Signaling for Multiparty Sessions in Peer-to-Peer Ad hoc Networks

Chunyan Fu

AThesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada

August 2004

© Chunyan Fu, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94698-3
Our file Notre référence
ISBN: 0-612-94698-3

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT
Signaling for Multiparty Sessions in Peer-to-Peer Ad hoc Networks

Chunyan Fu

Multiparty sessions are the basis of several important applications. Audio/video
conferencing, distance learning and gaming are some of the examples. So far, very
little attention has been devoted to the applications for ad hoc networks. In contrast to
conventional networks, ad hoc networks are formed by a set of devices that
communicate without using a pre-existing network infrastructure. Multiparty session
control faces new challenges in ad hoc networks: peer-to-peer communication, limited
resources and transient network connectivity. This thesis addresses the most critical
component of multiparty sessions in peer-to-peer ad hoc networks: signaling.
Signaling requirements are derived and existing signaling protocols such as SIP,
H.323 and ICEBERG signaling are analyzed. By discussing and comparing
alternative signaling architectures, we propose a novel signaling scheme based on
clustering architecture. The signaling scheme is implemented as an extension to SIP.
A prototype is built to evaluate the feasibility and performance of the signaling

scheme.

ii

ACKNOWLEDGEMENTS

This thesis is the result of joint efforts of my supervisors: Dr. Rachida Dssouli and Dr.
Roch Glitho. Without their patient guidance and thought-provoking ideas, | would not
have come this far.

Thanks go to all the teammates working in the TSE research lab for their
non-reserved help whenever | needed.

I would like to acknowledge the funding from the NSERC, Ericsson and SRT
Concordia University.

| would also like to thank my parents and my brother. They encouraged me so much in
my work.

Last but not least, to my husband Xiaoniu, he is always unconditionally supporting

me.

Table of Content

LISTOF FIGURES....... ..ottt iree e er e e e e s s e s e e e e e e s e ene s e e eeenes Vi
LIST OF TABLES ...t eeeee e s e s easannanas X
CHAPTER 1 INTRODUCTION......ooiiiii et nreres e e e s s e 1
B 1 o 112 < o PPN 1
T.21SSUES TACKIEA ettt et se e e e e e s e 3
LRI € Lo 1 T OO OO PPPRPTOTIN 4
1.4 Thesis Organization............ccccceeiiiiiiiin i s 4
CHAPTER 2 BRIEF REVIEW OF PEER-TO-PEER AND AD HOC
NETWORKS ...t e e e et ee e e e et e s s s e e e e s e eenanansnaaaaeaanenes 6
2.1 Ad HOC NEIWOIKS ...ttt et r s e s e searae 6
2.1.1 Evolution of Ad HOC NEWOTKScciiiiiiiiiiei ettt e 6
P2 BV F-) (o] ¢ (o4 1)V O P P SRR 7
2.1.3 Main Technologies and Standards..........ccoccvviviiiiriieincien e 9
2.1.4 OVerall ArChIECIUIE ..ot e e rer e e eea e e e s e e neee s 10
2.2 Peer-to-peer COMMUNICAHIONccccoviiiiiiiieeiee et e 11
2.2.1 Evolution of P2P in INterNetc.ovvire ettt e 11
2.2.2 Using P2P in Ad HOC NEtWOTKS.........cviiiireiiiieitrecr e 12
CHAPTER 3 SIGNALING REQUIREMENTS AND TODAY'’S SIGNALING
PROT OGS ..t eee e e e e e e e e e e e e et ettt e e e e e s e reesran e eaaeas 14
3.1 Signaling REQUIFEMENTESooiiiiiiiieiirir et e e e e e s e et ee s e s enbeeaaesanaaens 14
3.2 Today’s Signaling ProtoCOIS...........ccuiiiiiiiiiiiiicie s s 15
I I o 1 7 OO TPV PSSO RP S 16
32,2 SIP et a e e E e s ben e b e e s Reeenabesnnrs 20
BB B 0 = = 1 SR 25
3.3 SUMIMAIY ittt sttt e sree e s srre s be s st e e sesaeareere s saseesseaeneaeneesemenasrneasnenesareeannes 27
CHAPTER 4 ALTERNATIVE SIGNALING ARCHITECTURES...............eeeeeeeee. 28
4.1 Centralization and FUll MEShuiiiiiiie ettt e 28
B 1 = - OO U O RO PU PR PSTUPR 29
L O 1113 (Y o Vo PP PR 30
4.4 SUMITIATY .oeeiiiiieieiieeesiaeeeeete e s staeesesaeeesteeeesnaeessasaesasbesaaseessansanssabeeeesabeeseanseesesaneaasnans 32
CHAPTER 5 CLUSTERING-BASED SIGNALING SCHEMEcoovveeirninnn. 33
5.1 GeNEral PriNCIPIEScooiiiciriieie et rtre s s rree s s e s bas e e s e s b aasaessaes 33
5.2 Detailed DeSCHPON ...oooi ettt e e s s e e s e ee e e 35
5.2.1 Super Member EIeCtONcoooi i ee e e a e e 35
5.2.2 Creation and Deletionc.ooiii ittt re e 35
5.2.3 Member Change — JOINING......c.c.oui i eeseee e steeeseeee e e seeeeenane 36

5.2.4 Member Change — Member Leavingccccccvverinniiiiniin e, 37

5.2.5 Member Change — Super Member Leaving..........ccccoovvvimiiniiciiienicniiniennn, 37
oIV S o1 | U 38
B.2.7 MBIGE... ettt et s e s s e e e 39
B3 SUMIMAIY ettt e e e ettt e e s e et e e e s aanr e e s e st e e e e e s e sn b e e e e s ssbabeesaensansneansaene 39
CHAPTER 6 A SIP BASED IMPLEMENTATION ..., 41
6.1 The EXIENSION. ... e be e s s st et e e e e sere e e e e e s e aneneeeesanns 41
6.1.2 An IdentifiCationocoiiiiiiiic e 41
B.1.2 NEW ENtItY .ceeciiiiiiciri ettt e e se e be e sann e b 41
6.1.3 New Header FIeldScoov vt e 42
6.1.4 Extension to Methods ...t 42
B.1.5 NEW CONCEPIS....uviiiiiiir ittt e e mr e s ssarn s 44
6.2 Behavior of ENd SYSteMSccciiiiiie ettt e ee e s s s 44
B.2. 1 INIIAtiON ... e e 45
B.2.2 USEI JOINS....ociiiiiiciieei ettt e s eeecrr e e e st ee e e e s sr e e s e s atan e e e e e beaae s eaaraenesesesaameenenas 47
B.2.3 USEI LBAVES...cei it et ciie e ee e rr e et e e e et e e e s e b e e e e s e reme e e e s s nmraee e s e e s sraereees 50
6.2.4 UA Request Participant Listcccouiiii e e e 53
B.2.5 TErMINAtION ...oveiiiieeeeie e e e e e e e b e rneneerer e e s e e s esaese s e s s nennnnns 54
6.3 SEQUENCE EXAMPIES .cooiiierree e tr ettt ettt e e e s e s e e s e s e ne e e s 55
6.3.1 Initiation and Termination ... 55
LOTC J2 U Y=Y g T | o - O U PPN 55
6.3.3 ClUSEEr SPIIES ..veieiiiieiie ettt et s 56
B.3.4 SUA LBAVES ...ttt ir ettt e te e e et ter e s s e v e e e s st e a et e e s r e e e e ne s rnrae s e s 56
B.3.5 ClUSEEr MEIGES ...eeveeie e cieiie et e e s r e e ee e e sttt e e s s er e e e e semerre s e s e s mrnnenensan 56
CHAPTER 7 PROTOTYPE AND RESULT ANALYSIS ..., 58
7.1 0Overall ArChItECIUIEuieiiiiieeeeieeee e e e e e e e st eeer e e eeees 58
7.2 Software Used in Prototype..........coci et 59
7.2.1 Peer-to-Peer Middleware - JXTA ... e 59
7.2.2 Standard SIP Interface -- JAIN SIP AP ... e 63
7.3 SYSEM DESIGN et e e s e s r e e e e s e reeneaaaan 63
7.3.1 Class DESIGN....c..uuieriiiiiiiiiiiieire ittt e st se e s e s b st e s e e s e nnene e e nreeseneees 63
7.3.2 State Diagram ...t e 65
A [1] 010 01 1=] g1 €= (o] 1 OO PSRRI 66
T 4.1 THE SEIUD «.eeieieie e s e e e e e s tre e s ae s tneeae e e semereneeeenanrrenens 66
7.4.2 Functionality and INerfaces ..o 66
7.5 Preliminary RESUILS.....c.o.oi it e s e e e e raer s rae e s s e s e rennenesanns 69
7.5.1 Metric and Comparison Data.........cccceeiiiieiein et e 69
7.5.2 ReSUIES @nd ANAIYSIS........civuuieiiriiiiiirier e eiiiaiearsseieeeesecareeeeeseeereesessasmereeeressaanrnes 70
7.8 SUIMIMETY ..ttt sttt et e st e e s et e e s sre e e e ratre s ere e e s sreneeemee e s amenesasareesannnnas 73
CHAPTER 8 CONCLUSIONS AND FUTURE WORKcoveiiiiiiiiiiiinneeeceeeeeeeeeeen 74
8.1 Contributions and Lessons Learned...........c.oooviieireioiieien it rcsemene e 74
8.2 FULUIE WOTK ...t e e e e e e e e r et s e e e s e nenae s e e ranan s eeranneennennanene 75

vi

REFERENCES.t 77

APPENDIX A: SYNTAX OF HEADER FIELDS: CONF-ID,

PARTICIPANT-IN-CLUSTER, CLUSTER-PARAMETERS AND NEIGHBOR 80
APPENDIX B: ALICE'S CONFIGURATION ADVERTISEMENT ... 81
APPENDIX C: ALICE’S PEER ADVERTISEMENTcooiiiiiiiiiiniiciieee e 85

vii

List of Figures

Figure 2-1: Ad Hoc Networks Taxonomycoooiiiiiiiiiiiiiiniineeeeen, 9
Figure 2-2; An Overall Ad Hoc Network Architectureco. 11
Figure 3-1: H.323 Network Structureccoovviiiiiiii e 16
Figure 3-2: SIP Full Mesh Conferenceo, 24
Figure 3-3: ICEBERG Call Procedurescccoovviiiiiiiiiiiainin e 26
Figure 4-1: Centralization and Fullmeshc. e, 29
FIQUIE 4-2: Tree ..o e 30
Figure 4-3: ClUsStering ..o i s res e e 31
Figure 5-1: Clustering Based Signaling Architecture.................cccoiiiiiinen.n. 34
Figure 5-2: Member JOININGo 36
Figure 5-3: Super Member Leavingccooviviiiiiinieviiireviiiineine e necnneneeneens 38
Figure 6-1: Initiation and Terminationcccoiiiiiiiiiie e 55
Figure 6-2: InViting USEIS, 55
Figure 6-3: Split ... 56
Figure 6-4: SUA LEAVESouiiiiiii i e 56
FIgUre 6-5: MBIge ...eeii e 57
Figure 7-1: Architecture of the Prototype............coiiiii i 58
Figure 7-2: JXTAProtocol Stack ..., 60
Figure 7-3: JXTA Configurationsccooiiiiiiiiiiii e, 61
Figure 7-4: Class StrUCIUreoooniiiiiii e 64
Figure 7-5: State Diagram for Class: PeerUserAgentccc.ooceiiiiiiinns 65

viii

Figure 7-6: Graphic User Interfacescccoiiiiiiiiiiiiiin, 67

Figure 7-7: Comparison between Full Mesh and

Figure 7-8; Comparison of Different Split Values

ix

Clustering........cocovviviviiiiinne

List of Tables

Table 3-1: SIP ReqUESES ... 21
Table 3-2: SIP RESPONSESviiiiii e e e e eeas 21
Table 3-3: Today’s Signaling Protocolsc.cooviiiiiiiiiiicie e, 27
Table 4-1: Alternative Architecturesooiiiiiii i, 32
Table 6-1: New Headers and SIP Requests..........c..cociiiiiiiiniiiin, 42

CHAPTER 1 INTRODUCTION

The main goal of this thesis is to provide an application-layer signaling solution for
multiparty sessions in peer-to-peer ad hoc networks. In this introduction, we first
present the motivation behind our research. Then we describe the issues that will be
tackled. Afterwards, the specific objectives assigned to the thesis are presented. The

last section presents how the thesis is structured.

1.1 Motivation

Today's ad hoc networks aim to meet a number of requirements that conventional,
infrastructure-based networks cannot satisfy. One requirement is investment
reduction. Users may be so sparse or dense that the appropriate fixed infrastructure
would not be economical. For example, large-scaled cooperative networks can be set
up in communities without relying on any network service providers. Another
requirement is to deal with some situations in which fixed infrastructure cannot be
available, such as disaster recovery, battlefields. Yet another requirement is to
complement the deficiencies of the infrastructure-based network. For example, ad hoc
networks can be used to extend base station's coverage.

Ad hoc network has also been regarded as an important part of the 4G Wireless
System. The goal of 4G is to provide a seamless and ubiquitous communication
environment so that users can accomplish their tasks and access information at any
time, anywhere, and from any device [1]. Ad hoc networks in 4G aim at meeting this

goal.

