding mini fault-trees to the failure-tree
until only spontaneous events and normal states exist as the leaves of the tree. The
algorithm in [21] for fault-tree synthesis differs from the one in [1] in that the former
works on a component by component basis rather than loop by loop basis. Also, the
former works directly from the system flow sheet. The treatment of loops on a component
by component basis is a new feature of this algorithm which gives the capability of

treating multiple loops of unlimited complexity.

The authors in [22] presented another new approach for constructing fault-trees for
electrical systems or circuits by representing them by graphs in which connections
between components are represented by vertices and paths through the components are
represented by arcs. This approach is quantitative and uses backtracking. Bigger circuits
are decomposed into sub-circuits using a decomposition technique utilizing graph theory.
This breaks down the problem into smaller pieces and solves the problem of handling
loops in the circuits. Technical descriptions of the top events are derived and the inputs to
the circuits are determined. The backtracking approach considers one component at a
time going from output to input where each level in the tree corresponds to one of these
components. The tree generation algorithm is to be consistent with this approach. Finally,
in order to handle the time, the authors proposed that a time range or interval can be

specified on the voltage and current for specifying the time requirements for the top
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event. In the backtracking process, when the inputs to the circuit are reached, the required
input and the actual input must be compared to determine if the time requirements on the

voltage and current are met as well as their magnitude requirements.

The authors in [23] pointed out that in most of the above-mentioned methodologies, well-
grounded discrete event system formalism to represent component models had not been
not adopted and timing concept had been introduced only in a ‘rough sense’. To
overcome these problems, they presented an automated fault-tree generation
methodology using symbolic DEVS (Discrete Event System Specification) simulation. In
contrast to the conventional backward (back-track) approaches, their method is a forward
approach because is generated through simulation. Symbolic DEVS is an extension of
conventional DEVS. In conventional DEVS, time is expressed in real numbers; whereas
in symbolic DEVS, time is represented by linear polynomials over the real numbers. This
allows manipulation of expressions for time with symbols representing unspecified event
times. Finally, the precise time information can be obtained by setting its symbol to a real
value. The symbolic simulation starts by injecting a given input command into the model
structure. After that, every possible event — both faulty and non-faulty — is investigated by
propagating events through the next components depending on its coupling and timing
relations until it satisfies the goal condition i.e., the top event. In this way, this method

intrinsically represents timing effects.

In [24], the authors described a dynamic fault-tree modeling techniques for handling
some difficulties in the reliability analysis of fault-tolerant computer systems. Since the

modeling is dynamic, they incorporated four special types of gates in the fault-tree
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models to capture the dynamic behavior of the system. Continuing along the same theme,
the authors developed a methodology for automatic synthesis of fault-trees for computer-
based systems in [25] where dynamic fault-trees were constructed from a RIDL
(Reliability Imbedded Design Language) system model. Their goal was to perform the
reliability analysis at an early stage in order to avoid costly design changes. Afterwards,
in [26], the authors presented a methodology for automatic generation of a diagnostic

expert system for system fault-diagnosis.

The authors in [27, 28] presented a methodology for fault-tree synthesis from MATLAB-
Simulink models in order to assist the safety and reliability analysis for model-based

product development in the automotive industry.

Another case where fault-trees were used for fault-diagnosis is found in [29]. The authors
describe a methodology to generate fault-trees automatically for operational fault-
diagnosis. The diagnosis system was developed for on-line diagnosis of modern trains
based on an expert system approach for off-line generation and optimization of fault-trees

. using case-based reasoning.

The authors in [30] presented an approach for automatic fault-tree construction called
Induction of Fault-Trees (IFT). In their approach, a detailed knowledge of the system
design, construction and operation is not necessary. The fault-tree synthesis is performed
from the database of example vectors representing system behaviors under faulty and
non-faulty conditions. Their fault-tree synthesis algorithm utilizes machine learning

technique and is based on Quinlan’s ID3 algorithm [31] for induction of decision trees. In
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[32], the authors developed a diagnostic system using constructed fault-trees. The IFT

approach will be discussed in detail in Section 3.2

3.1.2 Fault-Tree Analysis

Once the fault-tree synthesis is complete, both qualitative and quantitative analysis [1, 21,
33, 34] can be performed. However, since this thesis is mainly focused towards fault-tree
synthesis (FTS), only a brief discussion on fault-tree analysis (FTA) is presented in this

section for the sake of completeness.

Qualitative Analysis: The purpose of performing qualitative analysis on a fault-tree is to
reduce the constructed tree to a logically equivalent one showing the specific
combinations of basic events which are sufﬁciént to cause the top event. Therefore, in
qualitative analysis, the intermediate events are removed and only the relationships
between top event and basic events are shown. These are commonly known as the cut

sets. The ultimate goal of the qualitative analysis to find the minimal cut sets.

A minimal cut set in a fault tree represents a collection of basic events all of which are
necessary and sufficient for the top event to take place by that minimal cut set. Therefore,
even if one basic event in the cut set does not occur, the top event in the three will not
take place. If there are OR gates in the tree, same primary events usually occur in more
than one of the minimal cut sets. Consequently, minimal cut sets are generally not
independent of each other. A medium size fault-tree can have millions of minimal cut

sets [34]. Consequently, computer programs are necessary to calculate minimal cut sets.
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Quantitative Analysis: The objective of performing quantitative analysis on a fault-tree is
to calculate, using the minimal cut sets, the probability of the occurrence of the top event
from the probability of the basic events. So, information on the events occurring in the

tree is required for performing such analysis.

Cut-set analysis is a classical approach for fault-tree analysis. The authors in [35] pointed
out that the sometimes the determination of minimal cut sets can be very time consuming
process even on modern computers. They described an alternative approach that uses
Binary Decision Diagrams (BDD) for fault-tree analysis and ways through which the
technique can be implemented on a computer. A BDD, as described in [36], is a directed
acyclic graph in which all paths begin at the root vertex and terminate in one of the two
states: (1) a ‘O State’ (system success) (2) a ‘1 State’ (system failure). A BDD is
composed of terminal and non-terminal vertices connected by branches. In contrast to the
basic events representation in the fault-trees, the non-terminal vertices, as represented by
X1, X2 X3, X4 in Figure 3.2, of a BDD correspond to the basic events of the fault-tree
from which it is derived. In short, the aim the approach is to convert fault-trees into
BDDs for increasing the efficiency in the computation of both the minimal cuts and the
probability of its root events. However, a major problem with the BDDs is that variable
ordering has a crucial effect of the size of the BDD. Finding an appropriate ordering
scheme that is capable of producing BDDs for all fault-trees is a difficult task. In order to
handle the complexity of this ordering problem, genetic algorithm, machine learning and

neural network based techniques are used [36, 37].
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Figure 3.2: A Binary Decision Diagram (BDD) [36]

The authors in [17] presented a unified methodology for solving the fault-trees. A large
system level fault-tree is decomposed into static and dynamic fault-trees (sub-trees). The
disadvantage of converting the entire system fault-tree into an equivalent Marcov chain is
that the size of the resulting Marcov model, which is used to solve dynamic trees,
becomes too large. They used Binary Decision Diagrams (BDD) for solving the static

sub-trees and Markov methods for solving the dynamic sub- trees.

3.2 IFT Approach for Fault-tree Synthesis

As mentioned in Section 3.1.1, the authors in [30] described an alternative to the
traditional approaches for fault-tree synthesis. It is a machine-learning method for
automatic generation of fault-trees for simulated incipient faults in dynamic systems. A
significant aspect of this approach is that detailed knowledge or analysis of the system
under consideration is not required. The algorithm constructs trees from a database of
example vectors which represent the system behavior in presence of undesired events as

well as under normal system condition. These example vectors are formed by extracting
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features from the data. The authors [30] used Fast Fourier Transform (FFT) based feature
extraction in their study of a servomechanism for machine tool applications. The
algorithm they developed was based on the ID3 algorithm [31] for induction of decision
trees. A decision tree is a way of representing classification rules. The resulting fault-
trees by the algorithm in [30] are essentially a type of decision trees that classify systems
on the basis of whether the systems do or do not exhibit symptoms of a particular fault.
Generated fault-trees were used to identify the system states by classifying the simulated

data on the basis of the severity of the injected fault.

In the remaining part of this section, basic idea of the ID3 algorithm, from which the IFT
approach was derived, is described for better understanding of this concept. Also, two
important issues — Feature Extraction and Attribute Selection Sequence — have been
addressed. Finally, in Section 3.3, the fault-tree synthesis algorithm which has been

developed in this thesis based on these concepts will be presented.

3.2.1 The ID3 Algorithm

The ID3 algorithm [31] was designed for constructing reasonably good decision trees
without much computation where many attributes and many objects are there in the
data/training set. The purpose of decision trees was to classify objects that are described
in terms of a collection of attributes. In this method, decision trees are constructed by an
induction task from a ‘training set’ which contains collections of attribute values for
different classes. The tree construction process starts from the root of the tree and

proceeds down to its leaves. Leaves of such decision trees represent class names and the
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other nodes represent attribute-based tests. Each branch from these nodes represents the
outcome of the test. Though ID3 was found to construct simple decision trees, the

approach it uses cannot rule out the possibility of overlooking better trees [31].

The induction task which is performed by ID3 should be explained in more detail. The
induction task is being explained here through the example of the object Saturday
Mornings [31]. Table 3.1 contains the attributes for a Saturday morning. Fourteen
example vectors in this table were formed by considering different ‘values’ for the four
attributes: outlook, temperature, humidity and wind which might be sufficient to classify
the object i.e., a particular Saturday morning. Depending on the attribute values, Saturday
morning has been classified into two classes: ‘N’ (negative instances) and ‘P’ (positive

instances) or simply ‘bad’ and ‘good’ respectively.

Table 3.1: Training Set for Induction Task [31]

Attributes Class

Outlook Temperature Humidity Windy

sunny hot high false N
sunny hot high true N
overcast hot high false P
rain mild high false P
rain cool normal false p
rain cool normal true N
overcast cool normal true P
sunny mild high false N
sunny cool normal false P
rain mild normal false P
sunny mild normal true P
overcast mild high true P
overcast hot normal false P
rain mild high true N

A simple decision tree which classifies the information given in Table 3.1 is shown in

Figure 3.3.
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Figure 3.3: A Simple Decision Tree [31]

Given adequate attributes, it is always possible to construct a decision tree that classifies
the data correctly. However, if the example set contains two or more classes that have
identical values for each attribute but belong to different classes, it will never be possible
to differentiate between the classes based on the given attributes. In such cases, attributes

are considered to be ‘inadequate’ for the induction task.

3.2.2 Feature Extraction

As mentioned in Section-3.2, the IFT approach for fault-tree synthesis uses a set of
example vectors which is formed by extracting features from the attribute. For fault-
diagnosis applications, the main purpose of feature extraction is to find the symptoms of
the presence of anomaly in the system. Symptoms and evidences are necessary for fault-
diagnosis, failure analysis and any accident or incident investigation. Essentially, in the
tree-synthesis process, attributes are ‘tested’ sequentially for symptoms of one or more
anomaly in the system. Another advantage of extracting features from the data is that it

drastically reduces the amount of data to be handled; i.e., feature extraction, in general,
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maps a large problem space in into a smaller feature space. This mapping is done by

applying appropriate feature extraction function(s) on the available data.

Selection of an appropriate feature extraction function is a difficult task and can be done
in several ways. The most commonly used techniques include (a) Spectrum analysis by
N-point DFT (Discrete Fourier Transform) (b) Standard Control Systems specifications
such as natural frequency, peak value, percentage overshoot, settling time etc. (¢) Curve
fitting techniques. In this thesis, the second approach has been followed and feature
extraction has been performed by using simplest feature extraction functions such as peak
value (MAX) and minimum value (MIN) of the time domain signals or attributes (see

Chapter 4) to demonstrate fault-tree synthesis by the proposed algorithm.

3.2.3 Attribute Selection Sequence

In order to construct decision trees by ID3 or fault-trees by the IFT approach described
earlier in Section 3.2, the sequence in which the attributes are selected, plays a crucial
role on the size of the resulting trees. This is due to the fact that some attributes divide the
data more clearly than the others. It appears from the reviewed research works that there
are no rule-based means of determining the ‘best way’ for attribute selection. In this
thesis, a rigorous study on attribute selection techniques has not been performed. A very
common and simple attribute selection criterion based on ‘Entropy’ (will be discussed
later in this section) has been used (see Chapter 4) to demonstrate fault-tree synthesis by

the proposed algorithm.
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The author in [31] described ‘information-based’ attribute selection heuristics. One of
them calculates the Information Gain for each attribute in the unit of bits and selects the
attribute with the largest information gain as the first attribute; i.e., attribute selection is
done in descending order of the information gains. Detail of this calculation can be found
in [31]. The authors in [30] used this information gain heuristics for determining the
attribute selection sequence in their study. However, in another study it was reported that
the Information Gain criteria ‘tends to favor’ attributes with many values [31], i.e., the
criterion is biased by such attributes. Another criterion called Gain Ratio criterion

suggested in [31] overcomes this problem.

Another widely used technique for attribute selection is to select them based on their
entropy value. Entropy is a common concept in many fields of research. One way to
calculate the entropy E(A4) of an attribute 4 over some interval is to use well-known

Shannon’s entropy:

E(4) ==X A log (47) 3.1

Where, log(X) is the natural logarithm of X. In this thesis, the percentage change in
entropy between non-faulty and faulty scenario is considered as an attribute selection
criterion. Entropy is calculated using Equation 3.1 for each attribute over a pre-defined
time window (as discussed in Section 1.5) during normal operating condition of the
system and under presence of anomaly. Then the percentage changes between these two
entropies are calculated and attributes are selected in the descending order of the

percentage changes.

51



3.3 Proposed Algorithm for Fault-Tree Synthesis

In this section the automatic fault-tree synthesis algorithm developed in this thesis is
presented. The algorithm has been developed by continuing along the same theme as that
in [30] and [31]. Consequently, the diagnosis process utilizing the proposed algorithm
does not depend on the design phase of the system, i.e., in depth design and construction

knowledge is not necessary.

The proposed algorithm for FTS adopts and transforms the one presented in [30] to suit
our requirements. This algorithm also generates fault trees from vectors of numeric
feature values of the attributes by induction. However, there are some important
differences between these two algorithms. First, instead of using a single threshold point
for a numeric feature value, we have used more than one range of values for the features
of some of the attributes. The advantage here is that a range is relatively easy to
determine compared to an exact threshold point for a feature value. In order to specify
such thresholds, one has to know exactly at what point the transition will take place from
a non-faulty to a faulty state. For practical purposes, specifying ranges for attributes are
much easier and for operational fault-diagnosis purpose, the operators or engineers
involved in analysis will be able to specify these ranges from their operational experience

on the system.

Secondly, the algorithm in [30], on selecting a feature value V; of an attribute 4, with
threshold 7, considers both the cases when V,< T, and V, 27y This results in a

generalized tree for a particular top event which allows one to evaluate all possible
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Proposed FTS Algorithm:

A. Form a TOP NODE with the undesired event.

B.

1.

2.

3.

Select an attribute 4,. Read its current feature value. Determine the pre-defined range i
which the current feature value belongs to.

a.

(Only if executing step-B for the first time):
If F(4,) belongs to a single range, connect an AND gate with the Top Node and
place a node (F(4,) € i) at one input branch of the AND gate.

If F(4,) belongs to more than one range, connect an OR gate with the Top Node
and place all (F(4,) € i) nodes at the inputs of the OR gate. Number of (F(4,) € i)
nodes will be equal to number of pre-defined ranges F(4,) belongs to.

For each (F(4,) € i) node, replace the node by an AND gate place (F(4,) € i) at one
input branch of the AND gate

(Only if back from B.3a):
Place (F(B,) € i) at one input of the AND gate.

If F(B,) belongs to more than one range, connect an OR gate with the AND gate
and place all (F(B,) € i) nodes at the input of the OR gate.

For each (F(Bx) € i) node, replace the node by an AND gate and place (F(B,) € i)
at one input branch of the AND gate

(Only if back from B-3c):
For each (F(B,) &) node, replace (F(B,) €j) by an AND gate and place (F(B,) <)
at one input of the AND gate.

To develop the other branch of each AND gate, consider all the examples in the
example-set where, F(4,) €.

a.

If all examples are FALSE, remove the (F(A4,) € i) node. Select next attribute B, by
going back to step-B.1 and executing the algorithm recursively.

If no more attribute is available, connect an ‘Unknown Event’ leaf with the
remaining input of the AND gate and STOP.

If all examples are TRUE, then STOP.

Otherwise, to develop the other branch of the AND gate, select next attribute B, and
place a node (F(B,) € i), (where i is range for F(B,) in the current example), at the
other input of the AND gate. Repeat step-B.2 onwards recursively for B,.

If F(B,) belongs to more than one range, connect an OR gate with the remaining
input of the AND gate and place all (F(B,) & i) nodes at the input of the OR gate.
Repeat step-B.2 onwards recursively for B,.

If no more attribute is available, connect an ‘Unknown Event’ leaf with the
remaining input of the AND gate and STOP.