The attractiveness of ad hoc networks makes it an active research area. Standards
and technologies are emerging nowadays. However, today’s research is mainly
focused on the lower-layer, such as physical, data link and network layers
[16,17,18,2,3,4]. Only few activities are related to middleware and application layers
such as, group communication [5], file-sharing application [6] and SIP based
framework [49]. No complete and effective solution has been proposed for multiparty

session control applications.

Multiparty sessions are the basis of several important applications such as chatting,
gaming, multimedia conferencing and distance learning. There are two key
technologies for multiparty session management: signaling and media handling.
Signaling is responsible for establishment, modification and termination of sessions.
Media handling aims to provide real-time media transmission for those sessions.
Standards of signaling and media handling for infrastructure-based networks have
already been developed. Examples are SIP [7] from the IETF, H.323 [8] from the
ITU-T and RTP/RTCP [9,10]. However, these protocols are unsuitable for ad hoc
network environment (presented in chapter 3). Until now, there is no signaling or

media handling protocols especially designed for ad hoc networks.

In fact, multiparty session control in ad hoc networks is challenging. The
communication between participants will be based on peer-to-peer due to the lack of

centralized and fixed controlling points. Besides this, participants may join or leave at

any time. The signaling information needs to be propagated and the media needs to
be handled in a distributed manner. Furthermore, resources need to be utilized
optimally because the heterogeneous devices may take part in the ad hoc network.
This implies that some devices may use consumptive power and low capacity

processors while others may have more processing resources and stable powers.

1.2 Issues Tackled

in this thesis, we will tackle the critical issue: signaling for multiparty session. There
are many research topics in the area of signaling for multiparty session in peer-to-peer
ad hoc networks. Examples are dynamic session management, resource negotiation,
scalability, node availability, security, billing, etc. In this thesis, we will focus only on
some of these issues: the establishment, modification and termination of dynamic

multiparty sessions, the optimal usage of resources and the scalability.

Although our signaling system will not provide conference control services such as
floor control and voting, we did our research for multiparty session contro! in a specific
conference mode. Conferences can be classified as pre-arranged and ad hoc. The
former is a conference in which time, length, location and participants may all be
scheduled in advance. The latter, on the contrary, is formed spontaneously by
relatively random needs and by arbitrary participants. This kind of conference can be
expanded from two-party to multiparty. To be more precise, two participants initiate a

conference. Then, new parties can join in when participants who are already in the

conference invite them. Participants are free to leave the conference at any time.
Finally, the last two parties terminate the conference. We use ad hoc conference as
multiparty session model because it fits quite well in peer-to-peer ad hoc network
settings. It will be the basis of numerous applications such as gaming and public

debates.

1.3 Goals

The goals of the thesis are as follows:

< Derive signaling requirements through the analysis of differences between
conventional networks and peer-to-peer ad hoc networks.

< Find possible signaling mechanism that can satisfy the signaling requirements.

< Propose a clustering-based signaling scheme.

< Implement the scheme in the form of an extension to SIP.

< Build a prototype to evaluate the feasibility and performance of the scheme.

1.4 Thesis Organization

In chapter 2, we will present background knowledge on both ad hoc networks and
peer-to-peer communication. In chapter 3, we will show the derived signaling
requirements. We will also introduce today’s signaling protocols SIP, H.323 and
ICEBERG signaling. Furthermore, we will analyze their applicability to peer-to-peer ad
hoc networks. In chapter 4, we will discuss several possible signaling architectures

and make comparison among them. In chapter 5, we will propose a clustering-based

signaling scheme that has the potential of meeting our signaling requirements. In
chapter 6, we will describe how to implement the proposed scheme as an extension to
SIP. In chapter 7, we will present a prototype that implements the user agent based on
SIP extensions. JXTA [29,30] will be used as a peer-to-peer middleware and JAIN SIP
Stack will be used to develop an extended SIP user agent. Preliminary results will
then be analyzed. We will conclude our work in Chapter 8. Future work will also be

presented at the end.

CHAPTER 2 BRIEF REVIEW OF PEER-TO-PEER
AND AD HOC NETWORKS

In this chapter, we will first provide the background information on ad hoc networks
and peer-to-peer communications. Then we will show how the two concepts are

related and also how we use them in this thesis.

2.1 Ad Hoc Networks

An ad hoc network is a (possibly mobile) collection of communications devices (nodes)
that wish to communicate, but have no fixed infrastructure available, and have no
pre-determined organization of available links [11]. An important assumption for ad
hoc network is the multi-hop. Each node in an ad hoc network may play roles of both
routers and hosts. A node can forward packets on behalf of other nodes and run user
applications. Devices in an ad hoc network can be heterogeneous, such as Personal

Digital Assistants (PDAs), laptops, palm PCs and cell phones.

2.1.1 Evolution of Ad Hoc Networks

Early ad hoc networks called “packet radio networks” have primarily been used for
military purpose to improve battlefield communications and survivability. The dynamic
nature of military operations implies that it cannot rely on having access to a fixed
pre-placed communication infrastructure in battlefield.

DARPA Packet Radio Network (PRNet in 1972) [12] can be considered as the first ad

hoc network. It features a distributed architecture that consists of a network having

6

broadcast radios with minimal central control. In addition, by using multi-hop
store-and-forward routing techniques, the radio coverage limitation is removed. In the
next twenty years, ad hoc networking technology had been subject to sporadic
development. The typical scenario at that time was still setting up a communication

network in a battlefield.

The term “ad hoc network” did not appear until the development of IEEE 802.11 in the
1990s, a standard for wireless local area networks (WLAN). The IEEE replaced the
term “packet radio network” with “ad hoc network”. With the adoption of the new name,
the |EEE hoped to indicate an entirely new scenario other than a battlefield.
References [12,13] give examples. They are disaster-relief networks,
construction-site networks, inter-vehicle networks, home-environment networks,
emergency networks, networks for visitors at airports, conference centers and

shopping malls.

2.1.2 Taxonomy
We will intfroduce two primary classifications for ad hoc networks in this section. The
first one focuses on the relationship between ad hoc networks and other networks.

The second concerns the coverage area of ad hoc networks.

In relation to other networks, ad hoc networks can be classified as isolated ad hoc

networks, integrated ad hoc networks and cellular ad hoc networks [14]. Isolated ad

hoc network means that all nodes communicate with each other within the same
network. It has no connection with any infrastructure-based communication network,
such as the global Internet. Integrated ad hoc network means that there is a gateway
to seamlessly integrate a small-scaled ad hoc network with some IP-based (mobile)
access network. A cellular ad hoc network is self-organizing multi-hop network with
multiple access points connected to a broadband network. The difference between
cellular ad hoc networks and isolated ad hoc networks is that most of the traffic in
cellular ad hoc networks is from or to access points. The difference between cellular
ad hoc network and the integrated ad hoc network is that the former has multiple
access points and it will be mainly used to extend the radio coverage of the base

station.

According to the coverage area, ad hoc networks can be classified into four classes:
Body, Personal, Local, and Wide Area Networks [15]. Figure 2-1 shows this
classification. Wide area ad hoc networks are mobile multi-hop wireless networks.
They are not likely to become available for some time due to a number of technical
challenges (e.g., addressing, routing, location management, etc.). On smaller scales,
ad hoc Body Area Networks (BAN), Personal Area Networks (PAN), and wireless LAN
are beginning to appear on the market. Body Area Network is strongly correlated with
wearable computers. The components of a wearable computer are distributed on the
body (e.g., head-mounted displays, microphones, earphones, etc.), and BAN

provides the connectivity among these devices. Personal area network is a network in

the environment around the person. PAN connects mobile devices to other mobile
and stationary devices. The typical communication range of a PAN is 10 meters.
Wireless LAN has communication range of 100 — 500 meters so it will be the solution

for home and office automation.

~Im ~10m ~ 500m Range

Figure 2-1 Ad Hoc Networks Taxonomy

2.1.3 Main Technologies and Standards

For physical and data link layers, there are two emerging personal or body area
network standards. One is IEEE 802.15.3 [16], which provides high data-rate personal
area ad hoc networks. The other is Bluetooth [17], which intends to serve as universal
low-cost air interfaces that will replace the plethora of proprietary interconnecting

cables between personal devices.

There are three main wireless LAN (WLAN) technologies. The most mature one is the
IEEE 802.11 [18], which is commercially successful and widely used in enterprises
and educational organizations. There are two possible settings in 802.11. One is

infrastructure-based setting that defines Access Point (AP). Nodes in a cell of 802.11

networks communicate with a centralized and fixed AP. The AP is normally connected
to the wired network, thus providing Internet access. Another is the ad hoc setting,
which is a peer-to-peer network formed by a set of nodes. They dynamically configure
to set up a temporary network. Digital Enhanced Cordless Telecommunications
(DECT), another standard of WLAN, is a flexible digital radio access standard for
cordless communications in residential, corporate and public environments. It was
introduced by ETSI for cordless telecommunications, and mainly focuses on the
telephony and the ISDN access [19]. HyperLANZ2, supported in Europe and Japan, is
a flexible radio LAN standard designed to provide high speed access to various
networks including 3G mobile core networks, ATM networks and IP based networks,

and also for private use as a WLAN system.

In the network layer, IETF MANET (Mobile Ad hoc Networking) working group has
defined three IP routing protocols. They are Ad hoc On-Demand Distance Vector
(AODV) routing [2], Optimized Link State Routing Protocol (OLSR) [3] and Topology
Dissemination Based on Reverse-Path Forwarding (TBRPF) [4]. OLSR and TBRPF
are proactive link state routing protocols, while AODV is a reactive (table-based) on

demand routing protocol.

2.1.4 Overall Architecture

Ad hoc networking is a multi-layered issue. Other than the physical layer, data link
layer and network layer standards, there are also researches on middieware [5],

application [6,49], quality of service [20], security [21] and energy conservation [22].

10

Figure 2-2 shows a layered architecture of ad hoc networks.

Middleware
Service Location, Group Communication, Naming ...

Figure 2-2 An Overall Ad Hoc Network Architecture

2.2 Peer-to-peer Communication

Peer-to-Peer (P2P) is a way of structuring distributed applications such that the
individual nodes have symmetric roles [23]. In this definition, “symmetric” is the most
important idea in contrast to the asymmetric roles of client and server in Client/Server
mode. Client/Server mode is a one-to-many relationship. One server deals with and
responds to requests from many clients. However, P2P applications exhibits a

symmetric one-to-one relationship, and a node may act as both a client and a server.

2.2.1 Evolution of P2P in Internet

Peer-to-peer is not a new idea. The precursor of the Internet -- Advanced Research
Project Agency Network (ARPANET), started by 1966 [24], may be considered as the
first P2P network [25] because ARPANET addressed the need to decentralize the

network and to ensure that no single point of failure is present. Until the ARPANET

il

was replaced by National Science Foundation Network (NSFNET) in 1990 [24], the
Internet remained primarily a P2P network. The commercialization of Internet in 1994
brought with it the dominance of client/server networking at the Internet’s application
layer. Throughout the rest of the 1990s, successful deployment of client/server
attracted most of the attention of the people. That is why they failed to notice what
Napster [25,26] did in 2000. Since then, several P2P applications have been launched
to date. The most famous ones are the Gnutella [25,27] and FreeNet [25,28]. JXTA
[29,30] is also an active technology to provide a P2P framework. Today, P2P has
become an increasingly hot topic for Internet computing technologies due to the
attraction of improving the utilization of Internet resources and being able to enhance

system reliability and fault tolerance.

2.2.2 Using P2P in Ad Hoc Networks

Since most of the Internet technologies today are still based on client/server, there
exist two classes of P2P networks in the Internet domain: “pure” P2P networks and
“hybrid” P2P networks [31]. When P2P is used in ad hoc network environment, it
becomes naturally “pure” due to the similarities between P2P and ad hoc networking:
both have decentralized architectures, transient connectivity and heterogeneity of

resources.

Actually, appiications in ad hoc networks rely on P2P communication. Some research

works have put them together [6,32,33]; others have made comparisons between

12

them [34,35]. In this thesis, we use the term peer-to-peer ad hoc network to represent

the isolated ad hoc network in which peer-to-peer communication mode is used.

13

CHAPTER 3 SIGNALING REQUIREMENTS AND
TODAY'’S SIGNALING PROTOCOLS

The characteristics of peer-to-peer ad hoc networks are very different from that of
conventional networks. Traditional networks are planned, designed and users are
added or removed by the explicit actions of system administration. Signaling protocols
in traditional networks like SIP [7], H.323 [8] and ICEBERG Signaling [36] assume that
there exist fixed and infrastructure-based networks. They also assume that there may
be centralized control points that can be pre-configured and pre-deployed. This is why
all these signaling protocols have the definition of centralized entities although the
entities may not be mandatory. In this chapter, we first derive the specific signaling
requirements for peer-to-peer ad hoc networks. Then we introduce the three signaling
protocols that are the state of the art. Finally, we analyze these protocols and see why

they are not suitable for peer-to-peer ad hoc networks.

3.1 Signaling Requirements

A peer-to-peer ad hoc network is a spontaneous network without any pre-existing
infrastructure or centralized administration point. Nodes in the network can
communicate with each other directly or via relay nodes. Connections between nodes
are transient. There are differences in the capabilities of processors, memory, and
power resource of the nodes. A signaling protocol should adapt to these

characteristics, and should also provide efficient session-control functionality. Again,

our interest is in the ad hoc conference that we have presented in chapter 1. We

derive five basic signaling protocol requirements.

1)

3)

There should be no centralized signaling entity, since there is no centralized entity
in peer-to-peer ad hoc settings.