C. Remove all single-input OR and AND gates.
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combinations of events behind a failure that may provide useful information into future
design to avoid other unforeseen combination of events that could lead to the failure
scenario. However, in this thesis, the objective has been to identify the exact combination
of events behind a failure. In order to achieve this, different and distinct (non-
overlapping) ranges for numeric feature values have been defined whenever it is
necessary to do so. Upon selection of the numeric feature value for a particular attribute,
the proposed algorithm considers only that subset of examples for which the current
value of the feature and existing feature values (as mentioned in Section 1.5) are in the
same range. It is also important to note that when the algorithm considers an attribute B
(for the event F(B) € y; where y is a pre-defined range for this attribute) after considering
an attribute 4 (for an event F(4) € x; where x is a pre-defined range for this attribute), it
considers only those examples in the database which satisfy both the properties: ‘F(4) e
x’ and ‘F(B)e y’. Finally, we are using an ‘Unknown Event’ leaf in the tree, which
represents that a branch in the fault-tree could not be developed beyond that point due to

lack of information (examples).

From a practical point of view, sometimes even it may be difficult to specify distinct and
non-overlapping ranges for a particular feature. Consequently, there may be a need for
specifying overlapping ranges. In that case, a feature value may belong to more than one
class (range). The proposed algorithm fulfills such requirement by putting an OR gate in
the tree whenever a feature value belongs to more than one class and placing all the
classes at the input of that OR gate and finally, executing the remaining part of the

algorithm for each OR gate input, i.e., for each range of the feature. It is easy to see that
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the more the number of such OR gate in the fault tree, the more generic will be the
resulting tree. Interpretation and usefulness of the resulting fault-trees will be discussed

in Section 4.4 of Chapter 4.

34 Summary

In this chapter different fault-tree synthesis (FTS) and analysis (FTA) methodologies
have been reviewed. Also, at the end of this chapter the fault-tree synthesis algorithm
developed in this thesis has been presented. In the next chapter, different failure scenarios
in the Attitude Control Subsystem (ACS) (as discussed in Chapter 2) will be presented
and fault-trees will be constructed under each failure scenario using the fault-tree

synthesis algorithm that has been proposed in Section 3.3 of this chapter.
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Chapter 4

Fault-Tree Synthesis from Simulated
ACS Model Data

4.1 Introduction

In this chapter, fault-tree synthesis from the data obtained by the simulation of ACS
model (as discussed in Chapter 2) is presented. As discussed in Section 3.3, the proposed
algorithm for fault-tree synthesis constructs fault-trees from a set of example vectors,
which can be classified based on different ranges of the feature values of the attributes/
signals. In addition, each example vector is required to be tagged with a T (true) / F
(false) flag that indicate whether the example is associated with a non-faulty or faulty
system behavior. Therefore, for fault-tree construction from the data — which may be
simulated or actual — the first step is to determine the ranges of feature values for each
attribute under consideration under different type of faults. Different failure scenarios,

for which fault-trees have been constructed, are presented in Section 4.2.

As discussed in Section 3.2, for an attribute/ signal A, if the extracted feature value is
F(4,) = F;, where F is the feature extraction function, then a range (f1,/2) has to be defined
for F; when there is fault present in the system as well as when the system is fault-free.
As a result, for different faults in the system, F; will have different ranges. These defined
ranges may be overlapped in some cases. Moreover, feature extraction functions may be

different for different attributes. From now onwards, ‘F(4;)’ will be used to indicate the
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extracted feature value of the attribute A;. Also, T and F will be used to indicate whether

or not a particular example is associated with any failure.

Fault-trees have been constructed based on 5 (five) attributes of the ACS. For each
attribute, simple feature extraction functions have been used. This demonstrates that the
input generation process for the proposed algorithm may be very simple. While using a
complex feature extraction may be efficient in many case, a big advantage of using
simple feature extraction functions, wherever possible, is that the resulting tree would be
able to convey information on the failure in terms of easily understandable functions.
This is particularly important when there is an option of diagnosing the autonomous
spacecraft by an operator at ground station. Table 4.1 shows the feature extraction
functions that have been applied on attributes under consideration over a pre-defined time
window (as discussed in Section 1.5) for each attribute under consideration.

Table 4.1: Selected Attributes for Fault-tree Synthesis and Feature
Extraction Functions

Attribute Feature Extraction Function
(abs = absolute value)

Reaction Wheel motor current (I,) F(l,) = max(abs(l,))
Reaction Wheel motor torque (7',) F(T,,) = max(abs(T.))
Reaction Wheel speed (w,,) F(w,) = max(abs(w.))

Bus Voltage input to the Reaction Wheel (V) | F(V,) = min(Vy)

Torque Command input voltage to the F(V,) = max(abs(V.))
Reaction Wheel (V,)

Determination of Ranges under Each Failure Scenario:

For each feature, feature range (f;, f») discussed above can be determined by the

following factors:
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1. Minimum feature value of the attribute required for a particular fault to take place.

2. Maximum or worst case possible feature value of the signal/attribute.

One of the f; and /> can be determined by injecting fault into the attribute/signal and by
finding out the minimum amount of fault injection that may lead to a failure by
simulation; finally, by applying the feature extraction function to find out f; or f; for that
minimum amount of fault injection. Once f; (or f3) is determined, the other bound of the
range can be determined by assuming the worst case failure scenario i.e., by injecting
maximum-probable fault (maximum possible anomaly) in the signal and applying the

feature extraction function for that worst fault injection into the signal.

4,2 ACS Failure Scenarios

Since this thesis has been based on simulated data, it has been necessary to assume some
failure scenarios utilizing the concept of fault injection into the system. Four failure
scenarios for which fault-trees have been constructed are presented in the subsequent
sections. It should be noted here that while using the actual system for analysis, the
results obtained by assuming such scenarios may be utilized (as discussed in Section 1.5).
In the developed ACS model, it has been assumed that a maximum attitude error of 0.03°
in the pitch angle can be tolerated (as discussed in Section 2.2). Consequently, for all of

the ACS failure scenarios, the top events in the fault-trees have been identified as ‘Pitch

Error > 0.03°.

Out of the four ACS failure scenarios that are presented in the subsequent discussion,

three of them correspond to a initial condition, when the reaction wheel (RW) runs near
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zero speed whereas the rest corresponds to a different initial condition when the RW runs

near maximum allowable speed.

4.2.1 ACS Failure Scenario-1

Random increase in reaction wheel motor current

This type of fault may take place because of some hardware level failure in the motor
driver unit (MDU) in the reaction wheel. This fault has been injected when the RW was
running near zero speed. The purposé of this fault is to represent failure under a surge in
current. System behavior (pitch angle error) during fault-free condition as well as under
the presence of this fault can be observed in Figure 4.1. Fault has been injected between
t=2500 and t=3500 seconds. System behaved normally outside this time range. The
location where this fault-injection has been injected was presented in Figure 2.7 of

Chapter 2.
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Figure 4.1: Pitch Error Vs Time under Failure Scenario-1
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Eample-1 in Table 4.2 represents the system condition under fault free condition.
Examples 4 to 10 show the example vectors when the fault is injected into the system.
These examples have both T and F flags associated with them. T indicates that the

injected fault led the top event, i.e., ‘Pitch Error > 0.03”

From Example 1 we see that under fault-free condition, the feature value of motor current
varies within an approx. range of +/-0.25 Ampere. For determining the ranges for feature
values for this case, it was observed that ACS met the attitude requirement with a random
error of 0.18 Ampere (around 72% of the normal peak value) or below present in the
system. Example 10 shows the example vector when random error of +/-0.18 A was

injected at the MDU output.

Table 4.2: Example Vectors and Ranges for Feature Values under Failure Scenario-1

Feature Values For:
Ly
' gfz) (O] Motor Current. | - Motor Torque | . Bus Voltage RW Speed Torq. Comd.
£8 9 I Tw Vp) (D) Voltage (V)
i Ampere - N-m ~Volts RPM Volts
1 F 0.2532 0.0073 28 21.04 1.2104
2 F 0.2187 0.0063" 21 19.85 1.1510
3 F 0.2187 0.0063 19.5 19.84 1.1510
4| T 0.8532 0.0247 28 47.49 3.0363
5 T 0.7541 0.0219 28 41.37 2.6817
6 T 0.7212 0.0209 28 44.73 2.6404
) T 0.6447 0.0187 28 38.52 2.3971
-8 T 0.7227 0.0210 28 39.04 2.4471
9 T 0.5974 0.0173 28 33.63 2.2878
10| F 0.5492 0.0159 28 31.99 2.0792
Approx. 0.55-0.86 | 0.0160-0.0249 21-28 31-48 2.08 - 3.04
Ranges:

In order to determine the upper limit, we need to assume a worst-case scenario. One can
also use past experience/ fault data in this case. It has been assumed that the surge would

lead to maximum 0.375 ampere (150% of the normal peak value) random error in the
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MDU output. Example 2 shows the vector corresponding to this situation. Based on the
above information, the approximate ranges for the feature values of the different
attributes for this failure scenario are presented in the last row of Table 4.2. Ranges for V},

are discussed in Section 4.2.3.