Signaling should be capable of maintaining dynamic sessions because
participants may join or leave at anytime. This implies that information is properly
propagated to all nodes (including nodes that join a conference at the same time).
The signaling system should be scalable because a multiparty session starting
with a couple of participants may grow to thousands of participants depending on
the application.

The signaling system should be light-weigh because nodes in ad hoc networks
usually have limited processing capabilities.

Resources should be used optimally because some nodes may not have enough

processing power and will have to rely on the processing power of other nodes.

Other requirements like the fault tolerance, billing and security are out of the scope of

this thesis.

3.2 Today’s Signaling Protocols

Signaling protocols such as H.323 [8] and SIP [7] are widely used in today's

telecommunication world for controlling multimedia session over IP networks.

ICEBERG signaling [36] provides valuable research input. They are our starting points

in the research of signaling issues in peer-to-peer ad hoc networks.

15

3.2.1 H.323

The H.323 standard is a cornerstone technology specified by the ITU-T that defines
the components, protocols and procedures that provide multimedia communication
services over packet networks. It specifies four kinds of components: terminals,
gateways, gatekeepers and multipoint control units. Instead of defining a signal
protocol, the H.323 standard is an umbrella consisting of a set of protocols: audio
CODECGCs, video CODECs, H.225 RAS (registration, admission, and status), H.225
call signaling and H.245 control signaling. Figure 3-1 gives an overview structure of
H.323 networks. Next, we will introduce the components and signaling protocols in
H.323. Then we look at the call procedures defined in H.323 and introduce how H.323

handles multiparty sessions.

H.323 Terminal H.323 MCU

| l

— | l l

H.323 Gatekeeper H.323 Gateway H.323 Terminal H.323 Terminal

Figure 3-1 H.323 Network Structure

3.2.1.1 Components and Protocols
< Terminals: H.323 terminals are mandatory components in H.323 standards. An

H.323 terminal can either be a personal computer (PC) or a stand-alone device

16

running H.323 protocols and multimedia applications. It supports audio
communications and can optionally support video or data communications.
Gatekeepers: Although it is not a mandatory entity in the standard, a gatekeeper
can be considered as the brain of the H.323 network. It is the focal point for all
calls within the H.323 network. Gatekeepers provide important services such as
addressing, authorization, authentication, bandwidth management, accounting,
billing and charging. Gatekeepers may also provide call-routing services.
Gateways: A gateway is not a required component in H.323 standard. An H.323
gateway provides connectivity between an H.323 network and a non-H.323
network. For example, a gateway can connect and provide communication
between an H.323 terminal and public switched telephone network (PSTN). This
connectivity of dissimilar networks is achieved by translating protocols for call
setup and release, converting media formats between different networks and
transferring information between the networks connected by the gateway.
Multipoint control units (MCUs): MCUs provide support for conferences of
more than two H.323 terminals. All terminals participating in the conference
establish a connection with the MCU. The MCU manages conference resources,

deals with media capability negotiation and handles the media stream.

H.225 RAS: Registration, admission, and status (RAS) is the protocol between

endpoints (terminals and gateways) and gatekeepers. The RAS is used to

17

perform registration, admission control, bandwidth modification, and status
collection procedures between endpoints and gatekeepers.

< H.225 Call Signaling: The H.225 call signaling is used to establish a connection
between two H.323 endpoints. This is achieved by exchanging H.225 protocol
messages on the call-signaling channel. The call-signaling channel is opened
between two H.323 endpoints or between an endpoint and the gatekeeper.

< H.245 Control Signaling: H.245 control signaling is used to exchange end-to-end
control messages. These control messages carry information related to the
aspects of exchanging capabilities, opening and closing of logical channels,

doing flow-control and exchanging general commands.

3.2.1.2 Call procedures
Call procedures are complex in H.323. They consist of six steps:

< Admission control: Before setting up a call, a terminal may exchange H.225
admission control messages with gatekeepers.

< Call setup: Call control messages defined in H.225.0 are used to set up a call.
The setup procedure may go through a gatekeeper if terminals are registered.

< Initial communication capability exchange: Once both sides have exchanged call
setup messages, the endpoints shall establish the H.245 control channel. Then
they use the control channel to exchange media capability. After that, logical
channels for media transmission should be opened.

< Establishment of audiovisual communication: Various information streams are

transmitted using the logic channel.

18

< Call services: During the call procedure, a set of services can be provided such
as bandwidth change, endpoint status check, multipoint conference and
supplementary services (defined in ITU-T H.450.x).

< Call termination. Either endpoint or an intermediate call signaling entity may
terminate a call. The procedures consist of terminating media transmission,

closing logic channels and releasing signaling channels.

3.2.1.3 Multipoint conference

As mentioned previously, H.323 uses Multipoint Control Unit (MCU) to manage
multiparty calls. There are three possible deployment approaches to implement
multiparty conference using MCU. One is a centralized method. In this case, the MCU
is responsible for mixing the media from all the participants and then sending the
mixed media back. Another is a decentralized method in which the MCU multicasts
the media to all the participants. The third way is a hybrid of the previous two. In this
case, some terminals use centralized method and others use decentralized one. The

MCU acts as a bridge.

3.2.1.4 Applicability to peer-to-peer ad hoc networks

H.323 is not suitable for peer-to-peer ad hoc networks because of the following
reasons. Firstly, it is so complex that devices in ad hoc networks may not have
enough processing capabilities to use it. Secondly, it needs the centralized MCU.

From the implementation point of view, although a MCU can be combined with other

19

components like terminals, a centralized session management is mandatory in H.323.
Thirdly, scalability is limited by the processing capability of the MCU. Finally H.323
provides media capability negotiate mechanism, but it does not provide solutions for

optimal usage of resources.

3.2.2 SIP

The Session Initiation Protocol is defined by IETF. It is an application-layer control
(signaling) protocol for creating, modifying, and terminating sessions with one or more
participants. So far the IETF has defined a core SIP specification (RFC 3261 [7]) and
a set of SIP extensions (examples are RFC 3515 [40], RFC 2976 [41] and RFC 3265
[42]). In this section, we will introduce the core SIP.

The core SIP defines a set of functionality. Other than session management, it also
provides user location, user availability and user capability determination. There are
two kinds of components defined in SIP: User Agents (UAs) and servers. Next we will
introduce the components of SIP. Then we will look at the messages and call

procedures. After that, we will discuss the possible conference models in SIP.

3.2.2.1 Components

< User Agent (UA): A user agent is a mandatory component in SIP. It represents
an Internet end point. A UA contains a user agent client (UAC) and a user agent
server (UAS). A UAC is capable of generating a request based on some external
stimulus (the user clicking a button, or a signal on a PSTN line) and processing a

response. A UAS is capable of receiving a request and generating a response

20

based on user input, external stimulus, the results of a program execution or

other mechanisms.

Proxy Servers: Proxy servers are network hosts to which the user agent can

send registrations, invitations and other requests. Proxy servers that facilitate the

session establishment between end points may provide routing, locating,

authenticating and other functionalities.

Other servers, like redirect server, registrar and location server, may also appear

in SIP settings to reduce the processing load on proxy servers and improving

signaling path robustness. Servers are not mandatory entities in SIP.

3.2.2.2 Messages

Core SIP defines seven requests and six sets of responses. The messages are

summarized in the table 3-1 and 3-2.

Table 3-1 SIP Requests

Method type Usage
INVITE Initiating a session
CANCEL Canceling a pending request
BYE Terminating a session
ACK Acknowledging for the successful connection establishment
OPTION Querying servers about their capability
REGISTER Registering contact information of UA

Table 3-2 SIP Responses

Code Code | Code Meaning Code Code | Code Meaning
Category Category

100 Trying 413 Request Entity too large
informational | 180 Ringing Request 414 Request-URI too long
Or 181 Call is being | Failure 415 Unsupported media
Provisional forwarded type

182 Queued Request 420 Bad extension

21

Successful 200 | OK Failure 480 | Temporarily
Unavailable

300 Multiple choice 481 Call leg does not exist

301 Moved permanently 482 Loop detected
Redirection 302 | Moved Temporarily 483 | Too many hops

305 Use Proxy 484 Address incomplete

380 | Alternative Service 485 | Ambiguous

400 Bad request 486 Busy here

401 Unauthorized 500 Server Internal error

402 Payment required 501 Not implemented

403 | Forbidden Server 502 | Bad gateway

404 | Not found Failure 503 | Service Unavailable
Request 405 | Method not allowed 504 | Gateway Timeout
Failure 406 | Not acceptable 505 | Version not supported

407 Proxy Authentication 600 Busy everywhere

required
408 | Request timeout Global 603 | Decline
409 Conflict Failures 604 Does not exist
anywhere
410 Gone 606 Not acceptable
411 Length required

3.2.2.3 Call Procedures

SIP is lightweight. Its call procedures are simpler than that of H.323. SIP uses INVITE

message to initiate a session. The session then can be modified by using a re-INVITE

and terminated by using a BYE message. The initiation procedure is a three-way

handshake while other procedures are HTTP-like requests and replies. Media

capability can be exchanged through using SDP (Session Description Protocol).

3.2.2.4 Multiparty Session Modes

SIP can be flexibly applied to different conference modes. Here we introduce some

conference modes that are discussed in the Internet draft [43].

22

< Endpoint Mixing: This mode is applied to very small-scale conference because
one endpoint (normally a caller) has the responsibility of mixing all conference
media.

< Multicast conference: it relies on an IP multicast supported network.

< Dial-in; A centralized conference server is needed. Endpoints invite the
conference server to join a conference. The conference server performs the
media mixing.

< Dial-out: It also needs a conference server, but the server invites endpoints to join
the conference.

< Ad hoc centralized: Two parties first set up a conference. Other parties join the
conference through a centralized conference server.

< Centralized signaling, distributed media: This mode uses a centralized signaling
server, while media are mixed at each endpoint.

< Full mesh: Sessions are managed in fully distributed manner. No servers or any

other components control the conference.

3.2.2.5 Applicability to Peer-to-Peer Ad Hoc Networks

In the conference modes that we have introduced, full mesh is the closest to meeting
the requirements of peer-to-peer ad hoc networks. There are two ways to organize a
full mesh conference in SIP. One way is to use a new header field named “Also” [44].
The other way is to use the extended request “REFER” [40]. Sequence examples are

shown in figure 3-2.

23

A B C D A B C D
< o REFER (R¢fer-To: A) >
INVITE {Also: B, C) > « 202 =
<« 200 < NVITE
= 200 -
ACK > «—ACK
< DNVYITE REFER (Refer-To: B) »
- -« 202 —
200 > < INVIIE
" 200 -
< ACK «ACK
< INVITE ____REFER (Refer-To: C) »
- 202 !
200 o i <« INVITE
. 200 o
<« ACK <« ACK ™
(a): The usage of “Also” (b)The usage of “REFER”

Figure 3-2 SIP Full Mesh Conferences
A, B, C are in a conference. A then invites D to join the conference

However, the full-meshed mode has two main defects. One is that it is not scalable.
Connections between endpoints will increase exponentially with the enlargement of
the scale of a conference. The other defect is that the full-meshed mode cannot
handie the situation where more than two users join a conference at the same time. In
this case, those users will have no knowledge of each other.

As a matter of fact, SIP in full mesh mode has been considered for using in ad hoc
networks. Research work [49] provides a SIP based framework allowing the users to
exchange instant messages and establish conferences. It utilizes a full-meshed
architecture for signaling connections and a centralized architecture for information
propagation. This hybrid solution can make up the second defect of the full-meshed
mode. However, the work is not a complete solution and does not solve issues such

as scalability and optimal use of resources.

24

3.2.3 ICEBERG

ICEBERG project [36] was developed by U.C. Berkley. The purpose of the project is
to implement a communication network and a service infrastructure that provides
internet-based integration of telephony and data services spanning diverse access
networks. The ICEBERG network provides functionality such as multiple accesses, call
services, registry, personal mobility, service mobility, admission control and billing. The
functionality is implemented through Iceberg Access Point (IAP) and Iceberg Point of
Presence (IPOP).

A signaling system is accordingly developed by the ICEBERG project group to adapt to
the dynamic multi-device session management. Next we briefly look over the signaling

system since it provides some interesting solutions for dynamic session control.

3.2.3.1 Signaling Phases

The session management is based on a set of soft states in ICEBERG signaling.
There are two signaling phases defined: call setup phase and call control phase.

The call setup phase consists of call session establishment and data path creation.
The call session establishment aims to set up a soft call session -- a control center
that will maintain all sessions’ soft states occurring in a multiparty call. The call
session then creates Call agents in IPOPs. Each call agent serves one participant
and manages its soft call states. The data path creation is responsible for creating the
media transmission path.

Once a call has been set up, call control will be used to propagate state changes and

25

modify the data path. The propagation procedures are performed in the following
manner:

A serving call agent periodically receives the state report from the participant side, and
forwards it to the call session. The call session, that maintains the states of all the
participants in a table, then multicasts the table to all the call agents. It is important to
know that this mechanism relies on the multicast in the network layer.

Figure 3-3 gives an example of call establishment procedures. The procedures follow
the steps that we have described. In the figure, each participant accesses ICEBERG
networks by an |IAP. Admission control (performed by clearing house) may be needed
before setting up calls. Other services such as preference-registry and name mapping

may also be provided by iPOPs during the call establishment.

Figure 3-3 ICEBERG Call Procedures

8(ring)

26

3.2.3.2 Applicability to Peer-to-Peer Ad Hoc Networks

The ICEBERG cannot be applied to peer-to-peer ad hoc networks. The first reason is

that ICEBERG relies on multicast that an ad hoc network might not provide. The

second reason is that it has centralized session control unit: call session.

3.3 Summary

Summarizing three signaling protocols, we can see that none of the existing signaling

systems meet all the requirements that we have derived. Table 3-3 presents key

properties of three protocols. H.323 and ICEBERG has centralized features. SIP (full

mesh) cannot achieve scalability.

Table 3-3 Today’s Signaling Protocols

Requirements H.323 SIP (full meshed ICEBERG
version)

Existence of Yes No Yes
centralized entity
Scalability level Medium Low High
Level of dynamic None Low (There are High
session maintaining issues with the

simultaneous jain)
Light weight No Yes Yes
Optimal usage of No No No

resource

27

CHAPTER 4 ALTERNATIVE SIGNALING
ARCHITECTURES

When talking about signaling protocols, people normally focus their attentions on
whether the protocols are efficient enough to provide the required functionality,
whether they are easy to implement, and whether they are robust enough to handle
unexpected situations. On the other hand, in the research on peer-to-peer ad hoc
networks, it is primordial to draw our attention on how to create an effective signaling
architecture. It is important because our signaling protocol will be implemented over a
peer-to-peer communication fabric. The architecture will be used to aid in solving
signaling problems such as information propagation and scalability.

The purpose of this chapter is to find a signaling architecture that is suitable for
peer-to-peer ad hoc networks. We will examine several alternative architectures and

analyze their pros and cons.

4.1 Centralization and Full Mesh

Centralization is a kind of architecture where there is a centralized control node. All
other nodes are directly connected to the control node. In the architecture, the control
node may be a conference server such as the server in dial-in and dial-out SIP
conference, or a multipoint controller such as MCU in H.323. The advantage of this
structure is its manageability. The control node that manages the conference may

also provide admission control, billing and security.

28

Obviously, the centralized architecture is not applicable in peer-to-peer ad hoc
networks since there are no fixed points available. It is also hard to find a node that

can cope with the heavy load of the control point.

Centralization Full mesh

Figure 4-1: Centralization and Full mesh

In contrast, full mesh is a fully distributed architecture. There is no control point.
Nodes have the same responsibilities and they are directly connected to each other.
Full mesh directly reflects the peer-to-peer communication idea. It is applicable to
some small-scaled cases where there is no control node available.

Although some existing documents (for example, the expired IETF Internet Draft [44]
and the SIP based framework [49]) have discussed how to implement a conference by
using full mesh architecture, we see very little of it in reality because a large number of
signaling connections takes too much network and endpoint resources.

Figure 4-1 shows the architecture of centralization and full mesh.

4.2 Tree

The typical tree structure is shown in figure 4-2. It includes a root, some branches and
some leaves. The root is the ancestor of all the leaves. The leaves refer to all the
nodes except the root. Each leaf has a father and may have several sons. The

branches are the connections between nodes.

29

Figure 4-2: Tree

One of the advantage of this architecture is that information can be efficiently
propagated through it. A tree algorithm used in ad hoc networks is presented in [6]. A
new node can easily join in just by creating a connection with any nodes in the tree.
Through a learning procedure, all the ancestors will have the knowledge of the new
node. This is done by propagating information back to the root through the branches.
“Node-leaving” is also not a big problem. When any father node leaves, it just
“delivers” its sons to its father. Another advantage of this architecture is that it can be
scalable. There is no limit in the growth of a tree. In addition, there is much less
connections between nodes than those found in full mesh.

However, the tree is an asymmetric architecture. The root plays a critical role for
maintaining the tree. It is subject to heavy burdens if the tree is big. It is hard to
determine the most powerful node as a root because in ad hoc conferences, newly
joined node may be more powerful than the pre-existing one. In addition, it is difficult
to reorganize the whole tree when a new node joins and the old root cannot handie

the tree anymore.

4.3 Clustering

Clustering is a kind of architecture that divides a set of nodes into different clusters

30

and provides connections between them. Each cluster has a cluster head, which is
responsible for maintaining a list of cluster members and also connecting to other
clusters. Clustering is often used in communication networks [35,36,37] to handle the
issues of distributed computing. Similar to the tree, clustering can be easily scaled. It
organizes large number of nodes in small clusters and each cluster is self-governed.
Clustering also provides possibility for efficient information propagation. Since the
cluster heads are all connected, they can propagate information to each other. All
cluster members can then get the information from their cluster heads.

Compared with the tree architecture, clustering is more symmetric. That is, instead of
maintaining the table of all nodes, the burden of the root-node is shared by several
cluster heads. If new nodes are added and the cluster head is no longer capable of
maintaining them, it just splits the cluster into two smaller clusters. There is then the
possibility to select the most powerful nodes as cluster heads.

In our opinion, two possible types of clustering: centralized clustering and mesh
clustering can be used in our signaling system. Other clustering architectures are less

interesting due to their unmanageability.

Figure 4-3: Clustering
(a) Mesh clustering (b) Centralized clustering

31

Clusters in centralized clustering are organized in a centralized manner. Heads are
the center points of each cluster. In contrast, clusters in mesh clustering are organized
in a full mesh manner. Nodes have full mesh connections with each other. Figure 4-3
shows these two architectures. If we compare the two, the meshed one has a better
fault tolerance while the centralized one needs less signaling connections. Since the
network resource is limited in peer-to-peer ad hoc networks, we conclude that the

centralized clustering architecture is a better solution.

4.4 Summary

In this chapter we presented the pros and cons of the four architectures. By
comparing these architectures, we chose the centralized clustering as the architecture
of our new signaling system. We will refer to it as clustering in the rest of this thesis.

Table 4-1 gives the evaluation of the alternative architectures.

Clustering

Centralization | Full mesh | Tree
Mesh | Centralized

Without central control point No Yes Yes Yes Yes
Potential for efficient
. . . - Low High | High High
information propagation
Potential for signaling load Low High Low | Middle Low
Symmetric architecture No Yes No | Partly Partly
Level of scalability Low Low High | High High

Table 4-1 Alternative Architectures

32

CHAPTER 5 CLUSTERING-BASED SIGNALING
SCHEME

As described in chapter 4, clustering enables scalability and does not require
centralized control. The idea of clustering has been used to solve the routing [47] and
the topology [48] problems in ad hoc networks. However, these researches differ from
our work because of the following reasons: Firstly, our focus is on how to organize
multiparty sessions while the researches are focused on how to organize the network.
Secondly, we use the clustering architecture to help propagate information and to
reduce signaling connections, while the previous researches use the idea to reduce
the communication overhead for distributed routing and to guarantee strong
connectivity for the network.

In this chapter, we will introduce the general principles and then present the
preliminary thoughts on procedures for the concrete operations. In the last section, we

will analyze the potential of the new architecture.

5.1 General Principles

The Signaling Agent (SA) is the only functional entity in our architecture. It resides in
each peer and handles signaling protocols. At any given time, it either acts as a
member or as a super member. The super member is the cluster head and is
responsible for maintaining a list of members. There is only one super member in a
cluster and all the members are connected to it. Super members are also

interconnected. A cluster is identified by a unique cluster id. Both super member and

33

members in the cluster hold this id. Figure 5-1 shows an example of the

clustering-based architecture.

’ AN
i) Cluster
/7

Super member

O Member

Figure 5-1; Clustering Based Signaling Architecture

Clusters are dynamically created and deleted. They can split and merge. The key
parameters are the Split value (Sv), the Merge Value (Mv), and the Level Value (Lv). If
the number of members in a cluster reaches Sy, the cluster splits into two. If it reaches
My, the cluster merges with another cluster. Split value and merge value are critical for
the clustering architecture. Different values will lead to different flavors of
architectures. For example, if the split value is set to an excessively large number
(larger than the number of participants in the conference), the architecture will
become a centralized one. If it is set to 1, the architecture will become a full-meshed
one. Moreover, the merge value should always be set to a number that is less than
half of the split value. Otherwise, a merging procedure may lead to further splitting
and merging procedures.

Procedures are needed to support the concrete operations, such as super member
election, cluster creation/deletion, changes in cluster membership (i.e. including super

member leaving the conference), split and merge. We present these procedures in

34

the next section.

5.2 Detailed Description

5.2.1 Super Member Election

A super member is elected when a new cluster is created, when an old super member
leaves, or when two clusters merge. The elected member is the one who has the most
resource (e.g. processing power / memory).

In order to implement this, resource capability is to be exchanged between a super
member and a member, as well as between different super members. A super
member keeps two resource-lists: one for members, the other for neighboring super
members. The list of members is used for super member selection when a super
member leaves or when a cluster splits. The list of super members is used when two

clusters merge.

5.2.2 Creation and Deletion

The first cluster is created when the first two participants are connected. One of the
two participants will be elected as a super member by following the super member
election procedures described above. A unique cluster ID will then be generated and
parameters Mv, Sv and Lv will be set.

The last cluster is deleted when the last participant leaves the session. The cluster ID

and parameters will be cleared.

35

5.2.3 Member Change - Joining

There are two ways for a participant to be added into the multiparty sessions: invited
by a super member or referred by a member. In the latter case, the referred participant
should establish a session with the super member because there are no direct
connections between members in our architecture. In both cases, the super member
should also update the list of its members and propagate the information to super
members of neighboring clusters after the participant joins.

Figure 5-2 shows an example of joining in which super member H invites participant K
to join the conference. If K is successfully added, H then propagates this change to its

neighbor A.

List of member: |, J, K

Super.member.

List of member: B,C,D
List of neighbor: H (1,J,K)

b Invitation

mmmmm B Propagation Figure 5-2: Member Joining

Many participants may join a multiparty session simuitaneously. Our architecture can
handle this situation gracefully. If participants join different clusters, super members of
these clusters can have knowledge of the new participants. Through information
propagations between clusters, all these participants can have knowledge of each
other. When participants join the same cluster, the super member deals with them one

by one and these new members can know each other through the super member.

36

5.2.4 Member Change — Member Leaving

It is very simple for a member to leave the cluster. The member terminates the
session with its super member. The super member updates the member list and

propagates the change.

5.2.5 Member Change — Super Member Leaving

The leaving of a super member is more complex than that of the member because it
holds a key position. Firstly, the leaving super member designates a new super
member called candidate. Secondly, the candidate creates connections to members
in the cluster and to super members of neighboring clusters. Only then will the
candidate become the new super member. Thirdly, the old super member terminates
all its sessions and leaves. We show a super member’s leaving example in Figure 5-3
in which super member H wants to leave, so it designates member | as the new super
member. Candidate | creates connections with member J, K and neighbor A. Finally,
H terminates connections with new super member |, member J, member K, and
neighbor A.

One problem that we may encounter during leaving procedure of a super member is
that if the old super member keeps receiving and handling other inviting, terminating
or propagating messages while the candidate is establishing connections, the
candidate will have no knowledge of the latest changes. We can solve this problem by
setting a “locked” status for the old super member until the candidate takes the

position of the super member.

37

List of member: B,C,D
List of neighbor : | (J,K)

5.2.6 Split

A cluster may split into two when its size reaches Sv, or when the super member of
this cluster reaches its processing limit. A split procedure only happens after a new
participant joins. The super member of the cluster, called splitter, is the one who starts
the split. The procedure is as follows:

The splitter chooses a new super member from its member list. It then divides some of
its members to a new cluster. The candidate generates a new cluster ID and then
creates connections to its members and to the super members of neighboring clusters.
After this, the candidate becomes a real super member. Finally, the splitter terminates

sessions with all the members of the new cluster.

Up to now, we did not describe the policy of the split. This means that the splitter
decides how many members are to be part of the new cluster. There are two possible
policies. The first one is that the splitter cuts off one member to keep the cluster’s size
within the Sv. For example, cluster ¢ includes 10 members. They can be presented as
{csm, cm1, cm2, ..., cm9)}. The csm is the super member and cm71~cm9 are members.

If csm decides to use cm2 to form a new cluster called ¢7, the new clusters will be c:

38

{csm, cm1, cm3, cm4, ..., cm9} and c1: {cm2). This algorithm is deficient because any
further joins to ¢ will lead to a new split procedure. The other policy is called fair split.
In this method, a splitter divides its members into two halves. Two divided clusters are
then formed. The detailed description is as follows: Assume that the number of users
in the cluster is Cn. If Cn is even, the splitter splits Cn/2 members out to create a new
cluster. Otherwise, it splits quotient(Cn/2) members out. If we use the previous
example, one possible split result would be c¢: {csm, cm1, cm3, cm4, cm5} and c¢1:
{cm2, cm6, cm7, cm8, cm9). We prefer this policy because it eliminates the problem

of further split procedures.

5.2.7 Merging

A cluster will merge with another cluster if its size is less than the merge value and if
by merging, the total number of members is less than the split value. Similar to the
split procedures, a super member is responsible for starting a merging. We call it
merger. The super member, that the merger wants to merge with, is called mergee.
The merger may designate itself or the mergee as the new super member according
to the super member election result. The new super member creates connections to
the members of the other cluster. And the old super member becomes a member and

terminates all connections to its old members.