4.2.2 ACS Failure Scenario-2

Increase in Friction in the reaction wheel

This fault has been injected when the RW was running near zero speed. The purpose of
this fault is to represent failure if the friction is increased in the wheel bearings because of
wear of bearing material over time or some problem in the lubricant flow. System
behavior (pitch angle error) during fault-free condition as well as under the presence of

this fault can be observed in Figure 4.2.
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Figure 4.2: Pitch Error Vs Time under Failure Scenario-2
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Fault has been injected between 1=2000 and t=3000 seconds. System behaved normally
outside this time range. The location where this fault-injection has been injected was

presented in Figure 2.10 of Chapter 2.

Example 1 (which is same as the Example 1 in Table 4.2) in Table 4.3 represents the
system condition under fault free condition. Examples 11 to 18 show the example vectors
when the fault is injected into the system. These examples have both T and F flags
associated with them. T indicates that the injected fault led the top event, i.e., ‘Pitch Error

> 0.03%.

Table 4.3: Example Vectors and Ranges for Feature Values under Failure Scenario-2

s . Feature Values For:
: %é % Motor Current Motor Torque Bus Voltage RW Speed Torq. Comd.
g3 4 - dw) Tw) V) (@) Voltage (V)
A Ampere . N-m Volts RPM Volts
11 F 0.2532 0.0073 28 21.04 1.2104
1] T 0.5469 0.0159 28 48.57 2.8784
124 T 0.4679 0.0136 28 42.04 2.4629
13| T 0.4907 0.0142 28 42.17 2.3240
4| T 0.5003 0.0145 28 40.00 2.3189
15| T 0.4218 0.0122 28 36.89 2.2198
16| F 0.3783 0.0110 28 34.41 1.9909
ST F 0.3957 0.0115 28 34.40 2.0824
18| F 0.3699 0.0107 28 32.67 1.9468
Approx. 0.4-0.549 | 0.0121-0.0159 21-28 35-49 20-29
Ranges:

From the ACS model it is known that that the coulomb friction in the wheel is 2 mN-m
and near zero wheel speed, coulomb plus viscous friction is approximately equal to the
coulomb friction. Also, from simulation, it was observed that the ACS met the attitude

requirement (Pitch Error <0.03°) with an increase of 1.5 mN-m (approx. 75% of nominal
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value) or below in friction. Example 16 shows the example vector when the friction was

increased by 1.5mN-m.

Now, in order to determine the other the other limit, it is necessary to assume a worst-
case scenario. We can safely assume 3mN-m (150% of the nominal value) increase as the
worst case because bearing wear or other similar faults are usually developed gradually
over the time and it is very likely that the fault due to this type of anomaly will be
detected by the fault detection scheme before the friction reaches an extreme value.
Example 11 shows the vector corresponding to this assumed worst-possible situation.
Based on the above information, the approximate ranges for the feature values of the

different attributes for this failure scenario are presented in the last row of Table 4.3.

4.2.3 ACS Failure Scenario-3

Bus Voltage Failure at High Speed

This fault has been injected when the RW was running near maximum allowable speed.
This type of fault may take place at low bus conditions when large back-EMF, developed
in the reaction wheel motor operating at a high speed, limits the motor current,
consequently the motor torque. System behavior (pitch angle error) during fault-free
condition as well as under the presence of this fault can be observed in Figure 4.3. Fault
has been injected between t=2000 and t=3500 seconds. System behaved normally outside
this time range. The location where this fault-injection has been injected was shown in

Figure 2.6 of Chapter 2.
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Figure 4.3: Pitch Error Vs Time under Failure Scenario-3

Eample-19 in Table 4.4 represents the system condition under fault free condition when
the RW runs near the maximum allowable speed. Examples 22 to 29 show the example
vectors when the fault is injected into the system; i.e., bus voltage is lowered below the
minimum limit of 21 volts. These examples have both T and F flags associated with

them. T indicates that the injected fault led the top event, i.e., ‘Pitch Error > 0.03%.

It should be clear at this stage that failure due to this type of fault may take place only at
high operational speed of the reaction wheel. At low or near zero speed, even if the bus
voltage drops to a value as low as 10 volts, the torque may not be limited because of
small back-EMF developed in the motor. And it is very unlikely that bus voltage will
ever reach such low value. As a result, in this case, we should only consider scenarios at

high speed. It has been assumed that the bus voltage level is of 21 —28 volts under normal
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system conditions (as it is in EO-1 satellite). Consequently, it has also been assumed that
the maximum allowable reaction wheel speed is 5095 RPM which is very close tb 5100

RPM (as in the case of the EO-1 satellite).

Table 4.4: Example Vectors and Ranges for Feature Values under Failure Scenario-3

o ’ _ Feature Values For:
—g' .qé 2 Motor Current Motor Torque Bus Voltage RW Speed Torq. Comd.
I dw) (Tw) (Ve (@) - Voltage (Vo)
mH g e - -Ampere N-m Volts RPM . Volts
19 F 0.8931 0.0259 28.00 5095.2 4.70
20 F 0.9257 0.0268 21.50 5100.2 4.87
21 F 0.9002 0.0261 21.00 5097.4 4.96
22| F 0.8632 0.0250 20.50 5096.7 5.00
~23 F 0.8275 0.0240 20.10 5094 .7 5.00
24 F 0.7919 0.0230 19.70 5097.3 5.00
25 T 0.7761 0.0225 19.50 5106.9 5.00
26 F 0.7321 0.0212 19.50 4077.6 3.8442
27 F 0.8981 0.0260 21.00 5137.4 4.9959
28 T 0.7708 0.0224 §. 19.40 5103.5 5.00
29 T 0.7559 0.0219 19.20 5119.5 5.00
Approx. 0.75-0.78 | 0.0217-0.0226 | 19.0-20.99 | 5100 onwards 4.99 onwards
Ranges:

From ACS simulation, it is observed that at around 5095 RPM of peak speed, minimum
bus voltage drop to 19.5 volts is to be there in order for any failure in attitude to take
place. Example 25 shows the example vector corresponding to this situation. In order to
determine the other limit, a worst-case scenario has to be assumed as it was done for
scenario-1 and scenario-2. One can also use past experience/ fault data in this case.
However, from ACS simulation it has been found that when the bus voltage drops to 19.1
volt or below, the ACS control loop becomes totally unstable. Based on the above
information, the approximate ranges for the feature values of the different attributes for
this failure scenario are presented in the last row of Table 4.4. Figure 4.4 shows the detail

response of the four system parameters or attributes under this failure scenario. It can be
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observed from the Figure 4.4 that the system behaved normally when the fault was

removed at t=3500 seconds.
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Figure 4.4: Different ACS Parameters under Failure Scenario-3
(Top to bottom) (a) External Torque, shown in /N-m, which was applied on the
satellite body to make the RW run near maximum allowable speed (b) Increase in
RW Speed, shown in RPM, when the external toque was applied on the satellite body
(¢) Bus voltage, shown in Volts, was reduced gradually after t=1500 sec. when the
ACS became stable after overcoming the effect of external torque applied on the
satellite body (d) Pitch Error Response — shown in Degrees

66



4.2.4 ACS Failure Scenario-4

Small Error in Motor Current together with Increase in Wheel-bearing Friction

In this case, we show that while a small error in motor driver unit (MDU) output or small
increase in friction does not lead to any failure individually, when both of these take
place together, ACS may fail to maintain required attitude. This scenario has been created
under the initial condition when the RW was running near zero speed. System behavior
(pitch angle error) during fault-free condition as well as under the presence of this fault
can be observed in Figure 4.5. The fault related to the motor current has been injected
between t=2000 and t=3000 seconds and the fault related to the friction has been injected
between t=2500 and t=3500 seconds. The locations where these faults have been injected
were shown in Figures 2.7 and 2.10 of Chapter 2. It can be observed from the figure that
‘Pitch Error > 0.03°” when both the faults take place together between t=2500 and 3000

seconds. ACS meets the attitude requirement outside this time range.
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Figure 4.5: Pitch Error Vs Time under Failure Scenario-4
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Eample-1 in Table 4.5 (which is same as the Example 1 in Table 4.2 and Table 4.3)
represents the system condition under fault free condition. Examples 30 to 39 show the
example vectors when the fault is injected into the system. These examples have both T
and F flags associated with them. T indicates that the injected fault led the top event, i.e.,

‘Pitch Error > 0.03%

Example 33 shows the case when an error of only 0.0lAmpere (approx. 4% of the
nominal peak value) is introduced at the MDU output with 1.5mN-m increase in friction.
Example 37 shows the case when only 0.1mN-m increase in friction (approx. 5% of the

nominal peak value) is there with 0.09 Ampere error in MDU output.

Table 4.5: Example Vectors and Ranges for Feature Values under Failure Scenario-4

o o Feature Values For:
E‘* é 2 Motor Current Motor Torque Bus Voltage RW Speed Torq. Comd.
%3 dm) :  Tw , Vp) (Wy)- Voltage (V)
mq Ampere N-m vos | . RPM | Volts
1 F 0.2532 0.0073 28 21.04 1.2104
30 T 0.4489 0.0130 28 44 .70 2.8363
31 T 0.4618 0.0134 28 44 .05 2.7992
32 T 0.4350 0.0126 28 41.01 2.5528
33 T 0.4066 0.0118 28 36.64 2.1928
34 T 0.3735 0.0108 28 34.79 2.2290
435 T 0.3454 0.01060 28 34.26 2.2915
36 T 0.3276 0.0095 28 32.09 2.1976
37 T 0.3149 0.0091 28 31.82 2.1311
38 F 0.3120 0.0090 28 30.83 2.1159
39 F 0.3089 0.0090 28 30.62 2.0468
Approx. 0.313-0470 | 0.0090-0.0136 21-28 31-45 21-29
Ranges:

Examples 30 and 31 show some worst-possible results for this failure scenario — when a

fixed error of 0.09 Ampere is introduced together with a 1.5mN-m increase in friction.
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From the ACS model we know that the coulomb friction in the wheel is 2 mN-m and near
zero wheel speed, coulomb plus viscous friction will be approximately equal to the
coulomb friction. From ACS simulation, it has been observed that an increase in friction
of 1.5 mN-m (approx. 75% of nominal value) or below does not lead to any failure. It has
also been observed from the simulation that an increase in error in motor current by 0.09
Ampere (approx. 35% of nominal peak value) or below does not lead to any failure.
Example 38 shows the example vector when a fixed error of 0.09 Ampere has been
introduced at MDU output. Based on the above information, the approximate ranges for
the feature values of the different attributes for this failure scenario are presented in the

last row of Table 4.5.

It should be noted here that for motor current, above 0.31 Ampere (example 37), there
could be another failure scenario where fixed error in MDU output itself would lead to a
failure. In that fault, we could define another range with lower limit as 0.32 Ampere and

the upper limit would have been bounded by a worst-case scenario.

4.3 Fault-tree Synthesis under Different ACS-failure Scenarios

Once the failure scenarios are available, the fault-tree construction requires four main

steps to be followed, which will be presented in the subsequent discussion:

1. Identification of different ranges of feature values under different failure scenarios.
2. Generation of input for fault-tree synthesis
3. Determination of attribute selection sequence.

4. Fault-tree construction using the fault-tree synthesis algorithm proposed in Chapter 3.
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4.3.1 Identification of Different Ranges of Feature Values

The reason behind the determination of different ranges of feature values has been
discussed in Section 3.3. Table 4.6 summarizes the ranges of different feature values of
the attributes for the four failure scenarios under consideration which have been

presented before in the last rows of tables 4.2, 4.3, 4.4 and 4.5.

Table 4.6: Summary of the Ranges of Numeric Feature Values

Attribute | Range under Range under Range under Range under
Scenario-4 Scenario-2 Scenario-1 Scenario-3
In 0.313 -0.470 0.4 -0.549 0.55-0.86 0.75-0.78
T 0.0090 -0.0136 | 0.0121 - 0.0159 | 0.0160 - 0.0249 | 0.0217 —0.0226
Dy 31-45 35-49 31-48 5100 onwards
Vi 21 -28 21-28 21 -28 19.0 - 20.99
Ve 21-29 20-29 2.08 -3.04 4.99 onwards

It has already been mentioned in Section 4.2 that out of the four ACS failure scenarios
that have been presented above, thrée of them correspond to an initial condition, when the
reaction wheel (RW) runs near zero speed while the rest corresponds to a different initial
condition when the RW runs near maximum allowable speed. As discussed in Section
222, at high speed, high back-EMF developed in the motor may limit the torque if the
bus voltage becomes very low. Due to this fact, two ranges were assumed for the feature
values of the attribute bus voltage (V,) — one was the normal operational range ‘21- 28
volts’ (as discussed in Section 2.2) and the other range representing the low bus voltage
condition discussed under the ‘ACS Failure Scenario-3’ in Section 4.2.3. It should be
noted here that for some other failure scenarios, where the RW runs in an intermediate
speed between zero and maximum allowable speed, the normal operational range of 21 —

28 volts may be divided into different ranges, if required.
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Using the information in Table 4.6, it is easy to define different ranges of feature values
under different failure scenarios as presented in Table 4.7. For the sake of clarity in
presentation, these ranges have been assigned names. In subsequent sections, especially

in fault-tree synthesis, these names will be used for quick and easy reference.

Table 4.7: Different Ranges of Feature Values under different failure scenarios

Attribute Range for Given Name of Corresponding
Feature Value the Range Failure Scenario

Motor Current (Z,,) 0.55-0.86 A Failure Scenarios 1 & 3
0.4 -0.549 B Failure Scenario-2
0.313-0.470 D Failure Scenario-4
Motor Torque(T,) | 0.0160—0.0249 a Failure Scenarios 1 & 3
0.0121 -0.0159 B Failure Scenario-2
0.0090 - 0.0136 D Failure Scenario-4
Wheel Speed (w.) 30 - 50 A Failure Scenarios 1,2 & 4
5100 onwards B Failure Scenario-3
Bus Voltage (V,) 21 -28 A Failure Scenarios 1,2 & 4
19.0 - 20.99 B Failure Scenario-3
Torque Command 2.0-3.5 A Failure Scenarios 1,2 & 4
Voltage (V.) 4.99 onwards B Failure Scenario-3

It should be noted here that ranges B and D are overlapping both for motor current (/,,) and motor

torque (7T7).

4.3.2 Generation of Input for Fault-tree Synthesis

It should be clear at this point that in the proposed approach, fault-trees are constructed
from example vectors. We call the set of such examples as the input to the Fault-tree
Synthesis (FTS) algorithm. As mentioned in Sections 1.5 and 3.3, when fault is detected
in the system, Current Example vector (which is assigned a TRUE flag always) is
generated and added with the existing example set to form an input to the FTS algorithm.
Therefore, input to the algorithm is Existing Example Set plus 1 (one) Current Example

Vector.
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Table 4.8: Input (‘Existing Example’ Set) for the proposed FTS Algorithm

. Moter Current Motor Torque Bus Voltage RW Speed Torq. Comd.
o | ) Tw) (Vo) (@y) Voltage (V)
el -.Ampere N-m Volts RPM Volts
. g gﬁ | Range(s) and Feature | Range(s) and Feature | Range(s) and Range(s) and Range(s) and
LA R ~Value. Value Feature Value Feature Value ~ Peature Value
A F 0.2532 0.0073 A 28 21.04 * 1.2104
2 F 0.2187 0.0063 A 21 * 19.85 * 1.1510
3] F 0.2187 0.0063 B| 19.5| * 19.84 | * 1.1510
4 T A 0.8532 | A 0.0247 A 28 A 47.49 Al 3.0363
5 T | A 0.7541 | A 0.0219 A 28 A 41,37 Al 2.6817
=61 T A 0.7212 | A 0.0209 A 28 A 44.73 Al 2.6404
=71 T A 0.6447 | A 0.0187 A 28 A 38.52 Al 2.3971
o84 T | A 0.7227 | A 0.0210 A 28 A 39.04 A| 2.4471
94 T | A 0.5974 | A 0.0173 A 28 A 33.63 A| 2.2878
2107 F * 0.5492 B| 0.0159 A 28 A 31.99 Al 2.0792
11| T |B 0.5469 B| 0.0159 A 28 A 48.57 Al 2.8784
12 T B, D 0.4679 | D, B 0.0136 A 28 A 42.04 Al 2.4629
13 T B 0.4907 B 0.0142 A 28 A 42.17 A 2.3240
14| T B 0.5003 B 0.0145 A 28 A 40.00 Al 2.3189
15 T B, D 0.4218 | D, B 0.0122 A 28 A 36.89 Al 2.2198
16 F D 0.3783 | D 0.0110 A 28 A 34.41 * 1.9909
-17," F B 0.3957 { D 0.0115 A 28 A 34.40 Al 2.0824
~18 F D 0.3699 | D, B 0.0107 A 28 A 32.67 * 1.9468
19 F * 0.8931 * 0.0259 A |28.00 * 5095.2 * 4.70
20 F * 0.9257 * 0.0268 A|21.50 5100.2 * 4.87
21 F * 0.9002 * 0.0261 A | 21.00 * 5097.4 * 4.96
e 22 F * 0.8632 * 0.0250 | B 20.50 * 5096.7 | B 5.00
23 F A 0.8275 | A 0.0240 | B 20.10 * 5094.7 | B 5.00
241 F A 0.7919 | A 0.0230 | B 19.70 * 5097.3 | B 5.00
2584 T A 0.7761 | A 0.0225 | B 19.50 5106.9 | B 5.00
24 F A 0.7321 | A 0.0212 | B 19.50 * 4077.6 * 3.8442
527 F * 0.8981 * 0.0260 | A 21.00 5137.4 | B 4.9959
28 T A 0.7708 | A 0.0224 | B 19.40 5103.5 | B 5.00
.-f29,/ T A 0.7559 | A 0.0219 | B 19.20 | B 5119.5 | B 5.00
30 T D 0.4489 D 0.0130 A 28 A 44.70 A| 2.8363
31 T D 0.4618 D 0.0134 A 28 A 44,05 A| 2,7992
32 T D 0.4350 D 0.0126 A 28 A 41.01 A 2.5528
2334 T D 0.4066 D 0.0118 A 28 A 36.64 A| 2.1928
M| T D 0.3735 D 0.0108 A 28 A 34.79 A 2.2290
351 T D 0.3454 D 0.0100 A 28 A 34.26 A 2.2915
36 T D 0.3276 D 0.0095 A 28 A 32.09 A 2.1976
3 T D 0.3149 D 0.0091 A 28 A 31.82 A 2.1311
381 F * 0.3120 D 0.0090 A 28 A 30.83 Al 2.1159
39 F * 0.3089 D 0.0090 A 28 A 30.62 A | 2.0468