5.3 Summary
We have proposed a clustering-based signaling architecture in this chapter. The

definitions and operation procedures were presented. From our work, we can see that

39

the architecture can potentially meet all the signaling requirements. Firstly, there is no
permanently centralized entity. SAs act as super member on a transient basis.
Secondly, sessions are maintained in a distributed and dynamic manner. The clusters
are dynamically created and deleted. Thirdly, the architecture can be of lightweight if
appropriate technologies are selected for implementation. Furthermore, resources are
used in an optimal way because super members are elected according to the
resource capabilities of participants. Finally, the load induced in the network is
significantly lower than the load induced when a full mesh approach is used.

However, the proposed architecture is not completely optimal because some
procedures such as super member leaving, splitting and merging need the cluster to
be reshaped. Extra network load will be induced in the reshaping procedures.
Because of the time constraint, we will not optimize the procedures in this thesis but

clarify it and put it to the work in the future.

40

CHAPTER 6 A SIP BASED IMPLEMENTATION

We implement our proposed architecture as an extension to SIP [7] because SIP is
lightweight and extendible. It is important to stress that our signaling architecture does
not rely on SIP. We use SIP just as a technology to implement it.

To simplify the implementation, we suppose that all participants in a conference have
same processing and memory capabilities. Super members are elected randomly. In
this chapter, we will present the extension, describe the behavior of SIP end systems

and illustrate the signaling sequences.

6.1 The Extension
The extension includes new entity, new headers, new concepts and new semantics.

We will introduce them one by one in this section.

6.1.2 An Identification
We define a key word “clustering” that will appear in “Supported” header field of SIP to

identify this extension.

6.1.2 New Entity

The only functional entity we keep from SIP is the user agent (UA) since there is no
centralized server in peer-to-peer ad hoc networks. In addition, we propose a new
entity super user agent (SUA). UA maps to the member and SUA maps to the super

member.

41

6.1.3 New Header Fields

Four new header fields are defined: Conf-ID, Participant-In-Cluster, Neighbor and
Cluster-Parameters. Conf-ID header field acts as a unique identifier to group all the
messages in a particular conference. The requests and responses within a
conference should have the same conference id. Participant-In-Cluster header field is
used to represent the participants in a same cluster. It consists of three parameters:
super member, member list and cluster id. Neighbor header field represents a
neighbor of the cluster represented by the Participant-in-Cluster header field. It also
consists of super member, member list and cluster id. Cluster-Parameters header field
is used to exchange cluster parameters. This header field consists of three
parameters: split-value, merge-value and level-value. Appendix A shows the syntax of

new header fields.

6.1.4 Extension to methods

Instead of defining new request methods, we extend the existing messages with new
header fields. The messages are INVITE, CANCEL, ACK and BYE from the baseline

SIP [7], and REFER [40], INFO [41] and SUBSCRIBE/NOTIFY [42] from existing SIP

Table 6-1: New Headers and SIP Requests

INVITE | ACK|BYE| CANCEL | REFER| SUBSCRIBE | NOTIFY | INFO
Conf-ID M M M M M M M M
Participant-In-Cluster M M M M M M M M
Neighbor C C C] C C C C
Cluster-Parameters M C Cc Cc Cc - - -

“M’: Must appear in a method “-"; Cannot appear in a method “C”: May appear in a method

42

extensions. We also modify semantic of the REFER message. Table 6-1 describes
the relationships between the new header fields and the request methods.
Next, we will talk more about REFER, INFO and SUBSCRIBE/NOTIFY requests

because we define new ways of using these messages.

6.1.4.1 REFER
The REFER method will be used in four cases:
1. When a UA wants to invite a new participant, it sends a REFER request to the
participant;
2. A SUA uses REFER to initiate a cluster split procedure;
3. A SUA uses REFER to initiate a cluster merging procedure;
4. When a SUA wants to leave the conference, it uses REFER to designate a

new SUA.

6.1.4.2 INFO
The INFO method is used to propagate session-unrelated information within a dialog.
We use it to propagate information when there is a change of membership in a cluster.

To reduce the network load, the INFO request is only exchanged between SUAs.

6.1.4.3 SUBSCRIBE/NOTIFY
The SUBSCRIBE and NOTIFY methods are used to request notification from remote

nodes indicating that certain events have occurred. Since we do not propagate any

43

membership changes to UAs, a UA, that wants to get the changes, can send a
SUBSCRIBE request to its SUA. The SUA then gives the last changes to the UA by
sending a NOTIFY request. We define a new event type for this notification:
Update-participant. It will be presented in the Event header field of the SUBSCRIBE

request.

6.1.5 New Concepts

We keep some important concepts of SIP (like dialog and call) and define two more
concepts: cluster and conference. The two are established and maintained by both a
UA and a SUA.

A cluster indicates in which cluster a UA or a SUA is. At any given time, a UA and a
SUA can only belong to one cluster. The cluster in a UA comprises three parameters:
a cluster id, a super member and a cluster-parameter. The cluster in a SUA comprises
five parameters: a cluster id, a super member, a cluster-parameter, a member list and
a neighbor list.

A conference is used to store the context of a particular conference. It contains a

conference id, a set of dialogs and a cluster.

6.2 Behavior of End Systems

There are two types of end systems in our signaling protocol: UA and SUA. A UA
consists of a UA client (UAC) that is responsible for sending requests and processing
responses, and a UA server (UAS) that is responsible for processing requests and

sending responses. A SUA also consists of a SUA client (SUAC) and a SUA server

44

(SUAS). In this section, we will describe the behavior of UAC, UAS, SUAC and SUAS.

6.2.1 Initiation
a) UAC (SUAC) Behavior

< Generating and sending INVITE request:

Before generating an INVITE, a caller's UA designates itself as the SUA (since we
assume that all the participants in a conference have same processing and
memory capability, for simplicity, the caller's UA is set to the SUA when a
conference is initiated).

Firstly, a SUAC creates header fields: From, To, Call-ID, CSeq, Max-Forwards,
Via and Contact. In addition to that, the SUAC creates Supported header field
using “clustering” and creates Allow header field using “INFO”. That means that
the clustering extension is supported by the SUA and INFO request is aliowed to
be sent later in the dialog. The SUAC also generates a unique conference id and
uses it to create Conf-ID header field. Moreover, it creates a Participant-In-Cluster
header field. In this header field, the super member parameter is set to the
caller’s SIP-URI, the members parameter is set to callee’s SIP-URI, the cluster id
parameter is set to a unique cluster id that the SUAC generated. Finally, the
SUAC creates a Cluster-Parameters header field through setting level-value,
split-value and merge-value. This extension does not define how to choose these
values so they should be obtained from some pre-configuration or user’s stimulus.
The first INVITE request will not have a Neighbor header field.

The SUAC then generates a INVITE request using the header fields and sends

45

the request.

Processing responses:

If a UACs receives 501, it will not have any further behavior. The invitation is
failed because the callee does not support this extension.

If a SUAC receives 200, it creates a dialog. It also creates a cluster using the
cluster id, super member and member list from the Participant-In-Cluster header
field, using cluster parameters from Cluster-Parameters header field, and using
neighbor list from Neighbor header fields. If there is no Neighbor header field, the
neighbor list of the cluster will be set to null. In addition, the SUAC creates a
conference with conference id from the Conf-ID header field. It also adds the
dialog and the cluster into the conference. Finally, it sends ACK and starts the
media session.

If a SUAC receives other responses, the same operations will be performed as

that in RFC 3261.

b) UAS Behavior

<>

If a UAS receives an INVITE request and if it does not support clustering
extension, it sends 501 as a response. If it supports the extension and the
invitation is accepted, it generates and sends a 200 response. The UAS then
creates a dialog, a cluster and a conference using the parameter values in the
header fields: Participant-In-Cluster, Cluster-Parameters and Conf-ID of the
INVITE.

If a UAS receives ACK, it starts the media session.

46

6.2.2 User Joins
6.2.2.1 SUA Invites

a) SUAC Behavior

< Generating and sending INVITE request:
A SUAC creates header fields Conf-ID, Cluster-Parameters, Participant-In-Custer
and Neighbor using the parameters maintained in the conference. Other header
fields are created through the same way as that in initiation. It then creates an
INVITE request and sends the request.

< Processing responses:
If a SUAC receives a 200, it creates a dialog and sends ACK. Then it updates the
conference. it also sends INFO messages to its neighboring super members if the
neighbor list is not null. The Participant-In-Cluster header fields of the INFO
requests carry the latest member list of the cluster that the SUAC is in. The SUAC
then checks the number of users in the cluster. If it is larger than the split value,
the SUAC calls the split procedure.
Other responses are processed same as that in initiation.

¢ Split procedure
Before sending a split request, a SUA selects one UA as a new SUA following the
fair split policy (presented in section 5.2.6).
» Generating and sending REFER request:

A SUAC creates Participant-In-Cluster header field by setting the super

member parameter to the SIP-URI of the candidate. It then creates the

47

Neighbor header fields using the neighbor list in the cluster. It also creates
Refer-To header fields with all the participants that the candidate should
invite. After that, SUAC creates the REFER request and sends the request.
» Receiving responses:
If the SUAC receives 202, the REFER transaction is finished. The SUAS then
waits for a NOTIFY. After a while, if it receives the NOTIFY, the SUAS sends
200 and inform its SUAC. The SUAC then sends BYE requests to the
members belonging to new cluster. If the SUAC receives 200s of BYEs, it
deletes dialogs and updates the cluster and the conference. It then generates
and sends INFO requests to its neighboring SUAs.
If the SUAC receives other responses or it does not receive a NOTIFY after
the time out that was presented in Expire header field of the REFER request,
the split will be failed. Then the SUAC may choose not to split at this time or
call split procedure again.
b) SUAS Behavior:
< If a SUAS receives an INFO request, it sends 200 and updates the neighbor list.
< If a SUAS receives an INVITE request and if the request is outside any dialogs
that it maintains, it sends 200 and creates a dialog. Then it updates the
conference.
c) UAS Behavior
< If a UAS receives an INVITE request that is not in a dialog, UAS creates a dialog

and updates the conference.

48

< If a UAS receives a REFER request, if the super member parameter in
Participant-In-Cluster is SIP-URI of itself, the UAS sends 202 and asks its UAC to
send INVITE requests to all the users in Refer-To header fields. If it receives
successful information from its UAC, the UAS changes itself to SUA and asks its
UAC to send a NOTIFY request to the old SUA. Then it updates the conference.
d) UAC Behavior
If asked by its, a UAC generates and sends INVITE requests. It then receives
responses and sends successful or not successful information to its UAS.
If asked by its UAS, a UAC generates and sends a NOTIFY request and receives

200.

6.2.2.2. UA Invites User

a) UAC Behavior

< A UAC generates a REFER request and sets Refer-To header field to the super
member in the cluster. Then, it sends the REFER request and receives 202.

< A UAC generates an INVITE request if asked by its UAS. It then receives a
response and informs the UAS.

< AUAC generates a NOTIFY request if asked by its UAS. Then it sends 200.

b) UAS Behavior:

< If a UAS receives a REFER request: it sends 202 and asks its UAC to send
INVITE to the user presented in Refer-To header field. Then if it receives

successful information from its UAC, the UAS asks the UAC to send a NOTIFY

49

request.

< If a UAS receives a NOTIFY request, it sends 200 and updates the conference.

¢) SUAS Behavior

< If a SUAS receives an INVITE request and if the request is from a user that is not
in the conference, it sends 200 and creates a dialog. Then it asks its SUAC to
send INFO to its neighboring SUAs. If the number of users in the cluster is larger
than the split value, the SUAS asks its SUAC to do the split procedure.

< If a SUAS receives an INFO request, it updates the neighbor list and sends 200.

d) SUAC Behavior

< A SUAC sends INFO requests if asked by its SUAS.

6.2.3 User L.eaves

6.2.3.1 UA Leaves

a) UAC Behavior

< A UAC generates a BYE message and sends to its SUA. Then it receives 200
and clears the conference.

b) SUAS Behavior:

< If a SUAS receives a BYE request, it sends 200, updates the conference and
asks its SUAC to send INFO. If the size of the cluster (Cn) is less than the merge
value (Mv) and if there is a neighbor {(number of users in it is Nn) meeting the
requirement of Cn+Nn < My, the SUAS asks its SUAC to do the merging
procedure.

< If a SUAS receives an INFO request, it updates the neighbor list and sends 200.

50

< If a SUAS receives a REFER request, it sends 202. If the super member
parameter in the Participant-in-Cluster header field does not equal to the SIP-URI
of the SUA itself, the SUAS asks SUAC to send BYE requests to its members.
Then it changes itself to a UA and updates the conference. Otherwise, the SUAS
asks its SUAC to INVITE users presented in Refer-To header fields. Then if it
receives success information from its SUAC, it updates the conference.
< If a SUAS receives a NOTIFY request, it sends 200.
c¢) SUAC Behavior
< If asked by its SUAS, a SUAC sends an INFO request.
< If asked by its SUAS, a SUAC sends BYE requests and receives 200s.
< If asked by its SUAS, a SUAC sends INVITE requests, receives 200s, and sends
ACKs. Then it informs the SUAS.
¢ Merging Procedure
To lessen the number of messages used in merging procedure, either the merger
or the mergee who has more membership can be selected as the new SUA.
> If a merger is elected as the new SUA, the SUAC of the merger will generate
and send a REFER request to mergee. In the request, the super member
parameter in Participant-In-Cluster header field is set to SIP-URI of the SUA
and the members’ parameter is set to the merged member list of two clusters.
Then if it receives 202 response, the SUAC sends INVITE requests to all the
members in mergee’s cluster. And if the invitations are successful, the SUAC

sends a NOTIFY request to the mergee’s old super member and receives

51

200.

» If a mergee is selected as the new SUA, the SUAC of the merger will
generate and send a REFER request to mergee. In the request, it sets the
Refer-To header fields to members in the merger’s cluster. Then the SUAC
asks its SUAS to receive a NOTIFY request. After a while, if the SUAS
receives the NOTIFY, the SUAC sends BYE requests to all its members and

change itself to a UA.

6.2.3.2. SUA Leaves

a) SUAC Behavior

<

A SUAC selects one of its members as the new SUA, called candidate. Then it
generates and sends a REFER request to the candidate. In the request, it sets
Refer-To header fields to its members and neighboring super members. After
receiving 202, the SUAC asks its SUAS to receive a NOTIFY request. If the
NOTIFY is received, the SUAC sends BYEs to all connected users. Finally, it

clears the conference.

b) UAS Behavior

<>

if a UAS receives a REFER request from its SUA and if the super member in
Participant-In-Cluster header field equals to the UA, it sends 202 and asks its
UAC to send INVITE requests to the users presented in Refer-To header fields. If
the UAS receives successful information from its UAC, it changes itself to a SUA

and asks its SUAC to send NOTIFY to the old SUA. If the SUAS’s cluster needs

52

to merge, the SUAS asks its SUAC to do the merging procedure.

< If a UAS receives an INVITE request from the new SUA, it sends 200, receives
ACK, and updates the conference.

¢) UAC Behavior

< If asked by its UAS, a UAC sends INVITE requests, receives 200 responses and
sends ACKs. It then informs its UAS.

d) SUAS Behavior

< If a SUAS receives an INFO request, it updates the neighbor list and sends 200.

< If a SUAS receives a NOTIFY request, it sends 200 and informs its SUAC.

6.2.4 UA Request Participant List
a) UAC Behavior

< A UAC generates a SUBSCRIBE request setting the Event header field to
“Update-participant”. Then it sends the SUBSCRIBE and receives 200.

b) UAS Behavior

< If a UAS receives a NOTIFY request, it sends 200 and updates the conference
using the parameters in header fields: Participant-In-Cluster and Neighbor.

c) SUAS Behavior

< If a SUAS receives a SUBSCRIBE request, it sends 200 and asks its SUAC to
send the NOTIFY request.

d) SUAC Behavior

< If asked by its SUAS, a SUAC generates a NOTIFY requests setting parameters in

Participant-In-Cluster header field and Neighbor header fields to the values in the

53

conference. It then sends the NOTIFY and receives 200.

6.2.5 Termination

6.2.5.1 UA Sends BYE

a) UAC Behavior

< A UAC generates and sends a BYE request to its SUA. Then it receives 200 and
clears the conference.

b) SUAS Behavior

< If a SUAS receives a BYE request and if there is no neighbor in the neighbor list
and only one member left in the member list, the SUAS sends 200 and clear the

conference.

6.2.5.2 SUA sends BYE

a) SUAC Behavior

< The SUAC generates and sends a BYE request to a UA. Then it receives 200. If
there is no neighbor in the neighbor list and only one member left in the member
list, the SUAC clears the conference.

b) UAS Behavior

< If a UAS receives a BYE request from its SUA, it sends 200 and clears the

conference.

54

6.3 Sequence Examples

6.3.1 Initiation and Termination

Figure 6-1 shows sequence examples of initiation and termination. In the example, we
do not provide all the information in INVITE and BYE messages, but the new header

fields.

Figure 6-1: Initiation and Termination

6.3.2 User Joins

Figure 6-2 shows two sequence examples of user join. In first example, UA B invites
new participant C by sending a REFER request. C then invites the SUA A. In the

second example, SUA A invites new participant D directly.

A B
<Mcd.xa_» F—’
‘ 202
4 INVITE
—reic
o NOTEE =
<Mediq ‘
INVITE
200
< ACK
4 Media

Figure 6-2: Inviting Users (B invites C, then A invites D. A is SUA)

55

6.3.3 Cluster Splits

Figure 6-3 shows a sequence example of split. In the example, we assume that the

split value is 3. After the participant D joins, the SUA A splits the cluster.

! E A g Medi ° P
M3
< : >
RE!TR"")" ''''''''''''''''''' -
303
DT >
< 200
< INVITE Adcke >
200 >
< ACK
‘ DL 'Y‘H‘ 7,
BYE >
< 200

Figure 6-3 Split: A (BCD) is a cluster; E (I} is another cluster. A spilit
the cluster into A (C) and B (D) (designate B as new SUA)

6.3.4 SUA Leaves

Figure 6-4 shows a sequence example of SUA leaving. In the example, SUA A, who

wants to leave, designates UA B as new super user agent.

E<D A i B
P R
B
‘< 200 -

¢ -k:::c > ACK
¢ ACH

ot ——— g0y
FE gl —

%" LUU

Figure 6-4: SUA Leaves: A (BC) is a cluster; D (E) is another
cluster. Awants to leave and designates B as new SUA

6.3.5 Cluster Merges

Figure 6-5 illustrates a sequence example of cluster merging. In the example, merger

B has less membership than that of mergee D, so D is designated as new SUA.

56

(o] B c

F E
< Media >

‘ REFER {referta Qb

aga »
INMVITE. 4>

¢ 266

ACK >

—N{-)?—W—‘F——’

¢ -

¢

Figure 6-5 Merge: B(C) is merger’s cluster; D
(EF) is mergee’s cluster. D will be the new SUA

57

CHAPTER 7 PROTOTYPE AND RESULT
ANALYSIS

The purpose of the prototype is to implement and evaluate our clustering-based
signaling scheme. It is built according to the SIP extension proposed in chapter 6. In
this chapter, we will first give an overall architecture of the prototype. Then, we will
introduce the software that we used. After that, system design and implementation will

be presented. Finally, we will illustrate and analyze the preliminary results.

7.1 Overall Architecture

Figure 7-1 shows an overall architecture of the prototype. The application layer
implements the actual multiparty session application including application logic and
graphic user interfaces. The signaling layer implements the extended SIP user agent
functionality. The middleware layer provides peer discovery and transport service to

the signaling layer.

Figure 7-1 Architecture of the Prototype

58

7.2 Software Used in Prototype
Two kinds of Java-based freeware are used in our prototype: JXTA [29,30] and JAIN

SIP Stack [45,46].

7.2.1 Peer-to-Peer Middleware -- JXTA

Peer-to-peer middleware is a kind of software that resides in each peer to provide
P2P services, such as naming, grouping, peer discovering and secure transport, for
P2P applications. JXTA is a successful open source implementation of the P2P
middleware. It is a set of open, generalized peer-to-peer protocols, that have been
specifically designed for ad hoc, pervasive and multi-hop P2P network computing,
allowing any connected device (cell phone to PDA, PC to server) on the network to
communicate, coliaborate, and share resources with the other devices. There are six
protocols defined in JXTA specification. They are shown in Figure 7-2. The protocols
PDP, PIP and PBP provide services to applications. The cther three protocols provide
lower layer services. The JXTA organization [29] provides the latest documents and

specifications.

59

Local Peer Remote Peer

g

Figure 7-2 JXTA Protocol Stack

7.2.1.1 JXTA Platform

So far, the only implementation of JXTA is a Java based platform. It implements all
the JXTA protocols and provides services such as peer discovery, group and pipe.
The JXTA platform provides public APIs for programmer to implement applications on
it. It is an on going project and new versions are always published. The earliest
version was the V1.0 in 2001 while the latest version: V 2.2.1 was presented in March

2004. We use the version 2.0 in our prototype because it is a relatively stable version.

7.2.1.2 How Does a Peer Discover Other Peers

60

A JXTA peer can discover other peers in three steps. The first step is the peer

configuration. JXTA provides the configuration interfaces shown in Figure 7-3. A user

“ TXTA. Configurator

Basic selings Esperienced Users Only
Trace Leve! user default
~TCP Sefings
Enabie i direct LAN connection.
¥ Enatled ¥ Multicast
[” Wanual AayiAll Local Addresses v ig?ox

¥ Enable Outgoing connections
{Mandators} ' Enable incoming Connedlions

{Optional} Putic address | jorot
Iw, ~HTTP Sefiings
Mustenable if behind Firewall or NAT
W Enabled
I tanual |nyiAll Local Addresses v] j3700

™ Enable Oulgoing connections
{™ Enabte incoming Connections
{Optional; Public address E {9%0

Figure 7-3 JXTA Configurations

is required to enter a peer name that will represent the user in the network. A user can
also make choices to set communication means, such as whether a peer uses a
proxy, whether a peer needs relay/rendezvous peers, and what port and addresses a
peer uses. Besides, the configuration provides secure settings. After the
configuration, an XML based advertisement is generated, which stores all the
information of a peer. In Figure 7-3, the peer name is set to “Alice” and the
configuration advertisement of “Alice” is presented in Appendix B.

The second step is peer publication. Once a peer has been published, other peers
online can find it. A peer can be published locally or remotely. If a peer is in a local

area network and it does not connect to a relay/rendezvous peer, the advertisement

61

will be published locally through multicast. Otherwise, the advertisement will be
published remotely on the relay/rendezvous. The function for publishing is the
remotePublish() in Discovery Service. The peer advertisement that needs to be
published can be obtained from the configuration advertisement. Appendix C shows
an example of Alice’s peer advertisement.

The last step is peer discovery. A peer can discover other peers in two ways. One is
to call the getLocalAdvertisement() method in Discovery Service. This method can
obtain the peer advertisements in local cache. The other is to call the
getRemoteAdvertisement() method. The method generates a discovery request and
gets responses from the networks.

In the prototype, we use the JXTA peer discovery service following the above steps.
We publish the peers locally and discover peers using getRemoteAdvertisement()

method.

7.2.1.3 Pros and Cons

JXTA provides programmers an easy way to develop peer-to-peer applications. It
provides a set of useful services such as the peer discovery, group service, and pipe
service. This is the reason why we choose it as the middleware to support our
signaling system. However, JXTA has deficiencies. Since it is not specifically designed
for ad hoc networks, JXTA does not consider the network environment in which the
network connectivity and network nodes are transient. In addition, the JXTA

implementation is often updating and it is lack of stability. Furthermore, issues like

62

pipe security, reliability and QoS are still under discussion.

7.2.2 Standard SIP Interface -- JAIN SIP API

JAIN SIP provides developers a standardized Java interface for SIP services. The
latest version of it supports RFC 3261 functionalities, as well as INFO method (RFC
2976), reliability of provisional responses (RFC 3262), Event Notification Framework
(RFC 3265), the UPDATE method (RFC 3311), the Reason Header (RFC 3326), the
Message method defined for instant messaging (RFC 3428) and the REFER method
(RFC 3515).

Since JAIN SIP has implemented all the messages defined in SIP and SIP extensions
so far, we choose it as a basis of our SIP extension. We use headers, messages, and

dialog that it provides. We also extend it using our new headers and new concepts.

7.3 System Design
In this section, we will briefly introduce the system design. Firstly, we will illustrate the
classes designed for the prototype. Secondly, we will show the state diagram of the

most important class: PeerUserAgent that implements the extended SIP user agent.

7.3.1 Class Design
Figure 7-4 shows the classes and their relationships in the prototype. Class
PeerUserAgent is the most important class that implements the extended SIP user

agent functionality. It creates instance of class Conference that implements the

63

conference concept of the SIP extension. The Conference can create the Cluster that
implements the cluster concept. The class PeerUserAgent also provides methods to
generate, send and process requests and responses. The request and response
messages contain the new headers. Each new header is implemented as a class.

Class MyHeaderFactory provide methods to create instances of the headers’ classes.

T
onference T =
CParametertieader

Platform

Figure 7-4 Class Structure

Class PeerServices uses the APIs of JXTA. It provides peer discovery service for peer
user agent. Other classes such as the P2PSipAgentGUI, ConfigurationGUI,
InformationGUI and ConferenceGU! implement the application logic and graphic user
interfaces. Class FileServices provides read/write file services. Class ToMedia
provides an interface to the media handling services. Common events are defined in
the class MyEvent. They consist of the events from the user interface and the events

of receiving SIP messages.

64

7.3.2 State Diagram

Class PeerUserAgent implements an extended SIP user agent through the

Referred
Generating

recv200
Referred acceptl Refer'red recVAXX JsendAck Referred
/send202. Fail Jsendiol Tsendion Suce
sendinvite Notifying sendNotify sendNotify LNotnfynng

jolpuss‘pozZpuas
JlaourDAdaL
18¥Puas/|akq
ggypuas/idasoyiou

=
[}
[s]
<
N
(=3
(=]

svinvite/sendtol acceptlfsend200

0)PUSS/I9OHADSI

Screenlnviting

notAcceptl/send488
byel/send487
recvCancel/
send200,sendtol recvAck/sendtol

AckWaiting

|

SYIAUIPUBS/ BN

invitel/sendRefer (not super)

JOIPUBSXX{yADBI

recv488/sendtol Referring
Generating
recv200/sendAck g 3 202
recv200/sengAcK (not split) o § recv.
s 3 =
£ invitel/sendinvite g =
3 recvBye/send200 g .
Q -
é — userAdding referCanceling referWaitNotify
f=2 . J
g glg £ . lrecv200/sendtol)
3 recv486/sendtol al 2 o gAY recvNotify/
e gl 08 send200,sendtol
e Terminating =18 Lo
byel/sendBye) g addCanceiing [2
(not super) (BD <
g 8|2
3515 2| & notAccepti/send488
28 2|8 | byetisendds7
=1 B2 rpevCancel
&3 8|8
% send200,sendtol 7.5 (a)

userAdd

keepAckWaiting Screenlinviting

management a set of conference states. Events such as clicking a button and
receiving a request or a response from other user agents will trigger state changes.