The Existing Example Set can be created by merging the resulted vectors under each

failure scenario. Table 4.8 shows the example set that has been created by merging all the
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example vectors of tables 4.2, 4.3, 4.4 and 4.5. However, while generating the input i.e.,
the example set, it must be ensured that the example set contains sufficient number of
example vectors to represent the failure scenarios clearly. An asterisk mark in the range
column indicates that the feature value does not belong to a pre-defined range in that
example. However, if more numbers of failure scenarios are considered, they may fall

into some other pre-defined range(s).

4.3.3 Determination of Attribute Selection Sequence

As mentioned in Section 3.2.3, the size of the resulting tree may vary as the attribute
selection sequence varies which is due to the fact that some attributes divide or classify
data more clearly than the others. Different approaches for the determination of an
appropriate attribute selection sequence were also discussed in Section 3.2.3. In this
section, determination of the attribute selection sequence will be demonstrated using the

concept of ‘Entropy’.

When a fault is detected in the system, according to the proposed framework, features is
extracted from the attributes over a pre-defined time window (as discussed in Section 1.5)
and an example vector is formed which is used in fault-tree synthesis. For fault-tree
synthesis using the proposed algorithm, attributes has to be selected sequentially. In
order to find an appropriate sequence, entropies for each attribute have been calculated
under each failure scenario over the same time frame mentioned above. These
calculations have been based on the entropy equation presented in Section 3.2.3 with

normalized data. The concept is quite simple — entropy is calculated for each attribute
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under non-faulty conditions as well as in presence of faults in the system. The more is the

percentage change in entropy between faulty and non-faulty cases, the important the

attribute is considered to be. Consequently, attributes are ranked according to the %

change in their entropy. Since the entropies under non-faulty system condition are taken

as ‘references’ and the % changes are calculated with respect to these ‘references’, while

determining entropies under non-faulty conditions, it must be ensured that the system is

in same initial condition.

Table 4.9: Ranking Assigned to the Attributes Based on % Change in Entropy

Entropy at Failure Scenario-1 Failure Scenario-2 Failure Scenario-4
2 Non-
% faulty Absolute % AE “ Absolute % AE o Absolute % AE ”
£ | Condition Entropy Zz | Entropy 7z | Entropy Z
< | (B (E) g (B 2| (E) o
1, -2.5186 -7.0611 180.3588 | 1 -71.7292 206.8863 | 1 -5.7999 130.2835 | 2
e+006 e+006 e+006 e+006
T -2.5186 -7.0611 180.3588 | 2 -7.7292 206.8863 | 2 -5.7999 130.2835 | 3
e+006 e+006 e+006 e+006
Vy -4.6230 -4.6230 6.82e-004 | 5 -4.6230 6.82e-004 | 5 -4.6230 6.82¢-004 | 5
e+007 e+007 e+007 e+007
w, | 291.2832 332.9672 14.3105 4 | 4121233 41.4854 4 | 4329105 48.6218 4
V. -2.5186 -4,3393 72.2913 3 -7.7292 206.8863 | 3 -7.8539 211.8353 |1
e+006 e+006 e+006 e+006
Entropy at Non- Failure Scenario-3
Attribute faulty Condition
(Exr) Absolute Entropy (E;) % AE RANK
I, -9.1500e+007 -9.1549e+007 0.0538 3
T -9.1500e+007 -9.1549e+007 0.0538 4
Vs -4.6230e+007 -8.7750e+007 89.8129 1
@y, -1.7474e+008 -1.7474e+008 5.4808e-005 5
V. -9.1500e+007 -1.4069e+008 53.7578 2

It should be clear at this point that out of the four failure scenarios presented in this

chapter, ‘Failure Scenario-3’ has a different initial condition compared to that of other

three failure scenarios. Table 4.9 shows the ranks of the attributes that have been assigned

based on the percentage change in their entropy when a fault took place.
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It should be noted here that the developed ACS is simple compared to the actual model
and the relation among I, T, and V. is linear. As a result, the changes in entropy also
come out to be same for these three attributes when simulated data from the model is
used which will not be the case for actual ACS or more complex ACS model. In order to

break the ties, preference has been given to these attributes in the order: I,,, Ty, and V...

In summary, under different faillure scenarios, the attribute selection sequences were

found out to be as follows:

ACS Failure Scenario Attribute Selection Sequence
Scenario-1 In—>Ty—>V.—> @wp— V)
Scenario-2 In—Ty— V> wy— V)
Scenario-3 Vi Ve— 1> Ty — 0w
Scenario-4 Ve—or 1y > Tp—> ww— Vy
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4.3.4 Fault-tree Construction

Fault-trees that have been constructed for different failure scenarios presented in Section
4.2. Following types of nodes have been used for tree synthesis, which were discussed in

Section 3.1:

Node Symbol Description

Top Event node. The top event is ‘Pitch Error >
0.03* in all failure scenarios under consideration.

Basic Event node

D AND gate
t } OR gate

Unknown Event node

It should be mentioned here that our intention here is to construct a tree when the
attribute feature values are within these pre-defined ranges to demonstrate the feasibility
of the proposed fault tree synthesis algorithm. While constructing fault trees, if the
feature value of any attribute is found outside these pre-defined ranges and/or, if
insufficient examples are given to the algorithm from which the algorithm is unable to
reach a cdnclusion, it places an ‘unknown event’ node in the tree saying that a branch in

the fault-tree could not be developed further because of the lack of example.

As mentioned in Sections 1.5 and 3.3, when fault is detected in the system, Current
Example vector (which is assigned a TRUE flag always) is generated and added with the

existing example set (as presented in Table 4.8) to form an input to the FTS algorithm.
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Different types of faults have been injected in the ACS and example vectors (‘Current
Example’) have been generated. In the subsequent discussion, fault-trees will be
constructed by adding different current example vectors with the existing example set
given in Table 4.8. These current example vectors éorrespond to different ACS failure

scenarios mentioned in Section 4.2.

Fault-tree for Failure Scenario-1:
A fault similar to the one under failure scenario-1 was injected into the system. Current

example vector generated by fault injection and feature extraction is as follows:

' S : , - Feature Value for:
FLAG L. o T W, ., V.
T 0.7013 0.0203 28 44 .17 2.3742
(A) (7) (a) (a) (a)

The pre-defined ranges which the feature values belong to are shown in the parenthesis
below each feature value in the generated vector. When this vector is added with the
example sets in Table 4.8 to generate input for fault-tree construction and proposed fault-
tree synthesis algorithm is applied on this input by following the attribute selection
sequence mentioned in Section 43.3, i.e., I, = T\, = V. = @, — V), the resulting fault

tree is the same as the one in Figure 4.6

Pitcth Erraor > 0.03

Figure 4.6: Fault-tree for Failure Scenario-1
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It is clear from the fault-tree in Figure 4.6 that the tree points towards motor current I,, by
a node in the tree. From the ACS-model point of view, in presence of fault, the
anomalous behavior of reaction wheel motor current is directly translated into motor
torque. Since there is closed-loop control in the ACS, the fault is propagated through the
loop and the torque command voltage V. is also affected. Consequently, in addition to the
motor current I,, motor torque T, and torque command voltage V. appears on the

resulting fault-tree as the sources of anomaly in the system.