Figure 7-5 (a) and (b) shows the state diagram of the PeerUserAgent.

65

recv202 Merge

00ZAJ8:

NOYADBI
(ds

Referring o]
'3—7- AckWaiting =
o]
2 g Splitting
oD 14
X = @ =
2 ae 2| § recviNotify/
=D < <
ola als 3 " send200,
Q @ SplitSucc
08 B2l §* F sencByes
sendByes gle 9° |3
= i e
1] E
3 8
=]
2

Merge
Referred

O i~
zZp B recvRefer/send202,invites recvRefer/send202,invites | = :% é
330 {(c==merge) {not super, c==split) %% 2
T
recv200 215 recv200 -
g = Split
e Success
e Notifying
g%
f:apfg 8| | recvReferlsend202,invites oS
— uper
recv202 Referring (not super, c==bye) l Changing
Superleave recv200 recv200s/sendAcks, notify
‘ NotifyWaiting] toSuper
Nofifying
recvNoti Superleave ' iid!é
send200,byes ByesWiaiting ' (b}

Figure 7-5: State Diagram for Class: PeerUserAgent

7.4 Implementation
7.4.1 The Setup

We build our prototype on seven Pentium IV machines operating at 2.2 GHz with
512M RAM running Windows XP and on one machine of x86 Family 6 Model 8

stepping 3 AT/AT COMPATIBLE with 524M RAM running Windows 2000. A total of

eight machines are used.

7.4.2 Functionality and Interfaces
The prototype implements the following functionality: configuration, peer discovery,

conference control and signaling message measurement. Three user interfaces are

66

developed. Figure 7-6 (a), (b) and (c) show them and we will introduce them one by
one.

The Configuration Interface (7-6 (a)) provides three sorts of configurations. The first is
to set and modify cluster parameters. The second is to set media types. Although we
do not provide media handling functionality, this configuration helps to create SDP

messages that may be needed in media handling. The third is to set user’s profiles.

alice's Peer-to-Pear 51 Agent
RS 3

Sl

: -Cluster Parameters -Media Types -Profiles
Split Value: - gudio TYRES s User Name:
!”W [GSm [!
= [uLaw
Merge Value: [pcMu Email address:
Cer23 [|
. Cow
Cluster Level: I Others Company:
! il |
LV TP [727 TR Telephone:
(] JPEG l |
[[iH263
[T} others

7-6 (a)

The SIP Conference Interface (7-6 (b)) provides peer discovery service and
conference services. In the figure, a user named “alice” clicked “Peer_list” button and
found that three other peers are online. “Alice” then invited Bob and John to join a
conference. The current state of the SIP Agent is presented at the bottom of the
interface. If there are incoming calls, “alice” can accept or reject the calls by clicking
“ACCEPT” and “REJECT” buttons.

The Information Interface (7-6 (c)) shows two kinds of information. One is the SIP

67

message sent and received during the conferencing. it aids to check the correctness
of the signaling messages exchanged. The other is the statistic result of the number of

messages sent and received. It is used for the performance measurement.

£ alice’s Peer-to-Peer SIP Agent

S

~Conference

Please Input the Peer Name:

alice
hoh

John

7-6 (b)

(c)
Figure 7-6 Graphic User Interfaces
68

7.5 Preliminary Results

7.5.1 Metric and Comparison Data

The only metric that we will use is the number of signaling messages exchanged
between peers. Since the sessions are distributed, we count messages received in
each peer, and then sum them up. To simplify the measurement and get useful result,
we only measure the successfully session-related sequences without counting any
failed cases or re-Invite procedures. Since the notification sequence
(SUBSCRIBE/NOTIFY) in our SIP extension is session-unrelated, we do not count it

either.

We will make two kinds of comparisons. One is to compare our system with the full
mesh approach. The purpose of this comparison is to evaluate the scalability of our
architecture. The other kind of comparison is to compare different split values. It is

used for studying the optimization of the clustering-based architecture.

In the first comparison, sessions of two to eight parties are evaluated and the session
establishment and termination sequences are measured. In the measurement of our
system, a fixed split value is chosen. The number of messages generated by the
system varies depending on how new members are invited, and also on how super
members and members leave sessions. In order to obtain the practical performance,
we adopt the cases in which the minimum and the maximum number of messages are

exchanged. In the measurement of the full mesh approach, we refer to the sequences

69

discussed in [44]. In the document, if the number of participants in a conference is N
(N>1), the messages used to establish sessions will be ((N*(N-1))/2)*3, and that to

terminate sessions will be ((N*(N-1))/2)*2.

In the second comparison, we set the split value from one to eight and measure which
value leads to a minimum number of messages exchanged for two to eight peers.

Establishment sequences are measured.

7.5.2 Results and Analysis

Figure 7-7 shows the results of the first comparison. Columns in the figure represent
the number of messages used in clustering-based architecture while lines represent
the ones used in the full-meshed one. In the columns, the “clustering-max” is the

maximum number of messages exchanged while the "clustering-min” is the minimum.

The 7-7 (a) shows the result for session establishment. In the case, we set the split
value as 4 so the first split happens when the fifth peer joins. We can see that more
messages are generated in the full mesh fhan that in the clustering when the number
of peers exceeds three. And the gap between the “full mesh” and the “clustering-min”
becomes bigger and bigger with the enlargement of the scale of a conference. The

result proves that the clustering-based approach is more scalable than the full mesh.

The 7-7 (b) shows the result for session termination. The minimum number of

70

messages used in the clustering is still less than that used in the full mesh. However,
the bad performance occurs when super members always leave clusters earlier than
members do. This is due to the fact that the super member re-election and the cluster
re-configuration generate a considerable number of messages. To avoid this, a super
member, whenever it is elected, should leave the conference as late as possible. This

result proves that our signaling scheme is still not an optimal one.

Sessions Establishment

90
80
70
60
50
40
30
20
10

:4)

B clustering-min
clustering-max
-~ full mesh

Number of Message Used
(Split Value

1 2 3 4 5 6 7 8
Number of Peers

7-7 (a)

Sessions Termination

120

100

B clustering-min
60

clustering-max

40 - full mesh

20

Number of Message Used

1 2 3 4 5 6 7 8
Number of Peers

(b)

Figure 7-7 Comparisons Between Full Mesh and Clustering

71

Figure 7-8 shows comparison results of different split values. We can see that when
the split value is 1, a large number of messages are exchanged between peers. This
is because the signaling architecture is actually a full mesh in the case. When the split
value is larger than the number of peers in a conference, a small number of messages
are exchanged. But the architecture becomes a centralized one. The traffic of the
super member will be heavy when the scale of a conference is large.

It is hard to find a proper split value that can meet requirements of both a minimum
number of messages’ generation and a balanced signaling traffic. However, an
interesting result in Figure 7-8 shows that for six, seven and eight peers, when we set
the split value to 4, the number of messages generated is less than that generated
when other split values are set (not including the split value that results in a
centralized architecture). Forasmuch, there may exist optimal split values for

large-scaled, clustering-based architecture.

Sessions Establishment

120

—e— 2 peers
100

—#—3 peers
% 4 peers
60 5 peers

—»—6 peers
—e— 7 peers
+— 8 peers

40
20

Minimun Number of
Message Used

Split Value

Figure 7-8 Comparisons of Different Split Values

72

7.6 Summary

We implemented a peer-to-peer SIP user agent that realizes the clustering-based
signaling scheme. We used JXTA as a middleware and JAIN SIP as the basis of the
SIP extension. We also built a simple application that uses the user agent to establish
and terminate conferences. Performance measurements are made and preliminary
results are obtained from the prototype. We compared our architecture with the
full-meshed one and evaluated different split values.

Through the work, we can see that our signaling system is feasible to manage
multiparty sessions in peer-to-peer ad hoc networks. Besides, in most cases, our
system shows better performance than that found in the full mesh approach. Its worst
performance is in the session termination when super members leave earlier than
members do. Therefore, our scheme is not yet an optimal one. Moreover, the
research on the optimization of the clustering architecture (e.g. optimally choose split

value and merge value) is still at the start point of the road.

73

CHAPTER 8 CONCLUSIONS AND FUTURE
WORK

in this chapter, we will first present the contributions of this thesis. Then we will

discuss the lessons learned. Afterward, directions for future work will be presented.

8.1 Contributions and Lessons Learned

We have studied the evolutions and the related works in ad hoc networks and
peer-to-peer communication. We also have related these two concepts and defined
their usage in this thesis.

We have derived signaling requirements for the multiparty sessions in peer-to-peer ad
hoc networks through comparing the networks with the traditionally
infrastructure-based networks. Three existing signaling protocols: SIP, H.323 and
ICEBERG have been studied as the state of the art.

In order to find an optimal signaling architecture for peer-to-peer ad hoc networks, we
have analyzed four possible signaling architectures: centralization, full mesh, tree and
clustering, and made comparison between them.

A clustering based signaling scheme has been proposed. We described the
definitions, principles and detailed operations. We also analyzed its potential to meet
the signaling requirements. We have implemented the signaling scheme as an
extension to SIP. New entity, headers, concepts and semantics were proposed,
behavior of end systems were depicted, and sequences of calls were illustrated.

A prototype has been built for implementing and evaluating the signaling system.

74

Preliminary results were then obtained from the performance measurement.

From all the works above, we have learned several lessons:

The first lesson is that the multiparty session control faces challenges in peer-to-peer
ad hoc networks. The challenges include the peer-to-peer communication, the limited
device and network resources, and the unreliable and transient network connectivity.
The second lesson is that none of the existing signaling protocols meet all the
signaling requirements for peer-to-peer ad hoc networks. H.323 and ICEBERG
signaling have the centralized control points. The SIP in full mesh cannot be scalable.
The third lesson is that our proposed signaling scheme: clustering-based architecture
has potential to meet all the signaling requirements.

The fourth lesson is that SIP can be extended to implement the clustering-based
architecture, and the extension can handle peer-to-peer multiparty sessions.

The fifth lesson is that the number of messages used in our architecture is less than
that used in full mesh, but our scheme is not optimal because super-member leaving
leads to bad performance.

The last lesson is that the research in this thesis is still a start point in the area of the
signaling for peer-to-peer ad hoc networks. Significant amount of future work are

ahead of us.

8.2 Future Work

The future work can be summarized as three directions.

75

The first direction is about the signaling scheme. Our signaling scheme needs to be
optimized, especially for the sequence of super-member leaving. The research on
cluster parameters’ selection is also significant work. In addition, we have not yet
touched the issues like security, fault recovery and billing in our signaling scheme.
The second direction is about the implementation and testing. We need to implement
the resource negotiation mechanism so that the resources can be used optimally.
We also need to open signaling APIs for application development. Furthermore, our
implementation needs to be tested on various devices like PDAs, laptops and cell
phones. It needs to be tested in a large scaled ad hoc network environment as well.
The last direction is about middleware. Although we use JXTA in the prototype, JXTA
is not specifically designed for ad hoc networks. Middleware tailored for peer-to-peer

ad hoc networks should be developed in the future.

76

REFERENCES

[1] M.Weiser, “The Computer for the Twenty-First Century”, in Scientific American,
1991.

[2] C.Perkins, E.Belding-Royer, and S.Das., “Ad hoc On-Demand Distance Vector
(AODV) Routing”, RFC 3561, July. 2003

[3] T.Clausen, Ed. and P.Jacquet, Ed., “Optimized Link State Protocol (OLSR)", RFC
3626, Oct. 2003

[4] R.Ofier, F.Templin, M. Lewis, “Topology Dissemination Based on Reserve-Path
Forwarding (TBRPF)", Feb. 2004.

[6] Stepnens. Yau and Xinyu Zhang, “A Middleware Service for Secure Group
Communication in Mobile Ad hoc Networks”, Proceedings of the 27" Annual
International Computer Software and Application Conference (COMPSAC’ 03),
IEEE.

[6] Cristian Tuduce and Thomas Gross, “Organizing a Distributed Application in a
Mobile Ad hoc Network”, Proceeding of the Second IEEE International
Symposium on Network Computing and Applications (NCA'03).

[7] J. Rosenberg et al., “SIP: Session Initiation Protocol”, RFC 3261, June 2002.

[8] H.323 series , ITU-T recommendations, Geneva 2003

[9] H.Schulzrinne et. al., “RTP: A Transport Protocol for Real-Time Applications”,
RFC1889, Jan. 1996

[10] H.Schulzrinne, GMD. Fokus, “RTP Profile for Audio and Video Conferences with
Minimal Control”, RFC 1890, Jan. 1996

[11] Ram Ramanathan and Jason Redi, “A Brief Overview of Ad hoc Networks:
Challenges and Directions”, IEEE Communications Magazine, 50" Anniversary
Commemorative Issue, May 2002

[12] David Remondo, Ignas G. Niemegeers, “Ad hoc networking in future wireless
communications”, Elsevier Computer Communications 26, 2003, page 36-40

[13] Magnus Frodigh, Per Johansson and Peter Larsson, “Wireless ad hoc networking
— the art of networking without a network”, Ericsson Review No.4, 2000

[14] Bangnan Xu, Sven Hischks and Bernhard Walke, “The Role of Ad Hoc
Networking in Future Wireless Communications”, Proceedings of ICCT 2003

[15] Marco Conti, “Body, Personal, and Local Ad Hoc Wireless Networks”, in: M. llyas
(Ed.), Handbook of Ad Hoc Networks, CRC Press, New York, 2003 (Chapter |)

[16] IEEE 802.15.3 TM, “Part 15.3: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for High Rate Wireless Personal Area
Networks (WPANSs)”, IEEE Computer Society, Sep. 2003

[17] C.Bisdikian, “An Overview of Bluetooth Wireless Technology”, IEEE
Communications Magazine, Dec. 2001, page 86-94

[18] Pablo Brenner “A Technical Tutorial on the IEEE 802.11 Protocol”’, BreezeCOM
Wireless Communication, 1997, online at:
hitp://www.sss-mag.com/pdf/802 11tut.pdf

[19] ETSI, Digital Enhance Cordless Telecommunications (DECT); A High Level Guide

77

to the DECT Standardization, ETSI TR 101 178, Mar. 2000

[20] Kee Chaing and Seah Khoon Guan Winston, “Quality of Service Models for Ad
Hoc Wireless Networks”, in: M. llyas (Ed.), Handbook of Ad Hoc Networks, CRC
Press, New York, 2003 (Chapter VII)

[21] Amitabh Mishra and Ketan M. Nadkarni, “Security in Wireless Ad Hoc Networks —
A Survey”, in: M. llyas (Ed.), Handbook of Ad Hoc Networks, CRC Press, New
York, 2003 (Chapter VII)

[22] Ahmed Safwat, Hossam S. Hassanein and Hussein T. Mouftah, “Power-Aware
Wireless Mobile Ad Hoc Networks” in: M. liyas (Ed.), Handbook of Ad Hoc
Networks, CRC Press, New York, 2003 (Chapter VII)

[23] IETF Peer-to-Peer Research Group, online:http://www.irtf.org/charters/p2prg.html

[24] Barry M. Leiner et al, “ A Brief History of the Internet’, online at:
http://www.isoc.org/internet/history/brief. shtmi#L GR67

[25] Edited by Andy Oram, “Peer-to-peer: harnessing the benefits of a disruptive
technology”, Beijing ; Sebastopol, CA : O'Reilly, 2001

[26] The Napster Protocol, online at: hitp://opennap.sourceforge.net/napster.txt, Mar.
2000

[27] Matei Ripeanu, Adriana lamnitchi, lan Foster, “Mapping the Gnutella Network”, in
IEEE Internet Computing, Jan.--Feb. 2002, pages 50-57

[28] lan Clarke, Scott G.Miller, Theodore W. Hong, Oskar Sandberg, Brandon Wiley,
“Protecting Free Expression Online with Freenet”, in IEEE Internet Computing,
Jan.--Feb. 2002, page 40-49

[29] JXTA organization, online at: http://www.jxta.org/

[30] Li Gong, “JXTA: A Network Programming Environment®’, in IEEE Internet
Computing, May—dJune 2001

[31] R. Scholimeier, “A Definition of Peer-to-Peer Networking for Classification of
Peer-to-Peer Architectures and Applications”, in First IEEE International
Conference on Peer-to-Peer Computing, 2001, pages 101-102

[32] G. Kortuem, “When Peer-to-Peer comes Face-to-Face: Collaborative
Peer-to-Peer Computing in Mobile Ad Hoc networks”, n First IEEE International
Conference on Peer-to-Peer Computing, 2001, pages 75-91

{33] Siddhartha K. Goel et al., “Efficient Peer-to-Peer Date Dissemination in Mobile
Ad-Hoc Networks”, IEEE Proceedings of the International Conference on Parallel
Processing Workshops (ICPPW’ 02)

[34] R. Schollmeier et al., “Routing in Mobile Ad Hoc and Peer-to-Peer Networks. A
Comparison”, online at http://www.elet.polimi.it/p2p/papers/1.pdf

[35] Barbosa e Oliveira et al., “Evaluation of ad-hoc routing protocols under a
peer-to-peer application”, in IEEE Wireless Communications and Networking
(WCNC), March 2003, Volume: 2, pages 1143-1148

[36] Helen J. Wang, et al., “lceberg: An Internet Core Network Architecture for
Integrated Communications”, in IEEE Personal Communications, August 2000

[37] Santivanez, C.A.; McDonald, B.; Stavrakakis, |.; Ramanathan,R., “On the

scalability of ad hoc routing protocols”, INFOCOM 2002. Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies, Proceedings,

78

IEEE, Volume: 3, 23-27 June 2002

[38] Feng Yong-Xin, et al., “A clustering algorithm applied to the network management
on mobile ad hoc network”, Info-tech and info-net, 2001, proceedings, ICIi
2001-Beijing, 2001 International Conference, Volume 2, 29 Oct. - 1 Nov. 2001.

[39] Ram Ramanathan, Martha Steenstrup, “Hierarchically -organized, multi-hop
mobile wireless networks for quality-of-service support” Mobile Networks and
Applications 3, 1998

[40] R. Sparks, “The Session Initiation Protocol (SIP) Refer Method”, RFC 3515, April
2003

[41] S. Donovan, “The SIP INFO Method”, RFC 2976, Oct. 2000

[42] A. B. Roach, “Session Initiation Protocol (SIP) — Specific Event Notification”, RFC
3265, June 2002

[43] J. Rosenberg, H. Schulzrinne, “Models for Multi Party Conferencing in SIP”, IETF
internet Draft, Nov. 2000, expires: May 2001

[44] Mark/Kelley, “Distributed Multipoint Conferences using SIP”, IETF internet Draft,
Mar. 2000, expires: Sep. 2000

[45] JAIN SIP Sources online at: https://jain-sip.dev.java.net/

[46] “This document specifies the JAIN™ SIP API Specification v1.1”, online at:
http://www-x.antd.nist.gov/proj/iptel/src/nist-sip/jain-sip/docs/api/jain-sip-overview
.html, June 2003

[47] Hwa-Chun Lin, Yung-Hua Chu,"A clustering technique for large multihop mobile
wireless networks", Vehicular Technology Conference Proceedings, 2000 IEEE
51st, Volume: 2, 15-18 May 2000

[48] Chien-Chung Shen et al., "CLTC: a cluster-based topology control for ad hoc
networks", Mobile Computing, IEEE Transactions on, Volume: 3, Issue: 1,
Jan.-March 2004

[49] Khiifi, H., Agarwal, A., Gregoire, J.-C., “A framework to use SIP in ad-hoc
networks”, Electrical and Computer Engineering, IEEE CCECE 2003. Canadian
Conference on , Volume: 2, 4-7 May 2003

79

Appendix A: Syntax of Header Fields: Conf-ID,
Participant-In-Cluster, Cluster-Parameters and

Neighbor

Conf-ID “Conf-ID” “:” Conference id

Conference id token ['@” token]

Participant-In-Cluster “Participant-In-Cluster” “:” Cluster-params
Cluster-params cluster id “;” super member “;” members
cluster id “cluster id=" token [‘@" token]

super member “super member=" SIP-URL

members “members=" (SIP-URL *[*,” SIP-URL])
Neighbor “Neighbor” “:” Cluster-params
Cluster-Parameters “Cluster-Parameters” “.” Cparams
Cparams split-value “;” merge-value “;” level-vaiue
split-value “Sv="1*5DIGIT

merge-value “Mv="1*5DIGIT

level-value “Lv="1*5DIGIT

80

Appendix B: Alice’s Configuration

Advertisement

<?xml version="1.0" encoding="UTF-§"7?>
<IDOCTYPE jxta:PA>
<jxta:PA xmins:jxta="http://jxta.org" type="jxta:PlatformConfig">
<PID>
urn:jxta:uuid-59616261646162614A787461503250335DDD64F187764299BDA49795B0
F2552603
</PID>
<Name>
Alice
</Name>
<Desc>
Platform Config Advertisement created by : net.jxta.impl.peergroup.Configurator
</Desc>
<Sve>
<MCID>
urn:jxta:unid-DEADBEEFDEAFBABAFEEDBABE0000000905
</MCID>
<Parm>
<jxta:TransportAdvertisement xmlns:jxta=http:/jxta.org
type="jxta:TCPTransportAdvertisement">
<Protocol>
TCP
</Protocol>
<Port>
9701
</Port>
<MulticastAddr>
224.0.1.85
</MulticastAddr>
<MulticastPort>
1234
</MulticastPort>
<MulticastSize>
16384
</MulticastSize>
<ConfigMode>
auto
</ConfigMode>
</jxta:TransportAdvertisement>

81

</Parm>
</Sve>
<Svc>
<MCID>
umn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000605
</MCID>
<Parm>
</Parm>
</Sve>
<Sve¢>
<MCID>
urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABEO000O00EQS
</MCID>
<Parm>
<isOff>
</isOff>
</Parm>
</Sve>
<Svc>
<MCID>
urn;jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000805
</MCID>
<Parm>
<MessengerQueueSize>
20
</MessengerQueueSize>
</Parm>
</Svc>
<Sve>
<MCID>
urn;jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000105
</MCID>
<Parm>
<RootCert>

MIICNjCCAZ+gAwIBAgIBATANBgkqhkiG9wOBAQUFADBMRUWEWYDVQQKEwx3d

3cuanh0Y S5vemexCzAJBgNVBACTAINGMQswCQYDVQQGEwWIVUZERMASGA 1UEAXMIQ
WxpY2UtQOEXHTAbBgNVBASTFDY 1 QjhGMDIXMTFERTU3QTIGMzc2MB4XDTAOMDew
NjEOMTU 1 MFoXDTEOMDcwNjEOMTU1MFowYZzEVMBMGA 1 UEChMMd3d3Lmp4dGEub3J
nMQswCQYDVQQHEWIJTRJELMAKGA 1UEBhRMCVVMxXETAPBgNVBAMTCEFsaWNILUN
BMROwGwYDVQQLExQ2NUI4RjAyMTEXREUINOEyRjM3NjCBmzALBgkqhkiGOwOBAQE
DgYsAMIGHA0GBAL WaetCNLyJ7CcVAcM2kez3gPmnOVX26Lhw1PV4FeWH1UhsjSoR/v/Y
9BEKhWNK TiNpmCUfK C92/fISgTjdq3sZ6KySFPumHIBX+1Xe3x+2MK4PKe4JmGLiGfYLAO
E+Hk1WezKwEPObZ7+1 UIvM4MeRmP/rfLO2J/wwkGuvTfbtAgERMAOGCSqGSIb3DQEBBQ
UAA4GBAGEKSYEUTOSUu+XjwybhozBLMXszNK2z5IrESWGL7C11Ua0t7VIE2GoIBOUA7p

82

Oli5xKqMhK Y cFnQDjFy5/kj37dgOFnMd5fFgya60quWsvuMsfzNLPIFDYie6 WY Wiiqj/jiR 7btk
Wpt/iXBCRcI7TETeeSjW2JLSWCvqN2VEVIH
</RootCert>
</Parm>
</Svc>
<Svc>
<MCID>
urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000A05
</MCID>
<Parm>
<jxta:TransportAdvertisement xmlns:jxta="http://jxta.org"
type="jxta:HTTPTransportAdvertisement">
<Protocol>
http
</Protocol>
<InterfaceAddress>
</InterfaceAddress>
<ConfigMode>
auto
</ConfigMode>
<Port>
9700
</Port>
<Proxy>
myProxy.myDomain:8080
</Proxy>
<ProxyOft>
</ProxyOft>
</jxta:TransportAdvertisement>
</Parm>
</Sve>
<Svc>
<MCID>
urn;jxta:unid-DEADBEEFDEAFBABAFEEDBABEO000000F05
</MCID>
<Parm>
<isServer>
false
</isServer>
<ServerMaximumClients>
</ServerMaximumClients>
<ServerLeaseInSeconds>
</ServerLeaseInSeconds>
<isClient>

83

false
</isClient>
<ClientMaximumServers>
</ClientMaximumServers>
<ClientLeaseInSeconds>
</ClientLeaseInSeconds>
<ClientQueueSize>
20
</ClientQueueSize>
<isOff>
</isOff>
</Parm>
</Sve>
<Dbg>
user default
</Dbg>
</jxta:PA>

84

Appendix C: Alice’s Peer Advertisement

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE jxta:PA>
<jxta:PA xmlns:jxta="http://jxta.org" type="jxta:PlatformConfig">
<PID>
urn:jxta:uuid-59616261646162614A787461503250335DDD64F187764299BDA49795B0F2
552603
</PID>
<Name>
Alice
</Name>
<Desc>
Platform Config Advertisement created by : net.jxta.impl.peergroup.Configurator
</Desc>
<Sve>
<MCID>
urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000905
</MCID>
<Parm>
<Addr>
tep: //132.146.3.82:9071/
</Addr>
<Addr>
jxtatls: //uuid-
59616261646162614A787461503250335DDD64F187764299BDA49795B0F2552603/
TlsTransport/ jxta-WorldGroup
</Addr>
<Addr>
Jjxta: //uuid-
59616261646162614A787461503250335DDD64F187764299BDA49795B0F2552603/
</Addr>
<Addr>
http: // IxtaHttpClientuuid-
59616261646162614A787461503250335DDD64F187764299BDA49795B0F2552603/
</Addr>
</Parm>
</Svc>
</jxta:PA>

85