Fault-tree for Failure Scenario-2:

Case-1: A feature value belong to one range
A fault similar to the one under failure scenario-2 was injected into the system. Current

example vector generated by fault injection and feature extraction is as follows:

‘ ~Feature Value for:
FLAG X ‘ Ty V @y V.
T 0.4927 0.0143 28 44.15 2.5933
(B) (B) (a) (A) (a)

The pre-defined ranges which the feature values belong to are shown in the parenthesis
below each feature value in the generated vector. When this vector is added with the
example sets in Table 4.8 to generate input for fault-tree construction and proposed fault-
tree synthesis algorithm is applied on this input by following the attribute selection
sequence mentioned in Section 4.3.3, i.e., I, = T, — V. — w, — V), the resulting fault

tree is the same as the one in Figure 4.7
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Fitch Ermar > 0.03

F{Ten)
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Figure 4.7: Fault-tree for Failure Scenario-2 (Non-overlapping ranges of feature values)

It is clear from the fault-tree in Figure 4.7 that the tree points towards motor torque T}, ,
which is most effected by the increase in friction in the system, by a node in the tree.
From the ACS-model point of view, in order to overcome the increase in friction due to
the presence of fault in the system, the reaction wheel motor draws more current which is
necessary to maintain satellite’s desired orientation. As a result the behavior of motor
current is also altered. Consequently, the motor current /,,, also appear on the resulting

fault-tree as the source of anomaly in the system.

Case-2: A feature value belong to more than one range
A fault similar to the one under failure scenario-2 was injected into the system. Current

example vector generated by fault injection and feature extraction is as follows:

. Feature Value for: ; R
o Tm ] Vs T my R A7
0.0127 28 38.30 2.3127
(D,B) (a) (a) (a)

The pre-defined ranges which the feature values belong to are shown in the parenthesis
below each feature value in the generated vector. When this vector is added with the
example sets in Table 4.8 to generate input for fault-tree construction and proposed fault-

tree synthesis algorithm is applied on this input by following the attribute selection
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sequence mentioned in Section 4.3.3, i.e., [y — Ty — V. — wy — V3, the resulting fault

tree is the same as the one in Figure 4.8

Bitch Error > 0,037

Film) \
in O

Mo oardput from:
this gate

Figure 4.8: Fault-tree for Failure Scenario-2 (Overlapping ranges of feature values)

It is clear from the fault-tree in Figure 4.8 that the tree represents four possible
combinations of events behind the top event. If the minimal cut-sets (as discussed in
Section 3.1.2) of this tree are determined, it is found that one of the minimal cut-set
formed using the two shaded nodes of the tree (I, B and T,,€ B) represents events which
are exactly same as the ones represented by the fault-tree in Figure 4.7. Out of the

remaining three branches one branch (in which I,eB, T,eD) does not converge and
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terminates by putting an urknown event node (as discussed in Sections 3.3). The next
branch (in which I,eD, T,,€D) represents the failure scenario-4. The last branch (in
which I,,€eD, T,,€B) gives a new combination of event, i.e., a combination which was not
foreseen and can lead to the top event. This particular combination of events, which may

cause the fop event to take place, was inherent in the example set used for fault-tree

synthesis but was unknown until the fault-tree had been constructed.

It is also clear from the fault-tree in Figure 4.8 that the tree points towards motor torque
T,. , which is most effected by the increase in friction in the system, by a node in the tree.
As discussed under ‘Case-1°, from the ACS-model point of view, in order to overcome
the increased in friction due to the presence of fault in the system, the reaction wheel
motor draws more current which is required to maintain satellite’s desired orientation. As
a result the behavior of motor current is also altered. Consequently, the motor current 7,
also appear on the resulting fault-tree as the source of anomaly in the system. Moreover,
as discussed under Failure Scenario-1, since there is closed-loop control in the ACS, the
fault is propagated through the loop and the torque command voltage ¥, is also affected.
Consequently, in addition to the motor current I,,, motor torque T, and torque command
voltage V. appears on three branches in the resulting fault-tree as the sources of anomaly

in the system.
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Fault-tree for Failure Scenario-3:

A fault similar to the one under failure scenario-3 was injected into the system. Current

example vector generated by fault injection and feature extraction is as follows:

o4 oo Feature Value for: . i
s T L, | % [ e [ V.
T 0.7730 0.0224 19.45 5101.3 5

(2) (a) (8) (®) (8)

The pre-defined ranges which the feature values belong to are shown in the parenthesis
below each feature value in the generated vector. When this vector is added with the
example sets in Table 4.8 to generate input for fault-tree construction and proposed fault-
tree synthesis algorithm is applied on this input by following the attribute selection
sequence mentioned in Section 4.3.3,ie., V, > V. > I, - T, — QW , the resulting fault

tree is the same as the one in Figure 4.9

Pitch Errar > (0.013¢

Figure 4.9: Fault-tree for Failure Scenario-3



It is clear from the fault-tree in Figure 4.9 that the tree points towards the bus voltage Vj,
which is the cause of failure in this case, by a node in the tree. As mentioned earlier, this
fault can take place only at high speed of the reaction wheel. Under such condition, the
increasing back-EMF of the reaction wheel motor limits the motor current I,
Consequently, in the closed-loop system, motor torque 7,, and torque command voltage
V. are also affected. As a result, it is observed from the constructed tree that the
algorithm includes all these attributes in the fault-tree as shown in Figure-4.9 and stops
when it finds the necessary condition of high wheel speed (wy) in the last right-hand

node.

Fault-tree for failure Scenario-4:

A fault similar to the one under failure scenario-4 was injected into the system. Current

example vector generated by fault injection and feature extraction is as follows:

. "Feature Value for:
FLAG I, T, vV, Wy Ve
T 0.3940 0.0114 28 38.75 2.5210
(D) (D) (A) (A) (a)

The pre-defined ranges which the feature values belong to are shown in the parenthesis
below each feature value in the generated vector. When this vector is added with the
example sets in Table 4.8 to generate input for fault-tree construction and proposed fault-
tree synthesis algorithm is applied on this input by following the attribute selection
sequence mentioned in Section 4.3.3, i.e., V. — I, — Ty, — wy — V), the resulting fault

tree is the same as the one in Figure 4.10
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Pitch Error > 0.03

Figure 4.10: Fault-tree for Failure Scenario-4
(for the selection sequence V, - I,, — T,, » 0, — V, )
It is clear from the fault-tree in Figure 4.10 that the tree points towards the torque
command voltage V. and motor current I, , which are most effected by the error in motor
driver unit (MDU) output and increase in friction in the system, by a node in the tree. As
mentioned under failure scenarios 1 and 2, from the ACS-model point of view, under this
failure scenario, the effect of the anomalous behavior of reaction Awheel motor current
together with the effect of increased friction is propagated through the closed-loop and

the torque command voltage V., is also affected.

It is obvious that under this failure scenario, the motor torque T, should also appear on
the resulting fault-tree. This is due to the fact that any change in current in the reaction
wheel mechanism directly gets translated into torque. It should be mentioned here that
from entropy point of view, between I, and T, the tie has been broken by selecting I,
before T. In an actual ACS, if the change in entropy is more for T,, as compared to I,
the resulting fault-tree would look like the one in Figure 4.11 where in addition to the
torque command voltage V. and motor current /,,, ‘motor torque Ty, is also identified as a

source of anomaly.
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Pitch Errar > 0.03
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Figure 4.11: Fault-tree for Failure Scenario-4
(for the selection sequence V, — T, — I, > 0, — V)

4.4 Interpretation of the Resulting Fault-trees

In the previous section fault-trees have been constructed under different ACS failure
scenarios. The ultimate objective of the proposed framework is to generate a fault tree for
a particular failure (top event in the tree). The generated trees display the combination(s)
of events leading to the top event. Each event (other than the top event) of the tree will
represent an attribute’s feature value and its range when the failure took place. Attributes
are nothing but different measured signals, for example, current through a component,

speed of a rotating body etc.

If the feature extraction function is simple ‘min’ and/or ‘max’ values during the time
interval for which the fault tree analysis has been performed, the resulting tree will give
us information on the failure as follows: ‘The top event took place when: the peak value
of motor current was within the range (x1, y1) ampere AND maximum speed of the

reaction wheel was within the range (x;, y2) RPM AND minimum bus voltage was within
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the range (x3, y3)’ and so on. Looking at each node of the generated tree, the ACS analyst
will be able to figure out what parameter(s) in the system is/are not within the expected
range of operation and take action accordingly. In many cases, the generated fault tree
may not pin point the exact cause of the failure; but certainly, it will save significant
amount of time of the analyst spends on going through each attribute and wondering what
all did go wrong within the system. Moreover, the resulting fault-trees can be used during
future system design to avoid certain combinations of event that are potential cause of
system failure. Finally, if it is necessary to know what exactly components of the system
had caused the failure, any ‘basic event’ node in the generated fault-tree may be
considered as the ‘top event’ and fault-trees can be constructed to find out what

combination of events led to such condition.

If the attribute selection is done arbitrarily, the resulting trees may be bigger in size with
more number of nodes. Though such trees are also correct trees, they contain some nodes
which are not the exact representation of the cause(s) behind the system failure. For
example, under failure scenario-2, if the attribute selection is reversed, the resulting tree
looks like the one shown in Figure 4.12 which is different from the one iﬁ Figure 4.7. The
exact reason behind the failure, in this case, is I,, being in its range ‘B> AND T, being in
its range ‘B’. The additional three nodes in Figure 4.12 are not the reasons behind the
failure — they simpiy represent the range or condition in which the feature values of the
attributes were during anomaly. Though these additional or ‘redundant’ nodes do not lead
to an incorrect tree, for large number of attributes, the tree may get unnecessarily big in

size and complicate the failure analysis process.
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Filch Errar > (1030

Figure 4.12: Fault-tree for Failure Scenario-2, Case-1
(when the attribute selection sequence is reversed)

Pitch Erray > 0L0O3

No output frorm
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Figure 4.13: Fault-tree for Failure Scenario-2, Case-2
(when the attribute selection sequence is reversed)
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Figure 4.13 shows the fault-tree that has been constructed under failure scenario-2 (Case-
2, as mentioned in Section 4.3.3) with attribute selectiqn sequence reversed. As in the
case of the tree in Figure 4.12, the shape of this tree also differs from the one in Figure
4.8. The shaded nodes in this tree show the minimal cut-set representing the combination
of events under the failure scenario-2. Both Figure 4.13 and Figure 4.8 convey same
information. However, while in the case of Figure-4.8, three ‘redundant’ nodes
representing attributes V,, w, and V. appear in only one branch, in Figure 4.13 they
appear in all four branches in the tree. It should be noted here that in reality, number of
attributes would be much higher. Consequently, if the selection sequence is not proper,
the cut-sets are likely to contain many such ‘redundant’ events and may complicate the

analysis process.

Finally, it should be noted that the proposed fault-tree synthesis algorithm has been
derived from the ID3 algorithm for induction of decision trees. ID3 was designed to be
efficient in a situation where there are many attributes and the training set contains many
objects, but where a reasonably good decision tree is required without much computation
(as mentioned in Section 3.2.1). It has generally been found to construct simple decision
trees, but the approach it uses cannot guarantee that better trees have not been
overlooked. As a result, fault-tree synthesis using the proposed algorithm and use of
‘change in entropy’ as the attribute selection criteria do not always guarantee the best
tree. For example, under failure scenario-3, if w,, is selected immediately after V,, the
resulting tree becomes as the one in Figure 4.14 which is better than the one in Figure 4.9

in a sense that the earlier one has less number of nodes.
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Figure 4.14: Fault-tree for Failure Scenario-3
(with a different attribute selection sequence)

45 Summary

In this chapter, the four ACS failure scenarios, which have been considered in this thesis,
have been explained and fault-tree construction under each failure scenario using the
proposed fault-tree synthesis algorithm is demonstrated. It has been shown that the
proposed fault-tree synthesis algorithm is capable of synthesizing fault-trees under
different failure scenarios. Finally, how the constructed fault-trees should be interpreted

is also explained in this chapter.
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Chapter 5

Conclusion

A rigorous fault detection, isolation and recovery (FDIR) system is necessary on-board
an unmanned spacecraft to encounter undesired events without any need for human
intervention from the ground. Consequently, an on-board fault-diagnosis system that is
capable of detecting, isolating, identifying or classifying faults is required. Development
of a strong FDIR scheme for on-board applications is a problem that cannot be classified
under a single research area. Moreover, none of the existing fault-diagnosis
methodologies alone can meet all the requirements of an ideal fault-diagnosis system. An
approach to develop such fault-diagnosis system may be to develop a new methodology
that can guarantee all necessary requirements. However, from practical point of view,
integration of different existing fault-diagnosis methodologies that may result in a strong

unified FDIR scheme seems to be a much better option.

In this thesis, an approach for spacecraft fault diagnosis has been proposed which aims to
empower any efficient fault-detection mechanism with a powerful capability of
identifying or classifying different type of faults rather than simply determining their
presence in the system. The purpose of this extra capability is to ensure a quick and

efficient recovery from upsets. The fault-diagnosis approach proposed in this thesis
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utilizes a widely used qualitative technique called fault-tree analysis. Fault-tree synthesis
(FTS) and analysis (FTA) methodologies have been used as a diagnostic aid for fault

diagnosis in the Attitude Control Subsystem of a satellite.

A generic attitude control subsystem (ACS) model has been developed in this thesis
using MATLAB-Simulink. The model represents a zero-momentum attitude control
system with reaction wheel as the actuator. In practice, such actuators have been found to
be a potential source of anomalies in the system. Ideal dynamics of attitude sensors has
been assumed and the model has been restricted to control along a single axis. In
addition, the model allows fault-injection into the system based on the assumed failure
scenarios. This purpose of developing this model has been to generate simulated system
data under faulty and non-faulty system conditions which is an essential part of the fault-

diagnosis study carried out in this thesis.

In order to support the proposed fault-diagnosis approach, a new modified fault-tree
synthesis algorithm has been developed from existing machine-learning based induction
techniques for fault-tree synthesis. The advantage of this fault-tree synthesis algorithm is
that a detailed knowledge of the design and construction of the system under
consideration is not required. Given the system parameters under faulty and fault-free
conditions, the algorithm can be implemented to induce fault-trees from a set of example
vectors that represent the system. Each example in a vector represents a feature-value of a
particular system parameter. In the feature extraction task, simple feature extraction

functions have been used. An example vector consists of feature values for all the system

91



parameters or attributes under consideration and a flag to indicate whether or not the

vector corresponds to a faulty system behavior.

Four probable ACS failure scenarios have been assumed. Different types of faults have
been injected into the ACS model and data for five pre-selected attributes have been
collected for faulty as well as non-faulty system behavior. These faults are similar to the
ones that people have encountered in practice. Next, features have been extracted from
the data and a small set of example vectors has been formed. To demonstrate fault-tree
synthesis, different types of faults have been injected into the system. Under each failure
scenario, an example vector has been generated. This example vector has been added
with the small set of example vectors mentioned above to form the ‘input’ for the
proposed fault-tree synthesis algorithm. Finally, the algorithm has been applied on this
generated ‘input’ and fault-trees have been constructed under four failure scenarios. Each
node in the constructed fault-trees represents a basic event (see Chapter 3). These basic
events essentially provide information on the attributes when anomalies take place in the
system. It has been found from the constructed trees that the proposed algorithm can
successfully determine the combination of basic events leading to a failure. Generation of
such fault-trees establishes that the proposed framework based on fault tree analysis and
synthesis techniques has potential for automated spacecraft health monitoring and

diagnosis applications.

It should be noted here that though the fault-tree synthesis using the proposed algorithm
has been demonstrated for the attitude control subsystem (ACS), it can be applied to

other spacecraft subsystems such as thermal subsystem, electrical power subsystem, etc.

92



Finally, it may be pointed out here that, to the best of our knowledge, in open literature,
there is no published research work for fault-diagnosis using fault-trees applicable to the
attitude control subsystem of space vehicles. The automatic fault-tree synthesis
methodologies presented in [24, 25] were applied to a mission avionics system which is

close to the application domain of the work presented in this thesis.

The contribution of this thesis can be summarized as follows:

(1) Developed a framework for a fault diagnosis in the attitude control subsystem
(ACS) of an unmanned spacecraft. This approach for fault diagnosis does not
depend on the design phase of the system.

(2) Developed a MATLAB-Simulink based generic attitude control subsystem (ACS)
model with fault-injection capabilities for performing fault diagnosis and failure
analysis related studies on unmanned spacecraft subsystems.

(3) Developed a new modified fault tree synthesis algorithm for analyzing the
cause(s) of failure(s) in the ACS. The algorithm utilizes existing machine-learning
based induction techniques for fault-tree synthesis. The proposed algorithm is
capable of constructing fault-trees without a detailed knowledge on the design and
construction of the system under consideration.

(4) Demonstrated fault-tree synthesis using the proposed fault-tree synthesis
algorithm under different ACS failure scenarios which establishes that the
proposed framework has potential for automated spacecraft health monitoring and

diagnosis.
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As a part of the future research work along this direction, some parts of this thesis can be
extended in order to obtain better results that can support practical imp;lementation of the
proposed approach. First, the ACS model can be made more realistic by incorporating
more system dynamics such as sensor dynamics and also considering the cross-coupling
effects by extending the developed model to represent control along all three axes.
Secondly, in order to capture the behavior of such highly dynamical system, the proposed
fault-tree synthesis methodology needs to be modified by including special types of gates
that are capable of representing the dynamics of the system as well as temporal
relationships among the events. In addition, in order to determine best selection sequence
for attributes, it may be necessary to explore more efficient techniques or heuristics,

which would always guarantee ‘best’ fault-trees.
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Appendix

Main MATLAB-Simulink blocks of the developed ACS Model:
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Figure A: Simulink Model of ACS
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Figure B: Satellite Body Dynamics
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Figure G: EMF Torque Limiting
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